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“Without data, you are just another person with an opinion”. 

W. Edwards Deming 



 

 

RESUMO 

 

Biorreatores com membrana (BRM) têm sido aplicados com sucesso no tratamento de esgotos 

e de efluentes industriais. No entanto, apesar de sua ampla aplicação, esta tecnologia ainda é 

restrita pela incrustação da membrana. Como o controle da incrustação é uma tarefa complexa 

e que demanda a investigação de um grande conjunto de variáveis frequentemente 

correlacionadas, a aplicação de técnicas de inteligência artificial (AI) e de aprendizado de 

máquina (ML) é uma boa alternativa para melhor monitorar e controlar a incrustação nesses 

sistemas. Além disso, o reuso da água tratada é um importante desafio para as indústrias 

contemporâneas e, consequentemente, alcançar efluentes tratados de alta qualidade é 

fundamental. Em especial para as refinarias de petróleo, a remoção de amônia é um árduo 

desafio, que também está relacionado a uma série de variáveis que impactam no desempenho 

do BRM. Portanto, modelos de AI/ML são também uma boa alternativa para monitorar e 

controlar a remoção de amônia. Logo, este trabalho se propõe a auxiliar a definição de 

estratégias para melhor controle da incrustação da membrana e da remoção de amônia em BRM 

aplicando técnicas de AI/ML, especificamente Análise por Componentes Principais (ACP), 

Redes Neurais Artificiais (RNA) e Controle Estatístico de Processos Multivariado (CEPM). 

Para tanto, dados de monitoramento de um BRM em escala piloto atuando em uma refinaria de 

petróleo foram considerados. Os modelos foram desenvolvidos em R e aplicados para investigar 

diferentes relações entre variáveis, modelar o comportamento do sistema e detectar e 

diagnosticar falhas relacionadas à incrustação e à baixa remoção de amônia, a fim de 

compreender suas principais causas e propor estratégias eficientes para o seu controle. O 

modelo ACP identificou as variáveis filtrabilidade do lodo, temperatura e número de dias sem 

limpeza química como as mais influentes na incrustação da membrana e foi eficaz na previsão 

do desempenho do BRM (R² = 0,71 e Q² = 0,78), permitindo detectar amostras atípicas e 

identificar problemas operacionais. As cartas de controle T² e Q detectaram 100 e 96%, 

respectivamente, da operação com baixa permeabilidade da membrana, ressaltando sua alta 

capacidade de detecção de falhas. As cartas de controle também foram capazes de alertar 

preventivamente sobre a diminuição da permeabilidade, logo elas podem ser utilizadas para 

guiar a tomada de decisão em relação ao controle da incrustação, orientando, por exemplo, 

quando realizar limpezas químicas e/ou dosar melhoradores de permeabilidade. Em relação à 

remoção de amônia, os modelos RNA e ACP identificaram que a concentração de óleos e graxas 

e a demanda química de oxigênio (DQO) afluentes, em conjunto com a permeabilidade da 

membrana, contribuem para menores remoções de amônia, enquanto tempo de retenção de lodo 

e temperatura estão relacionados a maiores remoções. O modelo RNA também previu 

efetivamente a remoção de amônia a partir de um conjunto de condições operacionais, com R² 

igual a 0,87. Além disso, a carta de controle Q detectou 100% da operação com remoções 

inferiores a 85%, o que poderia possibilitar uma atuação mais efetiva no sistema, por exemplo 

ajustando a temperatura e/ou mantendo maiores tempos de retenção do lodo, e evitar que a 

remoção desse poluente atingisse níveis mais baixos. Portanto, conclui-se que a modelagem de 

BRM por meio de AI e ML é uma interessante ferramenta para monitorar, compreender e prever 

o comportamento do sistema. Os modelos construídos a partir de RNA, ACP e CEPM podem 

ser aplicados como ferramentas de apoio à tomada de decisão quanto ao controle da incrustação 

da membrana e melhora da remoção de amônia, contribuindo para melhores desempenhos e, 

consequentemente, para operações mais eficientes de BRM. 

 
Palavras-chave: Tratamento de efluentes. Inteligência Artificial (IA). Redes Neurais Artificiais 

(RNA). Análise de Componentes Principais (ACP). Controle Estatístico de Processos 

Multivariado (CEPM). 



 

 

ABSTRACT 

 

Membrane bioreactors (MBR) have been successfully applied in the treatment of domestic and 

industrial wastewater. However, despite its wide application, this technology is still restricted 

by membrane fouling. As membrane fouling control is a complex task that demands the 

investigation of a large set of frequently correlated variables, Artitifical Intelligence (AI) and 

Machine Learning (ML) techniques are interesting alternatives to better monitor and control 

membrane fouling in these systems. In addition, water reuse is an important challenge for 

nowadays industries and, thus, achieving high quality treated effluents is critical. Especially for 

oil refineries, the removal of ammonia is an arduous task that is also influenced by many 

correlated variables that impact MBR performance. Therefore, AI/ML models are a equally 

promising alternative to monitor and control ammonia removal. In this context, the modelling 

techniques Artificial Neural Networks (ANN), Principal Component Analysis (PCA) and 

Multivariate Statistical Process Control (MSPC) have been highlighted in the literature. 

Therefore, this work aims to help define strategies for better control of membrane fouling and 

ammonia removal in MBR by applying PCA, ANN and MSPC. For that, monitoring data from 

a pilot-scale MBR operating in an oil refinery were considered. The models were developed in 

R and applied to investigate different relations between variables, to model the behavior of the 

system and to detect and diagnose failures related to membrane fouling and low ammonia 

removal capacity, in order to understand their main causes and propose efficient strategies for 

their control. The PCA model identified the variables sludge filterability, temperature and 

number of days without chemical cleaning as the most influential on membrane fouling and it 

was effective in predicting the MBR performance (R² = 0.71 and Q² = 0.78), making it possible 

to detect atypical samples and identify operational problems. T² and Q multivariate control 

charts detected 100 and 96%, respectively, of the operation with low membrane permeability, 

underlining their high fault detection capacity. The control charts were also able to provide 

preventive warnings about the decrease in membrane permeability so they can be used to 

support decision-making regarding membrane fouling control, guiding, for example, when to 

perform chemical cleanings or to dose membrane permeability improvers. Regarding ammonia 

removal, ANN and PCA models identified that the influent concentration of oil and grease and 

chemical oxygen demand (COD), together with membrane permeability, contribute to lower 

ammonia removals, while sludge retention time and temperature are related to higher removals. 

ANN model also effectively predicted ammonia removal from a set of input operating 

conditions, with R² equal to 0.87. Furthermore, Q control chart detected 100% of the operation 

with removals below 85%, which could allow a more effective action on the system, for 

example by adjusting the temperature and/or maintaining longer sludge retention times, and 

preventing the ammonia removal from reaching lower levels. Hence, it can be concluded that 

MBR modeling through AI and ML is an interesting tool to monitor, understand and predict the 

behavior of the system. Models built from ANN, PCA and MSPC can be applied as decision 

support tools regarding membrane fouling control and improved ammonia removal, 

contributing to better performances and, consequently, to more efficient MBR operations. 

 
Keywords: Wastewater Treatment. Artificial Intelligence (AI). Artificial Neural Networks 

(ANN). Principal Components Analysis (PCA). Multivariate Statistical Process Control 

(MSPC). 
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APRESENTAÇÃO 

 
For better organization, this document has been divided into five chapters: i) Contextualization; 

ii) Artificial Neural Networks, Principal Components Analysis and Multivariate Statistical 

Process Control: theoretical foundation and applications; iii) Improving membrane fouling 

control; iv) Improving ammonia removal; v) Final Considerations. 

 
In Chapter I, the theme addressed in the work is presented, as well as the context in which it is 

inserted. The importance of membrane bioreactors (MBR) for industrial wastewater treatment, 

the seriousness of membrane fouling and ammonia removal and how the application of data- 

driven approaches like artificial intelligence (AI) and machine learning (ML) is a promising 

alternative for better monitoring and control of industrial processes and, thus, for process 

improvement, are presented and discussed. The relevance and innovation of the work are also 

highlighted and its hypothesis and goals are presented. In Chapter II, a comprehensive literature 

review is presented. It includes the theoretical foundation of the AI/ML techniques Artificial 

Neural Networks (ANN), Principal Component Analysis (PCA) and Multivariate Statistical 

Process Control (MSPC) and the presentation of important papers on the application of ANN 

and PCA for monitoring and controlling membrane fouling and MBR performance and the 

application of MSPC to detect and diagnose operating faults in various industrial processes. In 

Chapter III, the occurrence of membrane fouling on MBR is assessed. PCA and MSPC models 

were applied to understand and predict membrane fouling, as well as to identify and diagnose 

its occurrence. Based on the results, efficient strategies for its control are recommended. 

Similarly, in Chapter IV, ANN, PCA and MSPC models were applied to investigate ammonia 

removal on MBR. The models were also able to map and predict the system’s behavior and to 

guide efficient strategies for its improvement. The results obtaneid with all three models are 

presented and discussed. Finally, all the results obtained within the study are discussed in an 

integrated manner in Chapter V, which also presents the conclusions and recommendations of 

the work. 
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1 INTRODUCTION 

 
Contamination of natural water by inappropriate disposal of industrial residues and wastewater 

is currently one of the greatest environmental harms. The presence of emerging and persistent 

pollutants in industrial wastewater is an important global concern that has been leading to 

increasingly stringent environmental regulations. Furthermore, the demand for water reuse is 

growing fast, especially in industries. Therefore, the application of highly efficient wastewater 

treatment technologies that provide high quality treated water and allow its reuse has been 

increasingly sought. In fact, in recent works, the efficiency has been suggested as the major 

sustainability parameter for selecting a technology among the current alternatives (KAMALI et 

al., 2019). 

 
Membrane bioreactors (MBR) are currently considered a highly efficient technology (ZANDI 

et al., 2019), as they combine biological treatment with membrane separation (usually micro- 

or ultrafiltration – MF or UF, respectively) and stand out for the high effluent quality achieved. 

Besides, other MBR advantages can be highlighted, like high efficiency in removing micro- 

and persistent organic pollutants, small industrial area requirement, and low sludge production 

(JUDD, 2016). MBR technology has been developed for wastewater treatment for over three 

decades (YAMAMOTO et al., 1989) and through these years they have been widely applied, 

especially for municipal (HU et al., 2020) and different typologies of industrial wastewater, 

such as textile (YURTSEVER; SAHIKAYA; ÇINAR, 2020), brewery (LU et al., 2019), dairy 

(SONG; LIU, 2019) and oil refinery (HUANG et al., 2020; MOSER et al., 2019; OLIVEIRA; 

VIANA; AMARAL, 2020), and have been demonstrating great performances. 

 
Oil refineries, in particular, have been increasingly applying MBR since they can really benefit 

from water reuse due to the large amount of water needed. However, to enable the treated water 

reuse at the boilers, the effluent ammonia concentration must be sufficiently low and thus 

understanding and controlling the factors that impact the most on its removal is essential, as 

well as being able to predict it (ZHANG; CHEN; JIANG, 2022). The use of artificial 

intelligence (AI) can notably contribute to this matter, since it is able to successfully realize 

feature extraction and correlation analysis of input and output data, achieving more efficient 

pattern classification and logical regression tasks than traditional methods (BAGHERI; 

AKBARI; MIRBAGHERI, 2019). 
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Moreover, although MBR efficiency has been consolidated by several applications and despite 

the great advances already achieved in its operation, membrane fouling is still a serious issue 

that decreases the process performance and leads to permeate flux decline, which in turn results 

in higher operating costs (DU et al., 2020) and increases energy requirement, prejudicing the 

current search for more energy efficient technologies (MIRRA et al., 2020). For the treatment 

of complex industrial wastewater, such as those from oil refineries, membrane fouling is even 

more challenging. Thus, an often adopted strategy in industries is the intensive use of 

backwashing and chemical cleaning. However, despite mitigating membrane fouling, these 

procedures also damage the efficiency of the process: backwashing reduces the unit 

productivity, since the operation is stopped and the permeate is consumed; and chemical 

cleaning, besides reducing the unit productivity due to the stoppage of operation, also reduces 

membranes lifetime. Therefore, establishing the best frequency of backwashing and chemical 

cleanings guided by the system performance is very interesting. 

 
There are several studies on membrane fouling involving MBR in the literature, as computed 

by Meng et al. (2017) in their review paper. According to the authors, understanding fouling 

on MBR is a complex task though, since the comprehension of fouling mechanisms requires 

knowledge of physical, chemical and biological phenomena as well as how they interact and 

therefore a large set of variables that are often strongly correlated must be investigated. This 

way, AI stands out once more as a very promising alternative for the investigation of membrane 

fouling on MBR, as discussed by Bagheri et al. (2019), since it can be applied to extract relevant 

information from monitoring datasets (KAMALI et al., 2020). 

 
Machine learning (ML) is a subset of AI based on mathematical and statistical algorithms that 

can be used to predict the output data by finding the relationship or rule of known data. Thus, 

ML models can solve complex problems and achieve difficult modelling, for example nonlinear 

distribution and multidimensional space distribution processes (ZHONG et al., 2021). There 

are several ML techniques that can be applied for monitoring MBR performance and the most 

common models include support vector machine (SVM), fuzzy logic (FL), random forest (RF), 

factor analysis (FA), extreme learning machine (ELM), genetic algorithm (GA), among others. 

Chang et al. (2022) tested seven ML algorithms to model both water flux and salinity of a lab- 

scale osmotic membrane bioreactor (OMBR) and their results have demonstrated the promise 

of ML for investigating these systems. Among many ML techniques though, Artificial Neural 

Networks (ANN), Principal Components Analysis (PCA) and Multivariate Statistical Process 
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Control (MSPC) have been standing out in recently published papers for their high 

performances at modelling complex systems (ALKMIM et al., 2020; SANTOS et al., 2021). 

 
Therefore, this work aims to improve membrane fouling control and ammonia removal on MBR 

through the application of different AI/ML models. A pilot-scale MBR applied to the treatment 

of a real oil refinery wastewater was used as a case study and ANN, PCA and MSPC models 

were developed. The MBR was monitored during five years, so it was possible to assess its 

historical behavior, and the investigated variables were chosen so relevant information could 

be obtained on both biodegradation and membrane separation mechanisms. The models were 

applied to investigate the relations between different variables and to identify and diagnose 

operating faults related to the occurrence of membrane fouling and to low percentages of 

ammonia removal, in order to comprehend their main causes and to propose efficient strategies 

for their control. This way, the work is expected to contribute to a more efficient operation of 

MBR, which is currently a highly important wastewater treatment technology. 
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2 BACKGROUND 

 
2.1 MBR: important wastewater treatment systems 

 
MBR technology is based on the combination of biological treatment processes with membrane 

separation. Therefore, two main mechanisms are involved in the treatment: the organic matter 

is degraded by microorganisms (aerobically or anaerobically) and the biomass is separated from 

the treated effluent by membranes (usually MF or UF). MBR can be operated in two main 

configurations: pressurized or submerged (Figure 1). In the first case, the reaction liquid is 

pumped into the membrane module, normally with hollow fiber, flat sheet or tubular membrane 

configuration, and thus the applied pressure is the driving force for permeation. For this reason, 

operating pressures on this configuration are high, which leads to higher energy costs; however, 

maintenance and membrane cleaning are simpler, as it is an external module, and the permeate 

fluxes achieved are generally higher. In submerged MBR in turn, the membrane is submerged 

in the biomass, either inside the biological tank itself or in a separate tank with recirculation of 

the sludge between the tanks, and the permeate is removed by suction. This way, it is possible 

to operate at considerably lower pressures, which decreases energy demand and mitigates the 

occurrence of membrane fouling (JUDD, 2011). 

 
Figure 1 - MBR usual configurations: (a) pressurized and (b) submerged. 

 

 

 

 

  

(a) (b) 

 

 
Compared with the conventional treatment process using activated sludge (CAS), MBR is able 

to produce better quality treated effluents and presents higher efficiency in removing micro- 

and persistent organic pollutants, due to the high performance of membranes in the retention of 

solids with low molecular weight and to the higher sludge retention time (SRT) of this system. 

Since in MBR the SRT is independent of the hydraulic retention time (HRT), it is possible to 
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adopt a higher SRT than usual in CAS, which allows a better sludge acclimatization, hence a 

greater capacity to remove recalcitrant compounds. Additionally, the complete retention of the 

biomass ensures greater diversity of microorganisms in the biological tank, which contributes 

to the higher removal of persistent pollutants. Besides these advantages, MBR present smaller 

industrial area requirement, lower sensitivity to organic load rate (OLR) variation and lower 

sludge production (JUDD, 2011). 

 
Due to its many important advantages over conventional systems, the application of MBR for 

the treatment of several types of wastewater has been extensively studied in the literature, like 

municipal wastewater (DING et al., 2020; HU et al., 2020), landfill leachate (AMARAL, 2016; 

LEBRON et al., 2021) and different industrial wastewater, such as dairy (FRAGA et al., 2017), 

textile (YURTSEVER; SAHINKAYA; ÇINAR, 2020), petrochemical (ALKMIM et al., 2017; 

BAYAT et al., 2015; KARRAY et al., 2020; SAMBUSITI et al., 2020), pharmaceutical (CHEN 

et al., 2020), among others. The results reported by different works are of such interest that the 

publication of papers concerning MBR systems has been increasingly growing in the last three 

decades. Indeed, a search for publications related to MBR over the last thirty years in Scopus 

database identified 12,178 publications1, with an average annual increase in the number of 

publications of 12% (Figure 2). It is noticeable the high influence of China, responsible for 

about 30% of publications (Brazil accounts for about 2%). 

 
Figure 2 - a) Number of publications on MBR since 1989 and (b) distribution of the 

publications by country. 
 

A 
 

 

 

 
 

1Publications were searched in Scopus database using the query: TITLE-ABS-KEY ("membrane bioreactor" OR 

“MBR”) AND PUBYEAR > 1989, on May 2021. 



27 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

 

 

 

 
B 

 

Source: Scopus database. 

 
Furthermore, MBR systems have been of interest not only to the academic community, but also 

to the industrial sector and they have been increasingly applied for municipal and industrial 

wastewater treatment applications in large scale (JUDD, 2016; XIAO et al., 2019). According 

to BCC Research, an important company on market research, MBR global market totaled $425 

million in 2014 and reached $1.9 billion in 2018, becoming five times bigger in only four years. 

BCC research also estimates that the global market should grow to reach $3.8 billion by 2023, 

at a compound annual growth rate (CAGR) of 14.7% for the period of 2018-2023. According 

to them, MBR market is growing faster than both the larger market for wastewater treatment 

equipments and the market for other membrane systems (BCC RESEARCH, 2019). 

 
Besides the increase in number, MBR plants have also been exponentially increased in scale. 

Whereas the largest plant installed at the turn of the millennium had a capacity of 13,000 m³/d, 

by 2004 there were two plants of more than 40,000 m³/d. Beijing Wenyu River plant, built in 

2007, was the first one to reach a 100,000 m³/d capacity (super-large scale) and since then the 

number of super-large MBR continued to increase all around the world to reach more than sixty 

super-large plants worldwide by 2019, mainly in China (JUDD, 2021; THE MBR SITE, 2021). 

 
In Brazil, the largest MBR plant, with a 56,000 m³/d capacity, is located in Aquapolo Ambiental 

S.A., in São Paulo (SP). Aquapolo is the largest wastewater reuse project in the South America, 

and the fifth largest of its kind in the world (KULLMANN; LAWRENCE; COSTA, 2021). The 

facility transforms municipal wastewater into treated water to supply the ABC Petrochemical 

Complex (MACHADO, 2019), and MBR technology was identified as the most cost-effective 

solution to upgrade the existing municipal wastewater treatment plant (WWTP) to meet São 

Paulo’s pressing demand for industrial reuse wastewater. 
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Figure 3 displays the development of super-large MBR plants around the world and over the 

years. By 2019, it was also estimated that MBR technology provided around 5% of the world’s 

municipal wastewater treatment capacity (JUDD, 2021). 

 
Figure 3 - MBR treatment capacity over the years. 

Source: (MENG et al., 2017). 

 
However, although MBR has been extensively studied and improved and its effectiveness has 

been consolidated by several applications, both academic and industrial, membrane fouling is 

still a severe drawback for the process efficiency, since it decreases the treated effluent quality, 

reduces the permeate flux, and increases the operating costs. In order to further improve MBR 

performance and to broader its application for municipal and industrial wastewater treatment, 

membrane fouling must be then effectively controlled. 

 
2.2 Membrane fouling on MBR 

 
Membrane fouling is caused due to adsorption of solute molecules onto the membrane surface, 

obstruction of pores by suspended particles or deposit of suspended material onto the membrane 

surface, forming a cake (JUDD, 2011). Numerous factors related to MBR feed, membrane and 

biomass characteristics and operating conditions impact on membrane fouling occurrence and 

severity (LE-CLECH; CHEN; FANE, 2006). Several works have addressed membrane fouling 

characterization (like composition and morphological characteristics), upgrading of operating 

conditions (like SRT, HRT and permeate flow); and strategies for membrane fouling control 

(DU et al., 2020). As discussed in these works, however, understanding membrane fouling on 

MBR systems is more complicated than on other membrane systems due to their complexity 
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and heterogeneity. 

 
Since membrane fouling causes the restriction, occlusion or blocking of membrane pores at the 

surface of the membrane, it prejudices the membrane rejection capability, decreasing the treated 

effluent quality (JUDD, 2008). Besides, membrane fouling causes permeate flux decline, which 

in turn makes it necessary to proceed with chemical cleanings and replacements of the 

membrane more often, resulting in higher operating costs. Furthermore, it increases the energy 

requirement of the process, due to higher pressure demand, which impacts negatively on the 

process sustainability (KAMALI et al., 2019). 

 
For the treatment of complex industrial wastewater, such as those from oil refineries, membrane 

fouling is even more challenging. A survey was performed by The MBR Site in 2015 based on 

two questions: i) ‘In your experience, what are the main technical issues or limitations that 

prevent MBR working as they should?’; and ii) ‘In your opinion, how will MBR technology 

develop in the future?’. Respondents to the survey, 85% of whom were practitioners, identified 

membrane fouling as the greatest challenge to MBR operation (Figure 4). Comparing the results 

for the same question in previous researches, it is possible to observe that issues like clogging 

and overloading have become less important over the years, while fouling remainders as a major 

challenge. Pretreatment and energy demand, both related to membrane fouling, were also 

mentioned as important challenges. For the second question, membrane fouling was among the 

five most common keywords found in the answers, behind industrial, cost, energy and reuse 

(JUDD; JUDD, 2015). 

 

Figure 4 - MBR survey based on the question ‘In your experience, what are the main 

technical issues or limitations that prevent MBR working as they should?’. 

Source: The MBR Site, 2015. 
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In 2016, a similar survey was conducted, when it was asked ‘In your experience, what is the 

biggest challenge posed by MBR sludge?’ and once again membrane fouling was pointed out 

as the foremost challenge (Figure 5) (JUDD; JUDD, 2016). 

 
Figure 5 - MBR survey based on the question ‘In your experience, what is the biggest 

challenge posed by MBR sludge?’. 

Source: The MBR Site, 2016. 

 
Therefore, for a more efficient and economical operation of MBR systems, comprehending and 

controlling membrane fouling are priority demands and several recent studies involving MBR 

in the literature focus on membrane fouling, hoping to overcome this limitation. A search for 

publications related to membrane fouling on MBR over the last thirty years in Scopus database 

identified 3,591 publications2, around 30% of the results found for MBR in general. Figure 6 

displays the number of publications on different recent aspects of MBR (membrane fouling, 

fouling control, clogging, automation, novel configurations, and emerging pollutants) over the 

last thirty years. There is a clear predominance of interest for membrane fouling and membrane 

fouling control in published works in the last years. Current issues such as emerging pollutants 

and automation have also been increasingly studied in recent years, but they are still less 

approached than membrane fouling, highlighting the relevance of this matter. 

 

 

 

 

 

 

 

 

 

 

 

 

2Publications were searched in Scopus database using the query: TITLE-ABS-KEY ("membrane bioreactor" OR 

“MBR” AND “fouling”) AND PUBYEAR > 1989, on May 2021. 
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Figure 6 - Publications on different recent aspects of MBR over the last thirty years. 
 

Publications were searched in Scopus database using the queries: TITLE-ABS-KEY ("membrane bioreactor" OR 

“MBR” AND “fouling”) AND PUBYEAR > 1989; TITLE-ABS-KEY ("membrane bioreactor" OR “MBR” AND 

“fouling control”) AND PUBYEAR > 1989; TITLE-ABS-KEY ("membrane bioreactor" OR “MBR” AND “novel 

configuration”) AND PUBYEAR > 1989; TITLE-ABS-KEY ("membrane bioreactor" OR “MBR” AND 

“clogging”) AND PUBYEAR > 1989; TITLE-ABS-KEY ("membrane bioreactor" OR “MBR”) AND (“emerging 

pollutants” OR “emerging contaminants”) AND PUBYEAR > 1989; and TITLE-ABS-KEY ("membrane 

bioreactor" OR “MBR”) AND (“automation” OR “process control”) AND PUBYEAR > 1989, on May 2021. 

 
2.2.1 State-of-art 

 
In order to compile what has been discussed by the global academic community over the years 

regarding membrane fouling on MBR, some of the review papers published over the last 

decades on this matter and their principal insights are presented below. 

 
Chang et al. (2002) was the first paper of this type found in our research. By the turn of the 

millennium, much research was already being done to investigate membrane fouling on MBR. 

However, well-structured theories on membrane fouling were not yet available because of the 

highly heterogeneous nature of the system. Nevertheless, three factors were related to the 

occurrence and extent of fouling in MBR: biomass characteristics, membrane characteristics, 

and operating conditions. Besides, some fouling control strategies, such as low-flux operation, 

high-shear slug flow aeration, periodical permeate backflushing, intermittent suction operation 

and addition of powdered activated carbon, were already being assessed, without a consensus 

though. 

 
Researchers were still pursuing consensus on the exact fouling phenomena in MBR then and 

Le-Clech, Chen and Fane (2006) observed that a large number of publications indicated soluble 
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microbial products (SMP) to be one of the main parameters affecting MBR fouling. Strategies 

for physical and chemical cleaning were considered under-reported in the literature, which was 

related to the complex interactions between different fouling parameters. Understanding the 

nature of MBR foulants and their interactions with the membrane material was considered thus 

critical to provide new directions for membrane cleaning agents and protocols and for fouling 

mitigation strategies on MBR. 

 
Given the difficulty in understanding foulants nature though, several works began to focus on 

the visualization and characterization of membrane fouling in MBR. Meng et al. (2010) 

discussed the advantages and limitations of approaches used by that time for (i) visualization 

of cake morphology; (ii) analysis of chemical composition; and (iii) identification of microbial 

community structure. The authors concluded that although a number of advances had been 

achieved enabling a clearer picture of fouling layer, membrane fouling behavior was still a 

mystery, which thereby reflected the inadequacy of existing methods for membrane fouling 

layer characterization, highlighting the need to develop specific techniques for MBR fouling 

study for its more comprehensive and reliable characterization. 

 
Gkotsis et al. (2014) extensively reviewed the fundamentals of membrane fouling and the most 

used mitigation strategies on MBR aiming to address recent developments. Several biomasses’ 

(e.g. mixed liquor volatile suspended solid - MLVSS, extracellular polymeric substances – EPS 

and SMP) and membrane’s characteristics (e.g. porosity and hydrophobicity) were reviewed, 

but the results reported were often contradictory. Floc size, though, was pointed as a major 

fouling cause and chemical cleaning was pointed as a major control strategy; however, it was 

also related to the decrease in membrane lifetime. According to the authors, future research 

should focus on new cleaning methods and emerging technologies, like forward osmosis MBR. 

Also, they asked if further research should focus on comprehending fouling mechanisms or 

move to more macroscopic approaches such as mathematical modelling based on empirical 

relations. 

 
Although previous review papers had presented different aspects of MBR fouling, biofouling 

had only been simply or partially reviewed, thus Deng et al. (2016) focused on this matter, 

addressing biofilm formation, influence factors and control approaches. They concluded that 

sludge properties (like sludge filterability), play a critical role in biofouling. SMP and EPS 

concentration and floc size were again highlighted by their great influence on membrane fouling 
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occurrence. Besides, adding sponge or flocculants into MBR was considered a good strategy 

for biofouling reduction and the development of integrated MBR with novel flocculants was 

suggested. 

 
By this time, MBR was already considered a well-established technology with many full-scale 

units around the world treating municipal and industrial wastewater. However, membrane 

fouling and energy consumption were still serious challenges and, thus, developments in energy 

reduction, fouling control and novel configurations were being pursuit and were compiled by 

Krzeminski et al. (2017). The authors observed that these advances were concentrated on 

aeration, control systems, surface modifications, module configuration and novel fouling 

mitigation methods, as mechanical cleaning (electric field or membrane vibration). Most of the 

novel configurations were focused on hybrid systems. Stable flux production for long term 

operation and effective and/or low-energy membrane cleaning procedures were still needed, as 

well as cost-effective, washing chemicals resistant and antifouling membranes. Therefore, 

advances in material science were required. 

 
Similarly, Bagheri and Mirbagheri (2018) discussed the many membrane fouling mitigation 

strategies that had been studied. According to the authors, over the last decade much effort had 

been made on employing novel technologies for fouling control on MBR, focusing on the 

improvement of the operating conditions and on the use of chemical agents to mitigate 

membrane fouling. However, these methods did not provide a sustainable solution for the 

problem. Most of the more recent studies thus had been working on using nanomaterials, cell 

entrapment, and biologically- and electrically-based methods to mitigate membrane fouling and 

the novel strategies had been showing high performances. However, the sustainable control of 

membrane fouling required employing more than one single approach and their application for 

large-scale MBR needed more research. 

 
Finally, in more recent years, based on the new era of vast data generation and giant computer 

processing capacity, several works started to evaluate the study of membrane fouling and its 

control using data science techniques. Bagheri, Akbari and Mirbagheri (2019) reviewed the 

application of several AI and ML techniques for a better understanding and control of 

membrane fouling. Clustering analysis, ANN, FL, model trees, genetic programming, image 

recognition, and feature selection were found to be powerful techniques. GA and particle swarm 

optimization were also proven to be successfully applied for process optimization. The authors 
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concluded that AI and ML models can be applied to intelligently monitor and control membrane 

fouling, reducing the operating costs by allowing to take the best action when necessary. 

 
From these papers it is clear that, despite the great amount of works studying membrane fouling 

in MBR, understanding and consequently controlling it is still a hard task. Since MBR combine 

biodegradation with membrane separation processes, the interaction between many physical, 

chemical and biological phenomena must be evaluated to understand fouling mechanisms in 

these systems. Consequently, a large set of strongly correlated variables must be investigated 

and analyzed, which makes the application of data-driven approaches an interesting alternative. 

 
2.3 Ammonia removal on MBR 

 
Besides membrane fouling, controlling ammonia removal so it remains on a stable condition 

and satisfactory level and do not present much variation is also an important challenge for the 

treatment of wastewaters containing ammonia by MBR systems. Generally, ammonia removal 

on MBR is achieved through nitrification and, since nitrifying bacteria are more sensitive to 

environmental factors, they tend to have lower growth rates than heterotrophic organisms. Thus, 

the treatment of wastewater by MBR is often limited by the removal of ammonia and it becomes 

important to understand the variables that influence the process. 

 
Nitrification is the process of biological oxidation of ammonia by chemoautotrophic bacteria 

that use CO2 as a carbon source. It occurs in two steps: in the first step, ammonia is converted 

to nitrite by ammonia-oxidizing bacteria (AOB), such as those from the genus Nitrossomonas, 

and, in the second, nitrite is converted to nitrate by nitrite-oxidizing bacteria (NOB), such as 

those from the genus Nitrobacter (von SPERLING; CHERNICHARO, 2006). It is relevant to 

underline that nitrification is to be understood as removal of ammonia, but not of nitrogen, since 

it does not result in the removal of nitrogen, but only in its conversion from ammonia to nitrate. 

 
The growth rate of nitrifying microorganisms, especially Nitrossomonas, is very slow and much 

smaller than the growth rate of heterotrophic microorganisms responsible for the stabilization 

of the carbonaceous matter, reaching up to five times smaller (SHARMA; AHLERT, 1977). For 

this reason, in a biological treatment system where nitrification is desired, like in the treatment 

of ammonia-rich wastewaters, SRT should be high enough such that it enables the development 

of nitrifying bacteria before they are washed out from the system. This is of major importance 

to ensure satisfactory ammonia removal (von SPERLING; CHERNICHARO, 2006). 
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The environmental factors that most influence the growth rate of the nitrifying organisms and, 

as a consequence, the oxidation rate of ammonia are temperature, pH, dissolved oxygen (DO) 

and the presence of toxic or inhibiting substances. Temperature and pH are both related to the 

kinetics of the growth rate reaction of the nitrifying bacteria, which can be expressed in terms 

of Monod’s relation, presented in Eqn. 1 (von SPERLING; CHERNICHARO, 2006): 

 

     𝑁𝐻
+ 

𝜇 = 𝜇 [ ] (1) 

𝐾𝑁+𝑁𝐻+ 
 

Where: 

 
µ = specific growth rate of the nitrifying bacteria (d−1); 

μmax = maximum specific growth rate of the nitrifying bacteria (d−1) 

NH4
+ = ammonia concentration, expressed in terms of nitrogen (mgL-1) 

KN = half-saturation constant (mgL-1) 

 
In general, higher values of temperature lead to higher growth rates and, according to Downing 

(1978), the nitrification rate is at its optimal and approximately constant in the pH range from 

7.2 to 8.0. From Monod’s relation, it is also possible to note that the lower the concentration of 

ammonia in the reactor, the lower the growth rate. Therefore, for higher influent concentrations 

of ammonia, higher ammonia removals are expected. 

 
DO is a crucial factor to maintain the nitrifying bacteria activity and thus the United States 

Environmental Protection Agency (EPA) recommends that the DO concentration in the reactor 

should not be reduced to less than 2 mg/L (EPA, 1993). As for toxic substances, they can 

seriously inhibit the growth of nitrifying bacteria, mainly Nitrossomonas, which are more 

sensitive. Among several substances known to be inhibiters, there are sulphide, phenol, cyanide 

and oil and grease (INGLEZAKIS et al., 2017; NORIEGA-HEVIA et al., 2020). 

 
Another crucial factor for nitrifying bacteria growth rate and thus ammonia removal is the ratio 

between carbon and nitrogen available in the system (C/N ratio). Greater availabities of organic 

matter, expressed mainly by the chemical oxygen demand (COD), cause higher growth of 

heterotrophic bacteria and result in a strong competition between them and the nitrifying ones 

for substrate and DO. The increase in the C/N ratio thus favors heterotrophic bacteria growth 

whereas limits the nitrifying ones, compromising ammonia removal (ÆSØY; ØDEGAARD; 

BENTZEN, 1998). 
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2.3.1 State-of-art 

 
Aiming to provide an overview of the advances and limitations regarding ammonia removal on 

MBR, some review papers published over the last two decades on this matter and their principal 

insights are presented below. 

 
At the beginning of the millennium, submerged MBR had emerged to overcome disadvantages 

of the pressurized MBR, like the loss of microorganism activity due to the high-speed shearing 

flow and the force of the pump that used to destroy the MBR biomass. However, the economics 

of MBR were still a barrier for its widespread application and it was thus necessary to optimize 

the design of these processes. Yang and Fan (2007) reviewed the back then advances on MBR 

design and operation and discussed aspects of properly determining HRT and SRT, sludge 

concentration optimization, the removal of nitrogen and phosphorus, membrane fouling control 

and the analysis of processing economics. The authors said that because the amount of nitrifying 

bacteria is small and their levels of activity low, the ammonia removal is unsatisfactory at the 

beginning of MBR operation. With process progress (and SRT increase), sludge concentration 

increases and so the amount of such bacteria. The authors also stated that DO is a limiting factor 

for nitrification, which is also sensitive to changes in ambient temperature, SRT, pH and OLR. 

 
Sun et al. (2010), in turn, was concerned about nitrogen removal from domestic wastewaters 

with low C/N ratios, which was often limited because organic carbon is a limiting factor for 

denitrification. The authors reviewed then innovative bacterial nitrogen removal pathways such 

as shortcut nitrification/denitrification, simultaneous nitrification/denitrification and anaerobic 

ammonium oxidation (Anammox) process and concluded that MBR, among other technologies, 

was effective in supporting the innovative biological nitrogen removal pathways. During their 

investigation, the authors also concluded that AOB and NOB have different physiological 

characteristics and responses to environmental factors, like: AOB present slower growth rate 

and greater DO dependency than NOB. Besides, the papers approached by the authors 

demonstrate that influent COD, DO and floc size play an important role on 

nitrification/denitrification. Finally, the authors stated that in submerged MBR, good 

nitrification performance can be attained due to the high concentration of nitrifying biomass, 

long SRT, and the aerobic condition provided by the intensive aeration used to mitigate 

membrane fouling. 
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Due to its many advantages, MBR were rapidly becoming the technology of choice over CAS 

treatment systems. One important advantage was the retention of sufficient amount of nitrifying 

bacteria, which makes it feasible for MBR to achieve strong tolerance against the shock loads 

with stable and highly efficient ammonia removal. Then, several studies were being published 

on the nitrifier ecophysiology. Many techniques were being employed over the years aiming to 

understand the nitrifying community and its interaction within MBR systems. Therefore, 

Awolusi, Kumari and Bux (2015) focused on their review paper on the identification of optimal 

operational and environmental conditions for efficient nitrification in MBR. From the papers 

studied, the authors observed that pH plays a major role in ammonia removal on MBR than on 

CAS. A particular work (HE; XUE; WANG, 2009) showed that when the influent pH was 

acidic (approximately 4.8), the ammonia removal rate was 56%, whereas an increased removal 

up to 99% was observed when pH was neutral (7.2) and a decrease to 75% was noted when the 

pH increased to about 9.7. Therefore, efficient nitrification within the MBR falls within pH 

range of 7.5–8.5. Kim et al. (2008) found that when temperature increased from 20 to 30 ºC, 

ammonia oxidation proceeded from 0.25 to 1.33 gN/gVSS thereby indicating a high correlation 

of temperature with ammonia oxidation. Reports on activity of nitrifier at very low temperature 

and DO levels though indicate that nitrifier are capable of adapting to extreme conditions such 

as low temperature. As for SRT, the authors did not recommend to operate above 40 days since 

it could influence nitrification adversely. Low C/N ratio was considered to favor nitrification, 

whereas higher ratios support the heterotrophs. In a study of membrane-aerated biofilm reactor, 

nitrification efficiency of 93% was achieved at C/N ratio equals to 5 but at C/N ratio equals to 

6, increased heterotrophic bacteria growth was observed with resultant inhibition of nitrifier 

(LIU et al., 2010). 

 
Currently, although the application of MBR for municipal and industrial wastewater secondary 

treatment (i.e., organic matter reduction) is well established, its evaluation for nitrogen removal 

still needs research. For this reason, Mao et al. (2020) presented a review paper that provides 

an overview of MBR process configurations for the removal of nitrogen based on conventional 

nitrogen-removal pathways (i.e., nitrification/denitrification) as well as alternative ones, such 

as Anammox. The authors reviewed papers that covered a wide range of system configurations, 

including immersed or side-stream MBR, single or multichamber processes, and the application 

of fixed and moving bed biofilms. Their findings indicated that operating variables play an 

important role in controlling nitrogen removal, especially feed composition (particularly C/N 

ratio), membrane characteristics, SRT and HRT. The authors also discussed that the modeling 
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of nitrogen-removing MBR systems can enable the optimization of system performance, and 

thus is a useful tool for reducing costs. The modeling structures typically include two major 

parts: i) biological models which focus on the bulk suspended biomass; and ii) physical models 

which focus on the cake layer formation on the surface of the membrane and have been applied 

successfully to predict the overall performance of small-scale MBR systems. 

 
Therefore, based on the review papers, one can notice that, although several challenges about 

ammonia removal on MBR remain (e.g., membrane fouling, cost, and energy consumption), a 

number of opportunities exist, such as new reactor configurations, new microbial pathways and 

the development of more comprehensive models, like the data-driven ones, to promote better 

understanding, monitoring and control of the process. These opportunities may lead thus to the 

broader application of MBR processes for nitrogen removal from municipal and industrial 

wastewater in the future. 

 
2.4 Data-driven approaches 

 
With the advancement of the Internet of Things (continuous increase of connected devices - 

IoT) and the increasingly automation of processes, massive amounts of data are now available, 

a phenomenon known as big data (CHEN et al., 2019). These data sets include trillions of words 

of text, billions of images, and billions of hours of speech and video, as well as vast amounts 

of genomic data, vehicle tracking data, clickstream data, social network data, industrial 

monitoring data and so on. Data volume has thus far exceeded the capacity of manual analyses 

and, at the same time, computers have become far more powerful and algorithms have been 

developed to enable broader and deeper analyses. The convergence of all these factors has given 

rise to data science, a set of fundamental principles, processes and methods for understanding 

phenomena via the automated analysis of data (RUSSEL; NORVIG, 2022). 

 
The main goal of data science is improving decision-making and the benefits of data-driven 

decision-making are countless, promoting a much more assertive control of processes and 

therefore improving their performance (RABAN; GORDON, 2020). A key feature of data science 

is the extraction of relevant information and knowledge from data, which is also called data 

mining (VASSAKIS; PETRAKIS; KOPANAKIS, 2018). There are hundreds of data mining 

techniques that can be used as monitoring tools, since they allow to effectively determine the 

complex relations between input and output variables on a process (KAMALI et al., 2020). 
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The growth of interest in data science recently is impressive and the exponential increase in the 

number of publications on this matter in Scopus database, with an average annual increase of 

near 80% since 2014 (Figure 7a), demonstrates how data science is relevant for the analysis of 

processes nowadays in several distinct areas of knowledge (Figure 7b). Works applying data 

science on engineering stand out, contributing to more than 10% of the published papers, and 

the works state that data science has been successfully applied for engineering purposes. 

 
Figure 7 - a) Number of publications on data science since 2000; and (b) Distribution of 

papers by area of knowledge. 
 

A 
 

 

B 

 

Source: Scopus database. 

Publications were searched in Scopus database using the query: TITLE-ABS-KEY ("data science”) AND 

PUBYEAR > 2000, on May, 2021. Others accounts for: energy; environmental science; Earth and planetary 

sciences; agricultural and biological sciences; chemistry; chemical engineering; arts and humanities; neuroscience; 

economics; pharmacology; health; psychology; nursing; immunology and microbiology; veterinary; and dentistry. 

 
The field of environmental science and engineering (ESE) has also been impacted by the rapid 

advancement in analytical tools and monitoring technologies and massive expansion in quantity 

and complexity of data, which demand more advanced computational data analyses approaches 

beyond traditional statistical tools. Data science approaches, especially AI and ML, have shown 
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promise in solving complex data patterns in ESE, because of their powerful fitting abilities 

(ZHONG et al., 2021). 

 
The application of AI and ML modelling is widespreading so fastly that only in 2022 more than 

91.000 papers have already been published on these techniques, according to a search in Scopus 

database3. Once more, engineering applications stand out, accounting for nearly 20% of the 

publications, behind only Computer Science field. Therefore, their application for better 

monitoring and controlling membrane fouling and ammonia removal on MBR wastewater 

treatment systems is highly interesting and can contribute to improve the technology efficiency. 

 
2.4.1 AI fundamentals 

 

AI is a branch of computer science that deals with the simulation of human intelligence behavior 

in computers or machines (BAGHERI; AKBARI; MIRBAGHERI, 2019). Any technique that 

enables a computational system to mimic human intelligence is a kind of AI. With the advances 

in computer power, large amounts of data, and theoretical understanding, AI techniques have 

received high attention and have become an essential part of many studies. Technically, AI is 

the intelligence displayed by machines in perceiving the environment by them and in taking 

actions that maximize the chance of successfully achieving the intended goals. This learning 

process based on experience compares to the natural intelligence demonstrated by humans and 

other animals (SHAO et al., 2022). 

 
The notion of AI can be traced back to the Middle Ages, however back them the understanding 

of AI was mostly related to myths. There were many legends about using witchcraft or alchemy 

to give consciousness to inanimate matter such as the Takwin of Jabir, the golem of Judah Loew 

and of Homunculus of Paracelsus and the Greek bronze man Talos – an artificially intelligent 

man-machine created to protect the island of Crete from invaders (RUSSEL; NORVIG, 2022). 

 
In the 1940s and 1950s though, neurological studies showed that the brain was a neuronal neural 

network that emits with or without pulses, triggering discussions among a few scientists from 

mathematics, psychology and engineering who began to explore the possibility of an artificial 

 

 

 

3 Publications were searched in Scopus database using the query: TITLE-ABS-KEY ("artificial intelligence” AND 

“machine learning”), on September 2022. 



41 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

 

 

 
 

brain. In 1943, neurologist Warren McCulloch and mathematician Walter Pitts co-authored a 

book that combines mathematics and algorithms, establishes neural networks and mathematical 

models, and simulates human thinking activities (SHAO et al., 2022). Alan Turing, in 1950, 

published an article in which he described how to create intelligent machines and test their 

intelligence (TURING, 1950). The test, that would sidestep the philosophical vagueness of the 

question ‘Can a machine think?’, became known as the Turing Test and is still used as a 

criterion for judging whether a machine is intelligent. A computer passes the test if a human 

interrogator, after posing some written questions, cannot tell whether the written responses 

come from a person or from a computer. 

 
Since then, AI has been increasingly improved and applied to solve the most different problems 

on several fields and areas of knowledge and its rapid development has dramatically changed 

our way of production and life. Indeed, according to Shao et al. (2022), AI has become the new 

arena of the new round of scientific and technological revolution and industrial transformation 

and is a noteworthy breakthrough to seize the opportunity for future development. Zhang, Zhu, 

and Su (2020) suggested that AI development can be conceptually divided into three stages: i) 

symbol AI, also called knowledge-driven approach; ii) data-driven approach, based on deep 

learning; and iii) the third generation AI that combines knowledge- and data-driven approaches. 

 
A quick way to summarize the milestones in AI history is listing the Turing Award winners: 

Marvin Minsky, in 1969, and John McCarthy, in 1971, defined the field foundations based on 

representation and reasoning; Allen Newell and Herbert Simon, in 1975, developed symbolic 

models of problem solving and human cognition; Ed Feigenbaum and Raj Reddy, in 1994, built 

expert systems that encode human knowledge to solve real-world problems; Judea Pearl, in 

2011, developed probabilistic reasoning techniques that deal with uncertainty in a principled 

manner; and finally Yoshua Bengio, Geoffrey Hinton, and Yann LeCun, in 2019, stated deep 

learning (multilayer neural networks) a critical part of modern computing (RUSSEL; NORVIG, 

2022). 

 
Indeed, ML and, more recently, deep learning are nowadays important subareas of AI. Their 

development was strongly impulsionated by the remarkable advances in computing power and 

the emergence of big data, as these factors have led to the development of learning algorithms 

specially designed to take advantage of very large datasets and to the increasing interest in AI 

among scientists, companies, investors, governments, the media, and the general public. 
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2.4.2 ML principles 

 

There is sometimes confusion between the terms AI and ML. ML is a subfield of AI that studies 

the ability to improve performance based on experience. Some AI systems use ML methods to 

achieve competence and some do not. 

 
In ML, statistical techniques are used to give computers the ability to learn with data, providing 

a given system the ability to automatically improve from experience without being explicitly 

programmed to do so. The processes involved in ML require searching through data to look for 

patterns and adjusting program actions accordingly (ZHONG et al., 2021). They are based on 

non-parametric algorithms that mimic the cognitive functions of the human brain, like learning 

and problem-solving. This way, ML models can enhance themselves by learning strategies that 

have worked well in the past (BAGHERI; AKBARI; MIRBAGHERI, 2019). 

 
Using ML algorithms to build models that uncover connections and predict dynamic system, 

system operators can make intelligent decisions without human intervention. For example, ML 

enables a system to grasp the entire knowledge of social relationships between individuals and 

to recognize individuals’ speech, face, and writing (CHEN et al., 2019). For that purpose, ML 

models are exposed to training processes. In ML, training is the process that enables the ML 

framework to discover potentially relationships between input and output data and therefore 

teaches the model to achieve a specific goal. There are three main types of learning approaches: 

i) supervised, ii) unsupervised and iii) reinforcement learning (RUSSEL; NORVIG, 2022). 

 

In supervised learning, the algorithm is provided with example inputs and their desired outputs. 

and learns a function that maps from input to output. For example, the inputs could be camera 

images, each one accompanied by an output saying “bus” or “pedestrian”. The algorithm learns 

a function that, facing a new image, predicts the appropriate output. Supervised ML is 

commonly used to classification and regression problems. In unsupervised learning, no labels 

are given to the algorithm, leaving it on its own to find structure from the inputs. For example, 

when shown millions of images taken from the internet, an unsupervised ML model can identify 

a large cluster of similar images referring to cats. This type of ML is usually used to clustering 

and dimensionality reduction. In reinforcement learning, the algorithm learns from a series of 

reinforcements, rewards or punishments. For example, at the end of a chess game the algorithm 

is told that it has won (a reward) or lost (a punishment). It is up to the algorithm to decide which 
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of the actions prior to the reinforcement were most responsible for it and to alter its actions 

towards more rewards in the future. Reinforcement algorithms are used for robotics, gaming 

and navigation (RUSSEL; NORVIG, 2022; BAGHERI; AKBARI; MIRBAGHERI, 2019). 

Figure 8 displays the three types of learning in ML and common applications of each one. 

 
Figure 8 - Three main types of learning in machine learning: supervised, unsupervised 

and reinforcement learning; and their most common applications. 

Source: (PUGLIESE; REGONDI; MARINI, 2021). 

 

Independently of the learning approach, the ML algorithm must thus be exposed to a dataset, 

from which it will map and learn relationships and patterns. However, to be a good ML model, 

it is desirable that the algorithm has the ability not only to fit well the input data, but more 

importantly, to generalize well for previously unseen data. Since testing the performance of the 

model in generalizing from samples already seen would be highly biased, the ideal is to divide 

the samples into two sets: a training set to train the model, and a test set to evaluate it. If the 

model has already predefined settings, this approach will be enough. If more settings are going 

to be tested in order to find the best model for one purpose though, it is recommended to divide 

the samples into three sets: a training set to train candidate models; a validation set, also known 

as a development set, to evaluate the candidate models and choose the best one; and a test set 
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to do a final unbiased evaluation of the best model performance (RUSSEL; NORVIG, 2022). 

 
2.4.3 AI and ML models 

 
Dues to their high performances solving real world problems, AI and ML techniques have been 

extensively researched and improved over the last years. There are many AI/ML techniques 

available nowadays and the most common include linear models, K-nearest neighbors (KNN), 

decision trees, like RF, SVM, FL, FA, ELM and GA. Among so many techniques though, PCA 

is considered to be the oldest and it is the most commonly applied (ABDI; WILLIAMS, 2010). 

It stands out specially for finding patterns in complex datasets and for reducing the number of 

dimensions without much loss of information. MSPC has also been standing out as a further 

development of the well stablished Statistical Process Control (SPC) methods. The application 

of control charts to monitor the quality of processes have found acceptance in many industrial 

typologies and the multivariate approach presents even higher performance rates in detecting 

and diagnosing operating faults in several industrial processes (HADIAN; RAHIMIFARD, 

2019). Besides, currently, ANN are one of the most important techniques in ML, being pointed 

as the main reason for the sharp increase of the field in the last years (CHEN, MINGZHE et al., 

2019). They have been widely applied in many disciplines for solving many complex real-world 

problems, specially due to their high capacity of modelling complex relationships between 

inputs and outputs. 

 
Therefore, since these techniques are consolidated in the literature and have demonstrated their 

ability to act as monitoring and control tools for various industrial processes, they were chosen 

to be applied in this work. 
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3 HYPOTHESES AND GOALS 

 
3.1 Hypotheses 

 
Based on what was observed in the literature, the following hypotheses were proposed and 

investigated in this work: 

 
i. ANN and PCA modelling can reveal which variables influence the most on MBR 

ammonia removal capacity and membrane fouling occurrence, contributing to a better 

understanding of these complex mechanisms; 

ii. ANN and PCA modelling can effectively predict the MBR behavior, estimating output 

conditions from input ones and, therefore, they can be used to forecast ammonia 

removal percentages and membrane permeability values; 

iii. MSPC can detect and diagnose operation periods of low ammonia removal percentages 

and operating faults caused by membrane fouling occurrence on MBR, improving the 

decision-making regarding their control; 

iv. The integrated assessment of ANN, PCA and MSPC models can be used to guide the 

definition of more efficient strategies for membrane fouling mitigation and for higher 

ammonia removal capacity, contributing thus for more efficient MBR operations. 

 
3.2 Main goal 

 
This work aims to support the definition of efficient strategies for better controlling ammonia 

removal and membrane fouling on MBR wastewater treatment systems from a data-driven 

approach. 

 
3.3 Specific goals 

 
i. To identify the most influential variables on membrane fouling occurrence on a pilot- 

scale MBR applied for the treatment of real oil refinery wastewater and to predict its 

membrane permeability; 

ii. To identify the most influential variables on ammonia removal capacity of a pilot-scale 

MBR applied for the treatment of real oil refinery wastewater and to predict its values; 

iii. To detect operations with low percentages of ammonia removal and operating faults 

caused by membrane fouling on a pilot-scale MBR treating real oil refinery wastewater 
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and identify their main causes; 

iv. To propose efficient strategies to mitigate membrane fouling and to improve ammonia 

removal on MBR. 

 
Table 1 summarizes and relates the main points of interest observed in the literature with the 

hypotheses and goals proposed for this work: 

 
Table 1 - Points of interest observed in the literature, hypotheses and goals. 

 

Literature Hypotheses Goals 

 

PCA and ANN are effective in 

revealing relations between 

different variables (CHANG et 

al., 2022; PANI, 2022); 

(i) 
PCA and ANN can reveal which 

variables influence the most on 

ammonia removal and membrane 

fouling occurrence on MBR; 

(i) and (ii) 
To identify the factors that impact the 

most the ammonia removal and the 

occurrence of membrane fouling on a 

pilot-scale MBR treating real oil 

refinery wastewater; 

 

ANN and PCA can efficiently 

map a process behavior, being 

able to predict outputs from inputs 

(HONG et al., 2019b; JAWAD; 

HAWARI; JAVAID, 2021); 

 

(ii) 

PCA and ANN modelling can be 

used to predict the ammonia 

removal and the membrane 

permeability of MBR systems; 

 

(i) and (ii) 

To forecast the ammonia removal 

percentages achieved and the 

membrane permeability values of a 

pilot-scale MBR treating real oil 

refinery wastewater; 

 
 

MSPC is effective in detecting 

operating failures and in 

identifying their causes; 

(LE et al., 2020; ZHAO et al., 

2020) 

 

(iii) 

MSPC can detect and diagnose 

operating failures caused by 

membrane fouling on MBR and 

also detect and diagnose low 

ammonia removal capacity; 

 

(iii) 

To detect low membrane permeability 

and ammonia removal points of 

operation on a pilot-scale MBR 

treating real oil refinery wastewater 

and identify their main causes; 

 

 
Data analysis can lead to more 

well-informed decision-making, 

promoting more accurate control 

of processes and improving their 

performances (RABAN; 

GORDON, 2020). 

 
(iv) 

The integrated assessment of 

ANN, PCA and MSPC models can 

guide the definition of more 

efficient strategies for improving 

ammonia removal and for 

membrane fouling mitigation. 

 
(iv) 

To propose efficient strategies to 

mitigate membrane fouling and to 

improve ammonia removal on MBR 

wastewater treatment systems. 
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4 NOVELTY AND RELEVANCE 

 
This work addresses AI/ML techniques that can meaningfully contribute to the technological 

advancement of MBR for municipal and industrial wastewater treatment. Despite the diversity 

of works involving membrane fouling on MBR, works that concern real industrial wastewater 

are still scarce, and therefore the matrix influence on membrane fouling occurrence and on 

ammonia removal is not accounted for. Besides, most of the works published are based on lab- 

scale units, investigate the relations between only a few variables and monitor the process 

performance for only a short period of time. In this work, both membrane fouling and ammonia 

removal were evaluated considering the treatment of a real industrial wastewater and a set of 

14 analytic and operating variables related to both biodegrading and membrane separation of a 

pilot-scale MBR monitored over a long period of time was considered. Besides, although ANN, 

PCA and MSPC have been consolidated in several areas of knowledge, there are still few works 

in the literature about their application for better monitoring and controlling MBR performance. 

Therefore, the innovative character and the technological contribution of this work is evident. 

 
Furthermore, ammonia removal control and stabilization is a great challenge for industrial water 

reuse and membrane fouling is one of the major drawbacks for MBR efficient operation, besides 

being the main cause for the higher operating costs still observed for MBR when compared to 

conventional systems. Many developed and developing countries, like the United States and 

China, have been expending efforts to improve advanced wastewater treatment technologies, 

like MBR. In Brazil, efforts are also needed in order to overcome the challenges and limitations 

that restrict its broader application on the country. Hence, controlling membrane fouling and 

allowing water reuse is critical for a more cost-effective MBR operation, contributing not only 

to a more widespread application of the technology, but also ensuring better performances for 

the already existing applications. Moreover, by contributing to a more extensive application of 

such an important wastewater treatment technology, this work contributes to reduce the impacts 

associated with inappropriate industrial wastewater disposal, which protects the environment 

and improves public health and welfare, highlighting the relevance of the work. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

II. ARTIFICIAL NEURAL NETWORKS, PRINCIPAL 

COMPONENTS ANALYSIS AND MULTIVARIATE 

STATISTICAL PROCESS CONTROL 
 

THEORETICAL FOUNDATION AND APPLICATIONS 
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1 PCA 

 
According to Abdi and Williams (2010), PCA is probably the most popular multivariate statistical 

technique (CAMACHO et al., 2016; JOLLIFE; CADIMA, 2016) and it is also likely to be the 

oldest one. Indeed, its origin can be traced back to Pearson (1901), but its modern formulation 

was formalized by Hotelling, who coined the term principal component (HOTELLING, 1933). 

This statistical technique allows us to summarize and to visualize the relevant information 

present in a complex dataset containing observations described by multiple correlated variables. 

PCA also represents the pattern of similarity between observations and variables by displaying 

them as points in maps, expressing the data in such a way that highlight their similarities and 

differences (JOLLIFFE, 2002). Since finding patterns can be hard in data of high dimension, 

PCA is a useful statistical technique that has found application in almost all scientific disciplines 

(ABDI; WILLIAMS, 2010). 

 
1.1 Theoretical foundation 

 
1.1.1 Notation 

 
Matrices are denoted in upper case bold, vectors are denoted in lower case bold, and elements 

are denoted in lower case italic. Matrices, vectors, and elements from the same matrix all use 

the same letter (e.g., A, a, a). Index i represents the observations (i = 1, …, I), index j represents 

the variables (j = 1, …, J) and index k represents the components (k = 1, …, K). The transpose 

operation is denoted by the superscript T and the identity matrix is denoted by I. 

 
1.1.2 Finding the PC 

 
PCA is a multivariate procedure aimed at reducing the dimensionality of multivariate data while 

accounting for as much of the information in the original dataset as possible. The information 

in a given dataset corresponds to the total variation it contains. Therefore, PCA aims to identify 

the directions along which the data variation is maximal (EVERITT; HOTHORN, 2008). 

Figure 9 displays an example: in the first plot (Figure 9a), the data are represented in the X-Y 

coordinate system. The dimensionality reduction is achieved by identifying the PC, i.e., the 

directions in which the data mostly varies. Thus, in the second plot (Figure 9b), PC1 axis is the 

first principal direction along which the samples show the largest variation and PC2 axis, which 
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is orthogonal to PC1 axis, is the second most important direction. This way, PCA can be 

geometrically explained as the rotation of the original axes into the directions of most variation 

(JOHNSON; WICHERN, 2014). 

 
Figure 9 - Principal components (PC) geometric representation. 

 

 

 

 

A B 
Source: (KASSAMBARA, 2017). 

 
Algebraically, PCA seeks to transform the original variables into a new set of variables that are 

linear combinations of the original ones and uncorrelated to each other (EVERITT; HOTHOR, 

2008). However, before these new variables can be determined, the data must be preprocessed, 

since PCA performed on raw data is often not very meaningful. Although there are many types 

of preprocessing methods available, mean-centering and scaling are the two most common 

preprocessing methods and they are often required (BRO; SMILDE, 2014). 

 
Mean-centering and scaling are recommended procedures when the variables are measured in 

different scales, which can severely affect PCA outputs, since the variables are not comparable. 

This way, the data should be preprocessed to have i) standard deviation (sd) one and ii) mean 

zero, which is achieved by subtracting from every variable the corresponding mean and by 

dividing them by the corresponding sd, as shown in Eqn. 2. This procedure reduce the large 

difference between the orders of magnitude of the different variables and thus make them more 

comparable, giving equal importance to each one in the multivariate projection models 

(GONZÁLEZ-CAMEJO et al., 2020). 

 

xi,j 
yi,j  μ j 

σ 

 
(2) 

j 

 

where: 
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xi,j = centered and scaled ith value of variable j 

yi,j = original ith value of variable j 

μj = mean of variable j 

σj = sd of variable j 

 
After being mean-centered and scaled thus, the data is collected in a matrix that comprises I 

observations described by J variables and it is represented by the I × J matrix X, whose generic 

element is xi,j (i = 1, …, I and j = 1, …, J). The individual variables of X are denoted by xj (j = 

1, …, J) and are all vectors in the I-dimensional space. A linear combination of those x variables 

can be written as shown in Eqn. 3: 

 

t j   w1 * x1    wj * xj 
(3) 

 

where: 

tj = new vectors in the same space as x 

wj = weight of each variable j 

 
Since the aim is to lose the minimum of the information contained in matrix X, it is needed to 

find the wj weights that will get the new variables tj that best explains the total variation of the 

original dataset. The variation in tj can be measured by their variance, var(tj). Thus, the problem 

can be translated as maximizing this variance by choosing optimal weight vectors wj with 

elements wj (j = 1, …, J). As the matrix X is mean-centered and scaled to unit variance, this is 

actually a standard problem in linear algebra and the optimal w are the eigenvectors of the 

covariance matrix (ε) of matrix X (for detailed mathematical proof, refer to ABDI; WILLIAMS, 

2010; BRO; SMILDE, 2014). 

 
Eigenvectors and eigenvalues are vectors and numbers associated to square matrices. Together 

they provide the eigen-decomposition of a matrix, which analyzes the structure of this matrix. 

There are several ways to define eigenvectors and eigenvalues, but the most common approach 

defines an eigenvector of the matrix A as a vector u that satisfies Eqn. 4: 

 

Au  u (4) 

 

where: 

 
λ = eigenvalue associated to the eigenvector u 
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trace(ε)   j 

 
 

This means that a vector u is an eigenvector of a matrix A if the length of the vector (but not its 

direction) is changed when it is multiplied by A. Traditionally, the set of eigenvectors of A are 

stored in a matrix U. Each column of U is an eigenvector of A. The eigenvalues are stored in a 

diagonal matrix Λ, where the diagonal elements give the eigenvalues. Therefore, Eqn. 4 can be 

rewritten as Eqn. 5 or Eqn. 6: 

 

AU  ΛU (5) 

 

or: 
 

A  UΛU1 
 

(6) 

 

As eigenvectors corresponding to different eigenvalues are orthogonal, the matrix U is also 

orthogonal and therefore U-1 = UT. Then: 

 

A  UΛUT (7) 

 

Positive semi-definite matrices are used very often in statistics. A matrix is classified as positive 

semi-definite when it can be obtained as the product of a matrix by its transpose, which implies 

that a positive semi-definite matrix is always symmetric. In particular, covariance matrices are 

always positive semi-definite matrices, which is convenient because the eigen-decomposition 

of these matrices always exists (ABDI; WILLIAMS, 2010). Thus, when the covariance matrix 

ε is eigen-decomposed, it can be written as Eqn. 8: 

 

ε  UΛUT (8) 

 

The trace of the covariance matrix, i.e. the sum of the diagonal elements of a square matrix, can 

thus be calculated as Eqn. 9: 

 
 

 

trace(ε)  trace(UΛUT )  trace(ΛUUT )  trace(ΛI)  trace(Λ)  
j 1 

 

(9) 

 

As the covariance matrix has on its main diagonal the variances of each variable j, it can also 

be written as Eqn. 10: 

 

J 

2 (10) 

j 1 

J 

j 
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j 

J 

 
 

And so: 
 

 
J J 

 2   (11) 

j 1 j 1 

 

This means that the total variation contained in the original variables is equal to the sum of the 

eigenvalues of the covariance matrix and that is why the best weight vectors w are the 

eigenvectors of the covariance matrix. Therefore, PCA transforms the dataset into new variables 

t using the eigenvectors of the covariance matrix as weights of the linear combinations. In 

matrix notation, this becomes Eqn. 12: 

 

T[i,k]  X[i,j] U[j,k]  (12) 

 

In order to the first PC explain most of the data variation, the eigenvectors are ranked according 

to their corresponding eigenvalues, in descending order. The importance of a PC is thus 

reflected by its eigenvalue (λk) and the percentage of total variation explained by each k 

component is calculated as Eqn. 13 (JOLLIFFE, 2002): 

 

 
%explainedk  

k 

k 

k 1 

 
(13) 

 

Therefore, it is possible to replace the original J variables with only the first K (K < J) 

components without losing much information. This reduction on data dimensionality provides 

several benefits: the influence of noise is minimized, the interpretation and visualization of the 

data is greatly improved and further modelling with the data is favored (BRO; SMILDE, 2014). 

 
The values of the new variables computed by PCA for the observations are called scores and 

they can be geometrically interpreted as the projections of the original observations onto the 

PC. The correlation between a PC and an original variable is in turn called loading and estimates 

the information they share. The variables can also be plotted in the component space using their 

loadings as coordinates, however their representation differs from the scores plot: whereas 

observations are represented by their projections, variables are represented by their correlations. 

When the data are perfectly represented by only two components, the sum of the squared 

loadings is equal to one, and therefore the loadings will be positioned on a circle that is called 

the circle of correlations. When more than two components are needed to represent the data 

j 
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perfectly, the variables will be positioned inside the circle of correlations. The closer a variable 

is to the circle of correlations, the better this variable can be reconstructed from that two PC 

(and the more important it is to interpret these components); the closer to the center of the circle 

of correlations a variable is, the less important it is for that two PC (ABDI; WILLIAMS, 2010). 

It is yet possible to visualize and interpret scores and loadings simultaneously through a graph 

name biplot. By plotting observations and variables together, it is possible to relate the behavior 

of observations to specific variables and, therefore, one can explain e.g. why a certain grouping 

is observed or why the behavior of the observations change throughout time (BRO; SMILDE, 

2014). 

 
1.1.3 PCA as a model 

 
Another way of assessing the summarizing capability of the new variables t is evaluating how 

representative t is in terms of replacing X. This can be done by projecting the columns of X on 

t and calculating the residuals of that projection. So, we can regress all variables of X according 

to Eqn. 14, which derives from Eqn. 12: 

X
 

 T UT 
 

(14) 
[i,j] [i,k]  [k,j] 

 

where: 

X
 
= matrix containing the estimated values of X 

If all components were kept (i.e. K = J), X
 
would be equal to X. However, when the last PC are 

eliminated  from  the  model, X
 
deviates  from  X  and  the  difference  between  them  is  called 

residuals. Mathematically: 
 

X  X  E  T UT  E 
 

(15) 
[i,j] [i,j] [i,j] [i,k]  [k,j] [i,j] 

 

where: 

 
E = matrix of residuals, which elements are calculated according to Eqn. 16: 

 

ei, j  xi,j 

 
i,j 

 
(16) 

 

where: 

 x 
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i,j 

i, j 

 
 

ei,j = ith residual value of variable j 

x
  

= estimated ith value of variable j 

 
Eqn. 15 denotes that PCA analysis can also be applied as a modelling activity since the product 

TUT serves as a model of X, highlighting this important PCA feature. From the same equation, 

it is possible to derive all four parts of PCA models: the data (X), the scores (T), the loadings 

(T) and the residuals (E) (BRO; SMILDE, 2014). Figure 10 displays a PCA model structure. It 

is noticeable that the model approximation of the data (TUT =  X
 
) and the residuals have the 

same structure as the data. 

 
Figure 10 - Structure of a PCA model. 

 
The overall quality of the PCA model after K components is evaluated as the similarity between 

X
 
and X. Several coefficients can be used for this evaluation, but the most popular one is the 

degree of fit or coefficient of determination (R²), calculated as shown in Eqn. 17 (ERIKSSON 

et al., 2013): 
 

R 
2 
 1  

RESS 

SSX 

 

(17) 

 

where: 

 
RESS = residual sum of squares (Eqn. 18) 

SSX = total variation of the mean-centered and scaled data matrix (X) (Eqn. 19). 
 

 
I J 

RESS  e2 (18) 

i 1 j 1 
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i, j 

 
 

The smaller the value of RESS, the higher the value of R² and the better the PCA model. 
 

 
I J 

SSX   x2 (19) 

i1 j 1 

 

The PCA model can then be applied for data prediction. For this purpose, a dataset is used to 

build the model; and a second dataset (usually new observations) is left out to be predicted by 

the PCA model, as described above. The quality of the predictive model is commonly evaluated 

from its predictive ability (Q²), calculated according to Eqn. 20 (ERIKSSON et al., 2013): 

 

Q
2 
 1 

PRESS 

SSX 

 
(20) 

 

where: 

 
PRESS = predicted residual sum of squares. It is calculated the same way as RESS, but for the 

data which was predicted by the model and not used for its development. 

 
The same way, the smaller the value of PRESS, the higher the value of Q² and the better the 

predictive PCA model. 

 
1.1.4 Choosing the number of PC to keep 

 
In exploratory studies, where the aim is generally just to have an overall look of the data, it is 

not urgent to fix the number of components very accurately. Often, the interest is only in looking 

at the main variation and per definition the first few PC provide information on that. For more 

complex purposes though, it is important to establish the number of PC to keep more precisely, 

since the residuals will change depending on how many PC will be used (BRO; SMILDE, 

2014). Unfortunately, there is no well-accepted global and objective way to decide how many 

PC are enough. This will depend on the specific field of application and the specific dataset. 

Nevertheless, several methods, usually applied in a combined manner, have been proposed 

(JACKSON, 1993). The three most common methods are the scree test (CATTELL, 1966), the 

Kaiser criterion (KAISER, 1960) and the fraction of variation explained (JOLLIFFE, 2002). 

 
According to Kaiser criterion, only components with eigenvalues greater than the unit should 

be kept, since these axes summarize more information than any single original variable, i.e. PC 

that have λ > 1 account for more variance than accounted by one of the original variables. This 
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happens because when data is mean-centered and scaled the eigenvalues sum is equal to the 

total number of original variables (and hence the total number of eigenvalues). This means that 

the mean of the eigenvalues is equal to one and therefore eigenvalues greater than one are 

greater than the mean (BRO; SMILDE, 2014; JOLLIFFE, 2002). 

 
The scree plot is the plot of the eigenvalues ordered from the largest to the smallest. The number 

of components to keep is determined at the point beyond which the remaining eigenvalues are 

all relatively small and of comparable size. Visually, one must observe if there is a point in the 

scree plot (often called an ‘elbow’) such that the slope of the plot goes from ‘steep’ to ‘‘flat’’ 

and to keep only the PC which are before the elbow (ABDI; WILLIAMS, 2010; EVERITT; 

HOTHORN, 2008). Figure 11 displays an example of a scree test and demonstrates both Kaiser 

and the scree test criteria to keep only the first two PC. 

 
Figure 11 - Scree plot example demonstrating the scree test and Kaiser criteria for 

deciding to keep the first two principal components. 

Source: Adapted from Ajjur; Al-Ghamdi (2021). 

 
The fraction of variation explained method consists in including all components up to some 

predetermined fraction of total variation explained. For example, if 70% of the total variance 

explained is enough for a certain application, then the number of PC necessary to achieve that 

fraction should be retained. It is important to note though that this is a heavily application and 

field of knowledge dependent method (JACKSON, 1993) and therefore should be used wisely. 

In general, fractions of variation explained greater than 60% are considered enough (JACQUIN 

et al., 2018; YU et al., 2017). 
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1.2 PCA for investigating membrane fouling on MBR 

 
PCA has been successfully applied as a data-driven approach for investigating membrane 

fouling on MBR. Although there are still few works on this subject in the literature, the existing 

ones demonstrate that PCA is effective in revealing data trends and patterns, allowing the 

identification of the most influential variables on the occurrence of membrane fouling and 

supporting the decision-making concerning fouling mitigation. 

 
Maere et al. (2012), for example, applied PCA to evaluate the membrane state of a lab-scale 

MBR treating a synthetic municipal wastewater based solely in transmembrane pressure (TMP) 

data monitored during five months. The number of PC to be retained was based on both the 

Kaiser criterion and the cumulative explained variation. The first two PC were kept, 

corresponding respectively to 96.1 and 3.4% of the data variation and making a combined 

explained variation of 99.5%. Two major trends were observed in the data and they were linked 

to reversible and irreversible fouling, which were represented by PC1 and PC2, respectively. 

According to the authors, TMP data appear to contain the necessary information for membrane 

management and PCA was able to efficiently extract the information in an automated way and 

therefore it could be used for membrane fouling control purposes. 

 
Choi et al. (2013) also applied PCA aiming to evaluate membrane fouling on MBR. The authors 

monitored a lab-scale MBR treating a synthetic wastewater for one year in order to investigate 

the correlations between effluent organic matter (EfOM) parameters and membrane fouling. 

The variables considered were i) operating conditions: cake resistance, SRT, temperature, TMP, 

pH and total resistance; ii) biomass: viscosity, SMP, EPS, COD, mixed liquor suspended solids 

(MLSS), and MLVSS. The first PC embodied the characteristics of EfOM and explained 59% 

of the data variation, expressing its importance for membrane fouling. The second PC explained 

8% of the data variation and therefore the two PC kept accounted for 67% of the data variation. 

PCA was a useful tool to evaluate the correlations among dissolved organic matter (DOM) and 

membrane fouling, and also to determine the group of parameters that most influence the MBR 

performance. 

 
Yu et al. (2017) in turn assessed membrane fouling on a MBR applied for the treatment of an 

industrial wastewater, obtained from an antibiotic industry. The lab-scale MBR were monitored 

for six months. Different categories of variables, named i) feed characteristics: total organic 
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carbon (TOC), and ammonia; ii) biomass: viscosity, capillary suction time (CST), MLVSS, 

EPS, and SMP; (iii) operating conditions: OLR and pressure were evaluated. The first two PC 

were extracted based on the scree plot and the Kaiser criterion. They explained 53.2 and 9.6%, 

respectively, of the data variation, corresponding to 62.8% of total variation explained. Results 

from PCA highlighted both proteins and carbohydrates in EPS as the primary foulants. 

Membrane fouling associated with the first PC was positively related to EPS whereas PC2 was 

primarily related to influent proteins. Other important categories affecting membrane fouling 

were ranked as biomass characteristics, operating conditions, and feed characteristics. 

 
Jacquin et al. (2018) also worked with real wastewater, but with municipal wastewater rather 

than industrial. Their work also stands out because a full-scale MBR monitored for 16 months 

was assessed. PCA was applied to establish the link between DOM, operating conditions, active 

biomass concentration and membrane fouling. The variables considered were also divided into 

categories: i) operating conditions: SRT, temperature, concentration factor (CF = SRT/HRT), 

MLVSS, nitrogen load and organic load; ii) biomass: different microbial species. The first two 

PC were kept based on the fraction of total variation explained, equal to 66.2%. PCA results 

showed that operating parameters did not have the same impact on active biomass populations. 

SRT and temperature were identified as the variables with the most influence on active biomass 

concentrations and consequently on its associated MSP production. Therefore, these parameters 

play an important role on the occurrence of membrane fouling and were considered as major 

foulants. Besides, MLVSS did not correlated to heterotrophic bacteria concentration, so the 

authors concluded that it was not appropriate to quantify active biomass. 

 
Hong et al. (2019) also used PCA analysis to assess the behavior of the microbial community 

in a MBR, evaluating the concentration of different species. The authors, however, assessed a 

lab-scale MBR treating a synthetic municipal wastewater. The MBR was operating under two 

different modes: constant TMP and constant permeate flux and it was monitored during three 

months for each filtration mode. The authors decided to keep three PC to explain 77% of the 

total variation and meet the Kaiser criterion. The microbial species that characterized each 

operation mode were depicted well by PCA. PC1 distinguished operation modes of constant 

TMP and constant flux, PC2 distinguished early stage in constant TMP mode from all others; 

and PC3 distinguished cake sludge from bulk sludge. The authors concluded that membrane 

fouling was more intense in constant TMP mode due to the higher SMP and EPS release and to 

the higher abundance of biofilm-forming bacterial group. 



58 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

 

 

 
 

Also aiming to understand the microbial community behavior in MBR systems, Rodriguez- 

Sanchez et al. (2019) investigated the performance, biomass kinetics and microbial community 

structure in biofouling and suspended biomass of a hybrid moving bed biofilm reactor- 

membrane reactor (MBBR-MBR) system subjected to four different scenarios of salinity. For 

this purpose, the authors worked with a lab-scale MBBR-MBR applied for the treatment of a 

salinity-amended municipal wastewater. The period of monitoring was not informed, as well as 

the percentage of total variation. The PCA model showed higher community similarity between 

biofouling and suspended biomass under variable salinity conditions than for constant salinity, 

which could be attributed to low adaptability of bacteria to variable salinity regimes. Also, 

differences were observed in the relative abundance of dominant bacteria between biofouling 

and suspended biomass at all salinity scenarios, indicating that some groups of species are more 

influential on membrane fouling occurrence. 

 
The works presented demonstrate the great potential of PCA to be used as a tool for monitoring 

membrane fouling on MBR, with fractions of total variation explained above 60% being usually 

considered satisfactory to well represent the system. Despite the great results presented in these 

papers though, they also reflect a gap in the literature about assessing membrane fouling on 

MBR through PCA models, since most of the existing works focus on few variables, during a 

short period of monitoring and/or using synthetic wastewater. The investigation of membrane 

fouling in the treatment of real industrial wastewater is critical since the matrix strongly impacts 

on its occurrence and severity and thus must be accounted for. Besides, evaluating the MBR 

operation over a long period of time is also really important, since the membrane has its 

characteristics changed throughout its lifetime. 

 
1.3 PCA for monitoring MBR general performance 

 
PCA has been also applied to monitor other aspects of MBR operation and performance, beyond 

membrane fouling. Following are presented some of the most recent ones. 

 
Qin et al. (2021) investigated the influence of distinct HRT and OLR on fungal dynamics during 

synthetic food waste anaerobic digestion in two immersed MBR. The first one was fed with a 

solution of COD concentration of 4 gL-1d-1 for 34 days, when the feed solution COD 

concentration was increased to 8 gL-1d-1. The second MBR was first fed with a 6 gL-1d-1 solution 

and thereafter elevated to 10 gL-1d-1. Samples were collected from both MBR after 1 (T1), 15 
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(T2) and 34 days (T3) to analyze fungal community by using 18s rDNA. PCA indicated that 

fungal diversity was varied among all three phases (T1, T2, and T3) for both MBR and the 

results showed that different OLR and HRT values have significantly influenced the fungal 

community. 

 
Miwa et al. (2021) also used PCA to assess the microbial community of two lab-scale MBR 

treating municipal wastewater, but the authors focused on biofilm formation and, consequently, 

on membrane fouling. PCA modelling based on 16s rRNA showed that the biofilm microbial 

community changed significantly from middle stage to mature biofilm when compared with 

that of activated sludge. Besides, the model indicated the abundance of specific bacteria, such 

as unclassified Neisseriaceae, increased in middle-stage biofilm and the diversity indexes of 

middle-stage biofilm were lower than those of mature biofilm and activated sludge. These 

results suggested that the presence of specific bacteria with colonization ability played a crucial 

role in biofilm formation and that strategies to reduce membrane fouling on MBR should be 

sought during early- and middle-stage biofilm formation. 

 
Viet and Jang (2022), in turn, investigated the feasibility of applying a novel methodology for 

constructing a fertilizer draw solution (DS) used in an OMBR for simultaneous wastewater 

treatment and sustainable fertigation. The lab-scale OMBR was fed with synthetic wastewater. 

The results indicated that the system performance, expressed by water flux, reverse salt flux 

and contaminant removal, varied critically under different fertilizers. Besides, NH4NO3 and 

NH4H2PO4fertilizers caused the highest and lowest membrane fouling resistances, respectively. 

PCA model kept two PC and accounted for 70% of the total variation. The model showed that 

fouling resistance played a pivotal role in the total variation of the system. 

 
Gutiérrez et al. (2022) applied PCA to compare and discuss the different results published in 

the scientific papers approached in their previous review article (GUTIÉRREZ et al., 2021), 

regarding enhanced micropollutant removal on MBR coupled with powdered activated carbon 

(PAC). All data included in their dataset refers to lab-scale plants, with the exception of nine 

observations that refer to a pilot-scale unit. All the experimental MBR were fed with synthetic 

wastewater. PCA model was applied then to identify the most influential factors from a set of 

operational parameters (PAC dosage and retention time and SRT) and compounds physico- 

chemical properties (octanol-water distribution coefficient (Dow), molecular weight and charge). 

The PCA model reduced the dimensionality of the dataset to four PC that explained 87% of the 
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total variation. Its results demonstrated that, based on the collected dataset, micropollutant 

charge and LogDow seem to play the most important role in the removal mechanisms occurring 

in MBR coupled with PAC. 

 
Similarly to monitoring membrane fouling through PCA, the works discussed demonstrate the 

great potential of PCA to be used as a tool for monitoring MBR performance regarding distinct 

aspects of its operation and at the same time reflect the gap in the literature, since most of the 

works focus on lab-scale MBR treating synthetic wastewater. Besides, considering bigger MBR 

scales can also contribute to better understand and control real processes, since the relations on 

lab-scale can differ from the pilot and real-scale ones. 
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2 MSPC 

 
MSPC has also been standing out in the literature as a multivariate statistical technique that can 

be used as a monitoring tool for several industrial processes. This technique applies multivariate 

control charts to detect any unusual events, as well as to identify their main causes (DAS, 2019). 

MSPC methods reduce the information contained within all process variables down to a few 

composite metrics through the application of statistical modeling. These composite metrics can 

then be easily monitored in order to benchmark process performance and highlight potential 

problems (BERSIMIS; PANARETOS; PSARAKIS, 2009). The basis of this method is to build 

an empirical model from a set of measurements obtained under normal operating conditions 

(NOC) and to calculate statistical confidence limits from this model. If the process is operating 

according to the expected, the new observations projected onto the model should thus be within 

the confidence limits. If they are not, some atypical event has caused the process to deviate 

from its normal behavior (WESTERHUIS; GURDEN; SMILDE, 2000). 

 
2.1 Theoretical foundation 

 
2.1.1 SPC versus MSPC 

 
SPC has been widely applied for quality control over the last two decades and the most common 

process control technique is control charting. Control charts can be applied to monitor process 

stability, to detect any assignable variations, and/or to forecast process movements (FERRER, 

2007). They are graphical representations of the process variability and its natural and unnatural 

patterns. Common causes are related to the natural variability that always exists in any process 

and cannot be avoided, whereas special causes are not inherent to the process and, therefore, 

can be identified and eliminated (MONTGOMERY, 2016). 

 
In order to achieve this goal thus, control charts display a value of the quality characteristic that 

has been measured versus the sample number or time (Figure 12). The central line represents 

the average value of the quality characteristic and the control limit lines are set so that when the 

process is statistically stable, nearly all the points in the control chart fall between them 

(NOSKIEVIČOVÁ, 2013). Thereby, the upper control limit (UCL) and the lower control limit 

(LCL) separate common and special causes of variation and, therefore, a process is said to be 

out of statistical control when an observation falls outside the control limits. In this case, it is 

assumed that an assignable cause of the abnormal process variability is present. 
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Figure 12 - Overview of a control chart with the upper (UCL) and lower control limits 

(LCL). 
 

CL: central line 

 
However, SPC methods are based on charting only one or a few product quality variables in a 

univariate way. This approach, although effective in past times when data were scarce, is totally 

inadequate for modern process, where massive amounts of highly correlated variables are being 

collected (HADIAN; RAHIMIFARD, 2019). Relying on univariate control charts when more 

than one variable is involved is unpractical, as it forces the operator to inspect a large number 

of control charts; and risky, since they may lead to unsatisfactory results, such as increasing the 

rate of false alarms (BERSIMIS; PANARETOS; PSARAKIS, 2009) and decreasing the rate of 

fault detection. This happens because when there is correlation between the variables the correct 

multivariate in-control region is considerably different from the in-control region determined 

via individual charts (HADIAN; RAHIMIFARD, 2019), as shown in Figure 13. 

 
Figure 13 - Multivariate vs. univariate approach and comparison of the in-control 

regions. 

Source: Adapted from Ordóñez (2008). 

 
Therefore, multivariate methods that treat all the variables simultaneously are required in these 
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current data-rich environments. Process monitoring in which multiple correlated variables are 

of interest is known as MSPC, a method that was first introduced by Hotelling (1947). Since 

then, several approaches have been proposed for MSPC, such as multivariate Shewhart control 

charts, multivariate cumulative sum (MCUSUM) control charts and multivariate exponential 

weighted moving average (MEWMA) control charts (BERSIMIS; PANARETOS; PSARAKIS, 

2009). Aiming to consolidate and improve the monitoring of multivariate processes, Jackson 

(1991) stated that an MSPC procedure should fulfill four conditions: a) the relationships among 

the variables should be taken into account; b) the question: "Is the process in control?" must be 

answered; c) an overall probability for the event "Procedure diagnoses an out-of-control state 

erroneously" must be specified; and d) the question: "If the process is out-of-control, what is 

the problem?" should be answered. However, the traditional MSPC control charts do not take 

into account correlation among variables, which may lead to accuracy problems (CAMACHO 

et al., 2016; KOURTI; MACGREGOR, 1996), and identifying the variable that is causing the 

process to be out-of-control is not simple in these methods, preventing Jackson's first and last 

conditions from being fulfilled. Furthermore, these control charts may be impractical for high- 

dimensional systems with collinearities (BERSIMIS; PANARETOS; PSARAKIS, 2009). 

 
A common procedure for reducing the data dimensionality thus is to use projection methods 

(also called latent variable methods), like PCA. Latent variable methodologies exploit the 

correlation structure of the original variables and reveal the few independent underlying events 

that are driving the process at any time (FERRER, 2014). 

 
2.1.2 MSPC based on PCA (MSPC-PCA) 

 
Latent variables-based MSPC was firstly proposed by Kourti and Macgregor (1996) and has 

revolutionized the idea of MSPC. For the last 25 years, this approach has been increasingly 

applied and recommended for monitoring complex industrial processes (CAMACHO et al., 

2016), since the performance of an entire unit can be monitored by the operator looking at only 

a few multivariate control charts, that can be thought of as process performance indices. These 

charts are simple, easy to understand and have found quick acceptance in the control rooms 

(KOURTI, 2005). More importantly, latent variables-based charts are able to detect problems 

that manifest themselves as changes in the covariance structure of the process variables, which 

traditional control charts will miss if the variables remain within their expected control limits. 

Besides, the methodology based on latent variables also provides diagnostic tools that help the 
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operators to determine quickly and efficiently the source of the problem (KOURTI, 2002). 

 
Due to its plentiful benefits (as discussed in the previous item), PCA is the most common 

multivariate statistical projection method used to reduce the dimensionality of the monitoring 

space. The process is then monitored in the reduced dimensional space obtained with the first 

few PC. The MSPC-PCA monitoring method, as any SPC method, is carried out in two phases: 

Phase I, model building; and Phase II, model exploitation. This distinction is highly relevant 

and must be done carefully, as the method performance depends strongly on that (CAMACHO 

et al., 2016). The main goal in Phase I is to model the in-control process performance based on 

a set of historical in-control data. This dataset must contain only observations in which the 

process had been operating consistently in an acceptable manner and any periods containing 

variations arising from special events that one would like to detect in the future must be omitted 

at this stage. A PCA model and the control charts are thus built according to this in-control 

dataset. In Phase II then, the PCA model and the control charts built from in-control data are 

used to monitor the process using on-line data (FERRER, 2014). The limits of the multivariate 

control charts are calculated according to the Phase I reference dataset and the limit values are 

defined according to what are good operating conditions for a particular process. On Phase II, 

values of future measurements are compared against these limits (KOURTI, 2005). 

 
At least two complementary multivariate control charts are required for process monitoring 

using projection methods: one related to the scores and therefore to the portion of data explained 

by the model; and one related to the residuals and therefore to the portion of data left out by the 

model (KOURTI, 2005). Among the multivariate control charts available for MSPC based on 

projection methods, the most commonly applied are the Hotelling’s T2 statistic (HOTELLING, 

1947) and the Q-statistic or sum of squared prediction errors (SPE). T² statistic is computed 

from the scores and represents the estimated Mahalanobis distance from the center of the latent 

subspace to the projection of an observation onto this subspace. Q statistic in turn is related to 

the residuals and represents the squared Euclidean distance of an observation from this subspace 

(CAMACHO et al., 2016; FERRER, 2007). These statistics are calculated for each observation 

according to Eqn. 21 and Eqn. 22, respectively: 

 

K t 2 

T2    i,k  (21) 
i 

k k 1 
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i i,k 

k 1 

 
(22) 

 

where: 

ti,k = ith score value in component k 

λk = eigenvalue of component k 

ei,k = ith residual value of component k 

 
From these two statistics that summarizes all the information contained in the original variables, 

the respective multivariate control charts are built. The control charts have different conceptual 

meanings. T² control chart essentially checks if a new observation projects on the principal 

component hyperplane within the limits determined by the reference data. Thereby, a value of 

this statistic exceeding the control limits indicate that the corresponding observation presents 

abnormal extreme values in some of its original J variables, even though it maintains the 

correlation structure between the variables in the model. This observation can be tagged as an 

abnormal outlier inside the PCA model. Q control chart, in turn, checks the occurrence of any 

new events that cause the process to move away from the hyperplane defined by the reference 

model. So, values exceeding the control limits are related to observations that do not behave in 

the same way as the in-control data because there is a breakage of the correlation structure of 

the model. This observations can be tagged as outliers outside the model (FERRER, 2014; 

KOURTI, 2005). For illustration, the measurements of three variables of a process and a model 

described by two PC are shown in Figure 14. There are two atypical observations: one with 

unusually large Q value and the other with unusually high T² value. 

Q 
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Figure 14 - PCA model of a three-dimensional dataset with emphasis on outlier values of 

T2 and Q statistics. 
 

Source: (ORDÓÑEZ, 2008). 

 
When a fault is detected by one of the control charts, a diagnostic approach to isolate the original 

variables responsible for the out-of-control signal is needed. In MSPC-PCA, due to the nature 

of latent variable models, the most widely applied approach for fault diagnosis are the 

contribution plots (CAMACHO et al., 2016; FERRER, 2014). 

 
2.1.3 Diagnosis approach: contribution plots 

 
Contribution plots show the contribution of the variables to the atypical values of the monitoring 

statistics. In general, they are bar plots where the contribution of the set of variables to a statistic 

(T² or Q) can be inspected. When an out-of-control observation is detected on the Q control 

chart, the contribution of each variable of the original dataset is simply given by its respective 

squared residual, as shown in Eqn. 23. Variables with high contributions in this plot should be 

investigated (FERRER, 2007). 

 

 
contQ 

j,i 

2 

i, j 

J 
2 

i, j 

 
(23) 

j 1 

 

where: 

 
contQi,j = Q contribution of jth variable to the ith atypical observation 

e 
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ei,j = ith residual value of variable j 

 
If the abnormal observation is detected by the T² control chart, there are different ways to 

compute each variable contribution, proposed by several authors. According to Kourti (2005), 

the diagnosis procedure should be carried out in two steps: (i) a bar plot of the normalized scores 

(Eqn. 24) for that observation is plotted and the kth score with the highest normalized value is 

selected; (ii) the contribution of each jth original variable to this kth score at this new abnormal 

observation is calculated (Eqn. 25) and a plot of these contributions is created. Variables on this 

plot with high contributions and the same sign as the score should be investigated (contributions 

of the opposite sign will only make the score smaller). 

 

 t 2 
* 

i,k  
 i,k   (24) 

  k  


where: 

 
t*i,k = ith normalized score value in component k 

 

contT² j,i  wj ,k * xi, j (25) 

 

where: 

contT²i,j = T² contribution of jth variable to the ith atypical observation 

wj,k = weight of variable j in the kth component 

xi,j = ith atypical value of variable j 

 
According to Ballabio (2015), the contribution of each variable to the T² statistic is calculated 

as Eqn. 26: 

 

 

contT² 

 

 
j,i 

 

 

 
k 1 

ti,k  * wj ,k 
 

(26) 

 

Contribution plots are a powerful tool for fault diagnosis; however, the user should be careful 

with their interpretation. In general, contribution plots will provide a list of the process variables 

that contribute numerically to the out-of-control condition. The role of the contribution plots to 

fault diagnosis thus is to indicate which of the variables are related to the fault rather than to 

reveal the actual cause of it. Those variables and any variables highly correlated with them must 

K 

k 

t 
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be investigated and the incorporation of technical process knowledge is crucial to accurately 

diagnose the problem and discover the root causes of the fault (FERRER, 2014; KOURTI, 

2005). 

 
2.2 MSPC for monitoring and controlling industrial processes 

 
The application of MSPC for monitoring membrane separation processes (MSP) is still very 

scarce in the literature. However, MSPC has been extensively and successfully applied for 

monitoring and controlling industrial processes in several other areas. 

 
Sales et al. (2016) applied MSPC for monitoring the soybean oil transesterification in biodiesel 

production in order to detect and diagnose faults on the reactor operation, in both offline and 

online monitoring. The authors worked with MSPC based on projection methods, namely PCA. 

Distance to the Model (DModX), Q and T² control charts were constructed from in-control 

near-infrared (NIR) spectra collected in-line during soybean oil methanolysis. Q and DModX 

control charts showed high performance regarding offline fault detection, since most of the 

failures related to the reaction temperature, catalyst content and stirring speed were properly 

highlighted. T² control chart in turn was barely able to identify the failures due to modifications 

in the agitation speed and to the change in the catalyst content. On online monitoring, most of 

the failures were also properly highlighted by all three control charts, however, they proved to 

be much more sensitive to changes in the catalyst concentration and in the temperature 

conditions, probably owing to the fact that they were sufficiently strong to cause a significant 

modification in the reaction rate and, thus, in the composition of the reaction mixture. 

Moreover, contribution plots enabled a clear identification of the spectral region mostly affected 

by the faults when both the approaches were resorted to. 

 
Liu et al. (2017) also developed a MSPC-PCA model to monitor cell cultures aiming to detect 

contamination using in-line Raman spectroscopy, an analytical instrument that provides large 

multivariate databases in the biopharmaceutical industry. T² and Q multivariate control charts 

were built and the control limits were calculated based on the confident degree of 99% of the 

NOC batches. Both control charts were able to identify abnormal operation conditions, 

including the early detection of contaminated batches, which is of prime importance in cell 

culture monitoring since it can only be visually detected when the foam due to contamination 

is visible (which usually takes several hours) and it cannot be detected by the traditional 
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diagnosis approaches. The application of MSPC thus could save time and money for the 

biopharmaceutical industry. 

 
Leite et al. (2018) in turn applied MSPC to offline monitor single and two stage thermophilic 

sludge digestion for fault and/or abnormal schemes detection. The authors also worked with 

MSPC-PCA model and with the T² control chart, and they also adopted the Shewhart control 

chart. Confidence levels of 99% and 95% were used for UCL and upper warning limit (UWL) 

calculations, respectively, for the T2 control chart, and the two and three-sigma control limits 

(two or three sd around the mean) were considered as UCL and UWL, respectively, for the 

Shewhart control chart. The multivariate control charts applied revealed a transition period in 

which the stability pattern of the single stage anaerobic digestion changed strongly. Besides, 

out-of-control samples were detected, indicating an unstable dynamic behavior along time for 

this digester, which the contribution plot developed to diagnosis the out-of-control signals 

depicted proved to be caused by an accumulation of volatile fatty acids (VFA). For the two- 

stage digester, no faults were detected and the operation was considered stable, in accordance 

with reality. 

 
Catelani et al. (2018) expanded the application of MSPC for real-time monitoring to control the 

end product quality on a coffee roasting process through NIR spectroscopy. Again, the authors 

worked with MSPC-PCA and with T² and Q control charts. However, the control charts were 

represented in terms of the reduced values of T2 and Q statistics, dividing each one by the 

corresponding 95% confidence limit. Therefore, the 95% confidence level control limit was 

equal to one in both charts. The multivariate control charts effectively detected all the 

disturbances of different nature imposed to simulate real faulty situations (different roasting 

conditions and coffee species and origins) and the time region where the deviation was observed 

was compatible with the type of disturbance imposed. Additionally, the statistics' values of 

NOC batches were all below the control limits, indicating that this methodology was able not 

only to signal abnormal batches but also to prevent false alarms for NOC batches. The authors 

concluded that the application of MSPC with real-time monitoring through NIR spectroscopy 

is a step forward toward a deeper control over roasting processes since it can decrease the 

operating costs by avoiding production of faulty roasted coffee batches. 

 
Grassi et al. (2019) also combined NIR spectroscopy with MSPC for improve process control 

in the dairy industry. The authors developed MSPC-PCA T² and Q multivariate control charts 
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aiming the detection of failures in the milk coagulation during cheese manufacturing. For this 

purpose, fifteen cheese manufacturing batches were set up varying temperature, milk pH, and 

fat content (NOC batches) and three failure batches were also considered. The 99% confidence 

interval was considered as the control chart limits. T² and Q control charts detected the failure 

batches at different points, but with the combination of these two control charts, it was possible 

to detect the in-control tested batch and to distinguish the failure batches just from the first 

minutes of the process. The authors stated thus that the combination of T2 and Q charts gave 

specificity and sensitivity results more reliable than their single check. The authors also 

discussed that this kind of industrial control systems perfectly fit with the Industry 4.0 roadmap 

towards a fully digital enterprise. 

 
Le et al. (2020) monitored and evaluated the quality of process water in mining industry in 

order to improve the performance of concentrators for water recycling. MSPC-PCA with T² 

and Q control charts was applied to detect shifts in water quality and to identify associated 

causes. The authors also highlight that both T² and Q control charts should be considered for 

process monitoring since they take into account both the control observation range (T2-statistic) 

and also the structure of the variable correlation (Q-statistic). The 95% confidence limit defined 

the control region. The model built was able to detect changes in water quality due to 

modifications of the water circuits and it also identified all four major changes that were 

implemented in the mine water circuits. Among them, the modification from the long water 

cycle to the short water cycle completely changed the water matrix and it was assertively 

indicated by the multivariate control charts. Therefore, MSPC can be an extremely useful tool 

for mineral engineers and operators to control the water quality in the plant and to make well- 

informed decisions on process/water circuit modifications. The investigation of the contribution 

to the T2-statistic showed that the out-of-control observations had abnormally high 

concentrations of sulphate and low concentration of thiosalts and calcium. 

 
Zhao et al. (2020) also applied NIR spectra and MSPC-PCA for the real-time monitoring of a 

fluid bed granulation (FBG) process. Three types of control charts were developed: PCA scores, 

Hotelling’s T2, and DModX. The multivariate control charts were validated on NOC batches 

and were tested on four batches abnormal operating conditions (AOC) samples to simulate real- 

time fault analysis. Their results revealed that for NOC batches, the multivariate control charts 

did not detect abnormalities, whereas for AOC batches, they successfully detected the abnormal 

situation, identifying all of the imposed disturbances: inlet air temperature failure, atomization 
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pressure failure, and spray mode failure. Therefore, the applied control charts presented good 

sensitivity and specificity, and can be used to monitor abnormal batches in the FBG process. 

Like Catelani et al. (2018) and Grassi et al. (2019) thus, the authors concluded that the 

application of MSPC combined with NIR spectra is an attractive tool for real-time process 

monitoring. 

 
Moreira et al. (2021) positively contributed to this topic by applying MSPC for the monitoring 

of a full-scale wood pellets production for biofuel production. The authors applied T² and 

MEWMA control charts to ensure that the international and regulatory agencies standards 

regarding product quality were met. The two-sigma control limits were considered as UCL and 

UWL, respectively. The MSPC model accurately tracked the non-random errors and it was also 

used to predict the operationally finest scenario for developing high-quality pellets: pre-heating 

the compressing channel of the machine regularizes the feeding and thus produces pellets with 

excellent bulk density, durability and hydrophobicity, without points outside the specific critical 

ranges. 

 
The works presented demonstrate how the application of MSPC for monitoring and controlling 

industrial processes is standing out in the international literature, due to its high potential for 

operating faults detection and diagnosis. Most of the works have been applying the T² and Q 

control charts. In addition, the application of contribution plots to identify the main factors that 

caused the failures has also been highlighted. Therefore, based on the results reported for MSPC 

for monitoring and controlling different industrial processes, its application on MBR intending 

to detect operating failures caused by membrane fouling and to detect low ammonia removal 

percentages is highly promising and should be investigated, since it can support the decision- 

making and meaningfully contribute to improve MBR performance. 
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3 ANN 

 
Currently, ANN constitute one of the most important pillars of ML, as they are able to mimic 

human intelligence, to model complex relationships between inputs and outputs, to find patterns 

in data and to extract statistical structure from the observed data (CHEN et al., 2019). Although 

they are a relatively new technology, they have rapidly found extensive acceptance in many 

disciplines for modelling and solving many complex real-world problems. Technically, ANN 

are data-processing systems based on and inspired by the neurological networks found in brains. 

They are mainly used for pattern identification and processing, and are able to progressively 

improve performance based on results from previous tasks (BASHEER; HAJMEER, 2000). The 

attractiveness of ANN comes from their remarkable information processing characteristics such 

as high parallelism, nonlinearity, fault and noise tolerance, and learning and generalization 

capabilities (HAGLIN; JIMENEZ; ELTORAI, 2019). 

 
3.1 Theoretical foundation 

 
3.1.1 General architecture of ANN 

 
ANN are essentially an artificial model of a human nervous system. They are built from simple 

but highly interconnected processing elements known as neurons, which are used to mimic how 

the human brain learns. Biological neurons consist of nucleus, dendrites and axons (the last two 

connect neurons to each other) and the connection point between two neurons is called synapse, 

as shown in Figure 15. The information signal received by a neuron changes its membrane 

potential and, if it exceeds a certain value, the neuron will send a signal to all of its connected 

neurons. This is how signals propagate through the human nervous system. 

 

Figure 15 - Schematic representation of a biological neuron. 

Source: (CHEN et al., 2019). 
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ANN use artificial neurons to replicate this operation of the human nervous system, enabling 

AI. Mathematically, an artificial neuron consists of the following components: i) a number of 

incoming connections, analogous to synapses on the dendrites; ii) a number of outcoming 

connections, analogous to synapses on the axon; and iii) an activation value assigned to each 

neuron, analogous to a biological neuron’s membrane potential. Each connection between two 

neurons has a strength captured by a weight value. The magnitude of the weight controls the 

strength of the influence of that input on the receiving neuron whereas its sign controls whether 

the influence is stimulating or inhibiting the signal to the next layer. The basic model for an 

artificial neuron j is shown in Figure 16 and mathematically given by Eqn. 27 (CHEN et al., 

2019): 

 
Figure 16 - Schematic representation of an artificial neuron. 

Source: (HAGLIN; JIMENEZ; ELTORAI, 2019). 

 
 N 

o j (wj , bj , xj ) = f b j  +  x j,k wj,k  (27) 

 ik 



Where: 

oj = is the output signal of neuron j; 

xj = [xj1; xj2; …; xjN] is the vector of input signals of neuron j; 

xj,k = is each input signal of neuron j; 
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wj = [wj1; wj2; …; wjN] is the vector of input weights of neuron j; 

wj,k = is the corresponding input weight value; 

bj = is the bias of neuron j; 

f = is a nonlinear activation function; 

 
The nonlinear activation function (e.g. a logistic function) will determine neurons output values 

based upon the values of their inputs. The selection of the activation function depends on the 

sought objectives, available computational power and the type of the desired output signal 

(logistic or continuous) (CHEN et al., 2019). They also represent the rate of action triggering a 

neuron, since only when oj exceeds (i.e., is stronger than) the neuron’s threshold limit (also 

called bias, bj), will the neuron becomes activated (BASHEER; HAJMEER, 2000). 

 
This way, ANN consist thus of combining multiple neurons connected in structured layers. The 

neurons in a given layer are independent of each other, but each of them connect to all neurons 

in the next layer. In general, ANN will include the following layers (CHEN et al., 2019): 

 
i. One input layer that contains a neuron for each predictor variable and represent the input 

signals that will be transmitted through the neurons; 

ii. One or more hidden layers containing a user defined number of neurons. Each neuron 

in the first hidden layer receives an input from each neuron in the input layer. If there is 

a second hidden layer, each neuron in this layer receives an input from each neuron in 

the first hidden layer, and so on with additional layers. The hidden layer is used to 

analyze the relationship between the input signal in the input layer and the output signal 

in the output layer; 

iii. One output layer that contains one neuron for each response variable (usually it consists 

of only one neuron, but in multivariate response situations there can be more neurons). 

Each output neuron receives an input from each neuron in the final hidden layer and 

they represent the ANN output signal. 

 
The pattern of connection links between the different layers is called architecture (also known 

as type or structure of an ANN) and it plays an important role in the ANN performance. The 

choice of the type of network used is up to the user and is normally related to the type of data 

available and the purpose of the network. 
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3.1.2 Different types of ANN 

 
One of the simplest but at the same time most common types of ANN is the feed-forward neural 

network (FNN). In this architecture, the connection between the neurons is unidirectional and 

there is no connection between the neurons in a layer. Each neuron in the hidden layers has 

incoming connections only from the previous layer and outgoing connections only to the next 

layer, as shown in Figure 17 (WASZCZYSZYN, 1999). 

 

Figure 17 - Feed-forward neural network (FNN) representation. 

 

If the connections between neurons form a loop though, the network is called a recurrent neural 

network (RNN). This architecture allows connections from a neuron in one layer to neurons in 

previous layers (Figure 18). This seemingly simple change enables the output of an ANN to 

depend not only on the current input but also on the historical input, enabling the network to 

make use of sequential information and exploit dynamic temporal behaviors such as those faced 

in mobility prediction, handwriting recognition, or speech recognition (SILVA et al., 2010). 

 

Figure 18 - Recurrent neural network (RNN) representation. 

Source: (SILVA et al., 2010). 
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Another important type of ANN is the so-called spiking neural networks (SNN). In contrast to 

other ANN such as FNN and RNN that simply use a single value to denote the activations of 

neurons, SNN use a more accurate model of biological neural networks to denote the activations 

of neurons. In biological neural networks, neurons use spikes to communicate with each other. 

Incoming signals alter the voltage of a neuron and when the voltage reaches above a threshold 

value, the neuron sends out a short and sudden increase in voltage as an action potential, which 

is referred to as a spike or a pulse, like represented in Figure 19. After sending out a spike, the 

neuron enters a short moment of rest, the refractory period, during which it cannot send out a 

spike again. In RNN and FNN, the synaptic weight values are always non-negative, which 

means that if two neurons are connected, then the activation value of each one will increase. In 

SNN, in turn, the weight values can be negative due to inhibitory neurons. Thereby, the use of 

spikes on SNN can meaningfully improve the dynamics of the network, leading to two major 

advantages over traditional neural networks: fast real-time decoding of signals and high 

information carriage capacity by adding a temporal dimension. However, the training of SNN 

will be more challenging and potentially more time consuming (CHEN et al., 2019). 

 
Figure 19 - Action potential of each spiking neuron. 

 

Source: (CHEN et al., 2019). 

 

Finally, deep neural networks (DNN) is an ANN with multiple hidden layers between the input 

and output layers. The multiple layers enable high-level abstractions in data through multiple 

nonlinear transformations. All types of ANN previously presented can also be DNN, which 

improves their performance. The FNN represented in Figure 17, for example, is also a DNN. 

Several reasons contributed to move from conventional single layer ANN towards DNN, like: 

improved computational capacity, which has resulted in a faster and more parallelized 
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computation and thus decreased the processing time; availability of large amounts of data that 

has made the training of DNN possible; improved training algorithms, like the use of rectified 

activation function instead of sigmoid or tanh, which has made training faster (RUSSEL; 

NORVIG, 2022). 

 
3.1.3 Learning process in ANN 

 
To learn information from input data, ANN must adjust the weights of the connections between 

the neurons and the biases of each neuron in the system. The training process consists precisely 

of adjusting and updating the weights and biases aiming to fit the data in the best possible way. 

To do so, different learning tasks require different training algorithms. For example, to perform 

supervised learning tasks such as predictions, ANN must be trained using labeled data. For 

unsupervised learning tasks such as clustering, ANN is trained without labeled data. By all 

means, the main goal of training an ANN is to minimize the errors between obtained output 

signals and desired output signals. This error (E) can be typically defined as Eqn. 28 (CHEN et 

al., 2019): 

 

E(W, b)  | o(W, b, x)  oD | 
 

(28) 

 

Where: 

W = the weight matrix, which is a combination of input weight values, hidden weight values, 

and output weight values; 

b = is the vector of bias factors; 

x = is the vector of input signals; 

o(W, b, x) = is the obtained output signal, calculated by Eqn. 27; 

oD = is the desired output value. 

 
In order to minimize E(W, b) thus, it is needed to update the synaptic weights and biases related 

to each neuron. One of the most common approaches to do this is using a gradient descent 

algorithm. In mathematics, gradient descent (often called steepest descent) is a first-order 

iterative optimization algorithm for finding the local minimum of a differentiable function. The 

idea is to take repeated steps in the opposite direction of the gradient of the function at the 

current point, since this is the direction of steepest descent (LEMARÉCHAL, 2012). This way, for 

each neuron j, the minimization of Ej(wj, bj) using gradient descent algorithms follows from the 

following Eqn. 29 and Eqn. 30 (CHEN et al, 2019; AMARI, 1993): 



78 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

 

 

N 

j 

 
 

 
wj ,k ,new  wj ,k ,old 

 γ 
Ej (wj , bj ) 

w 

 
(29) 

 

 
bj ,new 

 

 
 wj ,old 

j,k 

 

 

 γ 
E j (wj ,bj ) 

b 

 

 

 
(30) 

j 

 

Where: 

γ = is the learning rate, which has a strong impact on optimization performance. The smaller 

the learning rate, the longer the algorithm will take to converge and it may reach maximum 

iterations before reaching the optimum point. On the other hand, if the learning rate is too high, 

the algorithm may jump around the optimum point or even diverge completely. Therefore, its 

value must be defined carefully and there are different approaches for its definition (AMARI, 

1993). 

 
The first order derivative allows to determine whether the error is decreasing or increasing when 

the weight value is wj,k and the bias value is bj. Based on Eqns. 29 and 30, thus, ANN can update 

the weight and bias values to find the optimal wj and bj that will minimize Ej(wj, bj). This is 

accomplished by repeating the iterative steps until one of the criteria is met: i) the maximum 

number of iterations reached; or ii) step size is smaller than the tolerance (AMARI, 1993). After 

minimizing the error of neuron j then, backpropagation (which is basically a chain rule) is the 

most widely used algorithm to calculate the gradient of the error and to effectively minimize 

E(W, b) for an ANN. 

 
Backpropagation algorithm will thus progressively apply the gradient descent algorithm and 

compute the error between the desired outputs and actual outputs based on Eqn. 28 to derive an 

error propagation value δj for each neuron j, as Eqn. 31: 

 

δ  
E(wj ,b j  ) 

o j 

o j 

nsum,j 

 
(31) 

 

Where: 

nsum,j = is the summation of all input signals of neuron j and its bias, calculated according to 

Eqn. 32: 

nsum,j  bj   x j,kwj,k 

ik 

(32) 
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As the input signals reach the output layer after being transmitted from the input layer to each 

hidden layer, the error propagation δj of a neuron in layer L depends on the error propagation 

of a neuron at layer L+1. Therefore, each neuron must transmit its error propagation parameter 

to the neurons at the former layer. This is the central definition of backpropagation (AMARI, 

1993). 

 
One of the biggest advantages of gradient descent method relies on te fact that wj,k and bj updates 

are easy to compute and, hence, the gradient descent algorithm is known to be computationally 

fast, even on large datasets. However, choosing a proper learning rate for the update of the 

weights and bias can be difficult and gradient descent algorithms can often converge to a sub- 

optimal local minimum rather than the global minimum. Aiming to overcome these challenges, 

several algorithms have been proposed, such as stochastic gradient descent (SGD) algorithm, 

nesterov accelerated gradient, Adagrad and AdaDelta and pruning techniques (CHEN et al., 

2019). Nevertheless, gradient descent algorithm is still the most widely used optimization 

method in ML and, therefore, the others algorithms will not be discussed in this work. 

 
Two central problems in training ANN are overfitting and underfitting. Overfitting corresponds 

to the case in which the model learns the random fluctuations and noise in the training dataset 

to the extent that they negatively impact the model’s ability to generalize when fed with new 

data. This occurs specially when the dataset is too small compared to the number of parameters 

that must be learned. On the other hand, underfitting occurs when a learning algorithm cannot 

capture the underlying trend of the data, i.e., the learning algorithm does not fit the data well 

enough. This occurs mainly due to insufficient amount of training data or too simple modelling. 

 
To assess the model performance and understand if it is properly fitting the data thus, statistical 

metrics are fundamental. Some of the most applied metrics are the R², the Mean Average Error 

(MAE) and the Mean Squared Error (MSE) or the Root Mean Squared Error (RMSE). In short, 

MAE evaluates the absolute distance between the observations and predictions on a regression, 

taking the average over all observations, as Eqn. 33 (CHUGH, 2020). It represents the average 

of the absolute difference between the actual ( x  ) and predicted values ( x
 

dataset. 

) (residuals) in the 

 
1 N  

 

MAE  | xi  xi | 
i1 

(33) 
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MSE in turn represents the average of the squared difference between the original and predicted 

values in the dataset (Eqn. 34) (CHUGH, 2020) and therefore it measures the variance of the 

residuals. MSE is more sensitive to outliers than MAE, since higher errors weigh more in the 

metric than lower ones, due to the nature of the power function (TREVISAN, 2011). 

 
1 N  2 

 
MSE   xi   xi 

i1 

(34) 

 

A backlash in MSE is the fact that the metric’s unit is also squared. RMSE is the square root of 

MSE and therefore it measures the sd of the residuals and returns the metric to the original unit, 

while maintaining the property of penalizing higher errors (TREVISAN, 2011). 

 
Lower values of MAE, MSE and RMSE imply higher model accuracies, whereas a higher value 

of R² is desirable. In order to ensure a good quality model thus, it is needed to carefully choose 

the ANN architecture, along with proper training methods to avoid both over and underfitting. 

 
3.2 ANN for monitoring MBR performance 

 
Recent works regarding monitoring MBR performance through ANN modelling have showed 

good prediction of real data, despite the complexity of MBR systems. 

 
Yusuf et al. (2015) applied ANN to assess membrane fouling on submerged MBR treating palm 

oil mill effluent. The authors employed feed-forward and radial basis neural networks, fed with 

three input filtration parameters (aeration airflow, suction pump voltage and TMP) to predict 

the permeate flux in the filtration process under schedule relaxation condition. The performance 

of both ANN was evaluated from R² and MSE and the results showed that feed-forward 

architecture presented better performance compared with radial basis regarding accuracy and 

reliability. The work also showed that the permeate flux at low aeration airflows is faster to 

decline compared to high aeration airflows. 

 
Giwa et al. (2016) introduced a new configuration of an electrically-enhanced MBR to treat 

medium strength wastewater. The investigated components in this study were COD, phosphates 

(PO4
3−-P) and ammonium (NH4

+- N). Variation in environmental compositions such as DO, 

MLVSS, pH, and electrical conductivity influenced the effluent concentration. A feed-forward 

with sigmoidal activation function ANN was then used to model the experimental findings of 

COD, PO4
3−-P and NH4

+- N removal given the initial compositions. Comparison between the 
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model results and experimental data set gave high correlation coefficients for COD (R²= 0.9942), 

PO4
3−-P (R² = 0.9998) and NH4

+- N (R² = 0.9955). 

 
Schmitt et al. (2018) also applied ANN modelling to investigate membrane fouling on a pilot- 

scale anoxic-aerobic membrane bioreactor (AO-MBR) treating domestic wastewater. The goal 

was to select the most relevant input parameters to predict the evolution of TMP. However, 

MLSS, COD, pH and DO, common parameters of wastewater treatment processes could not be 

linked to TMP as the performances obtained by the ANN taking them as input variables were 

not satisfying (from R² = 0.169 for DO to less than 0.70 for COD). The poor ANN performance 

can be explained by an inappropriate setting of the network. ANN modelling performance is 

highly dependent on the initial set of weights and biases created at the beginning of the training 

phase, along with the dataset division for training, validation and testing. For next models thus, 

the authors recommend that the input dataset is constituted of representative data and that 

particular attention is payed to choosing the proper settings for training the network, such as 

the initial set of weights and biases, the division of the database and the definition of the best 

architecture, i.e. the number of hidden layers and neurons. 

 
Hosseinzadeh et al. (2020) in turn assessed membrane fouling on OMBR through Adaptive 

Network-based Fuzzy Inference System (ANFIS) and ANN models, developed for simulating 

and predicting water flux in OMBR systems. MLSS, electrical conductivity (EC) and DO were 

used as inputs to a feed-forward ANN. The number of neurons in input and output layers were 

determined according to the number of input and output variables. The number of neurons in 

hidden layers in turn was defined based on the model that led to the lowest R² and MSE. Data 

was divided into two sections of 80% and 20%; the first section was used for training, validation 

and test with portions of 70%, 15% and 15%, respectively; and the rest was applied for an 

additional test. Good prediction was demonstrated by ANFIS, with R2 of 0.9755 and 0.9861, 

and ANN models, with R2 of 0.9404 and 0.9817, for thin film composite (TFC) and cellulose 

triacetate (CTA) membranes, respectively. Sensitivity analysis showed that EC was the most 

important factor for both TFC and CTA membranes in ANN model, while EC (TFC) and MLSS 

(CTA) were key parameters in ANFIS model. 

 
Banerjee et al. (2022) used ANN modelling to investigate the performance of an indigenously 

developed ceramic UF membrane in a lab-scale MBR treating real tannery wastewater with 

varying OLR. ANN was used to analyze the influence of HRT (4–10 h), MLSS (2–8 g/L) and 
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influent COD (1500–6000 mg/L) on COD removal percentages. A feed-forward single-layer 

(only one hidden layer) ANN architecture was used, accounting from 1-30 neurons, and tan- 

sigmoid and linear activation functions were applied. MSE and R² were used to evaluate the 

network performance. ANN modeling revealed that COD removal efficiency was influenced 

mostly by MLSS among other input variables. Influent COD is another important input 

parameter and HRT has the least impact among the three input variables. Satisfactory accuracy 

was found between the experimental and the predicted removal efficiency, with R2 as 0.9974. 

 
Kovacs et al. (2022) used data-driven ML techniques consisting of RF, ANN and long-short 

term memory network (LSTM) to predict TMP at various stages of the MBR production cycle, 

again aiming to model membrane fouling on these systems. The models were built from a four- 

years monitoring dataset from a full-scale municipal WWTP and their performances were 

examined using the statistical measures R², RMSE, MAE and MSE. For the ANN model, a 

feed-forward multi-layer architecture was used with a sigmoidal activation function. The results 

showed that all models provided reliable predictions and the difference in performance metrics 

between RF and ANN were low in magnitude, with RF models being more accurate in training 

and testing. However, ANN model made a higher number of proper extreme predictions, which 

is interesting from a control point of view, since the predictive performance for all models 

decreases when aiming to predict extreme values. The authors concluded that the proposed 

models can be useful tools in providing decision support to WWTP operators employing fouling 

mitigating strategies, leading to reduced operational costs. 

 
The works presented illustrate the growing application of ANN models to investigate different 

aspects of the operation of a MBR. It is worth noticing the predominance of studies referring to 

membrane fouling, as previously discussed in this work, and again demonstrating how this is a 

matter of high importance for MBR further development. Moreover, the works presented reveal 

the great potential of ANN to model and predict MBR behavior with high accuracy. However, 

they also demonstrate how important it is for the network to be well configured and trained to 

make this possible. It is also noticed the predominance of feed-forward multilayer networks, 

due to their good results, and the lack of a more well-defined approach to determine the network 

settings, as number of hidden layers, number of neurons in each of them and activation function, 

being the trial-and-error approach the most common alternative. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

III. IMPROVING MEMBRANE FOULING CONTROL 
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1 INTRODUCTION 

 
In this chapter, the relations between different operating and analytics variables of a pilot-scale 

MBR treating a real oil refinery wastewater were investigated by applying PCA and MSPC, 

aiming to comprehend the main causes of membrane fouling and to propose efficient strategies 

for its control. The MBR was monitored for five years and the variables were chosen so valuable 

information could be obtained on both MBR treatment mechanisms, i.e., biological degradation 

and membrane separation. MSPC and PCA models were developed in software R and have 

proven to be suitable for monitoring MBR wastewater treatment systems aiming membrane 

fouling control. PCA modelling was effective in identifying the most important variables for 

membrane fouling occurrence and in predicting the MBR behavior, which allows to distinguish 

samples with atypical behavior and enables the detection of operating problems. T² and Q control charts 

were able to preventively detect membrane permeability reduction and thus can be used to guide 

proper fouling mitigation strategies. Although these results were obtained from offline data, the 

models applied here have proven to be powerful tools for the assessment of the system state in 

real-time, as long as online monitoring data is available, which would promote better-informed 

decision-making regarding membrane fouling control. It is important to mention, though, that 

membrane fouling was evaluated herein by membrane permeability, which is also reduced by 

clogging. This way, the distinction between the two phenomena is not possible with the adopted 

methodology. 
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2 METHODOLOGY 

 
2.1 MBR configuration and performance 

 
The pilot-scale MBR used as a case study in this research is installed in a Brazilian oil refinery 

and it was monitored during five years. The unit consists of a biological tank equipped with a 

submerged flat sheet PES (polyether sulfone) membrane module (Kubota) (Figure 20). The oil 

refinery wastewater was fed to the MBR pilot unit after a series of pretreatment steps including 

water and oil separation, flotation, sand filtering and hydrogen peroxide dosing for sulphides 

concentration control. Table 2 shows the characteristics and the operating conditions of the unit. 

 

Figure 20 - MBR pilot unit scheme. 
 

 

MF: microfiltration 

Table 2 - MBR design conditions. 

Parameters Value Unit 

Biological tank volume 8 m³ 

Aeration flow 45 Nm³h-1 

Hydraulic retention time (HRT) 5.6 h 

Sludge retention time (SRT) 40 d 

Organic load 13 kgCODd-1 

Permeate flow 0.5 m³h-1 

Membrane area 70 m² 

Pore size 0.4 μm 

Membrane configuration MF/flat sheet 

MF: microfiltration 

 

The driving force for permeation was the hydrostatic pressure of the water column and the unit 

had an aeration system to ensure oxygen to the biological process requirements and to ensure 

fouling control by the shear stress caused by the ascending flow of air bubbles. The permeate 

flow was maintained by allowing one min of relaxation after every nine min of permeation. 

Regarding chemical cleaning, the membrane was periodically submitted to a recovery cleaning 

with a 5,000 mg L-1 sodium hypochlorite (NaClO) solution. 

 
The MBR performance was assessed by periodically monitoring: i) operating conditions –TMP, 

temperature, permeate flow, membrane permeability, SRT and pH; ii) sludge characteristics - 

MLVSS, MLSS, sludge filterability, sedimentability, EPS and SMP; and iii) feed and effluent 

characteristics – biological oxygen demand (BOD), COD, TOC, alkalinity, ammonia, chloride, 

sulphides, phosphorous, oil and grease (OG), turbidity, color and conductivity. 

Physicochemical parameters were measured according to the Standard Methods for 

Examination of Water and Wastewater (APHA; AWWA; WEF, 2012); sludge filterability was 

measured according to the Kubota recommended method (Filter Test - FT), in which 50 mL of 
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sludge are filtered in a filter paper (Whatman 42 185 mm) folded with pleats with the aid of a 

simple funnel and the volume filtered during the initial five min is recorded as the sludge 

filterability (mL 5min−1); and membrane permeability was calculated by dividing the measured 

permeate flow by the membrane area and by the pressure applied to the system. Table 3 presents 

the MBR performance regarding pollutants removal. 

 
Table 3 - MBR performance in pollutants removal. 

 

  Alkalinity 

(mg L-1) 

Ammonia 

(mg L-1) 

BOD 
(mgO2 L-1) 

COD 
(mgO2 L-1) 

TOC 
(ppm) 

Turbidity 

(NTU) 

 n 225 560 10 755 705 155 

 Min 107 9.50 44.0 91.0 30.6 1.02 

MBR feed 
Max 502 82.8 330 7070 850 236 

Mean 250 29.5 238 539 160 15.2 

 Median 245 27.3 256 463 144 8.51 

 sd 61.3 9.70 92.5 350 76.8 24.1 

 n 225 561 10 756 706 156 

MBR 

permeate 

(Removal) 

Min 0.00 (-74%) 0.14 (-72%) 2.00 (95%) 5.96 (-3%) 2.63 (-43%) 0.28 (42%) 

Max 378 (100%) 38.6 (99%) 8.00 (99%) 499 (98%) 643 (99%) 4.64 (100%) 

Mean 68.1 (73%) 2.89 (90%) 4.50 (98%) 106 (79%) 30.2 (80%) 0.90 (87%) 

 Median 41.2 (81%) 1.39 (95%) 4.50 (98%) 97.0 (82%) 26.9 (82%) 0.65 (91%) 
 sd 70.4 (27%) 4.39 (17%) 2.32 (1%) 64.6 (14%) 26.4 (10%) 0.71 (11%) 

n: number of samples; min: minimum; max: maximum; sd: standard deviation. Values in parentheses refer to 

percentage of removal. Negative removal values are due to sporadic samples in which concentration in the permeate 

was higher than the concentration in the feed. 

 
It is noticeable the high performance of the unit in the treatment of the wastewater, with mean 

removal efficiencies above 70% for all the pollutants. For COD, TOC and turbidity the MBR 

presented mean removal efficiencies around 80% and above 90% for ammonia and BOD. The 

removal efficiencies observed for the MBR are in accordance with which is reported in the 

literature for the treatment of oil refinery wastewater using pilot-scale MBR (KARRAY et al., 

2020; SAMBUSITI et al., 2020). 

 
2.2 Database and preliminary statistical analysis 

 
The monitoring data was provided by the oil refinery and consisted originally of 1,131 samples, 

collected during the five years. Each sample refers to a day in the monitoring and covers a set 

of 30 variables, specifically: TMP, temperature, permeate flow, membrane permeability, SRT, 

sludge filterability, sedimentability, MLVSS, MLSS, EPS, SMP, pH, influent and effluent TOC, 

BOD, COD, ammonia, turbidity and alkalinity, effluent chloride, color and conductivity, and 

influent sulphides, phosphorous and OG. However, these parameters were not monitored with 

the same frequency and so the dataset had a large number of missing data. For the development 
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of the statistical models thus, some of the variables were selected so that valuable information 

could be obtained on both biodegradation and membrane filtration treatment mechanisms and 

that the greatest possible amount of samples could be kept, since it was decided not to work 

with missing data. The variables COD of the feed, sludge filterability, MLVSS, pH, temperature 

and membrane permeability were then selected. A variable named ‘sequential days without 

cleaning (SDWC)’, which represents how many days the membrane had been working without 

having a chemical cleaning, was also added to the variable set. 

 
Since even these variables were not measured with the same frequency though, the dataset still 

presented several missing data and, therefore, samples that did not contain measurements for 

all seven selected variables were removed from the database, reducing it to 728 samples. Some 

of these samples presented censored data (values below the method quantification limit - MQL) 

for the variable sludge filterability. For these samples, the censored data were replaced by the 

method's threshold value (5 mL 5min-1). Furthermore, to ensure data consistency, the presence 

of outliers was investigated using the interquartile range (IQR) (SCHWERTMAN et al., 2004) 

and the Hampel identifier methods (DAVIES; GATHER, 1993). IQR is a measure of statistical 

dispersion equal to the difference between the 75th and 25th percentiles (Q3 and Q1, 

respectively), i.e. IQR = Q3−Q1. In the IQR method thus, observations that fall below 

Q1−1.5*IQR or above Q3+1.5*IQR are defined as outliers. Hampel in turn suggested that 

outliers were identified from more robust statistical estimates such as the median and the 

median absolute deviation (MAD), calculated according to Eqn. 35: 

 

MAD  median(xi, j   m j  ) (35) 

 

where: 

xi,j = ith value of variable j 

mj = median of variable j 

 
So, according to Hampel identifier method, any observation that lies outside the moving interval 

(MI) (Eqn. 36) should be considered an outlier. The factor 1.4826 is used so that the expected 

MAD is equivalent to the sd of normally distributed data (YAO et al., 2019). 

 

MI  m j   3*(1.4826 * MAD) (36) 

 

To avoid distortion in the analyses and results though, all observations classified as outliers by 

https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Percentiles
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any of the methods were individually examined to verify if there was proven inconsistency in 

the data. For this evaluation, a report of occurrences provided by the oil refinery along with the 

monitoring dataset was consulted to check if any operating problem could justify the extreme 

values. Nevertheless, after the individual and careful verification of all extreme observations, it 

was concluded that all of them should be kept in the dataset, since they were all possible to 

occur and especially because they referred to atypical operating conditions and therefore added 

important information about the process control. This way, the final database consisted of 728 

samples covering seven variables that approach biomass and feed characteristics and operating 

conditions. Table 4 presents the descriptive statistics for the final database. 

 
Table 4 - Descriptive statistics of the seven selected variables in the final database. 

 

Sludge 

filterability 

(mL 5min-1) 

MLVSS 

(mg L-1) 

pH 

(-) 

COD 

(mg L-1) 

Temperature 

(°C) 

Sequential 

days without 

cleaning (d) 

Membrane 

permeability 

(L h-1 m-2 bar-1) 

n 728 728 728 728 728 728 728 

Min 5.00 2150 5.61 91.0 22.1 0.00 46.3 

Max 33.0 14350 10.5 1617 46.9 370 1463 

Median 11.0 7506 7.53 452 28.5 67.0 166 

Mean 12.4 7551 7.87 517 29.4 94.0 261 

sd 6.05 2126 0.89 244 5.12 92.7 230 

Variance 36.6 4521435 0.80 59543 26.2 8590 53004 

Coef. of variation 0.49 0.28 0.11 0.47 0.17 0.99 0.88 

Coef. of skewness 1.07 0.25 1.10 1.23 1.37 1.22 2.08 

n: number of samples; min: minimum; max: maximum; sd: standard deviation; coef: coefficient. 

 
2.3 Multivariate statistical analyses 

 
Figure 21 displays a schematic plot of data processing for the pilot-scale MBR. All multivariate 

statistical analyses were performed using software R version 4.0.2 (R CORE TEAM, 2020). 

For data importation from Microsoft Excel® 2016, the readxl package was used (WICKHAM, 

2019). The R scripts developed to execute the statistical analyses are presented in Appendix A 

(PCA) and Appendix B (MSPC). More details are described in the following items. 
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Figure 21 - Schematic plot of data processing for membrane fouling assessment. 

 
2.3.1 PCA 

 
PCA was firstly performed considering the whole database (n = 728) to obtain an overview of 

the data and to explore the strongest relations between the variables and the observations. The 

data was previously mean-centered and scaled to unit variance according to Eqn. 2. 

 
PCA was then computed using the PCA function found in the FactoMineR package (LÊ et al., 

2008). Loading plots and biplots were built using the factoextra (KASSAMBARA; MUNDT, 

2020), ggpubr (KASSAMBARA, 2020), ggplot2 (WICKHAM, 2016) and scales (WICKHAM; 

SEIDEL, 2020) R packages. In order to further explore the data and the PCA results, boxplots 

were also plotted and the nonparametric Kruskal-Wallis statistical test (KRUSKAL; WALLIS, 

1952) followed by the multiple comparison test of Dunn (ZAR, 1999) at a significance level of 

1% were applied to compare the different years of monitoring. For running the nonparametric 
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statistical tests, the rstatix package (KASSAMBARA, 2021) was used. 

 
From these plots, it was possible to identify a period of higher membrane permeability values, 

i.e. milder membrane fouling occurrence and consequently more stable operation (first three 

years), and a period of lower membrane permeability values, i.e. more severe membrane fouling 

occurrence and thus a more instable operation (last two years). So, in a second moment, only 

the data from the period during which the membrane permeability was higher was considered 

and PCA was performed again in order to evaluate its quality as a predictive model. For this 

purpose, the data from the first three years of monitoring (n = 442) was randomly divided into 

two groups: Group 01 was used to develop the model (n = 237), whereas Group 02 was left out 

to be predicted by the model (n = 205). To randomly divide the dataset into the two subsets and 

at the same time grant reproducibility, the R functions rbinom and set.seed(37645) were used. 

 
Both groups of data were previously mean-centered and scaled to unit variance (Eqn. 2). Group 

01 was used to build the PCA model and Group 02 was then projected on the built model. The 

number of components to keep was determined based on the Kaiser criterion (KAISER, 1960), 

the scree test (CATTELL, 1966) and the fraction of variation explained (JOLLIFFE, 2002), as 

often adopted in the literature (FORKMAN et al, 2019; RODRIGUEZ-SANCHEZ et al., 2019). 

For engineering purposes, 60% of total variation explained is usually considered enough to well 

represent the system (HONG et al., 2019a; JACQUIN et al., 2018) and therefore this fraction 

was considered as the cut-off. 

 
The quality of the model was thus evaluated from R² and Q² parameters, calculated as shown 

in Eqn. 17 and Eqn. 20, respectively (ERIKSSON et al., 2013). 

 
2.3.2 MSPC 

 
To generate the multivariate control charts and thus monitor the MBR performance regarding 

membrane fouling, a latent-variable based approach for MSPC was adopted, using PCA as the 

statistical projection method, as presented by Ferrer (2007) and also adopted by Liu et al. (2017) 

and Taghezouit et al. (2020). The number of components to keep was again determined based 

on the Kaiser criterion, the scree plot and the fraction of variation explained. 

 
As any SPC scheme, the methodology was carried out in two phases: Phase I, model building 

with in-control data; and Phase II, model exploitation with both in-control and out-of-control 
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data. The out-of-control criterion applied was the minimum acceptable value for membrane 

permeability, equal to 100 L h-1 m-2 bar-1, according to the scale of the unit. A well-defined in- 

control dataset is critical for the success of control charts, so besides the value of membrane 

permeability, the report of occurrences made available by the oil refinery was also checked to 

identify samples in which none operating problem occurred. Therefore, the database was 

divided into two groups: the first one (Phase I) enclosed only samples from the first three years 

of monitoring in which membrane permeability was greater than 100 L h-1 m-2 bar-1 and for 

which no operating problem had occurred (n = 338); and the second one (Phase II) contained 

all samples from the last two years of monitoring (n = 286). 

 
Phase I dataset was then mean-centered and scaled to unit variance according to Eqn.2 and used 

to develop a PCA model from which the two complementary statistics Hotelling’s T² and Q 

were derived for each observation. T² and Q statistics were calculated according to Eqn. 21 and 

Eqn. 22, respectively (FERRER, 2007). From T² and Q statistics, the respective multivariate 

control charts were built, assuming as control limits the respective 95% percentiles. 

 
Phase II dataset was also mean-centered and scaled, but now considering the mean and the sd 

values of the Phase I dataset. Then, the data was projected onto the developed PCA model. The 

same way, T² and Q statistics were calculated for each observation (Eqn. 21 and Eqn. 22, 

respectively) and plotted on the multivariate control charts to be checked against the control 

limits. For the observations detected to be beyond the control limits on the Q control chart, a 

diagnostic approach based on contribution plots was performed. The contribution of each 

variable j for each atypical observation i was calculated according to Eqn. 23 (FERRER, 2007). 

 
To confirm the role played by the variables pointed as the major factors that caused operating 

faults by the contribution plots, boxplots were plotted and the nonparametric Wilcoxon-Mann- 

Whitney statistical test (MANN; WHITNEY, 1947) was applied at a significance level of 1% 

to compare the in-control data with the data identified as out-of-control. 

 
For computing these methodologic steps, the factoextra (KASSAMBARA; MUNDT, 2020), 

FactoMineR (LÊ et al., 2008), rstatix (KASSAMBARA, 2021), scales (WICKHAM, 2020), 

ggplot2 (WICKHAM, 2016) and ggpubr (KASSAMBARA, 2020) R packages were used. 
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3 RESULTS AND DISCUSSION 

 
3.1 Identification of the most influential variables on membrane permeability on MBR 

 
A PCA model was developed from the final pilot-scale MBR monitoring database (n = 728). 

The first two PC explained over 50% of the data variation and for this first moment, in which 

we attempted to explore only the strongest relations between the variables and the observations, 

they were the only ones selected since the interest is in looking at the main variation and per 

definition, the first components provide information on that (BRO; SMILDE, 2014). Figure 22 

displays the loadings of the variables. From this plot, we can infer how much of the variation 

of the original variables PC1 and PC2 explain (indicated by the arrow size and color scale) 

(ERIKSSON et al., 2013) and how the variables are correlated to each other (indicated by the 

angles between the arrows: 90° for uncorrelated, 0° for complete positively correlated, and 180° 

for complete negatively correlated variables) (NAESSENS et al., 2017). 

 
Figure 22 - Loading plot indicating the correlation between the variables and their 

explained variation by the first two PC. 

Perm: membrane permeability; Filt: sludge filterability; Temp: temperature. 

 
All variables, except MLVSS, had a reasonable contribution to PC1 and PC2. COD, pH and 

MLVSS presented an approximated angle of 90° with membrane permeability, meaning weak 

correlation between these variables and membrane permeability. Conversely, sludge 

filterability and membrane permeability had a positive correlation while SDWC and 

temperature had a negative correlation with membrane permeability. Thus, the variables that 
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influence the most on membrane permeability are sludge filterability, temperature and SDWC. 

Similar results were observed by Jacquin et al. (2018), who applied PCA to evaluate the 

relations between dissolved organic matter, active biomass concentration, operating conditions, 

and membrane fouling. The authors also observed that MLVSS was badly represented by the 

PCA model and since it was not correlated with heterotrophic bacteria concentration, they 

concluded that MLVSS was not appropriate to quantify active biomass. Furthermore, their 

results also indicated temperature as a major factor on membrane fouling, together with SRT. 

 
The strong impact of temperature on membrane permeability may be explained by its effect on 

the microbial community and on its metabolism. EPS and SMP are microbial metabolites 

secreted by cells or generated during cellular lysis that significantly influence fouling on 

membrane surface (AMARAL et al., 2015; MENG et al., 2017). Yu et al. (2017) applied PCA 

to assess membrane fouling on a MBR treating wastewater from the production of antibiotics 

in order to identify the major foulants and found out that EPS concentration was the primary 

factor affecting membrane fouling. Temperature in turn affects the microbial community 

development and therefore impacts on EPS and SMP release and concentration (DING et al., 

2020; GIL et al., 2010). Gao et al. (2012) investigated the effects of temperature (ranging from 

37 to 55 °C) on membrane fouling in MBR and found that EPS, SMP and colloidal particles 

content increased with an increase in temperature, since it accelerates the metabolic activity of 

microbes, which lead to an increasing on the extent of membrane fouling. Although in the 

present study temperature values were slightly lower (ranging from 22 to 47 °C), the same 

phenomena could explain why higher temperature values contributed to lower membrane 

permeability values. Moreover, Jacquin et al. (2018) demonstrated through their PCA model 

that temperature strongly influenced on the microbial activity and consequently in the 

production of SMP, with higher temperature leading to higher SMP release. On the other hand, 

since the MBR presents a high solids content (median mixed liquor suspended solids 

concentration of 7,800 mg L-1 and maximum of 18,650 mg L-1), temperature can also influence 

on sludge viscosity. Baroutian et al. (2013) and Cheng and Li (2015) assessed the effects of 

operating temperature on the rheological behavior of sludge with high solid content (total solids 

content from 4 to 10% and from 7 to 15%, respectively). The first authors concluded that the 

yield stress decreased exponentially when temperature increased from 25 to 55 °C and the latter 

found that sludge viscosity decreased by up to 65% when temperature rose from 9 to 55 °C. 

Studies also show that less viscous sludges are associated with less severe membrane fouling 

(AZAMI; SARRAFZADEH; MEHRNIA, 2011; KOMESLI; GÖKÇAY, 2014). Therefore, it 
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appears that for the MBR studied here, the effect of temperature on the biomass metabolism 

was more relevant than its effect on sludge viscosity, contributing to membrane fouling. This 

fact may be related to the high concentration of solids in the system, which has a greater effect 

on sludge viscosity than temperature (JIANG et al., 2014). Besides, the MBR was operating 

under a high C/N ratio (20.0 ± 11.1), which also contributes to a higher production of EPS, as 

discussed by Feng et al. (2012) and Miqueleto et al. (2010). Unfortunately, sludge viscosity 

was not monitored and there was not enough data on EPS and SMP on the database provided 

by the oil refinery for us to further explore these relations in the assessed MBR. 

 
Sludge filterability is an important parameter to evaluate sludge properties (CAI et al., 2019) 

and thus it plays an important role as an indicative of membrane fouling in MBR, explaining 

the strong positive correlation observed, since high values of sludge filterability indicate good 

quality of the sludge, low tendency of fouling occurrence and therefore lead to high values of 

membrane permeability. Indeed, Alkmim et al. (2015) demonstrated that sludge filterability is 

directly related to membrane fouling potential and can be used as a tool for monitoring the 

fouling process in MBR. The strong negative correlation between membrane permeability and 

SDWC can also be easily justified. Chemical cleaning has been proven to be one of the most 

efficient ways to revert membrane fouling and to recover permeate flux (CHENG et al., 2020; 

MENG et al., 2017). Thus, if the membrane spends too much time without being cleaned, it is 

expected to favor fouling occurrence and severity. However, although chemical cleaning is 

essential to control fouling and avoid expressive reduction of permeate flux, it also causes 

damage to the membrane structure and thus it is directly related to the membrane lifetime and, 

consequently, to the operational cost of the process. Therefore, chemical cleanings must be 

carried out in a really well-planned manner and that is why the application of tools that can 

support this decision-making is so important. 

 
To explore the relations between the observations, the scores were plotted together with the 

loadings on a biplot Figure 23. The observations were grouped by year of monitoring (with 

95% confidence ellipses) so we can assess how the behavior of the system changes throughout 

monitoring time. In the first two years, samples presented a trend to higher values of pH and 

COD of the feed, in the third year they tended to higher values of sludge filterability and 

membrane permeability and finally in the last two years the observations tended to higher values 

of SDWC and temperature. To illustrate this, Figure 24 shows boxplots of SDWC, membrane 

permeability and COD. The graphs also indicate if there was significant difference between the 
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medians of each year according to the Kruskal-Wallis statistical test (KRUSKAL; WALLIS, 

1952) (p-values smaller than 2.2E-16 for all variables) followed by the multiple comparison 

test of Dunn (ZAR, 1999) at a significance level of 1% (the pairs marked with an asterisk are 

significant different. The p-values are presented on Appendix D). 

 
Figure 23 - System behavior over the years: relations between observations and 

variables. 

Perm: membrane permeability; Filt: sludge filterability; Temp: temperature. 

 
Figure 24 - Boxplots and nonparametric statistical tests of Kruskal-Wallis and Dunn for 

a) sequential days without cleaning; b) membrane permeability; and c) COD for all 

monitored years. 

*Significant difference according to multiple comparison test of Dunn. The more asterisks, the smaller are the p- 

value. 
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The boxplots and the nonparametric statistical tests confirm what was detected by the PCA 

model. Indeed, in the first two years the median COD of the feed was higher than in the other 

years. These high values combined with reduced values of membrane permeability induced 

improvements in the pretreatment stages, which explains the lower values observed for COD 

of the feed in the subsequent years and contributes to the higher sludge filterability and 

membrane permeability values observed in the third year. Besides, the higher values of 

membrane permeability in third year can be related to low values of temperature and SDWC, 

and to high values of sludge filterability (Figure 23), which indicates good quality of the sludge 

and thus low tendency of fouling occurrence. The median number of SDWC is also proven to 

be greater in the last two years than in the first ones. In the last two years, decreasing the 

frequency of membrane chemical cleaning was investigated as a strategy for improving 

pollutants removal and fouling control on the system. The hypothesis was based on the concept 

of dynamic membranes (DM). DM are formed by the deposition of suspended particles on the 

original membrane surface when filtering a solution containing suspended particles through it 

(SALEEM; LAVAGNOLO; SPAGNI, 2018) and they have been widely studied for fouling 

mitigation in MBR (YANG et al., 2020). Therefore, the expected was that the lower cleaning 

frequency would lead to the formation of a DM on the membrane surface, which would reduce 

the effective pore size and consequently increase the membrane retention efficiency and 

minimize the fouling. However, the tested hypothesis has not been proven, possibly because 

the DM was never formed or it was formed but got too dense (MOHAN; NAGALAKSHMI, 

2020). Thus, the longer period without cleaning the membrane actually led to the lower 

membrane permeability values observed in the last two years of monitoring. Furthermore, in 

these last two years (and specially in the last one) the membrane permeability was generally 

low (below 150 Lh-1m-2bar-1), characterizing an unstable operation, since the low membrane 

permeability decreases the process productivity and the fouling on the membrane surface 

reduces the treated effluent quality. In the first three years of monitoring, the operation of the 

MBR was more stable, with satisfactorily high membrane permeability values, indicating no or 

mild occurrence of membrane fouling (Figure 23). 

 
This demonstrates how PCA is effective in identifying patterns and expressing relations 

between different variables and observations. Therefore, its application for monitoring MBR 

wastewater treatment systems is of great interest, since it can reveal complex patterns of the 

system behavior. 
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3.2 PCA as a predictive model 

 
Besides identifying patterns, PCA can also be used as a predictive model. Several papers in 

various distinct areas have been successfully applying PCA for this purpose, as in the food 

industry (ARSALANE et al., 2018), metallurgical processes (HE; ZHANG, 2018) and even 

education (XU; LIANG; WU, 2017). As discussed in the previous section, the pilot-scale MBR 

presented a more stable operation regarding membrane permeability in the first three years and 

thus this period (n = 442) was considered to evaluate PCA capacity to model MBR behavior. 

As we have been working with offline data, the model was computed with a portion of the 

selected dataset (Group 01: n = 237) whereas the other portion was left out to be predicted, 

representing new observations (Group 02: n = 205). 

 
Figure 25a displays the scree plot for the PCA model developed. The first three components 

have eigenvalues above one, are before the elbow point at the scree plot and explain 71% of the 

data variation, which was considered enough to well represent the system. Although there are 

no well-defined criteria to determine the minimum variation that must be explained since it is 

heavily application and field of knowledge dependent, other works involving MBR modelling 

have considered percentages above 60% as acceptable. Yu et al. (2017) and Jacquin et al. (2018), 

for example, worked with 62% and 65% of total variation explained. Figure 25b presents the 

percentage of the explained variation of each variable after three PC, demonstrating that all 

variables were well represented (all explained variations above 50% and most above 70%) 

(ERIKSSON et al., 2013). 

 

Figure 25 - a) Scree plot: eigenvalues and percentage of total variation explained by each 

PC and b) Explained variation of each variable after three PC. 

Perm: membrane permeability; Filt: sludge filterability; Temp: temperature 
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Figure 26 displays the evolution of parameters R² and Q² with increasing model complexity, in 

an attempt to evaluate the model quality and also to ensure how many components to keep. As 

the complexity of the model increases, both R² and Q² approximate to one (perfectly fitting and 

predictive model). However, as this complexity increases, the gain in the quality of the model 

decreases. Adding the second PC to the model, for example, increases R² in 86% and Q² in 

47%, an expressive gain. Adding the fifth PC, though, only increases R² in 11% and Q² in 7%. 

Therefore, it is not meaningful to keep more than four components, since both the degree of 

fitness and the predictive ability do not increase enough to justify the higher complexity of the 

model. Considering that PCA main goal is precisely to reduce data dimensionality, the fewer 

components kept, the better, as long as the loss of information is acceptable. Nevertheless, after 

three PC the model performance was already satisfactory, with both R² (0.71) and Q² (0.78) 

above 0.70 (according to Eriksson et al. (2013), generally values above 0.50 are regarded as 

good). Thus, in accordance with the other methods, it was concluded that the first three PC 

should be kept. 

 
Figure 26 - Q² and R² values of PCA model and their increase for different numbers of 

components kept. 
 

 
The PCA model developed from the data in Group 01 subset after three PC was then used to 

predict the behavior of the Group 02 subset. The correlations between the real (measured) and 

the predicted (by the model) values are shown in Figure 27. As expected, the provisions were 

adequately assertive, with R² values near or over 0.80 for four variables (pH, SDWC, COD and 

MLVSS) and above 0.60 for two variables (temperature and membrane permeability), 

indicating that the error between the values predicted by the model and the actual measured 
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values was low. This demonstrates that the PCA model was effective in predicting the behavior 

of the MBR. The only variable poorly predicted was sludge filterability (0.55). Many studies 

have demonstrated the application of filterability tests to monitor membrane fouling on MBR 

and they have employed different methods, such as Capillarity Suction Time (CST), Filter Test 

(FT) (used in the present study), Sludge Filtration Index (SFI) (THIEMIG, 2012), Time to Filter 

(TTF) (APHA; AWWA; WEF, 2012), and Delft Filtration Characterization (DFC) (EVENBLIJ 

et al., 2005). Alkmim et al. (2015) compared the methods TTF, FT and SFI regarding their 

capability to sense sludge quality variation and their reproducibility and concluded that TTF 

method was the most effective. Therefore, it is possible that sludge filterability could be better 

predicted by the model if it had been measured by a different method, like TTF. As we have 

been working with data provided by the oil refinery, though, we could not test this hypothesis. 

 
Figure 27 - Correlation plots between the real and the predicted values of each variable 

for Group 02 subset: a) sludge filterability; b) MLVSS; c) pH; d) COD of the feed; e) 

temperature; f) sequential days without cleaning; and g) membrane permeability. 

 
The predicted observations were then projected onto the PCA reduced dimensional space. This 

projection is attention-grabbing because it allows us to evaluate if a certain sample is within the 

expected behavior or if it deviates from it. Figure 28 displays the score plot with the projections 

of the predicted samples for all three components kept. In general, the predicted observations 

were within the confidence ellipses (95%), indicating that these samples behaved as expected 

according to the PCA model built from Group 01 subset. However, some observations like 7, 

8, 201 and 202 did not fit as expected, which indicates atypical behavior of the system in these 
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samples. Reviewing the original data, we found out that in samples 7 and 8, in fact, the values 

of COD of the feed were unusually high and checking the report of occurrences we found out 

that on those days the flotation equipment (one of the pretreatment steps) was not working 

properly, which justifies the higher values of COD observed. Observations 201 and 202, in turn, 

deviate from the group due to their higher temperature values (32 ºC, whereas the mean value 

for this subset was 28 °C). There is no occurrence reported for these samples that justify the 

high temperature and so we believe that it is most likely due to the discharge of a hot effluent 

that was fed to the MBR and raised its temperature. The PCA model was able to identify and 

reveal this atypical behavior and thus could be used to visually represent the process state and 

to detect extreme samples, as also stated by other authors (MAERE et al., 2012; NAESSENS 

et al., 2017). 

 
Figure 28 - Projections of the predicted observations onto the PCA model: a) PC1 and 

PC2; b) PC1 and PC3; and c) PC2 and PC3. 

 

These results are of great interest because, despite being generated from offline monitoring 

data, they demonstrate the potential of PCA to be used for online monitoring of MBR 

wastewater treatment systems. Due to its high predictive ability, new samples can be predicted 

by the model and projected onto the reduced dimensional space to evaluate the if the system is 

performing as its expected to do or if there is some operating problem. By promoting an 

overview of the data in real time, the PCA model could support more assertive decision-making, 

improving the monitoring and control of the process. 
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3.3 Membrane fouling control on MBR systems 

 
3.3.1 Detecting membrane fouling occurrence 

 
In order to monitor the pilot-scale MBR performance along time and detect any unusual event 

that could be related to the occurrence of fouling, MSPC was applied to the database. The 

observations from the first three years with values of membrane permeability above 100 L h-1 

m-2 bar-1 and no registered occurrences were considered as in-control operation and thus used 

in Phase I (n = 338) and the observations from the last two years (both in and out-of-control) 

were used for test in Phase II (n = 286). The PCA model used as projection method kept three 

PC, based on both Kaiser criterion and fraction of variation explained (75% of the total variation 

explained and all of the variables more than 50% explained). Figure 29 presents the Hotelling’s 

T² and Q multivariate control charts, as well as the values of membrane permeability and sludge 

filterability of each Phase II sample. 

 
Figure 29 - Detection of points with extreme low values of membrane permeability 

during MBR operation: a) Hotelling’s T² control chart; b) Q control chart; c) membrane 

permeability; and d) sludge filterability. 

UCL: Upper Limit Control; Perm: permeability; Filt: filterability 

 

Aiming to make this discussion clearer, Figure 29 has been divided into five regions according 

to membrane permeability values. In region 1, the values of membrane permeability were 

generally greater than 150 L h-1 m-2 bar-1 and thus the MBR operation was stable (Figure 29c). 
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Despite that, both statistics pointed some observations as out-of-control (Figure 29b), 

configuring as false alarms. However, it can be noted that T²-statistic false alarms are following 

a reduction in membrane permeability values until they reach region 2, in which membrane 

permeability values are between 100 and 150 L h-1 m-2 bar-1. In that region, despite not being 

out-of-control, the MBR operation is alarming and should be closely watched. T² control chart 

was able to detect this tendency of reduction and to alert about the occurrence of low values of 

membrane permeability in this region. At the end of this region, the membrane was submitted 

to chemical cleanings that managed to increase membrane permeability and, as a consequence, 

T²-statistic values decreased. In region 3, the values of membrane permeability were again 

generally greater than 150 L h-1 m-2 bar-1 and it is noticeable a similar pattern, since Q-statistic 

pointed some alarms at the end of this region following a decrease on membrane permeability 

values. In this region, the Q control chart was the one able to detect and alert about the 

membrane permeability reduction. This confirms that, as the two multivariate control charts 

differ in their conceptual meaning (KOURTI; MACGREGOR, 1996), they are complementary 

statistics that allow the overview of the goodness of the process (KOURTI, 2005) and thus they 

must be assessed in a combined manner since they can detect different anomalies. In region 4, 

the values of membrane permeability are generally between 100 and 150 Lh-1m-2bar-1 (alarming 

operation). In this region, both statistics pointed the alarming situation out and could had been 

used as supportive tools for establishing fouling control strategies in an attempt to prevent the 

system from going out-of-control (membrane permeability under 100 L h-1 m-2 bar-1). Besides, 

in the alarming operation, sludge filterability (Figure 29d) could had been used simultaneously 

with the control charts to support the definition of fouling control strategies and to avoid 

unnecessary chemical cleaning. Sludge filterability values below 10 mL 5min-1 indicates poor 

quality of the sludge and thus high propensity to fouling. In that case, substances that help to 

control fouling through coagulation/flocculation of the sludge, called permeability improvers, 

can be an effective option. Many studies have proved that their use increases membrane 

permeability (AMARAL et al., 2015; ODRIOZOLA et al., 2021). Therefore, high values on 

the control charts combined with high values of sludge filterability indicate the need of 

membrane chemical cleanings, but high values on the control charts combined with low values 

of sludge filterability can be an alert to dose permeability improvers in order to prevent 

membrane permeability from continuing to reduce. If the improver is not used in advance and 

membrane permeability reaches extremely low values, only chemical cleaning would be 

effective, highlighting the importance of the alarm, since membrane cleaning should be avoided 
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to ensure a longer lifetime for the membrane. As no fouling control measure was taken though, 

in region 5 the MBR operation went out-of-control, with membrane permeability values mostly 

below 100 Lh-1m-2bar-1. Both statistics were able to detect all out-of-control observations in this 

region and again could had been used as tools to indicate the need of chemical cleaning. 

 
In general, T² and Q control charts were able to detect 100% and 96%, respectively, of the out- 

of-control observations, proving their capability to identify irregular conditions of operation, 

and 91% and 86%, respectively, of the alarming observations, which is overwhelming from a 

control point of view, since it allows us to act preventively on the system. Both statistics also 

had a low percentage of false alarms (9% in T² chart and 6% in Q chart), considering that these 

errors are inevitable due to the very probability of the statistics (5%). Therefore, the multivariate 

control charts have proven to be a handy tool for the monitoring and control of membrane 

fouling as they can detect membrane permeability reductions and thus can be used to support 

the definition of efficient fouling mitigation strategies, guiding e.g. when to dose permeability 

improvers and/or perform chemical cleanings. The application of MSPC enables thus that 

chemical cleanings are performed at the most appropriate times, avoiding unnecessary costs, 

preserving the membrane lifetime and increasing the efficiency of the process. 

 
3.3.2 Diagnosing membrane fouling occurrence 

 
As the Q control chart presented a lower percentage of false alarms and all operating failures 

detected by this chart were also detected by the T² control chart, contribution plots based on the 

Q-statistics were created to assess what caused the MBR operation to go to an alarming or out- 

of-control state during the monitoring (Figure 30). 
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Figure 30 - Contribution plot based on the Q-statistic for a) out-of-control observations; 

and b) alarming observations. 

Filt: sludge filterability; Perm: membrane permeability; Temp: temperature 

 
It is clear from the plots that the variables with greater contributions to the exceeding values of 

Q-statistics were membrane permeability, temperature and SDWC. The high contribution of 

membrane permeability was completely expected, since the out-of-control condition regards 

precisely this variable. As for temperature and SDWC, this indicates that these two variables 

influenced the most on membrane permeability reduction, endorsing the results obtained with 

the PCA model. This also confirms the critical role that chemical cleaning plays on membrane 

fouling control, as well as demonstrates the importance of preventing the temperature of the 

system from increasing, since long intervals without chemical cleaning and high values of 

temperature were the most common causes of membrane fouling. 

 
The definition of an effective chemical cleaning strategy has been extensively pursued in the 

last years and several papers have been published on this subject. Back in 2008, Brepols et al. 

(2008) were already evaluating different cleaning agents and procedures for a large-scale MBR. 

Cheng et al. (2020) evaluated four cleaning protocols for a high solid content MBR (like the 

one studied here): gas scouring, Milli-Q backwashing and rinsing, NaClO backwashing and 

desorption, and citric acid backwashing and desorption. The authors concluded that periodical 

NaClO cleaning and biogas scouring were recommended at low and high filtration to relaxation 

ratios, respectively. Guan et al. (2018) compared the cleaning effects of three typical chemical 
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cleaning reagents, i.e. NaOH, NaClO, and sodium dodecyl sulfate and all of them promoted 

membrane permeability recoveries over 75%. It is important to note that, besides the cleaning 

agent, defining the cleaning frequency is equally critical, especially because chemical cleaning 

also causes damage to the membrane structure and therefore reduces its lifetime, as discussed 

before. T² and Q multivariate control charts have proven to be useful in this regard since they 

can be used to guide when it is really necessary to proceed with the chemical cleaning of the 

membrane. 

 
Although the absolute variation of temperature is not large (from 22 to 47 °C), its impact on the 

system conditions is considerable and can prejudice MBR performance. Establishing an ideal 

temperature value is intricate though, since its influence on the occurrence of fouling is closely 

related to biomass development and therefore depends on the specific microbial community 

and the other conditions of the environment of each biological system (GAO et al., 2013). 

Analyzing the data from the MBR in-control operation, temperature was mostly below 30 °C, 

with a maximum value of 38 °C, whereas in the out-of-control operation temperature reached 

out 45 °C. Furthermore, as the effluent reaches the MBR after undergoing a series of industrial 

operations, controlling its temperature can be challenging. Adopting a proper planning for the 

discharge of effluents generated at high temperatures is, therefore, essential. In addition, 

although the refinery already has an equalization tank, its design may be inadequate and its 

revision may be another good strategy to control the temperature of the MBR feed. Besides 

controlling temperature, adopting an appropriate C/N ratio can also contribute to a better control 

of the microbial community and metabolism. A lower C/N ratio could favor nitrifier bacteria, 

which could decrease SMP and EPS release and significantly mitigate fouling in the MBR 

(SEPEHRI; SARRAFZADEH, 2018). 

 
From the plot for the alarming operation (Figure 30b), it is also possible to observe a noteworthy 

contribution of sludge filterability between samples 525 and 560, period during which this 

variable was considerably low (median value equal to 8 mL 5min-1 and maximum value equal 

to 13 mL 5min-1), as can be noted from Figure 29d. This result endorses that sludge filterability 

can be used as a tool for membrane fouling control in MBR systems. 

 
Finally, Figure 31 displays boxplots for membrane permeability, SDWC and temperature 

divided into in-control, out-of-control and alarming operation. The nonparametric Wilcoxon- 

Mann-Whitney statistical test (MANN; WHITNEY, 1947) at a significance level of 1% was 
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also applied to confirm that the medians of the variables were significantly different in the last 

two groups when compared to the in-control dataset (the p-values obtained are presented in 

Appendix E). It can be noted the clearly lower values of membrane permeability and the clearly 

higher values of SDWC in out-of-control and alarming operations. For temperature, in alarming 

operation the values are clearly higher than in the in-control operation, whereas in out-of- 

control operation, despite a lower median, there are some extreme observations who were 

responsible for the negative impact on the system. It is worth saying that the effect of these 

temperature extremes on biological systems is not punctual, since the sludge takes time to 

recover after these events. Therefore, once again the importance of a more adequate planning 

for the discharge of high temperature effluents becomes evident. 

 
Figure 31 - Nonparametric statistical test of Wilcoxon-Mann-Whitney for membrane 

permeability, SDWC and temperature for in-control, out-of-control and alarming 

operation. 
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4 CONCLUSION 

 
For a pilot-scale MBR applied for the treatment of an oil refinery wastewater, PCA and MSPC 

have proven to be suitable for monitoring the wastewater treatment system aiming membrane 

fouling control. PCA modelling was effective in mapping the MBR behavior and identified 

sludge filterability, temperature and SDWC as the variables that most influence on membrane 

permeability. The negative impact of temperature on membrane permeability on MBR systems 

is attention grabbing, since it is opposite to what is expected considering other MSP. In general, 

higher temperatures are related to higher permeabilities, but in MBR its effect on the biomass 

metabolism is predominant. The model was also applied to predict the MBR performance, with 

high values of R² and Q² (0.71 and 0.78, respectively). Therefore, the error between the values 

predicted by the model and the actual measured values was low, which demonstrates that PCA 

was effective in predicting the MBR behavior. Moreover, the model was able to distinguish 

atypical samples, enabling the detection of operating problems. T² and Q control charts, 

assessed in a combined manner, have also proven to be handy tools in the detection of 

membrane fouling and in the stablishment of more effective membrane fouling mitigation 

strategies. The multivariate control charts were able to preventively detect membrane 

permeability reductions and thus can be used to guide when to dose permeability improvers 

and/or perform chemical cleanings. Therefore, the application of MSPC enables that chemical 

cleanings are performed at the most appropriate times, avoiding unnecessary costs, preserving 

the membrane lifetime and increasing the overall efficiency of the process. Preventing the 

temperature of the system from increasing is also an important fouling mitigation measure, so 

an appropriate planning for the discharge of hot effluents should be assessed. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. IMPROVING AMMONIA REMOVAL 
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1 INTRODUCTION 

 
In this chapter, ANN and PCA models were applied to identify the variables that contribute the 

most for ammonia removal on MBR and to predict its behavior, whereas MSPC modelling was 

used to detect and diagnose low removal conditions. The monitoring data from the pilot-scale 

MBR treating real oil refinery effluent was used, but now considering only the last four years 

of operation. All models were developed in R. ANN and PCA identified that influent COD and 

OG concentration, together with membrane permeability, contribute the most to lower ammonia 

removals, while influent ammonia concentration, temperature and SRT are the most related to 

greater removals. ANN modelling also effectively predicted the ammonia removal from a set 

of operating conditions, with R² = 0.87. From the MSPC model, Q control chart detected 100% 

of the operation with removals lower than 85%, which could enable to act more effectively on 

the system. Therefore, ANN and MSPC could be applied as tools for supporting and improving 

the decision-making regarding ammonia removal control, contributing to a more efficient 

process. 
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2 METHODOLOGY 

 
2.1 MBR configuration and performance 

 
The MBR used as case study in this work was described in details in Chapter ‘Improving 

membrane fouling control’, item 2.1. 

 
2.2 Database and preliminary statistical analysis 

 
The monitoring data provided by the oil refinery containing originally 1,131 samples was also 

used to assess and improve ammonia removal on MBR systems. However, only the last four 

years of monitoring were considered, due to the frequency of measurement of some important 

variables. 

 
The variables selected were SRT, sludge filterability, MLVSS, pH, temperature, membrane 

permeability, influent concentrations of COD, phosphorous, ammonia, sulphides and OG, 

effluent concentration of COD, COD removal and ammonia removal. Alkalinity is an important 

variable for investigating ammonia removal, since it plays an important role in nitrification. 

However, it was not measured with a high enough frequency to feasible its use on the model. 

 
Outliers were investigated using both IQR (SCHWERTMAN; OWENS; ADNAN, 2004) and 

Hampel identifier methods (DAVIES; GATHER, 1993) and the report of operation provided 

by the oil refinery along with the monitoring data was used to identify any operational problem 

that could justify the extreme values. It was concluded that all observations classified as outliers 

should be kept in the dataset though. Therefore, the final database consisted of 479 samples 

covering 14 variables. Table 5 presents the descriptive statistics for the final database. 
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Table 5 - Descriptive statistics of the 14 selected variables in the final database 
 

 
Filt. 

(mL 

5min-1) 

 

MLVSS 

(mg L-1) 

 
pH (-) 

Influent 

ammonia 

(mg L-1) 

Influent 

sulphide 

s (mg L- 
1) 

Influent 

OG 

(ppm) 

Influent 

Phosp. 

(mg L-1) 

Influent 

COD 

(mg L-1) 

Permeate 

COD 

(mg L-1) 

Ammonia 

removal 

(%) 

COD 

removal 

(%) 

 

Temp. 

(°C) 

 

SRT 

(d) 

Perm. 

(L h-1 m-2 

bar-1) 

n 479 479 479 479 479 479 479 479 479 479 479 479 479 479 

Min 5.00 2150 5.61 11.2 1.00 0.60 0.01 144 17.0 15.8 19.3 23.4 30 87.9 

Max 26.0 12500 10.5 82.8 21.5 48.4 1.50 1617 384 99.4 96.9 39.2 80 1463 

Median 11.0 7200 7.70 29.1 6.40 11.6 0.20 563 102 94.2 81.0 29.0 30 179 

Mean 11.6 7185 8.10 29.9 7.20 11.4 0.30 594 112 91.7 79.3 28.9 42 276 

sd 4.44 2004 0.98 8.42 3.26 6.35 0.16 249 48.1 10.0 10.2 3.40 15 232 

Variance 19.7 4016661 0.96 70.9 10.6 40.3 0.03 62188 2317 100 104 11.5 217 53783 

Coef. of variation 0.38 0.28 0.12 0.28 0.45 0.56 0.61 0.42 0.43 0.11 0.13 0.12 0.36 0.84 

Coef. of skewness 0.69 0.08 0.70 1.61 1.11 1.69 3.23 1.00 1.31 -4.09 -2.17 0.33 0.52 2.27 

n: number of samples; min: minimum; max: maximum; sd: standard deviation; coef: coefficient. Filt: sludge filterability; MLVSS: mixed liquor volatile suspended solids; 

OG: oil and grease; Phosp: phosphorous; COD: chemical oxygen demand; Temp: temperature; SRT: sludge retention time; Perm: membrane permeability. 
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2.3 Multivariate statistical analyses 

 
Figure 32 displays a schematic plot of the research methodology, regarding data processing. 

All models were developed using software R version 4.0.2 (R CORE TEAM, 2020). For data 

importation from Microsoft Excel® 2016, the readxl package was used (WICKHAM; BRYAN, 

2019). More details are described in the following items. 

 
Figure 32 - Schematic plot of the research methodology and data processing. 

 
2.3.1 ANN model development 

 
The final dataset was preprocessed through scaling and centering, according to Eqn. 2. This 

standardization reduces the large difference between the orders of magnitude of different 

variables and thus make them more comparable, giving equal importance to each one in the 

ANN model. 

 
Once the data were organized and standardized, the ANN model was built in R using NeuralNet 
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(FRITSCH; FRAUKE; WRIGHT, 2019) and Keras (ALLAIRE; CHOLLET, 2022) packages. 

The variables sludge filterability, MLVSS, pH, influent concentrations of ammonia, OG, 

sulphides, phosphorous and COD, effluent COD, COD removal, temperature, SRT and 

membrane permeability were passed to the model as input variables and the variable ammonia 

removal was defined as the output, since the objective is to predict its value and assess its 

behavior. A multilayer feedforward architecture was applied and several tests were performed 

with different network configurations, combining different settings of activation function, 

number of hidden layers, number of neurons in each layer and number of epochs, in order to 

identify the configuration that presented the smallest MSE. Based on these tests, it was 

determined that the network configuration to be used for modelling the MBR would apply the 

rectifier with dropout activation function; contain two hidden layers, containing 12 and seven 

neurons, in that order; and 5,000 epochs. 

 
The model was used for two purposes: sensitivity analysis of the MBR ammonia removal 

capacity to the input variables; and forecasting of the removal achieved from a set of input 

conditions. So, after importing the data, it was randomly divided into three sets: training, with 

60% of data; validation, with 30% of data; and test, with 10% of data. Zhong et al. (2021) 

highlight at their review work the importance of proper model development and interpretation 

to deliver meaningful results when applying ML to ESE field. The authors stated that “more 

‘representative’ data rather than ‘big’ data are more important for obtaining robust, powerful 

ML models”. Aiming to ensure that the training set was truly representative of the actual 

behavior of the system and that different ammonia removal conditions were addressed thus, the 

division of the sets was verified and repeated until the training set covered a range of ammonia 

removal from 20% to 95%, so that the model could learn its behavior under different conditions. 

For the sensitivity analysis, the training and validation subsets were used to train and calibrate 

the network and for the ammonia removal prediction, the test subset was used as input. 

 
The model performance was evaluated through the statistical parameters R2, MAE and MSE, 

calculated according to Eqns. 17, 33 and 34, respectively. 

 
2.3.2 PCA model development 

 
PCA was performed in order to further explore the relations between the variables and the 

ammonia removal achieved, specially to analyze whether the correlations indicated by the ANN 
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model were positive or negative. 

 
PCA model was computed using the PCA function found in the FactoMineR package (LÊ et 

al., 2008). The data was previously centered and scaled and loading plots were built using the 

factoextra (KASSAMBARA; MUNDT, 2020), ggpubr (KASSAMBARA, 2020) and ggplot2 

(WICKHAM, 2016) packages. The number of components to keep was determined based on 

Kaiser criterion (KAISER, 1960) and the scree test (CATTELL, 1966). The quality of the model 

was evaluated from its R² value. 

 
2.3.3 MSPC model development 

 
T² and Q multivariate control charts were built from a MSPC-PCA model. The number of 

components to keep in the PCA model was again determined based on Kaiser criterion and the 

scree test. The out-of-control criteria applied was a minimum of 90% of ammonia removal and 

therefore the dataset was split into two groups: Phase I contained only in-control (removal 

greater than 90%) samples from the first three years of monitoring (n = 272); and Phase II 

contained all samples from the last year of monitoring, both in and out-of-control (n = 150). 

Phase I dataset was centered and scaled (Eqn. 2) and then used to develop the PCA model from 

which T² (Eqn. 21) and Q (Eqn. 22) complementary statistics were derived for each observation. 

From the two statistics, the respective multivariate control charts were built assuming as UCL 

the respective 95% percentiles. 

 
Next, phase II dataset was scaled and centered and projected onto the PCA model developed so 

that T² and Q statistics were calculated and plotted on the control charts to be checked against 

the UCL. For the observations detected to be beyond UCL on the Q-statistic control chart, 

contribution plots were built. For computing these methodologic steps, the scales (WICKHAM; 

SEIDEL, 2020), rstatix (KASSAMBARA, 2021), ggplot2 (WICKHAM, 2016) and ggpubr 

(KASSAMBARA, 2020) packages were used. 
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3 RESULTS AND DISCUSSION 

 
3.1 Comprehending and predicting ammonia removal on MBR systems 

 
3.1.1.1 Identification of the most influential variables on ammonia removal 

 

Both ANN and PCA models developed were applied to identify the main factors that impact on 

MBR ammonia removal capacity. Figure 33 displays the ANN architecture, presenting its layers 

and synaptic weights. The black lines show the connections between each layer and the weights 

on each connection while the blue lines show the bias term added in each step. The model 

performed well modelling the MBR behavior, with reasonably low values of MAE (order of 

magnitude 10-2) and MSE (order of magnitude 10-4), as shown in Figure 34. The graphs show 

the learning process and evolution of the ANN model during the training and validation stages. 

It is possible to notice a considerable decline of both MAE and MSE, indicating that the model 

is adjusting to the data and learning its patterns. 

 
Figure 33 - Artificial Neural Network developed for assessing ammonia removal by the 

studied MBR showing input, hidden and output layers and the respective synaptic 

weights 
 

filt: sludge filterability; MLVSS: mixed liquor volatile suspended solids; ammonia: influent concentration of 

ammonia; sulphide: influent concentration of sulphide; OG: infleunt concentration of oil and grease; Phosp: 

influent concentration of phosphorous; fCOD: influent COD; pCOD: effluent COD; remCOD: removal of COD; 

temp: temperature; SRT: sludge retention time; perm: membrane permeability. 
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Figure 34 - ANN model Mean Absolute Error (MAE) and Mean Squared Error (MSE) 
 

 
Figure 35a displays the scree plot for the PCA model. According to Kaiser criterion, PC with 

eigenvalues greater than one should be kept (KAISER, 1960) and according to the scree test 

one should keep the PC before the elbow point in the scree plot (CATTELL, 1966). The graph 

shows that the first three PC meet both criteria. Besides, it is noticeable that adding more PC 

after the third one is not meaningful, since R² values do not increase enough to justify the higher 

complexity of the model, as shown in Figure 35b. For simplicity purposes, only the first ten PC 

are displayed on the graphs. Considering that PCA main goal is precisely to reduce data 

dimensionality, the fewer components kept, the better, as long as the loss of information is 

acceptable. Nevertheless, after three PC the model explained 55% of the data variation, which 

is enough to explore the strongest relations between the different variables (BRO; SMILDE, 

2014), and presented satisfactory performance, with R² equal to 0.772, which is regarded as 

good, according to Eriksson et al. (2013). 
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Figure 35 - PCA model a) Scree plot: eigenvalues and percentage of total variation 

explained of the first 10 principal components and b) R² values and its increase for 

different numbers of components kept 
 

 

 

 

 

 

Figure 36 displays the sensitivity analysis accomplished with the ANN model, indicating the 

ranking of relative importance for ammonia removal. Again, only the ten most important 

variables are displayed, since the relative importance of the others was too low. Additionally, 

Figure 37 displays the loading plots obtained with PCA model, from which it is possible to 

understand how the variables are correlated to each other. 
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Figure 36 - Relative importance of input variables regarding ammonia removal 

according to the Artificial Neural Network model 

filt: sludge filterability; MLVSS: mixed liquor volatile suspended solids; ammonia: influent concentration of 

ammonia; OG: influent concentration of oil and grease; phosp: influent concentration of phosphorous; fCOD: 

influent COD; temp: temperature; SRT: sludge retention time; perm: membrane permeability. 

 
Figure 37 - Correlation between input variables and ammonia removal according to 

Principal Components Analysis model 
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filt: sludge filterability; MLVSS: mixed liquor volatile suspended solids; ammonia: influent concentration of 

ammonia; sulphide: influent concentration of sulphide; OG: influent concentration of oil and grease; Phosp: 

influent concentration of phosphorous; fCOD: influent COD; pCOD: COD in the permeate; remCOD: removal of 

COD; temp: temperature; SRT: sludge retention time; perm: membrane permeability. 

 
According to both models, the variables with the greatest positive impact on ammonia removal 

are SRT, operating temperature and influent ammonia concentration, whereas the strongest 

negative impacts come from influent COD and OG concentration and membrane permeability. 

Zhang, Chen and Jiang (2022) also applied ANN modelling to assess the removal efficiency of 

ammonia in WWTP that apply different biological processes. The removal efficiencies of 

WWTP were successfully predicted by the model, which considered five variables: inlet flow 

rate, pH, influent ammonia concentration, COD and total phosphorus concentration. According 

to their results, influent COD concentration was the main influential factor, similar to the results 

found here; however, the influent ammonia concentration did not greatly affect its removal 

(which can be related to the alkalinity range of the system), conversely to what was observed 

in our work. 

 
The strong influence of influent ammonia concentration observed can be explained though by 

the fact that high ammonia concentrations accelerate the kinetics of nitrification reaction (von 

SPERLING; CHERNICHARO, 2006), besides increasing the nitrifying bacteria growth rate, 

according to Monod’s relation (Eqn. 1). For these reasons, higher concentrations of ammonia 

in the MBR feed contribute to increased oxidized ammonia load (SHARMA; AHLERT, 1977). 
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Besides, the growth rate of nitrifying bacteria also increases exponentially with temperature 

(BIAN et al., 2017), which can explain the great influence of this variable on ammonia removal. 

Leite (2021) also investigated the main factors that influence ammonia removal on oil refinery 

wastewater treatment by different biological systems. The author applied multivariate statistical 

analyses to evaluate the impact of operating and analytic variables, like DO, pH, temperature 

and influent ammonia, phenol, sulphides, OG and COD concentrations. The results also showed 

a strong positive relationship between temperature and ammonia removal. Nitrification reaction 

also explains the observed negative correlation between ammonia removal and pH, since the 

reaction generates H+ ions as a final product and, therefore, decreases the pH. Leite (2021) also 

observed this relation on her work. It is important to mention that the decrease of the pH is a 

function of its alkalinity (von SPERLING; CHERNICHARO, 2006). However, as previously 

mentioned, unfortunately there were not enough alkalinity data for us to further investigate this 

relation. 

 
As for SRT, one of the main advantages of MBR over CAS technology is the independency of 

SRT from HRT, which allows to adopt higher SRT on MBR systems than usual in CAS. The 

higher SRT, in turns, allows a better sludge acclimatization, hence a greater capacity to remove 

pollutants (JUDD, 2016). Additionally, the complete retention of the biomass by the membrane 

ensures a greater diversity of microorganisms in the biological tank, which also contributes to 

the higher removal of different pollutants (LE-CLECH; CHEN; FANE, 2006). Furthermore, 

since the nitrifying bacteria’s growth rate is considerably lower than the heterotrophic bacteria’s 

one, higher SRT are needed to ensure the development of the nitrifying bacteria before they are 

washed out of the system (von SPERLING; CHERNICHARO, 2006). All these factors explain 

the strong positive correlation between SRT and ammonia removal, as previously observed in 

other works (ŻABCZYŃSK et al., 2006). 

 
The strong negative impact of influent COD is also related to the influence that this parameter 

has on the microbial community. High values of influent COD on biological treatment systems 

and, consequently, high C/N ratio values, provokes a greater growth of heterotrophic bacteria 

and result in competition for substrate and DO, prejudicing the growth of nitrifying bacteria 

(SHARMA; AHLERT, 1977). Sepehri and Sarrafzadeh (2018) assessed the effect of nitrifying 

community on nitrification efficiency on MBR. The authors obtained a nitrifying-enriched 

activated sludge (NAS) through particular ammonia feeding of CAS. NAS and CAS were then 

compared and the results demonstrated the higher nitrification efficiency of NAS, indicated by 
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both ammonia removal percentage (100% on NAS vs. 43% on CAS) and nitrate concentration 

produced (6.6 mgL-1 on CAS vs. 37.5 mgL-1 on NAS). Brasil et al. (2021) also demonstrated 

that lower C/N ratios (and higher temperatures) favor nitrifying bacteria and, consequently, 

improve ammonia removal. Thus, for the MBR assessed in this study, which operates under a 

high influent C/N ratio (20.0 ± 11.1), the ammonia removal is strongly affected by influent 

COD, as revealed by the models. 

 
Higher influent OG concentrations also negatively influence on ammonia removal, due to its 

toxic effect on nitrifying bacteria metabolism. Studies show that even at low concentrations, 

toxic compounds can inhibit the bacteria activity and compromise the ammonia removal 

(NORIEGA-HEVIA et al., 2020). Back in 2007, Qin et al. were evaluating the feasibility of 

MBR to treat oil refinery wastewater using a testing system that ran continuously over two 

months. The authors observed that, in the first weeks of operation, the nitrification efficiency 

was low, as the ammonia removal was only 20–40%, and the high OG levels (53–153 mgL-1) 

in the feed during this period were indicated as the principal reason. The authors also observed 

that nitrification was better when influent OG concentration was below 20 mgL-1. OG 

concentrations on the assessed MBR were up to 48 mgL-1, its inhibitory effect can be related to 

lower ammonia removals. 

 
Since high membrane permeability decreases HRT, its negative impact on ammonia removal 

can be explained by the shorter time available for its degradation, which leads to insufficient 

time for nitrifier oxidize the available ammonia. Song et al. (2010) demonstrated that when 

HRT decreased below a certain level (6.5 days), insufficient nitrification caused a decrease in 

the overall nitrogen removal. Furthermore, recent works suggest that HRT is also an important 

factor for the development of the microbial community in biological treatment systems. Ni et 

al. (2022) studied the effects of shortened HRT on the microbial community of MBR equipped 

with different membrane pore size (0.40 or 0.05 μm), operated at 25 ˚C and fed with domestic 

wastewater. The changes observed in the microbial community in each reactor were consistent 

with HRT changes, indicating that it could be an important factor for maintaining microbial 

community structures. 

 
The less relevant impact of MLVSS also draws attention as it indicates that for greater ammonia 

removal, it is not enough to ensure a high concentration of sludge. Indeed, the most important 

factor is having enough ammonia-oxidizing microorganisms in the system. This result endorses 
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studies that state that MLVSS is not an appropriate indicator of biomass physiological activity 

(JACQUIN et al., 2018; PAJOUM et al., 2013). Hence, finding more suitable parameters to 

account for the concentration of nitrifying bacteria on MBR is of extreme interest. Sepehri and 

Sarrafzadeh (2018) also concluded in their previously presented work that NAS was twice as 

filterable compared to CAS. This means that higher sludge filterability values can be related to 

higher concentrations of nitrifying bacteria and, therefore, to higher ammonia removals. This 

effect can be observed on PCA and ANN models from the impact that sludge filterability exerts 

on ammonia removal. 

 
3.1.2 Ammonia removal prediction 

 
ANN model was also applied to predict the ammonia removal achieved by the MBR from a set 

of input conditions. As mentioned at the Methodology item, it is very important to properly 

know your data in order to ensure meaningful results when applying ML to ESE field. Figure 

38 displays the correlation between the real (measured) and the predicted (by the model) values 

for ammonia removal a) without checking and improving the training dataset and b) checking 

and ensuring that the training dataset was representative of the real data, covering distinct 

removal ranges. 

 

Figure 38 - Ammonia removal prediction by the Artificial Neural Network model a) 

without ensuring a representative training set and b) with a representative training set. 
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The graphs show that, despite apparently having predicted well the MBR behavior (R² = 0.753), 

the ANN initial model in which the training dataset had not been properly defined overestimated 

the ammonia removal in samples in which the removal was actually low. This illustrates the 

poor learning of the model, which was not able to correctly learn the relationships between the 

variables because it was not exposed to conditions of low ammonia removal. The final model 

though was able to adequately predict the MBR behavior (R² = 0.868), since it had the correct 

preparation of the training dataset. The samples with low ammonia removal percentages were 

thus assertively predicted and there was no further overestimation of removal, which would be 

a serious source of risk from an operational control point of view, since the model would 

disguise operational problems. 

 
Therefore, the ANN model applied, developed with a representative training dataset, was able 

to effectively predict the MBR performance regarding ammonia removal, as its provisions were 

adequately assertive, with R² value equals to 0.868, indicating that the error between predicted 

by the model values and actual measured values was low, endorsing the high performance of 

ANN model (low values of MAE and MSE). 

 
This result is of great interest because, despite being generated from offline monitoring data, it 

demonstrates the potential of ANN modelling to be used for online monitoring of MBR 

wastewater treatment systems. Due to its high predictive ability, new samples can be predicted 

by the model to evaluate if the system is performing as its expected to do or if there is some 

operating problem. By promoting a provision of data in real time, the ANN model could support 

more assertive decision-making, improving the monitoring and control of the process and 

contributing to more efficient operations. 

 
3.2 Controlling ammonia removal on MBR systems 

 
3.2.1 Detecting low ammonia removal conditions 

 
In order to monitor the MBR performance regarding ammonia removal capacity along time and 

to detect any unusual event that lead to low percentages of removal, a MSPC-PCA model was 

applied to the database. The PCA model used as projection method kept three PC, according to 

both Kaiser criterion and the scree test. The three PC accounted for over 50% of data variation. 

Figure 39 presents the T² and Q multivariate control charts, as well as the values of ammonia 

removal percentage of each Phase II sample. 
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Figure 39 - Detection of MBR operation with low percentages of ammonia removal: a) 

Hotelling T² control chart; b) Q control chart; and c) ammonia removal. 
 

UCL: Upper Limit Control; Rem: ammonia removal percentage. 

 
T² control chart did not performed well in detecting low ammonia removal operation and 

presented a detection rate of samples with removal percentages below 90% of only 11%. T2 

control chart, as discussed in previous items, checks if a new observation projects on the PC 

hyperplane within the limits determined by the reference data. Thereby, a value of this statistic 

exceeding the control limits indicate that the corresponding observation presents abnormal 

values in some of its original variables, even though it maintains the correlation structure 

between the variables in the model (this observation is tagged as an outlier inside the PCA 

model) (FERRER, 2014; KOURTI, 2005). This way, the low detection rate of T² control chart can 

be explained by the fact that the out-of-control samples presented some breakage on the model 

correlation structure. This provides an interesting insight about failures in ammonia removal on 

MBR systems, since the problems are caused not by extreme values of the individual variables, 

but by the deviation of the correlation structure present among them. 

 
Q-statistic control chart, in turn, checks the occurrence of any new events that cause the process 

to move away from the hyperplane defined by the reference model. This way, this chart can 

detect failures caused by the deviation of the correlation structure and, therefore, it was able to 

detect the operation with low ammonia removal percentages. Despite detecting only 54% of the 
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operation with less than 90% of ammonia removal, Q control chart detected all operating points 

with removals below 85%. This is meaningful for the control of operation point of view, since 

this early detection can prevent the level of ammonia removal from reaching extremely low 

values, guiding the most appropriate times and manners to act on the system. Furthermore, this 

result indicates that with better adjustments in the model or more representative input data, the 

detection rate of operation with ammonia removal percentages lower than 90% could be 

improved. 

 
Nevertheless, both statistics had a low percentage of false alarms (3% in T² chart and 1% in Q 

chart), considering that these errors are inevitable due to the very probability of the statistics 

(5%). Therefore, Q control chart is potentially an interesting tool for the monitoring and control 

of ammonia removal on MBR, as it can detect its reductions. With further improvement in the 

building of the chart, MSPC application can thus enable preventive and more assertive acting 

on the system, avoiding unnecessary costs, increasing treated water quality and, consequently, 

improving MBR efficiency. 

 
3.2.2 Diagnosing low ammonia removal conditions 

 
Since Q-statistic performed better on the detection of low ammonia removal operation, this 

control chart was the one used to build the contribution plot aiming to investigate what caused 

the low ammonia removals observed during the MBR operation ( 

 
Figure 40). Alike to sensitivity analysis results, only the ten most important variables were 

displayed for simplicity purposes. 
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Figure 40 - Contribution plot based on Q-statistics for out-of-control (ammonia removal 

lower than 90%) observations. 
 

filt: sludge filterability; MLVSS: mixed liquor volatile suspended solids; ammonia: influent concentration of 

ammonia; OG: influent concentration of oil and grease; phosp: influent concentration of phosphorous; fCOD: 

influent COD; temp: temperature; SRT: sludge retention time; perm: membrane permeability. 

 
From the plot it can be noticed that the variables with greater contributions to the exceeding 

values of Q-statistics were influent COD, SRT and temperature, which indicates that these three 

variables influenced the most on ammonia removal reduction, endorsing the results obtained 

with PCA and ANN models. This also confirms the important role that C/N ratio plays on 

ammonia removal control, as well as demonstrates the importance of keeping the system 

operating under proper values of temperature and SRT, since high values of influent COD and 

low SRT and temperature values were the most common causes of low percentages of ammonia 

removal by the MBR. Studying the association of these different factors in order to find a 

balance between them is also highly interesting, since, in practice, it is not always possible to 

keep all of them within the desirable range. Stewart et al. (2022), for example, assessed the 

performance of two pilot-scale biological nutrient removal (BNR) treatment trains and observed 

that increasing the SRT during the period of cold water temperatures helped maintain ammonia 

removal performance. 

 
To confirm the results, the nonparametric Wilcoxon-Mann-Whitney statistical test (MANN; 

WHITNEY, 1947) at a significance level of 1% was applied to check whether the medians of 

the variables ammonia removal, temperature, SRT and influent COD were significantly 
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different between the in and out-of-control operation. Figure 41 displays the boxplots and the 

results of the hypothesis test (the p-values obtained are presented in Appendix F). It can be 

noted the significantly lower values of ammonia removal, temperature and SRT and the 

significantly higher values of influent COD in out-of-control operation, confirming the previous 

results. 

 

Figure 41 - Boxplots and nonparametric statistical test of Wilcoxon-Mann-Whitney at a 

significance level of 1% for ammonia removal, sludge retention time, temperature and 

influent COD for in and out-of-control operation. 
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4 CONCLUSION 

 
For a pilot-scale MBR applied for the treatment of a real oil refinery wastewater, ANN, PCA 

and MSPC have proven to be suitable for monitoring the wastewater treatment system aiming 

ammonia removal better understanding and control. PCA and ANN models were effective in 

mapping the MBR behavior regarding ammonia removal and to detect the most important 

factors for the pollutant removal, both positive and negatively. The models identified SRT, 

temperature and influent concentration of ammonia as the variables that improve the most 

ammonia removal, whereas influent concentration of COD and OG and membrane permeability 

are the variables that decrease it the most. ANN model was also successfully applied to predict 

the ammonia removal, with R² equals to 0.87. Therefore, the error between the values predicted 

by the model and the actual measured values was low, proving that ANN was effective in 

predicting the MBR behavior and thus could be used to forecast ammonia removals from a set 

of operating conditions. T² control chart did not perform well in detecting operating failures 

related to low ammonia removal percentages, which can indicate that these faults are caused by 

the deviation of the system from the correlation structure among the variables. Q control chart, 

in turn, was able to detect all of the operation with removals lower than 85% and, therefore, it 

is possible that, with further adjustments in the model, it would be able to detect operations 

below 90% of ammonia removal. Thus, MSPC can potentially be used to better control the 

MBR, properly adjusting the C/N ratio, the temperature or the SRT, for example, and preventing 

ammonia removal to go to severe low levels. Hence, the results demonstrate the potential of AI 

and ML techniques to be used for monitoring and controlling MBR operation, contributing for 

the improvement of the process efficiency. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. FINAL CONSIDERATIONS 
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1 THESIS OVERVIEW AND INTEGRATED RESULTS DISCUSSION 

 
Contamination of natural water by inappropriate disposal of industrial residues and wastewater 

is currently one of the greatest environmental harms and the presence of emerging and persistent 

pollutants in industrial wastewater is an important global concern that has been leading to 

increasingly stringent environmental regulations. Furthermore, due to the urgent need of better 

managing water resources, the demand for water reuse is growing fast, especially in industries. 

Therefore, the application of highly efficient wastewater treatment technologies that provide 

high quality treated water and allow its reuse has been increasingly sought. MBR are currently 

considered a highly efficient technology and stand out for the high effluent quality achieved. 

Other MBR advantages include high removal of micro- and persistent organic pollutants, small 

industrial area requirement, and low sludge production. 

 
Oil refineries, in particular, have been increasingly applying MBR technology, since they can 

strongly benefit from water reuse due to the large amount of water needed. However, to enable 

water reuse, effluent ammonia concentration must be sufficiently low and thus understanding 

and controlling the factors that impact the most on its removal is essential, as well as being able 

to predict it. The application of AI and ML can greatly contribute to this matter, since they can 

successfully realize feature extraction, correlation analysis and patterns identification. Besides, 

membrane fouling is still a serious backdraw for the wider application of MBR, specially for 

treating complex industrial wastewater such as those from oil refineries, since it decreases the 

process performance and leads to permeate flux decline, which results in higher operating costs. 

As understanding fouling on MBR is a complex task though, AI and ML stand out once more 

as very promising alternatives for the investigation, monitoring and controlling of membrane 

fouling on MBR. 

 
Therefore, this work aimed to improve membrane fouling control and ammonia removal on 

MBR through the application of different AI and ML models. As PCA, ANN and MSPC have 

been standing out for their high performances monitoring, mapping and predicting different 

complex systems, they emerged as an interesting option for better monitoring and controlling 

MBR operation and thus were the selected techniques to be applied in this work. A pilot-scale 

MBR treating a real oil refinery wastewater and monitored during five years was used as a case 

study. The models were applied to investigate the relations between different variables and to 

detect and diagnose operating faults related to the occurrence of membrane fouling and to low 
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percentages of ammonia removal, aiming to comprehend their main causes and to propose 

efficient strategies for their control. 

 
PCA and MSPC have proven to be suitable for monitoring MBR aiming membrane fouling 

control. PCA was able to map the MBR behavior and identified sludge filterability, temperature 

and SDWC as the variables that influence the most on membrane permeability. It was also able 

to predict the MBR performance, with high values of R² and Q² (0.71 and 0.78, respectively), 

and to distinguish atypical samples, enabling the detection of operating problems. T² and Q 

control charts, assessed in a combined manner, have also proven to be effective in the detection 

of membrane fouling and allowed to preventively detect membrane permeability reductions. 

They can thus be used to guide when to dose permeability improvers and/or perform chemical 

cleaning, which ensures that preventive actions are performed at the most appropriate time, 

avoiding unnecessary costs and preserving the membrane lifetime. Besides controlling the 

sludge filterability and stablishing an efficient chemical cleaning strategy, MSPC modelling 

also revealed that preventing the temperature from increasing is an important fouling mitigation 

measure. 

 
PCA and ANN were also effective in modelling the MBR behavior regarding ammonia removal 

and identified SRT, temperature and influent concentration of ammonia as the variables that 

improve the most the MBR ammonia removal capacity, whereas influent concentration of COD 

and OG and membrane permeability are the variables that decrease it the most. ANN model 

was also successfully applied to predict the ammonia removal from a set of operating and feed 

conditions, with R² equals to 0.87. Besides, MSPC showed its potential to be used as monitoring 

tool regarding the improvement of ammonia removal on MBR. Although Q control chart was 

not so effective in detecting ammonia removals below 90%, it detected all of the operation with 

removals lower than 85%. This demonstrates the potential of the model, that can possibly 

perform better whith further adjustments in input data and model settings. Furthermore, as T² 

control chart did not detect operating failures related to low ammonia removal percentages, it 

can be inferred that these operating problems are caused mostly by the deviation of the system 

from the expected correlation structure between the variables. Based on these insights and on 

the first results obtained with both control charts thus, MSPC can be improved and it could be 

then used to better control the MBR ammonia removal capacity, indicating the best times to act 

on the system, properly adjusting the C/N ratio, the temperature or the SRT, for example, and 

preventing ammonia removal to go to low levels. 
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Analyzing the results obtained with all models applied in an integrated way, thus, reveals some 

interesting insights about the MBR performance. Firstly, it is relevant to notice that well 

monitoring sludge filterability is highly important to increase MBR overall efficiency, since 

low values of this variable indicate greater propensity to membrane fouling occurrence and 

lower concentration of nitrifying bacteria. It is also worth commenting that the dosage of 

permeability improvers increases sludge filterability by coagulation/flocculation of the sludge 

and, consequently, although it contributes to mitigate membrane fouling, it doesn’t help to 

increase ammonia removal. For that purpose, its necessary to keep the MBR under conditions 

that favor nitrifying bacteria growth, for example, keeping lower C/N ratios. By all means, 

investing in sludge filterability properly monitoring is strongly recommended as it can easily 

inform about the MBR biomass conditions and thus supports the decision-making. 

 
Furthermore, keeping lower C/N ratios is, in fact, a great way to improve MBR performance as 

it contributes not only to higher ammonia removals, but also to reduce membrane fouling since 

favoring the nitrifying bacteria growth also leads to smaller releases of EPS and SMP. This 

way, investing in efficient pre-treatment steps that can meaningfully remove organic matter, to 

ensure reasonable concentrations of COD in the MBR feed, is also critical and should be 

pursuit. Nevertheless, an interesting investigation to be further carried out is verifying if, faced 

with an unavoidably high concentration of COD in the feed, higher values of temperature or 

SRT, for example, could overcome it and increase ammonia removal. 

 
Increasing MBR temperature, however, should be careful evaluated, as it provokes more severe 

membrane fouling. As higher values of temperature accelerate the metabolism of both nitrifying 

and heterotrophic bacteria, they end up causing a greater release of SMP and EPS at the same 

time that they lead to higher nitrification rates. Therefore, finding an optimal point between 

greater ammonia removal and milder membrane fouling is a challenge to be better studied. 

 
Another important point of attention is the relationship between membrane permeability and 

ammonia removal themselves. Higher membrane permeability values are desirable as they 

make the treatment process more productive and, consequently, increase its economic viability. 

However, they also reduce the HRT and thus compromise the ammonia removal achieved. This 

way, careful evaluating each case and finding an optimal point between productivity and quality 

of the treated effluent is essential. 
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2 CONCLUSIONS AND RECOMMENDATIONS 

 
The hypotheses that motivated this work were: i) ANN and PCA would be able to reveal the 

most important variables for both ammonia removal and membrane fouling occurrence; ii) they 

would also be able to predict membrane permeability and ammonia removal percentage values 

from a set of input conditions; iii) MSPC would be able to detect and diagnose failures in MBR 

operation regarding both membrane fouling occurrence and low ammonia removal capacity; 

and iv) the integrated analysis of the models would support the definition of more efficient 

strategies for better membrane fouling control and greater ammonia removal. Based on the 

results presented and discussed in the present work thus, all hypotheses have proven to be true. 

Furthermore, all proposed goals, i.e., to further comprehend membrane fouling and ammonia 

removal on MBR systems; to predict removal percentages and membrane permeability values; 

to detect and diagnose operation points with low ammonia removal and membrane fouling 

occurrence; and to propose more effective strategies for a more efficient MBR operation; were 

accomplished. 

 
ANN, PCA and MSPC proved to be highly efficient in monitoring, predicting and controlling 

MBR wastewater treatments. The results provided by the models were reliable (satisfactory R², 

Q², MAE and MSE values) and contributed to a better understanding of the process, as well as 

to the prediction of its behavior and to the definition of more proper control strategies, regarding 

both membrane fouling occurrence and ammonia removal capacity. 

 
The main focus of action for more efficient MBR operations are lower COD concentrations in 

the reactor feed (to be guaranteed by an efficient pretreatment), higher SRT values and suitable 

temperature adjustment. Performing chemical cleanings in the most appropriate moments also 

ensure milder membrane fouling and, therefore, higher productivity and treated effluent quality. 

In addition, properly monitoring sludge filterability is of great importance, since this variable 

successfully performs as a monitoring tool for sludge quality and, consequently, to monitor the 

occurrence of both nitrification and membrane fouling. 

 
Despite being generated from offline monitoring data, the results demonstrated the massive 

potential of AI/ML techniques to be used for monitoring and controlling MBR operations. They 

also indicate that AI/ML modelling can be used for the assessment of the system status in real- 

time, allowing better-informed decision-making, as long as online data is available. 
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Ensuring greater ammonia removals is essential, as it contributes to water reuse; and preventing 

membrane fouling is equally important, as it contributes to improve MBR cost-effectiveness. 

Hence, the work contributed to more efficient operations of MBR, contributing not only to its 

more widespread application, but also ensuring better performances for the already existing 

applications. Furthermore, by facilitating a more widespread application of such an important 

wastewater treatment technology, this work contributed to reduce the impacts associated with 

inappropriate industrial wastewater disposal, which protects the environment and improves 

public health and welfare. 

 
There are some limitations for the results obtained here though and, for further improvements 

in the technology, some efforts are still needed. To further develop this research and improve 

MBR efficiency thus, some recommendations are: 

 
i. Evaluation of the effects of other important variables that could not be included in this 

work, like SMP, EPS, HRT and alkalinity; 

ii. Morphological characterization of the material deposited on the membrane surface and 

in its pores, in order to investigate the type of membrane fouling and possible distinct 

fouling from clogging; 

iii. Investigation of the combined effect of distinct variables to check whether, keeping an 

important variable as it is (high values of influent COD, for instance), adjusting other 

high impact variables (increasing SRT or temperature, for example) is able to overcome 

the effects of the first one and improve the MBR performance; 

iv. Simultaneous assessment of membrane fouling occurrence and ammonia removal capacity, 

to determine the best conditions for variables with opposite effects on ammonia removal 

and membrane fouling occurrence, like temperature and membrane permeability itself; 

v. Further improvements on MSPC modelling, considering model settings and input data 

preprocessing, in order to increase its fault detection ability, speacily regarding low 

ammonia removal conditions; 

vi. Application of other AI/ML models, like RF, GA, SVM to consolidate their potential as 

monitoring tools and to possibly reveal new insights about MBR operation; 

vii. Model development with online data, to assess the MBR state at real time and promote 

better informed decision-making; 

viii. Validation of the results obtained with a full-scale MBR, since the relations between the 

different variables in these systems can differ from the ones found in this work. 
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APPENDIX A – R code for PCA models development 

 
library(readxl) 

library(factoextra) 

library(FactoMineR) 

library(ggplot2) 

library(ggpubr) 

library(rstatix) 

library(scales) 

 

### DATA IMPORT AND PCA    

dados_kubota = 

read_excel("M:/AMANDA/Doutorado/Dados/MBRpiloto/dados_kubota.xlsx", 

col_types = c("text", "numeric", "numeric", "numeric", "numeric", 

"numeric", "numeric", "numeric")) 

 

res.pca = PCA(dados_kubota[,-1], scale.unit = TRUE, ncp = 

ncol(dados_kubota)-1, graph = FALSE) 

 

### EIGENVALUES    

eig_val = get_eigenvalue(res.pca) 

graph_eigen = fviz_eig(res.pca, addlabels = TRUE) #cutoff 14% 

ggpar(graph_eigen, 

title = "Principal Component Analysis (PCA)", 

subtitle = "Eingenvalues", 

xlab = "Principal Components", ylab = "Percentage of explained 

variation", 

ggtheme = theme_bw() + theme(text = element_text(size = 25))) 

 

### VARIABLES    

res.var = get_pca_var(res.pca) 

res.var$coord 

res.var$cos2 

res.var$contrib 

 

graph_var = fviz_pca_var(res.pca, axes = c(1,2), 

geom.var = c("arrow","text"), arrowsize = 1, labelsize = 7, 

col.var = "cos2", gradient.cols = c("blue", "yellow", "red"), 

col.circle = "black", 

repel = TRUE, 

legend.title = "Explained variation") 

ggpar(graph_var, 

title = "Loading of variables", 

xlab = "PC1 (27.50%)", ylab = "PC2 (24.76%)", 

ggtheme = theme_bw() + theme(text = element_text(size = 20)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

### INDIVIDUALS    

res.ind = get_pca_ind(res.pca) 

res.ind$coord 

res.ind$cos2 

res.ind$contrib 

 

graph_ind = fviz_pca_ind(res.pca, axes = c(1,2), 

geom.ind = c("point"), pointsize = 3, 

col.ind = dados_kubota$Year, palette ="Dark2", 

addEllipses = TRUE, ellipse.level=0.95, 
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legend.title = "Year") 

 

ggpar(graph_ind, 

title = "Principal Component Analysis", 

subtitle = "Scores", 

xlab = "PC1 (27.50%)", ylab = "PC2 (24.76%)", 

ggtheme = theme_bw() + theme(text = element_text(size = 20)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

### BIPLOT    

graph_biplot = fviz_pca_biplot(res.pca, axes = c(1,2), 

geom.ind = "point", pointsize = 2, 

col.ind = dados_kubota$Year, palette = "Dark2", 

addEllipses = TRUE, ellipse.level = 0.95, 

geom.var = c("arrow","text"), arrowsize = 1, labelsize = 7, 

col.var = "black", 

repel = TRUE, 

legend.title = "Year") 

 

ggpar(graph_biplot, 

title = "Principal Component Analysis", 

subtitle = "Biplot", 

xlab = "PC1 (27.50%)", ylab = "PC2 (24.76%)", 

ggtheme = theme_bw() + theme(text = element_text(size = 20)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

### BOXPLOTS    

DWC_res.kruskal = kruskal_test(SDWC ~ Year, data = dados_kubota) 

DWC_dunn = dunn_test(SDWC ~ Year, data = dados_kubota, p.adjust.method 

= "bonferroni") 

 

DWC_dunn = DWC_dunn %>% add_xy_position(x = "Year") 

DWC = ggboxplot(dados_kubota, x = "Year", y = "SDWC") + 

stat_pvalue_manual(DWC_dunn, hide.ns = TRUE) + 

stat_compare_means() 

graph_DWC = ggpar(DWC, 

title = "Sequential days without cleaning", 

xlab = "Year", ylab = "SDWC", 

ggtheme = theme_bw()) + theme(text = element_text(size = 18)) 

 

Perm_res.kruskal = kruskal_test(Perm ~ Year, data = dados_kubota) 

Perm_dunn = dunn_test(Perm ~ Year, data = dados_kubota, p.adjust.method 

= "bonferroni") 

 

Perm_dunn = Perm_dunn %>% add_xy_position(x = "Year") 

Perm = ggboxplot(dados_kubota, x = "Year", y = "Perm") + 

stat_pvalue_manual(Perm_dunn, hide.ns = TRUE) + 

stat_compare_means() 

graph_Perm = ggpar(Perm, 

title = "Membrane Permeability", 

xlab = "Year", ylab = "Permeability", 

ggtheme = theme_bw() + theme(text = element_text(size = 18))) 

 

COD_res.kruskal = kruskal_test(COD ~ Year, data = dados_kubota) 

COD_dunn = dunn_test(COD ~ Year, data = dados_kubota, p.adjust.method = 

"bonferroni") 

 

COD_dunn = COD_dunn %>% add_xy_position(x = "Year") 
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COD = ggboxplot(dados_kubota, x = "Year", y = "COD") + 

stat_pvalue_manual(COD_dunn, hide.ns = TRUE) + 

stat_compare_means() 

graph_COD = ggpar(COD, 

title = "COD", 

xlab = "Year", ylab = "COD", 

ggtheme = theme_bw()) + theme(text = element_text(size = 18)) 

 

ggarrange(graph_DWC, graph_Perm, graph_COD, 

labels = c("A", "B", "C"), 

ncol = 3, nrow = 1) 

 

### PREDICTIVE MODEL    

dados_kubota_pred = read_excel("M:/AMANDA/Doutorado/Dados/MBR 

piloto/dados_kubota_PCA_II.xlsx", 

col_types = c("text", "numeric", "numeric", "numeric", "numeric", 

"numeric", "numeric", "numeric")) 

 

set.seed(37645) 

dummy_sep = rbinom(nrow(dados_kubota_pred), 1, 0.5) 

real = dados_kubota_pred[dummy_sep == 0, ] 

pred = dados_kubota_pred[dummy_sep == 1, ] 

 

res.pca_II = PCA(real[,-1], scale.unit = TRUE, ncp = ncol(real)-1, 

graph = FALSE) 

 

eig_val = get_eigenvalue(res.pca_II) 

graph_eigen = fviz_eig(res.pca_II, addlabels = TRUE)#cutoff 14% 

eig =ggpar(graph_eigen, 

xlab = "Principal Components", ylab = "Percentage of explained 

variation", 

ggtheme = theme_bw() + theme(text = element_text(size = 15))) 

 

graph_rep3 = fviz_cos2(res.pca_II, choice = "var", axes = c(1,2,3)) + 

scale_y_continuous(labels = percent) 

tres = ggpar(graph_rep3, 

title = "Explained variation of variable", 

xlab = "Variables", ylab = "Percentage of explained variation", 

ggtheme = theme_bw() + theme(text = element_text(size = 15)) + 

theme(axis.text.x = element_text(size = 15))) 

 

ggarrange(eig, tres, 

labels = c("A", "B"), 

ncol = 2, nrow = 2) 

 

#Q² e R² PARAMETERS    

X = scale(real[,-1]) 

X_quad = X*X 

inertia = sum(X_quad) 

media = sapply(real[,-1], mean) 

desvio = sapply(real[,-1], sd) 

 

cor = cor(real[,-1]) 

U = eigen(cor)$vector 

 

scores = X%*%U 

 

Xest = scores[,1:3]%*%t(U[,1:3]) 
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erro = X - Xest 

erro_quad = erro*erro 

 

ress = sum(erro_quad) 

Rquad = 1 - ress/inertia #R² 

X2 = scale(pred[,-1], center = media, scale = desvio) 

scores2 = X2%*%U 

 

Xest2 = scores2[,1:3]%*%t(U[,1:3]) 

erro2 = X2 - Xest2 

erro_quad2 = erro2*erro2 

 

press = sum(erro_quad2) 

Qquad = 1 - press/inertia #Q² 

 

RMSECV = sqrt(press/(nrow(erro_quad2)*ncol(erro_quad2))) 

 

#BIPLOTS WITH PROJECTIONS    

indI = fviz_pca_ind(res.pca_II, axes = c(1,2), 

geom.ind = "point", pointsize = 2, 

col.ind = real$Year, palette = "Dark2", 

addEllipses = TRUE, ellipse.level = 0.95, 

repel = TRUE, 

legend.title = "Year") 

 

predI = fviz_add(indI, scores2, axes = c(1,2), shape=25, 

color="gray21") 

CPI = ggpar(predI, 

title = "Projections on PC1 and PC2", 

xlab = "PC1 (29.4%)", ylab = "PC2 (24.2%)", 

ggtheme = theme_bw() + theme(text = element_text(size = 

18)) + theme(legend.position = "top", legend.justification = "right")) 

 

indII = fviz_pca_ind(res.pca_II, axes = c(1,3), 

geom.ind = "point", pointsize = 2, 

col.ind = real$Year, palette = "Dark2", 

addEllipses = TRUE, ellipse.level = 0.95, 

repel = TRUE, 

legend.title = "Year") 

 

predII = fviz_add(indII, scores2, axes = c(1,3), shape=25, 

color="gray21") 

CPII = ggpar(predII, 

title = "Projections on PC1 and PC3", 

xlab = "PC1 (29.4%)", ylab = "PC3 (17.0%)", 

ggtheme = theme_bw() + theme(text = element_text(size = 

18)) + theme(legend.position = "top", legend.justification = "right")) 

 

indIII = fviz_pca_ind(res.pca_II, axes = c(2,3), 

geom.ind = "point", pointsize = 2, 

col.ind = real$Year, palette = "Dark2", 

addEllipses = TRUE, ellipse.level = 0.95, 

repel = TRUE, 

legend.title = "Year") 

 

predIII = fviz_add(indIII, scores2, axes = c(2,3), shape=25, 

color="gray21") 

CPIII = ggpar(predIII, 
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title = "Projections on PC2 and PC3", 

xlab = "PC2 (24.2%)", ylab = "PC3 (17.0%)", 

ggtheme = theme_bw() + theme(text = element_text(size = 

18)) + theme(legend.position = "top", legend.justification = "right")) 

 

ggarrange(CPI,CPII,CPIII, 

labels = c("A", "B", "C"), 

nrow = 1, ncol = 3) 

 

#CROSS VALIDATION    

cross_val = 

read_excel("M:/AMANDA/Doutorado/Dados/MBRpiloto/cross_val.xlsx", 

col_types = c("text", "numeric", "numeric", "text")) 

 

graph_cross_val = ggplot(cross_val, aes(x=CP, y=Valor, fill=Parameter)) 

+ geom_bar(stat="identity", position=position_dodge()) + 

geom_line(aes(x=CP, y=Perc, group=Parameter, linetype=Parameter)) + 

geom_point(aes(x=CP, y=Perc, shape=Parameter), size=3) 

ggpar(graph_cross_val, 

title = "Principal Component Analysis", 

subtitle = "Q² and R² values and improvement of the model", 

xlab = "Number of components kept", ylab = "Q², R² and improvement(%)", 

ggtheme = theme_bw() + theme(text = element_text(size = 20)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

#VARIABLES PREDICTION    

previsao = read_excel("M:/AMANDA/Doutorado/Dados/MBR 

piloto/previsao.xlsx") 

 

filt = ggplot(previsao, aes(x=Filt, y=V1)) + geom_point() + 

geom_line(aes(x=Filt, y=Filt, group=1)) 

a = ggpar(filt, 

title = "Sludge Filterability", 

xlab = "Real value", ylab = "Predicted value", 

ggtheme = theme_bw() + theme(text = element_text(size = 15)) 

+ theme(axis.title = element_text(size = 12)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

VS = ggplot(previsao, aes(x=MLVSS, y=V2)) + geom_point() + 

geom_line(aes(x=MLVSS, y=MLVSS, group=1)) 

b = ggpar(VS, 

subtitle = "MLVSS", 

xlab = "Real value", ylab = "Predicted value", 

ggtheme = theme_bw() + theme(text = element_text(size = 15)) 

+ theme(axis.title = element_text(size = 12)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

pH = ggplot(previsao, aes(x=pH, y=V3)) + geom_point() + 

geom_line(aes(x=pH, y=pH, group=1)) 

c = ggpar(pH, 

subtitle = "pH", 

xlab = "Real value", ylab = "Predicted value", 

ggtheme = theme_bw() + theme(text = element_text(size = 15)) 

+ theme(axis.title = element_text(size = 12)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

COD = ggplot(previsao, aes(x=COD, y=V4)) + geom_point() + 

geom_line(aes(x=COD, y=COD, group=1)) 
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d = ggpar(COD, 

subtitle = "COD", 

xlab = "Real value", ylab = "Predicted value", 

ggtheme = theme_bw() + theme(text = element_text(size = 15)) 

+ theme(axis.title = element_text(size = 12)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

temp = ggplot(previsao, aes(x=Temp, y=V5)) + geom_point() + 

geom_line(aes(x=Temp, y=Temp, group=1)) 

e = ggpar(temp, 

subtitle = "Temperature", 

xlab = "Real value", ylab = "Predicted value", 

ggtheme = theme_bw() + theme(text = element_text(size = 15)) 

+ theme(axis.title = element_text(size = 12)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

DWC = ggplot(previsao, aes(x=SDWC, y=V6)) + geom_point() + 

geom_line(aes(x=SDWC, y=SDWC, group=1)) 

f = ggpar(DWC, 

subtitle = "Sequential days without cleaning", 

xlab = "Real value", ylab = "Predicted value", 

ggtheme = theme_bw() + theme(text = element_text(size = 15)) 

+ theme(axis.title = element_text(size = 12)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

Perm = ggplot(previsao, aes(x=Perm, y=V7)) + geom_point() + 

geom_line(aes(x=Perm, y=Perm, group=1)) 

g = ggpar(Perm, 

subtitle = "Membrane Permeability", 

xlab = "Real value", ylab = "Predicted value", 

ggtheme = theme_bw() + theme(text = element_text(size = 15)) 

+ theme(axis.title = element_text(size = 12)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

ggarrange(a, b, c, d, e, f, g, 

labels = c("A", "B", "C", "D", "E", "F", "G"), 

ncol = 2, nrow = 4) 
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APPENDIX B – R code for MSPC models development 

 
library(readxl) 

library(ggpubr) 

library(ggplot2) 

library(scales) 

library(rstatix) 

library(FactoMineR) 

library(factoextra) 

 

### PHASE I    

dados_kubota_faseI = 

read_excel("M:/AMANDA/Doutorado/Dados/MBRpiloto/dados_kubota_faseI.xlsx", 

col_types = c("numeric", "numeric", "numeric", "numeric", "numeric", 

"numeric", "numeric")) 

 

#NUMBER OF COMPONENTS    

res.pca.mspc = PCA(dados_kubota_faseI, scale.unit = TRUE, ncp = 

ncol(dados_kubota_faseI), graph = FALSE) 

 

eig_val.mspc = get_eigenvalue(res.pca.mspc) 

graph_eigen_mspc = fviz_eig(res.pca.mspc, addlabels = TRUE) #cutoff 14% 

ggpar(graph_eigen_mspc, 

title = "Principal Component Analysis (PCA)", 

subtitle = "Eingenvalues", 

xlab = "Principal Components", ylab = "Percentage of explained 

variation", 

ggtheme = theme_bw() + theme(text = element_text(size = 25))) 

 

graph_rep3.mspc = fviz_cos2(res.pca.mspc, choice = "var", axes = 

c(1,2,3)) 

ggpar(graph_rep3.mspc, 

title = "Explained variation of variable", 

subtitle = "Three components", 

xlab = "Variables", ylab = "Percentage of explained 

variation", 

ggtheme = theme_bw() + theme(text = element_text(size 

= 21)) + theme(axis.text.x = element_text(size = 21))) 

 

#PCA MODEL    

media = sapply(dados_kubota_faseI, mean) 

desvio = sapply(dados_kubota_faseI, sd) 

 

cor = cor(dados_kubota_faseI) 

U = eigen(cor)$vectors 

lamb = eigen(cor)$values 

lambida = as.data.frame(lamb) 

 

X = scale(dados_kubota_faseI) 

scores = X%*%U 

 

X_quad = X*X 

inertia = sum(X_quad) 

 

#T² STATISTIC    

scores_quad = scores[,1:3]*scores[,1:3] 

t2 = mapply(`/`, data.frame(scores_quad), lambida[1:3,]) 

T2 = rowSums(t2) 
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#Q STATISTIC    

Xest = scores[,1:3]%*%t(U[,1:3]) 

erro = X - Xest 

erro_quad = erro*erro 

Q = rowSums(erro_quad) 

 

RESS = sum(erro_quad) 

R_quad = 1 - RESS/inertia #R² 

 

### PHASE II    

dados_kubota_faseII = read_excel("M:/AMANDA/Doutorado/Dados/MBR 

piloto/dados_kubota_faseII.xlsx", 

col_types = c("numeric", "numeric", "numeric", "numeric", "numeric", 

"numeric", "numeric")) 

 

X2 = scale(dados_kubota_faseII, center = media, scale = desvio) 

scores2 = X2%*%U 

 

#T² STATISTIC    

scores_quad2 = scores2[,1:3]*scores2[,1:3] 

t2_2 = mapply(`/`, data.frame(scores_quad2), lambida[1:3,]) 

T2_2 = rowSums(t2_2) 

 

#Q STATISTIC    

Xest2 = scores2[,1:3]%*%t(U[,1:3]) 

erro2 = X2 - Xest2 

erro_quad2 = erro2*erro2 

Q2 = rowSums(erro_quad2) 

 

PRESS = sum(erro_quad2) 

Q_quad = 1 - PRESS/inertia #Q² 

 

### CONTROL CHARTS    

T2_final = c(T2, T2_2) 

Q_final = c(Q, Q2) 

quantile(T2, 0.95) 

quantile(Q, 0.95) 

 

a = as.data.frame(seq(from = 1, to = 624, by = 1)) 

b = as.data.frame(T2_final) 

c = as.data.frame(seq(quantile(T2, 0.95), quantile(T2, 0.95), 

length.out=624)) 

 

r = cbind(a,b,c) 

names(r)[1] = "Sample" 

names(r)[3] = "Percentile" 

 

graphT2 = ggplot(r[339:624,], aes(x=Sample)) + 

geom_point(aes(y=T2_final, color = cut(T2_final,c(-Inf,quantile(T2, 

0.95),Inf))), size = 2) + 

geom_line(aes(y=Percentile, color = "95% Percentile"), size = 1) + 

scale_color_manual(values = c("black", "red", "red")) 

A = ggpar(graphT2, 

title = "Multivariate Statistical Process Control (MSPC)", 

subtitle = "Hotelling Control Chart", 

xlab = "Sample", ylab = "T²", 

ggtheme = theme_bw() + theme(legend.position = "none")+ 
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theme(text = element_text(size = 15))) 

 

d = as.data.frame(Q_final) 

e = as.data.frame(seq(quantile(Q, 0.95), quantile(Q, 0.95), length.out=624)) 

 

s = cbind(a,d,e) 

names(s)[1] = "Sample" 

names(s)[3] = "Percentile" 

 

graphQ = ggplot(s[339:624,], aes(x=Sample)) + geom_point(aes(y=Q_final, 

color = cut(Q_final,c(-Inf,quantile(Q, 0.95),Inf))), size = 2) + 

geom_line(aes(y=Percentile, color="95% Percentile"), size = 1) + 

scale_color_manual(values = c("black", "red", "red")) 

B = ggpar(graphQ, 

subtitle = "Q Control Chart", 

xlab = "Sample", ylab = "Q", 

ggtheme = theme_bw()+ theme(legend.position = "none") 

+ theme(text = element_text(size = 15))) 

 

#PERMEABILITY AND FILTERABILITY PLOT ---------------------------------- 

dados_kubota_perm = read_excel("M:/AMANDA/Doutorado/Dados/MBR 

piloto/dados_kubota_perm_fasesIeII.xlsx", 

col_types = c("numeric", "numeric","numeric")) 

 

graph_perm = ggplot(dados_kubota_perm[339:624,], aes(x=Sample)) + 

geom_point(aes(y=Perm, color = cut(Perm,c(-Inf,100,150, Inf))), size = 

2) + 

geom_line(aes(y=Lim, color="100 L/m².h.bar"), size = 1) + ylim(0,1000) 

+scale_color_manual(values = c("red", "orange", "black", "red")) 

C = ggpar(graph_perm, 

subtitle = "Permeability [L/(h.m².bar)]", 

xlab = "Sample", ylab = "Permeability", 

ggtheme = theme_bw() + theme(legend.position = "none") + 

theme(text = element_text(size = 15)) + theme(axis.title.y = 

element_text(size = 12))) 

 

dados_kubota_filt = read_excel("M:/AMANDA/Doutorado/Dados/MBR 

piloto/dados_kubota_filt_fasesIeII.xlsx", 

col_types = c("numeric", "numeric")) 

 

graph_filt = ggplot(dados_kubota_filt[339:624,], aes(x=Sample)) + 

geom_point(aes(y=Filt, color = cut(Filt,c(-Inf,10,Inf))), size = 2) + 

scale_color_manual(values = c("red", "black")) 

D = ggpar(graph_filt, 

subtitle = "Filterability [mL/5min]", 

xlab = "Sample", ylab = "Filterability", 

ggtheme = theme_bw() + theme(legend.position = "none") + 

theme(text = element_text(size = 15)) + theme(axis.title.y = 

element_text(size = 12))) 

 

ggarrange(A, B, C, D, 

labels = c("A", "B", "C","D"), 

ncol = 1, nrow = 4) 

 

### CONTRIBUTION PLOTS    

Qobservacao = as.data.frame(Q2) 

cont = mapply(`/`, data.frame(erro_quad2), Qobservacao) 
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#OUT-OF-CONTROL OPERATION    

dados_kubota_cont = read_excel("M:/AMANDA/Doutorado/Dados/MBR 

piloto/dados_kubota_cont.xlsx", 

col_types = c("text","numeric","text")) 

 

graph_cont = ggplot(dados_kubota_cont, aes(x=Sample, y=Contribution, 

fill=Variable)) + 

scale_fill_brewer(palette="Set2") + scale_y_continuous(labels = 

percent) + geom_bar(stat="identity") 

Z = ggpar(graph_cont, 

subtitle = "Out-of-control Operation", 

xlab = "Sample", ylab = "Contribution", 

ggtheme = theme_bw() + theme(legend.position = "top", 

legend.justification = "right") + 

theme(text = element_text(size = 25))+ theme(axis.text.x = 

element_text(size = 12, angle = 90))) 

 

#ALARMING OPERATION    

dados_kubota_cont_false = read_excel("M:/AMANDA/Doutorado/Dados/MBR 

piloto/dados_kubota_cont_false.xlsx", 

col_types = c("text","numeric","text")) 

 

graph_cont_false = ggplot(dados_kubota_cont_false, aes(x=Sample, 

y=Contribution, fill=Variable)) + 

scale_fill_brewer(palette="Set2") + scale_y_continuous(labels = 

percent) + geom_bar(stat="identity") 

W = ggpar(graph_cont_false, 

subtitle = "Alarming Operation", 

xlab = "Sample", ylab = "Contribution", 

ggtheme = theme_bw() + theme(legend.position = "top", 

legend.justification = "right") + 

theme(text = element_text(size = 25)) + theme(axis.text.x = 

element_text(size = 12, angle = 90))) 

 

ggarrange(Z, W, 

labels = c("A", "B"), 

ncol = 2, nrow = 1) 

 

### HYPOTHESES TEST    

#OUT-OF-CONTROL OPERATION    

dados_kubota_cont_MW = read_excel("M:/AMANDA/Doutorado/Dados/MBR 

piloto/dados_kubota_cont_MW.xlsx") 

 

temp = wilcox_test(Temp ~ Group, data = dados_kubota_cont_MW, exact = 

FALSE) 

temp = temp %>% add_xy_position(x = "Group") 

temp = ggboxplot(dados_kubota_cont_MW, x = "Group", y = "Temp") + 

stat_pvalue_manual(temp, hide.ns = TRUE) 

graph_temp = ggpar(temp, 

title = "Temperature", 

ylab = "Temperature (°C)", 

ggtheme = theme_bw() + theme(text = element_text(size = 

18)) + theme(axis.title.x = element_blank())) 

 

perm = wilcox_test(Perm ~ Group, data = dados_kubota_cont_MW, exact = FALSE) 

perm = perm %>% add_xy_position(x = "Group") 

perm = ggboxplot(dados_kubota_cont_MW, x = "Group", y = "Perm") + 

stat_pvalue_manual(perm, hide.ns = TRUE) 
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graph_perm = ggpar(perm, 

title = "Membrane permeability", 

ylab = "Permability (L/h.m².bar)", 

ggtheme = theme_bw() + theme(text = element_text(size = 

18)) + theme(axis.title.x = element_blank())) 

 

dwc = wilcox_test(SDWC ~ Group, data = dados_kubota_cont_MW, exact = 

FALSE) 

dwc = dwc %>% add_xy_position(x = "Group") 

dwc = ggboxplot(dados_kubota_cont_MW, x = "Group", y = "SDWC") + 

stat_pvalue_manual(dwc, hide.ns = TRUE) 

graph_dwc = ggpar(dwc, 

title = "Sequential days without cleaning", 

ylab = "Sequential days without cleaning", 

ggtheme = theme_bw() + theme(text = element_text(size = 

18)) + theme(axis.title.x = element_blank())) 

 

#ALARMING OPERATION    

dados_kubota_cont_false_MW = read_excel("M:/AMANDA/Doutorado/Dados/MBR 

piloto/dados_kubota_cont_false_MW.xlsx") 

 

temp2 = wilcox_test(Temp ~ Group, data = dados_kubota_cont_false_MW, 

exact = FALSE) 

temp2 = temp2 %>% add_xy_position(x = "Group") 

temp2 = ggboxplot(dados_kubota_cont_false_MW, x = "Group", y = "Temp") 

+ stat_pvalue_manual(temp2, hide.ns = TRUE) 

graph_temp2 = ggpar(temp2, 

title = "Temperature", 

ylab = "Temperature (°C)", 

ggtheme = theme_bw() + theme(text = 

element_text(size = 18)) + theme(axis.title.x = element_blank())) 

 

perm2 = wilcox_test(Perm ~ Group, data = dados_kubota_cont_false_MW, 

exact = FALSE) 

perm2 = perm2 %>% add_xy_position(x = "Group") 

perm2 = ggboxplot(dados_kubota_cont_false_MW, x = "Group", y = "Perm") 

+ stat_pvalue_manual(perm2, hide.ns = TRUE) 

graph_perm2 = ggpar(perm2, 

title = "Membrane permeability", 

ylab = "Permability (L/h.m².bar)", 

ggtheme = theme_bw() + theme(text = 

element_text(size = 18)) + theme(axis.title.x = element_blank())) 

 

dwc2 = wilcox_test(SDWC ~ Group, data = dados_kubota_cont_false_MW, 

exact = FALSE) 

dwc2 = dwc2 %>% add_xy_position(x = "Group") 

dwc2 = ggboxplot(dados_kubota_cont_false_MW, x = "Group", y = "SDWC") + 

stat_pvalue_manual(dwc2, hide.ns = TRUE) 

graph_dwc2 = ggpar(dwc2, 

title = "Sequential days without cleaning", 

ylab = "Sequential days without cleaning", 

ggtheme = theme_bw() + theme(text = 

element_text(size = 18)) + theme(axis.title.x = element_blank())) 

 

ggarrange(graph_perm, graph_dwc, graph_temp,graph_perm2, graph_dwc2, 

graph_temp2, 

labels = c("A", "B", "C", "D", "E", "F"), 

ncol = 3, nrow = 2) 
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APPENDIX C – R code for ANN models development 

 
library(h2o) 

library(readxl) 

library(factoextra) 

library(FactoMineR) 

library(ggplot2) 

library(ggpubr) 

 

citation("h2o") 

h2o.init() 

file_path <- "C:/Users/Moises/Documents/AMANDA/Doutorado/Dados/MBR 

Piloto/02-Dados-Amonia/dados_kubota_ann.csv" 

dados <- h2o.importFile(file_path, header = TRUE, sep = ";", dec = ".") 

 

dados_split = h2o.splitFrame(dados, ratios = c(0.7)) 

dados_treino = dados_split[[1]] 

dados_teste = dados_split[[2]] 

 

### Configuracao do modelo    

 

x_cols <- 

c("filt","MLVSS","pH","ammonia","sulphide","OG","phosp","fCOD","pCOD"," 

remCOD","temp","SRT","perm") 

y_col <- "removal" 

hidden_layers <- c(12,7) 

actv_func <- "Rectifier" 

epochs_used <- 5000 

###    

 

model <- h2o.deeplearning( 

x = x_cols, 

y = y_col, 

training_frame = dados_treino, 

validation_frame = dados_teste, 

activation = actv_func, 

hidden = hidden_layers, 

epochs = epochs_used 

) 

 

plot(model) 

 

Resultado <- h2o.performance(model) 

h2o.mse(Resultado) 

h2o.mae(Resultado) 

 

### Análise de sensibilidade     
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h2o.varimp_plot(model) 

h2o.varimp(model) 

 

dados_kubota = 

read_excel("C:/Users/Moises/Documents/AMANDA/DOUTORADO/Dados/MBR 

piloto/02-Dados-Amonia/dados_kubota_pca.xlsx") 

 

res.pca = PCA(dados_kubota, scale.unit = TRUE, ncp = ncol(dados_kubota)- 

1, graph = FALSE) 

 

graph_eigen = fviz_eig(res.pca, addlabels = TRUE) #cutoff 14% 

ggpar(graph_eigen, 

title = "Principal Component Analysis (PCA)", 

subtitle = "Eingenvalues", 

xlab = "Principal Components", ylab = "Percentage of explained 

variation", 

ggtheme = theme_bw() + theme(text = element_text(size = 25))) 

get_eigenvalue(res.pca) 

 

res.var = get_pca_var(res.pca) 

res.var$coord 

res.var$cos2 

res.var$contrib 

 

graph_var = fviz_pca_var(res.pca, axes = c(2,3), 

geom.var = c("arrow","text"), arrowsize = 1, 

labelsize = 5, 

"yellow", "red"), 

 

ggpar(graph_var, 

col.var = "cos2", gradient.cols = c("blue", 

col.circle = "black", 

repel = TRUE, 

legend.title = "Explained variation") 

xlab = "PC2 (17.8%)", ylab = "PC3 (9.8%)", 

ggtheme = theme_bw() + theme(text = element_text(size = 18)) + 

theme(legend.position = "top", legend.justification = "right")) 

 

### Previsao     

 

previsao <- h2o.predict(model, newdata = dados_previsao) 

previsao 

devtools::install_github("rstudio/tensorflow") 

library(tensorflow) 

install_tensorflow() 

 

install.packages("keras") 

install.packages("mlbench") 

install.packages("neuralnet") 

 

install_keras() 

library(keras) 
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library(mlbench) 

library(dplyr) 

library(magrittr) 

library(neuralnet) 

library(readxl) 

library(scales) 

library(ggplot2) 

library(ggpubr) 

 

citation("keras") 

citation("neuralnet") 

 

data = read_excel("C:/Users/Moises/Documents/AMANDA/DOUTORADO/Dados/MBR 

piloto/02-Dados-Amonia/dados_kubota_ann.xlsx") 

 

str(data) 

data %<>% mutate_if(is.factor, as.numeric) 

 

n <- 

neuralnet(removal~filt+MLVSS+pH+ammonia+sulphide+OG+phosp+fCOD+pCOD+rem 

COD+temp+SRT+perm, 

data = data, 

hidden = c(8,5,3), 

linear.output = F, 

lifesign = 'full', 

rep=1) 

 

plot(n,col.hidden = 'black', 

col.hidden.synapse = 'black', 

show.weights = T, 

information = T, 

fill = 'grey') 

 

data <- as.matrix(data) 

dimnames(data) <- NULL 

 

set.seed(123) 

ind <- sample(2, nrow(data), replace = T, prob = c(.7, .3)) 

training <- data[ind==1,1:13] 

test <- data[ind==2, 1:13] 

trainingtarget <- data[ind==1, 14] 

testtarget <- data[ind==2, 14] 

 

m <- colMeans(training) 

s <- apply(training, 2, sd) 

training <- scale(training, center = m, scale = s) 

test <- scale(test, center = m, scale = s) 

 

model <- keras_model_sequential() 

model %>% 

layer_dense(units = 100, activation = 'relu', input_shape = c(13)) %>% 

layer_dropout(rate=0.4) %>% 

layer_dense(units = 50, activation = 'relu') %>% 

layer_dropout(rate=0.2) %>% 

layer_dense(units = 1) 

 

model %>% compile(loss = 'mse', 

optimizer = 'rmsprop', 
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metrics = 'mae') 

 

mymodel <- model %>% 

fit(training,trainingtarget, 

epochs = 100, 

batch_size = 32, 

validation_split = 0.2) 

 

model %>% evaluate(test, testtarget) 

pred <- model %>% predict(test) 

 

corr = ggplot(testtarget, pred, pch=19, xlim=c(0,50), ylim=c(0,50)) 

ggpar(corr, 

xlab = "Real value", ylab = "Predicted value", 

ggtheme = theme_bw() + theme(text = element_text(size = 25))) 
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APPENDIX D – Test of Dunn Results 

 
Table D.1 - Multiple comparison test of Dunn, with Bonferroni correction, for the 

variable sequential days without cleaning during the monitoring years 
 

Group 1 Group 2 n1 n2 Statistic p-value p-value adjusted 

Year 01 Year 02 103 185 -2.114 3.45E-02 3.45E-01 

Year 01 Year 03 103 154 -2.339 1.93E-02 1.93E-01 

Year 01 Year 04 103 197 8.079 6.52E-16 6.52E-15 

Year 01 Year 05 103 89 13.04 7.50E-39 7.50E-38 

Year 02 Year 03 185 154 -0.347 7.29E-01 1.00E+00 

Year 02 Year 04 185 197 12.13 6.97E-34 6.97E-33 

Year 02 Year 05 185 89 16.64 3.52E-62 3.52E-61 

Year 03 Year 04 154 197 11.90 1.17E-32 1.17E-31 

Year 03 Year 05 154 89 16.41 1.73E-60 1.73E-59 

Year 04 Year 05 197 89 7.081 1.43E-12 1.43E-11 

 
Table D.2 - Multiple comparison test of Dunn, with Bonferroni correction, for the 

variable membrane permeability during the monitoring years 
 

Group 1 Group 2 n1 n2 Statistic p-value p-value adjusted 

Year 01 Year 02 103 185 -6.096 1.09E-09 1.09E-08 

Year 01 Year 03 103 154 -0.150 8.81E-01 1.00E+00 

Year 01 Year 04 103 197 -4.468 7.91E-06 7.91E-05 

Year 01 Year 05 103 89 -12.02 2.80E-33 2.80E-32 

Year 02 Year 03 185 154 6.696 2.15E-11 2.15E-10 

Year 02 Year 04 185 197 2.014 4.40E-02 4.40E-01 

Year 02 Year 05 185 89 -7.675 1.66E-14 1.66E-13 

Year 03 Year 04 154 197 -4.873 1.10E-06 1.10E-05 

Year 03 Year 05 154 89 -12.92 3.44E-38 3.44E-37 

Year 04 Year 05 197 89 -9.367 7.50E-21 7.50E-20 

 
Table D.3 - Multiple comparison test of Dunn, with Bonferroni correction, for the 

variable COD of MBR feed during the monitoring years 
 

Group 1 Group 2 n1 n2 Statistic p-value p-value adjusted 

Year 01 Year 02 103 185 -5.345 9.02E-08 9.02E-07 

Year 01 Year 03 103 154 -12.97 1.81E-38 1.81E-37 

Year 01 Year 04 103 197 -11.47 1.93E-30 1.93E-29 

Year 01 Year 05 103 89 -13.04 7.05E-39 7.05E-38 

Year 02 Year 03 185 154 -9.110 8.24E-20 8.24E-19 

Year 02 Year 04 185 197 -7.200 6.01E-13 6.01E-12 

Year 02 Year 05 185 89 -9.537 1.47E-21 1.47E-20 

Year 03 Year 04 154 197 2.385 1.71E-02 1.71E-01 

Year 03 Year 05 154 89 -1.777 7.56E-02 7.56E-01 

Year 04 Year 05 197 89 -3.861 1.13E-04 1.13E-03 
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APPENDIX E – Wilcoxon-Mann-Whitney Test Results for Membrane Fouling 

 
Table E.1 - Wilcoxon-Mann-Whitney statistical test to compare samples of in-control 

and out-of-control operations 
 

Group 1 Group 2 n1 n2 Variable Statistic p-value 

In-control Out-of-control 338 43 Temp 9511 0.000824 

In-control Out-of-control 338 43 Perm 14534 1.22e-26 

In-control Out-of-control 338 43 SDWC 0 1.21e-26 

 
Table E.2 - Wilcoxon-Mann-Whitney statistical test to compare samples of in-control 

and alarming operations 
 

Group 1 Group 2 n1 n2 Variable Statistic p-value 

In-control Alarming 338 86 Temp 21302 1.73e-11 

In-control Alarming 338 86 Perm 2168 3.64e-34 

In-control Alarming 338 86 SDWC 29068 1.53e-46 
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APPENDIX F – Wilcoxon-Mann-Whitney Test Results for Ammonia Removal 

 
Table F1. Wilcoxon-Mann-Whitney statistical test to compare samples of in-control and 

out-of-control operations 
 

Group 1 Group 2 n1 n2 Variable Statistic p-value 

In-control Out-of-control 272 46 Removal 12512 2.07e-27 

In-control Out-of-control 272 46 Temp 5976 1.22e-4 

In-control Out-of-control 272 46 SRT 9913 2.68e-13 

In-control Out-of-control 272 46 fCOD 9722 1.86e-9 

 


