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A crucial challenge in network theory is the study of the robustness of a network when facing a
sequence of failures. In this work, we propose a dynamical definition of network robustness based on
Information Theory, that considers measurements of the structural changes caused by failures of the
network’s components. Failures are defined here as a temporal process defined in a sequence. Robustness
is then evaluated by measuring dissimilarities between topologies after each time step of the sequence,
providing a dynamical information about the topological damage. We thoroughly analyze the efficiency
of the method in capturing small perturbations by considering different probability distributions on
networks. In particular, we find that distributions based on distances are more consistent in capturing
network structural deviations, as better reflect the consequences of the failures. Theoretical examples
and real networks are used to study the performance of this methodology.
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1. Introduction

There are several works dealing with the concept of robust-
ness, however, there is still no consensus on a definitive defini-
tion. Robustness is usually described as the ability of the network
to continue performing [1], or, as the capacity in maintaining its
functionality after failures or attacks [13,14,16]. These general def-
initions are perhaps the most used in the literature, however, they
cannot exactly grasp the complexity of the concept that network’s
robustness could have. Some other works describe robustness as
the capacity of the network in maintaining its efficiency in the
presence of failures [11,12]. In some sense, this definition provides
more information about the network’s topological structure, as its
efficiency depends on the network’s shortest path lengths [17].

The study of how robust a network is when facing random
failures or targeted attacks is a major challenge in network the-
ory. Several methodologies have been proposed to measure net-
work robustness. Approaches based on information routing [4,24,
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25], structural controllability [19,23] or in the proposal of a more
destructive attack strategy in networks [3,22] can be found in the
literature; being the most popular those based on percolation the-
ory [1,7,9], and on the size of the biggest connected component
(BC) [2,15,16,26]. Although these measures showed to be useful in
many cases, they are not as sensitive as they should, to the detec-
tion of failures that do not disconnect the network or that do not
modify its diameter. Depending on the network structure, it is pos-
sible to attack great part of it, keeping these measures blind to the
changes.

In this work, we propose a measure for network robustness
based on the Jensen-Shannon divergence, an Information Theory
quantifier that already showed to be very effective in measur-
ing small topological changes in a network [8,27,28]. This method
considers failures occurring in a temporal sequence capturing, in
some sense, the dynamics of the role of the remaining links af-
ter each single failure. The Jensen-Shannon divergence quantifies
the topological damage of each time step due to failures, and the
robustness measure provides the cumulative information of these
sequential topological damages. It is worth noticing that this ap-
proach does not consider the consequences of the dynamical pro-
cess operating through the network.
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2. Methodology

Quantification of network robustness could be thought as the
distance that a given topology is apart from itself after a failure.
We assume that the robustness value ranges from 0, the greatest
variation, to 1, unchanged characteristics. In other words, a higher
robustness value implies in smaller structural changes. In this work
we consider a link failure, its removal, and a node failure in the
removal of all it incident links.

Let G be a network defined by a set V(G) of N nodes, a
set £(G) of M links and a set W(E(G)) containing the edges
strengths. A network failure event f is defined as the removal of
a subset of edges f C £(G). A time-ordered sequence of failures
F={ft;» fty>---, ft,} In G can be interpreted as a sequence of
the resulting networks after each event (G,)icqo, 1,..,n) Such that
Gy, =G and Gy, is the network obtained after the failure f, in
Gy;_,. For simplicity, here we consider only discrete time intervals
given by t; =1.

Considering the set N’z of all possible sequences of failures
in a network G, a robustness function with respect to G is a function
R: Nz — [0, 1]. The distance between two networks is computed
as the distance between probability distributions used to charac-
terize them. Without loss of generality, discrete distributions will
be considered henceforth.

The Jensen-Shannon divergence between two probability distri-
butions P and Q is defined as the Shannon entropy of the average
minus the average of the entropies. This measure was proven to
be the square of a metric between probability distributions [18],
bounded by 1, and defined as:

P+Q>_H(P)+H(Q)
2 2

JHP, Q) =H ( :
being H(P) = —) ;pilog, p;, the entropy that measures the
amount of uncertainty in a probability distribution. Readers are
referred to the Supplementary Information material (SI) for a dis-
cussion on the continuous case.

It is possible then, to define the robustness of G, for any given
sequence of n failures (G¢)¢eq1, 2,...,n) and probability distribution P
as:

n

Rp(GI(Goeqt, 2...) = [ [[1 = 7" PGo. PG ] (D

t=1

being Go =G.
A more suitable form of equation (1) can be obtained via recur-
rence relation:

Rp(GI(Go)eeqt, 2,..., n}):l_[RP(Gt—”Gt)v (2)
t=1

in which, for each time step, Rp(G¢—1|G;) indicates how affected
the topology of the network G;_1 is after a single failure resulting
in G;. The robustness function depends on the network’s topol-
ogy, and also on the sequence of failures. The same link possesses
different importance (effect) in the topology, depending on its po-
sition in the failure sequence. The use of the product of the tem-
poral fluctuations (Rp(G¢—1|G¢)) allows us to have a perception of
the temporal damage due the sequence of failures.

It is important to notice that the computation of the network
robustness, when defined as in equation (1) could consider any
probability distribution able to represent features of the network.
This work specifically considers the degree distribution, commonly
used to characterize network’s structures, and the distance distri-
bution that contains rich information about the graph structure.
The degree and distance distributions are here defined for un-
weighted and undirected networks. In Section I of the SI readers

can find a discussion other network robustness measurements and
in section VI the analysis of a directed and weighted network is
performed.

Given a node i, its degree, represented by k;, is the number of
edges incident to it. Then, the degree distribution P geg(k) is the frac-
tion of nodes with degree k. The distance from the node i to node
J» djj, is the length of the shortest path from i to j. If there is
no such path from i to j, d; j equals oo. Then, the distance distri-
bution Ps(d) is the fraction of pairs of nodes at distance d. Both
degree and distance distributions are discrete and defined on the
sets {0, 1,..., N—1} and {1, 2,..., N —1, oo}, respectively.

3. Discussions and computational experiments

With the aim of comparing the performance of the methodol-
ogy based on Rp,, and Rp; with commonly used methods based
on the biggest connected component (Rpc) and percolation (Ry,),
we consider the deletion of a single link on a complete graph with
N nodes, the most robust unweighted and undirected graph.

Rpc is obtained by computing the fraction of nodes belonging
to the biggest connected component. In this case, Rp. does not
notice the removal of any link, as no disconnection is achieved. It
is possible to strategically remove N2/2 — 2N +1 links, leaving just
the minimum spanning tree, where robustness measures based on
the biggest connected component remain blind to these attacks.

Percolation based measures correlate the robustness value of
the network with the critical percolation threshold and can be
computed in several ways. One of the most common methods
depends on the number of links removed until increasing the di-
ameter of the network. Ry, indicates the variation of the original
diameter dy with respect to diameter d after a sequence of failures,
computed by Ry, =do/d.

In the case of the complete graph, the deletion of a single link
increases the network diameter in one unit, however, after the first
attack Ry, may become unable to detect subsequent events. In
order to increase the network’s diameter in one more unit, the
removal of N — 2 specific links are needed.

The proposed robustness measure is able to detect the removal
of any single link of the network, independently of which proba-
bility distribution (Pgeg, Ps) is evaluated. Values for Rp,,, and Rp;
can be then, easily computed as functions of N. The removal of a
single link in a complete graph with 10® nodes, implies in changes
of the order of 10~¢ for Rpeg and 10713 for Rps. For a complete
graph of N = 107, changes are of the order of 10~7 for Rp,, and
10~ for Rp;.

Among the measures here considered, only Rpgp and Rp;
showed to be capable of capturing the removal of any single link,
showing a gradual decrease in the robustness values, as more links
are removed from the network. This could be of relevance in situ-
ations in which it is necessary to plan the inclusion of new links
to improve the robustness of the network. Methodologies based on
the size of the biggest connected component, or on the percolation
threshold, are not able to properly guide in this purpose. It is im-
portant to point out, that the robustness measure here proposed,
depends not only on the network topology but on the sequence of
failures over time, aiming to quantify the vulnerability of a given
structure under a series of deterministic or stochastic failures. The
process of fixing failures cannot be measured in the same way, but
the degree and distance probability distributions seem to be ade-
quate to this purpose.

There are interesting differences between Pge and Ps. The
computational complexity to obtain the degree distribution is lin-
ear, plus a constant cost to update it, after any link removal. The
best known algorithm for obtaining Ps requires @(N2376) in time
complexity [29], and the computational cost of the PDF update
depends on the link removed. However new algorithms as the
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2 )
Edge removed Rp; R Paeg Rpe Rz,
£ 0.447 0.862 0.500 0.000
L 0.943 0.922 1.000 0.750
Ly 0.998 0.857 1.000 1.000

Fig. 1. Computation of the structural robustness for three different single edge re-
moval: ¢;, £; and ¢, respectively.

ANF or HyperANF (algorithms based on HyperLogLog counters) of-
fer an extremely fast and precise approach [5,6,10,21], obtaining
very good approximations of the distance probability distribution
for graphs with millions of nodes in a few seconds. In the SI read-
ers can find a table with the computational complexity of the most
common methods.

Another important comparison is the information that can be
assessed from both distributions, and their correlation with topo-
logical structures. The network’s average degree, mean degree and
the minimum and maximum degree are immediately obtained
from the degree distribution. The network’s efficiency, diameter,
average path length, fraction of disconnected pairs of nodes and
other distance features are easily obtained from the distance dis-
tribution.

Fig. 1 shows a simple network structure to analyze the corre-
lation of the robustness values with different topological changes.
Individual removal of links ¢;, £j and ¢, are performed. Rpc only
detects the disconnection of the biggest connected component, be-
ing not sensitive to the removal of ¢; and ¢;. Ry, detects the
removal of ¢; and ¢;, but fails in capturing the removal of ¢,
as there is no modification in the diameter. The deeg detects
every single failure, however, its value does not properly reflect
the network’s disconnection (¢;). The measure based on the dis-
tance distribution (Rp;) captures, in a more appropriate way, each
of the above-mentioned network failures, especially those aspects
concerning disconnections on a connected network. This example
captures important advantages and disadvantages of each robust-
ness measure. In the SI, other quantifiers to measure robustness
are also evaluated. However, the use of the distance distribution
shows to be the most adequate for this analysis.

Let us now analyze two sequences of failures considering ¢;
and ¢;. If link ¢; fails at instant t =1 and link ¢; fails at instant
t =2, Rp; =0.4377. Now, if the sequence is inverted considering
link ¢; failing at instant t =1 and link ¢; failing at instant t = 2,
Rps; = 0.4564. This example depicts how the roles and topologi-
cal importance of the remaining links after a failure are reflected
by Rp;.

We test the proposed methodology on several real networks,
nevertheless, only the results for two of them are depicted in the
main text, the Dolphin Social Network [20] and the Western States
Power Grid of the United States network [30]. Readers are referred
to the SI section V for applications on other networks.

The Dolphin network is an undirected social network of bot-
tlenose dolphins (genus Tursiops). The nodes are the bottlenose
dolphins of a community from New Zealand, where an edge indi-
cates a frequent association between dolphin pairs occurring more
often than expected by chance [20]. The dolphins were observed
between 1994 and 2001. It presents N =62, M = 159, an average
degree of 5.13, an average path length of 3.357, and a clustering
coefficient of 0.258.

The Power Grid Network is the undirected and unweighted rep-
resentation of the topology of the Western States Power Grid of the
United States, compiled by Duncan Watts and Steven Strogatz [30].
It presents, N = 4941, M = 6594, an average degree of 2.67, an
average path length of 18.99, and a clustering coefficient of 0.103.

In both cases, at each time step a single link is randomly re-
moved until the global disconnection of approximately 10% of
their links. Thirty independent experiments were performed and,
at each time step, the robustness measure for each experiment is
computed. Fig. 2 depicts the composition of violin plots of the ro-
bustness value, where R indicates the minimum robustness value
found at each time step.

It is possible to see from Figs. 2(a) and 2(c) that the robustness
measure computed from the degree distribution shows a smoother
behavior, as it is unable to detect cluster disconnections. This is
not the case for the distance distribution, in which the fraction of
disconnected pairs of nodes is detected (see Figs. 2(b) and 2(d)).
The large decrease in the Rp; values usually represents cluster dis-
connections from the network. As we are analyzing average values,
the disconnection may occur in a fraction of the thirty indepen-
dent experiments only.

The large variability of single robustness values for the Dol-
phin network reflects the extent of the damage that certain failures
can cause, showing the Dolphin network more susceptible to ran-
dom failures than the US Power Grid. The robustness measures,
in particular those computed through the distance distributions,
Figs. 2(b) and 2(d) also show big leaps when the link removal is
around 6% and 9% for Dolphin and 3% and 6% for the Power Grid,
indicating network’s disconnections.

Fig. 3 compares the R} values with two sequences of fail-
ures for each experiment; the sequences presenting the lowest
robustness value at the end of the attack (Rp,(16) for Dolphin
and Rp,(660) for Power Grid) and the sequences with the low-
est robustness value at the first time step (Rp;(1)). Note that the
sequences of failures resulting in lower robustness values are not
the most efficient in destroying the network at the beginning of
the process. This behavior occurs because the robustness mea-
sure provides cumulative information about the evolution of the
state of the network (see Equation (2)). A small Rp(G¢|G¢—1) value
indicates that, at time t, the failure of certain links is critical, gen-
erating bigger changes in the topology.

This methodology could also be applied to detect critical ele-
ments, such as the nodes and links in the US power grid network
that, when individually removed, cause a major disturbance in the
network’s structure. Fig. 4 shows the 10 most critical links and
nodes that produce the largest robustness values variation (see
table in Fig. 4). Critical elements for US power grid network identi-
fied by Rp,,,. as well as results for Dolphin network, can be found
in SI; cf. Figs. S3-S5.

The knowledge of critical elements is of great importance to
plan strategies either to protect or to efficiently attack networks.
In both scenarios, the knowledge about how the network continues
to perform after failures is of paramount importance. It is interest-
ing noticing that the problem of finding the best sequence of links
to destroy the network can be solved through combinatorial op-
timization approaches. Readers are referred to SI, section VI for a
computational experiment considering targeted attacks in two di-
rected and weighted real networks.

4. Final remarks

We propose a novel methodology to measure the robustness of
a network to component failures or targeted attacks. This mathe-
matical formulation is based on the consideration that the network
robustness is a measure related to the distance that a given topol-
ogy is apart from itself after a sequence of failures, rather that a
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Fig. 2. Robustness measures under random failures for Dolphin and Power Grid networks. At each time step, a random edge is disconnected from the network and R Paeg» Rp;
functions are computed. The experiment is independently executed 30 times. Results for the Dolphin networks are depicted in (a) Rpgeg and (b) Rp;. Results for the Power

Grid network are presented in (c) Rp,, and (d) Rp;. In all cases, at each time step, the minimum robustness values are also indicated by RY.
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Fig. 3. Evolution of the Rp; of two different sequences of failures: the sequence that ends with the lowest robustness value, Rp,(16) and Rp,(660), and the sequence in
which the first removal is most effective, Rp,(1). In both cases, at each time step, the minimum robustness values are also indicated by R',','a. (a) Dolphin network and (b) US
Power Grid network.
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Moo gpom e

4220 — 2544 0.9695
4220 — 4165 0.9960
3046 — 2523 0.9962
3046 — 3045 0.9964
3048 — 2523 0.9964
3048 — 3047 0.9968
363 — 270 0.9974
3074 — 3047 0.9974
347 — 270 0.9978
347 — 342 0.9980
4220 0.9675
2544 0.9677
727 0.9786

693 0.9887
2529 0.9914
2523 0.9919
2605 0.9941
4165 0.9946
363 0.9949

427 0.9955

Fig. 4. Detection of the ten percent of the most critical links and nodes, considering Rp, over the Western States Power Grid of the United States network. Wider nodes (red
in the web version) represent the fraction of 10 of network’s vertices such that its single disconnection causes a big reduction on the Rp, value. Wider links (blue in the web
version) represent the fraction of 10 of network’s edges such that its single disconnection causes a big reduction on the Rp, value. The table shows the robustness values of

the top 10 critical network elements.

single characteristic of the topology. This sequence is defined as a
time dependent process in which, a subset of links is disconnected
at each time step. The method provides a dynamic robustness pro-
file that shows the response of the network’s topology to each
event, quantifying the vulnerability of these intermediate topolo-
gies.

Although the methodology is comprehensive enough to be used
with different probability distributions, the use of distances shows
to be more consistent in capturing network structural deviations,
in the sense that their values are correlated with the consequences
of the failures in the network topology. Different from the meth-
ods found in the literature, the method can efficiently work with
disconnections, as the distance PDF is able to acknowledge the
fraction of disconnected pairs of nodes. Furthermore, it is able to
detect all changes, including those perceived by Rpc and Ry, re-
sulting in a more general approach.
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Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.physleta.2015.10.055.
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