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acadêmico.

Aos meus amigos de vida, o grupo da engenharia e PS4, que me divertem e me fazem rir.
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À todos aqueles que de alguma forma me ajudaram para a realização desse trabalho.



Resumo

O estudo da fissuração de um elemento estrutural é importante. Nesse estudos a trinca
pode ser modelada com a abordagem discreta ou cont́ınua. O modelo de campos de fases
é um modelo de trinca cont́ınua que adiciona uma variável ao problema para representar
a degradação do material no ponto. O grupo de pesquisa de campos de fase do De-
partamento de Engenharia Estrutural (DEES) da Universidade Federal de Minas Gerais
(UFMG) já fez alguns trabalhos nesse tema utilizando o software INSANE (INteractive
Structural ANalysis Environment), e um obstáculo encontrado foi o tipo de solucionador.
Um solucionador amplamente usado na literatura de campos de fase é o solucionador
histórico, porém ele limita a geometria da trinca a ser utilizada. Para contornar essa
limitação precisa-se de outro solucionador. Esse trabalho mostra a implementação de um
solucionador com restrição de contorno através da biblioteca externa PETSc (Portable,
Extensible Toolkit for Scientific Computation) aplicada no INSANE. Com esse novo so-
lucionador mostra-se as novas possibilidades de modelos, compara-se a performance com
outros solucionadores que o INSANE possui, compara-se a convergência e dependência
de malha com o modelo de fissuração distribúıda, e por fim, avalia-se a capacidade do
modelo de campos de fase em captar os modos de falhas I e II.
Palavras-chave: Modelos de fratura baseado em campo de fase; Solucionador com res-
trição de contorno; Método dos Elementos Finitos baseado em modelos de campo de fase.



Abstract

The study of the cracking of a structural element is important. In these studies, the crack
can be modeled with the discrete or continuous approach. The phase-field model is a
continuous crack model that adds a variable to the problem to represent the degradation
of the material at a point.The phase-field research group of the Department of Structural
Engineering (DEES) of the Federal University of Minas Gerais (UFMG) has already done
some work on this topic using the INSANE software (INteractive Structural ANalysis
Environment). One of the obstacles encountered was the type of solver. A solver widely
used in the phase field literature is the historical solver, but it limits the crack geometry
to be used. To get around this limitation, you need another solver. This work shows
the implementation of a bound-constrained solver through the external library PETSc
(Portable, Extensible Toolkit for Scientific Computation) applied in INSANE. With this
new solver, the new possibilities of models are shown, the performance is compared with
other solvers in INSANE, the convergence and mesh dependence are compared with the
smeared crack model, and finally, the capacity of the phase-field model to capture modes
I and II failures is evaluated.
Key-words: Phase field models of Fracture; Bound-Constrained Solver; Finite Element
Method based Phase-field models.
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δū first variation displacements vector
˙̄b body forces rate vector
˙̄u displacements rate vector
˙̄t surface forces rate vector
I(ϕ, ϕ′) functional for phase-field
σ stress tensor
ε strain tensor
εD

ac deviatoric part of the strain tensor
εD deviatoric stress tensor



εV volumetric stress tensor
ε− inactive strain tensor
ε+ active strain tensor
ε̇ strain rate tensor
Ê0 linear elastic isotropic constitutive tensor
Ĉ non linear constitutive tensor
⊗ outer product
σeq equivalent stress
J2 second invariant of the deviatory stress tensor calculated from stress tensor
σ1 higher stress between the principal stresses
βc parameter associated with equivalent stress
fc uniaxial compressive strength
ft uniaxial tensile strength
εc elastic limit deformation in compression
εt elastic limit deformation in tension
I index relative to nodes
[N]uI shape functions relative to the displacement field displacement
[N]ϕI shape functions relative to the phase-field for each node
d̄I nodal displacement vector for each node
āI nodal phase-field vector for each node
[B]uI matrix B of finite element methods for displacements for each node
[B]ϕI matrix B of finite element methods for phase-field for each node
r̄u residual for displacements
r̄u residual for phase-fied
[K]IJ full stiffness matrix
[K]uu

IJ portion of the stiffness matrix associated only with displacements
[K]uϕ

IJ portion of the stiffness matrix associated with displacements and phase-field
[K]ϕu

IJ portion of the stiffness matrix associated with phase-field and displacements
[K]ϕϕ

IJ portion of the stiffness matrix associated only with phase-field
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Chapter 1

Introduction

One of several important issues in structural engineering is the modelling of cracking,
and a scope of research is the appearance of cracks and the path they will take. There-
fore, it is important to predict in which situations this will happen, so that projects can
be made with greater reliability. Cracking can be described in two ways, the discrete
and the continuous forms. In the discrete approach, cracks are modelled as displacement
discontinuities in the domain, while in the continuous approach the displacements are
continuous, but the stiffness is gradually reduced to model the material degradation pro-
cess. One of the ways to treat the degradation process, that has been increasingly used,
is the phase-field approach.

The phase field model generalizes the Griffith theory, aiming to solve the displacement
field and the fracture region by energy minimization and no assumptions for the evolution
of the cracks are necessary (Goswami et al., 2020).

The phase-field is a scalar variable that goes from 0 for the undamaged state of the
material to 1 for the fully cracked state of the material. In addition to the phase-field
variable, another parameter is the length scale parameter, that controls the width of the
region where the discrete crack is smoothed on. Small values of this length tends to
reproduce the Griffith’s theory.

The phase-field has already been widely discussed by several authors. A complete
review on the theme of phase-field, which addresses several references on the subject, can
be found in Wu et al. (2020). The phase-field research group of the Department of Struc-
tural Engineering (DEES) has already implemented in INSANE (INteractive Structural
ANalysis Environment) the bases of the phase-field theory as shown in Leão (2021). An
important question on phase-field models is how the issue of crack irreversibility is han-
dled, since from a physical point of view, a crack cannot heal over time (without external
intervention). Depending on the used strategy, there may be limitations on the model. In
order to overcome such limitations in INSANE, the research group developed two works
simultaneously. One of them was one by Bayao et al. (2021), which implemented a bound-
constrained solver inside INSANE. In Bayão (2021) there is a broader approach to all the
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details of this bound-constrained solver in INSANE. The other work is this dissertation
that was produced using the external library PETSc (Balay et al., 2020) recommended
by the literature, so that the research group could have different possible solvers.

The computational implementations were done in the software INSANE (INteractive
Structural ANalysis Environment) using the library PETSc (Portable, Extensible Toolkit
for Scientific Computation). INSANE is an open source software based on the Object-
Oriented Programing paradigm and developed since 2002 at the Department of Structural
Engineering of the Federal University of Minas Gerais (Penna, 2007, Fuina, 2004). PETSc
is a suite of data structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations. In order to use PETSc, a binding
will be made (JNI - Java Native Interface) to INSANE, because INSANE is written in
Java and PETSc written in C.

To generate the mesh and as post-processor, the Gmsh1 (Geuzaine and Remacle, 2009)
and Paraview2 (Ayachit, 2015, Ahrens et al., 2015) software were used.

1.1 Major Objective and Specific Objectives

The main objective of this work was to understand the phase field theory and implement
the new bounded solver through PETSc, that addresses the condition of irreversibility
without limiting the models. The main consequence of such an implementation is the
possibility of studying phase-field models without the limitation of the crack geometry
function that will be shown.

In order to achieve the main objective, the following propositions were made:
• Do the binding of PETSc and INSANE.
• Implement the bound-constrained solver in INSANE, using the previously imple-

mentation by Leão (2021), with the minimum amount of modifications.
• Model fracture problems using different functions for crack geometry and energy

degradation.
• Compare the obtained results with other solvers for phase-field in INSANE.
• Compare the results of the phase-field with smeared crack model.
• Validate phase-field models for modes I and II failures.

1.2 Outline

This work is organized in 6 chapters and 2 appendices. After this first chapter, Chapter 2
presents the theoretical foundation of PFM (Phase-Field Model) and the theory for bound-
constrained solver. Chapter 3 presents the additions made to INSANE code for what was

1Gmesh software can be download at https://gmsh.info/
2Paraview software can be download at https://www.paraview.org/

https://gmsh.info/
https://www.paraview.org/
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implemented in this work. Chapter 4 presents a numerical study of the bound-constrained
solver by PETSc, showing the possibilities associated, an analysis of the results in relation
to the other solvers and an analysis of time performance in relation to the other solvers.
Chapter 5 presents two case studies. A study showing a comparisson between the phase-
field and a smeared cracking model and another study presenting a validation through
numerical models for the ability of phase-field models to capture modes I and II failures.
Finally, Chapter 6 closes the manuscript, summing up the main contributions of this work
and discussing future developments. The Appendix A shows how to make the connection
between INSANE and PETSc, and Appendix B presents the demonstration for some
equations developed in the work.
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Chapter 2

Theoretical Foundation

In this chapter, the theory of phase-field models and the idea of the
bound-constrained solver will be presented.

This chapter presents a review of the phase-field approach to fracture. The implemen-
tation of of the phase-field theory base in INSANE was done by Leão (2021), as well as
the complete development of equations used in this work. In this work, were adopted ·
for tensor, ·̄ for vector and [·] for matrix.

To start, let’s consider the problem described in Figure 2.1, which is a body whose
problem domain is Ω with external boundary ∂Ω and a crack Γ. The external boundary
region relative to displacements is described by ∂Ωu, while the one relative to loading is
described by ∂Ωt.

Figure 2.1: A solid body with a crack.

The total energy functional Et is given by:

Et(ū, ϕ) = Ψs + Ψc − Pext (2.1)

where Ψs is the strain energy, Ψc is the surface energy due to the crack, and Pext is the
external load potential energy functional.
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The strain energy Ψs of a general solid considering phase-field depends on the strain
tensor ε(ū), where ū is the displacements field, and phase-field ϕ:

Ψs(ū, ϕ) =
∫

Ω
ψ(ε(ū), ϕ) dV (2.2)

where ψ is the strain energy density. The surface energy due to crack growth, is given by:

Ψc =
∫

Ω
Gcγ(ϕ,∇ϕ) dA (2.3)

where Gc is a material property that represents the critical energy release rate, γ is the
crack surface density function. γ makes the crack smoothing in the phase-field model, it
will be addressed in Section 2.3. The external potential energy, Pext is computed using
the prescribed boundary force (t̄) and the distributed body force (b̄).

Pext =
∫

Ω
b̄ · ū dV +

∫
∂Ω
t̄ · ū dA (2.4)

2.1 Smoothing representation of the discrete crack

As already mentioned, the phase-field (ϕ) is a continuous variable, that can be between
0 and 1, where 0 represents the unbroken state of the material and 1 represents the fully
broken state of the material. Since it can take on any value in this range, an exponential
decay function, proposed by Miehe et al. (2010b), is introduced to approximate the non-
smooth crack topology. To understand the idea let’s assume an infinite bar of cross-section
Γ, under axial traction, that has a crack at the position x = 0. Figure 2.2 illustrates the
function of the phase-field variable versus the axial position.
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Figure 2.2: Infinity bar with sharp and diffusive crack modeling under it. (a) Sharp crack at
x = 0 and (b) diffusive crack at x = 0 modeled with the length scale l0. Adapted from Miehe
et al. (2010b).

l0 is the length scale parameter that regulates the amount of diffusion of the crack.
In the limiting case of sharp crack topology, l0 → 0.0. When l0 becomes larger, the
broken region of the bar also becomes larger. Then, such parameter introduces a smooth
transition between the broken and unbroken state.

From Miehe et al. (2010a), a particular form of the phase field is:

ϕ(x) = e−|x|/l0 (2.5)

where Equation 2.5 gives the phase-field value as a function of the axial position x, in such
way that, in the center of the bar the section is fully broken and at x → ∞ the section is
fully unbroken. The Equation 2.5 is a solution for minimization of the differential equation
whose solution is given by funtional (also give by Miehe et al. (2010a)):

I(ϕ, ϕ′) = 1
2

∫
Ω
ϕ2 + l20(ϕ′)2 dV (2.6)

Solving (2.6) for (2.5), it give us:

I(ϕ, ϕ′) = Γl0 (2.7)

So, it can say that, the crack surface area of the sharp crack can be given by:

Γl = 1
l0
I(ϕ, ϕ′) =

∫
Ω
γ(ϕ, ϕ′) dV (2.8)
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where the crack surface density function is defined as:

γ(ϕ, ϕ′) = 1
2l0

ϕ2 + l0
2 (ϕ′)2 (2.9)

Without loss of generality, for a 3D case, the Functional 2.8 can be given by:

Γl = 1
l0
I(ϕ,∇ϕ) =

∫
Ω
γ(ϕ,∇ϕ) dV (2.10)

where:

γ(ϕ,∇ϕ) = 1
2l0

ϕ2 + l0
2 |∇ϕ|2 (2.11)

2.2 Equations of Phase-Field Models in Strong Form

To obtain the strong form of the Phase-Field problem, a domain Ω with a broken part
B ⊂ Ω is considered. B is the region where the fracture is located and smoothed by the
phase-field model. The boundary of the solid and its broken surface are, respectively, ∂Ω
and ∂B. The total energy functional Et becomes:

Et =
∫

Ω
ψ(ε(ū), ϕ) dV +

∫
B
Gcγ(ϕ,∇ϕ) dV

−
∫

Ω
b̄ · ū dV −

∫
∂Ω
t̄ · ū dA

(2.12)

To find the displacement and the phase-field (ū, ϕ), we need to minimize the Equation
2.12, whose first variation is:

δEt = −
∫

Ω
(∇ · σ + b̄) · δū dV +

∫
∂Ωt

(σ · n̄− t̄) · δū dA

+
∫

B

[
∂ψ

∂ϕ
+Gcδϕγ

]
δϕ dV +

∫
∂B
Gc

(
∂γ

∂∇ϕ
· n̄
)
δϕ dA

(2.13)

where:

δϕγ =
(
∂γ

∂ϕ
− ∇ · ∂γ

∂∇ϕ

)
(2.14)

From Equation 2.13 the following conditions can be obtained:

∇ · σ + b̄ = 0̄ in the domain Ω (2.15a)
σ · n̄− t̄ = 0̄ in the domain ∂Ωt (2.15b)

Equations 2.15a and 2.15b are the equilibrium equation and the boundary condition
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of a boundary value problem in classic elasticity.
Defining Y = −∂ψ

∂ϕ
(crack driving force), it can be shown that (Leão, 2021):

Y −Gcδϕγ = 0, for ϕ̇ > 0

Y −Gcδϕγ < 0, for ϕ̇ = 0
(2.16)

∂γ

∂∇ϕ
· n̄ = 0 in ∂B (2.17)

The variable γ does not change the value on the boundary ∂B, then Equation 2.17 is
a boundary condition.

It is hypothesized that ψ depends on a degradation function g(ϕ) as follows:

ψ(ε̄, ϕ) = ψ(ε̄, g(ϕ)) (2.18)

Therefore, using the chain rule, the crack driving force can be rewritten as:

Y = −∂ψ

∂ϕ
= −∂ψ

∂g

∂g

∂ϕ
(2.19)

The energy degradation function g(ϕ) and its proprieties will be discussed in Sec-
tion 2.4.

Introducing the effective crack driving force Ȳ = ∂ψ

∂g
, Equation 2.19 leads to:

Y = −g′(ϕ)Ȳ (2.20)

From all this developed theory it can be observed:
1. Irreversibility condition

The crack only grows, thus the crack opening is irreversible. In terms of the func-
tional Γl, discussed on Section 2.1, this results in:

Γ̇l =
∫

B
γ̇(ϕ,∇ϕ)dV ≥ 0 (2.21)

with:
γ̇ = ∂γ

∂ϕ
ϕ̇+ ∂γ

∂∇ϕ
∇ϕ̇ (2.22)

After some manipulations, and applying the divergence theorem and the boundary
conditions, Equation 2.21 becomes:

Γ̇l =
∫

B
ϕ̇ δϕγ dV ≥ 0 (2.23)

Since ϕ̇ ≥ 0, it is necessary that δϕγ ≥ 0. These are the irreversibility conditions.
2. Phase-field evolution equation
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Introducing f(Y, ϕ) = Y −Gcδϕγ the Karush-Kuhn-Tucker conditions become:

ϕ̇ ≥ 0, f(Y, ϕ) ≤ 0, ϕ̇f(Y, ϕ) = 0 (2.24)

with Gcδϕγ being the limit in which the crack will grow. In analogy to a sharp
crack, this therm is the critical energy release rate (Gc).
Considering ϕ̇ > 0, from equation system 2.16, and considering Ȳ as defined on
Equation 2.20, the following can be obtained:

−g′(ϕ)Ȳ −Gcδϕγ = 0 −→ δϕγ = −g′(ϕ)Ȳ
Gc

(2.25)

It can be observed that the phase-field is zero when δϕγ is zero. Then, a high value
of Gc can be adopted as a strategy to prevent crack formation in certain regions.

2.3 Generalisation of the crack surface density func-
tion

The crack surface density function γ in Equation 2.11 is one form that can be used to
regularise the sharp crack topology. There are other ways to represent the crack surface
density function. Wu (2017) proposed a general equation to describe the surface density
function of the crack:

γ(ϕ,∇ϕ) = 1
C0

[ 1
l0
α(ϕ) + l0|∇ϕ|2

]
(2.26a)

δϕγ = 1
C0

[ 1
l0
α′(ϕ) − 2l0∆ϕ

]
(2.26b)

where it is introduced the crack geometry function α(ϕ) and the parameter C0 = 4
∫ 1

0 α
1/2(ϕ)dϕ.

The values of C0 described by the integral are graphically represented in Figure 2.3. Fur-
thermore, C0 can be represented by Equation 2.27 given by Wu (2017).

C0 =


1

(1−ξ)3/2 [1
2ξ

2ln( ξ

2
√

1−ξ+2−ξ
) + (2 − ξ)

√
1 − ξ] ξ ∈ (0, 1)

1
(ξ−1)3/2 [1

2ξ
2(π

2 − arcsin(2−ξ
ξ

)) − (2 − ξ)
√

1 − ξ] ξ ∈ (1, 2]
(2.27)

A detail to be aware of is that at points ξ = 0 and ξ = 1 the function is not defined,
but it converges to values 2 and 8/3, respectively for each point, as seen in Figure 2.3 and
in the literature. Therefore, in the implementation, a conditional is needed to handle this
detail.
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Figure 2.3: Values for C0 for different ξ.

The function α(ϕ) determines how the phase-field will be distributed and it has to
satisfy the following properties (according to Wu et al. (2020)):

α(0) = 0 and α(1) = 1 (2.28)

There are many functions already proposed in the literature for α(ϕ). The functions
adopted by Leão (2021) are shown in Table 2.1.

Table 2.1: Crack geometry function α(ϕ) implemented by Leão (2021) in INSANE

α(ϕ) c0 authors
ϕ 8/3 Pham et al. (2011)
ϕ2 2 Bourdin et al. (2000)

1 − (1 − ϕ)2 π (Alessi et al., 2015)
16ϕ2(1 − ϕ)2 8/3 Karma et al. (2001)

The crack geometry function through higher-oder polynomials can be considered as
well. Wu (2017) proposed the following quadratic one:

α(ϕ) = ξϕ+ (1 − ξ)ϕ2 ∈ [0, 1] ∀ϕ ∈ [0, 1] (2.29)

where ξ ∈ [0, 2], otherwise α(ϕ) ∈ [0, 1] cannot be guaranteed, as shown in Figure 2.4.
For various values of ξ ∈ [0, 2], the resulting crack phase-fields ϕ(x) are summarised in



§2.3 Theoretical Foundation 30

Table 2.2 and in Figure 2.5. The localisation bandwidth decreases with larger value ξ.
The Equation 2.29 has already been implemented in INSANE as shown in Bayao et al.
(2021).
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Figure 2.4: Phase-field for different crack geometry function.

Table 2.2: Generic crack geometry function α(ϕ) and the resulting crack phase-field ϕ(x).
Adapted from Wu et al. (2020)

α(ϕ) ξ c0 ϕ(x)
ϕ2 0 2 exp(− |x|

l0
)

ϕ 1 8/3 (1 − |x|
2l0

)2

2ϕ− ϕ2 2 π 1−sin |x|
l0
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Figure 2.5: Plots of different geometric functions.

2.4 Energy Degradation Function

The energy degradation function, g(ϕ), makes the connection between the crack phase-
field and the mechanical fields. The energy degradation function g(ϕ) has to satisfy the
following conditions:

• g(0) = 1: there is no degradation in intact material;
• g(1) = 0: the energy is completely degraded in fully broken material;
• g′(ϕ) = dg

dϕ
< 0: the function g(ϕ) has to be monotonically decreasing;

• g′(1) = 0: there isn’t sudden variation in the interface where the material in fully
broken.

There are many functions already proposed in the literature. The functions imple-
mented by Leão (2021) in INSANE are shown in Table 2.3 and its graphs are plotted on
Figures 2.6 and 2.7.
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Table 2.3: Energy degradation functions

g(ϕ) authors
(1 − ϕ)2 Bourdin et al. (2000)

3(1 − ϕ)2 − 2(1 − ϕ)3 Karma et al. (2001)
4(1 − ϕ)3 − 3(1 − ϕ)4 Kuhn et al. (2015)
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Figure 2.6: Function g(ϕ)

It can be observed that the cubic and quartic functions have g′(0) = 0. These functions
represent materials that have an initial linear elastic behaviour. On the other hand the
quadratic function have g′(0) < 0, meaning that material degradation is activated as soon
as the loading starts, as illustrated in Figure 2.7.
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Figure 2.7: Function g′(ϕ)

There are also other functions in the literature that construct g(ϕ) based on parameters
that build α(ϕ) other than ϕ, showing once again the importance of using an unlimited
solver without the α(ϕ) limitation. An example of these functions is the function proposed
by Wu (2017):

g(ϕ) = (1 − ϕ)p

(1 − ϕ)p +Q(ϕ) (2.30)

where the exponent p > 0 and continuous function Q(ϕ) > 0 is exposed in Equation 2.31.

Q(ϕ) = c1ϕ+ c1c2ϕ
2 + c1c2c3ϕ

3 + · · · (2.31)

where c1, c2 and c3 are given by:

c1 = 2E0Gc

f 2
t

ξ

C0l0
= 2ξ
C0

lch

l0
(2.32a)

c2 = 1
ξ

[(−4πξ2

C0

Gc

f 2
t

k0) − (p+ 1)] (2.32b)

c3 =
 0 p > 2

1
c2

[1
ξ
(C0wcft

2πGc
)2 − (1 + c2)]

(2.32c)

where E0 is Young´s modulus, ft is the uniaxial tensile strength and lch (characteristic
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length) = E0Gc/f
2
t for Griffith´s or Irwin´s Theory. To understand the wc parameter,

assume a bar x ∈ [−L,L] sufficiently long such that crack evolution is not affected by
boundary effects. The bar is loaded at both ends by increasing displacements in opposite
directions. The distributed body forces are neglected. For simplicity, it is assumed that
the crack is initiated at the symmetric point x = 0. Thinking about this scenario, wc is the
ultimate apparent displacement jump (ultimate crack opening) and k0 is the initial slope
for the softening curves, which represent the relationship between stress(σ) and apparent
displacement jump(w) across the localization band. It is possible to obtain wc through
Equation 2.33, and k0 through Equation 2.34. This theory, as well as these equations are
shown in Wu (2017),

wc = 2πGc

C0ft

√
ξ
Q(1)
c1

lim
ϕ∗

(1 − ϕ∗)(1− p
2 ) (2.33)

k0 = −C0

4π
f 2

t

Gc

[ξ(c2 + p+ 1) − 1] 3
2

ξ2 (2.34)

where ϕ∗ is the maximum phase-field.

2.4.1 Softening Law

An alternative to determine the values of k0 and wc, instead of using the equations, is
to use the parameterized values for already established softening laws. Softening laws
describe the behavior after the material cracks. The expressions for stress in this section
are defined by Wu (2017), where they represent the behavior of stress after cracking, that
is, in energy dissipation. Wu (2017) defined expressions for wc and k0 for some softening
laws. It is worth mentioning that the expressions for k0 are obtained through σ′(0) = k0.

2.4.1.1 Linear Softening Law

For the linear softening law we have the Equations 2.35, 2.36 and 2.37.

σ(w) = ftmax(−k0w, 0) (2.35)

k0 = − f 2
t

2Gc

(2.36)

wc = 2Gc

ft

(2.37)

To achieve the value of wc from Equation 2.37, the value of p must be 2 (Wu et al.,
2020).
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2.4.1.2 Exponential Softening Law

For the exponential softening law we have the Equations 2.35, 2.36 and 2.37.

σ(w) = ft exp(− ft

Gc

w) (2.38)

k0 = − f 2
t

Gc

(2.39)

wc = ∞ (2.40)

Infinite wc implies a value of c3 equal to zero. Wu (2017) adopts a p value of 5/2,
through data fitting.

2.4.1.3 Hyperbolic Softening Law

For the hyperbolic softening law we have the Equations 2.41, 2.42 and 2.43.

σ(w) = ft(1 + ft

Gc

w)−2 (2.41)

k0 = −2f 2
t

Gc

(2.42)

wc = ∞ (2.43)

Infinite wc implies a value of c3 equal to zero. Wu (2017) adopts a p value of 4, through
data fitting.

2.4.1.4 Cornelissen’s Softening Law

Cornelissen’s softening is based on Cornelissen et al. (1986). For the Cornelissen´s soft-
ening law we have the Equations 2.44, 2.45 and 2.46.

σ(w) = ft[(1 + η3
1r

3) exp(−η2r) − r(1 + η3
1) exp(−η2)] (2.44)

k0 = nk
ft

wc

(2.45)

wc = 1
nw

Gc

ft

(2.46)

,where r = w/wc. The values for nk and nw are given by the Equations 2.47 and 2.48,
respectively. The typical values η1 = 3.0 and η2 = 6.93 have been considered for normal
concrete (Cornelissen et al., 1986).
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nk = −n2 − (1 + n3
1) exp(−n2) (2.47)

nw = −[(1 + n3
1)(0.5 + 1

n2
) + 3n3

1
n2

2
(1 + 2

n2
+ 2
n2

2
)] exp(−n2) + 1

n2
+ 6n

3
1
n4

2
(2.48)

To develop equation 2.46, it is necessary to integrate equation 2.44 from 0 to wc, as
this equation gives the value of Gc. For more details, see the appendix Appendix B.

For the softening laws presented, the Table 2.4 shown some values of c2 and c3 accord-
ing softening law, ξ and p.

Table 2.4: Examples of c2 and c3

Softening Law p ξ c2 c3

Linear Softening 2 2 −1
2 0

Exponencial Softening 5
2 2 0.1748 0

Hyperbolic Softening 4 2 0.5379 0
Cornelissen´s Softening (normal concrete) 2 2 1.3868 0.6567

The energy degradation function proposed by Wu (2017) was implemented by Bayao
et al. (2021) at INSANE as well as the possibility of choosing the softening laws.

2.5 The strain energy density

The strain energy function describes a smooth transition between the fully broken and
unbroken material. To describe it is used the initial strain energy density function ψ0(ε̄)
and the degradation function g(ϕ) : [0, 1] −→ [1, 0].

Assuming the material to be linear elastic, the strain energy density is given by:

ψ0(ε) = 1
2σ : ε = 1

2ε : Ê0 : ε = 1
2λ0tr

2(ε) + µ0ε : ε (2.49)

where λ0 and µ0 are the Lamé constants.
An anisotropic formulation based on the following additive decomposition of the elas-

tic strain energy is commonly adopted in the literature to prevent crack formation in
compression regions:

ψ0(ε) = ψ+
0 (ε) + ψ−

0 (ε) (2.50)

where ψ+
0 (ε) is the part that comes from tensile strains and ψ−

0 (ε) is the part due to
compressions. It is called anisotropic model (Miehe et al., 2010a, Amor et al., 2009)
because the tensile and compression energies are splited; if the model was not split, it
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would be called an isotropic model (Bourdin et al., 2000). These models will be better
covered in the Section 2.5.1. The degradation is then assumed to affect just the tensile
part:

ψ(ε) = g(ϕ)ψ+
0 (ε) + ψ−

0 (ε) (2.51)

The stress field, the constitutive tensor Ĉ and the evolution phase-field law becomes:

σ = ∂ψ

∂ε
= g(ϕ)∂ψ

+
0 (ε)
∂ε

+ ∂ψ−
0 (ε)
∂ε

(2.52a)

Ĉ = ∂σ

∂ε
= g(ϕ)∂

2ψ+
0 (ε)
∂ε2 + ∂2ψ−

0 (ε)
∂ε2 (2.52b)

Y = Gcδϕγ = −g′(ϕ)Ȳ , Ȳ = ∂ψ

∂g
= ψ+

0 (ε) (2.52c)

2.5.1 Some split energy models

There are different forms in the literature to divide ψ into ψ+
0 and ψ−

0 . The complete
development of the formulations of the Isotropic Constitutive Model, Lancioni and Royer-
Carfagni (2009), Amor et al. (2009) and Miehe et al. (2010b) models are presented in Leão
(2021). Here a brief summary of the models will be presented. First, to develop the models
it is necessary to define some functions:

• Ramp function: Returns the value itself, if it has the same sign as the function,
or zero in other cases.

⟨x⟩± = |x| ± x

2 (2.53)

• Sign function: Returns 1 if the value is positive, -1 if it is negative, or 0 if it is
zero.

sgn(x) =


−1 , if x < 0

0 , if x = 0

1 , if x > 0

(2.54)

• Heaviside Function: Returns 1 if the value is positive, 0 if it is negative, or 0.5 if
it is zero.

H(x) = 1 + sgn(x)
2 (2.55)

• R±
n functions: Applied to verify the signal of the strain tensor trace and are defined

as:

R±
n = H( ± tr(ε)) (2.56)

From Equation 2.56 it is observed that:
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⟨tr(ε)⟩± = R±
n tr(ε) (2.57)

Those definitions will help to demonstrate the constitutive and stress tensors of the
Amor et al. (2009) and Miehe et al. (2010b) models.

2.5.1.1 Isotropic Constitutive Model

In this model, no split is considered and the free energy density function ψ(ε̄, ϕ).

ψ+
0 = 1

2λ0tr(εij)(ε11 + ε22) + µ(ε2
11 + ε2

22 + 2ε2
12)

ψ−
0 = 0 (2.58)

2.5.1.2 Lancioni and Royer-Carfagni (2009) Constitutive Model

In this model, shear fracture is considered and the strain tensor ε̄ is decomposed in a
volumetric part and a deviatoric one.

ψ+
0 = µ0 ε

D
pl : εD

pl

ψ−
0 = 1

2λtr(ε)(ε11 + ε22)+

+µ0

(2
3tr(ε)(ε11 + ε22) − 2

9(tr(ε))2
)

(2.59)

where in εD
pl the ·D means that is deviatoric stress tensor and the ·pl means tensor is plane

case.

2.5.1.3 Amor et al. (2009) Constitutive Model

They proposed the following positive/negative parts:

ψ+
0 = µ0 ε

D
pl : εD

pl + 1
2λ0R

+
n tr(ε)(ε11 + ε22)+

+µ0R
+
n

(2
3tr(ε)(ε11 + ε22) − 2

9(tr(ε))2
)

ψ−
0 = 1

2λ0R
−
n tr(ε)(ε11 + ε22)+

+µ0R
−
n

(2
3tr(ε)(ε11 + ε22) − 2

9(tr(ε))2
)

(2.60)



§2.5 Theoretical Foundation 39

2.5.1.4 Miehe et al. (2010b) Constitutive Model

The model by Miehe et al. (2010b) part of the spectral decomposition of the strain tensor
and the definition of active ε+ and inactive ε− components. The spectral decomposition
of the strain tensor is given by equation 2.61

ε =
3∑

n=1
εnp̄n ⊗ p̄n = ε+ + ε− (2.61)

where ε+ and ε− are, respectively, the active and inactive strain tensors, defined by:

ε+ =
3∑

n=1
⟨εn⟩+ p̄n ⊗ p̄n (2.62a)

ε− =
3∑

n=1
⟨εn⟩− p̄n ⊗ p̄n (2.62b)

where εn and p̄n represent, respectively, the eigenvalues and eigenvectors of the strain
tensor.The strain energy density is separated from equations 2.63a and 2.63b.

ψ+
0 = 1

2λ0R
+
n (tr(ε))2 + µ0ε

+ : ε+ (2.63a)

ψ−
0 = 1

2λ0R
−
n (tr(ε))2 + µ0ε

− : ε− (2.63b)

For the plane case, the equations are:

ψ+
0 = 1

2λ0R
+
n tr(ε)(ε11 + ε22) + µ0ε

+
pl : ε+

pl

ψ−
0 = 1

2λ0R
−
n tr(ε)(ε11 + ε22) + µ0ε

−
pl : ε−

pl

(2.64)

where ε+
pl and ε−

pl corresponds to the plane case of ε+ and ε−.

2.5.1.5 Wu (2017) Constitutive Model

According to Wu et al. (2020), hybrid models were developed as an alternative to main-
tain the asymmetric behavior with respect to tension and compression, but at the same
time avoiding excessive non-linearity caused by the definition of Ȳ by the part deforma-
tion energy, which makes solving the displacements little efficient in models that make
separation of variables. In this hybrid model, ψ0 is determined by equation 2.65:

ψ0 = 1
2E0

σeq
2 (2.65)

, where σeq is the equivalent stress calculated from equations 2.66 and 2.67.
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σ = Ê0 : ε (2.66)

σeq = 1
1 + βc

(
βc⟨σ1⟩ +

√
3J2

)
(2.67)

,where J2 is the second invariant of the deviatory stress tensor calculated from σ, σ1 is
the largest between the principal stresses and βc = fc

ft−1 , for fc the uniaxial compressive
strength and ft uniaxial tensile strength. This model was implemented by Bayao et al.
(2021).

2.5.1.6 Wu (2018) Constitutive Model

In this hybrid model, ψ0 is determined by equation 2.68:

ψ0 = 1
2E0

σ1
2 (2.68)

where σ1 denotes the major principle value of the effective stress σ. According to Wu
(2018), comparing with the formulation in Section 2.5.1.5, the contributions of the devi-
ating effective stress tensors are neglected. This is justified for failures induced by tensile
cracks. Details on the implementation of this model at INSANE will be addressed in
Section 3.2.1.

2.6 Equations of Phase-Field Models in Weak Form

The governing equations of a phase-field model are:

∫

Ω σ : δε dV = δPext∫
B

[
g′(ϕ)Ȳ δϕ+Gcδγ

]
dV ≥ 0

(2.69)

with:

δγ = 1
C0

[ 1
l0
α′(ϕ)δϕ+ 2l0∇ϕ · ∇δϕ

]
(2.70)

The first equation of 2.69 is the standard weak form of classical elasticity while the
second one is obtained from 2.13 (for a detailed proof of this derivation, see e.g. the
dissertation by Leão (2021)).

Pre-defined cracks can be considered in modelling by setting ϕ = 1 in crack points or
by mesh discretization. To prevent cracks on regions it is necessary to put ϕ = 0 in region
points or set a very high Gc value. This can be a helpful artifice in support points, where
there is a concentrated load.



§2.7 Theoretical Foundation 41

2.7 Finite Element Discretization

In this section, the equations will be illustrated for the 2D case. In the Finite Element
Method, the displacement field and the strain field are written in terms of nodal displace-
ments:

ū(x̄) = [N]uI d̄I (2.71a)
ε̄(x̄) = [B]uI d̄I (2.71b)

where d̄ is the nodal displacements vector and, for each node in the element, it has:

[N]uI =
Nu

I 0
0 Nu

I

 (2.72)

[B]uI =


Nu

I,x 0
0 Nu

I,y

Nu
I,y Nu

I,x

 (2.73)

where I are the nodes. In a similar way, the phase-field is interpolated from its nodal
values:

ϕ(x̄) = [N]ϕI āI (2.74a)
∇ϕ(x̄) = [B]ϕI āI (2.74b)

where ā is the nodal phase-field vector and, for each node in element, it has:

[N]ϕI =
[
Nϕ

I

]
(2.75)

[B]ϕI =
Nϕ

I,x

Nϕ
I,y

 (2.76)

From those definitions, the Finite Element Discretization of Equations 2.69 can be
written as

∫
Ω
([B]uI )T σ̄ dV = f̄ext (2.77)
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∫
B
g′Ȳ ([N]ϕI )T dV+

+
∫

B

Gc

C0

( 1
l0
α′([N]ϕI )T + 2l0([B]ϕI )T ∇ϕ

)
dV ≥ 0̄

(2.78)

From that, the residual form of Equations 2.77 and 2.78 above can be obtained:

r̄u =
∫

Ω
([B]uI )T σ̄dV − f̄ext = 0̄ (2.79)

r̄ϕ = −
∫

B
([N]ϕI )T

(
g′Ȳ + 1

C0l0
α′Gc

)
dV

−
∫

B

2l0
C0
Gc([B]ϕI )T ∇ϕ dV ≤ 0̄

(2.80)

The linearisation of the residuals above leads to the following stiffness matrix:

[K]IJ =
[K]uu

IJ [K]uϕ
IJ

[K]ϕu
IJ [K]ϕϕ

IJ

 (2.81)

where:

[K]uu
IJ =

∫
Ω
([B]uI )T ∂σ̄

∂ε̄
[B]uJ dV (2.82a)

[K]uϕ
IJ =

∫
Ω
([B]uI )T ∂σ̄

∂ϕ
[N]ϕJ dV (2.82b)

[K]ϕu
IJ =

∫
B
([N]ϕI )Tg′∂Ȳ

∂ε̄
[B]uJ dV (2.82c)

[K]ϕϕ
IJ =

∫
B
([N]ϕI )T

(
g′′Ȳ + 1

C0l0
α′′Gc

)
[N]ϕJ dV+

+
∫

B

2l0
C0
Gc([B]ϕI )T [B]ϕJ dV (2.82d)

2.8 Solvers

The classification of phase-field solvers has two differentiations. Solvers can be classified
as to how they solve equations and how they deal with crack irreversibility.

2.8.1 Solvers regarding the solution to the equation

To solve Equation 2.81 there are two classes of solvers used in the literature which are
monolithic and staggered solvers. Both of them were implemented by Leão (2021) in
INSANE project. The monolithic solves the system of equations 2.81 together, in other
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words, solves displacement and phase-field at the same time. Whereas the staggered solver
solve the phase-field and displacement separately, solving only the parts [Kuu

I ] and [Kϕϕ
I ]

from 2.81. The energy functional is non-convex in both unknown variables (u, ϕ), then
the monolithic solver performs poorly. The models analyzed by Leão (2021) show that
using monolithic solver, the results diverge when the structure starts to be non linear. In
this work we only use staggered solver.

2.8.2 Irreversibility condition

When using a solver, it is necessary to guarantee the irreversibility of the crack and the
domain of phase-field variation (ϕ ∈ [0, 1]), that is, the second equation of system 2.69
have to be guaranteed. There are a few ways to do this, discussed in the literature.
For example, Bourdin et al. (2000) enforced the irreversibility condition when the crack
phase-field is close to one: ϕ(x, t > t0) = 1 if ϕ(x, t0) ≈ 1. Miehe et al. (2010b) consid-
ered the effective crack driving force (Ȳ ) as a historical variable (H) that represents the
maximum tensile energy the material had experimented. This strategy has been widely
used in the literature, and is the one adopted by Leão (2021), but cannot guarantee crack
irreversibility for non-quadratic crack geometry functions α(ϕ) ̸= ϕ2. It is worth men-
tioning here that when α = ϕ2, the value of ξ = 0 in Equation 2.29, therefore, the energy
degradation function 2.30 cannot be used, as it would imply in indeterminate c2. This
makes the degradation energy function to be used with the historical solver (α = ϕ2) to be
g = (1−ϕ)2 (Bourdin et al., 2000), therefore not having, for example, the parameter ft in
the material description, being something important for damage models. So the historical
solver limits the crack geometric function but also the degradation energy function, which
greatly influences the results as it will be shown in Section 4.2.1.

Amor et al. (2009) considered the phase-field evolution equation as a bound-constrained
optimization problem. Heister et al. (2015) proposed a technique named primal-dual ac-
tive set method to solve optimization problem and deal with convexify the energy func-
tional. Many articles are based on Heister et al. (2015) modifying it, like done by Hu
et al. (2020). Basically, the primal-dual active set method uses lagrange multipliers to
define two sets, one set called inactive and one active. The active set represents the sub-
domain with the restrictions applied and where no PDE (Partial Differential Equation)
is resolved, while in the inactive set the PDE is solved, and the restrictions are satisfied.
The inactive set is used to find the phase-field variation over time (in each step). Another
work that uses lagrange multipliers to restrict irreversibility is the one of Geelen et al.
(2019).

Other authors proposed to minimize the energy subject to a constraint condition.
Some authors have used some kind of bound-constrained solver to handle this constraint
condition. Li et al. (2016) wrote the phase-field problem with quadratic functional, solves
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through a scheme Gradient Projection Conjugate Gradient in PETSc (Portable, Extensi-
ble Toolkit for Scientific Computation) (Balay et al., 2020). Farrell and Maurini (2017)
and Wu (2018) used PETSc for solving a reduced-space active-set method, based on Ben-
son and Munson (2006). More about this method will be discussed in next section, since
in this work this strategy was adopted to ensure crack irreversibility without limiting the
crack geometry function and energy degradation function. This method is rather robust,
but its convergence rate is slow. Then, to overcome this issue, Farrell and Maurini (2017)
improved computational efficiency through a nonlinear Gauss-Seidel iterative scheme and
used an over-relaxed parameter to accelerate the iteration.

2.8.3 Bound-Constrained Solver

To deal with the boundedness and irreversibility conditions, it’s convenient to regard the
governing equation from residual phase-field as an optimization problem bounded by the
following conditions:

0 ≤ aI,n ≤ aI,n+1 ≤ 1 (2.83)

According to Farrell and Maurini (2017), under the above condition the residual phase-
field constitutes a mixed complementarity problem, that can be written as:


aI,n < aI,n+1 < 1 rϕ

I = 0
aI,n = aI,n+1 rϕ

I ≤ 0
aI,n+1 = 1 rϕ

I ≥ 0
(2.84)

where rϕ
I is the residual of the phase-field. Equation 2.84 says that the solution of residual

phase-field needs to be for each node, precisely, one of the conditions shown. This work
intends to use a reduced-space active set Newton method, included in the the open-source
toolkit PETSc (Balay et al., 2020), to solve this problem, just as Wu et al. (2020) and
Farrell and Maurini (2017) did. This solver is based on Benson and Munson (2006), and
its main idea is illustrated in the Figure 2.8.

The k index in Figure 2.8 refers local phase-field iteration. In the algorithm the active
set is the subdomain with the restrictions applied and no equation is solved, while in the
inactive set the equations are solved, in such way that the restrictions are satisfied. So
the idea of the algorithm is to reduce the number of equations to be solved at each step,
as it updates the inactive set.
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Data: a0, k = 0
Result: A solution of (rϕ)

1 Given a0, the initial guess
2 while ||r̄ϕ(ak)|| > TOL do
3 Compute active(A ) and inactive(I ) sets:
4 A (a) = aI,n+1 = aI,n and rϕ < 0 or aI,n+1 = 1 and rϕ > 0
5 I (a) = the remaining nodes: aI,n+1 = aI,n and rϕ > 0 or aI,n+1 =

1 and rϕ < 0 and 1 > aI,n+1 > aI,n

6 Set d̄irA = 0, where d̄ir is the direction of the line search
7 Solve the reduce Newton step for d̄irI :
8 [∇r̄ϕ(ak)]I k,I k d̄irI k = −r̄ϕ

I k(ak)
9 Choose the step length µ such that ||rϕ||2 is minimized, via line search on

āk+1 = āk + µ dir; if this search direction fails, use the steepest descent
direction instead.

10 k = k +1
11 end

Figure 2.8: Reduced-space active-set method adapted from Benson and Munson (2006)

The objective of this work is not to implement this code itself, but to communicate
INSANE with PETSc, which already has this implementation, so that it solves and returns
the new value for nodal phase-field. In order to use PETSc, a binding was made to
INSANE, because INSANE is written in Java and PETSc written in C. To do this, a Java
Native Interface (JNI) was based on the work of Azevedo (2019). It is worth remembering
that Bayao et al. (2021), produced of the same time as this work, implemented in INSANE
a bound-constrained solver in the program itself, without the use of external libraries,
which will be used to compare results and performance.



46

Chapter 3

Implementation

In this chapter the INSANE system will be presented together with all
the changes that was necessary to implement the Wu (2018) constitutive
model and the bound-constrained solver by PETSc.

3.1 A brief introduction to INSANE

The INSANE System (INteractive Structural ANalysis Environment) is an open-source
software developed at the Structural Engineering Department of UFMG. Almost all the
code is developed in Java and the full potential of object-oriented programming (OOP)
is used.

Classe não modificada Classe modificada Classe nova

<<interface>>
Persistence

<<abstract class>>
Solution

<<interface>>
Assembler

java.util.Observer

<<interface>>
Observable

<<interface>>
Observable

<<interface>>
Model

Figure 3.1: INSANE core organization (Penna, 2011)

As pointed out in Figure 3.1, INSANE core is composed by the interfaces Model,
Solution and Assembler that are responsible to abstract and to solve the model. The
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Persistence collects and writes the input and output data in files and Model stores the
lists of nodes, elements, loadings, etc. Assembler is responsible to mount the system of
equations and Solution has the necessary methods to solve the problem.

The classes and interfaces necessary for the implementation of this work are the
ConstitutiveModel for implementation of Wu (2018) constitutive model and Step for
bound-constrained solver by PETSc. The ConstitutiveModel is responsible to calculate
the constitutive material relations and the stress. The Step implements the necessary
methods to solve each step of a non linear analysis, for example, the Standard New-
ton Raphson. More information of INSANE working and its organization is very well
described in Penna (2011).

3.2 Modifications in INSANE structure

In the UML diagrams presented throughout this section, the modified classes will be
depicted in yellow, the new classes in green and the non modified classes in white (Fig. 3.2).

Class Diagram0 2021/06/13

1 / 1

 pkg 

Modified class New class Non modified class

Figure 3.2: Classes representation in UML diagram.

3.2.1 Implementation of Wu (2018) constituive model

The constitutive models of Phase-Field in the INSANE system are defined differently
for the monolithic and sttagered solution methods. The constitutive model Wu (2018),
implemented in this work, has as class superior to PhaseFieldStaggeredConstitutiveModel,
which defines default methods for all classes developed for staggered solver.

As described in Section 2.5.1.5, the model in question is defined as a hybrid, as it does
not have in its formulation the realization of the separation of components, but, even
so, define a asymmetric behavior for tensile and compressive stresses. In this way, the
formulations closely resemble the models without component separation.

The strategy used for the implementation was the same used for the StgPfWu2013ConstModel
class (which represents the Wu (2017) constitutive model) in Bayão (2021), that is, the
definition of this new model as a class inferior, StgPfWu2018ConstModel, to the isotropic
model class of Bourdin et al. (2000), StgPfIsotropicConstModel. Thus, it was only
necessary to override the “mount-DualInternalVariableVector()” that returns the stress of
each node and updates the value of Ȳ .

The Figure Fig. 3.3 shows the implementation of the Wu (2018) constitutive model in
INSANE and the other phase-field models already implemented. It is worth mentioning
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that there are several other constitutive models in INSANE, but only those that are
related to phase-field were represented.

Figure 3.3: Diagram with phase-field constitutive models and the Wu (2018) constitutive model.

3.2.2 Implementation of Bound-Constrained Solver

Leão (2021) created a class called PhaseFieldStandardNewtonRaphsonStaggeredSolver
for the staggered solver, that is, a class that solves phase-field and displacements in alter-
nating iterations. To use PETSc only for the phase-field, a class was created that extends
PhaseFieldStandardNewtonRaphsonStaggeredSolver (see Figure 3.4) and overrides the
“convergePhaseField()” method, which will now call PETSc.

Figure 3.4: Diagram with PhaseFieldBoundConsrainedSolverPetsc.

The solver idea was demonstrated in Section 2.8.3, and it basically has two parts. One
is splitting the nodes into active and inactive sets and resolving through the inactive sets
to find the new phase-field value, while the other part is line search. When implementing
the solver by PETSc in INSANE, this first part was implemented, without using a line
search. The convergence for the solver by PETSc is the same used by Leão (2021), which
will be discussed later, so the objective of PETSc is just to find the new phase-field value
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obeying the crack irreversibility but without the crack geometric and energy degradation
functions limitation.

For the PETSc call, we need to pass four arguments, the phase-field stiffness matrix,
the phase-field residual, the phase-field lower limit and the phase-field value of the current
local iteration. As explained in Section 2.8.3, the bound-constrained solver has two limits.
The upper bound is 1, it comes from the phase-field theory itself and is defined in the
library’s C code. The lower limit will be the phase-field of the current step, so that the
crack does not decrease, guaranteeing the irreversibility of the crack. The phase-field value
of the current local iteration will serve as a guess for the phase-field value to be found
in the new iteration. Section 3.3 will talk more about PETSc and the implementation
related to it.

In the PhaseFieldStandardNewtonRaphsonStaggeredSolver class there are two con-
vergences, one local and one global. The local convergence is verified when the displace-
ment or the phase-field is being calculated, and globally, when the step convergence is
checked. The local convergence is reached when the error calculated by

Error =

∥∥∥δX̄∥∥∥∥∥∥X̄∥∥∥ (3.1)

is smaller then a defined tolerance, where δX̄ and X̄ can be the residual load and the
forces vector, or the incremental displacements and the displacements vector, depending
on the convergence type. After the phase-field is calculated, the residual forces and the
incremental displacements vector are updated, and then Equation 3.1 is used to check the
global convergence by testing if the obtained error is less then an specified tolerance. In
short, local tolerance refers to the separate convergence of displacement and phase-field
variables, while the global tolerance checks if the displacement convergence, after the
phase-field convergence, were not unbalanced, it would be a local displacement tolerance
after phase-field convergence.

Figure 3.5 shows the active global diagram developed by Leão (2021), Figure 3.6 shows
the active diagram for the phase-field and Figure 3.7 shows a simplification of the JNI
implementation idea. The indices i, j and k in this section refer, respectively, to the
step, global iteration and local iteration. The global diagram shows all activities in the
staggered solver, and within that diagram there would be other diagrams for the conver-
gence of displacements and phase-field. Leão (2021) shows the displacement convergence
diagram. Here, only the activity diagram for the phase-field convergence is shown, since
only this one has been modified. And finally, a clearer diagram is shown about where the
JNI is and the arguments that are passed between the binding. It is worth noting that in
the global diagram the global tolerance is used, and in the phase-field and displacement
diagrams the local tolerance is used.
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Assembly of reference loads vector: {P}

Loop over increments (i = i+ 1)

Initialize variables

Displacement stifness matrix: [Kuu]i

Incremental displacements associated
to reference load vector: {δU}Pi

Load factor increment: δλi
(Predictor)

Update load factor and displacements

Residual force vector: {Q}i

Loop over staggered iterations (j = j + 1)

Converge displacements (Iterative procedure)

Converge phase-�eld (Iterative procedure)

Updates residual force vector: {Q}i,j

Incremental displacements associated to reference load vector,
and residual loads: {δU}Pi,j and {δU}Qi,j

Updates displacements

Converges globally?

Yes

No

Figure 3.5: Global activity diagram. From Leão (2021)
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Loop over phase-field iterations (k = k + 1)

Phase-Field stifness matrix: [Kϕϕ]i,j,k−1

Phase-Field residue: {rϕ}i,j,k−1

Update phase-field (by PETSc): ([Kϕϕ]i,j,k−1){a}i,j,k = −{rϕ}i,j,k−1

Incremental phase-field: {δa}i,j,k = {a}i,j,k − {a}i,j,k−1

Break procedure and return

Converges locally?

Yes

No

Figure 3.6: Activity diagram to converge phase-field with PETSc.

Loop over phase-field iterations (k = k + 1)

INSANE

PETSc

INSANE

JNI: {[Kϕϕ]i,j,k−1}, {rϕ}i,j,k−1, {a}i,j−1 and {a}i,j,k−1

JNI: new value of phase-fields ({ai,j,k})

Figure 3.7: Activity diagram to JNI.

3.3 PETSc

According to the developers, the library has a set of routines and data structures that
provide foundational tools for parallel applications on a large scale by the MPI commu-
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nication standard. In addition to essential features with parallel matrices and vectors
are also included various types of linear, non-linear and different equation solvers ordi-
nary cials and differential algebraic equations. Also, it is possible to integrate it into
languages such as FORTRAN, C, C++ and Python, as well as CUDA and OpenCL, to
GPUs. Furthermore, there is an extensive documentation with examples, facilitating your
understanding and use (Azevedo, 2019, Balay et al., 2020).

To use PETSc we need to make a JNI. The description of a basic JNI process as
well as some details for the PETSc are described in Appendix A. The methods used in
the library are highlighted here, but for more specific details you need to look at the
library’s manual. The AIJ sparse matrix from PETSc was used, and for that need to
pass the INSANE sparse matrix variables, which are the values of the non-null elements,
the pointers of these non-null elements per row and the number of non-null elements
in a column to assemble the AIJ sparse matrix. In addition, it also passed the phase-
field residual vector and the phase-field lower limit as already mentioned. The bound-
constrained solver is used by calling the SNESVINEWTONRSLS method and setting the
bounds by the SNESVISetVariableBounds method.

By using PETSc with these methods, we are separating nodes into sets into active
and inactive, then finding a new phase-field value and using the convergence criterion
presented in Section 3.2.2, but the line search part as shown in Figure 2.8 is not used.
The reason for not using it and the implications of this discussed in Section 4.2.2 and
Section 4.2.3. Furthermore, in section 3.4, the idea of the line search implemented by
Bayão (2021) will be briefly presented, as the line search will be discussed in the work.

For a better performance of PETSc, it was build with with Intel® oneAPI Math
Kernel Library (oneMKL) BLAS and LAPACK (see more details in Appendix A.2). The
BLAS (Basic Linear Algebra Subprograms) standard is a proposal for the creation of high-
performance libraries with basic kernel functions for operations on vectors and matrices,
facilitating the incorporation of these exceptionally efficient routines scientific computing
programs (Azevedo, 2019). LAPACK (Linear Algebra Package) is a library that provides
implementations of routines for solving systems of equations and eigenvalues (Azevedo,
2019).

3.4 Line Search

In this work, the line search implemented in INSANE by Bayão (2021) will be used in
some parts, so the idea will be presented here. The linear search consists of finding an
optimal size for the incremental phase-field (δa - which would be the search direction) of
an iteration found in the solver, trying to minimize the phase-field residue. A restriction
operator presented in Equation 3.2 is used for this minimization:
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FΘ(ān+1)I =


rϕ

I , for aI,n < aI,n+1 < 1

min(rϕ
I , 0), for aI,n+1 = 1

max(rϕ
I , 0), for aI,n = aI,n

(3.2)

With this operator, a linear search is performed through Equation 3.3:

||FΘ(π[ak
n + λlδa])|| ≤ (1 − τλl)||FΘ(ak

n)|| with λl = λl−1λ0 (3.3)

where τ is a reduction coefficient and λl, with l = [1, 2, 3, ...], the multiplier defined
for values above a previously established threshold Λ. In this work, the values λ1 = 1,
λ0 = 0.5, τ = 10−4 and Λ = 10−12 were used, taken from Benson and Munson (2006).
The linear search finds an optimal value when the above condition is met, if no value of
λl satisfies the relationship, the λl that promoted the greatest minimization during the
routine is used. When using this line search, a new convergence criterion is used that
makes use of the minimization of the modulus of the vector generated by the restriction
operator. The summary of this whole idea is in Figure 3.8.

Data: a0, k = 0
Result: A solution of (δa)

1 while ||F̄Θ(āk
n + 1)|| > TOL do

2 Compute active(A ) and inactive(I ) sets
3 Solve the reduce Newton step: δa
4 l = 1
5 Boolean = false
6 while λl > Λ do
7 if ||FΘ(π[ak,l

n + λlδa])|| ≤ (1 − τλl)||FΘ(ak
n)|| then

8 āk+1 = āk + λδā
9 Boolean = true

10 Break
11 end
12 if ||FΘ(π[ak,l

n + λlδa])|| ≤ ||FΘ(ak
n)|| then

13 λmin = λl

14 end
15 l = l + 1
16 λl = λl−1λ0
17 end
18 if Boolean == false then
19 āk+1 = āk + λminδā
20 end
21 k = k +1
22 end

Figure 3.8: Algorithm for line search from Bayão (2021)
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Chapter 4

Numerical study of the
bound-constrained solver by PETSc

The objective of this chapter is to validate and analyze the bound-
constrained solver by PETSc. In the first section, the importance of the
bound-constrained solver will be shown. Later, the results of bound-
constrained solver by PETSc will be analyzed with a historical and
bound-constrained solver in INSANE. Finally, an analysis of time per-
formance will be made between the existing solvers. In all examples
displacement control was used, the local tolerance used was of 1 · 10−4

and the global tolerance was of 1 · 10−4. All cases are in a plane stress
state.

4.1 Utility of the solver

As mentioned before, the objective of using the bound-constrained solver is to be able
to use other crack geometry functions well and consequently other energy degradation
functions. Therefore, in this section we will show the results that can now be obtained
with the bound-constrained solver that were not possible with the historical solver.

In this section, the L-Shaped Panel shown in Figure 4.1 with measurements in mil-
limeters will be considered throughout the discussion. A vertical point load F is applied
upward at a distance of 30 mm to the right edge of the horizontal leg, with the corre-
sponding vertical displacement at the same place recorded. This example is taken from
Wu (2017). The problem was modeled with a mesh of CST (Constant strain triangle)
elements. The mesh used is illustrated in Figure 4.2, where the refined region has a size
of 4.25 mm, while the unrefined region has a size of 25 mm. The values used for the
numerical model were: Young´s Modulus E0 = 25850 N/mm2, Poisson´s ratio ν = 0.18,
strength failure ft = 2.7 MPa, critical energy release rate Gc = 0.065N/mm and length
scale l0 = 8.5 mm. Increments of 2 · 10−3 were considered in all cases.
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Figure 4.1: Problem setting for L-shaped panel with measurements in millimeters.
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Figure 4.2: T3 mesh for L-shaped panel. (a) Whole Structure (b) Zoom in Refined Region.

4.1.1 Possibility of other energy degradation functions

In all the models processed in this section, the Wu (2018) constitutive model and the
crack geometry function given by Equation 2.29 with ξ = 2 were used, only changing
the softening laws. This section demonstrates the use of the energy degradation function
proposed by Wu (2017) in Equation 2.30 with different softening laws (Section 2.4.1)
with the bound-constrained solver by PETSc. The results for the load versus vertical
displacement of the point where the load is applied for each softening law are shown in
Figure 4.3. The final crack path for each softening law are shown in Figure 4.4.
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Figure 4.3: Curves of load versus displacement of the loading application node for different
softening laws.
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(a) (b)

(c) (d)

Figure 4.4: Phase-field contour plots for: (a) Cornelissen’s Softening Law (b) Exponential Soft-
ening Law (c) Hyperbolic Softening Law (d) Linear Softening Law.

The first detail to highlight is that it would not be possible to obtain these results
with the historical solver. It is noticed that Cornelissen´s law and exponential law have
very similar behavior. Hyperbolic law presents a smaller crack with a lower peak load,
showing a more ductile behavior, while the linear law presents a higher peak load with a
greater crack, showing a more brittle behavior.

4.1.2 Possibility of other crack geometry functions

This section demonstrates the use of the crack geometric function proposed by Wu (2017)
in Equation 2.29 with different values for ξ with the bound-constrained solver by PETSc.
In all models processed in this section, the Wu (2018) constitutive model and the energy
degradation function given by Equation 2.30 with Cornelissens’s law for normal concrete
were used. The results for the load versus vertical displacement of the point where the
load is applied for each ξ are shown in Figure 4.5. The final crack path for each ξ are
shown in Figure 4.6.
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Figure 4.5: Curves of load versus displacement of the loading application node for different
values of ξ.

Again, it should be noted that it would not be possible to obtain these results with
the historical solver. There is not much difference in the results of load versus displace-
ments, however it is noted that as ξ increases the peak curve decreases and the material
becomes more ductile. Furthermore, although it is difficult to notice in Figure 4.6, as the
ξ increases, the crack width increases, as seen in the Section 2.3.

The value of ξ = 0 was not used because for Equation 2.30 it can be seen that if you
place ξ close to zero the energy degradation function will have a value equal to 1 and
there will be no cracking in the model. In this case, ξ = 0 cannot be used because the
value of c2 (see Equation 2.32b) would be undetermined.
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(a) (b)

(c) (d)

Figure 4.6: Phase-field contour plots for: (a) ξ = 2.0 (b) ξ = 1.5 (c) ξ = 1.0 (d) ξ = 0.5.

4.2 Analysis of results among solvers

In this section, some analyzes will be made in relation to the results of load versus dis-
placements between the existing solvers with the bound-constrained solver by PETSc.

4.2.1 Comparison with Historical Solver

The objective of this section is to compare the results of the bound-constrained solver
by PETSc with the historical solver and with other numerical results available in the
literature. The same L-Shaped Panel problem shown in Section 4.1 was used with the
same mesh, measurements and same material parameters changing only the l0, because
now it is necessary to make a material calibration. The calibration is necessary to have a
better numerical result in relation to the experimental results. Clarifying that previously
in section 4.1 the objective was to show the new possibilities with the bound-constrained
solver, and now the objective is to compare its result with the experimental result and
analyze its performance with respect to other numerical models. The calibration of the
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material of the phase-field model was made with the Carreira-Ingraffea material and with
a generalized fixed-smeared crack model implemented in INSANE by Penna (2011), who
obtained a good result in relation to the experimental one.

To calibrate the material for analysis, uniaxial tensile tests were performed with unit
load on the right face on a quadrilateral element with a side of 1 mm, as illustrated in
Figure 4.7. This allowed visualizing the behavior of the material under tension and choos-
ing for the phase-field models a value of l0 that would guarantee them a behavior similar
to that of elastic degradation. The values for the mechanical properties used in fixed-
smeared crack model were: uniaxial compressive strength fc = 31 N/mm2, characteristic
length of the material Lc equals to 28 mm and shear retention factor βr equals to zero.
It is worth mentioning that the parameter for elastic limit deformation in tension (εt) for
the fixed-smeared crack model is obtained by making ft/E0. The parameter for elastic
limit deformation in compression (εc) makes no difference in the value in the calibration
between the models, this was verified by numerical tests and it also makes sense since
for the phase-field model only the parameters related to tension are relevant, having lin-
ear compression. This applies to the other calibrations made throughout the text. The
model was calibrated with the Carreira-Ingraffea material, in order to present the same
response material. The phase-field model with bound-constrained solver by PETSc with
Wu (2018) constitutive model, ξ = 2 and energy degradation function given by Equation
2.30 with Cornelissens’s law for normal concrete was calibrated with the fixed-smeared
crack in INSANE. Figure 4.8 shows the calibration for l0 = 8.5 mm, that will be used.
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Figure 4.7: Problem setting for calibration with measurements in millimeters.
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Figure 4.8: L-shaped panel calibration.
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The reason why the calibration does not have the same peak curve (ft) in both models
in the uniaxial tensile model presented will be discussed in Section 4.2.3.

As we want to show the limitation of the historical solver, we present the result with
this solver using the crack geometry function given by α = ϕ2 (Bourdin et al., 2000),
ξ = 0) and energy degradation function given by g = (1 − ϕ)2 (Bourdin et al., 2000).
Remembering that for the historical solver it is necessary to use this crack geometry func-
tion, therefore not allowing to use the energy degradation function given by Equation 2.30.
Finally, the bound-constrained solver by PETSc was used to show the improvement in the
results. For this solver, we used the with crack geometry function given by Equation 2.29
with ξ = 2 and energy degradation function given by Equation 2.30 with Cornelissens’s
law for normal concrete.

In both solvers, the Wu (2018) constitutive model was used, to show that it is not
the constitutive model that limited but crack geometry function and energy degradation
function, which can be observed between them by looking at Figures 4.9 and 4.10. The
results for both solvers are shown in Figure 4.11, the experimental results being given by
Winkler (2001).
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Figure 4.9: Comparation between α(ϕ) functions.



§4.2 Numerical study of the bound-constrained solver by PETSc 64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ

g
(φ
)

g used by Historical Solver
g used by Bound-constrained Solver

Figure 4.10: Comparation between g(ϕ) functions.
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Figure 4.11: Curves of load versus displacement of the loading application node.

It can be seen then that with the bound-constrained solver being able to use other
crack geometry function and energy degradation function that are associated with the
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failure strength parameter (ft), the phase-field result improves a lot when compared to the
experimental one and the result obtained for smeared crack model for Carreira-Ingraffea
material by Penna (2011). It is noticed that there is an instability in the points by the
bound-constrained solver. This instability will be discussed in the Section 4.2.2.

4.2.2 Validation with the Bound-Constrained Solver developed
in INSANE by Bayão (2021)

To validate the solver by PETSc, the graphs responses will be compared with the solver
in INSANE developed by Bayao et al. (2021). One detail is that, as mentioned before, the
solver by PETSc presents a numerical instability, while this does not happen in the bound-
constrained solver in INSANE, because it uses a line search algorithm and convergence
criterion by minimizing the modulus of the vector generated by the constraint operator.
If we remove this line search algorithm in the source code of the program and put the
same convergence table already presented here in Section 3.2.2, we can see that the answer
is the same as the solver by PETSc (see Figure 4.12), soon showing that the solver by
PETSc was implemented correctly but with the exception of numerical instability. To
make it clear, the modifications made to the code presented in bound-constrained solver
in INSANE do not compromise the answer, since the separations are still made in an
active and inactive set, as well as finding the new phase-field value, restricted by the
phase-field limits through the definition of the sets.

The same L-Shaped Panel of Section 4.2.1 was used, with the same measurements,
mesh and material characteristics, only changing the solver. In all models processed in
this section, the Wu (2018) constitutive model, the crack geometry function given by
Equation 2.29 with ξ = 2 and energy degradation function given by Equation 2.30 with
Cornelissens’s law for normal concrete were used. The results for the load versus vertical
displacement of the point where the load is applied for each solver are shown in Figure
4.12. The final crack path obtained by solver by PETSc and solver by Bayão (2021) are
shown in Figure 4.13.
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Figure 4.12: Curves of load versus displacement of the loading application node for diferrent
bound-constrained solvers.

(a) (b) (c)

Figure 4.13: Phase-field contour plots for: (a) Solver by PETSC (b) Solver by Bayão (2021) (c)
Solver by Bayão (2021) without line search.

It can be seen then that solver by PETSc can serve the purpose of finding the peak
of the load vs displacement curve, as well as the path of this curve, even with numerical
instability, so there is no problem in using the solver by PETSc.
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4.2.3 Importance of a line search

The purpose of this section is to show the importance of a line search algorithm in code.
For this, the same uniaxial tensile model shown in Section 4.2.1 for a quadrilateral element
with a side of 1 mm will be used. Figure 4.14 shows the results, where the responses for
the bound-constrained solver in INSANE as the bound-constrained solver by PETSc with
the line search implemented in Bayao et al. (2021) are the same. That is, the green line
represents the response of both solvers with the linear search. Furthermore, the answers
for both solvers without linear search are also the same, that is, the red line represents
the answer for both solvers without linear search. So this again this validates the solver
by PETSc.
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Figure 4.14: Solver result comparison with or without line search for L-shaped panel calibration.

From Figure 4.14, it can be seen that without a line search, the peak of the curve that
would be described by the value of ft is different, thus showing the need for a line search.
Attempts to combine the PETSc solver with the line search algorithm implemented in
Bayao et al. (2021) were made, but in some cases the number of iterations burst, never
converging. Therefore, it is necessary to delve deeper into the studies involving this code
to verify if it was only a problem located at the time of the search. It is worth mentioning
that with some previous investigations it is noticed that it manages to circumvent this
problem by reducing the step size for displacement control. Despite this, this work at
the time it was developed had not completed this analysis, so in the rest of the work line
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search was not used.

4.3 Performance Comparison

The purpose of this section is to compare time performance between solvers. Three
numerical models were made for a better validation of the performance. The first model
will be an L-Shaped Panel, the second model will be an Three-Point Bending Beam and
the third model will be an Wedge Split Test. The models were processed on a machine with
the following characteristics: Intel® Core™ i5-5200U CPU with 2 cores and 4 threads,
with a frequency of 2.20 GHz, and 8GB of RAM DDR3L with 1600 MHz.

The comparison with the bound-constrained solver in INSANE was done by removing
the line search strategy and using the same convergence of the bound-constrained solver
by PETSc without line search, as mentioned in Section 4.2.2. This was done to have a
fairer comparison, since when using the line search the solver time in INSANE increases
considerably.

4.3.1 L-Shaped Panel

The problem used in this section will be the same as shown in Figure 4.1. Four different
meshes CST elements were built for the analysis, which are shown in Figure 4.15, and a
zoom in the refined region is shown in Figure 4.16. In the unrefined region, all meshes
have a size of 25 mm, while in the refined region each mesh has a value as shown in
Table 4.1. The size of 4.25 mm in the refined region of the mesh was adopted for the
initial mesh since the l0 adopted is 8.5 mm, as it will be shown, due to Miehe et al. (2010a)
says that for elements inside the crack, the mesh size should be at most half the length
scale (h ≤ l0/2).
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Figure 4.15: Different meshes for L-Shaped Panel.
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

Figure 4.16: Zoom into the refined region of each mesh.

Table 4.1: Table with description of mesh refinement for the L-Shaped Panel

Mesh Mesh size in the fine region (mm) Number of elements
Mesh 1 4.25 5955
Mesh 2 3 9936
Mesh 3 2 18376
Mesh 4 1 59281

The following data for the L-Shaped Panel are valid for the following subsections:
E0 = 25850 N/mm2, ν = 0.18, Gc = 0.065 N/mm, l0 = 8.5 mm. Increments of 2 · 10−3

were considered in all cases for this section.

4.3.1.1 Comparison with Bound-Constrained Solver developed in INSANE
by Bayao et al. (2021)

For the comparisson between bound-constrained solver by PETSc and bound-constrained
solver developed in INSANE, the following data were used: ft = 2.7 MPa, crack geom-
etry function given by Equation 2.29 with ξ = 2, energy degradation function given by
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Equation 2.30 with Cornelissens’s law for normal concrete (η1 = 3 and η2 = 6.93) and
Wu (2018) constitutive model.

The results for the load versus vertical displacement of the point where the load is
applied for each mesh are shown in Figure 4.17. The final crack path to mesh 4 for each
solver is shown in Figure 4.18.
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Figure 4.17: Curves of load versus displacement of the loading application node for L-Shaped
Panel with different meshes.
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(a) (b)

Figure 4.18: Phase-field contour plots for L-Shaped Panel with Mesh 4: (a) Bound-Constrained
solver by PETSc (b) Bound-Constrained solver in INSANE.

Table 4.2 shows the times for each solver and for each mesh. It can be seen that when
refining the mesh, the bound-constrained solver by PETSc gains more time advantage
compared to the solver in INSANE. A detail to be highlighted is that the stiffness matrix
needs to be reassembled in the PETSc library, as already mentioned in Section 3.3, so
even with this reassembly time, PETSc is still faster.

Figure 4.19 compare all types of iterations for each solver for mesh 4. This Figure
presents some acronyms to represent each type of iteration: GI stands for Global Iteration,
thus presenting the Global Iterations in a step; PFI stands for Phase-Field Iterations
representing the number of phase-field iterations in step, that is, it represents the sum of
the number of local iterations of phase-field of the global iterations in a step; DI stands
for Dislacement Iterations which represents the number of iterations of displacements in
a step, that is, it represents the sum of the number of local iterations of displacements
of the global iterations in a step. To better understand the idea, analyze the global
activity diagram illustrated in Figure 3.5, showing that there are iterative phase-field and
displacement processes in a global iteration. So each step can have several global iterations
and each global iteration can have several phase-field and displacement iterations.

Analyzing Figure 4.19, it can be seen that in terms of iterations there is no advantage
of one solver over the other. This indicates that the different processing time is not due
to an increase in iterations in the solution process, but only to differences between the
two algorithms.
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Table 4.2: Table with processing times for each solver

Mesh Time for solver by PETSc Time for solver in INSANE Fastest Percentage (%)
Mesh 1 45 min 47 s 46 min 9 s 0.79
Mesh 2 1 h 20 min 21 s 1 h 26 min 2 s 6.61
Mesh 3 2 h 43 min 45 s 3 h 3 min 16 s 10.65
Mesh 4 11 h 8 min 5 s 16 h 36 min 57 s 49.03
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Figure 4.19: Number of Iterations for each solver and for iteration type for the L-Shaped Panel
with Mesh 4.

4.3.1.2 Comparison with Historical Solver

For the comparisson between bound-constrained solver by PETSc and historical solver,
the following data were used: α = ϕ2, g = (1 − ϕ)2 and Miehe et al. (2010b) constitutive
model.

The results for the load versus vertical displacement of the point where the load is
applied for each mesh are shown in Figure 4.20. The final crack path to mesh 2 for each
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solver is shown in Figure 4.21.
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Figure 4.20: Curves of load versus displacement of the loading application node for L-Shaped
Panel with different meshes.

(a) (b)

Figure 4.21: Phase-field contour plots for L-Shaped Panel with Mesh 2: (a) Bound-Constrained
solver by PETSc (b) Historical solver.

Mesh 3 and 4 were not used for this case, because for the bound-constrained solver did
not converge, overflowing the number of iterations. This is not due to a limitation in the
solver but to the control method used. It can be seen in Figure 4.20 that the displacement
retreats more to the left after the load drop for the more refined mesh, decreasing the
displacement there, so probably for a refined mesh this control method was not able to
identify the point.

Table 4.2 shows the times for each solver for each mesh. The solver by PETSc also
shows a time performance improvement over the historical solver as the mesh is refined,
but a very small improvement. It is worth noting that the Miehe et al. (2010b) constitutive
model takes much longer than the Wu (2018) constitutive model, due to how each energy
separation is performed. Figure 4.22 compare all types of iterations for each solver. In
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this case the comparison is not so significant since they are different type of solvers. At
one point, a solver presents more or less one type of iteration than the other, as will be
seen in the other numerical models in the next sections.

Table 4.3: Table with processing times for each solver

Mesh Time for solver by PETSc Historical solver Fastest Percentage (%)
Mesh 1 2 h 16 min 16 s 2 h 20 min 17 s 2.86
Mesh 2 3 h 17 min 39 s 3 horas 27 min 8 s 4.58
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Figure 4.22: Number of Iterations for each solver and for iteration type for the L-Shaped Panel
with Mesh 2.

4.3.2 Three Point Bending Beam

The problem used in this section is presented in Figure 4.23 with measurements in mil-
limeters. The example was taken from Penna (2011). The displacement control point will
be the same as the load application indicated in Figure 4.23. Three different meshes of
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CST elements were built for the analysis, which are shown in Figure 4.24, and a zoom in
the refined region is shown in Figure 4.25. In the unrefined region, all meshes have a size
of 25 mm, while in the refined region each mesh has a value as shown in Table 4.4. The
size of 6.25 mm in the refined region of the mesh was adopted for the initial mesh since
the l0 adopted is 12.5 mm, since Miehe et al. (2010a) says that for elements inside the
crack, the mesh size should be at most half the length scale (h ≤ l0/2).
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Figure 4.23: Problem setting for Three-Point Bending Beam with measurements in millimeters.
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Figure 4.24: Different meshes for Three Point Bending Beam.
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(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure 4.25: Zoom into the refined region of each mesh for the Three Pointing Bending Beam.

Table 4.4: Table with description of mesh refinement for the Three Pointing Bending Beam

Mesh Mesh size in the fine region (mm) Number of elements
Mesh 1 6.25 3686
Mesh 2 2 8872
Mesh 3 1 19830

The following data for the Theree Point Bending are valid for the following subsections:
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E0 = 30000 N/mm2, ν = 0.2, Gc = 0.124 N/mm, l0 = 12.5 mm. Increments of 4 · 10−3

were considered in all cases for this section.

4.3.2.1 Comparison with Bound-Constrained Solver developed in INSANE
by Bayao et al. (2021)

For the comparisson between bound-constrained solver by PETSc and bound-constrained
solver developed in INSANE, the following data were used: ft = 3.3 MPa, crack geom-
etry function given by Equation 2.29 with ξ = 2, energy degradation function given by
Equation 2.30 with Cornelissens’s law for normal concrete (η1 = 3 and η2 = 6.93) and
Wu (2018) constitutive model.

The results for the load versus vertical displacement of the point where the load is
applied for each mesh are shown in Figure 4.26. The final crack path to mesh 4 for each
solver is shown in Figure 4.27.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

700

800

Vertical Displacement (mm)

Lo
ad

(k
N

)

Bound-Constrained solver by PETSc
Bound-Constrained solver in INSANE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

700

800

Vertical Displacement (mm)

Lo
ad

(k
N

)

Bound-Constrained solver by PETSc
Bound-Constrained solver in INSANE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

700

800

Vertical Displacement (mm)

Lo
ad

(k
N

)

Bound-Constrained solver by PETSc
Bound-Constrained solver in INSANE

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 4.26: Curves of load versus displacement of the loading application node for Three Point
Bending Beam with different meshes.
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(a) (b)

Figure 4.27: Phase-field contour plots for Three Point Bending Beam with Mesh 3: (a) Bound-
Constrained solver by PETSc (b) Bound-Constrained solver in INSANE.

Table 4.5 shows the times for each solver for each mesh. It is noticed again that when
refining the mesh, the bound-constrained solver by PETSc is faster in relation to solver
in INSANE. Figure 4.28 compares all types of iterations for each solver for mesh 3. Once
again, it can be seen that both solvers have similar if not equal number of iterations, thus
proving once again the equivalence of result between them.

Table 4.5: Table with processing times for each solver

Mesh Time for solver by PETSc Time for solver in INSANE Fastest Percentage (%)
Mesh 1 7 min 11 s 7 min 26 s 3.36
Mesh 2 15 min 27 s 17 min 8 s 9.82
Mesh 3 31 min 53 s 42 min 9 s 24.36
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Figure 4.28: Number of Iterations for each solver and for iteration type for the Three Point
Bendind Beam with Mesh 3.

4.3.2.2 Comparison with Historical Solver

For the comparisson between bound-constrained solver by PETSc and historical solver,
the following data were used: α = ϕ2, g = (1 − ϕ)2 and Miehe et al. (2010b) constitutive
model.
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Figure 4.29: Curves of load versus displacement of the loading application node for Three Point
Bending Beam with different meshes.

(a) (b)

Figure 4.30: Phase-field contour plots for Three Point Bending with Mesh 3: (a) Bound-
Constrained solver by PETSc (b) Historical solver

Table 4.6 shows the times for each solver for each mesh. It is worth noting here that
initially the negative percentage value represents that the historical solver was faster for
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a coarser mesh. For mesh 3, the PETSc solver presented a lower percentage in relation
to the historical solver, so more comparison analyzes between the solvers for increasingly
refined meshes need to be performed, despite the fact that PETSc appears to be faster.
Again, the Miehe et al. (2010b) constitutive model takes much longer than the Wu (2018)
constitutive model. Figure 4.31 compare all types of iterations for each solver. Again,
in this case the comparison is not so significant since they are different types of solvers,
because at a time one solver has more or less one type of iteration than the other.

Table 4.6: Table with processing times for each solver

Mesh Time for solver by PETSc Historical solver Fastest Percentage (%)
Mesh 1 10 min 46 s 10 min 41 s -0.31
Mesh 2 21 min 11 s 24 min 27 s 13.36
Mesh 3 41 min 31 s 45 min 48 s 9.35
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Figure 4.31: Number of Iterations for each solver and for iteration type for Three Point Bending
Beam Test with Mesh 1.



§4.3 Numerical study of the bound-constrained solver by PETSc 83

4.3.3 Wedge Split Test

The problem in this section is presented in Figure 4.32 with measurements in millimeters.
The example was taken from Wu (2018). For this problem, the section symmetry will be
used as shown in Figure 4.33. The displacement control point will be the same as the
load application indicated in Figure 4.33. In the load versus displacements curves, the
opening value at that point will be shown in relation to its symmetrical one, being here
called MOD (Mouth Open Displacement). Two different meshes of CST elements were
built for the analysis, which are shown in Figure 4.34, and a zoom in the refined region
is shown in Figure 4.35. In the unrefined region, all meshes have a size of 80 mm, while
in the refined region each mesh has a value as shown in Table 4.4. The size of 4.25 mm
in the refined region of the mesh was adopted for the initial mesh since the l0 adopted is
8.5 mm, since Miehe et al. (2010a) says that for elements inside the crack, the mesh size
should be at most half the length scale (h ≤ l0/2).
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Figure 4.32: Problem setting for Wedge Split Test with measurements in millimeters.



§4.3 Numerical study of the bound-constrained solver by PETSc 84

F, u

200
80

0

350

32
5

10
0

200

Thickness: 400

45

5

Figure 4.33: Symetric problem setting for Wedge Split Test with measurements in millimeters.
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Figure 4.34: Different meshes for Wedge Split Test.



§4.3 Numerical study of the bound-constrained solver by PETSc 85

(a) Mesh 1 (b) Mesh 2

Figure 4.35: Zoom into the refined region of each mesh for the Wedge Split Test.

Table 4.7: Table with description of mesh refinement for the Wedge Split Test

Mesh Mesh size in the fine region (mm) Number of elements
Mesh 1 4.25 3737
Mesh 2 2 13467

The following data for the Wedge Split Test are valid for the following subsections:
E0 = 28300 N/mm2, ν = 0.18, Gc = 0.373 N/mm, l0 = 8.5 mm. Increments of 2 · 10−3

were considered in all cases for this section.

4.3.3.1 Comparison with Bound-Constrained Solver developed in INSANE
by Bayao et al. (2021)

For the comparisson between bound-constrained solver by PETSc and bound-constrained
solver developed in INSANE, the following data were used: ft = 2.12 MPa, crack geom-
etry function given by Equation 2.29 with ξ = 2, energy degradation function given by
Equation 2.30 with Cornelissens’s law for normal concrete (η1 = 3 and η2 = 6.93) and
Wu (2018) constitutive model.

The results for the load versus MOD for each mesh are shown in Figure 4.36. The
final crack path to mesh 2 for each solver is shown in Figure 4.37.
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Figure 4.36: Curves of load versus MOD for different meshes.

(a) (b)

Figure 4.37: Phase-field contour plots for Wedge Split Test for Mesh 2: (a) Bound-Constrained
solver by PETSc (b) Bound-Constrained solver in INSANE.

Table 4.8 shows the times for each solver and mesh. Again, the bound-constrained
solver by PETSc is faster in relation to solver in INSANE. Figure 4.38 compares all types
of iterations for each solver for mesh 2. Once again, it can be seen that both solvers have
similar if not equal number of iterations, thus proving once again the equivalence of result
between them.

Table 4.8: Table with processing times for each solver

Mesh Time for solver by PETSc Time for solver in INSANE Fastest Percentage (%)
Mesh 1 34 min 58 s 36 min 26 s 4.02
Mesh 2 2 min 9 min 52 s 2 h 34 min 57 s 16.19
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Figure 4.38: Number of Iterations for each solver and for iteration type for the Wedge Split Test
with Mesh 2.

4.3.3.2 Comparison with Historical Solver

For the comparisson between bound-constrained solver by PETSc and historical solver,
the following data were used: α = ϕ2, g = (1 − ϕ)2 and Miehe et al. (2010b) constitutive
model.

The results for the load versus MOD for each mesh are shown in Figure 4.39. The
final crack path to mesh 2 for each solver is shown in Figure 4.40.
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Figure 4.39: Curves of load versus MOD for different meshes.

(a) (b)

Figure 4.40: Phase-field contour plots for Wedge Split Test for Mesh 2: (a) Bound-Constrained
solver by PETSC (b) Historical solver.

Table 4.9 shows the times for each solver for each mesh. The solver by PETSc also
shows a time performance improvement over the historical solver as the mesh is refined,
but a very small improvement. It is worth noting here that initially the negative percent-
age value represents that the historical solver was faster for a coarser mesh. Again, the
Miehe et al. (2010b) constitutive model takes much longer than the Wu (2018) constitu-
tive model. Figure 4.41 compares all types of iterations for each solver. Again, in this
case the comparison is not so significant since they are different types of solvers.

Table 4.9: Table with processing times for each solver

Mesh Time for solver by PETSc Historical solver Fastest Percentage (%)
Mesh 1 1 h 36 min 14 s 1 h 31 min 56 s -4.68
Mesh 2 6 h 6 min 38 s 6 h 24 min 28 s 4.68
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Figure 4.41: Number of Iterations for each solver and for iteration type for the Wedge Split Test
with Mesh 2.
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Chapter 5

Case Studies

The purpose of this chapter is to present two case studies made. The
first study is a comparison made between the phase-field model and the
fixed-smeared crack present in INSANE. The second study is show the
efficiency of the phase-field models in relation to modes I and II failures.
In all examples displacement control was used, the local tolerance used
was of 1 · 10−4 and the global tolerance was of 1 · 10−4. All cases are in
a plane stress state.

5.1 Comparation between the phase-field model and
smeared cracking model

In this section, the phase-field model will be compared with the generalized fixed-smeared
crack model implemented in INSANE by Penna (2011). The comparison that will be made
is about the load by displacement responses as the mesh is refined.

In the comparison, the same example of Figure 4.32 will be used, but now with the
triangular crack, because if the model was made equal to Figure 4.33, the initial mesh at
the beginning of the analysis for the fixed-smeared crack model would present localiza-
tion problems, with problems in the numerical response, due to the presence of a small
triangular element. Again, symmetry was used as shown in Figure 5.1. Again, the dis-
placement control point will be the same as the load application indicated in Figure 5.1
and in the load versus displacements curves, the opening value at that point will be shown
in relation to its symmetrical one, being here called MOD (Mouth Open Displacement).
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Figure 5.1: Problem setting for Wedge Split Test with measurements in millimeters.

This analysis will check both the convergence capacity of the models and the mesh
dependence. For this, it is observed that in Figure 5.2, different refinements will be made
in the region below the crack. In the unrefined region, all meshes have a size of 80 mm,
while in the refined region each mesh has a value as shown in Table 5.1.

Table 5.1: Table with description of mesh refinement for the Wedge Split Test

Mesh Mesh size in the fine region (mm)
Mesh 1 50
Mesh 2 25
Mesh 3 12.5
Mesh 4 6.25
Mesh 5 3

For the phase-field model, the following data were used: E0 = 28300.0 N/mm2, Pois-
son´s ratio ν = 0.18, Gc = 0.373 N/mm, l0 = 50 mm, ft = 2.12, ξ = 2, Cornelissen’s
softening law for normal concrete (η1 = 3 and η2 = 6.93), Wu (2018) constitutive model
and without linear search. For the fixed smeared crack model, the same following data
were used with fc = 31 Nmm2, Lc (characteristic length of the material) equals to 150
mm and shear retention factor (βr) equals to zero. The model was calibrated with the
Carreira-Ingraffea material, in order to present the same response material. The phase-
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Figure 5.2: Different meshes for the Wedge Split Test.

field model with bound-constrained solver by PETSc with Wu (2018) constitutive model
was calibrated with the fixed-smeared crack in INSANE (Figure 5.3), obtaining the afore-
mentioned values of l0 = 50 mm for a Lc = 150 mm. Increments of 2·10−3 were considered
in all cases in this section.
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Figure 5.3: Wedge Split Test calibration.

The results for load versus MOD for phase-field model are shown in Figure 5.4, while
for the fixed-smeared crack model are shown in Figure 5.5. Analyzing Figure 5.4, it can be
seen that for phase-field models, the numerical model always processes for all steps, and
as it refines the mesh, the result converges to a response. Now, analyzing Figure 5.5, it
can be seen that for the fixed-smeared crack models, the numerical model does not process
for all steps, and as it refines the mesh, it processes fewer and fewer steps. Furthermore,
the result does not converge to the fixed-smeared crack model. From these analyses, it
can be concluded that the phase-field model has an advantage over the fixed-crack model,
since it does not depend on how the mesh is arranged to process results, and converges
as the mesh refines. That is, the fixed-smeared crack has a large mesh dependency while
the phase-field model does not.
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Figure 5.4: Curves of load versus MOD for phase-field model.
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Figure 5.5: Curves of load versus MOD for smeared crack model.
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5.2 Analysis of phase-field models with failure modes

The development of Equations 2.34 and 2.33, as well as the softening laws was done by
Wu (2017) for mode I failure, but it is used as models that have mode II in Wu (2018).
Wu et al. (2021) states that even having been developed for mode I failure, the theory can
be used for mixed modes I+II/III failure as well as for 3D models. The objective of this
section is to compare the results of the phase-field model in relation to the experimental
results for mode I, using examples already covered in this dissertation, and also compares
with an example that uses mode II.

5.2.1 Models with mode I failure

5.2.1.1 L-Shaped Panel

To begin, the result of Figure 4.11 will be shown again in Figure 5.6, but now only
with the result of the bound-constrained solver by PETSc to better compare with the
experimental result given by Winkler (2001) and with smeared crack model for Carreira-
Ingraffea material obtained by Penna (2011). It is worth remembering here that the data
for this problem are described in Section 4.2.1, the panel measurements in Figure 4.1 and
the mesh in Figure 4.2.
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Figure 5.6: Curves of load versus displacement of the loading application node.

It is noticed that the result for the L-shaped panel is not completely the same as it
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does not fit the experimental range, even when calibrated with the fixed-smeared crack.
However, as they describe the format well, and much better than the historical solver as
explained in Section 4.2.1, it can be said that the phase-field model manages to capture
mode I failure reasonably well for this case.

5.2.1.2 Three Point Bending Beam

The second example will be the three point bending beam with the measurements shown
in Figure 4.23 with mesh 3 shown in Figure 4.24. In addition, l0 was calibrated with the
data used by Penna (2011), which are: fc = 33 N/mm2, Lc equals to 40 mm and shear
retention factor (βr) equals to zero. The model was calibrated with the Carreira-Ingraffea
material, in order to present the same response material. Thus, phase-field model with
bound-constrained solver by PETSc without line search and with Wu (2018) constitutive
model was calibrated 5.11 shows the calibration for l0 = 12.5 mm, that will be used. So
for this problem you have the same data presented in Section 4.3.2.1.
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Figure 5.7: Single-Edge Notched Beam calibration.

The result of Figure 4.26 for mesh 3 will be shown again in Figure 5.6, but now
only with the result of the bound-constrained solver by PETSc to better compare with
the experimental result given by Petersson (1981) and with smeared crack model for
Carreira-Ingraffea material obtained by Penna (2011). It is noticed that this model fits
very well with the experimental results, validating the phase-field model with mode I
failure.
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Figure 5.8: Curves of load versus displacement of the loading application node.

5.2.2 Model with mode II failure

Finally, a new problem will be shown that has mode II failure as predominant. This is
the single-edge notched beam under proportional loading reported by Arrea and Ingrafeaa
(1982). The problem data are presented in Figure 5.9 with measurements in millimeters
and the mesh used in Figure 5.10, where the thin region has an element with a size of 5
mm and the thick region has an element with a size of 25 mm.
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Figure 5.10: T3 mesh for Single-Edge Notched Beam.

The data used for the problem are the same used by Arrea and Ingrafeaa (1982), which
are: E0 = 24800 N/mm2 and ν = 0.18. Arrea and Ingrafeaa (1982) varied the values of
Gc and ft. Here, the intermediate values of this interval will be used, as they are the same
values used for the smeared crack problem by Penna (2011), which corresponds toGc = 3.4
N/mm and ft = 0.12 MPa. In addition, l0 was calibrated with the data used by Penna
(2011), which are: fc = 34 N/mm2, Lc equals to 28 mm and shear retention factor (βr)
equals to 0.02. The model was calibrated with the Carreira-Ingraffea material, in order to
present the same response material. The phase-field model with bound-constrained solver
by PETSc without line search and with Wu (2018) constitutive model was calibrated with
the fixed-smeared crack in INSANE. Figure 5.11 shows the calibration for l0 = 12.5 mm,
that will be used.
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Figure 5.11: Single-Edge Notched Beam calibration.

The results presented are related to the relative vertical displacement of the crack
ends. This measure is known as CMSD (Crack Mouth Sliding Displacement). The result
for the load versus CMSD is shown in Figure 5.12 with the experimental results being
given by Arrea and Ingrafeaa (1982) and the result for smeared crack model for Carreira-
Ingraffea material obtained by Penna (2011). For the phase-field model, were used crack
geometry function given by Equation 2.29 with ξ = 2, energy degradation function given
by Equation 2.30 with Cornelissens’s law for normal concrete (η1 = 3 and η2 = 6.93) and
Wu (2018) constitutive model. The displacement control point is the right point of the
crack. Increments of 2 · 10−3 were considered. The final crack path for phase-fiel model is
shown in Figure 5.13.
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Figure 5.12: Curves of load versus CMSD.

Figure 5.13: Phase-field contour plot for Single-Edge Notched Beam.

It is worth remembering here that the issue of numerical instability presented for
the phase-field model in Figure 5.12 was discussed in Section 4.2.2. It can be seen in
Figure 5.12 that the result does not fit completely with the experimental results, but the
phase-field model captures mode II failure well.



101

Chapter 6

Conclusions and future research
topics

The main objective of the work was achieved, which was the understanding of the phase-
field model and the implementation of the bound-constrained solver by PETSc.

The phase-field and bound-constrained solver theory were studied and presented. The
communication between INSANE and the bound-constrained solver by PETSc was suc-
cessfully implemented, enabling to explore differents crack geometry functions and differ-
ent energy degradation functions, without limitations. The need for a bound-constrained
solver was shown. In addition, the efficiency of the bound-constrained solver by PETSc
with respect to the bound-constrained solver in INSANE as the mesh is refined was shown,
which was already expected due to being an optimized external library. A clear advantage
of the bound-constreained solver in relation to the historical solver from the performance
point of view was not evidenced. However it must be remembered that the historical
solver has limitations in the energy degradation functions and crack geometry function
that can be used with this solver. It was shown that the phase-field models show con-
vergence with refinement and less mesh dependence in relation to the smeared cracking
models. Finally, it was shown that the theory developed by Wu (2017) for mode I failure
applies well to mode I and II failures, through numerical models.

This work shows the importance of developing a software like INSANE, where numer-
ical problems can be processed with different models and solvers in order to be able to
compare and validate. Not only that, this work shows the ease of expansion of a research
and computational implementation by INSANE, as it used the base made by the work
of Leão (2021) and Bayao et al. (2021), as well as other parts of the software that were
developed over several years.

Although there are works and materials on JNI, this work facilitates even more this
implementation with which it is exposed in the appendix Appendix A.

Finally, some recommendations for future research for the research group are:
• Study more about possible linear searches for the bound-constrained solver.
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• Adaptive refinement so don’t need to do a pre-refinement.
• Implement the phase-field modelling for the 3D case.
• To further study the need to develop a theory for mode II failure.
• Implement and study new hybrid constitutive energy separation models.
• Deepen the study of the relationship between the parameters for the PFMs, such

as the length scale, with the properties of the materials.
• Expand possibilities for studying the phase-field with other problems such as anisotropy

of materials, fatigue, dynamics, failure in composite materials, among other topics.
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Appendix A

JNI

In this appendix it will be demonstrated how to make a JNI in the user’s own virtual
machine. For INSANE, it was made using the bases shown in Azevedo (2019) and with
what has already been done previously shown on the website https://git.insane.dees.
ufmg.br/insane/insane_dev_jni. The material developed here was based on references
Hock-Chuan (2018), bogotobogo (2020), Upgrdman (2020), Liang (1999), Azevedo (2019).

A.1 Basic

A.1.1 JNI - HelloWorld

The purpose of this section is to show how JNI was made with the C language, with
basic example shown here. All steps in this subsection were done using the command
terminal. To begin with, it will be made clear that what was developed here was using
Linux distributed by Ubuntu. There is a way to do it for Microsoft Windows, check the
references to see how.

First, the focus will be on JNI through the command line. A folder is created where
the code will be made. It creates a Java file with the code you want. Here the example
used is to print a “Hello World”. To create a java file, create a “.txt” file and save it as
“.java”. You can do this using the command terminal on ubuntu via the command “gedit
HelloJNI.java”. The file name used here will be “HelloJNI”, but it could be another one,
you only need to pay attention to where it should be replaced in the next steps. The code
written in the HelloJNI file is shown in Figure A.1.

https://git.insane.dees.ufmg.br/insane/insane_dev_jni
https://git.insane.dees.ufmg.br/insane/insane_dev_jni
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Figure A.1: HelloJNI java code. Adapted from Hock-Chuan (2018).

The static initializer invokes System.loadLibrary() to load the native library “hello”
(which contains a native method called sayHello()) during the class loading. It will be
mapped to “hello.dll” in Windows or “libhello.so” in Unixes/Mac OS X. Next, we declare
the method sayHello() as a native instance method, via keyword native which denotes
that this method is implemented in another language. A native method does not contain
a body. The sayHello() shall be found in the native library loaded. The main() method
allocates an instance of HelloJNI and invoke the native method sayHello().

Now the header file called HelloJNI.h is created. Starting from JDK 8, you should use
“javac -h” to compile the Java program and generate C/C++ header file called HelloJNI.h
as follows “javac -h . HelloJNI.java”. The “-h dir” option generates C/C++ header and
places it in the directory specified (in the above example, “.” for the current directory).
The generated header file will look like in the Figure A.2.

.
Figure A.2: HelloJNI header. Adapted from Hock-Chuan (2018).

Before JDK 8, you need to compile the Java program using ‘javac” and generate
the C/C ++ header using a dedicated “javah”, for example, “javac HelloJNI.java” and
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“javah HelloJNI”. The javah utility is no longer available in JDK 10. The header de-
clares a C function Java HelloJNI sayHello, for example, “JNIEXPORT void JNICALL
Java HelloJNI sayHello(JNIEnv *, jobject);”. The naming convention for the C function
is Java {package and classname} {function name}(JNI arguments). The dot in package
name is replaced by underscore. This naming issue will be further explored in Sec-
tion A.1.2.1.The arguments are:

• JNIEnv*: reference to JNI environment, which lets you access all the JNI functions.
• jobject: reference to ”this” Java object.
Now a file called “Hello.JNI.c” is created, which like java can be done by the command

terminal. The code is described in Figure A.3.

Figure A.3: HelloJNI C code. Adapted from Hock-Chuan (2018).´

Before proceeding, check that the JAVA HOME environment is set. Compile the C
program HelloJNI.c into share module “libhello.so” using gcc, which is included in all
Unixess through “gcc -fPIC -I“$JAVA HOME/include” -I“$JAVA HOME/include/linux”
-shared -o libhello.so HelloJNI.c”. And finally type in the command terminal “java -
Djava.library.path=. HelloJNI”.

A.1.2 JNI - Eclipse

In this section we will talk about the JNI made by the Eclipse software. To start, the
java code is created in eclipse. Then go to the folder where the “.java” code is located and
do the same procedure mentioned earlier to generate the “.so” file, that is, generate the
header file, also create the C code and finally generate the “.so”, all this again through
the terminal command.

Now right-click on the project (inside the eclipse) where the class that created the Java
code is, click on Run As → Run Configurations. Go to Java Application, double-click to
create a new one. In this new one, in the Main tab give the name with the name of the
project and in Main Class, put the class that will have the JNI, like in Figure A.4. If you
are going to use more than one class create a Java Application for each. Go to Arguments
and place it in VM arguments and type “-Djava.library.path=src”(like in Figure A.5),
where what is after the equals symbol represents the folder inside the HelloJNI project in
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which “.so” is, in the case shown so far it should be in the “src” folder, since a package
was not built, but the direct class.

Figure A.4: HelloJNI in Java Application

Figure A.5: Including a library in the Java library path via VM argument.

A.1.2.1 A class within a package

A package-free class was previously built. If done with a package, some care must be
taken. Basically the same thing remains, but when giving the command to build the
header file, that is, “javac -h”,a file with the following name will have been built: “pack-
age and classname.h”. This changes when importing the name of the header file into C
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code, in addition to both the C file and the header after JNICALL you should pay at-
tention to the naming convention for the C function is Java {package and classname}
{function name}(JNI arguments). For example, if the “HelloJNI” class is created inside

a package called “HelloJNIpack” then the header file will be the same as described in the
Figure A.6 and the C code as in the Figure A.7, pay attention to line 15 in header file
and to line 5 in code C.

Figure A.6: HelloJNI header with a java package.

Figure A.7: HelloJNI C code with a java package.

Another important detail is that in Java Application (in Run Configurations in Eclipse),
in the Main tab, in Main class it is now “packagename.classaname”, in our example it is
“HelloJNIpack.HelloJNI”.

A.1.2.2 Building everything through eclipse

It is possible to build the header file, the C code and the .so all by eclipse. To do
this, download the CDT extension for eclipse, which is Eclipse Embedded C/C ++. To
download go to Eclipse Marketplace in Help. After downloading, you can create a C code
normally, for that look for manuals online. The focus here is on how to create the header
and “.so” file. For that you need to create a makefile file, so first convert the project to
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C/C ++. Right-click on the “HelloJNI” Java project → New → Other... → Convert to a
C/C++ Project (Adds C/C++ Nature) → Next. The “Convert” to a C/C++ Project”
dialog appears. In “Project type”, select ”Makefile Project” and in “Toolchains” select
what you want. Now, it’s possible run this project as a Java as well as C/C++ project.

For to the makefile rigth-click on project → new → File → In “File name”, enter
“makefile”. Through the makefile it is possible to create the header file and the “.so” file.
For the header file, rigth-click on the project → Build Targets → Create → In “Target
Name” enter with “header”. For the header enter the code in Figure A.8.

Figure A.8: Makefile for header.

After that build the target header double-clicking it or rigth-click on the project →
Build Targets → Build and choose the target what you want. After that it is necessary
to create a tagert to create the “.so”. Figure A.9 shows the target “all” for this case, with
the same command to create the “.so” as described previously . For target “all” to work,
the header file as well as the “.c” file need to be in the same folder for this makefile code
to work, as shown in Figure A.10.

Figure A.9: Makefile for “.so”.

Figure A.10: Examples organization scheme in eclipse

Obviously the user can reorganize and structure the files in the best way after gener-
ating the “.so”, because the objective here is to demonstrate how to do the whole process.
In the case of figure A.10 the path in the Java application (in Run Configuration) would
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be just “-Djava.library.path=.”. Another point to be highlighted is that you can opti-
mize everything through the makefile with commands copy and paste files from one folder
to another or delete files. An example would be the adads command “cp -f HelloJNI.h
destiny” that copies a “HelloJNI.h” file from the folder where the makefile is to a folder
called “destiny” inside the folder where the makefile is. This goes for the Linux operating
system.

A.1.3 JNI - Correction of primitive variables

When transferring primitive variables from Java to C you need to convert them into C
code. Table A.1 shows some conversions.

Table A.1: Conversion of primitive variables

Java Primitive C Primitive
byte jbyte
char jchart
short jshort
int jint

long jlong
float jfloat

double jdouble

In the case of Arrays or Strings, the transmission from Java to C, or C++, needs to
be done through special functions. These are found through the JNIenv pointer and de-
clared in the jni.h header, located in the include folder of the JDK (Java Development Kit),
and are GetStringUTFChars, GetIntArrayElements, GetDoubleArrayElements, GetOb-
jectArrayElements, etc (Azevedo, 2019).

After using the Arrays and Strings, or if necessary changing, at the end of the function,
when these elements are no longer needed, they must be released from memory, for use in
Java, with the methods ReleaseStringUTFChars, ReleaseIntArrayElements, ReleaseDou-
bleArrayElements, ReleaseObjectArrayElements, etc. If this procedure is not performed,
a memory leak occurs (Azevedo, 2019).

Figure A.11 shows a Java code sending an array of doubles and a double variable to
the C code. Figure A.12 shows the header of this class in Java. Figure A.13 shows how
to receive the variables in C as well as the treatment that should be done for arrays. It is
worth noting that when generate the header file by the Java compiler these variables in
C are already created in the method signature.
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Figure A.11: Java code for correction of primitive variables

Figure A.12: Header for correction of primitive variables
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Figure A.13: C code for correction of primitive variables

It is worth mentioning that when passing the matrix from INSANE to PETSc, it must
be passed sparsely, because when using “jobjectArray” it ends up giving an error, so it is
best to use a set of “jdoubleArray” when passing matrix data.

A.2 PETSc

For JNI with PETSc you need some special details. As previously mentioned thePETSc
was build with with Intel® oneAPI Math Kernel Library (oneMKL) BLAS and LAPACK,
so check the PETSc installation manual as well as reference Hu (2018). Due to MKL and
an error loading a library from Java itself, which is the library “libjsig.so”, you need to do
a preload before the program will process. For that you need to set Run Configurations in
eclipse, in Java Application, in the application where you have the external library, after
that in Environment. In Enviroment set the “LD PRELOAD” in variable and in value
put the path to the external libraries of mkl and “libjsig.so” that are not loaded correctly.
Figure A.14 shows how this preloading is done and Figure A.15 shows the text in Value.
It is worth noting that the path shown in Figure A.15 varies from computer to computer.
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Figure A.14: Example how to set LD PRELOAD

Figure A.15: Value for LD PRELOAD

To create the makefile for PETSc is more complicated. After installing PETSc, create
a code in C that uses PETSc or process one of the examples that already comes within it.
When using the make command in the command terminal to generate the code executable,
the code from this processing appear in the command terminal. This is code to use for
the makefile. For example, take example 9 from PETSc in the tutorials inside snes folder
(folders and examples that come inside the library). When using the “make” command,
the code shown in Figure A.16 appears. After that, it adapts this code to generate the
makefile as shown in Figure A.17. It is worth noting again here that there are computer-
dependent paths, so the user needs to adapt.

Figure A.16: Code generated by “make” command in command terminal
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Figure A.17: Makefile example for PETSc

The primary difference from Figure A.16 to Figure A.17 for building the makefile is
the substitution of “ex9.c” for “-shared -o libinsanepetsc.so insanepetsc.c”. When creating
your example’s makefile, ensure that it gets the functions it needs in PETSc, that is,
when using the “make” command strategy, get a file that has the function you need.
Other examples for JNI are found on the website https://git.insane.dees.ufmg.br/
insane/insane_dev_jni.

https://git.insane.dees.ufmg.br/insane/insane_dev_jni
https://git.insane.dees.ufmg.br/insane/insane_dev_jni
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Appendix B

Demonstration of Equation 2.46

As stated in Section 2.4.1.4, it started from the following relationship:

Gc =
∫ wc

0
σ(w)dw =

∫ wc

0
ft[(1 + η3

1r
3) exp(−η2r) − r(1 + η3

1) exp(−η2)]dw (B.1)

Using mathematical software such as Maple, the following equation can be arrived at:
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Rearranging we have the following development:

Gc = 1
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Gc
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Gc

wcft

= ηw (B.6)

wc = Gc

ftηw

(B.7)

Equation B.7 is Equation 2.46 that we wanted to demonstrate. If we substitute the
values for normal concrete (η1 = 3, η2 = 6.93) obtained by Cornelissen et al. (1986), we
have Equation B.8 which is the same used by Wu (2017).

wc = 5.1361Gc

ft

(B.8)
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