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“What we want is a machine

that can learn from experience.”

(Alain Turing, 1947)



Resumo

Nos últimos anos, a necessidade de aumentar a capacidade instalada total de fontes

renováveis de energia (eólica, solar, bioenergia e hídrica) tem recebido reconhecimento

mundial como forma de mitigar os efeitos danosos causados pelas mudanças climáticas

resultantes do uso extensivo de combustíveis fósseis. Embora a utilização de fontes ren-

ováveis como a energia solar e eólica tenha expandido, a energia das marés permanece

praticamente inexplorada. Até hoje, apenas dois grandes projetos de barragens mare-

motrizes foram construídos, a saber, La Rance (França) e Lake Sihwa (Coreia do Sul),

com 240 MW e 254 MW de capacidade instalada, respectivamente.

Um problema recorrente entre as várias propostas de barragens maremotrizes

(e.g., Swansea Bay Tidal Lagoon, Severn Barrage, Cardiff Tidal Lagoon) tem sido

os altos custos de eletricidade, que estão fortemente relacionados à estratégia opera-

cional utilizada ao estimar a produção de energia desses sistemas. Portanto, esta

tese pretende preencher lacunas na literatura, propondo métodos generalistas que pos-

sibilitem a primeira operação automática (em tempo real) e otimizada de barragens

maremotrizes. Isso permitiria reduzir os custos de energia elétrica por meio (i) da max-

imização da energia elétrica produzida e (ii) da redução do custo operacional com a

operação automática desses sistemas, permitindo que essa tecnologia seja mais atrativa

economicamente.

Dada uma simulação precisa das estruturas hidráulicas que compõem uma bar-

ragem maremotriz, conseguimos alcançar os objetivos apresentados com (a) modifi-

cações nos métodos estado da arte, permitindo a operação em tempo real e com con-

trole independente de vertedouros e (b) uma nova abordagem com Aprendizado por

Reforço Profundo (DRL) projetada para operar barragens maremotrizes. Como estudo

de caso para o nosso trabalho, focamos na modelagem 0D de dois projetos: La Rance

Tidal Barrage (já contruída) e o projeto da Lagoa de Swansea no Reino Unido (SBL).

Por meio de técnicas paramétricas e de leis de afinidade, uma representação 0D

para La Rance é criada e validada em relação a dados medidos pela Electricité de France

(EDF) – companhia responsável pelo operação de La Rance, desde sua construção. O



modelo 0D parametrizado é então operado de forma ótima com nosso método DRL,

gerando resultados quantitativos e uma estratégia de operação comparáveis às obser-

vadas em La Rance. Ao melhor de nosso conhecimento, esta é a primeira validação

de um modelo 0D e da estratégia de operação de TRS em comparação a uma TRS

construída. Além disso, a parametrização das estruturas de La Rance permitiu uma

descrição generalizável do modo operacional de bombeamento das turbinas, que é im-

plementado no modelo 0D de SBL.

Mostramos que, utilizando o modelo 0D de SBL com bombeamento, ambos os

métodos (a) e (b) desenvolvidos alcançam uma geração de energia superior ao upper

bound do estado da arte (cenários onde as previsões de maré são iguais às medições)

em 2, 68% e 3, 14%, respectivamente (levando a um aumento do lucro anual de até

967.267£, para SBL), enquanto operam a TRS em tempo real. Adicionalmente, o

método DRL (b) alcança esse objetivo sem necessitar de previsões de maré, enquanto

performa uma operação dinâmica das turbinas em modo de bombeamento, incluindo

cenários com queda positiva (auxiliada pela gravidade) – essas duas últimas caracterís-

ticas são observadas em medições de La Rance, e até então não nenhum método de

controle de TRS havia sido capaz de realizar essa tarefa.

Palavras-chave: energia maremotriz, barragens maremotrizes, aprendizado por re-

forço profundo, “proximal policy optimisation”.



Abstract

In recent years, the need to increase the total installed capacity of renewable energy

sources (wind, solar, bioenergy and hydro) has received worldwide recognition as a

means to mitigate the damaging effects of climate change that result from the extensive

use of fossil fuels. While significant progress has been made in expanding solar and

wind resources, tidal energy remains practically untapped. As of today, only two

successful large Tidal Range Structure (TRS) projects have been built, namely, La

Rance (France) and Lake Sihwa (South Korea), with 240 MW and 254 MW of installed

capacity, respectively.

A recurrent issue among the several proposals for TRS (e.g. Swansea Bay Tidal

Lagoon, Severn Barrage, Cardiff Tidal Lagoon) has been the high electricity costs,

which are strongly related to the operational strategy utilised when estimating TRS

energy yield. Therefore, this thesis’s project intents to fill gaps in the literature by

proposing general methods that enable the first real-time optimised operation of TRS.

This would allow for reducing the costs of electricity through (i) energy maximisation

of TRS and (ii) operational cost reduction (automatic TRS), allowing this technology

to be more economically attractive.

Given an accurate simulation of the hydraulic structures that compose a TRS,

objectives (i) and (ii) are solved either through: (a) improvements to the state-of-art

approach from the literature, enabling real-time control of TRS with independent sluice

operation, or (b) utilising a Deep Reinforcement Learning approach (DRL) designed

to operate TRS. As a case study for our work we focused on the 0D modelling of two

TRS projects: the constructed La Rance Tidal Barrage and the Swansea Bay Tidal

Lagoon (SBL) pathfinder project.

Through parametric and affinity laws techniques, a 0D La Rance model represen-

tation is created using measured data from Electricité de France (EDF) – the utility

company responsible for operating La Rance since its construction. The parametrised

0D model is then optimally operated with our DRL method, yielding comparable quan-

titative results and strategy to observed measurements in La Rance. To the best of



our knowledge, this is the first validation of a 0D model and TRS operational strategy

against a constructed TRS. Furthermore, the development of the 0D La Rance model

enabled a generalizable description of pump operational modes, which is implemented

into the 0D model of the SBL.

We show that, by using the SBL 0D model with pumping, both our developed (a)

and (b) methods achieve energy generation superior to the state-of-art upper bound

(scenarios where tidal predictions equal tidal measurements) by 2.68% and 3.14%, re-

spectively (yielding a revenue gain up to 967, 267£ per year, for the SBL), while oper-

ating the TRS in real time. The DRL (b) method, however, manages this feat without

requiring tidal predictions, performing fine-tuned operation of turbines in pump mode

and pumping even with positive (gravity-assisted) head differences – these last two

characteristics are observed in La Rance’s measurements, but so far no TRS control

method had been able to accomplish this task.

Palavras-chave: tidal energy, tidal range structures, deep reinforcement learning,

proximal policy optimisation.
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Chapter 1

Introduction

In recent years, concerns about the damaging effects of climate change combined with 
political and social pressures have pushed the world to increase the installed capacity of 
renewable energy sources (wind, solar, bioenergy and hydro) allowing renewable energy 
to account for 28% of global electricity energy generation in 2020 [1]. While significant 
progress has been made in expanding solar and wind resources, tidal energy remains 
practically untapped. Given that the worldwide potential for tidal range resource 
(considering reasonable thresholds for energy output and water depth) is around 25, 880
TWh [2], and that the world electric energy consumption in 2018 was ⇡ 23, 398 TWh 
[3], the potential for tidal energy to become a significant contributor to the installed

capacity of renewable energy sources in the world cannot be ignored.

In the current literature there are three main renewable energy schemes under 
study aimed at harnessing the energy from the tides: (i) dynamic tidal power, (ii) 
tidal stream turbines and (iii) Tidal Range Structures (TRS) [4; 5]. While the first 
two technologies are reasonably “new”, TRS have been studied for nearly 90 years [6], 
with successful implementations in France, South Korea, Canada, Russia and China 
[4]. Beyond the advantage of construction experience and operation know-how, TRS 
can be designed to enable large-scale electricity generation on pair with hydroelectrics 
(> 100 MW). As an example, the two most successful TRS projects built, namely, 
La Rance (France) and Lake Sihwa (South Korea), have 240 MW and 254 MW of 
installed capacity, respectively [2]. The theory behind TRS is to create an artificial 
impoundment between an enclosed body of water and the ocean. When a sufficient 
head is available, water is allowed to pass through turbines, generating energy in a 
similar fashion to hydroelectrics [7; 6]. The artificial enclosed body of water can be 
obtained either by impounding entire basins or by creating artificial lagoons in coastal 
regions, distinguishing TRS design into two types of projects: tidal barrages (e.g. La
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Rance, Severn Barrage) and tidal lagoons (e.g. Swansea Bay Tidal Lagoon, Cardiff

Lagoon). In contrast to tidal barrages, tidal lagoons permit the construction of smaller

scale developments, with lower energy outputs but less environmental impacts [2].

A 2016 review by UK’s ex-minister of energy [8] has helped in drawing attention

to TRS as a competitive choice among renewables. In his report, the construction of

“small-scale” tidal lagoons, such as the Swansea Bay Lagoon (SBL), is suggested as

a pathfinder project before moving to larger-scale lagoons [4; 9; 10]. The report also

emphasises that TRS have proposed lifetimes of operation of 120 years – far surpassing

any other renewable energy type, allowing for very low electricity cost for years. As an

example, La Rance, which is in operation for 55 years, took 20 years to amortise the

initial investment, generating energy at competitive cost of nuclear or offshore wind

sources [11; 8].

While La Rance is a significant example of how TRS can be economically viable

given enough time of operation, novel projects, such as the SBL, have been questioned

if they represent good value for money. This concern is exacerbated by the high initial

investment costs that TRS require for construction (≈ £1.3 billion for SBL) and the

recent reduction of solar and wind payback periods to ≈ 2− 20 (year range) and ≈ 13

years, respectively (considering tax incentives and a maximum lifespan of 30 years)

[12]. These current issues led the UK Government to halt support for the proposed

SBL project in 2018 with the argument of high cost of electricity [13]. Nevertheless,

in a recent turn of events, the Welsh Government launched a tidal lagoon challenge in

Wales to ascertain market engagement in the construction of several TRS projects. A

total of 55 companies registered for the challenge, with the winner possibly receiving

Welsh Government financial support for designing a pathfinder TRS project [14; 15].

These initiatives demonstrate that TRS development in the near future is still very

likely.

In order to estimate the potential energy of such systems, analytical or numerical

models (0D through 3D), can be considered. While analytical solutions are useful in

estimating a theoretical upper bound for the available power [7; 16], numerical models

can aid in optimising the operational time-sequence of the hydraulic structures present

in a TRS (e.g. turbine and sluices), while accounting effects not considered in analytical

models (e.g. variable bathymetry, pump operational modes). Each of these approaches

have different strengths, weaknesses and unique physical simplifications. For instance,

while 0D models can be computationally inexpensive, they are solely based on the

simple statement of mass conservation for the impounded lagoon. In contrast, 1D

through 3D models utilise the shallow water equations to obtain (in an increasing order

of detail and computational time), the water profile and velocity components in and out



38

of the lagoon [17; 18; 19]. Shallow water models are helpful in assessing environmental

impacts of TRS [20; 21], while also detecting the sudden high flow-rates developed

when turbines start operating – a situation that can abruptly perturb water velocity

and elevation (therefore power generation) in the vicinity of hydraulic structures [22].

Due to the characteristic features of the described approaches, 0D models are usually

implemented into optimisation routines of TRS, since these often require a huge number

of iterations for convergence [23; 24; 25]. As a next step, 1D to 3D models are employed

to perform verification steps of the operational strategies devised from utilising the

0D model. 2D models are typically picked, among 1D and 3D options, given their

satisfactory trade-off between accounting for detailed bathymetry, coastal geography

and accurately predicting complex shallow water effects (e.g. funnelling, resonance)

[26; 18], while not being computationally expensive as 3D models.

After choosing an appropriate location with high tidal range and low water depth,

optimal TRS dispatch occurs in two fronts: operational and design optimisation. With

a fixed design, operational optimisation focuses on finding optimal strategies for the

sequential operation of the hydraulic structures [23; 25], with the goal of maximising

energy extraction or meeting energy demands. In the design optimisation, the num-

ber and scale of turbines and sluices is optimised, considering a fixed impoundment

perimeter [27; 2]. The design and operation optimisation can also be performed simul-

taneously, although with increased computational cost [28]. Both these approaches help

increasing the utilisation factor (ratio of actual energy generated to installed capacity)

and consequently the competitiveness of TRS against wind and solar alternatives.

Although the current literature has advanced in increasing theoretical power gen-

eration capabilities of TRS [2; 4; 29], there is room for improvement, considering that

state-of-art 0D operational optimisation methods (i) cannot explore fine-tuned power

input control of turbines in pump mode, (ii) can be computationally expensive, (iii)

do not perform real-time control, only assuming an upper bound estimate for perfect

forecast scenarios. In order to fill these gaps in the literature, this thesis proposes two

general approaches that enable real-time control of 0D TRS models, surpassing current

energy and revenue extraction capabilities of state-of-art methods. With approach (a),

we improve the energy extraction capabilities of the current state-of-art operational

method for operating TRS, by enabling independent sluice operation (named “variant”

TRS operation) and propose modifications for allowing real-time TRS control (although

requiring tidal predictions). With approach (b) we utilise Deep Reinforcement Learn-

ing (DRL) methods, more specifically Proximal Policy Optimisation (PPO) through

the Unity Machine Learning (ML)-Agents package [30]. In a SBL (with pumping)

case study, both (a) and (b) approaches manage to surpassed the upper bound energy
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estimate of state-of-art methods (scenarios where tidal predictions equal tidal mea-

surements) by 2.61% and 3.14%, respectively (yielding a revenue gain up to 967, 267£

per year), while operating the TRS in real-time. However, the DRL (b) approach

was shown to be superior from (a), since (i) it does not require tidal predictions, (ii)

can perform fine tuned operation of turbines in pump mode and (iii) pump with pos-

itive head differences (aided by gravity). DRL was chosen among machine learning

techniques due to the nature of TRS operational problem, which involves sequential

decision-making of a reactive environment (lagoon water levels vary depending on the

operation of hydraulic structures) with the goal of maximising expected return (en-

ergy), and also because a target optimal operation of the tidal lagoon is not known “a

priori” – a requirement for supervised learning techniques.

The real-time TRS control approaches introduced in this thesis have been tested

with 0D model representations. Therefore, revised 0D numerical models for TRS were

also developed for this work. For the La Rance tidal barrage, a 0D model was created

with novel representations for turbines (power generation and pump modes), wetted

area and transition ramp functions (for switching between operational modes). These

representations were obtained utilising parametrisation and affinity laws techniques

applied to measured data from Electricité de France (EDF) – the utility company

responsible for operating La Rance since its construction. To the best of our knowledge,

this is the first 0D validated model of a constructed TRS made available to academics.

A 0D model for the SBL was also created. While turbines (in power generation mode),

sluices and wetted area follow techniques available from the literature, novel derivations

for transition ramp functions and turbines in pump mode (obtained from La Rance 0D

parametrisation) characterise our revised 0D model. This augmentation was required

in order to showcase our (a) and (b) approaches ability to surpass the upper bound of

state-of-art methods, in energy extraction.

A 2D barrage model was also developed in this work, by utilising the finite el-

ement tool DG-SWEM (Discontinuous Galerkin Shallow Water Equations Model), a

discontinuous Galerkin version of ADCIRC (ADvanced Multi-Dimensional CIRCula-

tion Model for Shelves, Coasts and Estuaries) [31; 32; 33]. For including the effects of

sluices and turbines inside DG-SWEM, modifications were made to an existing and val-

idated culvert boundary model [34; 35]. Agreement of results against 0D TRS models

and applications of the developed 2D model for coastal protection (from storm surge

events) can be seen in [20; 21; 36; 37; 38].

For reproducibility, all developed code implementations for this work are available

in GitHub: https://github.com/TmoreiraBR/PhD-Thesis-codes.
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1.1 Thesis Statement

The statement of this thesis is that: Deep Reinforcement Learning and enhanced state-

of-art methods for control optimisation, coupled with revised 0D models, can enable

TRS to be more economically competitive. We support this statement by showing

that, in contrast to state-of-art methods, our techniques can (i) further increase energy

extraction capabilities of TRS, (ii) perform real-time control and, exclusive to our

DRL approach, perform (iii) prediction-free, automatic operation of TRS, reducing

Operation and Maintenance (O&M) costs, (iv) fine tuned operation of turbines in pump

mode and (v) pump with positive head differences (aided by gravity). Statements “iv”

and “v” allow for control optimisation of TRS that is more realistic, i.e. more closely

resembling observed data from constructed TRS, as explained in our La Rance case

study (Section 5.2).

1.2 Problem and Motivation

The main problem investigated in this thesis is how to make Tidal Range Structures

projects more economically viable. Our motivations can be summarised as follows:

• Help revivify a renewable energy type that has the potential of providing hundreds

of gigawatts of clean energy worldwide, while offering coastal protection for storm

surges and sea level rise.

• Help kick-start pathfinder projects, such as the Swansea Bay Tidal Lagoon, so

that companies around the world have their interest renewed in funding TRS

schemes.

• Develop novel approaches and improvements to the state-of-the-art algorithms

for TRS control, increasing energy and revenue extraction capabilities of these

systems.

1.3 Research Objective

Our objective with this research is to create general operational optimisation ap-

proaches for TRS that are automatic (real-time) and can surpass energy and revenue

extraction capabilities of current state-of-art operational methods. With this final goal

in mind, several gaps in the literature needed to be filled. Our achieved objectives can

be summarised as:



Chapter 1. Introduction 41

• Propose improvements to the state-of-art control of TRS, further increasing en-

ergy extraction capabilities and allowing for real-time control.

• With DRL techniques, create the first automatic operation of TRS that does

not rely on external models for tidal predictions and does not require re-runs, in

contrast to state-of-art methods.

• Create and validate a 0D parametric model of a constructed tidal barrage (La

Rance).

• From the parametric model of La Rance, create new generalizable models for

pumps, so that TRS projects can further benefit from our DRL and enhanced

state-of-art optimisation approaches.

• Enable energy extraction results superior to the upper bound of state-of-art meth-

ods through optimal control strategies derived from our (i) enhanced state-of-art

and (ii) DRL approaches.

• Investigate state-of-art and enhanced state-of-art upper bound (and real-time)

estimates, switching between energy and revenue maximisation targets.

• Provide comparison analysis between our developed real-time control optimisa-

tion methods and the current state-of-art.

1.4 Contributions

• To showcase the first automatic (real-time) method for optimising TRS oper-

ation, through either a (i) enhanced state-of-art approach or (ii) a novel Deep

Reinforcement Learning (DRL) implementation.

• The novel DRL approach does not require future tidal predictions (concurrent

with measured data) as inputs to optimally operate TRS in real-time and needs

training a single time only, in contrast to state-of-art and enhanced state-of-art

methods.

• Similarly to state-of-art methods, the DRL approach performs flexible operation

of TRS, optimally adjusting its operational strategy according to the experienced

tidal range.

• For the SBL case study, both the enhanced state-of-art and novel DRL approaches

surpassed the upper bound energy estimate of state-of-art methods (idealised
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perfect tidal forecast scenarios) by 2.61% and 3.14%, respectively, while operating

the TRS in real-time, with pumping capabilities.

• For the SBL case study, both the enhanced state-of-art and novel DRL ap-

proaches surpassed the real-time yearly revenue estimate of state-of-art methods

by 967, 267£ and 861, 301£, respectively, while operating the TRS in real-time,

with pumping capabilities.

• The development and validation of a methodology for parametrising constructed

TRS, utilising La Rance as a case study.

• The developed methodology for La Rance enabled novel and generalisable rep-

resentations for ramp functions, turbines in pump mode and equivalent wetted

area that are applicable to any TRS.

• The operational strategy developed by our DRL agent for the La Rance case

study enabled fine-tuned pump power input and pumping with positive head

differences. These characteristics are (i) unique to the DRL agent and (ii) more

realistic than state-of-art (or enhanced state-of-art) approaches, i.e. comparable

to the observed operation of real TRS that, due to intellectual property rights,

have their details on control optimisation concealed from academia.

1.5 Thesis Outline

Given the multidisciplinary nature of this work, the next Chapter of this thesis (2)

concerns itself on the fundamentals of: tides, tidal range structures and reinforcement

learning subjects (along with a deeper description of Deep Reinforcement Learning,

Proximal Policy Optimisation method and Unity ML-agents). Next, in Chapter 3,

a literature review on the state-of-art operational schemes, components parametrisa-

tion and techniques for operational optimisation of TRS is presented, criticised and

discussed. In Chapter 4 we propose improvements to the state-of-art operational op-

timisation of TRS, enabling increased power generation and real-time control. Also,

novel methodologies for parametrisation of a real TRS are developed, with the tidal

barrage of La Rance (France) being utilised as a generalisable case study. The 0D and

2D TRS models developed in this thesis are then presented, together with respective

pseudocode implementations. Finally, Chapter 4 ends with a description of the Markov

Decision Process (MDP) utilised for our DRL method, with a thorough description of

rewards, actions, input states and developed environment components. A visual frame-

work of the environment is also developed in Unity3D, within the Unity ML-Agents
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package. In Chapter 5, we apply our developed operational optimisation methods (en-

hanced state of art and DRL approach) to a tidal lagoon and tidal barrage TRS project

types, namely: the Swansea Bay Tidal Lagoon pathfinder project and La Rance tidal

barrage. Where applicable, our results are compared against the current state-of-art

for operational optimisation of TRS. Finally, in Chapter 6, we draw Conclusions and

Future Research Directions of this work.



Chapter 2

Fundamentals

2.1 Characteristics of Tides

The phenomenon of oceanic tides is a direct result from the difference between the 
centrifugal forces due to Earth’s rotation and the combined gravitational attraction 
exerted by celestial bodies, mainly the Moon and the Sun. The major precursor of the 
study concerning tides is available in the work of Newton [39], where the attractive 
forces pulling the tides derive from Newton’s law of universal gravitation.

2.1.1 Equilibrium Theory

From the Equilibrium Theory of Tides, Newton explained the 12h : 25min period of 
the main semi-diurnal lunar tide (M2). His theory suggested that the opposing bulges 
of water, formed due to the attraction of the Moon, would have to cross the same 
location twice in a lunar day (moon-rise period of 24h : 50min for a same location on 
Earth). Similarly, the “bulges” concept is also used to describe the exact 12h principal 
semi-diurnal solar tide (S2), developed as the Earth revolves around its axis while 
facing the Sun. The constructive interference (spring tides) happens when both Sun 
and Moon are aligned towards Earth, leading to the summation of both M2 and S2 

tidal amplitudes. Intuitively, the destructive interference peaks in an opposite scenario 
(neap tides), when a 90� phase shift, relative to the Earth, occurs between the celestial 
bodies.
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2.1.2 Dynamic Theory

In order to model the combined effect of different tidal constituents, while accounting

for other physical interactions such as wave reflections and bed friction in estuaries,

two mathematical tools helped advance the understanding of tides: Harmonic Analysis

and Shallow Water Theory. Harmonic Analysis is a mathematical tool that captures

the time evolution of combined tidal patterns. The analysis is based on the assump-

tion that the periodic motion of each tidal constituent can separately be interpreted

as a sine wave. For instance, by considering amplitude and frequencies of the two

major tide constituents (S2 and M2), we can obtain an adequate description, in a first

approximation, of the tidal phenomenon.

The harmonic decomposition of tides not only allows the main constituents re-

sponsible for explaining tidal patterns to be determined [40]; it also enables the analyt-

ical and numerical simulation of tides, since it provides a forcing boundary condition

in the form of a time series approximation.

While Harmonic Analysis provides good approximations to describe changes in

the oceanic surface at fixed locations, it does not explain well how the water waves dis-

sipate, reflect and resonate. In 1775, Laplace [41] proposed a basic form of the Shallow

Water Equations (SWE), which would become the foundation for the Dynamic/Real

Theory of Tides. The coupled equations of hyperbolic partial differential equations

(PDEs), derived from the Navier-Stokes mass and momentum conservation equations,

can take friction and variable bathymetry as inputs, capturing coastline reactions to

the forcing tides, including resonant behaviour. The SWE are cast in the “conservative

form” by depth averaging velocities in “x” and “y” directions [20]. This process elimi-

nates one dimension, thus providing a two-dimensional set of three equations: the first

being the continuity equations Eq. 2.1, while Eq. 2.2 and Eq. 2.3 are the momentum

equations in the “x” and “y” directions, respectively [32].
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Here, ⌘ represents the free surface elevation relative to the mean water level, b the

bathymetric depth and Ht the total water depth (Ht = ⌘+b). From the depth averaging

process, the plane velocities U and V (along x and y, respectively) are simplified to
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be constant throughout Ht, while g is the gravity constant, ⇠ the bottom drag friction

(or bed friction) coefficient and Fx and Fy additional terms that can be incorporated

into the equation (e.g. Coriolis force, air pressure variations). The conservative form

(flux-form) is widely used in 2D numerical methods, since it allows for conservation of

mass even when discontinuities are present in the problem (e.g. hydraulic jumps).

As its name implies, SWE equations have a theoretical basis that relies on the

wavelength �w being several times larger than the bathymetric depth b [42]. A useful

guide is that when
b

�w

< 0.05 (2.4)

is satisfied, then flow velocities can be described as purely horizontal (i.e. the use of

depth averaged velocities in the model is reasonable).

2.1.3 Tidal Resonance

With the condition of shallow water waves being satisfied Eq. 2.4, analytical solutions

show that the wave speed, or celerity C, depends solely on depth (i.e. waves are

non-dispersive):

C =
p

gb. (2.5)

This result is useful in explaining a very complex phenomenon observed in natural

channels and estuaries on Earth: tidal resonance. In a simplified model (Fig. 2.1), an

incoming wave from deeper water level (Wave I) is reflected by a vertical wall inside a

constant depth shallow water channel.

Figure 2.1. Superposition of incident and reflective wave yields a standing wave inside an
idealised channel where l ⇡ �w/4. Edited from [42].

The wave reflection resembles a reflected wave from a rope with free end: in both

cases a node is formed at a quarter wave-length distance from the vertical wall and the
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amplitude is increased at the wall (antinode) by the constructive interference between

incident and reflected waves i.e. a standing wave is created. The difference, when

dealing with the shallow water model, is that at the abrupt transition of bathymetries,

a portion of the incoming wave will also be reflected (Wave II). This reflected wave

is shifted 180� and moves to the “left”, away from when x = l. For a constant depth,

celerity is constant throughout the channel and the wavelength can be calculated as

�w = CT , (2.6)

where T is the period. If the channel itself has a length which is a quarter of the

wavelength from Wave I, it is possible to see that Wave I will take half the period

to travel into and out of the channel. As it encounters Wave II, both waves will be

in phase, and resonance will occur. In other words: the natural period of the channel

matches the period of the forcing wave. The analytical solution to this problem gives an

insight to understanding the great tidal ranges observed in natural resonating channels

(e.g. Bay of Fundy, Canada and Bristol Channel, UK). According to the literature

[43; 44], both of these channels are said to resonate primarily with the S2 and M2

tides. Using the M2 as an example, if we consider a simplified model of a channel with

constant depth of 40m [26], and knowing that the M2 period is 12h : 25min, one can

obtain from Eq. (2.5, 2.6) a quarter resonant length of 221km for the M2 tide. This

value is roughly close to the approximate distance to the edge of the continental shelf

for the Bristol Channel (⇡ 160km) and Bay of Fundy (⇡ 290km), indicating that the

natural periods of these channels is close to the forcing period of the M2 tide. As a

matter of fact, according to numerical simulations from [26; 45], the natural period of

the Bristol Channel and Bay of Fundy are close to 11h and 13h, respectively, which

reinforces the theory. It is important to note that the equations presented in this

section are an extreme simplification of the actual phenomenon, given that no friction

effects are considered, and that the variable bathymetry present in natural channels

should interfere with the wave celerity in the direction of the shore. In order to account

for these physical effects, 2D numerical models utilising the SWE should be considered.

2.2 Tidal Range Structures

Tidal barrages (and lagoons) are large-scale systems that utilise the same principle as

hydroelectrics to generate power: hydraulic head. By allowing water to flow through

sluice gates and turbines into an artificial impoundment, the high tide is confined until

a operational head is established between the ocean and basin [7]. When this condition
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is achieved, water is allowed to pass through the turbines, thus generating power. The

main difference between these types of impoundments is that tidal barrages are designed

to enclose entire estuaries, while tidal lagoons impound significant smaller sub-areas

inside the main portion of water [8]. The oscillatory motion of tides, combined with the

minimum starting head required for an efficient operation of the turbines, characterises

the predictable, but intermittent, power production of TRS.

From a design perspective, TRS are composed of four main components [6]:

• Turbines: hydrodynamic structures embedded into submerged water passages.

Turbines are responsible for converting the potential energy from the water head

difference across the barrage into kinetic, then rotational, and finally electric

energy. For TRS, the most common type of turbine utilised are low-head bulb

turbines, that can operate either to generate energy or as pumps.

• Sluices: designed to (i) control water levels inside the impounded lagoon during

the construction phase and (ii) help increase the available head differences (i.e.

potential energy) by reducing/increasing the impounded lagoon water levels at

the end of turbine operation.

• Locks or similar apparatuses: designed to allow for safe passage of ships and

boats across the impoundment.

• Embankments or concrete caissons: compose the majority of the perimeter of the

TRS. These have to be as impermeable as possible, in order to ensure water head

differences are as high as possible.

These main components can be seen in constructed TRS. However, since the

debut of La Rance Tidal Barrage in 1966 (with 240MW of installed capacity), few

other TRS with power production on the order of MW have been built (Table 2.1).

Table 2.1. Characteristics of constructed TRS (edited from [2]).

TRS Year Capacity (MW) Max. Basin Area (km2) Operational Schemeb

La Rance, France 1966 240 22 TWP
Kislaya Guba, Russia 1968 1.7 2 TW

ARGSa, Canada 1984 20 6 EoG
Jiangxia, China 1980 3.9 2 TW

Lake Sihwa, Korea 2011 254 30 FoG
a Annapolis Royal Generating Station; b Defined in Section 3.1.

This contrasts with the annual energy potential of feasible sites around the world

(Table 2.2), demonstrating how TRS technology is being underutilised.
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Table 2.2. Annual tidal range potential energy per country (from [2]).

Country Annual Potential Energy (TWh)
Canada (Hudson) (extensive sea ice) 20110

Australia 1760
Canada (Fundy) 1357

UK 734
France 732

US (Alaska) (partial sea ice) 619
Brazil 298

South Korea 107
Argentina 62

Russia 75
India 19
China 12

Since this work focuses on increasing the energy extraction capabilities of TRS

projects through the smart operation of turbines and sluices, the construction steps and

strategies for finding best suited locations for TRS deployment will not be discussed.

In Section 3.1, state-of-art operational schemes and techniques for turbine and sluice

parametrisation and simulation from the literature will be presented.

2.3 Reinforcement Learning

As shown in the work of Sutton and Barto [46], a reinforcement learning (RL) problem

can be mathematically formalised as a Markov Decision Process (MDP). In an MDP, an

agent interacts with an environment through actions (At), and these actions lead to new

environmental states (St+1) and possible rewards (Rt+1) for the agent. The quantities

At, St and Rt are random variables, with well-defined probability distributions. A

general agent-environment MDP framework can be visualised in Fig. 2.2.

Figure 2.2. Agent-environment interaction in an MDP, illustrating the state-action, next
reward triples sequence. Adapted from [46].
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By sampling multiple time-steps t = 0, 1, 2, 3..., observations (Oi) of the agent-

environment interaction are organised as a sequence of state-action, next reward triples:

Oi =< si, ai, ri+1 >, (2.7)

where si, ai and ri+1 are sampled instances of the random variables (St, At and

Rt). The sequence of state-action pairs defines a trajectory ⌧ :

⌧ = s0, a0, s1, a1, s2, a2... (2.8)

Also, in an MDP, we can say that the probabilities of Rt+1 and St+1 are completely

conditioned only on the preceding state and action (St and At), that is:

p(st+1, rt+1|st, at). (2.9)

The probability distribution Eq. 2.9 defines the dynamics of the MDP. It can also

be manipulated to yield the state-action-transition probability distribution (which is

just the sum of probabilities over all possible future rewards):

p(st+1|st, at) =
X

r2Rt+1

p(st+1, rt+1|st, at). (2.10)

For estimating Eq. 2.10 for a given state, we also need to condition an action. In

non-deterministic scenarios, the selection of possible actions by the agent is a stochastic

process, defined by a conditional probability distribution (known as policy) of the form:

⇡(at|st). (2.11)

Using Eq. 2.10,2.11, the probability distribution of starting in a state st and

ending in st+1, given a policy, can be estimated as:

p⇡(st+1|st) =
X

a2At

⇡(at|st)p(st+1|st, at). (2.12)

For a single path i:

p⇡(s
(i)
t+1|s

(i)
t ) = ⇡(a

(i)
t |s

(i)
t )p(s

(i)
t+1|s

(i)
t , a

(i)
t ). (2.13)

Also, with some defined policy, we can sum the observed rewards for each state-

action pair (as shown in Eq. 2.7 and calculate a total discounted return Gt for a given
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policy, at time-step t:

Gt = Rt+1 + �Rt+2 + �2Rt+3... =
1
X

k=0

�kRt+k+1, (2.14)

where � is a discount factor between 0 and 1, that regulates the relative importance of

immediate rewards to the learning agent.

The objective of reinforcement learning problems is to find an optimal policy ⇡⇤,

that maximises the expected return of rewards E[Gt] conditioned on any initial state

st, i.e.

⇡⇤ = argmax
⇡

E⇡[Gt|St = st], 8st. (2.15)

Finally, the expected reward, following the optimal policy, can be conditioned on

a state or state-action pair, yielding state value and action value functions, respectively:

V⇡∗(st) = E⇡∗ [Gt|st]. (2.16)

Q⇡∗(st, at) = E⇡∗ [Gt|st, at]. (2.17)

There are several techniques for modelling the the environment and agent com-

ponents of an MDP. The environment component can be represented either by a prob-

ability dynamics model (Eq. 2.10) or a virtual simulator (as is the case with this work),

that return next state st+1 and reward rt+1 for some previous state and action st and at.

When the probability dynamics model is available, the reinforcement learning problem

is framed as model-based. Conversely, when using a simulator, the problem is framed as

model-free. In both cases, and considering sampled actions from a given policy ⇡(at|st),

the environment is sampled multiple times, so that multiple observations (Eq. 2.7) are

used during training.

Similarly to the environment definition, there are also many approaches that can

be used for modelling the agent in an MDP. These approaches are related to the chosen

algorithm (value based vs policy based) used for finding the optimal policy ⇡⇤ (i.e. the

agent). In value based reinforcement learning, the goal is to obtain a representation

for the optimal action (or state) value function (Eq. 2.16 and 2.17). Then, the optimal

policy is obtained indirectly, i.e., given a state si, the optimal action (aj) to take is the

one that maximises the expected return. As an example for value-based methods, if the

problem consists of a discrete number of states and actions (e.g si and aj), a Q-table

with i rows and j columns can be build. Each element in a Q-table corresponds to the

expected return of choosing the j action in state i. The expected return estimate for

each cell can be calculated through several pseudo-code algorithmic implementations,
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such as:

• First-visit Monte Carlo Prediction.

• Every-visit Monte Carlo Prediction.

• Monte Carlo Control (✏ - greedy).

Given enough episodes, any of the methods above are guaranteed to converge to

an optimal Q-table, which is the matrix form of the action value function Q⇡∗(st, at).

Differently from value-based methods, policy-based methods parametrise the pol-

icy ⇡⇤ directly during training, with state-of-the-art approaches utilising neural network

implementations. A full derivation of a state-of-the-art policy-based method is shown

in Section 2.4.1, when discussing the Proximal Policy Optimisation (PPO) algorithm.

In this work, PPO was chosen for solving all of our reinforcement learning problems.

2.4 Deep Reinforcement Learning

Solutions to reinforcement learning problems can be augmented with the use of neural

network representations. For Deep Q-Network methods [47], for instance, the neu-

ral network is a parametric representation of the Q-table discussed in Section 2.3,

receiving a vector ~st with the state representation and outputting a vector with the

expected return of taking one of each possible action ~q(~st, ai). The idea of utilising

neural network representations for reinforcement learning problems enable solutions to

much more complex state and action spaces, due to the fact that neural networks are

universal function approximators and can parametrise policies, state-value and action

value functions.

2.4.1 Proximal Policy Optimisation

Once the reinforcement learning problem is formalised as an MDP, several algorithms

can be used for finding an optimal control policy ⇡⇤. In this work, the process of finding

⇡⇤ has been achieved through Proximal Policy Optimisation (PPO) [48], built in the

Unity ML-Agents package. PPO was shown to outperform several other “on-policy”

gradient methods [48] and is one of the preferred methods for control optimisation

when the cost of acquiring new data is low [49]. Furthermore, a revised and up-to date

PPO algorithm is already implemented in Unity ML-Agents. Nevertheless, for sake

of completeness, we present in this section the mathematical derivation of the PPO

method. The designing of the TRS operation as an MDP is shown in Section 4.4.
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Differently from approaches that try to infer the policy through state-value or

action-value functions (e.g. Deep Q-Network) [47], PPO uses an “on-policy” approach

that maximises the expected sum of rewards by improving its current policy – smoothly

shifting the probability density function estimate of the policy towards ⇡⇤.

The PPO algorithm is an updated form of Policy Gradients. As TRPO (Trust

Region Policy optimisation) [50], it tries to increase sample efficiency (re-using data

from previous policies), while constraining gradient steps to a trust region. It is also

actor-critic, since it utilises an estimate of the state-value function for its baseline [51].

An overview of Policy Gradients and PPO is presented below.

2.4.1.1 Policy Gradients

Policy gradient methods rely on the fact that a stochastic policy can be param-

eterised by an “actor” neural network with weights ~✓ (simplified as ✓ going forward).

As represented in Fig. 2.3, this Multilayer Perceptron (MLP) neural network receives

a vector state representation of st. For the case of discrete actions, the neural network

outputs the probabilities of each possible action in that state using a softmax layer. For

continuous actions, each node in the last layer outputs the moments of a multivariate

Gaussian distribution of the form [52; 53]:

⇡✓(a|s) = N(~µ(s; ✓),⌃(s; ✓)), (2.18)

where ~µ and ⌃ are the parameterised mean vector (for each possible action) and co-

variance matrices, respectively. While training, actions are randomly sampled from the

distribution. In the beginning, the standard deviation of all possible actions (covariance

matrix’s diagonal) is large, favouring exploration. As training progresses, the neural

network weights are updated to favour optimal actions, i.e. the standard deviation for

each action reduces, favouring exploitation. During testing the performed actions can

either stochastic (directly sampled from the trained distribution) or deterministic (as

is the case with this work), where ~µ is taken as the joint optimum action for every

input state st.

Considering a trajectory ⌧ , the expected return of following a parameterised

policy ⇡✓ is U(✓) = E[G(⌧); ⇡✓], where

G(⌧) =
H
X

t=0

R(st, at), (2.19)

and R(st, at) is the reward from taking action at from state st. We also note that G(⌧)
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Figure 2.3. Input-output representation of policy (actor) neural network.

represents the undiscounted return following a sampled trajectory ⌧ for a time horizon

H. With these considerations, finding an optimal policy can be viewed as tuning ✓ to

maximise U(✓), i.e. to perform gradient ascent of ✓:

✓  ✓ + ↵r✓U(✓), (2.20)

where ↵ is the learning rate hyperparameter.

A sample based estimate for r✓U(✓) assumes the form:

r✓U(✓) ⇡ 1

m

m
X

i=1

H
X

t=0

r✓log(⇡✓(a
(i)
t |s

(i)
t ))Ât, (2.21)

where m is the number of sampled trajectories from the “actor” neural network. For

vanilla policy gradient methods, following the ith trajectory ⌧ (i), we get

Ât = Gfuture
(⌧) � V⇡(s

(i)
t ), and (2.22)

Gfuture
(⌧) =

H
X

k=t

�(k�t)R(s
(i)
k , a

(i)
k ). (2.23)

V⇡(s
(i)
t ), also parameterised by a “critic” MLP neural network, is the estimate

for the value function of being in state st (starting point of the ith trajectory) and

following policy ⇡ thereafter; Gfuture
(⌧) is the discounted future return of following the ith

trajectory, from time k = t; and Ât is the advantage estimate of taking this trajectory

in respect to the current estimate of V⇡(s
(i)
t ). A complete derivation of r✓U(✓) can be

seen in [54].
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2.4.1.2 Clipped Surrogate Loss derivation for PPO

In order to increase sampling efficiency [55], importance sampling can be used to

rewrite the gradient term in Eq. 2.21 as:

ĝIS = Êt



r✓

⇡✓(a|s)

⇡✓old(a|s)
Ât

�

. (2.24)

Eq. 2.24 importance sampling form allows for re-utilising samples from an older

policy (⇡✓old) to perform gradient ascent steps, when refining a new policy. It is obtained

when differentiating the Surrogate Loss:

LIS
✓old(✓) = Êt[rt(✓)Ât], (2.25)

where rt(✓) = ⇡✓(a|s)/⇡✓old(a|s) is a probability ratio.

While in TRPO [50] the maximisation of the surrogate loss from Eq. 2.25 is

subjected to a Kullback–Leibler divergence constraint, in PPO [48] the surrogate loss is

constrained through a clipping procedure, yielding the clipped surrogate loss objective:

LCLIP
t (✓) = Êt[min(rt(✓)Ât, clip(rt(✓), 1� ✏, 1 + ✏)Ât)], (2.26)

where ✏ is a hyperparameter that limits large policy updates, clipping the surrogate

loss when large probability ratios are observed, i.e., situations where |rt(✓)| > 1 + ✏.

To further reduce variance when estimating the advantage, [48; 51] utilise a trun-

cated version of generalised advantage estimation [56], where Ât is estimated as

Ât = �t + (��)�t+1 + ...+ (��)H�t+1�H�1, (2.27)

t is a time index within the sampled trajectory time horizon [0, H], � is a regularisation

hyperparameter that performs the exponential weighted average of k-step estimators

of the returns [56], and �t = rt + �V⇡(st+1)� V⇡(st).

When utilising shared parameters for the “actor” and “critic” neural networks

(as is the case with this work), the loss function needs to be augmented with a value

function error term [48]. To ensure exploration, an entropy term “S” is also added.

Finally, the loss function to be maximised at each iteration becomes:

LCV S
t (✓) = Êt[L

CLIP
t (✓)� c1L

V F
t (✓) + �S⇡✓(st)]. (2.28)

For this study, Unity ML-Agents package fixes c1 = 0.5 [57], � is a hyperparameter

controlling the entropy bonus magnitude S, and LV F
t is a clipped, squared-error loss
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between the estimate of the state-value function V⇡(st; ✓) and the actual return value

obtained when following a trajectory ⌧ [48]. The implementation of LV F
t in Unity

ML-Agents is seen in [57].

Additionally, parallel training can also be implemented as a way of substituting

experience replay by running the same policy neural network on multiple instances of

the environment. By guaranteeing that each environment starts in a random initial

state during training, this parallelism helps decorrelate the sampled data, stabilising

learning [58].

2.4.2 Unity ML-Agents

The Unity3D graphics engine is a popular game developing environment that has been

used to create games and simulations in 2-D and 3-D since its debut in 2005. It has

received widespread adoption in other areas as well, such as architecture, engineering

and construction [30].

Unity ML-Agents is an open-source project that allows for designing 2-D and

3-D MDP environments where a DRL agent can learn through interactions [30; 57].

As a platform for creating learning environments for smart agents, Unity ML-Agents

has grown significantly over the years, competing with other simulation environments

utilised for training Artificial Intelligence (AI) agents [59; 60; 61]. The learning en-

vironments can be designed in Unity with various scales of complexity, considering

complex physical simulation if required (rigid body, soft body, particle, fluid dynam-

ics and ragdoll physics [30]). For solving the developed environments, single-agent,

multi-agent cooperative, and multi-agent competitive scenarios via several Deep Rein-

forcement Learning algorithms are available: Soft Actor-Critic (SAC) [62], Proximal

Policy Optimisation (PPO) [48], MultiAgent POsthumous Credit Assignment (MA-

POCA) [63] and self play [64]. Examples of learning environments developed in Unity

ML-Agents are shown in Fig. 2.4, taken from [65].

Fig. 2.4a, showcases an environment where the agent has to learn to push a block

in order to jump over a wall, while Fig. 2.4b presents multiple agents learning how

to play soccer in a cooperative/competitive setting. Finally Fig. 2.4c showcases the

environment example of an agent learning to walk.

The significant differences between the learning tasks presented in Fig. 2.4 show-

case the general capabilities of Unity ML-Agents of enabling solutions for various

reinforcement learning tasks. Moreover, developing the agent-environment MDP in

Unity3D allows for having access to a visual framework representation of the rein-

forcement learning problem, allowing for easy debugging and assessing the behaviour
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(a) Jumper agent. (b) Soccer player agents.

(c) Walker Agent.

Figure 2.4. Visual representations from learning environments (from [65]).

(policy) of the agent, during and after training.
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State-of-Art Literature Review

3.1 TRS Operation Schemes

3.1.1 Without Pumping

TRS operation can follow three main schemes: ebb-only generation (EoG), flood-only 
generation (FoG) or a  two-way generation (TW  ). While for EoG or FoG, power gen-

eration only occurs during the ebb or flood tides, respectively, TW  schemes generate 
energy for both flood and ebb tides.

As reported by Baker [6], when comparing one way EoG or FoG schemes, the 
former has usually been set as the preferred option for TRS for its ability to generate 
more energy. For justifying this claim, ocean and lagoon water levels for EoG and 
FoG schemes, together with associated periods of power production, are represented 
in Figs. 3.1a and 3.1b. From these images, we note how lagoon (basin) water levels  
are lower for FoG than for EoG. Considering how the wetted surface area of basins 
tend to naturally decrease with water depth (e.g. Swansea Bay Lagoon wetted area in 
Fig. 3.2), the lower mean water level during FoG means that the barrage will operate 
with a smaller flooded area. Therefore, smaller volumes of water will flow through the 
turbines, lowering energy production per tide.

In Fig. 3.1, the operational stages:  holding, power generation (EoG or FoG) 
and sluicing (or filling), are highlighted. During sluicing stage, both sluices and idling 
turbines allow water to flow into the impounded area so that the water level inside 
the lagoon gets as close as possible to the original tidal range. During holding time, 
turbine wicket gates and sluices are closed, allowing head difference to increase until a 
sufficient operational head Hstart is established. Then, during power generation, flow 
is allowed to pass through turbines only.
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(a) EoG scheme operation.

(b) FoG scheme operation.

Figure 3.1. Representation of EoG and FoG schemes with starting (Hstart ) and finishing
heads (Hmin ) (edited from [66]).

Although TW schemes are theoretically able to generate more energy than EoG

and FoG [7], this option has been debated in the literature due to inefficiencies in

reverse flow and high costs of more complex turbines [6]. In spite of this, successful

TW operation in La Rance [67] and new advances in turbine technology [4] have allowed

TW schemes to become the primary choice for most modern TRS proposals.

Considering a scenario starting at high tide, TW schemes can be described se-

quentially:
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Figure 3.2. Swansea Bay TRS approximation for lagoon wetted area as a function of water
level (digitised from [25]).

• 1) The incoming tide (flood tide) is confined within the lagoon at high level

(holding stage).

• 2) Then, during the receding tide (ebb tide), power generation begins when a

high operational head (Hstart) is established between the basin and ocean [7].

• 3) Power generation stops when a minimum operational head (Hmin) is achieved.

• 4) A sluicing sequence immediately follows, where idling turbines and sluices

allow water to flow in order to increase lagoon tidal range for the next operation.

• 5) Following the same procedure, generating energy is also possible during the

flood tide, although with reduced efficiency due to turbines usually being ebb-

oriented [23].

The described operational modes for a classic TW operation are shown in Fig.

3.3 and detailed in Table 3.1.

Considering a TW scheme scenario, TRS turbines can be operated to either

generate energy or to increase flow rates through the barrage during sluicing stage

(idle operation of turbines) at either incoming or receding tides. Also, a minimum

head Hmt, usually in the [1m� 2m] range [68], is required for the turbine to generate

energy. Considering that the holding stage begins automatically when the difference

between ocean and lagoon is negligible, and that power generation is not possible with
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Figure 3.3. Classic “two-way scheme” operation. Ocean level is represented by the blue line,
while the lagoon level is shown in red.

Table 3.1. TRS control stages.

Operational Mode Description

Ebb Gen (E.G): Power generation during receding tide
Flood Gen (F.G): Power generation during incoming tide

Sluicing (Sl): Operate sluice gates and/or idle turbines
Holding (Ho): Stop operation of all hydraulic structures

head differences below Hmt, the classic operation of tidal lagoons [7] is reduced to two

variables: Hstart and Hmin. As seen in Fig. 3.3, pairs Hstart and Hmin occur every

half-tide period, when ocean oscillates between its valleys and peaks.

The water level variations within the lagoon, following classic TW scheme oper-

ation of hydraulic structures, can be seen in Fig. 3.3. Furthermore, Table 3.2 show all

possible combined operations of turbines and sluices, with resulting power generation,

for each control stage.

A modification of the discussed classical operation, called “variant” operation,

allows for opening the sluice gates at the end of “flood” and “ebb” generation stages

[6; 23] independently of turbine operation, with the possibility of increasing power

generation (increased lagoon tidal range when starting the next “ebb” or “flood” stages).
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Table 3.2. Classic TW scheme’s hydraulic structures operation.

Operational Mode Turbines Sluices Power Gen.

E.G (if TTr == True): On Off Yes (if h > Hmin)
F.G (if TTr == True): On Off Yes (if h > Hmin)
Sl (if SlTr == True): On On No
Ho (if HoTr == True): Off Off No

h: Head difference between ocean and lagoon
TTr: Turbine power generation trigger (h > Hstart)
SlTr: Sluice trigger (h < Hmin)
HoTr: Holding trigger (h == 0)

So far, in the academic literature, variant TW operation has only been possible through

Time-Controlled (TC) operation methods (Section 3.3.3.2). A Head-Controlled (HC)

method for performing the variant operation is introduced in this work in Section 4.1.1.

Since TW schemes are the preferred options when the goal is to maximise energy

capabilities of TRS, EoG e FoG options are not considered when developing the control

optimisation algorithms of this study. Therefore, TW classic and variant approaches

to operate TRS are used in the optimisation routines of our baselines in Section 5.1.1.

In the next section, classic TW schemes augmented with pumping will be presented.

3.1.2 Two-Way With Pumping (TWP )

As discussed in the seminal work of Gibrat from 1955 [69] – prime chief investigator of

La Rance Tidal Barrage project –, the augmentation of TRS operation with pumping

capabilities can increase energy (and revenue) extraction of these systems significantly.

Indeed, state-of-art research [23; 25] has supported this claim, by predicting a 20 �
40% increase of energy output when implementing pumping in classic TW scheme

approaches. However, as discussed in the sequence, the literature interpretation of two-

way with pumping schemes (TWP ) is still not aligned with observed measurements of

the only case study in the world: La Rance (Fig. 3.4). Firstly, in Fig. 3.5a, predicted

lagoon water level variations for state-of-art literature interpretation of TWP schemes

are coloured according to the operational mode chosen for turbines and sluices, with

the sequence of operations for the hydraulic structures being dictated by literature

constraints [23; 25]. While the logic of operation for turbines and sluices is similar

to the observed in La Rance (Fig. 3.4), literature constraints limit turbine pumping

stage to occur only when negative head differences (against gravity) are observed (red

regimes in Fig. 3.5). In contrast, measurements from La Rance [67; 70], showcase pump

operation in both positive and negative water head scenarios (power input stages in
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Fig. 3.4), with pump shutoff negative heads (null pump flow rate) up to 6 m. Secondly,

as shown in Fig. 3.5b, state-of-art optimisation routines need to choose to fix either

power input or pump flow-rate to reduce computational costs [71] – differently from

what is observed in La Rance (Fig. 3.4), where fine tuned power input is dynamically

adjusted for turbines during pump mode. Finally, HC methods for TWP schemes

do not consider the independent operation of sluices (variant TRS operation), also

contemplated in La Rance [67; 6].

Figure 3.4. Measured water levels and power outputs of La Rance during a TWP scheme
operation (edited from [67]). The labelled regions read as follow: Rp: reverse pumping (or ebb
pumping); Dp: direct pumping (or flood pumping); Dg: direct generation (or ebb generation);
Rg: reverse generation (or flood generation); S: standing (or holding); F : filling (or sluicing).

(a) Coloured lagoon water levels. (b) Power generation.

Figure 3.5. Classic TWP HC operation of TRS, following state-of-art constraints by [25].
Ocean is coloured in blue, while lagoon water levels are shown and coloured following turbines
and sluices operational modes, with green representing power generation mode, orange –
idling/sluicing mode, black – offline mode and red – pumping mode.
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A comparison between measured and literature interpretations for TWP scheme

of operation can be see in Figs. 3.4, 3.5, where the “Rp” and “Dp” labelled regions

(Fig. 3.4) correspond to reverse pumping (or ebb pumping) and direct pumping (or

flood pumping) stages. The measured data from Fig. 3.4 are thoroughly detailed (and

re-labelled) in Section 4.

In Section 5.2, we show that the operational strategy devised by our trained DRL

agent, for a 0D parametric representation of La Rance, is capable of filling these gaps

in the literature, enabling TRS operation in a more realistic way [72]. Furthermore,

in Section 4.1.1 we propose improvements to the HC state-of-art approach to operate

TRS, through the independent operation of sluices with pumping capabilities, leading

to significant increases in power generation and revenue (Section 5.3).

3.2 TRS Components – Literature Parametrisation

For enabling the simulation of hydraulic units, 0D to 2D TRS models utilise parametric

equations for predicting flow rates (and power output, when applicable) from turbines

and sluices. While for sluices the orifice equation (derived from mass conservation)

has usually been the common choice, turbine simulation has made use of experimental

charts made available by few bulb turbine manufactures (e.g. Sulzer Escher Wyss of

Zurich, Andritz) [6; 27]

Beyond turbine and sluice parametrisation, appropriate descriptions for the wet-

ted area as a function of water depth are required in order to predict lagoon water

level variations during numerical simulations. Finally, heuristic ramp functions are

also usually implemented in numerical simulations when switching operational modes

of TRS, simulating the time required for starting/shutting off the hydraulic structures,

while also stabilising 2D numerical models by smoothing boundary flow rates.

In this section, the most modern and utilised methods available in the literature

for parametrising turbines, sluices, ramp functions and lagoon wetted area will be

presented. In Section 4 novel methodologies for parametrising turbines (in both power

generation and pump mode), wetted area and ramp functions are developed in this

work.

3.2.1 Sluices

In order to estimate flow rate through sluice gates, the literature has utilised the orifice

equation [7; 6]:

Qs = CdAS

p

2g|h|, (3.1)
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where flow rate Qs is a function of h (the head difference between ocean and lagoon),

Cd is the dimensionless discharge coefficient (greatly dependent on sluice gate design

[6]), AS the sluice/orifice area and g the gravity acceleration (9.81m/s2).

Although modern experimental results show that Cd can reach values in the range

1.3  Cd  1.45 [73], which can lead to significant increases in power output for TRS

[74], the literature has chosen a conservative Cd = 1, when utilising Eq. 3.1. This

conservative approach is corroborated by [6], following experimental results of a large

sluice gate prototype that measured Cd ⇡ 1 for flow rates up to 2000m3/s [75].

3.2.2 Turbines – Power, Pump & Idling Modes

Among the various hydraulic turbines available and utilised in hydroelectrics, bulb

turbines have been the option of choice for TRS due to their high efficiency at low

heads. Amid bulb turbine types, double-regulated bulb turbines (Fig. 3.6a) have

shown to perform optimally in TRS, for their ability to maintain high efficiency when

submitted to a variable water head, generate power in reverse direction (although with

efficiency penalties) and of being operated as pumps if required, further increasing TRS

energy extraction capabilities [68; 71; 6; 67].

As discussed by [6], the ability of double-regulated bulb turbines to sustain high

efficiencies for different water head scenarios is possible due to their capacity of regulat-

ing flow quantities through distributor vanes (or wicket gates) and keeping an optimum

angle between flow profile and runner blades when pitching the latter. By experiment-

ing with small-scale turbines under different flow and head conditions, dimensionless

performance turbine “hill charts” (Fig. 3.6c) can be acquired. By fixing turbine diam-

eter D, capacity PC and rotational speed Sp, power and flow charts can be drawn (Fig.

3.6b), with power and flow estimates (P and Qt, respectively) following Eq. 3.2 and

Eq. 3.3.

P = |⇢gQth⌘eff |, (3.2)

Qt = Q11D
2
p

|h|, (3.3)

where ⇢ is the seawater density (1024kg/m3), Q11 the specific unit discharge and ⌘eff

the total efficiency, accounting for the losses suffered by the turbine during its operation.

The derivations for Sp, Q11 and ⌘eff will be shown in the next section. Following Eq. 3.2,

once power output reaches PC , and the water head continues to increase, Qt needs to

be reduced in order for P remain constant. The shape of the Qt flow chart in this

phase (Fig. 3.6b) is explained by the fact that once P = PC , flow through the turbine

becomes inversely proportional to the head difference [71].
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(a) Detailing of units that compose a double-
regulated bulb turbine.

(b) Power and flow rate chart
for a double-bulb unit with
fixed diameter and capacity.

(c) Performance hill chart provided by Sulzer Escher
Wyss of Zurich.

Figure 3.6. Components and chart’s parametrisation detailing for a double-regulated bulb
turbine (from [6]).

Regarding pump operational mode of turbines, literature research has been very

limited. In fact, most recent studies have simulated pump operation either by fixing

the efficiency (for any head difference) to 70% or 40% [71; 76], or by directly following

experimental pump efficiency curves from [76] (Fig. 3.7).

For negative head differences, the literature has also adopted an idealised pump

efficiency interpretation [23] (disregarding efficiency variations with pump rotation),

cast as:

⌘p =
Pout

Pin

, (3.4)
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Figure 3.7. Experimental turbine and pump efficiency curves from a hydraulic turbine with
unknown specifications (from [76]).

where Pin is the electrical power available to the pump and Pout is the rate of work

exerted from the pump to the fluid:

Pout = ⇢gQp|hp|. (3.5)

Also, Qp is the flow-rate through the pump and hp the negative head surpassed

during pumping.

From Equations 3.4 and 3.5 we obtain:

Qp =
⌘pPin

⇢g|hp|
. (3.6)

Although Eq. 3.6 can help to estimate pump flow rate, given a negative head

and input power, it cannot explain maximum pump shutoff heads (where Qp = 0),

or maximum pump flow rates that occur when hp = 0. These issues, combined with

the fact that turbine specifications (e.g. diameter, capacity, applied power input) were

omitted in the [76] study, and that pump efficiencies (Fig. 3.7) are only available

for negative heads in the small range [⇡ .3 m,⇡ 1.9 m], indicate the urgent need

of more accurate and generalizable TRS pump models. Supporting this claim are

the measurements from the La Rance TRS [67], showcasing pump operation in both
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positive and negative water head scenarios, with pump shutoff negative heads up to

6m. In order to fill this gap, a more generalizable TRS pump model theory is presented

in this work in Section 4.2.5.

Finally, when operating in “idling” mode, turbines act as sluices, aiding the sluic-

ing stage of operation. For estimating flow rates in this mode, the orifice equation

Eq. 3.1 is employed. Although generally a Cd = 1 has been utilised for several studies

[17; 68; 19] a Cd = 1.36 has been set as a standard for modern SBL studies, considering

fixed turbine specifications [23; 71]. The modified value for Cd scales the calculated

flow rate from the orifice equation, smoothing flow rate transition when switching from

turbine generation to sluicing modes.

Although parametrisation allows for simplifying turbine representation, all three

dimensional flow characteristics are lost in the process. Therefore, the use of such

methods is more adequate when dealing with preliminary analysis (such as TRS) or

when blade/turbine scale hydrodynamics are not of immediate interest.

3.2.2.1 Andritz Performance Hill Chart

The most recent (and utilised) equations for describing flow rate and power for low

head bulb turbines are based on experimental results from Andritz Hydro [27]. The

edited Andritz chart shown in Fig. 3.8 demonstrates how turbine unit speed n11 and

specific unit discharge Q11 (obtained experimentally) are related. The graph also shows

wicket gate and running blade openings ↵ and �, in degrees), and iso-efficiency curves

Ef .

By specifying the parameters of the turbine: diameter D, number of generating

poles Gp and grid frequency f , the turbine rotation Sp (rpm) is obtained from Sp =

120f/Gp. Furthermore, unit speed n11, turbine flow rate Qt and power output P are

calculated as:

n11 = SpD/
p

|h|, (3.7)

Qt = Q11D
2
p

|h| (3.3)

P = |⇢gQth⌘eff |, (3.8)

where CE is the product of other efficiencies shown in Table 3.3, and ⌘eff = EfCE.

When h is available, n11 is estimated directly from Eq. 3.7. For calculating Qt

and P , Q11 and Ef are obtained experimentally by adjusting the opening of the wicket

gates (↵), the pitch angle of the runner blades (�) and crossing the values with the

obtained n11 (see Fig. 3.8). In order to choose appropriate values for ↵ and �, a

parameterised curve of maximum power output was drawn over Fig. 3.8 (blue line) by
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Figure 3.8. Edited Andritz Performance Hill Chart for a double regulated turbine (varying
↵ and � angles), adapted from [27]. The blue line represents the parametrised maximum
power output curve.

Table 3.3. Other efficiency considerations for TRS turbines [68].

TRS Efficiencies (%)

Generator 97
Transformer 99.5

Water friction 95
Gear box/drive train 97.2
Turbine availability 95

Turbine orientation (Flood Gen. only) [23] 90

following the path where the product between Ef , Qt and h is maximised. If we assume

↵ and � are automatically adjusted to always be in the maximum power output curve,

then Q11 and Ef become functions of n11, as shown in Eq. 3.9 and (3.10).

Q11 = (0.0166)n11 + 0.4861; (when n11 6 255)

Q11 = 4.75; (when n11 > 255),
(3.9)

and

Ef = (�0.0019)n11 + 1.2461. (3.10)

Therefore, during power generation, Eq. 3.3 is used for estimating flow rate

through the barrage.



3.2. TRS Components – Literature Parametrisation 70

3.2.3 0D & 2D Simulation

In order to estimate lagoon water motion inside the impounded area and power pro-

duction of TRS, numerical models (0D to 3D) can be considered. When the goal is

the optimisation of TRS operation for maximising energy generation, 0D models are

usually chosen, given their computational efficiency, and the fact that for “small-scale”

projects, such as the Swansea Bay Tidal Lagoon, 0D models present good agreement

with more complex finite-element 2D models [71; 23; 25; 2; 37]. 0D models are derived

from conservation of mass:
dL

dt
=

QT

Al(L)
, (3.11)

where L is the water level (in meters) inside the lagoon, QT is the total directional

water flow rate (m3/s) from both sluices and turbines and Al(L) is the variable lagoon

area (m2). From Eq. 3.11, the lagoon water level at the following time-step (Lt+1) can

be calculated by a backward finite difference method:

Lt+1 = Lt +
QT

Al(L)
�t, (3.12)

where Lt is the water level at time t and �t the discretized time step.

2D simulations of TRS are special boundary conditions implemented in shallow

water numerical models. Such models (e.g. DG-SWEM, Thetis) are capable of sim-

ulating wave physics, such as resonance and reflection, while also being sensitive to

coastal funnelling effects and variable bathymetry (Section 2.1.2). Nevertheless, at the

location of the boundary condition, the flow rate through hydraulic structures is sim-

plified as a pure function of parametrised equations, as showcased in Sections 3.2.2 and

3.2.1. Examples of simulated 2D TRS in the literature are shown in Fig. 3.9. A more

in depth explanation for 2D TRS models will be presented in our implementation in

Section 4.3.2.

When starting or stopping either turbines or sluices (for 0D and 2D TRS models),

the literature has used heuristic sinusoidal ramp functions r(t) as a function of time t:

r(t) = sin[(⇡/2)(t� tm)/tr], (3.13)

where t 2 [tm, tm + tr], tr = transition time (around 15 min to 20 min to fully start or

stop hydraulic structures [23; 17]), and tm is the time when the current operation (e.g.

E.G, Sluicing) was triggered. r(t) is then multiplied by turbines and sluice equations

(Eq. 3.1 and 3.3), smoothing flow rate outputs.
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(a) Swansea Bay Tidal Lagoon. (b) Cardiff Lagoon.

(c) Severn Barrage.

Figure 3.9. 2D Thetis finite element examples of TRS representation (from [23; 71]).

3.2.4 Lagoon Wetted Surface Area

As shown in Eq. 3.12, in the previous section, 0D models require an approximation for

the lagoon wetted (or surface) area in order to predict lagoon water levels at every time-

step. For small scale lagoons, research has shown that the plane area obtained from

bathymetric data (Fig. 3.2) can be utilised in 0D models, yielding good agreement

of results (maximum predicted energy deviation ⇡ 6% [25]) with more complex 2D

models, when utilising the same operational strategy. A good example of this are the

several comparison studies between 0D and 2D models for the SBL project [23; 25; 71],

where the impounded area oscillates around 8 km2 . Al(L) . 12.5 km2.

Conversely, as the scale of TRS increases (e.g. Cardiff Lagoon, Severn Barrage),

the plane surface area obtained from bathymetry becomes an oversimplification due

to wave reflections inside the impounded lake. Indeed, a study from [71] compared

energy estimations between 0D, 1D and 2D models utilising the SBL and the Severn

Barrage as case studies, where 1D and 2D models are obtained from the shallow water

equations. For the 0D model, the wetted area estimate was considered a constant,

using the enclosed bathymetry as reference. Results for the yearly energy estimate for
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all models (assuming fixed Hstart and Hmin operational heads) are showcased in Table

3.4. We note that the agreement between 1D and 2D models are closer than 0D to 2D,

for both SBL and Severn Barrage case studies. This is explained by the fact that both

1D and 2D models can simulate wave resonance and reflections along the length of the

estuary. Then, thanks to the elongated design of the Severn Barrage (Fig. 3.10), an

equivalent 1D behaviour for both 1D and 2D simulations is observed.

Figure 3.10. 1D finite difference and 2D finite element models for SBL and Severn Barrage
case studies (edited from [71]).

Even though the 0D model showed reasonably close results to the 2D model for

the SBL project, the deviation between 0D and 2D models for the Severn barrage

was ⇡ 100%. Since 0D models are required for optimisation routines, the significant

errors associated with 0D representations of large scale TRS means that, to date, large

scale TRS have not had their operation optimised with the best available optimisation

routines.

Table 3.4. Annual Energy Estimates for Swansea Bay and Severn TRS (edited from [71]).

Simulation
Swansea Lagoon (11.6 km2) Severn Barrage (573 km2)

(TWh/yr) (TWh/yr)

0D � TW 0.445 20.71
1D � TW 0.436 11.50
2D � TW 0.411 11.73

0D � TWP 0.530 22.41
1D � TWP 0.512 11.57
2D � TWP .475 11.18
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3.3 TRS Optimisation – Baselines

In this section, the theory behind analytical and numerical techniques for TRS opera-

tional optimisation from the literature will be presented.

3.3.1 Analytical Methods

By choosing the TW scheme of operation, [7] estimated an analytical upper bound for

the available energy ETW in a general TRS. For calculating ETW , a series of simplified

assumptions are made:

• The incoming tide is sinusoidal with amplitude Am.

• Operational heads are equal Hstart = Hmin.

• Flow rate through operating turbines is constant throughout the operation.

• Impounded lagoon area Al is constant with depth.

So that,

ETW = 0.37EPmax, where EPmax = 4⇢gAm
2Al (3.14)

In Eq. 3.14, EPmax is the maximum energy that can theoretically be extracted

by instantaneously emptying the enclosed body of water (from high tide to low tide)

and Am the ocean tidal range amplitude.

Another recent take on analytical upper bound for TRS was proposed by [16],

where the following assumptions were made:

• The incoming tide is sinusoidal with amplitude Am.

• Turbine flow rate and total efficiency losses ⌘eff are constant throughout the

operation.

• E.G and F.G time periods are centered at periods of minimum and maximum

ocean water levels, respectively.

• Impounded lake water volume �V between low and high tides is known.

The upper bound for TW can be estimated, with a higher degree of accuracy (for

considering turbine efficiency and impounded water volume), as

ETW = ⇢g⌘eff2Am
2
�V . (3.15)
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Although both expressions give a reasonably good estimate for TRS energy ca-

pabilities, they are unable to consider more complex scenarios, such as the variant TW

scheme operation (Section 3.1), pump operational modes and variable turbine efficiency

with water head.

For simulating the potential energy of TRS for these complex scenarios, numerical

optimisation routines are coupled with 0D models of TRS. The state-of-art methods

of TRS optimisation are shown and explained in the next sections.

3.3.2 Constant Head Methods

Widely used as a baseline for several TRS optimisation studies [23; 77; 25; 78; 28], con-

stant head (CH) optimisation methods maximise the energy extraction of a TRS over

a set period of time (day, month, year) by finding best, fixed TRS operational heads,

i.e. setting [Hstart , Hmin ] for classical TW operation (Section 3). This naive ap-

proach is commonly optimised with brute-force algorithms due to the reduced number

of parameters to be optimised.

The resulting operation suffers from a null power production when the head differ-

ence between ocean and lagoon fail to meet the required Hstart (Fig. 3.11). Therefore,

in order to best exploit the various tidal ranges provided from the ocean, flexible op-

eration methods, explained in the next section, have been developed.

Figure 3.11. Example of a month CH optimisation for a TW classical operation.



Chapter 3. State-of-Art Literature Review 75

3.3.3 Flexible Operation Methods

Flexible operation methods are the literature’s state-of-art strategy for estimating the

available energy in TRS. The idea behind this type of approach is to time (through

HC or TC methods) the sequential operation of hydraulic structures according to the

current (and following, when applicable) tidal cycle’s amplitude [25; 23]. With the

assumption of well predictable tides, flexible operation of turbines and sluices can be

inferred by “looking–ahead” through harmonic or numerical tidal prediction methods

[79] and applying the acquired operation to the real, measured ocean – a procedure that

needs to be repeated for every new tide. In fact, and to the best of our knowledge, the

requirement of accurate future tidal predictions (concurrent with measured data and up

to a multiple of half-tidal cycles into the future) has been the basis for all optimisation

routines developed for enabling flexible operation [77; 25; 23; 78; 24; 2; 28]. This

constraint can be a problem when future tidal predictions are unavailable, unreliable,

have some associated validation cost [80] or are regulated by private companies or

government agencies.

(a) 2017 day-ahead-market values. (b) Day-ahead-market values for the first day
of 2017.

Figure 3.12. UK day-ahead-market measurements for 2017, acquired from [81].

Beyond maximising energy extraction of TRS, the objective of flexible operation

methods can be modified as to maximise revenue. For instance, in a SBL case study by

[24], revenue-oriented optimisation was possible by assuming a perfect forecast of tides

and the 2017 day-ahead-market (Fig. 3.12). With these assumptions, income based

optimisation led up to 10 % increase in revenue, while generating 4� 5 % less energy.

The day-ahead-market (used in UK, US and several European countries) is defined as

the value of electricity (£/MWh), fixed for every hour. The value is stipulated for the

next 24 hours (starting at midnight) through an auction process set at midday.
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State-of-art optimisation routines in the literature utilise either grid search (a

brute-force approach), gradient-based, global optimisation [25; 23; 24] and, more re-

cently, genetic algorithm methods [28] to optimise the operation of TRS.

It is important to emphasise that, thus far, all flexible operation studies from the

literature have considered an idealised perfect forecast scenario, where tidal predictions

have a perfect match with tidal measurements – characterising an “upper bound” esti-

mate. For improving upon this, we develop in this work a “real-time” estimate, where

the acquired TRS operation through tidal predictions is applied to tidal measurements.

The uncertainty deviations between “upper bound” and “real-time” methods are dis-

cussed in Section 5.3. Furthermore, the capabilities of revenue-oriented control of TRS

are also explored in this work (for both HC and DRL methods), in Section 5.3.

3.3.3.1 Head-Controlled Flexible Operation Methods

Developed by [25], HC flexible operation methods break tidal measurements into se-

quential tidal (or half tidal) cycles. Since for every half tidal cycle, E.G or F.G will

occur (given head differences above Hmt), optimisation routines can be employed to

find best operational heads. For a fixed tidal (or half tidal) signal, this is done by run-

ning 0D TRS models multiple times and exploring, for each run, different operational

head combinations with the goal of maximising power generation. For all case studies

in [25], TW and TWP classic operation of TRS (Sections 3.1.1, 3.1.2) were considered.

In this setting, brute-force optimisation methods were employed, guaranteeing a global

optimal solution, given a precision of ⇡ 1 cm for the operational heads.

For the TW operational scheme case study, the strategy for finding the optimum

pair of Hstart and Hmin for every tidal cycle was named ET (Every Tidal cycle method).

Similarly, when optimising every half tidal cycle, the process was named EHT (Every

Half-Tidal cycle method).

With the goal of further exploiting the predictability of tides, EHT methods can

be augmented by aiming to find not only the best Hstart and Hmin pair for the half

tidal cycle, but also the Hstart and Hmin pair for the following half tidal cycle. When

the best quadruplet is found, only the first pair of Hstart and Hmin is used to run

the 0D model, and the process repeats a half-tide forward in the future. The idea of

this method is to “prepare” a better starting point (initial lagoon water level) for the

following half-tide operation. The developed strategy is named EHN (every half-tidal

cycle and next). By following the same logic, augmented ET methods are named ETN

(every tidal cycle and next).

The described ET , EHT , ETN and EHN methodologies can also be applied
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when considering pump operation. For this augmentation a starting and finishing

pump operational head is added to each half tidal cycle. Finally, when using a pump

model (Eq. 3.6), either pump flow rate or power needs to be fixed during the pumping

process. Fig. 3.13 shows the considered optimisation period for all flexible operation

methods discussed.

(a) ET and ETN methods.

(b) EHT and EHN methods.

Figure 3.13. Schematic illustrations of various HC flexible operation methods. For each
method, arrows indicate the time interval where optimal pairs (or quadruplets) of Hstart and
Hmin are chosen (from [25]).

3.3.3.2 Time-Controlled Flexible Operation Methods

As shown in the work of [23], another way of performing flexible operation involves

optimising the time length of each sequential mode of operation in a TW or TWP

scheme. As a TWP example for this method, the sequential time length of the each

operational mode in a tidal cycle is added to a vector ~v = ti, i = 1, ..., N , where each

ti corresponds to a different TRS operation, as shown in Fig. 3.14.

The total energy per tidal cycle can then be optimised by finding a best vector

~v. Due to the computational cost of TC methods, literature solutions for this problem
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Figure 3.14. TC flexible operation detailing (from [23]).

were obtained with either Broyden-Fletcher-Goldfarb-Shanno with bounds (L-BFGS-

B) [23], or basin-hopping [24] optimisation algorithms, that balance performance with-

out guaranteeing a global optimal solution. As can be seen in Fig. 3.14, the variant

operation of TRS, with independent operation of sluices, was contemplated by [23],

when introducing the method (displayed in Fig. 3.14 as the overlapping of sluicing and

power generation time vectors).

While TC and HC methods share the same (i) sequence of operation of hydraulic

structures per tidal period and (ii) pump operation constraints (thoroughly detailed

in Section 3.1.2), TC methods have pre-determined (fixed) operational heads for au-

tomatically starting holding periods (during ebb and flood tides) and turbine idling

stage [23]. Due to this reduced flexibility of operation, HC optimisation methods are

chosen in this work as the state-of-art control method for TRS.

3.4 AI Applications for Renewable Energy Systems

The concept of AI is not unique, but it could be well described by the definition given

by the European Commission in its Communication presented to the European Par-

liament in 2018: “AI refers to systems that display intelligent behaviour by analysing

their environment and taking actions – with some degree of autonomy – to achieve spe-

cific goals. AI-based systems can be purely software-based, acting in the virtual world

or AI can be embedded in hardware devices” [82]. Due to technical advances, more

than 60,000 articles are published annually with AI applications in computing tech-

nologies, as well as a large number of applications for AI, such as problem solving and

optimisation, data analysis, image recognition, text processing etc [83; 84]. As far as

the applications of AI to energy production are concerned, a significant number of pub-
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lications only started to emerge around 2003, with an exponential increase since then

(15, 368 works were published on AI & Energy, from 1970 to 2019, according to Scopus)

[84]. This increase is partially explained by advances in solar and wind technologies and

applications [84; 85]. Besides a comprehensive review on AI & Energy, Reference [84]

investigates and compares several AI techniques employed in wind turbines monitoring

systems (Artificial Neural Networks; Fuzzy Logic; Genetic Algorithms; Particle Swarm

Optimisation; Decision Making Techniques; and Statistical Methods), concluding that

not all AI techniques are appropriate for renewable energy applications – as most of

them are designed with one purpose –, and thus, that it is necessary to know the best

suited algorithm for each application

In recent years, DRL techniques have represented a breakthrough for AI methods,

performing optimally in several real-time problems that previously could only be solved

by experienced human operators. The potential of DRL techniques for solving such

tasks has received a significant attention in applications with games, such as Atari,

Chess, Shogi, Game of Go and StarCraft II [47; 86; 87], where smart DRL agents were

able to showcase a performance superior to human players. Amid the advancements

of DRL algorithms, complex real-life optimisation problems also started to be tackled,

such as trading and finance, self-driving cars, healthcare and energy efficiency (e.g.

heating, ventilation, air-conditioning and datacentre cooling systems) [88; 89; 90; 91;

92]. In the context of renewable energy, reinforcement learning techniques have also

been used for optimising the operation of smart grids [93; 94; 95; 96], wind turbines

[97; 84; 98], solar panels [99; 100; 85; 101; 102], stream turbines [103], high frequency

wave energy converters [104] and more recently, TRS [105]. In particular, the energy

demand forecasting problem has been successfully investigated using Long Short-Term

Memory (LSTM) neural network [106] for different renewable energies, e.g., smart grids

[96], wind turbine power [98] and solar energy [101; 102]. The characteristic features

of this approach could be interesting for some particular operational modes of TRS

(maximising the revenue, for instance), being investigated in Section 5.3.



Chapter 4

Developed Methodologies

In this chapter, we firstly propose improvements to the state-of-art control optimisa-

tion of TRS, enabling higher energy/revenue outputs and real-time control. Secondly,

we develop general techniques for parametrising TRS components through experimen-

tal data. For this, experimental measurements from the La Rance Tidal Barrage are

utilised as a case study. Thirdly, pseudo-code implementations for enabling numerical

model simulations (0D and 2D) for TRS, developed for this work, are presented. Fi-

nally, by utilising the SBL project as a case study, we develop our MDP within Unity

ML-Agents using our 0D TRS model, so that our DRL agent can be trained.

4.1 Improvements to State-of-Art Control

Optimisation of TRS

In this section we propose improvements to HC control optimisation of TRS. We have  
chosen HC methods instead of TC approach due to their (i) low computational cost, 
which allows for using brute-force algorithms and (ii) higher flexibility of operation, 
enabling the optimisation of pump and idling turbine stages (without pre-determined 
operational heads), therefore guaranteeing a global solution, (considering a given pre-

cision for operational heads), as discussed in Section 3.3.3.2.

4.1.1 Head-Controlled, Variant Operation of TRS

In this section we propose a modification of the discussed HC classical operation (Sec-

tion 3.1), which allows for opening TRS sluice gates at the end of “flood” and “ebb” 
generation stages, independently of Hmin. We show that this variant scheme of oper-

ation increases power generation due to higher lagoon tidal ranges when starting the
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Table 4.1. TW , HC variant hydraulic structures operation.

Operational Mode Turbines Sluices Power Gen.

E.G (if TTr == True): On Off Yes (if h > Hmin)
F.G (if TTr == True): On Off Yes (if h > Hmin)
Sl (if SlTr == True): On On Yes (if h > Hmin)
Ho (if HoTr == True): Off Off No

h: Head difference between ocean and lagoon
TTr: Turbine power generation trigger (h > Hstart)
SlTr: Sluice trigger (h > HSstart)
HoTr: Holding trigger (h == 0)

next “ebb” or “flood” stages. Disregarding pumping capabilities, the variant TW op-

eration scheme requires 3 control variables every half-tide: Hstart, Hmin and HSstart

(sluice gate starting head). A comparison of the water level variations within the la-

goon, following classic and variant operations of hydraulic structures, can be seen in

Fig. 4.1. Table 4.1 shows all possible combined operations of turbines and sluices, with

resulting power generation, for each control stage in TW HC variant operation.

Figure 4.1. Classic and variant “two-way scheme” operation. Ocean level is represented by
the blue line, while the lagoon level is shown in either green dashed lines or red, for classic or
variant lagoon operations, respectively.

We also apply the independent operation of sluices to TWP schemes (Section

3.1.2). For simulating pumping capabilities in TW schemes, two extra control variables

are added for every half-tide, namely (i) a maximum pumping head Hp and (ii) a fixed

power input Pin. The pumping equations utilised in our model are drawn from our

developed pumping model (Section 4.2.5).
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Table 4.2. TWP , HC variant hydraulic structures operation.

Operational Mode Turbines Sluices Power Output/Input.

E.G (if TTr == True): On Off Yes (if h > Hmin)
F.G (if TTr == True): On Off Yes (if h > Hmin)
E.P (if PTr == True): On Off Yes (if h < Hp)
F.P (if PTr == True): On Off Yes (if h < Hp)
Sl (if SlTr == True): On On Yes (if h > Hmin)
Ho (if HoTr == True): Off Off No

h: Head difference between ocean and lagoon
TTr: Turbine power generation trigger (h > Hstart)
SlTr: Sluice trigger (h > HSstart)
PTr: Pumping trigger (h == 0)
HoTr: Holding trigger (h == Hp)

(a) Coloured lagoon water levels, following
turbine operation.

(b) Coloured lagoon water levels, following
variant sluice operation.

(c) Power generation.

Figure 4.2. Variant TWP HC scheme operation of TRS. Ocean is coloured in blue, while
power generation and lagoon water levels are shown and coloured following turbines and sluices
operational modes, with green representing power generation mode, orange – idling/sluicing
mode, black – offline mode and red – pumping mode.

All possible combined operations of turbines and sluices for variant TWP HC

operation are shown in Table 4.2. Coloured lagoon water levels, following turbine and
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sluice operation are shown in Fig. 4.2. Figs. 4.2a and 4.2c highlight the control

variables Hp and Pin added to the TW turbine operational scheme, while Fig 4.2b

highlights the independent operation of sluices through HSstart.

A comparison between power output estimates of classic and variant TW HC

operation is shown in Section 5.1. Similarly, Section 5.3 presents a comparison between

classic and variant power and revenue outputs, following TWP HC operation.

4.1.2 Real-time control of HC methods

So far, the literature on control optimisation of TRS has considered a perfect forecast

of tidal predictions when estimating power generation and revenue – characterising an

upper bound estimate. Therefore, we propose in this work the real-time control of

TRS, through HC state-of-art methods.

In our method, both ocean prediction and ocean measurements signals are

cropped at half-tides (Fig. 4.3). Then, using the EHT method for instance, best

operational Hstart and Hmin are found for ocean predictions and then applied to ocean

measurements. The cropping procedures occurs when the ocean signal’s derivative

changes signal. For avoiding the influence of high frequency waves (whose peak-to-

valley period is ⇡ 150s) and for consistency with the opening and closing of hydraulic

structures, we used �t = 15 min during the cropping process.

Figure 4.3. Ocean Measurements and Predictions, cropped for every half-tide. Data pro-
vided by BODC database.

Since the real-time method require forecast signal, ocean predictions are used

when the optimisation goal is maximising energy. Naturally, in order for maximising

revenue, the real-time method would require a form of forecasting the day-ahead-market

(Section 3.3.3, for the UK case study). Although significant research has been per-

formed on the field, due to time constraints we have not explored day-ahead-market

forecast algorithms [107]. Therefore, our real-time approach for TRS operation, for

both revenue or energy estimates, only uses forecast tidal signals (provided by BODC
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database). Nevertheless, upper bound estimates for energy and revenue are computed

for comparison analysis.

Full code implementations for real-time control and upper bound estimates can be

accessed in the GitHub page: https://github.com/TmoreiraBR/PhD-Thesis-codes.

A comparison of the upper bound estimate against our DRL agent and real-time control

through HC methods is presented in Section 5.3.

4.2 TRS Components Experimental

Parametrisation – La Rance Case Study

In this section, we propose techniques to create parametric functions that emulate the

behaviour of the hydraulic components and structures (turbines, sluices and enclosed

estuary) that compose the La Rance tidal barrage, i.e., we reverse engineer a real

TRS into a 0D parametric representation. The available data utilised in this section is

mostly obtained from a 1975 study [67], executed in collaboration with Electricité de

France (EDF), the company responsible for La Rance operation still to this day. Data

from this study are utilised in order to create parametric models for turbines in ebb and

flood operation (in both power generation and pump modes), sluices and equivalent

impounded wetted area. Furthermore, a novel ramp function, named momentum ramp

function, is proposed in order to help estimate flow rate and power variations when

opening/closing TRS’s hydraulic structures.

From [67], the observed variations of lagoon water level and power output/input

for two days of observations are digitised, yielding Figs. 4.4a and 4.4b. In Fig. 4.4a, the

observed operational modes correspond to a conventional ebb-only generation (EoG)

scheme, while Fig. 4.4b showcases a TWP scheme. The resolution of the digitised data

is represented by a “⇥” label. The initials for the operational modes that were set for

each scheme of operation are also presented at the top of each image. The detailings

of each labelled initial, numbered in order of occurrence in Figs. 4.4a and 4.4b, are

shown in Table 4.3.

It is worth emphasising that during E.G at the EoG scheme, turbines are expected

to operate alone. This contrasts with the TWP scheme, where at the end of E.G

and F.G, the turbines are expected to operate together with sluices (i.e., the variant

operation described in [105], and Section 3.1.1) [6; 67].

Design specifications for La Rance, taken from [67], are shown in Table 4.4. Also,

[67; 108] present data showcasing turbine efficiency as a function of water head (for E.G

and F.G modes of operation). From these data, 2nd order approximations are derived
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(a) Ocean and Lagoon Water Levels and cor-
responding Power generation for EoG scheme.

(b) Ocean and Lagoon Water Levels and
corresponding Power generation for TWP
scheme.

Figure 4.4. Measurements of EoG and TWP schemes of operation at La Rance. Digitised
from [67].

Table 4.3. Operational Modes for EoG and TWP La Rance’s Schemes of Operation.

Label Operational Mode
Operating Hydraulic Unitsa

EoG TWP
E.G Ebb Generation T : ON & Sl: OFF T : ON & Sl: OFF ! ON
F.G Flood Generation N.A. T : ON & Sl: OFF ! ON
Ho Holding T : OFF & Sl: OFF T : OFF & Sl: OFF
Sl Sluicing T : ON & Sl: ON T : ON & Sl: ON
E.P Ebb-Oriented Pumping N.A. T : ON & Sl: ON ! OFF
F.P Flood-Oriented Pumping N.A. T : ON & Sl: ON ! OFF

a For each scheme of operation [6; 67].
T : Turbines. Sl: Sluices. N.A.: Not Applicable.

and shown as dashed lines in Figs. 4.5a and 4.5b. Furthermore, data presenting the

expected pump flow rates Qp as a function of hp for La Rance’s bulb turbine in E.P

and F.P operational modes, with a fixed (maximum) power input of Pin = 6 MW , are

available in Table 4.5. This table also showcases the pump shutoff head hs = �6 m

for both E.P and F.P modes [70]. From these data, 2nd order approximations are

derived and shown as coloured dashed lines in Fig. 4.6. By reading Fig. 4.6, we
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(a) E.G Turbine Efficiency.
(EffE.G = �.0144h2 + .2417h+ .0981)

(b) F.G Turbine Efficiency.
(EffF.G = �.01h2 + .167h+ .0259)

Figure 4.5. E.G and F.G turbine efficiency for La Rance (from [67; 108]).

Table 4.4. La Rance Barrage Design.

N o of Turbines 24
Turbine speed (rpm) 94

Turbine Diameter (metres) 5.35
Turbine Capacity (MW) 10

Max. Pump Head (metres) 6
Sluice Area (metres2) 900

Table 4.5. Measured E.P and F.P flow rates at La Rance, for a fixed power input Pin =
6MW (from [67; 70]).

Qp(hp, Pin = 6MW ) Against hp(m) < 0
-6 -3 -2 -1

QpEbb (m3/s) 0 108 160 200
QpFlood (m3/s) 0 100 168 175

note that maximum flow rates, when hp = 0 m, measure QMEbb = 252.2 m3/s and

QMFlood = 215.8 m3/s, respectively.

Reference [67] also provides various estimates for the volume (�V ) of water stored

in the La Rance estuary as ocean tide fluctuates to a height z, defined from the lowest

tidal level in the equinoctial low tide (z = 0), reproduced here in Table 4.6. Finally,

an upper bound for the maximum turbine flow rate (for any mode of operation) is set

to 280 m3/s, utilising site measurements from La Rance as reference [109].

In the following sections, the data presented here will be utilised for parametrising

all elements that compose the La Rance TRS. As a first step, since sluices and turbines

(in both power generation and pump modes) require a ramp function to be simulated,
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Figure 4.6. E.P and F.P flow rate estimates as a function of water head.
(QpEbb = 1.6hp

2 + 51.8hp + 252.2) and (QpF lood = �.6hp2 + 32.4hp + 215.8).

Table 4.6. Stored volume of water for the La Rance estuary (from [67]).

�V i(10
6m3) 0 65 110 150 184

zi(m) 0 5 8.5 10.9 13.5

a novel momentum ramp function for the hydraulic structures is derived in the next

section.

4.2.1 Momentum Ramp Function

In order to model flow rate variations from opening/closing the hydraulic structures

that compose a TRS, a ramp function is required.

Given that solutions presented from the literature try to solve this problem with

a heuristic approach (Section 3.2.2), we propose a new derivation for a ramp function

more grounded on physical principles. In order to do so, we utilise an electro-hydraulic

analogy. These types of analogies have been used extensively in the literature, with

applications for both pipe fluid flow and open channel flow [110; 111].

Considering a pipe network – electric circuit analogy, we simulate the system: hy-

draulic unit (turbine or sluice) under a pressure differential (due to gravity or pumping

system) as an LR circuit under a DC current (LR-DC), represented in Fig. 4.7.

In an LR circuit, R represents the electrical resistance inherent from the wire,

while L represents the inductance. As current starts flowing due to a voltage difference

applied from the battery, electrons reach the inductor (wire coil), which reacts by

storing energy in an increasing magnetic field. This magnetic field increases until a
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Figure 4.7. LR circuit representation under a DC current.

constant maximum value. Initially (after closing the circuit), when the electrons reach

the inductor, the magnetic field is null. As the magnetic field increases, the inductor

reacts with a back EMF (electromotive force), which opposes the circuit’s voltage

(Lenz’s law). This opposite voltage ceases when the magnetic field stops increasing,

which means that the current i(t) in the circuit slowly increases from a null value until

a steady state current Iss (Fig. 4.8)

Figure 4.8. Electric current i(t) evolution in a LR circuit under a fixed voltage V .

In order to retrieve the i(t) current equation shown in Fig. 4.8 we utilise Kirch-

hoff’s loop Rule, which states that: “the algebraic sum of the voltage differences is

equal to zero”. Therefore:

V � iR� L
di

dt
= 0, (4.1)

where iR and Ldi
dt

are the voltage drop due to the resistor and inductor, respectively.
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Assuming that i(t = 0) = 0:

V = i(t)R + L
di(t)

dt
! V � i(t)R = L

di

dt
! dt

L
=

1

V � i(t)R
di, (4.2)

Integrating on both sides:

Z t

0

dt

L
=

Z i

0

1

V � i(t)R
di! t

L
=

Z i

0

1

V � i(t)R
di. (4.3)

Utilising integration by substitution, u = V � i(t)R! du
di

= �R, therefore

t

L
=

Z i

0

�1
Ru

du! �Rt

L
= ln(V � iR)|i0 !

�Rt

L
= ln

✓

V � iR

V

◆

. (4.4)

Taking the exponential of both sides and isolating the current term, the equation

for the current in an LR-DC circuit is obtained:

i(t) =
V

R
(1� e�Rt/L). (4.5)

Eq. 4.5 shows that when e�Rt/L ! 0, as t increases, the steady-state current

(Iss = V /R) is reached. From Eq. 4.5, we now utilise electro-hydraulic analogy to

substitute the circuit parameters by hydraulic ones in a pipe network.

The electrical resistance is substituted as a hydraulic resistance Rh = �p/Q(t),

where �p corresponds to the pressure drop observed in a conduit with some flow

rate Q(t) (substituting i(t)). Similarly, the battery is substituted either by a pumping

system or a water head due to gravity – in both cases, a pressure difference �p is applied

to the closed hydraulic system, analogous to a voltage drop. The Inductor is then

usually approximated as a water-wheel in a hydraulic system, where the inductance is

renamed as inertance (Lin). When the system is closed, the pressure difference pushes

water into the water-wheel. Initially the water-wheel is not moving, so Q(t = 0) = 0.

As the pressure difference keeps providing force, the water wheel starts moving until

it reaches a maximum constant rotational speed. When this speed is reached, flow

resistance is minimum and Q(t!1) = Qss, where Qss is the steady-state flow rate.

With the showcased analogy, Eq. 4.5 can be recast as the momemtum ramp

function in analytical form:

Q(t) = Qss(1� e�t/⇣), (4.6)

where ⇣ = Lin/Rh.
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In order to apply Eq. 4.6 in the context of 0D or 2D TRS models, a numerical form

of the momemtum ramp needs to be developed. This can be acquired by discretising

time t(n) = n�t, where n is the number of iterations and �t the time step:

Q(n) = Qss(1� e�n∆t/⇣). (4.7)

For a time t(n+1) = (n+ 1)�t:

Q(n+ 1) = Qss(1� e�(n+1)∆t/⇣), (4.8)

where the exponential term can be expanded into

Q(n+ 1) = Qss(1� e�n∆t/⇣ ⇥ e�∆t/⇣). (4.9)

From Eq (4.7), we isolate the exponential term:

� e�n∆t/⇣ =
Q(n)

Qss

� 1. (4.10)

Finally, by substituting Eq (4.10) into Eq (4.9), a numerical form of the momen-

tum ramp function is obtained:

Q(n+ 1) = Qss + (Q(n)�Qss) e
�∆t/⇣ , (4.11)

where Q(n + 1) represents the flow rate at the next time-step and Q(n) the flow rate

at the present time. The term Qss represents the steady-state flow rate estimate for

the hydraulic structure as a function of head difference. As an example: for sluices,

Qss can be attained from the orifice equation (Eq. 3.1), while for turbines in power

generation mode, Qss can be attained from parametrised turbine power charts (e.g.

Andritz chart, Section 3.2.2). Furthermore, since in steady-state regime power output

relates linearly to turbine flow rate (Eq. 3.8), the numerical form of the momentum

ramp function can also be applied to predict the power output evolution:

P (n+ 1) = Pss + (P (n)� Pss) e
�∆t/⇣ , (4.12)

where P (n+1) represents the power output at the next time-step and P (n) the power

output at the present time. The term Pss represents the steady-state power output

estimate for the turbine as a function of head, i.e. a power chart estimate.

The numerical form of the momentum ramp function in Eq. 4.11 simplifies the



Chapter 4. Developed Methodologies 91

very complex phenomena of opening/closing the turbines and sluices that compose

a TRS. Indeed, beyond the hydraulic resistance and inertance of these systems, the

opening/closing of turbines and sluices also involve adjusting the pitching of runner

blades/guide vanes (for turbines) and aperture of gates (for sluices). Nevertheless, we

show in following sections that the developed ramp function can accurately help esti-

mate power output and flow rate evolution for both starting/closing stages of turbines

and sluices, given appropriate ⇣ values.

4.2.2 Turbines

Given power production and water level variations for the ocean and impounded lagoon

(for the numbered E.G and F.G turbine modes of operation in Fig 4.4), we can draw

interpolated (parametric) curves for the turbine power output as a function of head,

with time “t” as hidden parameter:

Pint(EGi) = Pint(h, t) or Pint(FGi) = Pint(h, t), (4.13)

where “i” corresponds to the ith occurrence of E.G and F.G turbine modes. The inter-

polated Pint(EGi) and Pint(FGi) curves, for every ‘i” are shown as solid curves in Figs.

4.10a, 4.10b, 4.10c, 4.10d, 4.10e and Figs. 4.11a, 4.11b, respectively. These Figures

showcase power production as a function of head difference, where time evolution is

presented by labels over the interpolation.

Considering scenarios where the starting phase for the turbines is available

(Pint(EG2), Pint(EG3), Pint(EG5) and Pint(FG1), Pint(FG2)), the interpolated results

show a two-step process where initially (i) power outputs rapidly increases from a start-

ing non-zero head difference until reaching a plateau (maximum head difference and

power output). (ii) Then, from this plateau, water head variations, therefore power

generation, slowly decrease with time, until power production is ceased.

We interpret the first process as non-steady acceleration stage where the turbine,

initially at rest, is submitted to a starting operational water head Hstart , accelerating

until maximum power generation is achieved. Conversely, the second process is inter-

preted as a quasi steady-state deceleration stage, where the turbine is submitted to a

slowly decreasing water head, taking & 3 hours to reach Hmin .

With this interpretation, we take the average of all available quasi steady-state

phases for E.G and F.G modes, considering power output to be a pure function of

head difference “h”, thus obtaining power charts (PEG(h), PFG(h)) for both modes of

operation. A comparison of our parametrised power charts against interpolated power
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charts from [67] is shown in Figs. 4.10f and 4.11c, for E.G and F.G modes of operation,

respectively. The differences observed between these power charts could be due to a

series of factors not available to us, such as the pitching of runner blades/guide vanes.

Nevertheless, proceeding with our parametrised power charts enabled a satisfactory 0D

simulation of turbines, as will be shown in the following sections.

In order to simulate the smooth power output evolution for both accelerating

and decelerating stages of turbine operation, the momentum ramp function, developed

in Section 4.2.1, is utilised. A schematic showcasing the result of augmenting the

parametrised power chart with the momentum ramp function can be seen in Fig. 4.9.

Figure 4.9. The effect of augmenting the parametrised turbine power chart (grey, instan-
taneous response) with the momentum ramp function is shown in blue, with time evolution
displayed with arrows.

For best adjusting the predicted power output (from Eq. 4.12) as a function of

water head, best ⇣ values for accelerating and decelerating stages of E.G and F.G modes

of operation (⇣AE, ⇣AF and ⇣DE, ⇣DF respectively) are found by minimising the sum of

squared residuals SSR (Eq. 4.16) between each interpolated power chart (Pint(EGi),

Pint(FGi)) and the parametrised power chart (PEG(h), PFG(h)) augmented with the

momentum ramp function (Eq. 4.14, 4.15). It is worth noting that, when minimising

the residuals, the water head input for both charts is also a function of time.

P̂ (h, t+ 1, ⇣jE) = PEG(h) +
⇣

P̂ (h, t, ⇣jE)� PEG(h)
⌘

e�∆t/⇣jE , (4.14)
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(a) E.G 1 interpolation and parametrisation. (b) E.G 2 interpolation and parametrisation.

(c) E.G 3 interpolation and parametrisation. (d) E.G 4 interpolation and parametrisation.

(e) E.G 5 interpolation and parametrisation. (f) Parametrised (average of quasi steady-
state E.G regions) vs data interpolated power
charts.

Figure 4.10. E.G parametrisation verification for La Rance.

for E.G, and

P̂ (h, t+ 1, ⇣jF ) = PFG(h) +
⇣

P̂ (h, t, ⇣jF )� PFG(h)
⌘

e�∆t/⇣jF , (4.15)
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(a) F.G 1 interpolation and parametrisation. (b) F.G 2 interpolation and parametrisation.

(c) Parametrised (average of quasi steady-
state F.G regions) vs data interpolated power
charts.

Figure 4.11. F.G parametrisation verification for La Rance.

for F.G, where “j = A” if P̂ (t+ 1) > P̂ (t), else j = D.

SSR =
t=n∆t
X

t=0

(Pint(h(t), t)� P̂ (h(t), t, ⇣))2. (4.16)

Optimum ⇣AE = 14.2 min, ⇣AF = 11.257 min, ⇣DE = 1.355 min and ⇣DF =

1.091 min are then obtained, by only considering scenarios where the starting phase

for the turbines were available, i.e. EG2, EG3, EG5, FG1 and FG2.

Results of the parametrised power chart augmented with the momentum ramp

function with optimum ⇣ values are shown as dashed curves in Figs. 4.10a, 4.10b,

4.10c, 4.10d, 4.10e and Figs. 4.11a, 4.11b. It is worth stressing that these results have

been obtained with fixed sets [⇣AE, ⇣DE] and [⇣AF , ⇣DF ] for E.G and F.G modes of

operation, respectively.
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4.2.3 Equivalent Lagoon Wetted Area

So far in the literature, and to the best of our knowledge, 0D numerical simulations

of TRS have utilised bathymetric data for estimating a “flat” lagoon wetted area for

TRS. Although this technique can enable accurate simulation of TRS for “small-scale”

systems, such as the SBL, as the impounded area and length increases (like in Severn

barrage), this technique starts presenting significant deviations when compared to more

realistic 2D models (Section 3.2.4).

In this section, we showcase a simple methodology that can be applied to any

coastal region to extract an equivalent lagoon wetted area representation. This method-

ology was applied in our La Rance case study, since bathymetric data for the barrage

were not available. In fact, knowing the real impounded area of La Rance is even more

complicated, because, like any estuary, La Rance presents a severe accumulation of silt

and sand due to siltation (a natural phenomenon due to sedimentation), amounting to

approximately 50, 000m3 of sediment deposited each year in the estuary [112; 113] –

altering La Rance´s bathymetry. In Section 4.2.6 we show that the method proposed

here enabled an accurate prediction of lagoon water level evolution when operating tur-

bines (in power generation and pump modes) and sluices, even though the geographical

maximum lagoon wetted area spans 22km2 (twice that of SBL) and, given its narrow

720m barrage, has an approximate length > 30km [114].

As shown in [16], analytical estimates for the available energy in a TRS can

utilise the impounded volume of water instead of bathymetric representations. In a

similar fashion, we utilise the stored water volume data shown in Table 4.6, to derive

an equivalent lagoon wetted area for the La Rance 0D model. In the literature, this

equivalent area is attained from the inter-tidal prism volume estimate, which have been

used to estimate the impounded water volume of rivers that end in tidal regions [115].

In its simplest form, a constant wetted area Al is used, so the stored volume of water

�V is proportional to variations in tidal level (tidal range) [115]. We note that this

simplified model yielded fairly good results when applied to our La Rance 0D model.

However, considering that there are several model approximations that can be used to

estimate Al as a function of tidal level variations [116], we proceed our study with a

linear approximation for Al. For the sake of simplicity, we use the tidal datum (height

z from the lowest equinoctial low tide, defined as z = 0), instead of the tidal prism. So

that,

Al(z) = 2s⇥ z + Al0, (4.17)

where Al0 is the equivalent wetted area at z = 0 and 2s the slope. From this approxi-

mation, the stored volume (�V = V � V0) at a tidal datum z, obtained by integrating
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Figure 4.12. Quadratic adjust of the volume of stored water (∆V ), and linear equivalent
wetted area estimate (insert) as a function of tidal datum z for the La Rance estuary.

Eq. 4.17 from 0 to z, becomes a second order polynomial:

�V = s⇥ z2 + Al0 ⇥ z. (4.18)

Now the coefficients s and Al0 can be estimated with a least square method,

utilising the point measurements (zi,�V i) from Table 4.6, as a target. The obtained

quadratic fit for �V is shown in Fig. 4.12, together found values for s and Al0. With

these parameters, the wetted area given by Eq. 4.17 is also plotted and shown as an

insert in Fig. 4.12. The obtained linear Al(z) gave improved results when applied to

the 0D model of La Rance barrage (Eq. 3.12).

4.2.4 Sluicing

For parametrising the sluicing stages shown in Fig. 4.4a and 4.4b, we need to define

appropriate (i) ⇣ values for our momentum ramp function (Eq. 4.11) and (ii) discharge

coefficient (Cd) for the orifice equation (Eq. 3.1), responsible for estimating flow rates

from the hydraulic structures.

In contrast with turbines (in power generation mode) that have accelerating and

decelerating stages (Section 4.2.2), sluices allow for the free passage of water with min-

imum resistance, independent if head differences are increasing or decreasing. Due to

this symmetric behaviour, we assume a constant ⇣s value for our momentum ramp func-
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Figure 4.13. Comparison between momentum and sinusoidal ramp functions.

tion estimate. Since we do not have previous data to fit a best ⇣s value for sluices, we

adopt ⇣s = 1.091, which guarantees a precision of 106 for the complete opening/closing

of hydraulic structures in a 15 min time interval [105]. A comparison of this ramp

function, with �t = 1 min, against conventional sinusoidal ramp functions adopted in

the literature is shown in Fig. 4.13. Although the momentum ramp converges more

quickly than the sinusoidal ramp, we show in this section that the agreements between

our model and measured data are satisfactory.

Beyond sluice gates, the sluicing stages shown in Fig. 4.4a and 4.4b, need also to

account for turbine flow rates operating in “idling” mode. For simplification purposes,

we assume that turbine operation in idling mode have a similar behaviour to sluices,

since there is no electrical energy conversion. Therefore, the same ⇣s = 1.091 will

be used for turbines in “idling” mode. This similar behaviour is also supported by

the literature, since flow rate estimates for sluices and idling turbines utilise the same

“orifice” equation (Section 3.2.1).

For best fitting Eq. 3.1 to La Rance, appropriate Cd and Cdt, for sluices and

idling turbines, respectively, need to be found. For sluice gates, we bound the Cd

estimate between two experimental values from the literature. As a lower bound, we

have Cd = 1, from experimental results of a large sluice gate experiment by [75]. As an

upper bound, we utilise measurements from [67], which indicate that, at its maximum,

sluice gates from La Rance provide a flow rate of 9600m3/s. Since the total sluice gate

area for La Rance is 900m2, we attain an upper bound of Cd = 1.077.
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Similarly, idling turbines flow rate is bound by experimental measurements, at

La Rance, from [109]. In this work, flow rate measurements from a turbine unit under

a fixed 4m head was recorded in the range 182.2m3/s to 280m3/s. From [67; 109; 75]

data, upper and lower bound discharge coefficients for turbines and sluices are defined

as:

[1  Cd  1.077] and [.91  Cdt  1.4]. (4.19)

(a) Sluicing Region 1. (b) Sluicing Region 2.

(c) Sluicing Region 3. (d) Sluicing Region 4.

Figure 4.14. Comparison between predicted (L̂S) and measured (L) lagoon water level
variations during sluicing stage for La Rance.

For choosing best Cd and Cdt values within bounds (Eq. 4.19), we utilise the 0D

model for La Rance (Eq. 3.12), with the equivalent lagoon wetted area derived in the

previous section, to predict lagoon water level variations during each sluicing stage Sl.

The predicted levels L̂S are compared with measured data L and a time-normalised

sum of squared residuals (NSSR) is calculated:

NSSR =
S=4
X

S=1

(L̂S � L)2

tS
(4.20)
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The best Cd and Cdt that minimise NSSR for all sluicing stages are Cd = 1.017

and Cdt = .967. However, since adopting Cd = Cdt = 1 does not change results signifi-

cantly, for the sake of simplification, we resume our work with a discharge coefficient of

“1”, for both sluices and idling turbines. Comparison between L̂S and L results, with

Cd = Cdt = 1, are shown in Fig. 4.14.

4.2.5 Pumps

As shown in Section 3.2.2, current idealised pump models for TRS (Eq. 3.6) fail to

explain expected behaviours such as maximum pump shutoff head hs (when Qp = 0),

maximum pump flow rates QM (for hp = 0) and pump operation under positive head

scenarios – all observed in La Rance measurements [67].

For contemplating these behaviours, we utilise pump affinity laws in order to de-

rive a general formulation for the pump flow rate as a function of head difference and

applied power input: Qp = Qp(hp, Pin). The affinity laws express the mathematical

relationships between several variables involved in the performance of kinetic pumps

(centrifugal or axial). These laws show that, under dynamically similar conditions,

dimensionless parameters remain constant. They are useful for predicting pump per-

formance changes when varying either (i) pump operational speed (ii) pump impeller

diameter [117]. Since bulb turbines operating in reverse have a similar behaviour to

axial-flow pumps [118; 119; 120; 121; 122], we continue this section with the assumption

that affinity laws can be applied to bulb turbines in pump mode.

Each affinity law postulate can be expressed as a set of three equations, where

pump flow rate Qp, negative head hp and input power Pin are estimated for a point “p2”

using a known point “p1” as reference. Then, following the affinity laws, values for “p2”

are obtained as a function of either pump rotation (N) or pump impeller diameter (D),

according to the first or second postulate from the affinity laws, respectively. From the

first postulate:

Qp1

Qp2

=
N1

N2

;
hp1

hp2

=

✓

N1

N2

◆2

;
Pin1

Pin2

=

✓

N1

N2

◆3

. (4.21)

For the relationship shown in Eq. 4.21 to be true, pump efficiency must remain

relatively constant as we move from “p1” to “p2”, for a fixed diameter pump [117].

Utilising the first postulate of pump affinity laws (and assuming a near constant effi-

ciency for any change in rotational speed) is sufficient for estimating a general pump

equation for La Rance. The first postulate can also be manipulated, so that Qp and
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hp are obtained as a function of power input variation:

Qp1 = Qp2

✓

Pin1

Pin2

◆1/3

, (4.22)

hp1 = hp2

✓

Pin1

Pin2

◆2/3

. (4.23)

For both E.P and F.P operational modes, the second order approximation for

flow rate Qp(hp, Pin) as a function of head for a fixed (maximum) power input of Pin =

6MW , shown in Fig. 4.6, is utilised. For simplification purposes, {Pin = 6MW} = P6.

Also, since pump operational head hp depends on power input (Eq. 4.23), we have for

the quadratic approximation Qp(hp(P6), Pin = P6) = Qp(hp(P6)), so that:

Qp(hp(P6)) = ahp
2(P6) + bhp(P6) +QM(P6), where hp(P6) <= 0. (4.24)

Eq. 4.24 expresses a characteristic pump curve, where QM(P6) is the maximum

pump flow rate expected, for hp = 0 and Pin = 6MW . Knowing that Qp is zero at the

shutoff head (hs), the quadratic approximation can be expressed in terms of its roots,

yielding a convenient form:

Qp(hp(P6)) = a[hp(P6)� hs(P6)][hp(P6)�QM(P6)/(ahs(P6))]. (4.25)

For deriving a characteristic pump curve for any power input (Pin) and pump

head (hp(Pin)), we expand all terms in Eq. 4.25, by utilising Eq. 4.23 and Eq. 4.22,

thus obtaining Eq. 4.26. For simplification purposes, the maximum allowed pump

power (P6) over pump power input (Pin) is reduced to:(P6/Pin) = R.

Qp(hp(P6)) = Qp(hp(Pin))R
1/3,

QM(P6) = QM(Pin)R
1/3,

hp(P6) = hp(Pin)R
2/3,

hs(P6) = hs(Pin)R
2/3.

(4.26)

Performing the substitution of terms from Eq. 4.26 into Eq. 4.25, returns

Qp(hp, Pin) = aR[hp(Pin)� hs(Pin)][hp(Pin)�QM(Pin)/(aRhs(Pin))]. (4.27)

Eq. 4.27 allows for estimating pump flow rates for any given hp and Pin, including

regions of pump shutoff head hs and maximum pump flow rate QM . Finally, in order
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to estimate pump flow rates for positive head scenarios, we assume that the maximum

QM attained for hp = 0 is summed with the gravitational flow rate estimate Qg derived

from the orifice equation for turbines (Eq. 3.1). The maximum flow rate allowed during

pumping (upper bound “ub”) is ub = 280m3/s, as defined in Section 4.2. Examples

of predicted pump flow rates, for E.P and F.P modes of operation are shown in Fig.

4.15.

(a) Qp(hp, Pin) estimate for E.P . (b) Qp(hp, Pin) estimate for F.P .

Figure 4.15. La Rance Qp(hp, Pin) estimate for E.P and F.P , for Pin = 6, 3 and 1MW.

For verifying the quality of our pump Qp(hp, Pin) estimate (Eq. 4.27), we utilise

the 0D model for La Rance (Eq. 3.12), with the equivalent lagoon wetted area derived

in Section 4.2.3, to predict lagoon water level variations L̂P during each E.P and F.P

pumping stage. The predicted L̂P values, for a given (measured) power input Pin and

varying ocean levels, are compared with measured lagoon water levels L and shown in

Fig. 4.16, along with the input parameters.

As shown in Fig. 4.16, the derived pump model for La Rance presented good

agreement of results when predicting lagoon water level variations against measured

data. In order to generalise the developed pump equation for bulb turbines of various

diameters and power capacity, we now make use of the second postulate of the Affinity

Laws, that states:

Qp1

Qp2

=
D1

D2

;
hp1

hp2

=

✓

D1

D2

◆2

;
Pin1

Pin2

=

✓

D1

D2

◆3

. (4.28)

Such as in Eq. 4.21, for the relationship above to be true, pump efficiency must

remain relatively constant as we move from “p1” to “p2” [117]. The required D1 and D2

pump diameters, for La Rance and SBL, are shown in Tables 4.4 and 4.8, respectively.
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(a) Pin for E.P 1. (b) L̂P and L for E.P 1.

(c) Pin for E.P 2. (d) L̂P and L for E.P 2.

(e) Pin for F.P . (f) L̂P and L for F.P .

Figure 4.16. Comparison between predicted L̂P (yellow solid curves) and measured L (⇥)
lagoon water level variations during pumping stages, along with measured ocean water levels
and Pin, used as inputs for the 0D La Rance model.

The second postulate allows for estimating pump characteristic curves for the

SBL project, by considering the following assumptions:

• The bulb unit in SBL have similar efficiency as La Rance, when under the same

head difference.



Chapter 4. Developed Methodologies 103

Table 4.7. Estimated E.P and F.P flow rates for SBL, utilising the second postulate from
the affinity laws and a fixed power input Pin = 12MW .

Qp(hp, Pin = 12MW ) Against hp(m) < 0
(m3/s) -9.52 -4.76 -3.17 -1.59
QpEbb 0 136.07 201.59 251.98
QpFlood 0 125.99 211.67 220.49

• The maximum power input allowed during pumping for the SBL project equals

60% of the turbine capacity, such as La Rance [67] (i.e. 12MW ).

Figure 4.17. SBL E.P and F.P flow rate estimate (from the second postulate of the affinity
laws) as a function of water head.
(QpEbb = 0.8hp

2 + 41.1hp + 317.8) and (QpF lood = �.3hp2 + 25.7hp + 271.9).

Following these assumptions, we utilise experimental measurements of pump flow

rate (QpEbb(hp), QpFlood(hp)) for La Rance (Fig. 4.6) in conjunction with the second

postulate, to estimate (QpEbb(hp), QpFlood(hp)) point values for SBL (Table 4.7).

With these values in hand, quadratic expressions for pump flow rate as a function of

head (Fig. 4.17), and the full pump equation as a function of Pin and hp (Eq. 4.27)

are obtained following the same steps as for La Rance. Furthermore, the maximum

flow rate (upper bound ub) allowed during pumping is set to ub = 487m3/s. This

value was obtained by following the Andritz´s chart prediction (Section 3.2.2.1), for a

20MW turbine with SBL specifications (Table 4.8). Examples of characteristic curves

estimated for the SBL are shown in Fig. 4.18.
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(a) Qp(hp, Pin) estimate for E.P . (b) Qp(hp, Pin) estimate for F.P .

Figure 4.18. SBL Qp(hp, Pin) estimate for E.P and F.P , for Pin = 12, 6 and 2MW.

4.2.6 Validation of the Parametrised 0D La Rance Model

With the developed parametric models for turbines (in power generation and pump

modes), sluices, equivalent lagoon area and momentum ramp function, we can now

verify the accuracy of our 0D La Rance model in predicting lagoon water level variations

and power output.

Utilising Fig. 4.4 as reference, we set initial predictions for lagoon water levels

L̂ and turbine output power P̂ (h, t, ⇣) to the same initial measured values (L and P ,

respectively) at La Rance. Henceforth, we vary the operational mode for the hydraulic

structures following the same timing as in Fig. 4.4a and 4.4b. When operating turbines

in pump mode, the measured Pin is applied to our pump model, so that pump flow

rates can be predicted. A comparison of the 0D La Rance model predictions with

measured data is shown in Fig. 4.19.

As noted in Section 4.2, sluice operation is expected at the end of power generation

stages for the TWP scheme (Figs. 4.19b, 4.19d and 4.19f). Since the timing for starting

sluice operation was not provided by [67], the showcased results for the TWP scheme

simulation assume a best fit between predicted and measured lagoon water levels.

Nevertheless, the agreement between predicted and measured power outputs for both

EoG and TWP schemes is shown to be satisfactory. Indeed, by integrating predicted

and measured power, energy deviation is only 4.7% and 2.1%, for EoG and TWP

schemes comparisons, respectively.

While results in (Figs. 4.19b, 4.19d and 4.19f) aim to validate the parametrisation

techniques applied in reverse engineering La Rance into a 0D model, an optimal and

comparable strategy for the control sequence of turbines and sluices is still required.

In Section 5.2, as a second validation step, we show that our trained DRL-Agent is
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(a) L̂ vs L comparison for EoG. (b) L̂ vs L comparison for TWP .

(c) P̂ (h, t, ⇣) vs P comparison for EoG. (d) P̂ (h, t, ⇣) vs P comparison for TWP .

(e) Turbine and sluice flow rates estimates for
EoG.

(f) Turbine and sluice flow rate estimates for
TWP .

Figure 4.19. Validation of 0D La Rance model predictions against site measurements from
[67].

capable of operating La Rance with such strategy.

4.3 TRS Numerical Implementation

In this Section, the pseudocode implementations developed for simulating La Rance and

SBL (in 0D and 2D representations, when applicable), will be presented and discussed.
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4.3.1 0D Modelling

For simulating TRS hydraulic structures in our 0D model representations for La Rance

and SBL, algorithm depictions for turbines (in power generation, idling and pump

modes) and sluices were developed. For the SBL, the pseudocodes for sluices and

turbines (in power generation and idling modes) were inspired from the literature (re-

viewed in Section 3.2), being showcased in Algorithms 1 and 2. In order to simulate

turbine pump modes, the developed method based on the affinity laws (Section 4.2.5)

is showcased in pseudocode format (Algorithm 3).

Algorithm 1 Turbine Power and Flow Rate – Andritz representation.

Require: g, ⇢, nt, Sp, D, To, CE , PC , as fixed parameters.
1: function PowerGen(h, Top)
2: if |h| >= 1 and Top == “powerGen00 then // Assuming Hmt = 1

3: n11  Sp ·D/
p

|h|
4: if n11 <= 255 then

5: Q11  0.017 · n11 + 0.49
6: else if n11 > 255 then

7: Q11  4.75

8: Eff = (�0.0019 · n11 + 1.2461) · CE
9: if To == 1 then // Flood Oriented Turbine

10: if h < 0 then // E.G
11: Eff  .90 · Eff

12: else if To == 2 then // Ebb Orientation
13: if h > 0 then // F.G
14: Eff  .90 · Eff

15: Qt  sign(h) ·Q11 ·D
2
p

|h| // Andritz chart
16: P  |⇢ · g · h ·Qt| · Eff
17: if P > PC then

18: P  PC // PC = 20MW for the Swansea Lagoon
19: Qt  sign(h) · P/(⇢ · g · |h| · Eff)

20: else

21: P  0
22: Qt  0

23: return nt · P , nt ·Qt

24: end function

For simulating La Rance’s turbines in power generation mode, the pseudocode

shown in Algorithm 4, developed with parametric models (Section 4.2.2), is utilised.

Similarly to the SBL, La Rance also makes use of Algorithms 2 and 3 to simulate

sluices and turbines in idling and pump modes.

The pseudocode enabling the 0D model simulation for SBL and La Rance is

shown in Algorithm 5 – being called every time iteration. The developed 0D model

has also been modified from what is usually observed in the literature, accommodating

the novel momentum ramp function (Section 4.2.1).
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Algorithm 2 Idling Turbines and Sluice Gates Flow Rate Estimate – Orifice Equation.

Require: g, ⇢, AT , AS , nt, Cd, Cdt, as fixed parameters.
1: function IdlingTurbines(h, Top)
2: if Top == “sluicing00 then

3: Qt  Cdt · Sign(h) ·AT ·
p

2 · g · |h|
4: else

5: Qt  0

6: return nt ·Qt

7: end function

function Sluices(h, Sop)
2: if Sop == “sluicing00 then

Qs  Cd · Sign(h) ·AS ·
p

2 · g · |h|
4: else

Qs  0

6: return Qs

end function

Algorithm 3 Pump Flow Rate.

Require: g, ⇢, AT , nt, PinMax, hs, ub, aE , QMEbb, aF , QMFlood, as fixed parameters
1: // hs = 6m for La Rance and hs = 9.52m for SBL (Ebb and Flood)
2: // Maximum pump power input PinMax = 6MW for La Rance and = 12MW for SBL
3: // ub = 280 for La Rance and ub = 487 for SBL
4: // For aE , QMEbb, aF and QMFlood values for La Rance, see Fig.4.6
5: // For aE , QMEbb, aF and QMFlood values for SBL, see Fig.4.17
6: function PumpFlowRate(h, Top, Pin, Po) // Po is the pumping orientation
7: if Top == “pumping00 then

8: hs = hs · (Pin/PinMax)
2/3 // Re-estimate hs for a given Pin

9: R = (PinMax/Pin)
10: if Po == “Ebb00 then

11: h �h // Since h = ocean� lagoon water levels
12: a = aE ;QM = QMEbb

13: else if Po == “Flood00 then

14: a = aF ;QM = QMFlood

15: if h � 0 then // Pumping at positive head
16: Qg  Cdt ·AT

p
2 · g · h

17: else

18: Qg  0

19: if h  hs then // Pump does not work
20: Qp  0
21: else if h < 0 and h > hs then // Pumping at negative head
22: Qp  a ·R · (h� hs) · (h�QM · (Pin/PinMax)

1/3/(a ·R · hs))
23: else if h � 0 then // Pumping at positive head
24: Qp  QM · (Pin/PinMax)

1/3 +Qg

25: if |Qp > ub| then

26: Qp  Sign(Qp) · ub

27: else

28: Qp = 0

29: return nt ·Qp

30: end function
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Algorithm 4 Turbine Power and Flow Rate – La Rance Parametrisation.

Require: g, ⇢, nt, ub, PEG, PFG, EffE.G, EffF.G, as fixed parameters
1: function LaRancePowerGen(h, Top)
2: if |h| >= 1 and Top == “powerGen00 then // Assuming Hmt = 1
3: if h > 0 then // F.G
4: P  PFG(h)
5: Qt  P/|⇢ · g · h · EffF.G(h)|
6: if Qt > ub then //
7: Qt  ub
8: P  ⇢ · g · h ·Qt · EffF.G(h)

9: else if h  0 then // E.G
10: P  PEG(|h|)
11: Qt  P/|⇢ · g · h · EffE.G(|h|)
12: if Qt < �ub then //
13: Qt  �ub
14: P  |⇢ · g · h ·Qt · EffE.G(|h|)|

15: else

16: P  0
17: Qt  0

18: return nt · P , nt ·Qt

19: end function

The required fixed parameters for running the pseudocodes, for SBL and La

Rance, are presented in Sections 3.2 and 4.2. Beyond these, we add the parameters

AT , To, Top, Sop, and Po, which stand for turbine area, orientation, operation, sluice

operation and pumping orientation, respectively. The addition of Top, Sop, Pin and Po

into Algorithm 5 allows for easier control when coupling the 0D model with any of the

developed optimisation routines.

4.3.2 2D Modelling

In order to include the effects of sluices and turbines for 2D TRS simulation, a barrage

boundary is implemented into DG-ADCIRC. This barrage model was created based

on a culvert model already present in DG-ADCIRC [34; 35], which adds an internal

barrier into the finite element mesh. The internal barrier acts as a reflective boundary

throughout its length (zero perpendicular velocity), except at the node pairs where

hydraulic structures are simulated (Fig. 4.20a). The flow through these node pairs is

calculated from the water head developed between “front” and “back” sides, instead of

the utilising the numerical model’s shallow water equations (Eq. 2.1, 2.2 and 2.3).

For verification purposes, the new 2D barrage boundary is implemented in the

rectangular domain shown in Fig. 4.20b, where an internal barrier connects the node

pairs between Planes 1 and 2. In this case study, 15 node pairs are selected to simulate

sluice gates, following Algorithm 2, where flow is allowed to pass when the head dif-
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Algorithm 5 0D TWP scheme TRS Model.

Require: g, ⇢, AT , AS , nt, Cd, Cdt, as fixed parameters. // j is the time iteration index
1: function 0DTRSControl(Oj, Lj, P j , Qtj,Qsj, TRS) // Reveive variable values for the j � th

iteration
2: h Oj � Lj // where, O is the ocean water level
3: if turbineIsReady or sluiceIsReady then

4: Top, Sop, Pin, Po  RequestDecision() // Control Policy

5: if TRS == “LaRance00 then

6: P ,Qt  LaRancePowerGen(h, Top)
7: Qti  IdlingTurbines(h, Top)
8: Pin, Qp  PumpFlowRate(h, Top, Pin, Po)
9: // Steady-state (head-only dependent) estimates for flow rates and power

10: Qs(h) Sluices(h, Top)
11: P (h) P + Pin

12: Qt(h) Qt +Qti +Qp

13: PowDev  Sign(PjN � Pj) // Utilise ⇣A and ⇣D appropriately
14: if Top == “powerGen00 and h < 1 then // E.G
15: if PowDev > 0 then // Turbine is accelerating
16: ⇣  ⇣AE

17: else if PowDev < 0 then // Turbine is decelerating
18: ⇣  ⇣DE

19: else if Top == “powerGen00 and h � 1 then // F.G
20: if PowDev > 0 then // Turbine is accelerating
21: ⇣  ⇣AF

22: else if PowDev < 0 then // Turbine is decelerating
23: ⇣  ⇣DF

24: else// Idling, Sluicing or Pump modes
25: ⇣  1.091

26: else if TRS == “SBL00 then

27: P ,Qt  PowerGen(h, Top)
28: Qti  IdlingTurbines(h, Top)
29: Pin, Qp  PumpFlowRate(h, Top, Pin, Po) // Remove for TW scheme simulation
30: // Steady-state (head-only dependent) estimates for flow rates and power
31: Qs(h) Sluices(h, Top)
32: P (h) P + Pin

33: Qt(h) Qt +Qti +Qp

34: ⇣  1.091

35: // Momentum ramp estimates for flow rate and power for the next iteration jN
36: QsjN  Qs(h) + (Qsj �Qs(h)) · e

�∆t/⇣

37: PjN  P (h) + (Pj � P (h)) · e�∆t/⇣

38: QtjN  Qt(h) + (Qtj �Qt(h)) · e
�∆t/⇣

39: // For time-step lagoon water level estimate
40: LjN  Lj + (QsjN + QtjN ) · ∆t/Al(Lj) // Al is a function of bathymetry for SBL and a

linear approximation for La Rance
41: return QsjN , P jN , QtjN , LjN
42: end function
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(a) Water level comparison between
Points 1 and 2.

(b) Flow rate comparison between Planes
1 and 2, for 7m diameter ”sluices´´.

(c) Flow rate comparison between Planes
1 and 2, for 9m diameter ”sluices´´.

(d) Flow rate comparison between Planes
1 and 2, for 11m diameter ”sluices´´.

Figure 4.22. Flow-Rate comparison between Planes 1 and 2 [(b),(c) and (d)], for the water
head difference shown in (a).

able flow-rate magnitudes, diameters of 7, 9 and 11 m are used for another comparison.

The results are plotted against each other in Figs. 4.22b, 4.22c and 4.22d, showing

that, for the different magnitudes of diameter presented, mass is accurately conserved.

The developed barrage boundary has also been verified for mass conservation in

[37]. Furthermore, the model has been utilised for simulating SBL and Severn Barrage

in [20], [21] and [36], utilising the Andritz turbine representation showcased in Algo-

rithm 1. In these studies, the TRS were evaluated in their capability of protecting

coastal regions during storm surges and their effect on varying the natural tidal reso-

nance of the Bristol Channel. Finite element mesh representations developed for both

the Severn Barrage and SBL can be seen in Fig. 4.23.
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(a) Mesh representation and barrage bound-
ary for the SBL.

(b) Mesh representation and barrage bound-
ary for the Severn Barrage.

Figure 4.23. Developed mesh representations for the Severn Barrage and SBL (from [20],
[21] and [36]).

4.4 Markov Decision Process Setup in Unity

ML-Agents – SBL Case Study

In this section, we will go through the steps for developing our Markov Decision Process

(MDP) in a Unity ML-Agents project. As a case study, we will utilise the SBL, operated

with a TW scheme (without pumping), where the agent’s goal is to maximise power

generation. Furthermore, both actor and critic neural networks are of the type: MLP.

Comparison results between our trained agent and optimisation baselines from the

literature can be found in Section 5.1. Sections 5.2 and 5.3 showcase trained DRL

results, for La Rance and SBL, respectively, when operated in a TWP scheme.

To formalise TRS operation as a RL problem (and subsequently solve the RL

problem through PPO) we need to design an MDP in Unity ML-Agents with environ-

ment, agent, actions, states and reward components.

By creating simple representative 3-D models for turbines, sluices, ocean and

lagoon, a training environment simulating TRS for our MDP is created in Unity3D

and then imported to a Unity ML-Agents project. In this environment, the equations

simulating power and flow output through the lagoon, when operating turbines and

sluices, are extracted from the 0D model representation, detailed in Algorithms 1, 2

and 5. In order to choose appropriate parameters for operating our environment, we

follow literature representations suggested by [23; 71; 25], for the SBL project. The

chosen parameters are shown in Table 4.8. A variable lagoon surface area, digitised

from [25] (shown in Fig. 3.2), is also utilised.

For ease of visualisation and debugging, the 3-D representations of sluice and

turbine change colours depending on the operational mode picked by the agent. For
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Table 4.8. Swansea Lagoon design.

No of Turbines 16
No of Gp 95

Grid frequency (Hz) 50
Turbine Diameter (metres) 7.35

Sluice Area (metres2) 800

Figure 4.24. Unity ML-Agents MDP environment for a 0D model of the Swansea Bay Tidal
Lagoon during ebb generation.

the turbine, green represents power generation mode, orange – idling mode and black –

offline mode (zero flow rate). Similarly, sluices change colour between orange and black

for sluicing and offline modes, respectively. Fig. 4.24 shows a capture of the Unity ML-

Agents MDP environment representation for the SBL during ebb generation, with the

representative models for sluice and turbines in offline and power generation modes,

respectively. Ocean and Lagoon surface level motion are also represented.

Additionally, in this proposed MDP, the actor-critic agent is defined as an oper-

ator responsible for controlling turbine and sluice operational modes through actions

(policy network node outputs no), according to a vector of input states st. no outputs

can be discrete or continuous. In this case study, continuous outputs are chosen, re-

ducing the number of nodes in the last layer, and consequently, the complexity of the

neural network. There are 3 node outputs that determine turbine and sluice operation

every 15 min of the environment simulation. The 15 min window (MDP time-step)

was selected for this work since the time usually associated with the opening/closing

of hydraulic structures lies in the [15 min� 20 min] range [23; 17]. Each node in the

last layer outputs a value between 0 and 1, and the resulting actions are computed in

a hierarchical fashion. The first node determines the number of turbines set to power

generation mode (0 or 16), depending if the node output is below or above a threshold

(0.5), i.e. if the node outputs a value below the threshold, no turbines will be generat-
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ing energy, otherwise, all 16 turbines are set to power generating mode. Therefore, if

no turbines are set to power generation, 16 are available for other operational modes

(idling or offline).

The second node selects the number of idling turbines just as the first node, if

the number of turbines available is 16. Otherwise the number of idling turbines is

0, independent of this node output. If no turbine is selected for power generation or

idling modes, all turbines are set offline. Therefore, the first two nodes control turbines

through discrete actions.

The third and final node outputs the % opening area of the sluice gates. Since

any value between [0, 1] can be chosen by the neural network, the momentum ramp

function (Section 4.2.1) is applied to the outputted flow rate every time-step, ensuring

smooth flow rate transitions, independently of the opening sluice area set by the agent.

Beyond reducing the number of node outputs, this configuration also allows for

having the sluice operation independent of turbine operation. All possible operational

modes for turbines and sluices as a function of node output (no) are shown in Tables

4.9 and 4.10, respectively.

Table 4.9. Possible turbine operational modes.

Node 1 Node 2 Discrete Turbine Control

no1 < 0.5 no2 < 0.5 Offline Mode
no1 < 0.5 no2 � 0.5 Idling Mode
no1 � 0.5 no2 < 0.5 Power Generation Mode
no1 � 0.5 no2 � 0.5 Power Generation Mode

Table 4.10. Possible sluice operational modes.

Node 3 Continuous Sluice Control

0 < no3  1 Sluicing Mode (Available sluice area = no3AS)
no3 = 0 Offline Mode (Available sluice area = 0)

The actions selected by the agent are a function of the input states st. In this case

study, these states are the water levels of ocean and lagoon, plus current operational

mode of turbines and sluices, for current and previous MDP time-steps (Table 4.11).

Finally, the reward received by the agent equals the accumulated energy generated by

the turbines, for every 15 min.

For stabilising and speeding up training, parallel training is performed with 64

copies of the environment (Fig. 4.25), all being operated by a single agent (actor

neural network), with episodes set to 1 month of duration. During training, each en-

vironment instance requires a representative ocean input at the location where the
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Table 4.11. Input states for PPO neural network.

States (at times t and t� 1) Units

Ocean water level “Normalised” [0, 1] (float)
Lagoon water level “Normalised” [0, 1] (float)

Number of online turbines 0, or 1 (integer)
Number of idling turbines 0, or 1 (integer)
Sluice gate opening area 0 to 1 (float)

Figure 4.25. 64 instances of the environment during parallel training. For the turbines, green
represents power generation mode. For turbines and sluices orange represents idling/sluicing
mode and black – offline mode.

Swansea Lagoon is planned to be constructed (51�35058.9”N 3�53042.4”W ). Ideally,

ocean measurements could be used as training data. However, due to the lack of suffi-

cient measured data (Section 5.1.1), it is not possible to train the agent until reasonable

performance is reached. Instead, an artificial tide signal to simulate the ocean is cre-

ated by summing the major sinusoidal tide constituents (due to gravitational pull of

the Moon and Sun). Although we are not accounting for other less predictable local

wave motions (e.g. wind waves), the artificial ocean input representation is sufficient

for enabling the agent to converge to an optimal policy. Two major advantages of this

approach is the fact that (i) we can generate any amount of input data required for

training the agent and (ii) we reduce the risk of over-fitting by training with synthetic

data [123].

The tide constituent’s amplitudes of the simulated ocean utilised in this work

(Table 4.12), were obtained from a numerical simulation, at the location of Swansea

Bay Tidal Lagoon, by [23]. The periods for each constituent were obtained by [124].

The final equation for simulating the ocean can be seen in Eq. 4.29.

o(t) = AM2sin(!M2t+ �M2) + AS2sin(!S2t+ �S2)+

AN2sin(!N2t+ �N2) + AK1sin(!K1t+ �K1),
(4.29)

where !M2, !S2, !N2 and !K1 are angular frequencies (rad/s) of each tidal component,

and �M2, �S2, �N2 and �K1 are random phase lags in the range [0, 2⇡], generated for

each environment instance during parallel training when starting an episode, which
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Table 4.12. Simulated tide constituents at Swansea Bay.

Ocean tide constituent Amplitude (m) Period (hr)

M2 AM2 = 3.20 TM2 = 12.42
S2 AS2 = 1.14 TS2 = 12
N2 AN2 = 0.61 TN2 = 12.66
K1 AK1 = 0.08 TK1 = 23.93

allow for learning more generalised scenarios.

Figure 4.26. Unity visual framework for (i) setting up TRS and PPO parameters and (ii)
visualising training and testing steps of the DRL agent.

The designed MDP is solved through the PPO algorithm (Section 2.4.1). A

flow-chart, illustrating the agent’s training stage through the PPO algorithm in Unity

ML-Agents, is presented in Fig. 4.28. Training occurs until a “max-steps” number of

observations are sampled.

After training, the policy (actor) neural network receives input states st and out-

puts optimum no values, following a policy that maximises energy generation. During

testing, this means that the agent receives real ocean measurements as inputs and

predicts the optimum action to take (for any ocean amplitude). The predicted opera-

tion does not require an external model for tidal predictions and enables the agent to

perform real-time flexible control of turbines and sluices.

The TRS specifications and the number of policy network node outputs no and in-
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(a) TRS parameter setup
inside Unity.

(b) PPO parameter setup inside Unity.

Figure 4.27. TRS and PPO parameter setup in Unity. TRS editable parameters can be
added into the setup, by declaring variables as public.

put states st, are all defined in a convenient visual framework representation developed

inside Unity (Fig. 4.26). Detailing for TRS and the PPO neural network configuration

are shown in Fig. 4.27a and Fig. 4.27b, respectively. Hyperparameters setup during

training are described in the next section.

4.4.1 Hyperparameter Setting

The final hyper-parameters used for training our agent for the SBL, no pumping,

case study (Section 5.1) are shown in Table 4.13. They are ordered according to a

trainerconfig.yaml file, available from the Unity ML-Agents package (version specifi-

cation in Table 4.14). The hyperparameters batch size (sampled number of trajectories

m), ↵, �, ✏, �, time horizon H and � are all detailed in Section 2.4.1. Training occurs

until a “max-steps” number of observations (Eq. 2.7) are sampled. During training,

learning rate schedule is set to “linear”, which means that the learning rate decays in a

linear fashion from an initial value ↵ = 1.5e-4 to ↵ = 0.

Time horizon H represents each trajectory size. In the case of this work, since the
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Figure 4.28. Flow-chart with detailing of the PPO algorithm in Unity ML-Agents, during

training. For a given trajectory ⌧ (i), Ât is the advantage estimate and V⇡(s
(i)
t ) the value

function.

MDP time-step = 15 min, a time horizon of 54 equals to 13.5 h – slightly more than

the tidal period (M2 = 12.42 h), and enough so that all possible operational states

(during ebb and flood tides) can be observed every trajectory. When a “buffer size”

number of these trajectories is stored during training, gradient ascent is performed a

“num epoch” number of times by sampling random “batch size” (number of trajectories

m) and differentiating the loss function in Eq. 2.28. After “num epoch” of training

occur, the buffer is reset and the process repeats.

“normalize” set to “true” means that input states are normalised during training,

which for continuous control helped the agent to converge to an optimal policy. During
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Table 4.13. Hyperparameters for training in Unity ML-Agents, for the SBL (no pumping)
case study

Hyperparameters:

batch size (m) 256
buffer size 4096

learning rate (↵) 1.5e� 4
learning rate schedule linear

� 4.6e� 2
✏ 0.2
� 0.98

num epoch 6

Neural network configuration:

normalize true
hidden units 48
num layers 4

Trainer Configuration:

max steps 8.0e7
time horizon (H) 54

summary freq 40000

Reward Signal:

strength 1
� .97

Table 4.14. Unity ML-Agents (version 0.22.0), for the SBL (no pumping) case study.

Version Information

ml-agents 0.22.0
ml-agents-envs 0.22.0

Communicator API 1.2.0
Pytorch 1.6.0

testing (real-time control), real ocean measurements are normalised by the sum of the

tidal constituent’s amplitudes of our artificial ocean signal (Table 4.12). “summary

frequency” only determines the granularity of training results.

Both policy and critic networks follow an MLP architecture, with 10 input states

st, 3 node outputs and 4 hidden layers (each with with 48 units).

In the Chapter 5, the developed methodologies of this Chapter (enhanced state

of art and DRL approach for operation optimisation of TRS) will be applied to the

chosen case studies in this work: a tidal lagoon and tidal barrage TRS project types,

namely the SBL pathfinder project and La Rance tidal barrage.



Chapter 5

Performance Evaluation of TRS

Operation through DRL and

Enhanced State-of-Art Methods

5.1 SBL (no pumping) Case Study

In this section, we compare our DRL trained agent performance against baselines: 
state-of-art and enhanced state-of-art optimisation routines. For this case study, we 
utilise the SBL, without pumping capabilities, with the goal of maximising power 
generation. While the operational strategy for the DRL agent is learnt during training, 
the baselines utilise the TW  operational scheme. The MDP and hyperparameters 
utilised for training our DRL agent were presented in Section 4.4.

5.1.1 Test Data and Baselines Optimisation

For comparing our DRL agent performance against conventional (and state-of-art) 
optimisation routines, we model six HC baselines – three from the literature [25] and  
three “variant” methods with improvements inspired from [23] –,  and compare the  
energy generated in a month for each method. All baselines in this work consider the 
operation of the SBL either through classic or variant “two-way scheme” methods, as 
detailed in Section 3.1. We highlight that the showcased HC variant operation is an 
augmentation proposed in the present work.

Regarding test data for baselines and trained agent, we utilise all tide gauge 
ocean measurements available from the British Oceanographic Data Centre (BODC) 
at Mumbles Station [125], located at the edge of Swansea Bay. The obtained measure-
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ments of ocean elevation are recorded every 15 min in a table, for the years of 1993 and

the range [1997 � 2019]. Before utilising the data, a preprocessing step is performed

so that data flagged as “improbable”, “null value” and “interpolated” by BODC are not

considered. After this step we retain 26 months of usable, non-overlapping, test data.

The preprocessing step ensures a conservative comparison between baselines and our

trained agent, since it considers scenarios where tidal predictions had a good match

with measured data.

Tidal predictions for the same 26 months are also provided by BODC in the

same data-set. For each month, baseline optimisation routines utilise tidal predictions

for capturing operational head values Hstart, Hmin and HSstart (when considered) that

optimise power generation. These operational head values are then applied to the

measured ocean test data, so that comparisons between baselines and trained agent

can be made. Differences between this method and direct upper bound estimates

(Section 3.3.3) were shown to be negligible (< 0.1%), being discussed in Section 5.3,

for TWP scenarios.

Baselines, in increasing order of optimisation complexity, are described next:

• CH (Constant Heads): Best, constant Hstart and Hmin are picked for extracting

energy during a whole month [77].

• CHV (Constant Heads, with variant operation): Best, constant heads Hstart ,

Hmin and HSstart are picked for extracting energy during a whole month.

• EHT (Every Half-Tide): optimised pairs of Hstart and Hmin are picked for every

consecutive half-tide. Proposed by [25].

• EHTV (Every Half-Tide, with variant operation): optimised Hstart , Hmin and

HSstart are picked for every consecutive half-tide.

• EHN (Every Half-Tide and Next): optimised Hstart and Hmin are picked for

every half-tide, considering the best Hstart and Hmin for the next half-tide as

well. Proposed by [25].

• EHNV (Every Half-Tide and Next, with variant operation): optimised Hstart ,

Hmin and HSstart are picked for every half-tide, considering the best Hstart , Hmin

and HSstart for the next half-tide as well.

All variant optimisation methods are augmented through the addition of inde-

pendent sluice head operation HSstart . This modification we are introducing in this

thesis is inspired by the work of [6; 23], from TC methods. CH and CHV perform
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non-flexible operation, while EHT , EHTV , EHN and EHNV perform flexible oper-

ation. A summary detailing each baseline operational heads and method is shown in

Table 5.1. A full description of CH, EHT and EHN methods can be seen in Section

3.3.

Table 5.1. Simplified reference table for baselines.

Constant Head Every Half-Tide Every Half-Tide and Next

CH CHV EHT EHTV EHN EHNV

Hstart X X X X X X
Hmin X X X X X X
HSstart X X X
non-flexible operation X X
flexible operation X X X X

All baselines, except EHNV , are optimised with a grid search optimisation algo-

rithm, which iteratively increases its search resolution until convergence. Initial search

resolution starts with 1 meter, with optimisation heads Hstart , Hmin and HSstart (when

considered) within ranges [1m�6m], [1m�3m] and [1m�5m], respectively. After the

first run, search resolution is halved and the algorithm performs a brute-force search

around the best previous configuration attained. The latter procedure is repeated until

final search resolution is lower than 1cm.

EHNV requires a different optimisation approach due to its high computational

time when utilising the previous grid search method. For this case, we utilise the

stochastic global optimisation algorithm basin-hopping [126] from Scipy package [127],

with COBYLA as a local minimizer [128]. Basin-hopping was chosen for its efficiency

when solving smooth function problems with several local minima separated by large

barriers [129]. The local minimizer COBYLA is a nonlinear derivative–free constrained

optimisation that uses a linear approximation approach. Even though basin-hopping

is not guaranteed to converge to a global optimum, EHNV is shown to be, on average,

the best baseline method for energy generation.

5.1.2 Agent Performance Evaluation

Following hyperparameter tuning, we trained the agent for 8E7 steps, until conver-

gence. The cumulative reward (energy) per month (episode) during parallel training

(with the artificial ocean signal in Eq. 4.29), averaged for the 64 instances of the la-

goon environment, is shown in Fig. 5.1. The log-representation insert highlights the

two-step plateau that is observed when converging to an optimal strategy. After start-

ing in a total random strategy, the cumulative reward received by the agent increases

until reaching an intermediate plateau at around 2E6 steps, where the agent learns
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Figure 5.1. Monthly cumulative energy (reward) in GWh, averaged for all 64 environments
during parallel training. The log-representation insert highlights the two-step plateau.

the strategy of operating mostly the turbines (during ebb and flood tides), while keep-

ing sluices practically offline during ebb generation. Then, after about 5E6 steps, the

cumulative reward starts increasing again. The second plateau stabilises around 4E7

steps, with a cumulative reward approximately 25% higher than the first plateau – a

gain allowed by (i) a TW flexible operational strategy learnt by the agent, that adjust

TRS operation according to tidal range (ii) the smart usage of the sluicing mode, as

discussed below in test results.

For test data, we utilise 26 months of real ocean measurements from BODC.

These months are presented and numbered in Table A.1, while Table A.2 compares

the amount of energy obtained in the numbered months between our trained agent

(performing real-time flexible control) and the baselines estimate. A block diagram

representing the trained agent test stage for this work, while using ocean water level

(WL) measurements, is shown in Fig. 5.2. The averaged monthly energy attained for

all methods is shown in Fig. 5.3.

For the baselines, CH and CHV present the worst performance, since constant

operational heads cannot account for the varying ocean amplitudes in a month (about

⇡ 2m to ⇡ 4.5m in our test set). Furthermore, baselines with variant operation

outputted more energy in average than their classical counterparts. This fractional gain

in respect to each baseline can be seen in Fig. 5.4 (⇡ 2% gain for EHTV and EHNV

over their classic counterparts, and ⇡ 1% gain for CHV over CH). Finally, “half-tide

and next” approaches showed very small improvements (< 0.2%) when compared to

“half-tide” methods, while requiring much greater (' 20⇥) computational time (Tables
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Figure 5.2. Block diagram with detailing of the trained agent test stage.

5.2 and A.3).

Figure 5.3. Averaged monthly energy comparison between baselines and trained agent
utilising test data. Sample standard deviations for the various months are also shown as error
bars.

For the trained agent, Fig. 5.5 show operational test results of power generation

and lagoon water levels for one month of measured ocean data (starting with initial

lagoon water level at mean sea level).
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Figure 5.4. Fractional % gain of monthly energy generation for each baseline, comparing
classic and variant operation.

Table 5.2. Computational time for all methods when optimising over 26 months of tidal
measurements.

Optimisation Approach Computational time (hh:mm:ss)

DRL Agent Not Applicable

CH 00:29:27
CHV 01:04:02
EHT 00:31:23
EHTV 01:45:26
EHN 10:05:30
EHNV 84:47:07

We note that the agent quickly converges to an optimal energy generation strategy

for sequential tidal cycles, independent of tidal range input – a characteristic of state-

of-art flexible operation [25]. Furthermore, Figs. 5.6 and 5.7 showcase detailed results

of real-time control on test data. Apart from ocean water levels, results are coloured

according to actions taken by the agent for turbines and sluices, respectively, as defined

in Section 4.4. More specifically, Figs. 5.6a and 5.7a show lagoon water level variations,

while Fig. 5.6c, 5.6b and 5.7b show power generation, turbine and sluice flow rates.

From the sequence of actions taken, we see that the agent arrives at a policy with

independent operation of sluices, i.e. the variant operation of TRS, which was shown

to be a better strategy than the classical operation in our fractional gain comparison

(Fig. 5.4). A summary of our method accomplishments in comparison with state-of-art

baselines is shown in Table 5.3.



5.1. SBL (no pumping) Case Study 126

(a) Ocean and lagoon water levels. (b) Power generation.

Figure 5.5. Lagoon water levels and power generation results for the trained agent perform-
ing flexible control in a month, with measured ocean data only.

(a) Ocean (in blue) and lagoon water levels. (b) Flow rate from the 16 turbine units.

(c) Combined power output from turbines.

Figure 5.6. Lagoon water levels, turbine flow rates and power output are shown and coloured
following turbine operational mode chosen by the trained agent. Green represents power
generation mode, orange – idling mode and black – offline mode.



Chapter 5. Performance Evaluation of TRS Operation through DRL and Enhanced
State-of-Art Methods 127

(a) Ocean (in blue) and lagoon water levels. (b) Flow rate from sluice gates.

Figure 5.7. Lagoon water levels and sluice flow rates are shown and coloured following sluice
operational mode chosen by the trained agent. Orange represents idling (i.e. sluicing) mode
and black – offline mode.

Table 5.3. Comparison of state-of-art baselines with our proposed DRL Agent.

CH CHV
a

EHT EHTV
a

EHN EHNV
a DRL Agent

[77] [25] [25] (our work)

real-time flexible control X
prediction-free approach X
variant lagoon operation X X X X
state-of-art performanceb X X X X X

a Optimisation routines with novel HC variant operation of TRS.
b Equivalent outputs, in average, within the error bars (Fig. 5.3).

Our agent managed very competitive energy outputs, staying on average within

1.4% of the best baseline (our augmented EHNV method) and slightly higher to that

outputted by the state-of-art EHN baseline (⇡ +0.7%) . Indeed, for all months tested,

our agent performed optimally, outputting better results than the current literature

state-of-art EHN method for 22 out of 26 months, within a 1.1% margin in worst

scenarios (Table A.2). We note that this novel result was obtained by training the

agent once with a simple artificial ocean input, in contrast with the baselines that

require being re-run for every new tide.

5.1.3 Remarks

For our SBL case study, we have shown that Proximal Policy Optimisation (a DRL

method) can be used for real-time flexible control of Tidal Range Structures after

training with artificially generated tide signals. Our DRL agent implementation was

then compared against state-of-art optimisation approaches devised (or augmented)

from the literature, yielding competitive results for all test data utilised. Our results

were obtained in a conservative setting, i.e., when available tidal measurements had
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good agreement with tidal predictions. Furthermore, we showed how our proposed

improvements to HC methods, with independent sluice operation, can consistently

increase power generation capabilities of state-of-art methods.

We have chosen the Swansea Bay Tidal Lagoon for our analysis, given its status as

a pathfinder project for larger tidal lagoon projects. We show that our DRL approach

obtains optimal energy generation from measured tidal data only, through an optimised

control policy of turbines and sluices, which are operated independently by the trained

DRL agent. Our method shows promising advancements over state-of-art optimisation

approaches since it (i) performs TW real-time flexible control with equivalent energy

generation, (ii) does not require future tidal predictions, and (iii) needs to be trained

a single time only. Results of this work are published in [105].

5.2 Operational Optimisation of the AI-Driven La

Rance Model

In this section, we insert the complete parametrised 0D La Rance model (Section 4.3.1)

as an MDP environment into Unity ML-Agents and train the TRS representation. We

show that the obtained AI-Driven La Rance model learns a TWP operational strategy

that is comparable in (i) energy extraction capabilities and (ii) detailed scheme of

operation to the actual strategy utilised in La Rance. For our comparison analysis,

we utilise measurements of the yearly net energy measured in [130] and the observed

sequence of operation of hydraulic structures from [67]. It is important to highlight

that the actual operation in La Rance, in contrast with the AI-Driven strategy, has

the objective of maximising revenue instead of energy [131]. However, as noted in

[24], deviations in energy extraction when comparing revenue and energy based TRS

optimisation are expected to be around 4 � 5 % only. Therefore, the comparisons

we are showcasing are technically sound. In order to train and test our DRL agent,

representative tidal data at the location of La Rance, are required. In the next section,

we present a free software utilised for tidal predictions that can provide such data.

5.2.1 JTides – Tidal Prediction Software

JTides is a free, worldwide, tidal and current prediction software that utilises harmonic

decomposition techniques for predicting ocean tides in several locations of the planet

[132]. Although JTides have been utilised for research [133; 134], its application in the

field of tidal power has not yet been explored.
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From JTides interface, the user can insert coordinates for any location on Earth.

From this location, JTides looks for a nearest point of reference, for which it can extract

tidal predictions from its database. By providing the coordinates of the La Rance tidal

barrage, JTides returns tidal predictions for the location of St. Helier, Jersey, the

largest of the Channel Islands in the English Channel. This island is located around

80km of La Rance and, as the latter, experiences one of the highest tidal ranges on the

planet (up to 10m [135]).

In order to assess if tidal predictions from St. Helier are appropriate for La

Rance, tidal predictions provided by EDF, the company responsible for operating

La Rance, are utilised as reference. The tidal predictions from EDF were available

through the web-page (https://www.edf.fr/usine-maremotrice-rance/marees-en-rance),

being updated every week, providing 3 weeks of forecast. A whole year of tidal predic-

tions were collected manually, for comparison with JTides predictions.

By comparing JTides and EDF predictions, we note that results have the same

pattern, although with a small deviation at tidal range’s extremes, with tidal predic-

tions by EDF consistently predicting higher tidal amplitudes. By assuming that EDF

and JTide’s waves are similar, a deviation coefficient between tidal predictions can

be obtained through the simple method of root mean square differences (RMS) [136].

With this assumption, we can estimate a correction factor Cf to be applied to JTides’s

prediction (JT ides ⇥ Cf ), in order to reduce the deviation between JTides and EDF

estimates:

Cf =

Pi=N
i=1 OJiOEi
Pi=N

i=1 O2
Ji

, (5.1)

where OJi and OEi are the ocean predictions for JTides and EDF (oscillating around

mean water level), respectively, and N is the number of data points for a whole year.

With this method, a Cf ⇡ 1.10 was obtained. A comparison of tidal prediction eleva-

tions from EDF and JT ides ⇥ Cf is showcased in Fig. 5.8, for one year round. From

the observed residuals, we see that the agreement between JT ides ⇥ Cf and EDF is

consistent throughout the year, apart from very few isolated spikes. Therefore, we

resume our work with the assumption that JT ides⇥Cf tidal predictions are represen-

tative of expected ocean water levels at La Rance. With this assumption, we utilise

the JT ides⇥Cf software capabilities to generate training data (from 2013 until 2038)

for our DRL agent.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8. Comparisons between Cf corrected JTides and EDF ocean predictions, for the
La Rance tidal barrage, for one year-round (June/06/2020 up to June/05/2021).
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5.2.2 Unity ML-Agents implementation

With training data in hands, we implement the La Rance parametrised hydraulic struc-

tures into the 0D TRS representation in Unity, following the TWP algorithmic rep-

resentation from Section 4.3.1. Although La Rance’s DRL implementation is nearly

identical to the SBL case study in Section 4.4, there are important differences that need

to be discussed. Most notably, the previously adopted continuous control strategy was

not capable of operating turbines in pump mode. For solving this, La Rance’s DRL

approach utilises a discrete control solution (covered in Section 2.4.1), when utilising

the PPO algorithm. The discrete control solution outputs 3 branches in the last layer

of the policy network. The first branch noS is responsible for controlling sluices, while

the second branch noT is responsible for setting the turbine operational mode. Finally,

the third branch noP controls the input power Pin available to turbines in pump mode.

Each branch ramifies into possible discrete actions that can be taken (i.e. a probability

mass function), allowing for the full range of combinations between turbines and sluices

to be explored during training.

Table 5.4. Discrete control options for La Rance.

Branch Discrete Action
noS (sluices) Offline

Online
Offline

Power Generation (Ebb, or Flood)
noT (turbines) Idling

Ebb Pumping
Flood Pumping

noP (pump Pin) {Pin : Pin = 0.25MW ⇥ noP , noP 2 {0, 1, ...16}}

The possible actions for each branch are showcased in Table 5.4, while the required

input states for the policy neural network are presented in Table 5.5. The PPO setup

implementation in Unity is shown in Fig. 5.9a.

Table 5.5. Input states for PPO neural network, for La Rance.

States (at times t and t� 1) Units

Ocean water level “Normalised” [0, 1] (float)
Lagoon water level “Normalised” [0, 1] (float)

Sluice Mode noS 2 {0, 1} (integer)
Turbine Mode noT 2 {0, 1, 2, 3, 4} (integer)

Pump Power Input noP 2 {0, 1, ...16} (integer)

Regarding the modelled MDP environment in Unity3D, the 0D model represen-

tation was augmented in order to consider pumping capabilities (Section 4.2.5). Fur-
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thermore, the 3-D visual representation of hydraulic structures operation in Unity3D

for La Rance’s implementation follows the same colour scheme as for SBL, with the

addition of turbines changing colour to red when in pumping mode (Fig. 5.9b).

(a) Unity’s PPO parameter setup for La
Rance.

(b) La Rance pump operation representa-
tion in Unity.

Figure 5.9. PPO parameter setup in Unity for a TWP scheme operation and the visual
pump representation for La Rance.

As shown in Table 5.4, Pin values have been discretised with a 0.25MW resolution

and upper bound of 4MW , for each bulb unit. This upper bound have been selected,

given that initial training sessions for La Rance never surpassed 4MW power input,

for each of the 24 bulb units available (Table 4.4). Furthermore, as discussed in [67],

even though each unit can receive 6MW of power input, optimal results were obtained

with smaller values, with pumping sometimes being restricted to 50MW (for all 24

units), depending on tidal range [67].

Figure 5.10. Monthly cumulative energy (reward) in GWh, averaged for all 64 environments
during parallel training, for the La Rance tidal barrage.

Parallel training is performed with 64 copies of the environment in Unity3D

and observing the average monthly energy reward obtained. By starting with the
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initial hyperparameter settings from the optimised model in [105] as reference, we

note a significant improvement of results when increasing the number of units and

hidden layers of the policy neural network. After fixing the complexity of the neural

network, converging to a stable plateau was possible by tuning hyperparameters ↵

and � for multiple runs (Fig. 5.10), with ↵ being the learning rate and � a linear

decaying hyperparameter responsible for controlling how much the agent explores the

environment during training (i.e., increasing � leads to more random actions at the

beginning of training) [105]. From initial � = 0.038 and ↵ = 0.0001, an optimal policy

was obtained by decreasing � and increasing ↵. The final hyperparameter setting

for acquiring the optimal policy are shown in Table 5.6. The used Unity version is

indicated in Table 5.7.

Table 5.6. Hyperparameters for training La Rance environment in Unity ML-Agents.

Hyperparameters:

batch size (m) 256
buffer size 4096

learning rate (↵) 1.8e� 4
learning rate schedule linear

� 1e� 2
✏ 0.14
� 0.98

num epoch 6

Neural network configuration:

normalise false
hidden units 64
num layers 4

Trainer Configuration:

max steps 8.0e7
time horizon (H) 54

summary freq 40000

Reward Signal:

strength 1
� .97

Table 5.7. Unity ML-Agents (version 0.26.0).

La Rance’s Version Information

ml-agents 0.26.0
ml-agents-envs 0.26.0

Communicator API 1.5.0
Pytorch 1.7.1+cu110

After training, the DRL agent performs real-time optimal control of the hydraulic

structures, without the need of future tidal inputs (in contrast with state-of-art meth-
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ods) [105].

5.2.3 Agent Performance Evaluation

With our trained DRL agent, we proceed to compare the yearly energy extraction

capabilities of our real-time AI-Driven model against measured data by EDF [130].

In order to do so, tidal predictions for the reference years in [130] are produced with

JT ides ⇥ Cf and used as inputs for the AI-Driven La Rance model. A comparison

between the predicted and measured yearly energy generated by La Rance is shown

in Fig. 5.11, where we can see a satisfactory agreement of results, with La Rance’s

DRL prediction and measurements averaging 521.5MW and 507.4MW , respectively.

The 2.6% average gain from the DRL operation is expected, given that energy-oriented

optimisation schemes have been shown to attain up to 5% more energy than revenue-

oriented optimisation strategies [24].

Figure 5.11. Comparison between measured and predicted yearly energy outputs for the La
Rance Barrage.

From the collected data provided by the AI-Driven model, we observe that the

resulting optimal policy chooses to operate La Rance with a TWP scheme strategy,

independently of tidal range (Fig. 5.12). The obtained optimal policy consistently

starts turbine pump mode when a positive pump head is still available (Figs. 5.12a

and 5.12b), which is (i) not possible for state-of-art methods and (ii) the same strategy

adopted in the actual operation of La Rance (Fig. 4.4b). Also exclusive to the AI-

Driven model is its capability of fine-tuning power input for turbines in pump mode
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(Figs. 5.12c and 5.12d), in a similar manner to what is observed in La Rance (Fig.

4.4b). Furthermore, we note that for tidal amplitudes above⇡ 3m, turbine idling mode

is not utilised by the agent (i.e. turbine in power generation mode directly switch to

pumping mode), indicating the DRL agent capability of adjusting its strategy according

to the observed tidal range.

(a) Ocean and lagoon water level variations. (b) Ocean and lagoon water level variations.

(c) Power output. (d) Power output.

(e) Turbine flow rate. (f) Turbine flow rate.

Figure 5.12. Lagoon water level variations, power output and predicted flow rate coloured
according to turbine operation from the AI-Driven La Rance model, for small (a, c, e) and
large (b, d, f) tidal ranges. In (a, b), ocean is coloured in blue.

Finally, by observing sluice operation in Fig. 5.13, we note that sluices are oper-
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(a) Coloured lagoon water levels following
sluice operation by the DRL agent.

(b) Sluice flow rate by the DRL agent.

Figure 5.13. Lagoon water level and sluice flow rate determined by the DRL agent for the
La Rance tidal barrage.

(a) Measured and predicted lagoon water
levels for the same real ocean signal.

(b) Measured and predicted power out-
put/input for the same real ocean signal.

Figure 5.14. Comparisons between measured lagoon water level variations and power out-
put/input from La Rance’s T.W.P scheme operation against learned operational strategy by
the AI-Driven La Rance model.

ated independently from turbines, characterising the variant operation of TRS (shown

to be superior to the classical operation of TRS when the goal is maximising power

generation [105]).

A comparison of the predicted and measured operation of La Rance, for the same

measured tide and starting lagoon water levels from [67], is showcased in Fig. 5.14.

From the results, we see how the strategy and predicted lagoon water levels of our real-

time AI-Driven model closely resembles the results from the TWP scheme observed

in La Rance, with minor differences in operation probably due to the different goal

of optimisation (revenue vs power generation). Together with the verified parametric

models for La Rance’s hydraulic structures in Section 4.2.6, Fig. 5.14 completes our

model validation against a real TRS.
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5.2.4 Remarks

In this Section, an artificial intelligence (AI) driven representation of a constructed TRS

was developed using a 0D TRS parametrised model operated through DRL techniques.

Both the 0D TRS model and the AI-Driven representation were then validated, with

model predictions showcasing good agreement of results with measured data. For our

case study, we utilised the La Rance tidal barrage – the oldest and most successful

constructed TRS.

The developed methodologies for reverse engineering the hydraulic structures at

La Rance (assembled into the 0D TRS model) are generalisable and can be applied to

other constructed TRS. Furthermore, novel representations for the lagoon wetted area,

turbines in pump mode and momentum ramp functions can be applied for simulating

future TRS projects (e.g., Swansea Bay Tidal lagoon).

Once trained with the goal of maximising the net energy output, the DRL agent

extracted as much energy from the 0D TRS model as those reported by La Rance’s

measurements for a series of analysed years (with an average gain of 2.6%). Such

results were possible thanks to the quality of our parametrised 0D TRS model and the

operator (DRL agent) capability of delivering: (i) fine-tuned power input for turbines

in pump mode; (ii) pumping with positive head differences (aided by gravity); and

(iii) independent operation of sluices, which are operational characteristics observed

in real operation of TRS. Our AI-Driven model is the first operational optimisation

method for TRS capable of delivering this combined control strategy, if compared to

state-of-art methods. Also unique to the AI-Driven approach is the real-time flexible

control of the hydraulic structures without the need of future tidal predictions, after

training a single time only. Results of this work are published in [72].

5.3 SBL (with pumping) Case Study

In this section, we resume the SBL case study, now considering the addition of pump-

ing capabilities – using our developed pump model and the second pump affinity law

(Section 4.2.5). Furthermore, we investigate the capabilities of our developed models

(variant TWP HC scheme and DRL with pumping method) for operating TRS with

the goal of maximising energy or revenue.

For comparison analysis, the results of our models are compared with those ob-

tained using state-of-art methods from the literature. Since the real-time approach

for HC methods (developed in Section 4.1.2) rely on forecast data, we need to select

a time frame where tidal measurements, high quality tidal predictions and day-ahead
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market data are available. Considering BODC and the day-ahead Nord Pool available

databases, we acquire 11 consecutive months (approximated to 30 days per month)

from January 1st 2013 (Fig. 5.15). As in Section 5.1, these data were selected consid-

ering scenarios where tidal predictions had good agreement with tidal measurements,

according to analysis by BODC.

(a) 2013 Ocean Measurements. (b) 2013 day-ahead-market values.

Figure 5.15. Swansea Bay ocean measurements and UK day-ahead market measurements
for 2013, acquired from [125; 81].

5.3.1 Comparison of Prediction Dependent Methods

With our test data defined, we first compare our variant TWP HC method against the

literature state-of-art TWP HC approach by [25]. For both approaches, we consider the

EHT optimisation method evaluated in Section 5.1, which presented state-of-art energy

extraction capabilities and the most consistent energy fractional gains when subjected

to variant TRS operation (Table 5.3 and Fig. 5.4). In this context, our approach and

the literature’s state-of-art are named EHTV � P and EHT � P , respectively.

With the goal of maximising energy generation, a comparison between our

EHTV � P method against the literature EHT � P is shown in Fig. 5.16, where

the real-time and upper bound estimate of EHTV � P and EHT � P methods are

plotted together. In the real-time estimate for both methods, the operational heads

acquired from tidal predictions are applied to ocean measurements, while for the upper

bound estimate a perfect forecast of the ocean signal is assumed. We observe in Fig.

5.16a that the extracted energy by our method (EHTV � P ) is systematically and

consistently higher than that obtained by the literature (EHT � P ), either for upper-

bound or real-time estimates. The fractional gain for the real-time EHTV �P over the

real-time EHT � P estimate is ⇡ 2.71%, as summarised in Fig. 5.16b for all months
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sampled. Furthermore, differences between real-time and upper bound estimates (for

the same method) are nearly insignificant (⇡ 0.12% and ⇡ 0.03% for EHTV � P and

EHT �P methods, respectively), which is an indicative of the robustness of the meth-

ods during actual operation ( and when tidal predictions have a good match with tidal

measurements). Finally our real-time EHTV � P method also significantly surpassed

the upper bound EHT � P estimate by ⇡ 2.68%.

(a) Monthly energy estimates for EHTV �P
and EHT � P methods.

(b) Fractional energy gain of EHTV � P
(real-time) over EHT � P (real-time) meth-
ods.

Figure 5.16. Comparison of energy extraction capabilities between EHTV � P (this work)
and EHT � P (literature) methods, for 11 months starting on January 1st 2013.

The same comparison of results is repeated, but considering a revenue-oriented

operation (Fig. 5.17). In this case, since we do not have day-ahead market predictions

for the analysed period, the real-time estimates for EHTV �P and EHT �P consider

an energy-oriented operation. For both upper bound estimates, a perfect forecast

of day-ahead market and ocean signal is assumed. As in the preceding case (and

shown in Fig. 5.17a), our EHTV � P method gives higher revenue outputs (either

for real-time or upper bounds paired comparisons) than the literature’s state-of-art

EHT � P approach. As shown in Fig. 5.17a, the fractional revenue gain for the

real-time EHTV � P method over the real-time EHT � P approach is ⇡ 2.72%.

Furthermore, differences between real-time and upper bound estimates (for the same

method) are now significant (⇡ 2.33% and ⇡ 2.46% for EHTV � P and EHT �
P methods, respectively). This % difference represents the room for improvement

for prediction dependent methods, when using accurate day-ahead market forecast.

Finally, even though we lack day-ahead market predictions for real-time control, our

real-time EHTV � P method slightly surpassed the upper bound EHT � P estimate

by ⇡ 0.29%.
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(a) Monthly revenue estimates for EHTV �P
and EHT � P methods.

(b) Fractional revenue gain of EHTV � P
(real-time) over EHT�P (real-time) method.

Figure 5.17. Comparison of revenue extraction capabilities between EHTV �P (this work)
and EHT � P (literature) methods, for 11 months starting on January 1st 2013.

From Figs. 5.16b and 5.17b, we see a significant % gain in both energy and

revenue estimates for our EHTV � P method, in comparison with the EHT � P

approach. For verifying the statistical significance of these results, we calculate a 95%

confidence interval (C.I) with a paired t test:

C.I : µ̂± t[1�↵/2;n�1]
�̂p
n
, (5.2)

where µ̂ and �̂ are the sample-based estimates for the mean and standard deviation,

respectively, ↵ = .05 is the significance level and n the sample size.

For utilising Eq. 5.2, the normality assumption needs to be verified [137]. There-

fore, we perform a visual inspection with a Quantile-Quantile (QQ) plot for both case

studies (Fig. A.1). Since the absolute and % gain deviations (for energy and revenue

case studies, respectively) seem normally distributed, we proceed with the calculation

of the C.I. Following [137], we have considered the absolute deviation for the energy

case study since the normality assumption did not hold for the % deviation. Consider-

ing a 95% C.I, the gain interval for our variant, real-time EHTV �P method relative

to the real-time estimate of the literature EHT � P approach is [1.2458, 1.2977]GWh

and [2.6744, 2.7832]%, for energy and revenue extraction, respectively. Projected over

a year (and adjusting for 2022 inflation [138]), the revenue increase is estimated to be

967, 267£, lying on the interval [947, 984� 986, 550]£, with 95% C.I.
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5.3.1.1 EHTV � P Sensitivity Study

Having proven the superior results of our EHTV � P method, we proceed to perform

a sensitivity study, i.e., we compare the deviation between upper bound and real-

time estimates for the EHTV � P method. The % and absolute deviation for energy

and revenue-oriented scenarios, respectively, can be seen in Fig. 5.18. As with our

previous analysis, we have considered the absolute deviation for the revenue-oriented

scenario since the normality assumption did not hold for the % deviation [137]. The

corresponding QQ plots for both analysis are shown in Fig. A.2. With the nor-

mality assumption verified, the 95% C.I for the % deviation between upper bound

and real-time estimates, considering an energy-oriented operation with EHTV � P ,

is [0.0758, 0.1679]%. Furthermore, the 95% C.I for the absolute deviation between

upper bound and real-time estimates, considering a revenue-oriented operation with

EHTV � P , is [42.543� 70.435]£.

(a) % energy deviation between upper bound
and real-time estimates.

(b) Absolute revenue deviation between
upper-bound and real-time estimates.

Figure 5.18. Sensitivity study (upper bound vs real-time operation) for the EHTV � P
method.

5.3.2 Agent Training Performance Study

In this section, we investigate the capabilities of our DRL agent of operating the SBL

with the addition of pumping capabilities. For our initial setup, the MDP implemen-

tation for the SBL with pumping follows the same discrete control strategy (and input

states) adopted for the La Rance case study (Tables 5.4 and 5.5), the only difference

being the power input range for turbines in pump mode, now established as

Pin : Pin = 0.5MW ⇥ noP , noP 2 {0, 1, ...16} (5.3)
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The Pin range in Eq. 5.3, with maximum Pin of 8 MW , was chosen since power

input never surpassed 8 MW in our initial investigations during training. With the

MDP established, the 0D model representation for the SBL with pumping follows the

developed Algorithms 1, 2, 3 and 5.

With our initial setup defined, we proceed with a sequence of experiments, with

the goal of optimising (i) hyperparameters, (ii) type of neural network representation

and (iii) MDP input state/action space optimisation. Due to the time consuming

nature of the training sessions (⇡ 32 hr, for every run), a thorough exploration of

the hyperparameter space is not possible. Therefore, we proceed with a “greedy” ap-

proach, where if a variable change yields better results, we keep it for the next train-

ing session. Finally, we use our fine-tuned model for investigating the capabilities of

a revenue-oriented DRL agent, comparing its performance against our best energy-

oriented counterpart.

5.3.2.1 Hyperparameter Tuning

For starting our investigation, the neural network representation and hyperparameters

are identical to those used for training La Rance (Section 5.2, published in [72]). Fur-

thermore, similar to the SBL without pumping case study (Section 5.1), the training

session utilises 64 instances of the environment for parallel training, with each instance

receiving a random generated artificial ocean signal (Eq. 4.29) every episode (simulated

month). Initial results show a stable learning experience for the agent, with a learning

plateau appearing at the 6e7 number of collected experiences (vertical dashed line in

Fig. 5.19a, for � = 0.01). With this result, our first goal is to reach a more conclu-

sive training plateau. Similar to our study with La Rance, we start our investigation

by varying the � hyperparameter, who is responsible for controlling the magnitude of

random explorations performed by the agent during training.

The tuning of � results are shown in Fig. 5.19a, where lower values of � (� =

0.007) seem to help the agent converge to a stable plateau more quickly. Since �

decreases linearly with the number of observations collected during training, we choose

to increase training time – thus increasing the time which the agent is subjected to

smaller values of � – to see if a stable plateau can be acquired. Furthermore, since

learning rate (↵) and policy update limiter (✏) hyperparameters (also detailed in Section

2.4.1) are also set to decrease linearly with the number of sampled observations, we

have additional supporting evidence to investigate larger training periods. The results

of this second attempt, compared to the best performing training scenario of Fig. 5.19a

is shown in Fig.5.19b, with both training runs set with (� = 0.007).
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(a) � values for hyperparameter tuning. (b) Plateau convergence by increasing train-
ing time (= 0.007, for both curves).

Figure 5.19. Monthly cumulative energy (reward) in GWh, averaged for all 64 environments
during parallel training, for the SBL with pumping environment.

Observing Fig.5.19b, we note that when training starts (and up to 4e7 collected

observations) the training run with 8e7 collected observations surpasses the longer

training run (probably due to a faster decrease of �). However, since the longer training

run (with 12e7 number of collected observations) in Fig.5.19b managed to reach the

same stable plateau (vertical dashed line) in half the training time, we consider stopping

our hyperparameter tuning of �, ↵, ✏ and training time duration. For our next stage,

we investigate different values for “batch size” and “buffer size” hyperparameters.

While the “buffer size” determines the number of training trajectories to be sam-

pled during training before a “num epoch” number of gradient ascent updates are

performed, “batch size” is the number of sampled trajectories randomly sampled from

the buffer, for each gradient ascent update. Therefore, “buffer size” and “batch size”

are interdependent hyperparameters whose increase in magnitude should lead to more

stable (but slower) training. A comparison of our initial values of [batch size, buffer

size] = [256, 4096] against an exploratory analysis varying “buffer size” and “batch size”

is shown in Figs. 5.20a and 5.20b, respectively.

From Fig. 5.20a, a slight increase of the training plateau is observed when in-

creasing “buffer size” to 8192, therefore we keep the new configuration of [batch size,

buffer size] = [256, 8192]. It is also noted that further increases of “buffer size” (to

16384) or “batch size” (to 512, in Fig. 5.20b) do not lead to increased performance

during training.

Having specified optimum values for �, training time duration (which also influ-

ences ↵ and ✏), “batch size” and “buffer size”, we now investigate if further improvements

are possible by changing the type of neural network, from an MLP to an LSTM.
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(a) Buffer size values for hyperparameter tun-
ing.

(b) Batch size values for hyperparameter tun-
ing.

Figure 5.20. Monthly cumulative energy (reward) in GWh, averaged for all 64 environments
during parallel training, for the SBL with pumping environment.

5.3.2.2 Neural Network Representation

In order to investigate if our problem can take advantage of an LSTM neural network

representation, we first inspect how the MLP training performance varies when receiv-

ing 1, 2 or 3 input state (st) stacked vectors. Although not as efficient as an LSTM, the

stacking of st at different time-steps effectively increases the policy neural network’s

memory, so that environment states a “stacked” number of time-steps into the past are

also taken into account by the policy neural network when choosing the next action.

A comparison between 1, 2 and 3 st stacked vectors can be seen in Fig. 5.21.

Figure 5.21. Comparison of training performance for 1, 2 and 3 input state stacked vectors.
In the “y-axis” the monthly cumulative energy (reward) in GWh, averaged for all 64 environ-
ments during parallel training, for the SBL with pumping environment is shown.

From Fig. 5.21, we notice how training results improve as we move from 1 to 2
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stacked st vectors. However, when 3 st vectors are used ([st, st�1, st�2]), a significant

drop in performance is observed. This indicates that the optimal policy for maximising

energy generation would not rely on input states older than st�1. For the sake of

confirming this hypothesis, we substitute the MLP neural network representation for

an LSTM (considering the same number of units and hidden layers). For exploring

our hyperparameter space, we focus on adjusting “sequence length” and “memory size”

hyperparameters. While “sequence length” determines the number of time-steps (�t =

15 min) into the past that will be considered by the neural network when determining

the next action, “memory size” is the amount of memory (size of the array of floating

point numbers) used by the LSTM for storing useful information from previous states.

Results from our experiments can be seen in Fig. 5.22.

(a) (b)

Figure 5.22. Fine tuning of LSTM “sequence length” and “memory size” hyperparameters. In
the “y-axis” the monthly cumulative energy (reward) in GWh, averaged for all 64 environments
during parallel training, for the SBL with pumping environment is shown.

From Fig. 5.22, the best results when training the LSTM occur when [sequence

length, memory size] = [32, 32]. However, as seen in Fig. 5.23, training performance is

still inferior to what is observed when utilising the MLP neural network. The superior

performance of the MLP neural network is an indicative that, although we are using

temporal data (e.g. ocean water levels) as input states, these are highly predictable.

Therefore, we keep the MLP neural network representation for our next analysis.

5.3.2.3 MDP input state/action space optimisation

Having specified the MLP neural network representation, we now investigate if there

are more optimum MDP configurations beyond that defined in our approach. We are

motivated to return to our MDP once our current model can only provide a specific

range of discrete power input values to the turbines during pump mode. For tackling
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Figure 5.23. Training performance comparison between optimised MLP (2 stacked vectors)
and LSTM ([sequence length, memory size] = [32, 32]) neural network representations.

this, we propose a hybrid control configuration, with both discrete and continuous

actions at the last layer of the MLP neural network. Since initial trial results with this

method showcased poor performance, we investigate modifications to the input state st

(shown in Table 5.5), while keeping the hybrid control option. A comparison of results,

when varying st can be seen in Fig. 5.24.

Figure 5.24. Hybrid control training performance comparison considering different input
state st configurations (MLP neural network).

As seen in Fig. 5.24, a significant jump in performance is observed for the hybrid

control strategy once the input state is reduced to only consider ocean and lagoon

water levels (from the current and previous time-steps). This is an interesting result,

since it means that the agent does not require knowing its previous selected actions for

optimally operating the TRS (differently from some operational optimisation methods

from the literature, such as the EHN method). A comparison of the optimised hybrid
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control option, against the best discrete control option is seen in Fig. 5.25. We notice

that even though training convergence is faster with the hybrid control option, the final

training plateau reached for both strategies is the same.

Figure 5.25. Training performance comparison between hybrid and discrete control strate-
gies.

Further investigations, such as using st = [O,L] for the case of discrete actions,

or if the hybrid control strategy could benefit from an LSTM neural network represen-

tation are shown in Fig. 5.26. We note that, under the new input state (st = [O,L])

a extremely similar training behaviour is observed for either hybrid or discrete control

options, when using an MLP neural network. Furthermore, the usage of an LSTM

neural network (with [sequence length, memory size] = [32, 32]) reduces the hybrid

model training performance.

Although no improvements to the training plateau are observed after the “buffer

size” optimisation step in Fig. 5.20a, we consider the MLP hybrid control strategy

with st = [O,L] as the best model for energy-oriented optimisation, due to its faster

plateau convergence and the flexibility of providing any real value of power input for

turbines in pump mode. The final MDP input space and action space for the hybrid

control TRS model are shown in Tables 5.8 and 5.9, respectively. In the next session,

we investigate the possibility of revenue-oriented control by the agent, starting from

the optimised hybrid control strategy.

Table 5.8. Stacked input states st for the PPO neural network, for the SBL with pumping
and energy-oriented control.

States (at times t and t� 1) Units

Ocean water level “Normalised” [0, 1] (float)
Lagoon water level “Normalised” [0, 1] (float)
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Table 5.9. Hybrid control options for the SBL, with pumping.

Branch Action
noS (sluices) Offline

Discrete Action Online
Offline

Power Generation (Ebb, or Flood)
noT (turbines) Idling
Discrete Action Ebb Pumping

Flood Pumping
noP (pump Pin) Pin = noP ⇥ PinMax, where

Continuous Action 0  noP  1 and PinMax = 8 MW

Figure 5.26. Training performance comparison between optimised hybrid (MLP), discrete
(MLP) and hybrid (LSTM) configurations, considering the reduced input state space st =
[O,L].

5.3.2.4 Investigation of Revenue-Oriented Control

Considering the optimal hybrid control method acquired for energy-oriented opera-

tion, we investigate the DRL method’s capability of operating TRS with the goal of

maximising revenue.

For doing so, we start by utilising the day-ahead market measurements from 2019

(Fig. 5.27, acquired from [81]) as training data, together with our random artificially

generated ocean signal for the SBL, used for energy-oriented optimisation. The 2019

day-ahead market data was initially chosen among a 2014� 2021 database (Fig. A.5)

for presenting relatively consistent price variations (apart from a single spike in energy

price, which is substituted by the second highest day-ahead market peak for that year,

during training). When starting a training episode each environment instance receives

one randomly sampled month of the modified day-ahead data (Fig. 5.27b). Then,

for every 15 min of TRS simulation, the current value of electricity, plus our random
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generated ocean signal and current lagoon water level are fed to the policy neural

network (Table 5.10). For normalising the day-ahead market data, the maximum

recorded value from “peak-removed” 2019 (Fig. 5.27b) is used as reference. Finally,

since we want our agent to perform actions based on the TRS’s revenue, the updated

reward for the agent equals the 15 min sum of a minute-wise product between the

energy generated times the value of that energy (in £/MWh), as dictated by the

day-ahead market.

Table 5.10. Stacked input states st for the PPO neural network, for the SBL with pumping
and revenue-oriented control.

States (at times t and t� 1) Units

Ocean water level “Normalised” [0, 1] (float)
Lagoon water level “Normalised” [0, 1] (float)

Day-Ahead Market (£/MWh) “Normalised” [0, 1] (float)

(a) Original 2019 day-ahead data. (b) “Peak-removed” 2019 day-ahead data.

Figure 5.27. 2019 day-ahead market measurements. Obtained from [81] database.

Similarly to our investigation with the energy-oriented approach, we see signifi-

cant improvements during training by reducing � values from � = 0.007 to � = 0.0007

(Fig. 5.28a). Furthermore, the acquired � = 0.0007 appears to be an optimal value,

since further increasing/decreasing � slightly decreases training performance (Fig.

5.28b). After finding an optimal � value, we investigate in Fig. 5.29 if our prob-

lem can benefit from an LSTM architecture with hyperparameters [sequence length,

memory size] = [32, 32]. Since training performance decreases when using an LSTM,

we continue our study with an MLP representation.

For our next evaluation, we compare the training performance of the model when

utilising (i) our random ocean signal generator, versus (ii) tidal predictions from JTides

from 2019 (concurrent with day-ahead market data), at the location of the SBL. We
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(a) (b)

Figure 5.28. � hyperparameter optimisation for our revenue-oriented DRL agent.

Figure 5.29. Training performance comparison between optimised MLP and LSTM neural
network architectures (2019 day-ahead data).

have used JTides, since only “improbable” (i.e. not reliable) labelled measurements

from BODC were available for the year of 2019 (or for any year from June 2014,

onward). Results from this comparison are shown in Fig 5.30a. Even though training

results show reduced performance when using JTides 2019 prediction, we also compare

the outputted results for the 2013 test scenario (Fig. 5.30b), where the trained JTides

model showcased consistent worse results, averaging 2.17% less revenue when compared

with the random ocean model approach.

For our final evaluation, we see if we can observe improvement of results when

using all day-ahead market data available (from 2014 � 2021, as shown in Fig. A.5),

while using the random ocean representation. For this, we compare both MLP (with

2 stacked input vectors) and LSTM neural network representations (with [sequence

length, memory size] = [32, 32]). Consistent with our previous analysis, the MLP

representation showcases superior results (Fig. 5.31).
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(a) Comparison during training. (b) Comparison during testing (2013 ocean
and day-ahead data)

Figure 5.30. Training (and testing) performance comparison between our random ocean
signal representation and 2019 ocean prediction from JTides.

Figure 5.31. Training performance comparison between optimised MLP and LSTM neural
network architectures (2014 to 20121 day-ahead data).

Even though our last evaluation significantly increases the available day-ahead

training data, the revenue-oriented agent showcases reduced performance for the 2013

testing phase, in comparison with the previous “peak-removed” 2019 data (Fig. 5.32).

A possible explanation for this is the very inconsistent price variations of some of the

years considered as training data for the final analysis (Fig. A.5). With this result,

we keep the DRL agent trained with the “peak-removed” 2019 data (and MLP neural

network representation plus random ocean input) as the best revenue-oriented model.
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Figure 5.32. Test performance comparison when using two different day-ahead market
training data, namely (i) “peak-removed” 2019 data versus (ii) 2014� 2021 data.

5.3.3 Agent Test Performance Study

5.3.3.1 Energy-Oriented Vs Revenue-Oriented DRL Agent.

With our trained (and optimised) policy neural network representations for both energy

and revenue-oriented control for the SBL (with pumping) case study (see Table 5.11,

for full detailing), we compare the energy and revenue extraction capabilities of our

developed approaches (Fig. 5.33).

Table 5.11. Energy and Revenue-Oriented DRL Agent Characteristics.

Model Characteristics Energy-Oriented Revenue-Oriented

Training Data Random Ocean Signal
Random Ocean Signal and 2019

“Peak-Removed” Day-Ahead Market
Neural Network Representation MLP MLP
Type of Operation (Table 5.9) Hybrid Control Hybrid Control

Input State st [O,L]
[O,L, V ], where V is the Day-Ahead
Market Energy Value in £/MWh

# of Stacked st Vectors 2 2

As seen in Fig. 5.33, our energy-oriented agent surpasses both energy and revenue

extraction capabilities of the revenue-oriented approach. Indeed, while the revenue-

oriented agent slightly surpasses the energy-oriented revenue in test months 0, 1, 7 and

8 (Fig. 5.33b), on average it generates 0.27% less revenue than the energy-oriented

counterpart. When looking at energy production, the energy-oriented agent generates

3.05% more energy on average than the revenue-oriented counterpart (Fig. 5.33a).

From this comparison of results we note that the trained revenue-oriented agent’s

strategy is capable of yielding similar revenue outputs as the energy-oriented agent,

while generating significantly less energy. However, since the energy-oriented agent is
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the winner on both scenarios, we keep it for our comparison against state-of-art and

enhanced state-of-art methods.

(a) Monthly energy generation during test-
ing.)

(b) Monthly revenue during testing.

Figure 5.33. Test performance comparison between optimised revenue and energy-oriented
trained DRL agents.

5.3.3.2 DRL Agent Vs Literature’s State-Of-Art Estimate.

A comparison of the energy and revenue extraction capability of our energy-oriented

DRL agent against the upper bound and real-time estimate (energy and revenue-

oriented) of state-of-art methods with pumping (EHT � P ) is shown in Fig. 5.34.

Additionally, the respective fractional gain of our energy-oriented DRL agent, relative

to the real-time estimate of EHT � P is shown in Fig. 5.35. Since the % gain re-

sults for both case studies seem normally distributed (Fig. A.3), we proceed with the

calculation of the C.I. Considering a 95% C.I, the % gain interval for our energy-

oriented agent relative to the real-time estimate of the literature EHT �P approach is

[2.8190, 3.5238]% and [1.8286, 3.081]%, for energy and revenue extraction, respectively.

Projected over a year (and adjusting for 2022 inflation [138]), the revenue increase is

estimated to be 861, 301£, lying on the interval [648, 177 � 1, 092, 110]£, with 95%

C.I. It is important to note that the superior results of our energy-oriented DRL agent

were obtained without tidal predictions, after training a single time only and operat-

ing in real-time. Furthermore, even though our agent does not have access to tidal

or day-ahead market forecasts, it manages to surpass the upper-bound of EHT � P

approach by 3.14% (on energy) and 0.03% (on revenue), considering energy-oriented

and revenue-oriented operations, respectively.
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(a) Monthly energy during testing. (b) Monthly revenue generation during test-
ing.

Figure 5.34. Test performance comparison between our energy-oriented DRL agent and the
upper bound and real-time estimates of the state-of-art method (EHT � P ).

(a) DRL agent fractional energy gain over
the real-time EHT � P estimate.

(b) DRL agent fractional revenue gain over the
real-time EHT � P estimate.

Figure 5.35. Fractional gain of energy-oriented agent over real-time EHT � P method.

5.3.3.3 DRL Agent vs Real-Time EHTV � P Method

For a final evaluation, we compare energy and revenue extraction capabilities of the

best control optimisation methods of this thesis, namely, both our developed (i) energy-

oriented DRL agent and (ii) the variant, real-time EHTV � P method.

A comparison of the energy and revenue extraction capability of the energy-

oriented DRL agent against the real-time EHTV � P approach is shown in Fig. 5.36,

with the respective fractional gain (relative to EHTV � P ) in Fig. 5.37. Since the %

gain results for both case studies seem normally distributed (Fig. A.4), we proceed with

the calculation of the C.I. Considering a 95% C.I, the % gain interval for our energy-

oriented agent relative to the real-time EHTV � P method is [0.0978, 0.7932]% and
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[�0.8877, 0.3546]%, for energy and revenue generation, respectively. From this result

we see that our energy-oriented DRL agent surpasses energy extraction capabilities of

the real-time EHTV � P method (by 0.4455%, on average). Furthermore, we cannot

reject the null hypothesis that both methods produce the same revenue, on average.

(a) Monthly energy during testing. (b) Monthly revenue generation during test-
ing.)

Figure 5.36. Test performance comparison between our developed (i) energy-oriented DRL
agent and (ii) real-time EHTV � P method.

(a) Fractional energy gain. (b) Fractional revenue gain.

Figure 5.37. Fractional gain of energy-oriented agent over EHTV � P (real-time) method.

5.3.4 TRS Operation Comparison

Having evaluated the energy and revenue extraction performance of our EHTV � P

and DRL agent methods versus the state-of-art (EHT � P ) approach, we analyse

in this section the characteristics of the operational strategy of each method and its

impact on lagoon water level evolution and power/revenue generation. It is important



5.3. SBL (with pumping) Case Study 156

to highlight that, while for EHTV � P and EHT � P methods, the TRS scheme of

operation (in this case TWP ) needs to be specified beforehand, the DRL agent learns

the operational scheme by itself during training.

In Fig. 5.38, lagoon water level variations following turbine operation for the DRL

agent, real-time EHTV � P method and the energy and revenue-oriented state-of-art

upper bound (EHT � P ) are presented for the same ocean signal.

(a) DRL agent, hybrid control. (b) Energy-oriented EHTV �P (real-time).

(c) Energy-oriented EHT � P (upper
bound).

(d) Revenue-oriented EHT � P (upper
bound).

Figure 5.38. Lagoon water level variations coloured according to turbine operation. Ocean
is coloured in blue.

While all HC methods showcase a similar pattern of operation (Figs. 5.38b,

5.38c and 5.38d), with pumping occurring after idling turbine stage and at negative

head differences only, the DRL agent is able to completely skip the idling turbine stage

and pump at positive head (gravity assisted) head differences. By starting the pumping

stage earlier, the TRS experiences a greater lagoon water head, which leads to increased

power generation, if compared to EHTV � P and EHT � P methods (Fig. 5.39).

Indeed, by looking at Fig. 5.39a, we note that during ebb generation stages, power

quickly plateaus at 320 MW , suggesting that the DRL agent could further extract

more power of the TRS, if not limited by the current installed capacity of the SBL
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project. Furthermore, by comparing the DRL agent (Fig. 5.39a) turbine pumping

stage against HC methods (Figs. 5.39b, 5.39c and 5.39d), we see the hybrid agent

capability of dynamically providing fine-tuned power input to turbines in pump mode

(Table 5.9), according to ocean and lagoon water levels input states (at times t and t�1,
as presented in Table 5.8). Both fine-tuned operation of turbines in pump mode and

pumping with positive (gravity-assisted) differences are characteristics observed in La

Rance’s measurements [67], but so far no TRS control method available to academics

has been able to emulate this behaviour.

(a) DRL agent, hybrid control. (b) Energy-oriented EHTV �P (real-time).

(c) Energy-oriented EHT � P (upper
bound).

(d) Revenue-oriented EHT � P (upper
bound).

Figure 5.39. Power output/input coloured according to turbine operation.

In Fig. 5.40, lagoon water level variations following sluice operation are presented.

Comparing ours (i) DRL agent and EHTV � P methods (Figs. 5.40a, 5.40b), against

(ii) state-of-art EHT � P approach (Figs. 5.40c, 5.40d), we can see how the variant

(independent) operation of sluices in (i) can help increase lagoon water head differences

for the following operation (therefore increasing power generation), by starting the

sluicing stage while turbines are still in power generation mode.

Finally, Fig. 5.41, showcases the acquired revenue (in £/min) following turbine

operation for each adopted strategy. Since our best real-time approaches (DRL agent
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(a) DRL agent, hybrid control. (b) Energy-oriented EHTV �P (real-time).

(c) Energy-oriented EHT � P (upper
bound).

(d) Revenue-oriented EHT � P (upper
bound).

Figure 5.40. Lagoon water level variations coloured according to sluice operation. Ocean is
coloured in blue. In a) and b), sluicing stage is independent of turbine idling stage, i.e. it can
occur earlier than for c) and d), during turbine power generation or pumping stages.

and EHTV � P method) are energy-oriented, day-ahead market fluctuations are not

considered during operation. Conversely, the revenue-oriented upper bound EHT �P

(Fig. 5.41d) assumes a perfect tide and day-ahead market forecast, resulting in higher

revenues than the energy-oriented upper bound counterpart (Fig. 5.41c). Although our

current study did not find improvements in the DRL agent revenue-oriented operation,

the fact that there is theoretical room for extracting more revenue when considering

day-ahead forecast should be investigated. As a suggestion for future work, our DRL

agent could be trained considering energy demand fluctuations (instead of day-ahead

market), or a day-ahead forecast model. Furthermore, the real-time EHTV �P capa-

bilities should be tested, when utilising day-ahead market predictions.
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(a) DRL agent, hybrid control. (b) Energy-oriented EHTV �P (real-time).

(c) Energy-oriented EHT � P (upper
bound).

(d) Revenue-oriented EHT � P (upper
bound).

Figure 5.41. Extracted revenue in £/min coloured according to turbine operation.



Chapter 6

Conclusion and Future Directions

In this thesis, we have proposed two new techniques for automatic (real-time) flex-

ible control of Tidal Range Structures (TRS) that can surpass energy and revenue

extraction capabilities of current (non-automatic) state-of-art methods. For our first

approach (a), enhancements to the state-of-art operational optimisation approach from

the literature were presented, enabling independent sluice operation and automatic con-

trol (utilising tidal prediction estimates). For our second approach (b) we used Deep

Reinforcement Learning (DRL) techniques (more specifically Proximal Policy Optimi-

sation) for training a smart agent using Unity ML-Agents. After training, our agent

was shown to be capable of optimally operating TRS without tidal predictions, per-

forming flexible control of TRS (dynamically adjusting its strategy, according to the

experienced tidal range), after training a single time only. Furthermore, when applying

the DRL technique to TRS with pumping capabilities, our agent managed to operate

TRS in a more realistic manner than state-of-art (and enhanced state-of-art methods),

due to its ability of (i) dynamically adjusting power input to turbines in pump mode

and (ii) pumping with positive head differences.

As case studies for our work, we focused on the 0D modelling of two TRS projects:

the constructed La Rance Tidal Barrage and the Swansea Bay Tidal Lagoon (SBL)

pathfinder project. Through parametric and affinity laws techniques, a 0D model rep-

resentation of La Rance was created, and both hydraulic representations and TRS

operation (by the DRL agent) were validated against measured data, making this (to

the best of our knowledge), the first 0D operated TRS model validated for a constructed

TRS. Indeed, while the developed 0D La Rance model could be operated with state-

of-art approaches, the operational strategy developed by our DRL agent enabled (i)

fine-tuned pump power input and (ii) pumping with positive head differences. Char-

acteristics (i) and (ii) are observed during the operation of real TRS (e.g. La Rance)

160
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but, so far, have not been possible to emulate using state-of-art methods. Furthermore,

the development of this model enabled a generalisable description of pump operational

modes and novel transition ramp functions (for switching between TRS operational

modes), which were implemented into the 0D model of the SBL.

For the SBL case study (and considering an energy-oriented operation for all

real-time methods), we compared state-of-art, (a) enhanced state-of-art and the (b)

DRL agent methods, considering with and without pumping scenarios. For the “with-

out pumping” scenario, our developed (a) and (b) methods showcased superior results

in energy generation to state-of-art approaches, while operating the TRS in real-time.

When including pumping capabilities to the TRS (therefore increasing power genera-

tion for all methods) approaches (a) and (b) surpassed the upper bound (perfect tidal

forecast scenario) energy estimate of the state-of-art approach by 2.61% and 3.14%,

respectively – yielding a revenue gain up to 967, 267£ per year. Comparing all ap-

proaches, the DRL agent was shown to be the best method, surpassing the enhanced

state-of-art method by ⇡ 0.45% in energy generation, while being equivalent in revenue

extraction capabilities and operating the TRS without requiring tidal predictions.

A comparison of the trained DRL agent performance against state-of-art and

enhanced state-of-art methods, considering revenue-oriented operation was also under-

taken by using day-ahead market data as both training and test data. In our investi-

gations, the trained energy-oriented agent surpassed the revenue-oriented counterpart

in both energy (by 3.05%) and revenue (by 0.27%) extraction capabilities, therefore

becoming our best automatic model. Our results for revenue-oriented operation of

TRS were obtained using a limited available day-ahead market database, therefore,

further investigations utilising energy demand, or day-ahead market forecast models

should be investigated in future work. Additionally, the joint optimum operation of

TRS with other renewable energy sources (e.g. wind, solar), could be investigated in

future work, given the capabilities of TRS for working as batteries, storing energy from

more uncertain energy sources.

6.1 Future Research Directions

The presented thesis has focused its efforts in introducing real-time control optimisation

of TRS, either as augmentations of state-of-art methods or with novel DRL approaches,

with the goal of maximising energy or revenue generation.

A future research direction could involve the evaluation of our DRL agent in per-

forming real-time optimal operation of TRS under extreme scenarios (e.g. sea level
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rise, storm surges). Such research would complement the literature, that has focused

its efforts on verifying coastal protection capabilities of TRS (using the 2D model de-

veloped in this work) for storm surge events [20; 21; 36; 38]. As motivation for this

analysis, we have performed an initial evaluation of the sea level rise in Brazil and UK,

at locations with high tidal range, where TRS could be built. For estimating flood risk

regions, we utilised Climate Central’s Screening Tool [139]. In all showcased analysis,

we have selected “sea level rise” projection only, not considering added sea levels due

to annual or moderate floods. Also, we have fixed the “pollution pathway” (amount of

heat-trapping pollution added to the atmosphere) to the current estimated trajectory

and set the “luck” parameter to medium, which means that the worse mid-range result

from sea-level projection range (50th percentile) are showcased in the analysis. Fur-

thermore, regions isolated by higher land are excluded from flood risk scenarios. With

these inputs, the sea level rise projection is estimated by the 2021 worldwide local sea

level projections from the Intergovernmental Panel on Climate Change (IPCC) [140],

embedded into the screening tool.

Figure 6.1. Map of the UK, with red regions highlighting the land projected to be below
tideline by 2030. Created by using [139].

For the UK case study, we can see the estimated flood risk region due to sea

level rise (for 2030 prediction) coloured in red in Fig. 6.1. By far, the most affected
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region is the Wash estuary, circled in Fig. 6.1. A zoom of the Wash estuary region,

together with the estimated flooded area of ⇡ 4000 km2 (using Google Earth) for 2030

are shown in Figs. 6.2a and 6.2b. For comparison purposes, the greater London covers

⇡ 1579 km2. A projection of the flooded area for 2150 is also shown in Fig. 6.2c.

(a) 2030 flood risk area. (b) Area estimate for 2030 flood risk area.

(c) 2150 flood risk area.

Figure 6.2. Maps of the Wash estuary. In a) and c) (created with [139]), red regions
highlight the land projected to be below tideline by 2030 and 2150, respectively. b) showcases
the approximate flooded area by 2030, through Google Earth estimate[141].

Nowadays, the primary flood defences along the Wash estuary’s shoreline consist

of relatively low earthen embankments [142]. However, these do not consider alter-

native scenarios with sea level rise, such as forecasted in Fig. 6.2. Therefore, and

considering the human, environmental and economical scale of the predicted environ-

mental catastrophe in the region, it is alarming that very few flood risk studies have

been performed. Among these, a preliminary study by [142] was undertaken in 2012,

analysing the necessity of developing a large scale coastal protection plan on the region.
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Given the reasonably high mean tidal ranges in the Walsh estuary (⇡ 4.7 m) the study

concluded that a TRS construction could be economically attractive, given the UK

government participation (Fig. 6.3). The study assumed that the TRS would have

21 km in length, a 13050 m2 total sluice area (225 sluices) and 97 turbines (where tur-

bine diameter D = 8 m, each) with a total installed capacity of 940 MW , generating

2945 GWh through a EoG scheme. Adjusting for 2022 inflation and updated energy

prices [138; 143], the yearly revenue would be worth ⇡ £824.6 million per year (con-

sidering a non-flexible CH method). The total cost for constructing the TRS would

be of ⇡ £8.57 billion.

(a) Coastal barrier (or TRS) options. (b) Final TRS design.

Figure 6.3. Feasibility study of using a TRS for coastal protection in the the Wash estuary.
From [142].

In Brazil a similar situation arises. As shown in Fig. 6.4a, starting in 2030 the

State of Maranhão is under the risk of losing a significant portion of land due to sea

level rise (⇡ 2.280 km2 from Google Earth estimate in Fig. 6.4b). A projection of the

flooded area for 2150 is also presented in Fig. 6.4c. For comparison purposes, the city

of São Luís do Maranhão (also shown in Fig. 6.4) has ⇡ 831.7 km2.

Given the fact that the region showcases one of the highest tidal ranges in Brazil-

ian coast (up to ⇡ 6 m, as seen in Fig. 6.4d), one could argue that a TRS barrier

could benefit the region, providing coastal protection and revenue. Strengthening this

argument is the already constructed Bacanga dam, at the mouth of Bacanga estuary

(Fig. 6.5). At this location, Figs. 6.5a and 6.5b showcase (in red) the scale of flood

risk region due to sea level rise as we move from 2030 to 2150. Since the flood risk
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analysis does not consider the constructed Bacanga dam (circled in red in Fig. 6.5c),

we can appreciate the environmental benefits that the region is already enjoying.

(a) 2030 flood risk area. (b) Area estimate for 2030 flood risk
area.

(c) Area estimate for 2150 flood risk area. (d) Maximum tidal range colour map.
Taken from [144].

Figure 6.4. Maps of the north region of State of Maranhão, Brazil. In a) and c) (created
with [139]), red regions highlight the land projected to be below tideline by 2030 and 2150,
respectively. b) showcases the approximate flooded area by 2030, Google Earth estimate [141].
d) showcases a colour map with the maximum tidal ranges observed in the region.

Considering the worldwide scale of the human, environmental and economical



6.1. Future Research Directions 166

(a) 2030 flood risk area. (b) 2150 flood risk area.

(c) Baganca dam location (circled in red).

Figure 6.5. Maps showcasing the Bacanga estuary. a) and b) flood risk regions due to sea
level rise (created with [139]), without considering the Bacanga dam, are coloured in red. In
c) the Bacanga dam is highlighted in Google Earth [141].

damage that the sea level rise will have in the recent future, we believe TRS can

become a viable option for coastal protection. Specially since that, given time, these

structures can pay for their own construction costs, while generating clean, renewable

energy and having a positive environmental impact by mitigating flood risks.
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Appendix

This appendix presents selected BODC data used as test data for SBL case study (no 
pumping) in Section 5.1 (Tables A.1 and A.2). In detail, 26 “months” of 30 days with 
truthful data were selected in BODC measured data between the years 1993 to 2014 
as indicated in Table A.1. Then, monthly energies were calculated and compared for 
these 26 months using state-of-art literature baselines (CH, EHT , EHN), improved 
baselines with variant (independent) sluice operation for HC methods introduced in 
this thesis (CHV  , EHT V , EHNV ) and  the novel  DRL automatic approach in Table 
A.2. For sake of completeness, the hardware specifications used in the major part of this  
thesis is presented in Table A.3. It is worth noticing that the barrage implementation  
with 2D model required supercomputer facilities, either from the Centro Nacional de 
Processamento de Alto Desempenho (CENAPAD – UFMG) or from the Advanced 
Research Computing (ArC – Oxford University).

Visual normality assumption (QQ) plots (verified with Shapiro Wilk test), re-
quired for performing confidence interval t-test, are also presented in Figs. A.1, A.2, 
A.3 and A.4. Furthermore, all day-ahead market data utilised for predicting the rev-

enue extraction capabilities of our methods (and training the revenue-oriented DRL 
agent) are shown in Fig. A.5.
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Table A.1. Numbered test data. For each data, year, month, day and hour are indicated.

Year Start (M/D hr:min) End (M/D hr:min) Data #

1993 03/03 00:15 04/02 00:15 1
1993 04/02 14:15 05/02 14:15 2
1997 09/02 00:15 10/02 06:15 3
1998 06/03 13:00 07/03 19:00 4
1998 11/03 05:00 12/03 05:00 5
1999 07/05 04:00 08/04 10:30 6
1999 10/04 14:00 11/03 14:00 7

1999! 2000 12/04 16:00 01/03 22:15 8
2000 06/04 13:30 07/04 13:30 9
2000 09/04 03:30 10/04 09:45 10
2003 05/08 03:30 06/07 03:30 11
2010 06/12 18:15 07/12 18:15 12
2012 04/13 17:00 05/13 17:00 13
2012 05/14 00:30 06/13 06:45 14
2012 07/14 02:00 08/13 02:00 15
2012 08/13 15:00 09/12 15:00 16

2012! 2013 12/13 18:00 01/12 18:00 17
2013 01/13 01:00 02/12 07:15 18
2013 02/12 13:45 03/14 19:45 19
2013 03/15 02:00 04/14 08:15 20
2013 05/15 02:45 06/14 09:15 21
2013 06/14 15:15 07/14 21:45 22
2013 08/14 16:30 09/13 16:30 23
2013 09/14 06:30 10/14 06:30 24
2013 10/14 14:15 11/13 14:15 25

2013! 2014 12/14 16:15 01/13 16:15 26

(a) QQ plot for Fractional energy gain. (b) QQ plot for Fractional revenue gain.

Figure A.1. Visual verification of normality assumption with QQ plots.
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Table A.2. Monthly energy comparison (GWh) between baselines and our trained agent,
based on numbered test data.

Data CH CHV EHT EHTV EHN EHNV Agent

1 32.04 32.39 43.39 44.40 43.30 44.43 44.08
2 34.48 35.01 43.31 44.21 43.50 44.42 43.79
3 35.84 36.25 44.33 45.27 44.00 45.02 44.77
4 30.40 30.57 41.68 42.52 41.67 42.66 41.76
5 37.86 38.78 43.86 44.74 44.05 45.05 44.46
6 31.06 31.11 42.83 43.69 42.73 43.97 43.02
7 31.77 31.99 42.89 43.82 42.97 43.61 42.94
8 30.22 30.37 40.69 41.53 40.80 41.19 40.37
9 38.07 38.77 41.69 42.51 41.88 42.78 42.48
10 32.11 32.18 42.37 43.23 42.33 43.27 42.79
11 28.37 28.77 38.35 39.09 38.34 38.90 38.89
12 31.89 32.47 38.79 39.52 38.75 39.74 39.45
13 28.96 29.13 42.15 42.98 42.21 42.97 42.38
14 27.79 27.87 41.35 42.21 41.46 42.21 41.50
15 29.46 29.63 40.81 41.73 40.87 41.64 41.11
16 31.02 31.23 41.52 42.40 41.76 42.47 41.86
17 35.90 36.88 41.81 42.64 41.89 42.89 42.02
18 37.86 38.14 44.34 45.27 44.38 45.53 44.39
19 38.06 38.71 44.89 45.74 44.85 45.75 45.18
20 36.75 37.48 43.83 44.78 43.97 44.73 44.01
21 29.31 29.32 41.06 41.88 41.04 42.05 41.12
22 30.74 30.14 41.98 42.86 42.19 42.91 42.14
23 31.54 31.81 43.58 44.48 43.66 44.26 44.10
24 32.71 33.62 43.13 44.10 43.30 44.18 43.56
25 31.82 32.19 42.37 43.26 42.44 43.25 42.81
26 31.34 31.62 41.68 42.55 41.86 42.66 41.59

Table A.3. Hardware specifications for this work.

Hardware Components

Operating System Microsoft Windows 10 Pro
CPU AMD Ryzen 7 3800X
GPU GeForce RTX 2070 Super
RAM 16GB
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(a) QQ plot for upper bound and real-time
estimate % energy deviation.

(b) QQ plot for upper bound and real-time
estimate absolute revenue deviation.

Figure A.2. Visual verification of normality assumption for the deviation between upper
and real-time estimates of the EHTV � P method, considering a real-time energy-oriented
operation.

(a) QQ plot for fractional energy gain. (b) QQ plot for fractional revenue gain.

Figure A.3. Visual verification of normality assumption for the deviation between our
energy-oriented agent and the upper bound (energy and revenue-oriented) from the literature.
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(a) QQ plot for energy-oriented DRL and
real-time EHTV � P % energy deviation.

(b) QQ plot for energy-oriented DRL and real-
time EHTV � P % revenue deviation.

Figure A.4. Visual verification of normality assumption for the deviation between our
energy-oriented agent and the real-time EHTV � P method.
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(a) 2014. (b) 2015.

(c) 2016. (d) 2017.

(e) 2018. (f) 2019.

(g) 2020. (h) 2021.

Figure A.5. Day-ahead market data (in £/MWh) from 2014 to 2021. Taken from [81].
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