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Resumo

O desenvolvimento de protocolos criptográficos para a realização de computações conjun-
tas sobre entradas secretas entre múltiplas partes pode ser uma tarefa difícil, especial-
mente quando eficiência é uma qualidade necessária. Uma importante área de pesquisa
que tende a usar tais protocolos é a de privacy-presenving machine learning, uma área
que tem como objetivo o treinamento e a consulta de modelos de machine learning sem
que seja necessário sacrificar a privacidade dos dados de usuários.

A fim de fazer com que a construção deste tipo de protocolos seja mais fácil,
projetistas geralmente fazem uso de outros protocolos previamente propostos dentro do
novo protocolo sendo construído. Isso faz com que a criação de protocolos eficientes que
possam ser facilmente reusados em diferentes contextos seja uma tarefa importante, já
que esses protocolos tem a possibilidade de ter um alto impacto ao serem utilizados em
vários projetos.

Neste trabalho, propomos nos protocolos eficientes para três tarefas altamente
pesquisadas e que são muito usadas na construção de novos protocolos criptográficos,
sendo essas: teste de igualdade de elementos, comparação binária e decomposição em bits.
Nós comparamos essas novas soluções a propostas previamente publicadas e mostramos
que nossos protocolos se mostram favoráveis no quesito eficiência, especialmente no número
de rounds que precisam ser realizados entre as partes envolvidas na execução do protocolo.

Ao definir os protocolos criados para as três tarefas especificadas, nós fazemos
o uso de uma nova primitiva criptográfica também proposta neste trabalho, chamada
de Shared Oblivious Transfer e abreviada como Shared OT. Essa nova primitiva pode ser
interpretada como uma extensão da altamente conhecida primitiva criptográfica Oblivious
Transfer. Mostramos que essa nova primitiva criptográfica pode ser reduzida a somente
uma execução da primitiva original Oblivious Transfer, com muito pouca computação
extra. Dada a eficiência e versatilidade desta nova primitiva, acreditamos que esta pode
ser de interesse independente.

Palavras-chave: segurança incondicional, comparação segura, decomposição binária,
teste de igualdade, transferência oblívia



Abstract

Developing cryptographic protocols for performing joint computations over several parties’
secret inputs can be a difficult task, especially when an efficient solution is required.
One important area of research that tends to require such protocols is privacy-preserving
machine learning, an area that has as its focus training and querying machine learning
models without having to sacrifice user data privacy.

In order to make constructing these types of protocols more manageable, designers
usually use other previously created protocols as building blocks. This makes creating
efficient protocols that can be reused in many different contexts an important effort, as
they might have a lot of impact.

In this work, we propose new efficient protocols for three highly researched tasks
used as building blocks in many different solutions: elementwise equality, bitwise com-
parison, and bit-decomposition. We compare these new solutions to previously published
works and show that our protocols compare favorably efficiency-wise, especially in the
number of communication rounds that need to be performed between parties.

When defining the protocols for these three tasks, we make use of a new cryp-
tographic primitive that is also being proposed in this work, called Shared Oblivious
Transfer, abbreviated as Shared OT. This new primitive can be seen as an extension
of the widely known Oblious Transfer cryptographic primitive. We show that this new
primitive can be reduced to a single execution of the original Oblivious Transfer primitive
with very low overhead. Given its efficiency and versatility, we believe that Shared OTs
can be of independent interest.

Keywords: unconditional security, secure comparison, bit-decomposition, equality test,
oblivious transfer
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Chapter 1

Introduction

Secure two-party computation aims to enable a group of 2 parties, called Alice and Bob,
to evaluate a function f over their secret inputs xA, xB without revealing anything beyond
possibly the function output f(xA, xB) in the presence of a party that may behave adver-
sarially. This problem was introduced by Yao in his seminal paper [20], which proposed a
method to compute any function f securely. Subsequently, other general constructions for
implementing secure two-party computations and extensions to several parties appeared
in the literature [2, 6, 8].

General solutions for secure two-party (and multiparty) computation are usually
not efficient. Thus, the research community has focused on finding efficient methods to
evaluate specific functions. This work proposes new efficient protocols for three highly
researched functions: integer equality test, integer comparison, and bit-decomposition.

In the case of the integer equality test protocol, the two inputs xA and xB are
obfuscated integers modulo M ≥ 2 and the function f outputs a single obfuscated bit
which indicates if xA = xB. In the case of the integer comparison protocol, the two inputs,
xA and xB, are obfuscated bitwise representations of two integers a and b and the function
f outputs a single obfuscated bit which indicates if a < b.

The bit-decomposition protocol input and output structure differs from the two
previous protocols. While the other two took two inputs, this third protocol only takes
a single obfuscated integer as input. Also, while the the other protocols output a single
obsfuscated bit, this protocol outputs a sequence of obscuted bits that are the binary
representation of the input integer.

After presenting and proving the security and correctness of all the new protocols
proposed in this work we proceed to show their efficiency and compare them to other
previously published works that were proposed for the same or similar settings. We are
interested in comparing computational complexity, the number of bits exchanged between
Alice and Bob during the protocol, and the required amount of rounds to complete the
protocol.

As previously stated, secure two-party computation solutions must be resistant
to parties acting adversarially. In this work, we assume that adversarial parties are
unconditional, static, and semi-honest. Unconditional means that no assumptions are
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made about the computational power of the adversary, static means that the corrupt
parties must be defined before starting executing the protocol and semi-honest means
that the adversary follows the protocol but can try to discover extra information.

1.1 Motivation

Since 1982, when Yao introduced the secure two-party computation problem, mul-
tiple general solutions that allows for the two parties to evaluate any function f have
been proposed throughout the years. This means that given any computable function f ,
we can choose one of these previously proposed solutions to run a protocol that securely
computes f .

The ideas behind these schemes that securely evaluate arbitrary computable func-
tions require reducing the computable functions to boolean or arithmetic circuits. This
results in protocols that have poor efficiency and thus makes it so they have a small range
of possible applicability in the ‘real world’.

This forces protocol designers to look for different solutions from these generic
ones when they are required to build efficient protocols for ‘real world’ problems. This,
however, leads to an increase in the complexity of designing the necessary solution. This
complexity can materialize itself in different ways, for example, in a higher difficulty
writing security and correctness proofs for these protocols.

In order to deal with these efficiency and design complexity problems, the research
community focused its efforts on finding efficient protocols for specific functionalities that
are useful in many different scenarios and contexts. Some examples of such functionalities
that have been highly researched are: dot product computation, set intersection, integer
equality test, integer comparison test and bit-decomposition.

Protocols that need to execute these functionalities can make use of previously
proposed effcient sub-protocols that implement them. This tends to decrease the com-
plexity a designer needs to tackle when designing a new protocol. This is similar to the
process of developing and publishing programming language libraries that can later be
used in many different scenarios.

One such functionality that can be useful in many different case is the integer
comparison test. This functionality takes two integers a and b as input and outputs a
single bit which indicates if a < b. All of this without revealing any extra information
about a and b other than the protocol’s desired output.

Given that the integer comparison functionality is such a basic building block of
computations, many different computations depend on it. This makes building an efficient
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secure protocol that can compute it really important, as improving its performance means
improving the performance of many different protocols that depend on it. This is true
for any other functionality that is as basic as this one, such as integer equality test and
bit-composition, functionalities that also have new protocols proposed in this work.

A field where integer comparison shows itself really useful is privacy-preserving
machine learning. The focus of this field is to ‘teach’ machines to perform certain tasks
by generalizing data provided through learning algorithms without sacrificing data privacy
in the process.

An interesting work in this field, which makes use of the integer comparison func-
tionality, is the one by [3]. In this work, they propose a protocol for executing the k-means
clustering algorithm, which allows two parties, each possessing a private data set, to com-
pute a k-means clustering of their combined data. All of this without having to share
their individual data points with one another.

Another interesting work in the field of privacy-preserving machine learning, that
also performs integer comparison testing, is the one by [12], where Erkin proposed a
recommendation system that can provide recommendations based on user encrypted data.
This lets users receive relevant recommendations without having to relegate their privacy.

Based on the reasoning and examples presented in this section we believe that the
importance of developing efficient protocols for functionalities, such as the ones that are
the focus of this work, is evident. We also believe that this importance will keep growing,
since more protocols that require these basic building blocks will probablly be proposed
in the future.

1.2 Contributions

This work proposes novel solutions to privately evaluating the integer equality test,
integer comparison, and bit-decomposition functions. The setting consists of two parties,
Alice and Bob, and an adversary with unconditional computation power but behaves in a
semi-honest manner. All the protocols presented in this paper to evaluate the previously
enumerated functions achieve perfect security against such an adversary.

In order to construct the protocols proposed in this paper, we make use of a
new primitive we call Shared Oblivious Transfer, a variation of the well-known Oblivious
Transfer cryptographic primitive. The Oblivious Transfer primitive is explained in section
2.5. We show that we can implement shared oblivious transfer using one single instance of
1-out-of-N Oblivious Transfer over elements modulo M . This means that the efficiency of
this new primitive is the same as the protocol chosen to implement the Oblivious Transfer,
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except for a negligible computational overhead.
The two new protocols for integer equality testing presented in this work take

two additively shared ℓ-bit elements as input and output a shared bit, which indicates if
the two elements are the same. What it means for an element to be additively shared
is explained in section 2.3. We denote one of the equality protocols by ΠEEQ, and the
other by ΠPEEQ. Both protocols require 2 online rounds to be executed, but while ΠEEQ has
online computation and communication complexity equal to O(ℓ log(ℓ)), protocol ΠPEEQ

has online computation and communication complexity equal to O(ℓ). However, protocol
ΠPEEQ requires one pre-processing round and the pre-processing phase has computation and
communication complexity of O(ℓ log(ℓ)), while ΠEEQ does not require pre-processing.

We also present two new protocols for integer comparison in this work. Both pro-
tocols take the binary representation of two ℓ-bit elements, a and b, additively shared
modulo 2 as input and outputs one additively shared bit, where this output bit indicates
if a < b. We denote these two protocols by ΠBLT and ΠPBLT. Both protocols require 3
online rounds to be performed, but while ΠBLT has online computational and commu-
nication complexity equal to O(ℓ log(ℓ) log(log(ℓ))), ΠPBLT has online computational and
communication complexity equal to O(ℓ log(ℓ)). However, protocol ΠPBLT requires one pre-
processing round and the pre-processing phase has O(ℓ log(ℓ) log(log(ℓ))) computational
and communication complexity, while ΠBLT does not require pre-processing.

Lastly, we present two protocols for the bit-decomposition function. Both protocols
take a single additively shared ℓ-bit element β as input and outputs the binary represen-
tation of β additively shared modulo 2. We denote these two protocols by ΠBD and Π′BD.
While protocol ΠBD requires 2 overall rounds to be performed and has overall compu-
tational and communication complexity equal to O(ℓ3), protocol Π′BD requires 3 overall
rounds to be performed and has overall computational and communication complexity
equal to O(ℓ2 log(ℓ)).

1.3 Outline

In this chapter, we briefly described the problems we focus on in this work, the
solutions we were able to build, their main properties, and also discussed our motivations
for researching this topic. The remaining chapters of this dissertation are organized in
the following way:

Chapter 2 - Background. We start this chapter by presenting the Universally
Composable framework, which is the theoretical framework we use to analyze and
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prove the security of all the protocols proposed in this work. We then proceed to
describe the Commodity-Based Cryptography paradigm and introduce the cryp-
tographic primitives Oblivious Transfer and Additive Secret Sharing. We finish
this chapter by introducing notation and conventions deemed useful in making
the new ideas expressed in this dissertation easier to comprehend.

Chapter 3 - Shared Oblivious Transfer and Applications. This chapter
starts with a section that defines and proves the security for the new Shared
Oblivious Transfer primitive. The next 4 sections of this chapter show how to
construct private protocols for elementwise equality, bitwise comparison, and bit-
decomposition using the Shared Oblivious Transfer primitive. This chapter ends
with a section dedicated to comparing the efficiency of the protocols built using
Shared OT to other previously published protocols that implement the same
functionalities.

Chapter 4 - Conclusions. We present the conclusions reached through the
development of this work.
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Chapter 2

Backgroud

In this chapter, we explore the main ideas, concepts, and previous works upon which
the results contained in this dissertation are based. We start the chapter by presenting
notation and conventions used throughout this work. In section 2.2, we explore the
Universally Composable Framework, the security framework we use to analyze and prove
the security of the new protocols proposed in this work. In section 2.3, we explore what an
Additive Secret Sharing scheme is and its properties. Next, we discuss the Commodity-
Based Cryptography paradigm of developing protocols in section 2.4. We then conclude
the chapter by delving into the important cryptographic primitive Oblivious Transfer in
section 2.5.

2.1 Notation and Conventions

We now introduce notation, conventions and some important mathematical func-
tions.

In all the protocols described in this work we output, and receive as input, addi-
tively shared elements modulo M , where M ∈ Z≥2. Let a ∈ ZM . We use JaKM to denote
the additive sharing modulo M of a by JaKM and we use JaKA

M ∈ ZM and JaKB
M ∈ ZM to

denote Alice’s and Bob’s respective shares of JaKM . Note that we only propose two-party
protocols in this work and we always refer to the parties by Alice and Bob, so we only
need notation to refer to these two parties shares.

The first convention we introduce is to only explicitly display an expression’s mod-
ulo if it is not clear from the context. For example, if a, b ∈ ZM , then a + b, a− b, a · b are
meant to be interpreted as a + b (mod M), a − b (mod M) and a · b (mod M), respec-
tively. Another convention is how we index vectors and binary expansions. Let a ∈ ZM

and a⃗ ∈ Z⌈log2(N)⌉
2 , where a⃗ is the binary expasion of a. We index the vectors in this paper

starting from 0 and the LSB of a binary expansion a⃗ is a⃗0. Another convention is the
meaning of adding a scalar modulo M to a vector of elements modulo M . Let a ∈ ZM
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and v⃗ ∈ ZN
M , where N ∈ Z≥1. In this paper, when we write v⃗′ = v⃗ + u, we mean that

v⃗′i = v⃗i + u (mod M), for i ∈ {0, 1, . . . , N − 1}.
One of the first two functions we need to define is Onen(i, a), where 0 ≤ i ≤ n− 1

and 0 ≤ a ≤ n− i. This function outputs a vector v⃗ ∈ Zn
2 containing a 1s, starting from

position i, and containing 0s in all the remaining positions. For example, One5(2, 3) =
(0, 0, 1, 1, 1) and One4(0, 1) = (1, 0, 0, 0). Formally, if v⃗ = OneN(i, a), then

v⃗j =

1, if i ≤ j < i + a

0, otherwise
, for j ∈ {0, 1, . . . , N − 1}

The second function is cshiftN(v⃗, x), where v⃗ ∈ ZN and x ∈ ZN . The function cshift
outputs a vector v⃗′, where v⃗′ is the vector v⃗ with its values shifted x positions, from position
0 towards position N − 1. For example, if v⃗ = (1, 2, 3, 4), then cshift4(v⃗, 2) = (3, 4, 1, 2).
Formally, if v⃗′ = cshift(v⃗, x), then v⃗′i = v⃗i−x (mod N), for i ∈ {0, 1, . . . , N − 1}.

2.2 Universally Composable Framework

When proposing new cryptographic protocols it is important to provide a rigorous
security proof that attests to its security claims, otherwise, any security property stated
by its designers is simply a wish. To write such security proofs, we must first define a
model and then define a security definition for the cryptographic task in question. It is
only then that we can write a proof showing that a protocol fulfills the security definition.

This makes elaborating a model and a security definition important, but doing so
is a non-trivial task. Mistakes made when defining a model or security can lead to security
issues in protocols that have their security proven using these. For example, if a model
does not consider certain properties that an adversary can have, this restricts the cases
in which a protocol is secure from the start. Thus, when proposing a definition, we must
strive to cover any adversarial behavior, which again, is not an easy task.

Another important aspect that should be taken in consideration is that a protocol
should maintain security not only when in run by it self but should also do so when is
part of another larger system, as is usually the case in ‘real world’ scenarios.

In this work, we make use of the model and definitions that form the Universally
Composable framework, first presented in [5]. The Universally Composable framework,
sometimes abbreviated as UC framework, is considered by a large part of the cryptographic
community as the current strongest security model a protocol can fulfill and can be used
to show that a protocol maintains security, even when composed with other protocols, or
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copies of itself. The rest of this chapter focuses on exploring the main ideas involved in
the UC framework, starting with an intuitive overview.

In the UC framework, we assume the existence of an ideal world which contains
a magic black-box that securely provides the functionality f to two parties PA and PB.
More specifically, each party provides their secret inputs to the box without revealing
the inputs to the other party, the box performs internal hidden computations and then
delivers to the parties their respective outputs. In the UC framework, we call such a world
the Ideal-world and we call such a magic box the ideal functionality F , where F exists in
the Ideal-world.

Also in the UC framework, there exists another world separate from the Ideal-
world, called Real-world. In the Real-world, like the real world, there is no mechanism
magic box. In the Real-world, the two parties PA and PB must perform a protocol Π in
order to compute the functionality f . Since no magic box exists, an adversary might have
the ability to interfere in the protocol’s execution and cause some damage, like leaking
some information not intended to be leaked. This adversary that exists in the Real-world
is denoted by A.

Intuitively, a protocol is secure in the UC framework, also called UC secure, if the
protocol Π behaves in a way that makes the Real-world be an emulation of the Ideal-
world. But to better understand what it means to say that a world emulates another, we
must further understand the two worlds in question. In the next two sections we better
detail how these worlds are composed, their differences and similarities, and then better
define emulation.

2.2.1 Real-world

The Real-world contains the following 3 components: Two parties PA and PB,
the adversary A and the environment E , to which the two parties are connected by a
communication medium that they can use to exchange messages.

The goal of the two parties PA and PB is to compute the functionality f by perform-
ing Π. They do this by following their respective instructions contained in the description
for Π. These instructions may require them to perform internal computations or send
messages through the communication medium they have access to. Some protocols may
require a subset of parties to provide inputs, which in this case, the inputs used by these
parties will be provided by E . The execution of the protocol may also result in outputs for
a subset of the parties involved, which in this case, these parties will deliver their outputs
to E .



2.2. Universally Composable Framework 17

The adversary A exists with the main purpose of modeling the corruption of par-
ties in the Real-world. For this purpose, the adversary can corrupt a subset of parties,
arbitrarily drop and delay messages exchanged between the two parties, and communicate
with the environment E as it wishes. When an adversary is able to corrupt a party and
what it can do to that party once it corrupts it, varies depending on the adversarial model
considered.

If we suppose that an adversary can only corrupt a party at the beginning of the
protocol’s execution, we say that our adversarial model assumes static corruption. But if
the adversary can corrupt parties at any time, we say that our adversarial model assumes
adaptative corruption. In this work, we only consider adversarial models that assume
static corruption.

Another important aspect of the adversarial model is how the adversary can in-
fluence parties once they are corrupted. We say that an adversary is semi-honest if it
only has the ability to read the internal state of corrupted parties, and we say that an
adversary is malicious if it can also cause the corrupted party to send arbitrary messages.
In this work, we have proofs that consider only semi-honest adversaries and proofs that
also consider the malicious case.

The last component of the Real-world is the environment E . The two main goals
of E is to model everything external to the execution of the protocol Π and to output a
distinguisher bit. In order to achieve these goals, E can communicate with A, provides the
inputs that it whishes for PA and PB to use when executing Π and receives the outputs
that PA and PB may produce as the result of executing Π.

The environment’s distinguisher bit plays an integral role in the formalization of
the emulation that must be achieved between the Real-world and Ideal-world. This bit’s
role will be clearer after section 2.2.3, where the formalization of world emulation is
discussed further. We denote the distribution ensemble that describes the environment’s
output bit, when protocol Π is run with adversary A in the Real-world, by REALΠ,A,E .

2.2.2 Ideal-world

The components of the Ideal-world are really similar to the ones present in the
Real-world. In the Ideal-world we have the following 4 components: two dummy parties
PA and PB, the ideal adversary called simulator S, the ideal functionality F and the
environment E .

The ideal functionality F can be seen as a magical black-box that securely provides
the functionality f to the parties that use it. The parties that use F can provide their
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secret inputs to F without revealing them to other parties and can also receive their
respective output from F without having them revealead to others. Any computation
necessary to provide the functionality f is done internally and in secret by F .

As in the Real-world, the parties PA and PB also have the goal of executing the
functionality f in the Ideal-world. But in the Ideal-world, the parties do not follow the
set instructions contained in the description of Π, they simply provide their inputs to F
and wait for their respective output. This simpler behaviour is the reason they are called
dummy parties. Also like in the Real-world, the inputs used by the parties are chosen by
the environment and the parties relay the output they receive from F to the environment.

The ideal adversary S, usually called simulator, has a different role compared to
its Real-world counterpart. The simulator exists in the Ideal-world for the purpose of
simulating the impact that A can have over the protocol Π while only having access to
the ideal functionality F . The existence of such a simulator means that the same impact
an adversary A has over Π in the Real-world can also be achieved in the Ideal-world
against F .

Similar to the Real-world, the environment E exists in the Ideal-world with the
objective of modeling everything external to the protocol execution of F and to output a
distinguisher bit. For this purpose, the environment can communicate with S, it chooses
the inputs that PA and PB provide to F and receives the outputs of F . We denote the dis-
tribution ensemble that describes the environment’s output bit, when ideal functionality
F is run with simulator S in the Ideal-world, by IDEALF ,S,E .

Figure 2.1: Diagram of the Ideal-World and Real-World executions for a corrupted party
PA.

Source: Created by author.
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2.2.3 Formalizing the Security Definition

Now that we have explored the details of protocol executions in the ideal and real
worlds, we can go back to rigorously proving the security of a protocol Π. As already
intuitively explained, a protocol Π UC securely provides a functionality f if it emulates
an ideal functionality F that provides the functionality f .

In the UC framework, a protocol Π emulates an ideal functionality F if no envi-
ronment E can tell them both apart. In other words, if no environment can tell if it is
currently a part of the real world or a part of the ideal world, then Π emulates F . Note
that the environment’s only way to distinguish between the two worlds is by interacting
with the other components as described in previous sections.

Since an environment E can interact with an adversary A in the Real-world, the
existence of an E that can distinguish between the two possible worlds depends on a
simulator S being able to simulate the interaction that happens between E and A. It
turns out that a S that can simulate the interactions between A and E in the Real-world
may not exist.

This means that a scheme for constructing a simulator S for each A that simulates
all necessary interactions that happen in the Real-world must be shown as part of the
security proof of a protocol Π. Having understood the different components involved
in proving the security of a protocol Π in the Universally Security framework, next we
present the formal definition of UC security.

Definition 1 (Perfect UC-Security). Let Π be a protocol and F be the ideal functionality
to be simulated by Π. The protocol Π perfectly UC-realizes F if for every Real-world
adversary A there is a simulator S such that, for all environments E, the distribution
ensembles REALΠ,A,E and IDEALF ,S,E are the same.

Notice the "perfect" qualifier in the definition’s name. This qualifier points to
the requirement that both distribution ensembles must be identical, which might not
be the case in some variants of UC-Security definitions. By proving the security of a
protocol according to this definition we do not make any assumptions about an adversary’s
computational power, which is what we do when proving the security of protocols proposed
in this work.
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2.2.4 Hybrid-world

Proving the security of more complex and detailed protocols in the UC framework
can lead to more intricate and complicated security proofs, which can get much harder
to write and verify. A natural way to tackle this task is by making more modular con-
structions and analyzing these constructions piece by piece. The UC framework helps us
in this approach by providing important theoretical tools, which revolve around a third
world called Hybrid-world.

The Hybrid-world is really similar to the previously presented Real-world. It con-
tains all the components contained in the Real-world and also allows all the interactions
that are allowed in the Real-world, but it also contains an extra component, which is an
ideal functionality G.

In this third world, the two parties involved not only have access to a communica-
tion medium with which they can communicate by exchanging messages but they can also
interact through the use of ideal functionality G. But the parties are not the components
that can interact with G, the adversary A also is allowed to do so. The adversary can
corrupt this functionality, which will behave as described in the Ideal-world when this
happens.

Now, let ΠG be a protocol that perfectly UC-realizes G in the Real-world and ΠG

be a protocol that replaces every call to G by a call to ΠG. Based on the Universal
Composability theorem, presented in [4], we know that if Π perfectly UC-realizes an ideal
functionality F in the Hybrid-world, then ΠG perfectly UC-realizes F in the Real-world.
This means that by analysing and proving the security in a modular way, through the
Hybrid-world, we know that the protocol will also be secure in the Real-world.
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Figure 2.2: Diagram of the Ideal-World and Hybrid-World executions for a corrupted
party PA and auxiliary functionality G.

Source: Created by author.

2.3 Additive Secret Sharing

Intuitively speaking, a perfectly private t-out-of-n secret sharing scheme is a method
that lets a dealer D split a secret s into n pieces in a way that makes it possible to re-
construct s from t ≤ n pieces while not allowing any information about s to be computed
from less than t pieces. These pieces can then be distributed to a set of parties which can
use t pieces to reconstruct s without interacting with D. When discussing secret sharing
schemes, the pieces of s are usually called shares of s.

Formally, we can define a perfectly private t-out-of-n secret sharing scheme in the
following way:

Definition 2 (Perfectly private t-out-of-n secret sharing scheme). A t-out-of-n secret
sharing scheme over message space M is a pair of algorithms (Share, Reconstruct) such
that

• Share: Is a probabilistic polynomial-time algorithm that takes any message m ∈ M
as input and outputs n shares (s0, s1, . . . , sn−1).

• Reconstruct: Is a deterministic polynomial-time algorithm that takes t secret shares
and outputs a message m ∈M.

While satisfying the following correctness and perfect privacy requirements:
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• Correctness: ∀m ∈M, ∀S = {i0, i1, . . . , it−1} ⊆ {0, 1, . . . , n− 1} where |S| = t:

Pr
(s0,...,sn−1)←Share(m)

[Reconstruct(si0 , . . . , sit−1) = m] = 1

• Perfect Privacy: ∀m, m′ ∈ M,∀S ⊆ {0, . . . , n} where |S| < t, the following distri-
butions are identical:

{(si|i ∈ S) : (s0, . . . , sn−1)← Share(m)}

{(s′i|i ∈ S) : (s′0, . . . , s′n−1)← Share(m′)}

In the work contained in this dissertation, we only propose new perfectly secure
protocols executed by two parties. Therefore, we are restricted to only using perfectly pri-
vate 2-out-of-2 secret sharing schemes when developing these protocols. More specifically,
we only make use of the 2-out-of-2 additive secret sharing scheme. Next, we formally
describe the 2-out-of-2 additive secret sharing scheme:

Definition 3 (2-out-of-2 additive secret sharing scheme). Let M ≥ 2 and the message
space M be ZM . The algorithms Share and Reconstruct are defined in the following way
for this scheme:

• Share: First, the dealer D samples an element JsKA
M ∈R ZM modulo M . After

sampling JsKA
M , the dealer then computes the element JsKB

M = s + JsKA
M (mod M)

modulo M . After that, the dealer outputs the two shares (JsKA
M , JsKB

M), with JsKA
M

intended to be Alice’s share of s and JsKB
M intended to be Bob’s share of s.

• Reconstruct: Let JsKA
M ∈ ZM and JsKB

M ∈ ZM be Alice’s and Bob’s repective shares
of s. A party can reconstruct s by computing s = JsKB

M − JsKA
M (mod M).

It is easy to see from definition 3 that the 2-out-of-2 additive secret sharing scheme
is a type of perfectly private t-out-of-n secret sharing scheme, as its two algorithms respect
the descriptions given in definition 2 and that they also fulfill the correctness and perfect
privacy properties described in definition 2.

Another important fact about the 2-out-of-2 additive secret sharing scheme is
that the shares can not only be used to reconstruct the original secrets but can also
be used to compute shares of related secrets. This type of operation over secret shares
is used extensively in the Multi-party computation literature and is also used extensively
in the work presented in this dissertation. More precisely, we make use of three such
operations, where all of the three do not require any interaction between the two parties
to be performed.

Suppose that Alice and Bob each have a share of two secrets s0, s1 ∈ ZM . In other
words, Alice has Js0KA

M , Js1KA
M and Bob has Js0KB

M , Js1KB
M . The first of the three operations

over secret shares allows Alice and Bob to compute Js′KA
M and Js′KB

M , respectively, where
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s′ = c + s0 (mod M) and c ∈ ZM is a publicly known constant. The second operation
allows for Alice and Bob to compute Js′KA

M and Js′KB
M , respectively, where s′ = c · s0

(mod M) and c ∈ ZM is also a publicly known constant. The last of the three operations
makes it possible for Alice and Bob to compute the shares Js′KA

M and Js′KB
M , respectively,

where s′ = s0 + s1 (mod M).

2.4 Commodity-Based Cryptography

First proposed by Beaver in [1], Commodity-Based Cryptography is a paradigm for
designing efficient secure multi-party computation protocols. In this paradigm we have
a set of servers and a set of clients, where the servers exist for the purpose of aiding the
clients in executing cryptographyic primitives. Some type of corruption of a subset of
servers may be admissable, but this may vary between two protocols. The same is true
about the set of clients.

The Commodity-Based paradigm not only defines this set of players, but also re-
strains what information these players have about each other and how they interact. This
is what separates this paradigm from other client-server models. First, a server should
not have any information about any other server, including whether other servers exist or
not. Second, any server-client pair must interact in a request-response manner where the
client sends the request. Third, any response sent to the client must be independent of
the client’s input and of any previous communication between the client and the server.

By having this restrictions in place, the paradigm presents some advantageous
properties. There is no need for the client to provide sensitive data to the server, which
minimizes the trust that clients need to have on servers. At same time, the paradigm
is scalable since many servers can be employed at the same time. Having many servers
also helps to increase confidence that at least a fraction of the material provided by the
servers is secure and correct.

Since first introducted, many protocols have been proposed in this paradigm, where
the first two were defined in the paper that defined the paradigm. In [1], two protocols for(

1
2

)
-OT are apresented. One protocol that is perfectly secure against honest-but-curious

adversaries and another one that is statistically secure against malicious adversaries. Later
in [18], Rivest proposed a different protocol for

(
1
2

)
-OT that is perfectly secure against ma-

licious adversaries, along with a protocol for bit commitment. Protocols for secret sharing,
such as the one contained in [14], have also been proposed, among other primitives.
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2.5 Oblivious Transfer

Ever since first proposed by Michael O. Rabin, many interesting and useful variants
of the Oblivious Transfer primitive have been constructed and even more uses have been
found for them. The most commonly used version of this primitive is called 1-out-of-2
Oblivious Transfer of bits. This version of the primitive is so common that researches
usually refer to it as Oblivious Transfer only.

In a 1-out-of-2 Oblivious Transfer of bits, one party, usually, Alice, has two secret
bits m⃗0, m⃗1 ∈ Z2 and she wishes to let another party, usually, Bob, learn the value of one
of the two bits without herself learning which bit Bob chose to learn the value of. In other
words, when executing this primitive, Alice inputs two secret bits m⃗0, m⃗1 ∈ Z2 and Bob
inputs one secret bit c⃗ ∈ Z2. After finishing executing this primitive, Bob will end up
with m⃗c, and Alice will not learn any new information. Next, we have a diagram showing
the input and output structures of this primitive.

Figure 2.3: Input and output structures of 1-out-of-2 Oblivious Transfer of bits.

Source: Created by author.

Probably the next most commonly used variant of Oblivious Transfer is the 1-
out-of-2 OT of strings. As the names suggests, this other variant is really similar to the
previous version of OT described, with the only difference being that in this case m⃗0 and
m⃗1 are strings of bits, instead of single bits. Next we have a diagram showing the input
and output structures of this OT variant.

Figure 2.4: Input and output structures of 1-out-of-2 Oblivious Transfer of bit strings.

Source: Created by author.

Another common generalization of Oblivious Transfer is the 1-out-of-N Oblivious
Transfer of strings. Like the previously described variant, the elements of m⃗ are strings of
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bits, but the different is that the length of vector m⃗ is now N instead of 2. Next we have
a diagram showing the input and output structures of this flavor of Oblivious Transfer.

Figure 2.5: Input and output structures of 1-out-of-N Oblivious Transfer of bit strings.

Source: Created by author.

In this dissertation we are only concerned with one single type of OT, the 1-out-
of-N Obvlious Transfer of elements modulo M . Like the last described OT, the vector m⃗

has size N , but now the elements of m⃗ are all elements modulo M instead of bit strings.
Next we have a diagram showing the input and output structures of this OT variant and
the formal definition of this OT’s functionality.

Figure 2.6: Input and output structures of 1-out-of-N Oblivious Transfer of elements
modulo M .

Source: Created by author.

Functionality FOTN
M

• Upon receiving a message (choose, c) from Bob: Ignore any subsequent
(choose, c) messages. If c ̸∈ ZN , then send (invalid input) to both parties
and halt. Otherwise, store c internally and send the public delayed message
(chosen) to Alice.

• Upon receiving a message (propose, m⃗) from Alice: Ignore any subsequent
(propose, m⃗) messages. If it isn’t the case that m⃗ ∈ ZN

M and c is currently
internally stored, send (invalid input) to both parties and halt. Otherwise,
send m⃗c to Bob.
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By generalizing the Oblivious Transfer protocol proposed by Rivest in [18] in a
straightforward manner, it is possible to implement a protocol that fulfills the description
for FOTN

M
while providing perfect security in the malicious setting, in the Commodity-

Based paradigm. This protocol can be performed in one single round and the amount of
bits transferred between the two parties and the computation required to be performed
by the two parties are both equal to O(log(N) + N · log(M)). The amount of commodity
data in bits required and the amount of computation required to generate this data are
both equal to O(log(N) + N · log(M)).
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Chapter 3

Shared Oblivious Transfer and
Applications

We start this chapter with a section that presents the new Shared Oblivious Transfer
cryptographic primitive. In this section, we first give an intuitive explanation of its
functionality and then proceed to formally define it. With Shared OT formally defined,
we go on to prove its security and correctness against a static malicious adversary with
unconditional computational power.

The next 4 sections are dedicated to constructing protocols for different tasks, one
section for each task. These sections have a similar structure to the first one. In each
section, we start by giving an intuitive explanation of the task at hand, then proceed
to formally define it and end the section by proving the security and correctness of the
protocol against a static semi-honest adversary with unconditional computational power.

This chapter ends with a section that compares the efficiency of the proposed
protocols for elementwise equality, bitwise comparison, and bit-decomposition to similar
previously published protocols.

3.1 Shared Oblivious Transfer

We now introduce a simple, new variant of oblivious transfer. Our new primitive
Shared Oblivious Transfer is a simple extension of 1-out-of-N Oblivious Transfer over
elements modulo M . Our extension differs from OT in two significant ways: (1) the
selection index input is additively shared by the parties, Alice and Bob; and (2) the
output is also additively secret shared between the parties.

Figure 3.1 shows the difference between the input and output structures of the
functionalities 1-out-of-N Bit OT and the 1-out-of-N SOT over elements modulo M . In
Shared OT, Alice inputs the options vector m⃗, containing N elements modulo M , and
Alice and Bob input their respective shares of an index c modulo N . Likewise, SOT
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outputs additive shares modulo M of m⃗c to Alice and Bob, and neither party gains any
information to which it is not entitled. Note that the options vector m⃗ is not shared by
both parties; only Alice knows its value.

Figure 3.1: Difference between input and output structure of 1-out-of-N binary OT and
1-out-of-N SOT over elements modulo M .

Source: Created by author.

We formally define the functionality of SOT in the following way:

Functionality FSOTN
M

• Upon receiving a message (choose, JcKB
N) from Bob: Ignore any subsequent

(choose, JcKB
N) messages. If JcKB

N ̸∈ ZN , then send (invalid input) to both
parties and halt. Store JcKB

N and send the public delayed message (chosen) to
Alice.

• Upon receiving a message (sample share) from Alice: Ignore any subsequent
messages (sample share). Sample Jm⃗cKA

M ∈R ZM , store it internally and send
it to Alice.

• Upon receiving a message (propose, JcKA
N , m⃗) from Alice: Ignore any subsequent

(propose, JcKA
N , m⃗) messages. If it is not the case that m⃗ ∈ ZN

M , JcKA
N ∈ ZN and

Jm⃗cKA
M is currently stored, send (invalid input) to both parties and halt. If it

is the case, send Jm⃗cKB
M = m⃗c + Jm⃗cKA

M (mod M) to Bob.

We are able to build a protocol, which we denote by ΠSOT, that implements this
functionality using a single instance of FOTN

M
and only performs elementary local operations
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(such as cyclic shift of the vector m, sampling and addition modulo some integer) over the
protocol’s inputs. In order to perform this protocol, Alice and Bob execute an instance of
FOTN

M
with Bob providing JcKB

N as the choice index and Alice providing m⃗′ as the options
vector, where m⃗′ = cshiftN(m⃗, JcKA

N) + u and u ∈R ZM is sampled by Alice. As a result
of the execution of FOTN

M
, Bob ends up with m⃗′JcKB

N
and Alice ends up with u, since she

sampled it. These two values will be their respective outputs for ΠSOT.
From this brief description, we can explain the main argument behind the cor-

rectness and security of ΠSOT. Regarding correctness: Given the inputs provided to FOT,
during the execution of ΠSOT, Bob will receive m⃗′JcKB

N
, which, based on the definition of

cshiftN and how m⃗′ is built, implies Bob receives m⃗′JcKB
N

= m⃗JcKB
N−JcKA

N (mod N) + u = m⃗c + u

(mod M). Since Bob receives m⃗c + u (mod M) as the output of FOT and Alice sampled
u in step 1 of the protocol, both Bob and Alice end up with an additive share modulo M

of m⃗c when they finish executing ΠSOT.
Assuming the existence of a protocol that successfully implements FOT in the mali-

cious security setting, we now explain why the protocol ΠSOT implements the functionality
FSOT in the malicious security setting. The security of FSOT comes from the ability of the
simulator to read the inputs provided by the adversary to FOT and its other ability to map
these inputs into FSOT inputs that make FSOT behave as an FOT that received the inputs
chosen by the adversary. A description for how the mapping between the two types of
inputs can be performed is found in the security proof for ΠSOT.

Now we present the complete and formal description for the protocol ΠSOT.

Protocol ΠSOTN
M

Inputs:

• Bob inputs JcKB
N .

• Alice inputs m⃗ ∈ ZN
M and JcKA

N .

Protocol Steps:

1. Alice locally samples u ∈R ZM .

2. Alice locally computes m⃗′ = cshiftN(m⃗, JcKA
N) + u, where cshiftN(m⃗, x) denotes a

cyclic shift of x positions of m⃗’s elements.

3. The parties execute m⃗c + u,⊥ ← FOTN
M

(m⃗′, JcKB
N)

4. Output Jm⃗cKA
M = u to Alice and Jm⃗cKB

M = m⃗c + u to Bob.

By analyzing this protocol’s description and assuming its security proof (which is
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detailed in the next subsection) is correct, we can see that even though Shared OT is a
more flexible primitive, it is as efficient as an Oblivious Transfer, while also being secure
in the malicious setting. Protocol ΠSOT requires the same amount of rounds and transfers
the same amount of bits between the two parties as the protocol that implements FOTN

M
,

while the computational overhead of ΠSOT is negligible. It is also interesting to note that
our primitive can be pre-computed in the trusted initializer model as proposed by Rivest
[18].

3.1.1 Security Proof

In this subsection, we present a proof of security for the SOT protocol. The proof
is relatively simple, but we write it in detail here because it will make it easier to explain
security proofs of our protocols for secure equality, comparison, and bit-decomposition -
our main research contributions.

We follow the universal composability framework as introduced by Canetti in [5].
We refer to the original paper [5] for basic definitions and notations.

Our goal for this subsection is to prove the security of the SOT protocol in the
FOT-hybrid model. In other words, we aim to show that, in a hybrid world, where the
parties have access to FOT, the execution of ΠSOT perfectly simulates the ideal functionality
FSOT even when the adversary A behaves maliciously. Mathematically:

∀A ∃S ∀E : HYBRIDFOT
ΠSOT,A,E ≡ IDEALFSOT,S,E

From now on, the variables in the simulated scenario will be written with a prime
symbol (′).

Simulation: Alice Corrupted and Bob Honest

In this scenario, Alice is corrupted, which means that the simulator S can read hear her
inputs (JcKA

N and m⃗ ∈ ZN
M) and her internal state. The simulator S runs an internal copy

A′ of the hybrid-world adversary A, where all the interations between S and A′ are those
that Alice has with other parties(FOT and E). The behaviour of the simulator is described
next.

Simulation Description

1. The environment E delivers the inputs JcKA
N and m⃗ to the simulator S, which acti-

vates S. Upon its activation, S performs two actions. First, S delivers JcKA
N and m⃗
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to A′. Second, S sends a message (sample share) to FSOT, awaits for the response
Jm⃗cKA

M and stores it internally.

2. Upon receiving a message (chosen) or (invalid input) from FSOT, relay the message
to A′ as if FOT had sent it.

3. Upon receiving a message (propose, v⃗) from A′, where v⃗ ̸∈ ZN
M , send (propose, 0, v⃗)

to FSOT, causing FSOT to send (invalid input) messages to both parties and halt.

4. Upon receiving a message (propose, v⃗) from A′, where v⃗ ∈ ZN
M , S computes v⃗′ =

v⃗ − Jm⃗cKA
M (mod M) and sends (propose, 0, v⃗′) to FSOT. Note that this causes Bob

to receive v⃗JcKB
N

as output from FSOT, which is the behaviour of FOT.

5. Upon receiving Alice’s output from FSOT, S doesn’t deliver it.

Indistinguishability

We now prove that no environment is able to distinguish between hybrid and ideal exe-
cutions. We divide this proof in two parts. First, we show that the simulator succeeds
in simulating the protocol, and second, we show that the messages exchanged during the
hybrid and ideal executions are indistinguishable.

Part I: On the Simulation

• The adversary A′ can misbehave in three ways. The first one is to send a message
(propose, v⃗) before receiving a message (chosen), which causes both parties to
receive (invalid input) messages in both worlds (hybrid and ideal). The second
one is to send a message (propose, v⃗) after receiving a message (chosen), but where
v⃗ ̸∈ ZN

M , which again causes both parties to receive (invalid input) messages in
both worlds. The third is to send a message that does not follows the template
(propose, v⃗), which simply does not cause any effect in both worlds.

• The adversary can also interact with the FOT as expected that is, by sending a
message (propose, v⃗) after receiving a message (chosen), where v⃗ ∈ ZN

M . In the
hybrid world, this will cause Alice and Bob to execute an FOT where the selection
index is JcKB

N and the options vector is v⃗. But in the ideal world, S maps v⃗ to v⃗′

and executes FSOT over the inputs JcKB
N , JcKA

N := 0 and v⃗′. This input mapping is
made in order to make the FSOT behave as the FOT does in the hybrid world.

Part II: On the Probability Distributions

• First, we demostrate that the (chosen) message is delivered to Alice if and only
if Bob has sent the message (choose, u), where u ∈ ZN . This obviously happens,
because S relays the message (chosen) if and only if it received (chosen) from FSOT.
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• Second, we demostrate that Bob’s output follows the same distribution regardless
of the world in question, hybrid or ideal. Let it be the case that Bob and Alice
sent the messages (choose, u) and (propose, v⃗), respectively, where u ∈ ZN and
v⃗ ∈ ZN

M . This means that in the hybrid world, Bob will receive the output v⃗u of
FOT(u, v⃗). This also means that in the ideal world, Bob receives the output Jv⃗′cKB

M of
FSOT(JcKN , v⃗′), where JcKA

N = 0, JcKB
N = u and v⃗′ = v⃗ − Jv⃗′cKA

M (mod M). But based
on how the shares of c and the vector v⃗′ are constructed, we know that c = u and
Jv⃗′cKB

M = v⃗c, which implies that Bob also receives v⃗u in the ideal world.

Simulation: Alice Honest and Bob Corrupted

In this scenario, Bob is corrupted, which means that the simulator S can read his input
JcKB

N and his internal state. Like in the last simulation case, S runs an internal copy A′ of
the hybrid-world adversary A, where all the interations between S and A′ are those that
Bob has with other parties(FOT and E). The behaviour of S is described next.

Simulation Description

1. The environment E delivers the input JcKB
N to the simulator S, this action activates

S. Upon its activation, S delivers JcKB
N to A′.

2. Upon receiving a message (invalid input) from FSOT, relay the message to A′ as if
FOT had sent it.

3. Upon receiving a message (choose, u) from A′, relay the message to FSOT.

4. Upon receiving the output Jm⃗cKB
M from FSOT, relay the message to A′ as if FOT had

sent it.

Indistinguishability

We now prove that no environment is able to distinguish between hybrid and ideal execu-
tions in this simulation case. We structure the proof for this simulation case like we did
for the last one.

Part I: On the Simulation

• The adversary A′ can misbehave in two ways. The first one is by sending messages
that do not match the pattern (choose, u), which in both worlds (hybrid and ideal)
does not cause any effect. The second one is by sending a message (choose, u)
where u ̸∈ ZN , which in both worlds causes both parties to receive (invalid input)
messages.
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• The adversary can also interact with FOT as expected, by sending a message (choose, u)
where u ∈ ZN . By simply relaying (choose, u) to FSOT, the simulator S makes the
ideal execution behave exactly the same as the hybrid one.

Part II: On the Probability Distributions

• In the case where the adversary A′ sends a message (choose, u), where u ∈ ZN ,
the behaviour of the protocol will be the same as if A′ had acted honestly and the
environment E had givenA′ the input u. By simply relaying the message (choose, u)
to FSOT, the simulator S is simulating the behavior of E delivering u to A′ and A′

acting honestly. Based on this, we can see that S simulates all the probability
distributions perfectly.

Simulation: Both Alice and Bob are Honest

In this simulation case, the simulator S doesn’t have access to the parties inputs or internal
information. In order to simulate the message transcript, S needs only to run an internal
copy of the protocol using arbitrary inputs. Regarding the outputs, S just lets the ideal
functionality FSOT deliver the prescribed outputs to Alice and Bob. By acting in this way,
S makes hybrid and ideal executions perfectly indistinguishable from each other, when
the adversary acts passively.

Simulation: Both Alice and Bob are Corrupted

In this scenario both parties are corrupted, which means that the simulator S has access
to the internal state of both parties, including their input and randomness. This implies
that S can completely and perfectly simulate the protocol. Therefore, no envionment E
will be able to distinguish between the hybrid and ideal executions.

3.2 Elementwise Equality*

Let a, b ∈ ZN be inputs shared by Alice and Bob, that is, Alice has JaKA
N and JbKA

N

and Bob has JaKB
N and JbKB

N . In this section we define two slightly different functions for
determining equality:

EEQ(a, b) =

1 if a = b

0 if a ̸= b
and EEQ∗(a, b) =

0 if a = b

i ̸= 0 if a ̸= b
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Here i is some integer, 0 < i < M , with M some protocol parameter. We first
present a protocol for evaluating EEQ∗, whereas in the next section we will show how EEQ
can be obtained from EEQ∗ in a straightforward way. Below we present the functionality
corresponding to computing the function EEQ∗. Please note that the modulus of the shared
inputs and of the shared output are different.

Functionality: (JcKA
M , JcKB

M)← FEEQ∗
N,M

(JaKA
N , JbKA

N)(JaKB
N , JbKB

N)

Let N ≥ 2 and M > ⌈log2(N)⌉ be integers. The functionality FEEQ∗
ℓ

runs with
the parties Alice and Bob, and is parameterized by N and M .

• Input: Upon receiving a message from a party containing its shares of JaKN

and JbKN , check if both shares belong to ZN . If one of them does not belong,
abort. Otherwise, record the shares, ignore any subsequent message from that
party and inform the other parties about the receival.

• Output: Upon receiving the shares of both parties, compute JdKN , where
JdKN = JaKN − JbKN . After computing JdKN , set c as the Hamming distance
between JdKA

N and JdKB
N . Then, return to Alice and Bob their respective shares

of JcKM . Note that c = 0 if a = b and 1 ≤ c ≤ ⌈log2(N)⌉, otherwise.

With FEEQ∗
N,M

now formally defined, we show that building a protocol for EEQ∗ is
quite easy when using Shared OTs and elementary local operation over shared elements.
The intuition behind the protocol is the following. Let JdKN = JaKN − JbKN . Since d = 0
iff JdKA

N = JdKB
N , we can just privately compute h, the Hamming distance between the

binary representations of JdKA
N and JdKB

N to obtain the desired output as specified by the
functionality, given that d = 0 iff a = b and that h = 0 iff JdKA

N = JdKB
N . The value of h is

obtained by computing the weight of the bitwise xor of JdKA
N and JdKB

N , which implies that
the underlying modulus must be changed from 2 to M > ⌈lg N⌉ to perform this addition.

Protocol: (JcKA
M , JcKB

M)← ΠEEQ∗
N,M

(JaKA
N , JbKA

N)(JaKB
N , JbKB

N)

Set ℓ = ⌈lg N⌉.

1. Party X ∈ {A, B} locally computes JdKX
N = JaKX

N − JbKX
N (mod N)

2. Alice locally computes the binary expansion u⃗ ∈ Zℓ
2 of JdKA

N .

3. Bob locally computes the binary expansion v⃗ ∈ Zℓ
2 of JdKB

N .



3.2. Elementwise Equality* 35

4. Party X ∈ {A, B} locally computes Jx⃗iKX
2 = Ju⃗iKX

2 ⊕ Jv⃗iKX
2 , for 0 ≤ i ≤ ℓ− 1.

5. Execute Jx⃗iKM ← FSOT2
M

((0, 1), Jx⃗iK2), for 0 ≤ i ≤ ℓ − 1. (Converts Jx⃗iK2 to
Jx⃗iKM)

6. Party X ∈ {A, B} locally computes JcKX
M = ∑ℓ−1

i=0JxiKX
M (mod M). (c is the

Hamming distance between JdKA
N and JdKB

N)

Next, in order to help the reader assimilate the protocol just presented, we give an
example of a particular execution of ΠEEQ∗

N,M
. We go through every step of the protocol

and show what values would be attributed to each variable involved in its execution.

Example: (J1KA
5 , J1KB

5 )← ΠEEQ∗
10,5

(5, 2)(2, 5)

Let N = 10, M = 5 and, (JaKA
10, JbKA

10) = (5, 2) and (JaKB
10, JbKB

10) = (2, 5) be
Alice and Bob’s inputs, respectively. Note that this implies a = JaKB

10 − JaKA
10 = 7

(mod 10), b = JbKB
10 − JbKA

10 = 3 (mod 10).

1. Alice and Bob locally compute JdKA
10 = J4KA

10 = 3 and JdKB
10 = J4KB

10 = 7, respec-
tively.

2. Alice locally computes the binary expansion u⃗ = (0, 0, 1, 1) of JdKA
10 = 3.

3. Bob locally computes the binary expansion v⃗ = (0, 1, 1, 1) of JdKB
10 = 7.

4. Alice and Bob locally compute Jx⃗KA
2 = u⃗ = (0, 0, 1, 1) and Jx⃗KB

2 = v⃗ = (0, 1, 1, 1),
respectively. This implies that x⃗ = (0, 1, 0, 0).

5. Alice and Bob perform the following 4 SOTs:

• Jx⃗0K5 ← FSOT2
5
((0, 1), Jx⃗0K2), where x⃗0 = 0.

• Jx⃗1K5 ← FSOT2
5
((0, 1), Jx⃗1K2), where x⃗1 = 1.

• Jx⃗2K5 ← FSOT2
5
((0, 1), Jx⃗2K2), where x⃗2 = 0.

• Jx⃗3K5 ← FSOT2
5
((0, 1), Jx⃗3K2), where x⃗3 = 0.

6. Alice and Bob locally compute shares of JcK5 = ∑3
i=0Jx⃗iK5 = J1K5.

Theorem 1. Protocol ΠEEQ∗
N,M

is correct and securely implements the functionality FEEQ∗
N,M

against semi-honest adversaries in the commodity-based model.
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Proof. Correctness: From the definition of ΠEEQ∗ , we know that u⃗ and v⃗ are the binary
expansion of JdKA

N and JdKA
N , respectively, and that x⃗i = u⃗i⊕ v⃗i for 0 ≤ i ≤ ℓ−1. Based on

this, we have that the value of c, computed on step 6, is the Hamming distance between
JdKA

N and JdKB
N . Thus, ΠEEQ∗ is correct.

Security: The simulation is very simple and proceeds as follows. The simulator S
runs internally a copy of the adversary A and reproduces the real world protocol execution
perfectly forA. In order to do this, S simulates the protocol execution with dummy inputs
for the uncorrupted parties. The simulator’s leverage over A and E is the fact that S
can perfectly simulate the outputs of a FSOTN

M
, since its outputs distributions are known.

Considering this, it is clear that we can simulate the message exchanges that happen
during the protocol, for any of the two parties. Now regarding the protocol’s output,
by the end of the protocol’s simulation, S will have the corrupted party’s shares of JaKN

and JbKN , which means S can fix these values in FEEQ∗
N,M

. This will make the protocol’s
output compatible with the inputs chosen by E . Based on this, we can conclude that no
enviroment E can distinguish the real and ideal worlds.

Note that the only interaction in ΠEEQ∗
N,M

takes place in Step 5. We can replace
this interaction by another one that can be perfomed in advance during a preprocessing
phase by implementing a randomized SOT2

M . But in this case, some additional care must
be taken in order to use the random values, computed during the preprocessing phase,
to convert Jx⃗iK2 to Jx⃗iKM . This conversion is done on steps 7 through 9 of the following
protocol.

Protocol: (JcKA
M , JcKB

M)← ΠPEEQ∗
N,M

(JaKA
N , JbKA

N)(JaKB
N , JbKB

N)

Set ℓ = ⌈lg N⌉.

1. Party X ∈ {A, B} locally samples Jr⃗iKX
2 ∈R Z2, for 0 ≤ i ≤ ℓ− 1.

2. Execute Jr⃗iKM ← FSOT2
M

((0, 1), Jr⃗iK2), for 0 ≤ i ≤ ℓ− 1. (Convert Jr⃗iK2 to Jr⃗iKM)

3. Party X ∈ {A, B} locally computes JdKX
N = JaKX

N − JbKX
N (mod N)

4. Alice locally computes the binary expansion u⃗ ∈ Zℓ
2 of JdKA

N .

5. Bob locally computes the binary expansion v⃗ ∈ Zℓ
2 of JdKB

N .

6. Party X ∈ {A, B} locally computes Jx⃗iKX
2 = Ju⃗iKX

2 ⊕ Jv⃗iKX
2 , for 0 ≤ i ≤ ℓ− 1.

7. Party X ∈ {A, B} locally computes and reveals Jg⃗iKX
2 = Jx⃗iKX

2 ⊕ Jr⃗iKX
2 , for

0 ≤ i ≤ ℓ− 1. (Reveals g⃗i = x⃗i ⊕ r⃗i)
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8. Alice locally computes Jx⃗iKA
M = Jr⃗iKA

M − 2 · g⃗i · Jr⃗iKA
M (mod M), for 0 ≤ i ≤ ℓ− 1.

(Jx⃗iKA
M = Ju⃗i ⊕ v⃗iKA

M)

9. Bob locally computes Jx⃗iKB
M = g⃗i+Jr⃗iKB

M−2·g⃗i·Jr⃗iKB
M (mod M), for 0 ≤ i ≤ ℓ−1.

(Jx⃗iKB
M = Ju⃗i ⊕ v⃗iKB

M)

10. Party X ∈ {A, B} locally computes JcKX
M = ∑ℓ−1

i=0Jx⃗iKX
M (mod M). (c is the

hamming distance between JdKA
N and JdKB

N)

As we did for ΠEEQ∗
N,M

, we now go on to describe the execution of ΠPEEQ∗
N,M

for a
particular set of arguments. This is done for the same reason an example of an execution
of ΠEEQ∗

N,M
was described in more details.

Example: (J1KA
5 , J1KB

5 )← ΠPEEQ∗
10,5

(5, 2)(2, 5)

Let N = 10, M = 5 and, (JaKA
10, JbKA

10) = (5, 2) and (JaKB
10, JbKB

10) = (2, 5) be
Alice and Bob’s inputs, respectively. Note that this implies a = JaKB

10 − JaKA
10 = 7

(mod 10), b = JbKB
10 − JbKA

10 = 3 (mod 10).

1. Alice and Bob respectively sample:

• Jr⃗0KA
2 = 0, Jr⃗0KB

2 = 0. (Jr⃗0K2 = J0K2)

• Jr⃗1KA
2 = 1, Jr⃗1KB

2 = 0. (Jr⃗1K2 = J1K2)

• Jr⃗2KA
2 = 1, Jr⃗2KB

2 = 1. (Jr⃗2K2 = J0K2)

• Jr⃗3KA
2 = 0, Jr⃗3KB

2 = 1. (Jr⃗3K2 = J1K2)

2. Alice and Bob perform the following 4 SOTs:

• Jr⃗0K5 ← FSOT2
5
((0, 1), Jr⃗0K2). (Jr⃗0K5 = J0K5)

• Jr⃗1K5 ← FSOT2
5
((0, 1), Jr⃗1K2). (Jr⃗1K5 = J1K5)

• Jr⃗2K5 ← FSOT2
5
((0, 1), Jr⃗2K2). (Jr⃗2K5 = J0K5)

• Jr⃗3K5 ← FSOT2
5
((0, 1), Jr⃗3K2). (Jr⃗3K5 = J1K5)

3. Alice and Bob locally compute JdKA
10 = J4KA

10 = 3 and JdKB
10 = J4KB

10 = 7, respec-
tively.

4. Alice locally computes the binary expansion u⃗ = (0, 0, 1, 1) of JdKA
10 = 3.

5. Bob locally computes the binary expansion v⃗ = (0, 1, 1, 1) of JdKB
10 = 7.
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6. Alice and Bob locally compute Jx⃗KA
2 = (0, 0, 1, 1) and Jx⃗KB

2 = (0, 1, 1, 1), respec-
tively. This implies x⃗ = (0, 1, 0, 0).

7. Alice and Bob locally compute and reveal Jg⃗KA
2 = (0, 1, 0, 1) and Jg⃗KB

2 =
(0, 1, 0, 0), respectively. This implies g⃗ = (0, 0, 0, 1).

8. Alice and Bob respectively locally compute:

• Jx⃗0KA
5 = Jr⃗0KA

5 − 2 · 0 · Jr⃗0KA
5 = Jr⃗0KA

5

• Jx⃗1KA
5 = Jr⃗1KA

5 − 2 · 0 · Jr⃗1KA
5 = Jr⃗1KA

5

• Jx⃗2KA
5 = Jr⃗2KA

5 − 2 · 0 · Jr⃗2KA
5 = Jr⃗2KA

5

• Jx⃗3KA
5 = Jr⃗3KA

5 − 2 · 1 · Jr⃗3KA
5 = −Jr⃗3KA

5

• Jx⃗0KB
5 = 0 + Jr⃗0KB

5 − 2 · 0 · Jr⃗0KB
5 = Jr⃗0KB

5

• Jx⃗1KB
5 = 0 + Jr⃗1KB

5 − 2 · 0 · Jr⃗1KB
5 = Jr⃗1KB

5

• Jx⃗2KB
5 = 0 + Jr⃗2KB

5 − 2 · 0 · Jr⃗2KB
5 = Jr⃗2KB

5

• Jx⃗3KB
5 = 1 + Jr⃗3KB

5 − 2 · 1 · Jr⃗3KB
5 = 1− Jr⃗3KB

5 = 0− Jr⃗3KA
5

9. Alice and Bob locally compute shares of JcK5 = J1K5.

Theorem 2. Protocol ΠPEEQ∗
N,M

is correct and securely implements the functionality FEEQ∗
N,M

against semi-honest adversaries in the commodity-based model.

Proof. Correctness: From step 3 through 5 of the protocol’s definition, we can see that
u⃗ and v⃗ are the binary expasion of JdKA

N and JdKA
N , respectively. From step 6 through 7,

we can also see that Jx⃗iK2 = Ju⃗i ⊕ v⃗iK2 and Jg⃗iK2 = Jx⃗i ⊕ r⃗iK2, for 0 ≤ i ≤ ℓ − 1. Based
on this and step 8, we have that Jx⃗iKM = Jg⃗i + r⃗i − 2 · g⃗i · r⃗iKM = Jg⃗i ⊕ r⃗iKM = Jx⃗iKM for
0 ≤ i ≤ ℓ−1. Given this and step 10, we can see that c is the Hamming distance between
JdKA

N and JdKB
N . Thus, protocol ΠPEEQ∗ is correct.

Security: The reasoning behind the security proof for this protocol is very similar
to the previous proof. The only difference is the levarage that the simulator has over A
and E . In the case of ΠEEQ∗

N,M
, the leverage the simulator has over A and E is its capacity

to perfectly simulate the FSOTN
M

’s outputs, because the distribution of the outputs is always
the same. In the case of ΠPEEQ∗ , the simulator is also capable of perfectly simulating the
outputs of the FSOTN

M
s, also for the same reasoning, but in this case, the simulator can

leverage the fact that it will always know the distribution for the values of d⃗, the vector
revealed in the 8th step.
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3.3 Elementwise Equality

We now address secure evaluation of the function EEQ. First we present its func-
tionality. Observe that the output modulus M always equals 2, and is therefore omitted
from the notation.

Functionality: (JcKA
2 , JcKB

2 )← FEEQN
(JaKA

N , JbKA
N)(JaKB

N , JbKB
N)

The functionality FEEQN
runs with the parties Alice and Bob, and is parame-

terized by an integer N ≥ 2.

• Input: Upon receiving a message from a party containing its shares of JaKN

and JbKN , check if both shares belong to ZN . If one of them does not belong,
abort. Otherwise, record the shares, ignore any subsequent message from that
party and inform the other parties about the receival.

• Output: Upon receiving both parties shares, reconstruct a and b. After recon-
struction, set c = 1 if a = b, otherwise set c = 0. Then, return to Alice and Bob
their respective shares of JcK2.

Note that EEQ can be obtained from EEQ∗ followed remapping the possible outputs
as follows: 0 maps to 1; any value greater than 0 maps to 0. This remapping is imple-
mented by a randomized 1-out-of-N OT with choice vector m⃗ = (1, 0, . . . , 0) and choice
value c. In our notation this corresponds to a call to SOTM

2 with inputs OneM(0) and h,
where M = ℓ + 1 and h represents the output of EEQ∗(a, b).

Protocol: (JcKA
2 , JcKB

2 )← ΠEEQN
(JaKA

N , JbKA
N)(JaKB

N , JbKB
N)

Set ℓ = ⌈lg N⌉.

1. JhKℓ+1 ← ΠEEQ∗
N,ℓ+1

(JaKN , JbKN). (h = 0 ⇐⇒ a = b)

2. Execute JcK2 = FSOTℓ+1
2

(Oneℓ+1(0), JhKℓ+1). (c = 1 if h = 0, otherwise c = 0)

Protocol: (JcKA
2 , JcKB

2 )← ΠPEEQN
(JaKA

N , JbKA
N)(JaKB

N , JbKB
N)
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Set ℓ = ⌈lg N⌉.

1. JhKℓ+1 ← ΠPEEQ∗
N,ℓ+1

(JaKN , JbKN). (h = 0 ⇐⇒ a = b)

2. Execute JcK2 = FSOTℓ+1
2

(Oneℓ+1(0), JhKℓ+1). (c = 1 if h = 0, otherwise c = 0)

Next, we instantiate ΠEEQN
for a particular set of arguments and go through its two

steps showing the values of the variables contained in the protocol’s description. Since the
only difference between ΠEEQN

and ΠPEEQN
is the equality star protocol used in their first

steps, the same execution example is virtually interchangeable for these two protocols.

Example: (J0KA
2 , J0KB

2 )← ΠEEQ8(5, 2)(2, 5)

Let N = 8 and, (JaKA
N , JbKA

N) = (5, 2) and (JaKB
N , JbKB

N) = (2, 5) be Alice and
Bob’s inputs, respectively. Note that this implies a = JaKB

8 − JaKA
8 = 7 (mod 8),

b = JbKB
8 − JbKA

8 = 3 (mod 8) and ℓ = 3.

1. Alice and Bob execute J1K4 ← ΠEEQ∗
8,4

(J7K8, J3K8).

2. Alice and Bob execute J0K2 = FSOT4
2
((1, 0, 0, 0), J1K4).

Theorem 3. Protocol ΠEEQN
is correct and securely implements the functionality FEEQN

against semi-honest adversaries in the commodity-based model.

Proof. Correctness: The correctness of this protocol follows directly from the correctness
of ΠEEQ∗

N,M
and the fact that we will have c = 1 iff h = 0.

Security: By making some small alterations to the security proof of ΠEEQ∗
N,M

, we
can also prove the security of the protocol ΠEEQN

. In the case of ΠEEQ∗
N,M

, the leverage
the simulator has over A and E is its capacity to perfectly simulate the FSOTN

M
’s outputs,

because the distribution of the outputs is always the same. In the case of ΠEEQN
, the

simulator has higher leverage over the A and E , because it cannot only perfectly simulate
the outputs of FSOTN

M
s but also perfectly simulate the output of the protocol used to

instantiate FEEQ∗
NM

, since the distribution of the output values is always known.

Theorem 4. Protocol ΠPEEQN
is correct and securely implements the functionality FEEQN

against semi-honest adversaries in the commodity-based model.

Proof. Correctness and Security: The same ideas used prove ΠEEQ∗
N,M

’s correctness
and security apply to the correctness and security of ΠPEEQN

.
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3.4 Bitwise Integer Comparison

Another important task, usually perfomed as part of some other task, is the com-
parison of two secret shared elements, a and b.

BLT(a, b) =

1 if a < b

0 if a ≥ b

Note that a and b can be shared as elements modulo some integer N , or the bits of
their binary representation can be shared modulo 2. Here we consider the second alter-
native. This leads to the following formal definition for the private bitwise comparison
functionality FBLTℓ

.

Functionality: (JcKA
2 , JcKB

2 )← FBLTℓ
(J⃗aKA

2 , J⃗bKA
2 )(J⃗aKB

2 , J⃗bKB
2 )

FBLTℓ
runs with the parties Alice and Bob, and is parametrized by the length

ℓ of the bit arrays being compared.

• Input: Upon receiving a message from a party with its shares of J⃗aK2 and J⃗bK2,
check if the shares of a⃗ and b⃗ are both in Zℓ

2. If one of them is not, abort.
Otherwise, record the shares, ignore any subsequent message from that party
and inform the other parties about the receipt.

• Output: Upon receiving the shares of both parties, reconstruct a⃗ and b⃗. After
reconstruction, perform the bitwise comparison of a⃗ and b⃗, and set c = 1 if a⃗ < b⃗,
otherwise set c = 0. Then, return shares of JcK2 to Alice and Bob.

Using Shared OTs and the previously described protocols ΠPEEQ∗ and ΠEEQ∗ , we
present two protocols which implement FBLTℓ

, which we denote by ΠBLTℓ
and ΠPBLTℓ

. But
first we give an intuitive explanation for the idea behind the protocols proposed in this
section, which is to use Shared OTs to privatly compute the following boolean expression:

c = (
ℓ−1⊕
i=0

b⃗i ∧ s⃗i)⊕ (
ℓ−2⊕
i=0

b⃗i ∧ s⃗i+1)

This idea is inspired by the comparision protocol proposed in [9], with adjustments to
take advantage of our SOT primitive.

In order to intuitively understand why the previously described Boolean expression
computes the comparison we desire, we must first accurately define s⃗ and understand its
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behaviour when a⃗ = b⃗ and when a⃗ ̸= b⃗. We define s⃗ in the following way:

s⃗i =
ℓ−1∨
j=i

a⃗j ⊕ b⃗j, for i ∈ {0, 1, . . . , ℓ− 1}

The behaviour of s⃗ is easy to predict when a⃗ = b⃗, since in this case we have a⃗i⊕ b⃗i =
0 for i ∈ {0, 1, . . . , ℓ− 1}. This means that if a⃗ = b⃗, then s⃗i = 0, for i ∈ {0, 1, . . . , ℓ− 1}.
Lets now consider the case where a⃗ ̸= b⃗. Since a⃗ ̸= b⃗, there exists exactly one most
significant bit position k where a⃗i⊕ b⃗i = 1 (where bits a⃗i and b⃗i are different). In turn we
can divide s⃗ in three sections based on k, which allows us to understand the behaviour
of s⃗ when a⃗ ̸= b⃗. These three sections of s⃗ are: between 0 and k − 1, between k + 1 and
ℓ− 1 and the element s⃗k. We can now analyze every section separately.

Let us start with the section between k + 1 and ℓ− 1, the most significant of the
three. Since k is the position of the most significant pair of bits where a⃗i ⊕ b⃗i = 1, we
know that a⃗j ⊕ b⃗j = 0, for j ∈ {k + 1, . . . , ℓ− 1}. Based on the definition of s⃗, we can see
that s⃗i = 0 for i ∈ {k + 1, . . . , ℓ − 1}, which means that all positions of s⃗ between k + 1
and ℓ − 1 contain only 0s. Now, let us focus on the section that only contains s⃗k. Since
a⃗k ⊕ b⃗k = 1 and based on the definition of s⃗, it is obvious that s⃗k = 1. Now, let us study
the behaviour of the last section of the vector s⃗, the section between 0 and k − 1. Let us
first rewrite the definition of s⃗ in the following way, for i ∈ {0, 1, . . . , k − 1}:

s⃗i = (
k−1∨
i=0

a⃗i ⊕ b⃗i) ∨ (⃗ak ⊕ b⃗k) ∨ (
ℓ−1∨

i=k+1
a⃗i ⊕ b⃗i), for i ∈ {0, 1, . . . , k − 1}

Since a⃗k ⊕ b⃗k = 1, we can see that s⃗i = 1, for i ∈ {0, 1, . . . , k − 1}. Based on the
behaviour of these three analyzed sections, we can conclude that the vector s⃗ will look
the following way, when a⃗ ̸= b⃗:

Figure 3.2: The three sections of vector s⃗.

Source: Created by author.

Now, still assuming that a⃗ ̸= b⃗, we proceed to explain how this behaviour of s⃗

leads to the correctness of the Boolean expression that defines c. In order to do this, we
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need to first define four more vectors, s⃗′, y⃗, y⃗′, z⃗ ∈ Zℓ
2. These vectors are formally defined

in the following way:

s⃗′ℓ−1 = 0; s⃗′i = s⃗i+1, for ∈ {0, 1, . . . , ℓ− 2}

y⃗i = s⃗i ∧ b⃗i, for ∈ {0, 1, . . . , ℓ− 1}

y⃗′i = s⃗′i ∧ b⃗i, for ∈ {0, 1, . . . , ℓ− 1}

z⃗i = y⃗i ⊕ y⃗′i, for ∈ {0, 1, . . . , ℓ− 1}

It is important to note one particular fact about z⃗. The vector z⃗ contains the
value of b⃗k in exactly one of its positions and 0s in all others. The reason for this can be
understood by visualizing what the vectors s⃗, s⃗′, y⃗, y⃗′ look like. In the following diagram
we show these four vectors, plus the vector z⃗, in order to make the reasoning completely
clear.

Figure 3.3: Relationship between vectors s⃗,s⃗′,y⃗,y⃗′ and z⃗.

Source: Created by author.

Based on this important fact about z, we can also conclude that ⊕ℓ−1
i=0 z⃗i = b⃗k.

This means that if a⃗ ̸= b⃗, then ⊕ℓ−1
i=0 z⃗ = b⃗k. Since k is the position of the most significant

pair of bits where a⃗i ⊕ b⃗i = 1 (where a⃗i ̸= b⃗i), we know that if a⃗ ̸= b⃗, then b⃗k = ⊕ℓ−1
i=0 z⃗ =

1 ⇐⇒ b > a. Thus, assuming a⃗ ̸= b⃗, ⊕ℓ−1
i=0 z⃗ = 1 ⇐⇒ b > a. It turns out that if we
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simply expand the equation ⊕ℓ−1
i=0 z⃗i and rearrange this expanded equation, we have

ℓ−1⊕
i=0

z⃗i =
ℓ−1⊕
i=0

y⃗i ⊕ y⃗′i (3.1)

=
ℓ−1⊕
i=0

y⃗i ⊕
ℓ−1⊕
i=0

y⃗′i (3.2)

= (
ℓ−1⊕
i=0

s⃗i ∧ b⃗i)⊕ (
ℓ−1⊕
i=0

s⃗′i ∧ b⃗i) (3.3)

= (
ℓ−1⊕
i=0

s⃗i ∧ b⃗i)⊕ (
ℓ−2⊕
i=0

s⃗′i ∧ b⃗i) (3.4)

= (
ℓ−1⊕
i=0

s⃗i ∧ b⃗i)⊕ (
ℓ−2⊕
i=0

s⃗i+1 ∧ b⃗i) (3.5)

= c (3.6)

Because of this, we can conclude that if a⃗ ̸= b⃗, then c = 1 ⇐⇒ b > a. Now we just need
to show that c = 0 if a⃗ = b⃗, in order to see that the Boolean expression that defines c is
correct. But since we already saw that s⃗i = 0 if a⃗ = b⃗, for i ∈ {0, 1, . . . , ℓ− 1}, it is easy
to analyze the Boolean expresion that defines c and realize that c = 0 if a⃗ = b⃗. Therefore,
we can see that c = 1 ⇐⇒ b > a, which means that the expression that defines c behaves
in the way it is suppose to.

The two protocols proposed in this section simply use SOTs in order to compute
the Boolean expression that defines c. Comments have been added to the description of
the protocols in order to make the relation between every line of the protocol and the
Boolean expression that we want to compute clearer. As in the last section, we present
two protocols, one without preprocessing, and one with preprocessing. The only difference
is how they instantiate the functionality FEEQ∗ , one uses ΠEEQ∗ and the other uses ΠPEEQ∗ .

Protocol: (JcKA
2 , JcKB

2 )← ΠBLTℓ
(J⃗aKA

2 , J⃗bKA
2 )(J⃗aKB

2 , J⃗bKB
2 )

Let λ = 2(ℓ′ + 1), where ℓ′ is the amount of bits necessary to represent an
element of Zℓ+1.

1. Execute Jx⃗iKℓ+1 ← FSOT2
ℓ+1

((0, 1), J⃗ai + b⃗iK2), for 0 ≤ i ≤ ℓ− 1. (x⃗i = a⃗i ⊕ b⃗i)

2. Execute Jβ⃗iKλ ← FSOT2
λ
((0, λ

2 ), J⃗biK2), for 0 ≤ i ≤ ℓ− 1. (β⃗i ∈ {0, λ
2}; β⃗i = b⃗i · λ

2 )

3. Locally compute Js⃗iKℓ+1 = ∑ℓ−1
j=iJx⃗jKℓ+1, for 0 ≤ i ≤ ℓ − 1. (0 ≤ s⃗i ≤ ℓ;

s⃗i > 0 ⇐⇒ ∨ℓ−1
j=i x⃗j)

4. Execute J⃗hiKλ ← ΠEEQ∗
ℓ+1,λ

(Js⃗iKℓ+1, J0Kℓ+1), for 0 ≤ i ≤ ℓ − 1. (0 ≤ h⃗i ≤ ℓ′;
h⃗i > 0 ⇐⇒ s⃗i > 0 ⇐⇒ ∨ℓ−1

j=i x⃗j)
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5. Locally compute J⃗tiKλ = J⃗hiKλ + Jβ⃗iKλ, for 0 ≤ i ≤ ℓ− 1. (0 ≤ h⃗i ≤ ℓ′; β⃗i = b⃗i · λ
2 ;

t⃗i = h⃗i + β⃗i > λ
2 ⇐⇒ h⃗i > 0 ∧ β⃗i = λ

2 ⇐⇒ b⃗i ∧
∨ℓ−1

j=i x⃗j)

6. Locally compute Jq⃗iKλ = J⃗hi+1Kλ + Jβ⃗iKλ, for 0 ≤ i ≤ ℓ − 2. (q⃗i = h⃗i+1 + β⃗i >
λ
2 ⇐⇒ b⃗i ∧

∨ℓ−1
j=i+1 x⃗j)

7. Execute Jd⃗iK2 ← FSOTλ
2
(Oneλ(λ

2 + 1, λ
2 − 1), J⃗tiKλ), for 0 ≤ i ≤ ℓ − 1. (d⃗i = [⃗ti >

λ
2 ] = b⃗i ∧

∨ℓ−1
j=i x⃗j)

8. Execute Je⃗iK2 ← FSOTλ
2
(Oneλ(λ

2 + 1, λ
2 − 1), Jq⃗iKλ), for 0 ≤ i ≤ ℓ − 2. (e⃗i = [q⃗i >

λ
2 ] = b⃗i ∧

∨ℓ−1
j=i+1 x⃗j)

9. Locally compute JcK2 = ∑ℓ−1
i=0Jd⃗iK2 + ∑ℓ−2

i=0Je⃗iK2. (c = ⊕ℓ−1
i=0 d⃗i ⊕

⊕ℓ−2
i=0 e⃗i)

Protocol: (JcKA
2 , JcKB

2 )← ΠPBLTℓ
(J⃗aKA

2 , J⃗bKA
2 )(J⃗aKB

2 , J⃗bKB
2 )

Let λ = 2(ℓ′ + 1), where ℓ′ is the amount of bits necessary to represent an
element of Zℓ+1.

1. Execute Jx⃗iKℓ+1 ← FSOT2
ℓ+1

((0, 1), J⃗ai + b⃗iK2), for 0 ≤ i ≤ ℓ− 1. (x⃗i = a⃗i ⊕ b⃗i)

2. Execute Jβ⃗iKλ ← FSOT2
λ
((0, λ

2 ), J⃗biK2), for 0 ≤ i ≤ ℓ − 1. (β⃗i = λ
2 if b⃗i = 1 and

β = 0, otherwise)

3. Locally compute Js⃗iKℓ+1 = ∑ℓ−1
j=iJx⃗jKℓ+1, for 0 ≤ i ≤ ℓ− 1.

4. J⃗hiKλ ← ΠPEEQ∗
ℓ+1,λ

(Js⃗iKℓ+1, J0Kℓ+1), for 0 ≤ i ≤ ℓ − 1. (⃗hi = 0 ⇐⇒ s⃗i = 0 ⇐⇒
¬∨ℓ−1

j=i x⃗j)

5. Locally compute J⃗tiKλ = J⃗hiKλ+Jβ⃗iKλ, for 0 ≤ i ≤ ℓ−1. (⃗ti > λ
2 ⇐⇒ b⃗i∧

∨ℓ−1
j=i x⃗j)

6. Locally compute Jq⃗iKλ = J⃗hi+1Kλ + Jβ⃗iKλ, for 0 ≤ i ≤ ℓ − 2. (q⃗i > λ
2 ⇐⇒

b⃗i ∧
∨ℓ−1

j=i+1 x⃗j)

7. Execute Jd⃗iK2 ← FSOTλ
2
(Oneλ(λ

2 + 1, λ
2 − 1), J⃗tiKλ), for 0 ≤ i ≤ ℓ − 1. (d⃗i = [⃗ti >

λ
2 ] = b⃗i ∧

∨ℓ−1
j=i x⃗j)

8. Execute Je⃗iK2 ← FSOTλ
2
(Oneλ(λ

2 + 1, λ
2 − 1), Jq⃗iKλ), for 0 ≤ i ≤ ℓ − 2. (e⃗i = [q⃗i >

λ
2 ] = b⃗i ∧

∨ℓ−1
j=i+1 x⃗j)

9. Locally compute JcK2 = ∑ℓ−1
i=0Jd⃗iK2 + ∑ℓ−2

i=0Je⃗iK2. (c = ⊕ℓ−1
i=0 d⃗i ⊕

⊕ℓ−2
i=0 e⃗i)
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As we have done for the equality protols, we now describe an execution of ΠBLTℓ
in

detail to help the reader better understand how the comparison protocol behaves. We only
provide an example for ΠBLTℓ

because the execution of ΠPBLTℓ
using the same arguments

would be really similar. After providing the description of execution for ΠBLTℓ
, we move

on to prove the correctness and security of both ΠBLTℓ
and ΠPBLTℓ

.

Example: (J0KA
2 , J0KB

2 ) ← ΠBLT8(J⃗aKA
2 , J⃗bKA

2 )(J⃗aKB
2 , J⃗bKB

2 ), where a⃗ = (1, 0, 1) and
b⃗ = (0, 1, 1)

This implies ℓ = 3, ℓ′ = 2 and λ = 6. Also, note that a⃗ and b⃗ are the binary
expansions of 5 and 3, respectively.

1. Alice and Bob perform the following 3 SOTs:

• Jx⃗0K4 ← FSOT2
4
((0, 1), J0K2). (x⃗0 = 0)

• Jx⃗1K4 ← FSOT2
4
((0, 1), J1K2). (x⃗1 = 1)

• Jx⃗2K4 ← FSOT2
4
((0, 1), J1K2). (x⃗2 = 1)

2. Alice and Bob perform the following 3 SOTs:

• Jβ⃗0K6 ← FSOT2
6
((0, 3), J1K2). (β⃗0 = 3)

• Jβ⃗1K6 ← FSOT2
6
((0, 3), J1K2). (β⃗1 = 3)

• Jβ⃗2K6 ← FSOT2
6
((0, 3), J0K2). (β⃗2 = 0)

3. Alice and Bob compute their respective shares of the following 3 shared values:

• Js⃗0K4 = ∑2
j=0Jx⃗jK4 = J0K4 + J1K4 + J1K4 = J2K4

• Js⃗1K4 = ∑2
j=1Jx⃗jK4 = J1K4 + J1K4 = J2K4

• Js⃗2K4 = ∑2
j=2Jx⃗jK4 = J1K4

4. Alice and Bob execute ΠEEQ∗
4,6

three times:

• J⃗h0K6 ← ΠEEQ∗
4,6

(J2K4, J0K4). (1 ≤ h⃗0 ≤ 2)

• J⃗h1K6 ← ΠEEQ∗
4,6

(J2K4, J0K4). (1 ≤ h⃗1 ≤ 2)

• J⃗h2K6 ← ΠEEQ∗
4,6

(J1K4, J0K4). (1 ≤ h⃗2 ≤ 2)

5. Alice and Bob compute their respective shares of the following 3 shared values:

• J⃗t0K6 = J⃗h0K6 + Jβ⃗0K6 = J⃗h0K6 + J3K6. (4 ≤ t⃗0 ≤ 5)

• J⃗t1K6 = J⃗h1K6 + Jβ⃗1K6 = J⃗h1K6 + J3K6. (4 ≤ t⃗1 ≤ 5)
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• J⃗t2K6 = J⃗h2K6 + Jβ⃗2K6 = J⃗h2K6. (1 ≤ t⃗2 ≤ 2)

6. Alice and Bob compute their respective shares of the following 2 shared values:

• Jq⃗0K6 = J⃗h1K6 + Jβ⃗0K6 = J⃗h1K6 + J3K6. (4 ≤ q⃗0 ≤ 5)

• Jq⃗1K6 = J⃗h2K6 + Jβ⃗1K6 = J⃗h2K6 + J3K6. (4 ≤ q⃗1 ≤ 5)

7. Alice and Bob perform the following 3 SOTs:

• Jd⃗0K2 ← FSOT6
2
((0, 0, 0, 0, 1, 1), J⃗t0K6). (d⃗0 = 1)

• Jd⃗1K2 ← FSOT6
2
((0, 0, 0, 0, 1, 1), J⃗t1K6). (d⃗1 = 1)

• Jd⃗2K2 ← FSOT6
2
((0, 0, 0, 0, 1, 1), J⃗t2K6). (d⃗2 = 0)

8. Alice and Bob perform the following 2 SOTs:

• Je⃗0K2 ← FSOT6
2
((0, 0, 0, 0, 1, 1), Jq⃗0K6). (e⃗0 = 1)

• Je⃗1K2 ← FSOT6
2
((0, 0, 0, 0, 1, 1), Jq⃗1K6). (e⃗1 = 1)

9. Alice and Bob compute their respective shares of the following shared value:

• JcK2 = ∑2
i=0Jd⃗iK2 + ∑1

i=0Je⃗iK2 = (J1K2 + J1K2 + J0K2) + (J1K2 + J1K2) = J0K2

Theorem 5. Protocol ΠBLTℓ
is correct and securely implements the functionality FBLTℓ

against semi-honest adversaries in the commodity-based model.

Proof. Correctness: First, it is important to note the behaviour of variables x⃗, β⃗, d⃗, e⃗

and c. It is straightfoward to see that they respect the following equations:

xi = ai ⊕ bi, for 0 ≤ i ≤ ℓ− 1

βi = bi ·
λ

2 , for 0 ≤ i ≤ ℓ− 1

d⃗i =

1 if ti ≥ λ
2 + 1

0 otherwise
, for 0 ≤ i ≤ ℓ− 1

e⃗i =

1 if qi ≥ λ
2 + 1

0 otherwise
, for 0 ≤ i ≤ ℓ− 2

c =
ℓ−1⊕
i=0

d⃗i ⊕
ℓ−2⊕
i=0

e⃗i

Now, suppose that a = b. This means si = 0, for 0 ≤ i ≤ ℓ− 1. This implies that
ti < λ

2 + 1 and qj < λ
2 + 1, for 0 ≤ i ≤ ℓ− 1 and 0 ≤ j ≤ ℓ− 2. This leads to the fact that

di = 0 and ej = 0, for 0 ≤ i ≤ ℓ− 1 and 0 ≤ j ≤ ℓ− 2. Therefore, c = 0 if a = b.
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Next, suppose that a ̸= b. This implies the existence of a pair of most significant
bits a⃗k and b⃗k, where a⃗k ̸= b⃗k. For i > k, we have t⃗i, q⃗i < λ

2 +1 and d⃗i = e⃗i = 0, since s⃗i = 0.
For i < k, we have s⃗i, s⃗i+1 ≥ 1, since ak ̸= bk, which implies that ti > λ

2 ⇐⇒ β = λ
2

and qi > λ
2 ⇐⇒ β = λ

2 . This leads to the fact that d⃗i = e⃗i, for i < k. Based on this,
c = d⃗k⊕ e⃗k if k ≤ ℓ− 2 and c = d⃗k, otherwise. But, since s⃗k = 1 and a⃗k ̸= b⃗k, if k ≤ ℓ− 2,
we will have s⃗k+1 = 0, which leads to e⃗k = 0. Thus, c = d⃗k for 0 ≤ k ≤ ℓ− 1, if a ̸= b.

Suppose that a < b. Since a ̸= b, we have c = d⃗k. Because b > a, we have
b⃗k = 1, a⃗k = 0 and s⃗k = 1, implying that d⃗k = 1. This means that c = 1, if a < b.

Suppose that a > b. Since a ̸= b, we have c = d⃗k. Because b < a, we have
b⃗k = 0, a⃗k = 1 and s⃗k = 1, implying that d⃗k = 0. This means that c = 0, if a > b.

This demonstrates that the described protocol will output 1, if a < b and 0,
otherwise.

Security: The same rationale used to prove the security of ΠEEQN
can also be used

to prove the security of ΠBLTℓ
.

Theorem 6. Protocool ΠPBLTℓ
is correct and securely implements the functionality FBLTℓ

against semi-honest adversaries in the commodity-based model.

Proof. Correctness and Security: The same arguments used to prove the correctness
and security of ΠBLTℓ

can be used to prove the correctness and security of ΠPBLTℓ
.

3.5 Bit-Decomposition Protocol

When performing private two-party computations over a shared element β ∈ ZN , it
is often useful to also have access to the binary expansion of β. Therefore, many protocols
perform a task over this shared element β that takes the shares of β as input and outputs
the binary expasion of β as a sequence of shared bits. This task is widely known and
is commonly called Bit-Decomposition. In this section we formally define this task as a
functionality and propose two protocols that implement this functionality.

In the case of the Bit-Decomposition functionality defined by us in this section, we
assume that the input is an element β additively shared modulo 2ℓ and the output is a
sequence of ℓ shared bits, where ℓ ≥ 2. Based on the previously described intuitive un-
derstanding of the Bit-Decomposition task, we formally define the following functionality
FBDℓ

that performs this task:



3.5. Bit-Decomposition Protocol 49

Functionality: (J⃗bKA
2 , J⃗bKB

2 )← FBDℓ
(JβKA

2ℓ)(JβKB
2ℓ)

FBDℓ
runs with the parties Alice and Bob, and is parametrized by ℓ ≥ 2.

• Input: Upon receiving a message from a party with its share of Jβ⃗K2ℓ , check if
its share is contained in Z2ℓ . If it’s not, then abort. Otherwise, record the share,
ignore any subsequent message from that party and inform the other parties
about the receival.

• Output: Upon receiving both parties shares, reconstruct β. After reconstruc-
tion, compute the binary expansion bℓ−1bℓ−2 . . . b0 of β and return to Alice and
Bob there respective shares of Jbℓ−1K2, Jbℓ−2K2 . . . Jb0K2.

With this definition in mind, we now present two protocols which efficiently imple-
ment it. The general idea behind both protocols is the same, which is to take the binary
expansions u, v ∈ Zℓ

2 of JβKB
2ℓ and −JβKA

2ℓ , respectively, and perform binary addition over
u⃗ and v⃗, but ignoring the last carry bit generated when computing the binary addition,
which causes the binary addition result to be the same as that of computing binary ad-
dition modulo 2ℓ. Since the output of the binary addition modulo 2ℓ, performed by the
protocol, is a sequence of shared bits and β = JβKB

2ℓ − JβKA
2ℓ (mod 2ℓ), the output of the

addition is the desired output for the bit-decomposition protocol.
In order to compute the binary addition modulo 2ℓ, we first compute the carry

bit vector c⃗, the vector containing the carry bits generated when computing the binary
addition of u⃗ and v⃗, and then compute b⃗i = u⃗i ⊕ v⃗i ⊕ c⃗i, for 0 ≤ i ≤ ℓ− 1, which will be
the vector containing the binary expansion of β. By writing down the expressions that
define the values of the least significant bits of c⃗ we can easily get to the expression that
defines c⃗ as a whole. The expressions that define the four least significant bits of c⃗ are:

c⃗0 = 0

c⃗1 = u⃗0 ∧ v⃗0

c⃗2 = (u⃗1 ∧ v⃗1)⊕ ((u⃗1 ⊕ v⃗1) ∧ (u⃗0 ∧ v⃗0))

c⃗3 = (u⃗2 ∧ v⃗2)⊕ ((u⃗2 ⊕ v⃗2) ∧ (u⃗1 ∧ v⃗1))⊕ ((u⃗2 ⊕ v⃗2) ∧ (u⃗1 ⊕ v⃗1) ∧ (u⃗0 ∧ v⃗0))

As previously stated, we can analyse these expressions and workout the following
set of Boolean equations that define the carry bit vector c⃗.

c⃗0 = 0 and c⃗i =
i−1⊕
j=0

t⃗i,j, for 1 ≤ i ≤ ℓ− 1
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t⃗i,j = g⃗j ∧
i−1∧

k=j+1
x⃗k, for 0 ≤ j < i ≤ ℓ− 1

g⃗i = u⃗i ∧ v⃗i, for 0 ≤ i ≤ ℓ− 1

x⃗i = u⃗i ⊕ v⃗i, for 0 ≤ i ≤ ℓ− 1

Both these protocols just privately compute the vector c⃗, by using SOTs to evaluate
the previously described Boolean equations, and then finish by computing the vector b⃗.
Note that the only difference between the the two protocols is found in their 4th step. But
the values of t⃗i,j, computed in the protocols 4th step, will be the same in both protocols,
since the protocols differ only in how the values are computed. More specifically, ΠBD uses
SOTs to compute the values of t⃗i,j, while Π′BD uses the functionality FEEQℓ

.

Protocol: (J⃗bKA
2 , J⃗bKB

2 )← ΠBDℓ
(JβKA

2ℓ)(JβKB
2ℓ)

Let v⃗ ∈ Zℓ
2 and u⃗ ∈ Zℓ

2 be the binary expansions of (−JβKA
2ℓ (mod 2ℓ)) and

JβKB
2ℓ , respectively.

1. Execute Jg⃗iKℓ ← FSOT3
ℓ
((0, 0, 1), Ju⃗i + v⃗iK3), for 0 ≤ i ≤ ℓ− 1 (g⃗i = u⃗i ∧ v⃗i).

2. Execute Jx⃗iKℓ ← FSOT2
ℓ
((0, 1), Ju⃗i + v⃗iK2), for 0 ≤ i ≤ ℓ− 1. (x⃗i = u⃗i ⊕ v⃗i)

3. Locally compute J⃗hi,jKℓ ← Jg⃗jKℓ + ∑i−1
k=j+1Jx⃗kKℓ, for 0 ≤ j < i ≤ ℓ − 1. (⃗hi,j =

i− j ⇐⇒ g⃗j ∧
∧i−1

k=j+1 x⃗k)

4. Perform J⃗ti,jK2 ← FSOTℓ
2
(Oneℓ(i− j), J⃗hi,jKℓ), for 0 ≤ j < i ≤ ℓ− 1. (⃗ti,j = 1 ⇐⇒

h⃗i,j = i− j ⇐⇒ g⃗j ∧
∧i−1

k=j+1 x⃗k; t⃗i,j = g⃗j ∧
∧i−1

k=j+1 x⃗k)

5. Let c⃗0 = 0. Locally compute JciK2 = ⊕i−1
j=0J⃗ti,jK2, for 1 ≤ i ≤ ℓ − 1. (c⃗i =⊕i−1

j=0 t⃗i,j)

6. Locally compute JbiK2 = JuiK2 + JviK2 + JciK2, for 0 ≤ i ≤ ℓ−1. (⃗bi = u⃗i⊕ v⃗i⊕ c⃗i)

Protocol: (J⃗bKA
2 , J⃗bKB

2 )← Π′BDℓ
(JβKA

2ℓ)(JβKB
2ℓ)

Let v⃗ ∈ Zℓ
2 and u⃗ ∈ Zℓ

2 be the binary expansions of (−JβKA
2ℓ (mod 2ℓ)) and

JβKB
2ℓ , respectively.

1. Execute Jg⃗iKℓ ← FSOT3
ℓ
((0, 0, 1), Ju⃗i + v⃗iK3), for 0 ≤ i ≤ ℓ− 1. (g⃗i = u⃗i ∧ v⃗i)

2. Execute Jx⃗iKℓ ← FSOT2
ℓ
((0, 1), Ju⃗i + v⃗iK2), for 0 ≤ i ≤ ℓ− 1. (x⃗i = u⃗i ⊕ v⃗i)
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3. Locally compute J⃗hi,jKℓ ← Jg⃗jKℓ + ∑i−1
k=j+1Jx⃗kKℓ, for 0 ≤ j < i ≤ ℓ − 1. (⃗hi,j =

i− j ⇐⇒ g⃗j ∧
∧i−1

k=j+1 x⃗k)

4. Perform J⃗ti,jK2 ← FEEQℓ
(J⃗hi,jKℓ, Ji − jKℓ), for 0 ≤ j < i ≤ ℓ − 1. (⃗ti,j = 1 ⇐⇒

h⃗i,j = i− j ⇐⇒ g⃗j ∧
∧i−1

k=j+1 x⃗k; t⃗i,j = g⃗j ∧
∧i−1

k=j+1 x⃗k)

5. Let c⃗0 = 0. Locally compute JciK2 = ⊕i−1
j=0J⃗ti,jK2, for 1 ≤ i ≤ ℓ − 1. (c⃗i =⊕i−1

j=0 t⃗i,j)

6. Locally compute JbiK2 = JuiK2 + JviK2 + JciK2, for 0 ≤ i ≤ ℓ−1. (⃗bi = u⃗i⊕ v⃗i⊕ c⃗i)

Below we added two examples of executions for the two bit-decomposition protocols
to help the reader better understand how the protocols work.

Example: (J⃗bKA
2 , J⃗bKB

2 )← ΠBD3(5)(5), where b⃗ = (0, 0, 0)

Let ℓ = 3, JβKB
8 = 5 and JβKA

8 = 5. This implies that v⃗ = (0, 1, 1) and
u⃗ = (1, 0, 1).

1. Alice and Bob execute the following 3 SOTs:

• Jg⃗0K3 ← FSOT3
3
((0, 0, 1), J2K3). (g⃗0 = 1)

• Jg⃗1K3 ← FSOT3
3
((0, 0, 1), J1K3). (g⃗1 = 0)

• Jg⃗2K3 ← FSOT3
3
((0, 0, 1), J1K3). (g⃗2 = 0)

2. Alice and Bob execute the following 3 SOTs:

• Jx⃗0K3 ← FSOT2
3
((0, 1), J0K2). (x⃗0 = 0)

• Jx⃗1K3 ← FSOT2
3
((0, 1), J1K2). (x⃗1 = 1)

• Jx⃗2K3 ← FSOT2
3
((0, 1), J1K2). (x⃗2 = 1)

3. Alice and Bob compute their respective shares of the following 3 shared values:

• J⃗h1,0K3 = Jg⃗0K3 + ∑0
k=1Jx⃗kK3 = Jg⃗0K3 = J1K3

• J⃗h2,0K3 = Jg⃗0K3 + ∑1
k=1Jx⃗kK3 = Jg⃗0K3 + Jx⃗1K3 = J2K3

• J⃗h2,1K3 = Jg⃗1K3 + ∑1
k=2Jx⃗kK3 = Jg⃗1K3 = J0K3

4. Alice and Bob compute their respective shares of the following 3 shared values:

• J⃗t1,0K2 ← FSOT3
2
((0, 1, 0), J⃗h1,0K3). (⃗t1,0 = 1)
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• J⃗t2,0K2 ← FSOT3
2
((0, 0, 1), J⃗h2,0K3). (⃗t2,0 = 1)

• J⃗t2,1K2 ← FSOT3
2
((0, 1, 0), J⃗h2,1K3). (⃗t2,1 = 0)

5. Alice and Bob compute their respective shares of the following 3 shared values:

• Jc⃗0K2 = J0K2

• Jc⃗1K2 = ∑0
j=0J⃗t1,jK2 = J⃗t1,0K2 = J1K2

• Jc⃗2K2 = ∑1
j=0J⃗t2,jK2 = J⃗t2,0K2 + J⃗t2,1K2 = J1K2

6. Alice and Bob compute their respective shares of the following 3 shared values:

• J⃗b0K2 = Ju⃗0K2 + Jv⃗0K2 + Jc⃗0K2 = J1K2 + J1K2 + J0K2 = J0K2

• J⃗b1K2 = Ju⃗1K2 + Jv⃗1K2 + Jc⃗1K2 = J0K2 + J1K2 + J1K2 = J0K2

• J⃗b2K2 = Ju⃗2K2 + Jv⃗2K2 + Jc⃗2K2 = J1K2 + J0K2 + J1K2 = J0K2

Example: (J⃗bKA
2 , J⃗bKB

2 )← Π′BD3(5)(5), where b⃗ = (0, 0, 0)

Let ℓ = 3, JβKB
8 = 5 and JβKA

8 = 5. This implies that v⃗ = (0, 1, 1) and
u⃗ = (1, 0, 1).

1. Alice and Bob execute the following 3 SOTs:

• Jg⃗0K3 ← FSOT3
3
((0, 0, 1), J2K3). (g⃗0 = 1)

• Jg⃗1K3 ← FSOT3
3
((0, 0, 1), J1K3). (g⃗1 = 0)

• Jg⃗2K3 ← FSOT3
3
((0, 0, 1), J1K3). (g⃗2 = 0)

2. Alice and Bob execute the following 3 SOTs:

• Jx⃗0K3 ← FSOT2
3
((0, 1), J0K2). (x⃗0 = 0)

• Jx⃗1K3 ← FSOT2
3
((0, 1), J1K2). (x⃗1 = 1)

• Jx⃗2K3 ← FSOT2
3
((0, 1), J1K2). (x⃗2 = 1)

3. Alice and Bob compute their respective shares of the following 3 shared values:

• J⃗h1,0K3 = Jg⃗0K3 + ∑0
k=1Jx⃗kK3 = Jg⃗0K3 = J1K3

• J⃗h2,0K3 = Jg⃗0K3 + ∑1
k=1Jx⃗kK3 = Jg⃗0K3 + Jx⃗1K3 = J2K3

• J⃗h2,1K3 = Jg⃗1K3 + ∑1
k=2Jx⃗kK3 = Jg⃗1K3 = J0K3
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4. Alice and Bob perform FEEQ3 3 times in the following way:

• J⃗t1,0K2 ← FEEQ3(J⃗h1,0K3, J1K3). (⃗t1,0 = 1)

• J⃗t2,0K2 ← FEEQ3(J⃗h2,0K3, J2K3). (⃗t2,0 = 1)

• J⃗t2,1K2 ← FEEQ3(J⃗h2,1K3, J1K3). (⃗t2,1 = 0)

5. Alice and Bob compute their respective shares of the following 3 shared values:

• Jc⃗0K2 = J0K2

• Jc⃗1K2 = ∑0
j=0J⃗t1,jK2 = J⃗t1,0K2 = J1K2

• Jc⃗2K2 = ∑1
j=0J⃗t2,jK2 = J⃗t2,0K2 + J⃗t2,1K2 = J1K2

6. Alice and Bob compute their respective shares of the following 3 shared values:

• J⃗b0K2 = Ju⃗0K2 + Jv⃗0K2 + Jc⃗0K2 = J1K2 + J1K2 + J0K2 = J0K2

• J⃗b1K2 = Ju⃗1K2 + Jv⃗1K2 + Jc⃗1K2 = J0K2 + J1K2 + J1K2 = J0K2

• J⃗b2K2 = Ju⃗2K2 + Jv⃗2K2 + Jc⃗2K2 = J1K2 + J0K2 + J1K2 = J0K2

We now proceed to prove the security and correctness of both protocols, starting
by ΠBD.

Theorem 7. Protocol ΠBDℓ
is correct and securely implements the functionality FBDℓ

against semi-honest adversaries in the commodity-based model.

Proof. Correctness: Let v⃗ ∈ Zℓ
2 and u⃗ ∈ Zℓ

2 be the binary expansions of (−JβKA
2ℓ

(mod 2ℓ)) and JβKB
2ℓ , respectively, and c⃗′ ∈ Zℓ+1

2 be the carry bit vector generated when
computing α = JβKB

2ℓ + (−JβKA
2ℓ (mod 2ℓ)). Based on this, we have α = c⃗ℓ · 2ℓ + ∑ℓ−1

i=0(u⃗i⊕
v⃗i ⊕ c⃗i) · 2i, where clearly c⃗ℓ ∈ {0, 1} and 0 ≤ ∑ℓ−1

i=0(u⃗i ⊕ v⃗i ⊕ c⃗i) · 2i < 2ℓ, which implies
that α ≡ β ≡ ∑ℓ−1

i=0(u⃗i ⊕ v⃗i ⊕ c⃗i) · 2i (mod 2ℓ). This means that b⃗i = u⃗i ⊕ v⃗i ⊕ c⃗i, for
0 ≤ i ≤ ℓ−1, is the binary expansion of β. Thus, if the vector c⃗ computed by the protocol
is equal to c⃗′, from position 0 to position ℓ − 1, then based on step 6 of ΠBD, we can see
that the protocol’s output would in fact be the desired one. Because of this, we proceed
to prove that c⃗i = c⃗′i for 0 ≤ i ≤ ℓ− 1.

The set of Boolean equations that define the value of c⃗′ are the following:

c⃗′0 = 0 and c⃗′i =
i−1⊕
j=0

t⃗′i,j, for 1 ≤ i ≤ ℓ− 1

t⃗′i,j = g⃗′j ∧
i−1∧

k=j+1
x⃗′k, for 0 ≤ j < i ≤ ℓ− 1
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g⃗′i = a⃗i ∧ d⃗i, for 0 ≤ i ≤ ℓ− 1

x⃗′i = a⃗i ⊕ d⃗i, for 0 ≤ i ≤ ℓ− 1

After quickly analyzing the protocol, we can see that ΠBDℓ
computes the bit vector

c⃗ according to the following equations:

c⃗0 = 0 and c⃗i =
i−1⊕
j=0

t⃗i,j, for 1 ≤ i ≤ ℓ− 1

t⃗i,j =

1, h⃗i,j = i− j

0, otherwise
, for 0 ≤ j < i ≤ ℓ− 1

h⃗i,j = g⃗j +
i−1∑

k=j+1
x⃗k, for 0 ≤ j < i ≤ ℓ− 1

x⃗i = a⃗i ⊕ d⃗i, for 0 ≤ i ≤ ℓ− 1

g⃗i = a⃗i ∧ d⃗i, for 0 ≤ i ≤ ℓ− 1

Looking at these equations we can see that x⃗i, g⃗i ∈ {0, 1} for 0 ≤ i ≤ ℓ− 1, which
implies that 0 ≤ h⃗i,j ≤ i − j and h⃗i,j = i − j iff g⃗j ∧

∧i−1
k=j+1 x⃗k, for 0 ≤ j < i ≤ ℓ − 1.

Based on this, we can see that t⃗i,j = g⃗j ∧
∧i−1

k=j+1 x⃗k for 0 ≤ j < i ≤ ℓ−1. Thus, looking at
the equation that dictates the value of c⃗, we can conclude that c⃗i = c⃗′i for 0 ≤ i ≤ ℓ− 1.
Therefore, we have that ΠBDℓ

is correct.
Security: The rationale used in ΠEEQ∗

N,M
’s security proof can be used to prove

ΠBDℓ
’s security.

Theorem 8. The protocol Π′BDℓ
is correct and securely implements the functionality FBDℓ

against semi-honest adversaries in the commodity-based model.

Proof. Correctness: By looking at the descriptions for protocols Π′BDℓ
and ΠBDℓ

, we can
see that the only difference between the two is 4. So if we prove that the values of t⃗i,j in
ΠBDℓ

and Π′BDℓ
respect the same equation, for 0 ≤ j < i ≤ ℓ−1, from the correctness proof

of ΠBDℓ
, we have that Π′BDℓ

is also correct. Again by looking at Π′BDℓ
’s description and by

the formal definition of FEEQ we can see that the values of t⃗i, j, in the description for Π′BDℓ
,

are defined by the following equation:

t⃗i,j =

1, h⃗i,j = i− j

0, otherwise
, for 0 ≤ j < i ≤ ℓ− 1

This equation also defines the values of t⃗i,j in the description for ΠBDℓ
, for 0 ≤ j <

i ≤ ℓ− 1. Thus, we can conclude that Π′BDℓ
is correct.

Security: The same ideas used to prove the security of ΠEEQ can be applied to
prove the security of Π′BD.
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3.6 Efficiency Comparison

In order to provide meaningful comparisons, we restrict ourselves to protocols with
the following characteristics: only two parties are required to execute the protocols; the
protocols provide unconditional security to the parties executing them; the protocols are
perfectly correct in the presence of computationally unbounded adversaries. With these
restrictions in place, we compare computational complexity, bit transfer complexity, and
the number of communication rounds.

All the previously published works considered in our comparisons measure compu-
tational complexity and the number of bits transferred by the number of times a secure
multiplication protocol is invoked. For the sake of our comparison, we assume that the
SOT (in the case of our protocol) and multiplication triples (in the case of other protocols)
are pre-computed. We believe this assumption is reasonable since the pre-computation of
both primitives has similar efficiency (for example, when using OT extensions or a trusted
initializer). Thus, we do not include the cost of such pre-computation of the underlying
primitives in our analysis. Considering pre-computed multiplications, one invocation of
the multiplication protocol transfers O(l) bits during the online phase, has computational
complexity O(l2), and requires one communication round, where l is the number of bits
necessary to represent the inputs of the multiplication protocol - usually a ring or field
element.
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Table 3.1: Protocol Efficiency Comparison
Protocol [13] [21] [15] ΠEEQ ΠPEEQ

Preprocessing Phase

Communication O(ℓ2) O(ℓ2) O(ℓ2) ⊥ O(ℓ log(ℓ))
Computation O(ℓ3) O(ℓ3) O(ℓ3) ⊥ O(ℓ log(ℓ))
Rounds O(1) 9 2 ⊥ 1

Online Phase

Communication O(ℓ) O(ℓ) O(ℓ2) O(ℓ log(ℓ)) O(ℓ)
Computation O(ℓ2) O(ℓ2) O(ℓ3) O(ℓ log(ℓ)) O(ℓ)
Rounds 2 2 6 2 2

Protocol [16] [15] [21] ΠBLT ΠPBLT

Preprocessing Phase

Communication O(ℓ2) O(ℓ2) O(ℓ2/log(ℓ)) ⊥ O(ℓ log(ℓ) log(log(ℓ)))
Computation O(ℓ3) O(ℓ3) O(ℓ3/log(ℓ)) ⊥ O(ℓ log(ℓ) log(log(ℓ)))
Rounds 6 2 3 ⊥ 1

Online Phase

Communication O(ℓ2) O(ℓ2) O(ℓ2/log(ℓ)) O(ℓ log(ℓ) log(log(ℓ))) O(ℓ log(ℓ))
Computation O(ℓ3) O(ℓ3) O(ℓ3/log(ℓ)) O(ℓ log(ℓ) log(log(ℓ))) O(ℓ log(ℓ))
Rounds 3 6 4 3 3

Protocol [15] [19] [17] ΠBD ΠBD′

Overall

Communication O(ℓ2 · log(ℓ)) O(c · ℓ · log∗(c)(ℓ)) O(ℓ2) O(ℓ3) O(ℓ2 log(ℓ) log(log(ℓ)))
Computation O(ℓ3 · log(ℓ)) O(c · ℓ2 · log∗(c)(ℓ)) O(ℓ3) O(ℓ3) O(ℓ2 log(ℓ) log(log(ℓ)))
Rounds (E) 25 (E) 23 + c (E) 12 2 3

(E) Specifies that a protocol only runs in expected constant rounds.

Source: Created by author.

Our results are presented in Table 3.1. We once more emphasize that our comparisons
and conclusions are taken with respect to other 2-party protocols present in the literature,
with unconditional perfect security.
Our protocol ΠPEEQ is the only 2-party protocol for secure equality test with unconditional,
perfect security that communication and computational complexities linear in ℓ. ΠEEQ is
the only protocol that has 2 rounds in the online phase, without a pre-processing phase -
at the cost of increasing the computation and communication complexities to O(ℓ log(ℓ)).
Our protocols for private comparison, ΠBLT and ΠPBLT, are the only protocols that
have three rounds with communication and computational complexities equal to
O(ℓ log(ℓ) log(log(ℓ))).
Finally, our protocols for bit decomposition ΠBD and Π′BD are the only ones in the literature
that have three or less rounds.
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Chapter 4

Conclusions

Protocols for secure equality tests, comparison, and bit decomposition are important re-
search areas within cryptographic protocols, with their relevance becoming clearer because
of the crucial role they play in privacy-preserving machine learning protocols [10, 7, 11].
In this work, we have shown how to build novel protocols for all these functions, improving
on the efficiency of previous published solutions, specially on the number of communi-
cations of rounds betweem the two parties. In order to do this, we make use of a new
cryptographic primtive called Shared Oblivious Transfer, which we believe can be of inde-
pendent interest, that can be seen as an extension of the widely known Oblivious Transfer
primitive.
These new results lead to other interesting questions that are not answered in this work
and that could be the focus of future ones. The protocols for equality, comparison and
bit-decomposition are prove secure against semi-honest adversaries, that is, adversaries
that follow the described protocol. A natural question is if we can modify these protocol
to make them secure against adversaries that behave arbitrarily while sacrificing minimal
performance.
We saw in this work how Shared OTs can be used to improve the efficiency of protocols for
multiple interesting and useful functionalities. Another natural question that this leads
to is if this new cryptographic primitive can be applied to improve the efficiency of other
interesting functionalities, such as set intersection of secrets and elementwise comparison.
Future efforts could be dedicated to studying other functionalities that could benefit from
Shared OT.
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