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Abstract

In this work we study the geometry of compact and orientable n-dimensional manifolds
with non-empty boundary (M, M) such that there is a non-zero degree map F' : (M,0M) —
(X x T"2 9% x T"?), where (2,0Y) is a compact, connected and orientable surface with
non-empty boundary and 3 < n < 7. We show that depending on the topology of >, the
existence of this non-zero degree map F' is a topological obstruction to the existence of a
metric in M with positive or non-negative scalar curvature and mean convex boundary. More

precisely, we show that

1. If ¥ is neither a disk nor a cylinder then M does not admit a metric with non-negative

scalar curvature and mean convex boundary.

2. If ¥ is not a disk then M does not admit a metric with positive scalar curvature and
mean convex boundary. Furthermore, every metric in M with non-negative scalar

curvature and mean convex boundary is Ricci-flat with totally geodesic boundary.

Finally, we study the case in which ¥ is a disk. In this case we consider a metric g in
M with positive scalar curvature and mean convex boundary (i.e., Ré” > (0 and HjM >0)
and we define F;; be the set of all immersed disks in M whose boundaries are curves in OM

that are homotopically non-trivial in M. We show that

1. .
§1nfRé\/[A(M, g) +inf HOML(M, g) < 27 (1)

where

A(M,g) = nf [Zf; e LM, g) = inf [0%]y.

YeFu
Moreover, if the boundary OM is totally geodesic and the equality holds in (2), then

universal covering of (M, g) is isometric to (R™ x ¥g,d 4 go), where § is the standard metric

il



v

in R" and (X, go) is a disk with constant Gaussian curvature %inf Rg/[ and 0% has null

geodesic curvature in (X, go).

Keywords: Scalar curvature; Mean convex boundary; Non-zero degree map.



Resumo

Neste trabalho vamos estudar a geometria de variedades n-dimensional orientaveis e
compactas com bordo nao-vazio (M, dM) tais que existe uma aplicagdo de grau diferente de
zero F: (M,0M) — (XxT"2, 90X xT""?), onde (X, 0%) é uma superficie compacta, conexa,
orientavel com bordo nao-vazio e 3 < n < 7. Mostramos que dependendo da topologia de
Y., a existéncia desta aplicacao de grau diferente de zero I’ é uma obstrucao topoldgica para
existéncia de uma métrica em M com curvatura escalar positiva ou nao-negativa e bordo

mean convexo. Mais precisamente, mostramos que

1. Se ¥ nado é um disco e nem um cilindro entdao M nao admite uma métrica com curvatura

escalar nao-negativa e bordo mean convexo.

2. Se ¥ nao é um disco entao M nao admite uma métrica com curvatura escalar positiva
e bordo mean convexo. Além disso, toda métrica em M com curvatura escalar nao-

negativa e bordo mean convexo ¢é Ricci-flat com bordo totalmente geodésico..

Por fim, estudamos o caso em que Y é um disco. Neste caso consideramos uma métrica
g em M com curvatura escalar positiva e bordo mean convexo(isto é, Ré” >0e H;’M >0)
e definimos JF); como sendo o conjunto de todos os discos imersos em M cujos bordos em

OM sao homotopicamente nao-triviais em M. Mostramos que

1. .
5 inf R A(M, g) + inf HML(M, g) < 2w (2)

onde

A(M,g) = nf [Zf; e LM, g) = inf [0%]y.

YeFum
Além disso, se M é totalmente geodésico e vale a igualdade em (2), entéo o recobrimento

universal de (M, g) é isométrico a (R™x 3y, 6+gop), onde § é a métrica canonica de R™ e (¥, go)



vi

¢ um disco com curvatura Gaussiana constante % inf Ré” e 0% tem curvatura geodésica nula
em (207 gO)
Palavras-Chaves: Curvatura Scalar; Bordo Mean Convexo; Aplicacoes de Grau Diferente

de Zero.
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Chapter 1

Introduction

The relation between minimal hypersurfaces of a Riemannian manifold M and the cur-
vatures of M is a deep connection which was first observed by R. Schoen and S. T. Yau. In
this thesis, we will deal with two situations clarifying that link.

The first part of this thesis deal with topological obstruction for the existence of a metric
with positive (or non-negative scalar curvature) and mean convex boundary (or strictly mean
convex boundary) which is given by the existence of a certain type of hypersurfaces. Let us
be more precise. A central problem in modern differential geometry concerns the connection
between curvature and topology of a manifold. Especially, if the problem is when a given
manifold admits a Riemannian metric with positive or non-negative scalar curvature. We
will not go over the case of closed manifolds, instead, our focus here will be on compact
manifolds with non-empty boundary. For the case of closed manifolds, see the important
works due to Schoen-Yau [30], [31], and Gromov-Lawson [14], [15], [16].

Consider, for instance, the case of surfaces. Let (M2, g) be an orientable compact two-

dimensional Riemannian manifold with non-empty boundary 0M. The Gauss-Bonnet The-

/ Kda + / kyds = 2mx (M),
M oM

where K denotes the Gaussian curvature, k,, is the geodesic curvature of the boundary, x (M)

orem states that

is the Euler characteristic, da is the element of area and ds is the element of length. Note
that the invariant x (M) gives a topological obstruction to the existence of certain types of
Riemannian metrics on the surface M2. For instance, a compact surface M? with negative
(non-positive) Euler characteristic does not admit a Riemannian metric with non-negative
(positive) Gaussian curvature and non-negative geodesic curvature.

In higher dimensions, the relationship between curvature and topology is much more

complicated. A classical theorem due to Gromov [13], for example, states that every com-
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pact manifold with non-empty boundary admits a Riemannian metric of positive sectional
curvature.

However, there are topological obstructions if one further imposes geometric restrictions
on the boundary. For instance, a result of Gromoll [12] states that a compact Riemannian
manifold of positive sectional curvature with non-empty convex boundary is diffeomorphic
to the standard disc. Observe, however, that these hypothesis are rather strong because they
involve the sectional curvature and not the scalar curvature. Recall that, by the Bonnet-
Mayers Theorem, a 3-dimensional manifold with positive Ricci curvature and convex bound-
ary (positive definite second fundamental form) is diffeomorphic to a 3-ball.

The problem of determining topological obstructions for the existence of a metric with
non-negative scalar curvature and mean convex boundary (mean curvature of boundary is
non-negative) is more subtle. For instance, one such obstruction appears when there exists
a compact, orientable and essential surface properly embedded in M which is not a disk or
a cylinder (see Theorems 1.1 and 1.2 in [7]). This is the case, for example, if we consider the
3-dimensional manifold S' x ¥, where ¥ is a compact, connected and orientable surface with
non-empty boundary which is neither a disk nor a cylinder. Indeed, the surface {1} x X is
essential in S! x X, so this manifold carries no metric with non-negative scalar curvature and
mean convex boundary. If a 3-dimensional manifold M contains an essential cylinder, then
there may exists such a metric on M. This is the case, for example, of the manifold I x T2,
where T? denote the torus S! x S'. Such manifold contains an essential cylinder and have a
flat Riemannian metric with totally geodesic boundary.

From now on, we use the notation (M, JM) to represent a compact and orientable man-
ifold with non-empty boundary M. Moreover, Rg/[ and H_(‘?M denote the scalar curvature
of (M,g) and the mean curvature of the boundary dM with respect to the outward unit
normal vector field on the boundary, respectively.

Our first result gives a topological obstruction for those 3-dimensional compact manifolds

which possess a certain type of surfaces as connected components of their boundaries.

Theorem 1.0.1. Let (M,0M) be a compact 3-dimensional manifold. Assume that the con-
nected components of OM are spheres or incompressible tori, but at least one of the compo-
nents is a torus. Then there is no Riemannian metric on M with positive scalar curvature
and mean conver boundary. In particular, if there exists a Riemannian metric g on M
with non-negative scalar curvature and mean convex boundary then (M, g) is flat with totally

geodesic boundary.

As a consequence of the theorem above, we obtain that the 3-dimensional manifolds

(St x T2)#N and (S' x T2)#(I x S?) have no metric with non-negative scalar curvature

2
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and mean convex boundary, where T? is a torus minus an open disk, I = [a,b] and N is
a closed, connected and orientable 3-dimensional manifold. Moreover, the 3-dimensional
manifolds (I x T2)#(I x T?), (S x T2)#(S! x T2), (I x T?)#(S* x T?), (I x T?)#(I x S?),
(St x T?)#(I x S?) have no metric with positive scalar curvature and mean convex boundary.
Also, let N be a closed 3-dimensional manifold. Then the manifold (I x T?)#N has no
metric with positive scalar curvature and mean convex boundary. If it has a metric with
non-negative scalar curvature and mean convex boundary, it is flat with totally geodesic
boundary. Thus, from this last claim, we can glue two copies of (I x T?)#N along the
boundary and build a flat closed 3-dimensional manifold which is a connected sum of a
3-dimensional torus and a closed 3-dimensional manifold.

With that discussion above, we obtain the following classification result.

Corollary 1.1. Let (M,0M) be a smooth 3-dimensional manifold such that OM is the
disjoint union of exactly one torus and k spheres, k > 0. If M has a metric with non-

negative scalar curvature and mean convexr boundary then

M = N#(S' x D?)#*B?,
where N is a closed 3-dimensional manifold.

At this point, one should mention two important facts. First, Gromov-Lawson (see
Theorem 5.7 in [15]), pointed out that if a compact manifold with boundary possesses metrics
with positive scalar curvature and strictly mean convex boundary then its double can be
endowed with a metric of positive scalar curvature. Therefore, the problem of characterising
the compact manifolds with boundary supporting a metric with positive scalar curvature
and strictly mean convex boundary reduces to the problem on theirs doubles manifolds.
This was made in a very recent work due to A. Carlotto and C. Li [5]. Second, despite our
results are not a complete characterization, they were obtained in a different way and gave
us inspiration to deal with the high dimensional case.

We see that the topological condition (the existence of an incompressible torus in the
boundary) that we consider here is specifically for dimension 3. For high dimension 3 < n <
7, the situation is quite different, the problem is much more delicate and much more involved.
However, extending to compact manifolds with boundary some of the ideas developed by
Schoen-Yau [31], such as defining a class of manifolds via homology groups and using a
descendent argument to recover the 3-dimensional case, we were able to obtain a type of

classification result for high dimension.
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Theorem 1.0.2. Let (M,0M) be a (n + 2)-dimensional manifold, , 3 < n+2 <7, such
that there is a non-zero degree map F : (M,0M) — (X x T", 0% x T™), where (X,0%) is a
connected surface which is not a disk. Then there exists no metric on M with positive scalar
curvature and mean conver boundary. However, if ¥ is not a disk or a cylinder, then there

exists no metric on M with non-negative scalar curvature and mean convex boundary.

As a consequence of the result above, we conclude that if NV is a closed n-dimensional
manifold, then (7772 x T 2)#N does not admit a metric of non-negative scalar curvature
and mean convex boundary and (I x T 1)#N does not admit a metric of positive scalar
curvature and mean convex boundary.

The second part of this thesis is devoted to a rigidity result coming from an optimal
inequality. We describe it now. In a very recent paper Bray, Brendle and Neves [3] proved
an elegant rigidity result concerning to an area-minimizing 2-sphere embedded in a closed
3-dimensional manifold (M3, g) with positive scalar curvature and 75 (M) # 0. In that work,
they showed the following result. Denote by JF the set of all smooth maps f : S* — M which

represent a nontrivial element in 7o(M). Define
A(M, g) = inf{Area(S?, f*g) : f € F}.
If R, > 2, the following inequality holds:
A(M, g) < 4,

where R, denote the scalar curvature of (M, g). Moreover, if the equality holds then the
universal cover of (M, g) is isometric to the standard cylinder S* x R up to scaling. For more
results concerning to rigidity of 3-dimensional closed manifolds coming from area-minimizing
surfaces, see [2], [4], [26], [24] and [29]. In [35], J. Zhu showed a version of Bray, Brendle and
Neves [3] result for high co-dimension: for n + 2 < 7, let (M™*2 g) be an oriented closed
Riemannian manifold with R, > 2, which admits a non-zero degree map F' : M — S* x T"
Then A(M,g) < 4m. Furthermore, the equality implies that the universal covering of
(M"2,g) is S* x R™.
In the same direction, consider a 3-dimensional Riemannian manifold with non-empty
boundary (M?3,0M, g). Let Fyr be the set of all immersed disks in M whose boundaries are
curves in OM that are homotopically non-trivial in OM. If Fy; # 0, we define

A(M,g) = inf [Z]; e L(M,g)= nf |92,

YeFu

In the paper [1], L. C. Ambrézio proved the following result.
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Theorem 1.0.3. Let (M, g) be a compact Riemannian 3-manifold with mean convex bound-

ary. Assume that Fyy # 0. Then
1. .
5 inf RYA(M, g) +inf HM L(M, g) < 2m. (1.1)

Moreover, if equality holds, then universal covering of (M, g) is isometric to (R X g, dt*+go),
where (X0, go) is a disk with constant Gaussian curvature %inf R, and 0%y has constant

geodesic curvature inf HU?M in (X0, 90)-

A question that arises here is the following: Is it possible to obtain similar result for
high co-dimension? Unfortunately, a general result cannot be true as we can see with the
following example. Consider (M, g) = (S3.(r) x S™(R), ho + go), where (S2 (r), o) is the half
2-sphere of radius r with the standard metric, and (S™(R), go) is the m-sphere of radius R

with the standard metric, m > 2. This case, we have that
1. .
3 inf R A(M, g) + inf HIM L(M, g) > 2.

On the other hand, consider (M,g) = (S%(r) x T™, go + §), where (T"™,0) is the flat
m-torus, m > 2. Note that the equality holds in (1.1). However, we can see that in this case
the universal covering of (M, g) is isometric to (S2(r) x R™, go + dy), where dy is a standard
metric in R™.

In the first example above, note that there is no map F : (M, M) — (D*xT™, 0D* x T™)
with non-zero degree. However, this is a condition that we need in order to obtain a similar

result as in [1]. Our main result of this work is the following.

Theorem 1.0.4. Let (M,0M,g) be a Riemannian (n + 2)-manifold, 3 < n+2 < 7,
with positive scalar curvature and mean conver boundary. Assume that there is a map

F: (M,0M) — (D? x T",0D? x T™) with non-zero degree. Then,
1. .
5 inf R} A(M, g) + inf HgME(M, g) < 2. (1.2)

Moreover, if the boundary OM is totally geodesic and the equality holds in (1.2), then
universal covering of (M, g) is isometric to (R™ x ¥o,d + go), where & is the standard metric
in R™ and (Xg,g0) is a disk with constant Gaussian curvature %inf Ry and 0%y has null

geodesic curvature in (Xq, go)-

Organisation of the Thesis

This thesis is organised as follows. In Chapter 1, we present some auxiliaries results to be
used in the proof of the main results. In Chapter 2, we present the first part and, in chapter

3, we discuss the second part.



Chapter 2

Preliminaries

In this chapter we will fix some notation and give a short description of the basic concepts
necessary for a better understanding of the following chapters. We assume all the manifolds

we are working with are compact and orientable.

2.1 Initial concepts

In this work, we denote by X (M) the set of all smooth vector fields in M and by 7*(M)
the set of all k-covariant tensors in M.
Let (M, g) be a n-dimensional Riemannian manifold. The Levi-Civita theorem states

that there is only one map
V:iXM)x X(M)— X(M)
written (X,Y) — VxY, satisfying the following properties:
(i) VixinzY = fVxY +hVY
(i) Vx(Y+2)=VxY +hVxZ
(iii) VxfY =X(/)Y + fVxY
(iv) X(9(Y.2)) = g(VxY,Z) + g(Y.VxZ)
(v) VxY —Vy X =[X,Y]

for every vector field X, Y, Z € X(M) and for every function f and h € C*(M), where
[X,Y] = XY — Y X denote the Lie bracket of the vector field X and Y. This map is called
the Riemannian connection of (M, g) and VxY is called the covariant derivative of X in

the direction of Y.
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Definition 2.1 (Covariant derivative of covariant tensors). Let (M, g) be a n-dimensional
Riemannian manifold. The covariant derivative of a tensor T € T*(M) in the direction of
a vector field X € X(M) is a tensor VxT € T*(M) defined by

(VXT)(X1,-+, Xi) = X(T(Xp, -, Xp) = D T(Xy,-+, Vx Xiy- oo, Xp)

=1

where Xy, , Xy € X(M).

Definition 2.2 (Total covariant derivative of covariant tensors). Let (M, g) be a n-dimensional
Riemannian manifold. The total covariant derivative of a tensor T € T*(M) to be the tensor

VT € TFY(M) defined by

(V) (X1, Xi) = (Vi  T)( X, 0, X
where Xy, -+, Xgr1 € X(M).

Definition 2.3 (Divergence of vector fields). Let (M, g) be a n-dimensional Riemannian
manifold. We define the divergence of a vector field X € X (M) to be a function divy(X) €
C>(M) given by divy(X)(p) = tr(Y(p) — VyX(p)), p € M.

In coordinates, the divergence of a vector field X € X' (M) is

divg(X) =" g"9(Vo,X,0;).

ij=1
Definition 2.4 (Divergence of covariant tensors). Let (M, g) be a n-dimensional Riemannian
manifold. The divergence of a tensor T € T*(M) is a tensor div,(T) € T* (M) defined by
divg(T) = tr,(VT).

Denote by Q!(M) the space of the smooth 1-forms in a n-dimensional Riemannian man-
ifold (M, g). Consider w € Q'(M). We define the sharp of w to be the only vector field
w? € X(M) such that w(Y) = g(w#,Y), for every Y € X(M). In coordinates,

n

w? = Z = gijwj&».

ig=1
It is well know that 7' (M) is isomorphic to Q'(M). Note that div,(w) = divy(w?). It

follows from Divergence theorem that

/divg(w)dvg—/ g(w®,n)day,
M

oM
for every w € Q'(M), where 7 is the outward-pointing unit length normal to M. Here, dv,

and do, are the volume forms of (M, g) and (0M, g), respectively.

7
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Remark 2.5. Let (M,g) be a n-dimensional Riemannian manifold. If T € T*(M) is a
symmetric tensor then try(T) € C*(M) and, in coordinates, we have that

divg(T) = 3" g9 (VD).

i.jk=1

Definition 2.6 (Gradient). Let (M,g) be a n-dimensional Riemannian manifold and a
function f € C®(M). We define the gradient of f to be the only vector field V,f € X (M)
such that df (X) = g(V,f, X), for every X € X (M).

In coordinates,

Vof =Y 979,(f)0.

ij=1
Definition 2.7 (Hessian). Let (M, g) be a n-dimensional Riemannian manifold and a func-

tion f € C®°(M). The symmetric tensor V. f = V'V f € T*(M) is called hessian of f.

The hessian of a function f € C*°(M) is given by
v;f(X7 Y) - g(Vngf,X),
for every X, Y € X(M).

Definition 2.8 (Laplacian). Let (M, g) be a n-dimensional Riemannian manifold and a
function f € C=(M). We define the laplacian of f by Agf = divg(Vyf) = tre(VLf).

In coordinates,

~ 1 i,
Agf:mz_l \/ﬁai <g ay(f)\/ﬂ);

where |g| = det (g;5)-

Definition 2.9 (Curvatures). Let (M, g) be a n-dimensional Riemannian manifold. We

have the followings definitions of curvature of (M, g):
(1) The curvature endomorphism of (M, g) is the map
R:X(M)x X(M)x X(M) — X(M)

defined by
R(X,)Y)Z =VxVyZ —VyVxZ -V ixy1Z

where X,Y,Z € X(M).
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(2) The curvature tensor of (M, g) is a tensor R € T*(M) defined by
R(X,Y,Z,W) =g(R(X,Y)Z, W)
where X, Y, Z W € X(M).

(3) Let p € M and a 2-dimensional subspace o C T,M. We define the sectional curvature

of o by ( )
R(u,v,v,u
K o — ) ? ?
) = TPl — (gt )2

where {u,v} is a basis of 0. We can show that the sectional curvature of o does not

depend on the choice of a basis.

(4) The Ricci curvature tensor of (M, g) is a symmetric tensor Ric, € T*(M) defined by

Ric(X,Y) = try(R(., X,Y,.)).

In coordinates,

(Ricg)ij = > 9" Ruiji

k=1

(5) The scalar curvature of (M, g) is a function R, € C*°(M) defined by

R, = tr,(Ric,).

In coordinates,
Rg = Z gij (Ricg)i]‘.
ij=1

For a more detailed discussion of the contents of this section see [6] and [22].

2.2 Geometry of submanifolds

Suppose (M, g) is a m-dimensional Riemannian manifold, 3 is a n-dimensional manifold
and F' : ¥ — M is an immersion. If ¥ has the induced Riemannian metric F*g then F' is
said to be an isometric immersion. If in addition F' is injective, so that ¥ is an (immersed
or embedded) submanifold of M, then ¥ is said to be a Riemannian submanifold of M. In
all of these situations, M is called the ambient manifold.

All the considerations of this section apply to any isometric immersion. Since our com-
putations are all local, and since any immersion is locally an embedding, we may assume X

is an embedded Riemannian submanifold, possibly after shrinking > a bit.

9
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At each p € X, the ambient tangent space T,M splits as an orthogonal direct sum
T,M =T,% & (T,X)*, where (T,%)" is the orthogonal complement of T,% in T, M. Hence,
if v € T,M, we can write v = v' + vt, where v’ € T},3 is called tangential component of v

and v+ € (T,X)" is called normal component of v.
Proposition 2.10. The Riemannian connection of ¥ is
= AT
VxY = (VxY) ,
for every X, Y € X(X), where V is the Riemannian connection of (M, g).

Definition 2.11. We define the second fundamental form of ¥ to be the symmetric C*°(3)-
bilinear form

B:X(X) x X(Z) - (X(2)*-

given by
B(X,Y) = (VxY)",

for every X, Y € X(%).

Let p € ¥ and N € (T,X)". Define the symmetric bilinear form

Iy : T,Y x T,% — R

IIN(X,Y)=g(B(X,Y),N).

This bilinear form is associated to a selfadjoint linear operator Sy : T, — T,% which

satisfies g(Sn(u),v) = g(B(u,v), N), for every u,v € T,X. We can show that
= T
Sn(X)=—(VxN) .
Theorem 2.2.1 (Gauss). Let e, -+ ,e, be a orthonormal frame tangent to 3. Then
Rijui = Riji + BixBji — BaBjs,
where R and R are curvature tensors of ¥ and M, respectively.

Definition 2.12. A Riemannian submanifold ¥ C (M, g) is said totally geodesic if B = 0.

Proposition 2.13. A Riemannian submanifold ¥ C (M, g) is totally geodesic if and only if
every geodesic of % is a geodesic of M.

10
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Let ¥ C (M,g) be a Riemannian submanifold and p € ¥. Consider {E;, -+, E,} a
orthonormal basis T,¥ and {Ny,--- , N} a basis of (TpZ)L, where k = m — n. We define

the mean curvature vector of ¥ in p by

k
I’_j = ZtT(SNl)NZ
=1

the square of the norm of the second fundamental form of ¥ in p by

n

B = 9(B(Ei, E)), B(E;, E))).

ij=1
In coordinates, we have that
I‘._i = Z g”Bz]
ij=1
Ifk=1,ie., X C(M,g)is ahypersurface then the mean curvature vector of ¥ in a point
p e Xis H(p) = tr(Sy)N, where N € (T,%)" is an unit vector. In this case, the number

H(p) := tr(Sy) is called mean curvature of ¥ in p.

Proposition 2.14 (Gauss equation). Let X C (M, g) be a hypersurface, p € ¥ and N €

T,2)" is an unit vector. Then, in p, we have that
P
2Ricy,(N,N)+ R, + |B|* = R, + |H|?

where R, is the scalar curvature of (X, g) and }_%z'cg, Eg are the scalar curvature and Ricci

curvature of (M, g), respectively.

For a more detailed discussion of the contents of this section see [6], [8] and [22].

2.3 Stable minimal hypersurfaces with free boundary

Let (M,0M, g) be a (n + 1)-dimensional Riemannian manifold and (X,0%) C (M,0M)
be a properly embedded hypersurface, i.e., 39X = X N IM. A wvariation of the hypersurface
¥ C M is a smooth one-parameter family {F;}ic(—ce of proper embeddings F; : ¥ — M,
t € (—€,€), such that Fy coincides with the inclusion X C M. The vector field X = £ F}| 0
is called the variational vector field associated to {F}}ic(—c). The variation {Fi}ie(—ee) is
said to be normal if the curve t € (—¢,€) — Fi(x) meets ¥ orthogonally for each x € ¥.
Clearly, a variation {F}}ic(—c) gives a smooth function V' : (—¢,¢) — R defined by

V(t) = Vol(F(X)) = / dvg,,

by

where g; = F;(g) e dvy, is the volume form of (3, g;).

11
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Definition 2.15. A properly embedded hypersurface (X,0%) C (M,0M,g) is minimal with
free boundary if V'(0) = 0 for every variations {F,}ic(—ec)-

The first variation of volume of a properly embedded hypersurface (X,0%) C (M, 0M, g)
with respect to {F};}ie(—e,e is

V() = — / 9(X, H)dv, + /8 (X,

where X is variational vector field associated to {Ft}te(_e’e), H gz is a mean curvature of X
in (M, g) and n is the outward-pointing unit length normal to M. Here, dv, and do, are
the volume forms of (X, g) and (0%, g), respectively. It follow that the hypersurface ¥ is

minimal with free boundary if only if ng = 0 and ¥ meets OM orthogonally along 0%.

Remark 2.16. Note that if a properly embedded hypersurface (X,0%) C (M,0M,g) meets
OM orthogonally along 0% then

HYP = HM — B (v,v),

where H, 52 the mean curvature of 0% in (X, g) with respect the outward-pointing unit length
normal, v is a globally defined unit normal vector field in % and H;?M, BgM are the mean
curvature and second fundamental form of OM in (M, g) with respect to the outward-pointing

unit length normal, respectively.

Definition 2.17. A properly embedded minimal hypersurface with free boundary (3,0%) C
(M,0M, g) is stable if V""(0) > 0 for every variations {F;}ie(—ce). Otherwise, 3 is unstable.

Remark 2.18. If a hypersurface ¥ is minimal with free boundary, then any variational
vector field must be parallel to v in 0% since the variation must go through proper embeddings.
Hence, it is enough to consider only normal variations to analyze the second wvariation of

volume.

Let (X,0%) C (M,0M, g) be a properly embedded minimal hypersurface with free bound-
ary. Consider a globally defined unit normal vector field v on ¥. Any normal vector field
on ¥ has the form X = pv for some ¢ € C*°(X) and the second variation of volume with
respect to X = v is

Vi) = [Vl = PRic (.0 + (B~ [ B ()i
2 ox
where V¥ is the gradient operator in (2, g), Ric™ is the Ricci curvature of (M, g), and B*

is the second fundamental form of ¥ in (M, g) with respect to the unit normal v.

12
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2.4 Conformal Laplacian with minimal boundary con-
ditions

Let (M,0M, g) be a Riemannian manifold of dimension n > 3. Define the following pair of

operators acting in C*(M):

L, = —-Ayp+c,Rypin M
Oy
T, = a—n+2an?M<p on OM,

where 7 denotes the outward unit normal vector of the boundary OM in (M, g) and ¢, :=

(n—2)
A(n—1)"

Consider the first eigenvalue A\;(M, g) of L, with boundary condition 7}:

Ly(p) = M(M,g)pin M 2.1)
T,(p) = 0 on OM

We have that,

/ (V0?4 cnRyp?)dv, + QCn/ HgMchdag
M(M,g)=  inf M oM

0ZpeH (M) / g02dv
" g

We can choose a positive function ¢ € C°(M) solution of (2.1). The conformal metric

h = goﬁg is such that
Ry = M(M,g)g 7= in M
HPM = 0 on OM

In particular, this implies that if A\;(M, g) > 0 then R, > 0 and H?M = 0.

2.5 Topology of 3-dimensional manifolds

In this section we are going to state some topological results and definitions, more specif-
ically, from the topology of 3-dimensinal manifolds, which are useful to better understand
this work. For a more detailed discussion of the contents of this section see [18], [19], [20]
and [23].

2.5.1 Essential surfaces

Definition 2.19. Let M be a 3-dimensional manifold. A connected surface ¥ properly
embedded (or embedded in OM ) is said incompressible in M if either

13
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(i) X is a sphere which does not bound a ball in M, or

(ii) X is not a sphere and the homomorphism 71 (%) — 7 (M) is injective.
Otherwise, X is compressible in M.

Example 2.20. Consider the solid torus M = S' x D?.

(1) Note that OM is a compressible torus in M (see Figure 2.1). Note that all the curves

in the figure are homotopically non-trivial in OM , but are homotopically trivial in M.

Figure 2.1: Compressible torus in solid torus

(2) Let ¢y and ¢y be two closed curves which represent a non-trivial class in m (OM) and
bound the “hole” in OM (see Figure 2.2). Let C' be a properly embedded cylinder in M

which has ¢1 and ¢y as boundary. Note that C' is a incompressible cylinder in M.

Figure 2.2: Incompressible cylinder in solid torus

Example 2.21. Generally, the boundary of any handlebody is a compressible surface. Let
M be a handlybody of genus equal to 4 (see Figure 2.3). Note that all the curves in the figure

are homotopically non-trivial in OM , but are homotopically trivial in M.

14
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Figure 2.3: Handlebody of genus equal to 4

Definition 2.22. Let (M,0M) be a orientable 3-dimensional manifold and (3,0%) C (M,0M)

a properly embedded connected and orientable surface.

(i) We say that 3 is boundary-incompressible if the homomorphism (2, 0%) < m (M, 0M)

1s injective. Otherwise, ¥ is boundary-compressible in M.
(i) We say that 3 is essential in M if it is incompressible and boundary-incompressible.

Example 2.23. The cylinder from item (2) of Example 2.20 is boundary-compressible in

the solid torus S* x D?, therefore it is not essential.

Example 2.24. Consider the 3-dimensional manifold M = S' x ¥, where (X,0%) is a

connected surface which is not a disk. The surface X is essential in M.

Example 2.25. Consider the 3-dimensional manifold M = I xS, where S is a closed surface
with positive genus. Let X = I X vy, where v 1s a closed curve which represents a non-trivial

class in w1 (S) and bounds a "hole” in S. Note that ¥ is a properly embedded cylinder in M.
Claim 1. ¥ is incompressible in M.

In fact, the curves which represent a non-trivial class of m(X) are of the form {t} x =,
where t € 1. Such curves also represent a non-trivial class in m (M), since 7y represents a
non-trivial class in m(S). It follows that the homomorphism m (X) < m (M) is injective,

1.€., 2 s incompressible in M.

Claim 2. Y is boundary-incompressible in M.
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In fact, the curves which represent a non-trivial class of w1 (%, 0%) are the curves which
connect distinct connected components of 0%. This curves also connect distinct connected
components of OM, consequently, they represent a non-trivial class in w (M,0M). It fol-
lows that the homomorphism m (X0X) — m(M,0M) is injective, i.e., ¥ is boundary-
mcompressible in M.

Therefore, from claims 1 and 2 it follows that the surface X is an essential cylinder in

M.

Theorem 2.5.1 (See Proposition 9.4.3 in [23]). Let (M,0M) be a 3-dimensional manifold.
Every non-trivial homology class o € Ho(M,0M) is represented by a properly embedded

surface S C M such that its connected components are either spheres or essential surfaces.

Theorem 2.5.2 (See Lemma 6.8 in [19]). Let (M,0M) be an 3-dimensional manifold such
that OM contains a surface of positive genus. Then M contains a properly embedded, con-

nected and incompressible surface (X,0%) such that 0 # [0X] € H1(OM).

2.5.2 Prime 3-dimensional manifolds

A 3-dimensional manifold M is prime if M = M;#M, implies one of M, M5 is a 3-
dimensional sphere. For example, the solid torus S! x D?, the 3-dimensional ball B® and
3-dimensional sphere S? are prime manifolds. On the other hand, the manifold I x S? is not

prime, since I x S? = B3#B3.

Remark 2.26. The solid torus S' x D? is the unique prime 3-dimensional manifold whose

boundary is a compressible torus (see proof of Proposition 3.4 in [18]).

A prime decomposition of a 3-dimensional manifold is a decomposition M = M # - - - # M,
with each M; prime. For example, the decomposition I x S? = B3#B? is a prime decompo-

sition of I x S2.

Theorem 2.5.3 (See Theorem 1.5 in [18]). Let M be a connected 3-dimensional manifold.
Then there is a prime decomposition M = Mi#Ms# - - - #M;, and this decomposition is

unique up to insertion or deletion of S’s.

Remark 2.27. Let M be a 3-dimensional manifold such that OM has sphere components.
We denote by M the result of capping off each sphere component of OM. We have that
M = M#RB?’, where k is the number of sphere components of OM. It follows that, if
M= My#MsF - - - # M. is the prime factorization OfM then M = My #Mo# - - - # M, # B3

1s the prime factorization of M.
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Chapter 3

Topological obstructions to the
existence of metrics with non-negative
or positive scalar curvature and mean

convex boundary

In this chapter we use arguments similar to the ones used by Schoen and Yau in [31] to
prove that the existence of a non-zero degree map of a n-dimensional manifold (M, 9OM) to
a manifold of the form ¥ x 7™, where 3 <n < 7 and (3, 0Y) is a connected surface which is
not a disk, is a topological obstruction to the existence of a Riemannian metric in (M, 0M)
with positive scalar curvature and mean convex boundary. Furthermore, if ¥ is neither a
disk nor a cylinder, then the above condition is a topological obstruction to the existence
of a Riemannian metric in (M,9M) with non-negative scalar curvature and mean convex

boundary.

3.1 Technical results

In this section we are going to state and prove results about Riemannian manifolds with
mean convex boundary analogous to the theorems stated below. These theorems by Schoen

and Yau play a fundamental role in the article [31].

Theorem 3.1.1 (Schoen and Yau, [31]). Let (M, g) be a closed Riemannian n-dimensional
manifold with positive scalar curvature and n > 3. Then, every embedded stable minimal

hypersurface ¥ C M admits a Riemannian metric with positive scalar curvature.
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Theorem 3.1.2 (Kazdan and Warner, [21]). Let (M, g) be a Riemannian n-dimensional
manifold with non-negative scalar curvature andn > 3. Then either M admits a Riemannian

metric with positive scalar curvature or (M, g) is Ricci-flat.

Let (M, 0M, g) be a Riemannian manifold of dimension n > 3. Assume that R,, H ;’ M >0
and Vol,(M) =1, where H, denote the mean curvature of dM with respect to the outward

unit normal vector. For each Riemannian metric § on M consider A(§) € R and &; € C*(M)

satisfying:
—qu)g—i—cnqu)g = )\(é)q)g
0d;
-9 = —2Canq)§
Mg

/ @gdvg = 1
M

where 75 denote the outward unit normal vector of the boundary dM in (M, §) and ¢, :=

(n—2)
A(n—1)"

Note that, as we are considering, we can assume that ®; > 0.

Moreover, note that
Ag) = /A(deg—i—cn/Ri[)dvg

= gda—l—cn/R@dv.
an Ong 7 g
Therefore,
)‘(g) = 20n/ b;Hydog + Cn/ R®zdv;.
oM M

Lemma 3.1. Let (M,0M,g) be a Riemannian n-dimensional manifold, n > 3, such that
Ry, Hy; >0 and Vol,(M) = 1. If X(g) = 0 then

DX,(h) = —cn/ (h,By)do, — cn/ (h, Ricg)dvy,
oM M

for every 2-covariant symmetric tensor h in M, where By and Ric, is the second fundamental

form of OM in (M, g) and the Ricci curvature of (M, g), respectively.

Proof. Firstly, note that A(g) = 0 implies that R, = 0, H, = 0 and ®, = 1. Let h be
2-covariant symmetric tensor in M. Consider g(t), for each t € (—¢,€) a smooth family of

Riemannian metrics on M in a such way that g(0) = g e ¢’(0) = h. Denote by
A(t) == Ag(t)), h(t):==4'(t), R(t) == Rywy and H(t) := Hyy.
As R, =0, H, =0 and ®, = 1, we obtain that

DX,(h) = N(0) = 2¢, H'(0)do, + cn/ R'(0)dv,.
oM M

18
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From Proposition 2.3.9 in [34], we have that
R'(t) = =(h(t), Ricga)) + divge) (divg (h(t)) — d(treq h(t))).
Hence, from Divergence Theorem, we obtain that

DX,(h) = 2¢, ” H'(0)do, — cn/M(h, Ricy)dvy + ¢, /Mdivg(divg(h) —d(try h))dv,

= ¢, /aM (2H'(0) + ((divg(h))* — (d(try h)*,n)) doy — cn/M<h,Ricg>dvg
= cn/ (2H'(0)—|—X)dag—cn/ (h, Ricg)duv,,
oM M

where n =1, and X := ((div,(h))# — (d(tr, h))*,n).

Einstein convention and notation:

(1) Without a summation symbol, lower and upper index indicate a summation from 1 to

n— 1.
(2) V! denote the Riemannian connection of (M, g(t)), V := V°.
(3) B: denote the second fundamental form of OM in (M, g(t)).

Consider (zy,---,x,) a local chart on M such that (z1,---,2,-1) is a local chart on OM

and 0,, = n. We divide the proof in some steps.
Step 1: Computation of X in OM.

We have that
d(try h) = Z (Z g”hm> da®
=1 i,7=1

and
n

divg(h) =Y (divy(h))rdz"

k=1

It follows that "

(d(trg W)* = " g% k(g7 hij)a,
ik l=1
and
(divy(h # = Z glk (divg(h))r0 = Z glk g (Vih);10;.
k=1 2,9,k l=1
Thus,

(divg(h))* — (d(try h))* = { > (9%97(Vih)s lk@k(gijhu))} O
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In OM, we get that ¢,, = ¢"" =1 and g, = ¢ = 0, for every [ = 1,---n — 1. Hence,

X = Z (6" (Vih)jn — v(g" D))

ih)jn 4 V(hnn) = v(g7 hij) = v(hng)
)in = V(97 )hij — g7 v(hij)

)in + 9" ¢’ (gr) hig — g7 v (hiz)
)jn

)jn

]
)

g (V h
g7 (Vih
= ¢%(Vh
g7 (V;h

g7 (Vih

ih)jn + 29" ¢ (Bg)u(h)ij — g7 v(hij)
+2<h B > g”V(hij)

ij
1

Step 2: Computation of H'(0):
We have H(t) = g{’(B,);;. Hence,
/ d i i d
H'(t) = —(9/)(Boij + 9 7 (Bi)is

d
= —g%gl' (h)(By)ij + tr (EBt)

— 0. B)+or (581).

Bt) . Since,
=0

) d
Lets focus our attention on tr 7

(Bt)ij = _gt(nt’ Viaﬁ’
it follows that

d
dt|,_,

¥:0)).

(Bt)ij = —h(n, Vid;) — <%

d
o (7715)7 V’La > <777 dt

From Proposition 2.3.1 in [34], we obtain that

t=0

d
dt|,_g

1 1 1
(1), Vz@j> - E(Vz‘h)jn - §(th)m + §(Vnh)ij-

d
By)ii = —h 0:) — ( —
( t)z] (717 vza]> <dt o
Claim 3. In OM, we have that

d

1
pm () = —g" hp,0) — hmm

t=0

Proof. In OM, we have (g¢)nx = 0 and (g¢)pn = 1, forall k = 1,---n — 1 and t € (—¢,€).
Thus,
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and
d
<E . (nt)aak> = —hpuk.
Denote by .
% ) (me) = lzlalaz-
Note that
n = <% t O(Ht),n> = —5hnn
However, for k=1,--- ,n —1,
d n—1
— ik = <E (1), ak> = Zaigki-
t=0 i=1

It follows that, for [ =1,--- ,n — 1, we have that

a; = _glkhnk-
Hence,
d = 1
E (Ut) - Z alal +a,n = _glkhnkal - éhnnn
t=0 =1
]
It follows from the Claim 3 that
d Ik 1
i ; (Ut), viaj = —g hnk<viaj7 al) - §h7’m<viaj7?7>
t=

1
== _glkhnkrijgml + Ehnn(Bg)zj

1
= —hull+ 5hm(Bg)ij

However,
—h(Vi0;,0) = —hui Tl = Rl = (By)ijhun — haiTf

@5

since

n 1 - n 1
Ly = 5 Zg k{aigjk + 0i9ik — Ohgij} = —577(92'1) = —(By)ij-

=1
It implies that
d 1
pr (1), Vi0; ) = —h(Vi0j,m) — (Bg)ijhnn + §hm(Bg)ij
=0
1
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Hence,

d 1 1 1 .

dt|,_, (Bi)ij = =5(Vil)in = 5(Vih)in + 5(Vh)is + S hnn(By)sj-
Consequently,

tr i
dt

As H, = 0, we obtain that

iy 1 . 1
(Bt)) - _g” (vzh)]n + é.gw (vnh)z] + éhnan'
t=0

QH(0) = —2(h, B,) + 2r (i <Bt>)
dt =0
= —2(h,By,) — 2gij(vih)jn +9ij(vnh)ij

= —2(h, By) — 29" (Vih)jn + 97n(hij) — 297 L(Vin, 9;).
Claim 4. In OM, we have that
g7 h(Vin,0;) = (h, By).

Proof. Write,
k=1

Note that, in M, we have I'?, = 0 e T'¥, = ¢"*(B,)im, for every k =1,--- ,n — 1. This
implies that
Vin = g™ (By) im0k

Hence, in OM, we obtain that

9" h(Vin, 0;) = g7 g™ (By)imhij = (h, By).

]
It follows from the Claim 4 that
2H'(0) = —4(h, B,) — 2g" (Vi) jn + ¢”n(hi;).
Therefore,
2H'(0) + X|o5 = —2(h, By) — g7 (V;h)jn. (3.1)

Claim 5. In OM, we have that
97 (Vih)jn = —(h, Bg) + divd™ (w),
for some w € QY (OM).
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Proof. Tt follows from the Claim 4 that, in OM,

g7 (Vil)jn = g7 8i(hjn) — g7 1(V:0;,m) — g7 h(Vin, 9;)
= ¢99,(hjn) — g n(V:0;,m) — (h, By).

For 1 <i,5 <n—1,in OM, we can write
Vi0; = (By)ijn + Vi,

where V is the Riemannian connection of (OM, g).

Hence, since H, = 0, we obtain that
9"1(Vi0;,n) = hunHy + g7 1(Vi0;,m) = g7 h(V:0;,1).
This implies that, in M,
9" (Vih)ju = ¢70,(hjn) — g7 h(V:0;,m) — (h, By).

Define w € Q'(OM) as
w .= h('7y)|8M )

Note that
divg™(w) = g7 (Viw); = ¢70:(w;) — g"w(V,9))
= 970i(hjn) — g"h(V0;,v).

Therefore, in OM,
gij(Vih)jn = —(h,B,) + dz’v?M(w).

|
It follows from equality (3.1) and Claim 5 that
2H'(0) + X|ypy = —(h, By) — divd™ (w).
Hence,
DX,(h) = —cn/ (h, By)do, — cn/ (h, Ricg)dv, — cn/ ding(w)dag.
oM M oM
We conclude, since OM is a closed manifold, that
DX,(h) = —cn/ (h, By)do, — cn/ (h, Ricg)dv,.
oM M
|
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Corollary 3.2. Let (M,0M, g) be a Riemannian manifold of dimension n > 3 such that
Ry, H, >0, Vol,(M) =1 and X(g) = 0. The metric g is a critical point of the functional A
if and only if (M, g) is Ricci flat with totally geodesic boundary.

The following theorems are generalizations of the Theorems 3.1.2 and 3.1.1 for Rieman-

nian manifolds with mean convex boundary, respectively.

Theorem 3.1.3. Let (M,0M,g) be a Riemannian manifold of dimension n > 3 such that
Ry >0 and Hy > 0. Then M admits a metric with positive scalar curvature and minimal

boundary or (M, g) is Ricci flat with totally geodesic boundary.

Proof. We can assume that Vol,(M) = 1. It follows from

Ag) = 2cn/ o,H,do, +cn/ R,®,dv,
oM M
and R, > 0, H, > 0 that A(g) > 0. If A\(g) > 0, then there exists a metric on M with
positive scalar curvature and minimal boundary (see Section 2.4).

Then, assume that A(g) = 0. If DA\, = 0 we have that ¢ is a critical point of the
functional \. It follows from Corollary 3.2 that Ric, = 0 and B, = 0. If D), # 0, there
exists a 2-covariant symmetric tensor hg in M such that DA,j(hy) > 0. Consider a family of
metrics on M, g(t) = g + tho, t € (—¢,€). Since X'(0) = DAy(hg) > 0, we obtain that there
exists 6 € (0, €) such that the function ¢ € (—6,0) — A(t) € R is an increase function. Since
A0) = A(g) = 0, we get that A(t) > 0 for all ¢t € (0,60). Therefore, for each t € (0,6) there
is a metric g, on M such that Rz > 0 and Hz = 0 (see Section 2.4). u

Theorem 3.1.4. Let (M,0M, g) be a Riemannian manifold of dimension n+ 1 > 3 such
that Ry > 0 and HQBM > 0. Then every free-boundary stable minimal hypersurface in M has

a metric with positive scalar curvature and minimal boundary.

Proof.
Consider ¥ a free-boundary stable minimal in M. It follows from the second variation

formula for the volume that

[ 1wetdn, = [ PRic,(NN)+ 1B Pduy + [ FBMN N,
> b ox
for every ¢ € C*(X), where N denotes a unit vector field on ¥ in (M,g). As R, > 0, it

follows from the Gauss equation that
: w2 _ 1 % 212 L5
Ricy(N,N) + |B;| :§(Rg—Rg + By )>—§Rg.
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Hence,

1
/|Vgp|2dvg> ——/¢2Rgzdvg+/ gpQBgaM(N, N)do, ,
= 2 /s ox.

for every ¢ € C*°(X). Since HgM > 0, and X is a free-boundary hypersurface in (M, g), we
obtain

oM _ pyoOM ox (o)
B?(N,N) = H™ — H” > —H?*.

Thus,
1 ,
/|Vgp|2dvg> —§/¢2Rgzdvg—/ cpZHgdzdag,
s > o%

for every ¢ € C*(X). Consequently,

/2 |Vpl*dv, + ¢, /2 O’ R>dvg + 2cy, /az goQHgazdag > (1 —2¢,) /2 |Vp|*dv,

for every 0 # ¢ € H'(X), where ¢, = %. It follows that

/2 Vo|*dv, + ¢, /2 O’ R>dvg + 2cy, /az ©’H>do,

A= i]nf1
0ZpeH(X) /(’026&}9
)

Therefore, there exists a metric on ¥ with positive scalar curvature and minimal boundary

> 0.

(see Section 2.4). n

3.2 3-dimensional case

In this section, we are going to find a topological obstruction to the existence of a metric
with positive scalar curvature and mean convex boundary in a 3-dimensional manifold (and
metric with non-negative scalar curvature and mean convex boundary). The following the-
orems are important results about stable minimal surfaces with free boundary which play a

fundamental role in our investigations.

Theorem 3.2.1 (Chen, Fraser and Pang, [7]). Let (M,0M, g) be a Riemannian 3-dimensional
manifold. If (¥,0%) is a connected surface which is not a disk and f : (X,0%) — (M,0M)

18 a continuous map such that
form((E) > m(M) e f2:m(%,0%) = m(M,0M),

are injectives, then there exists a free-boundary minimal immersion F : (X,0%) — (M,0M)
and it minimizes area among the maps h : (3,0%) — (M,0M) such that h, and h? are

injectives.
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Theorem 3.2.2 (Chen, Fraser and Pang, [7]). Let (M,0M, g) be a Riemannian 3-dimensional
manifold with mean convexr boundary. If (3,0%) is a connected surface and f : (X,0%) —

(M,0M) is a free-boundary, minimal and stable immersion, then

(1) If R) >0, we obtain that ¥ is a disk.

(2) If R}' > 0, we obtain that either ¥ is a disk or (¥,g) is a flat cylinder with totally

geodesic boundary.

Definition 3.3. Define Cs as the set of all smooth 3-dimensional manifolds (M,0M) such
that there is no continuous map f : (X,0%) — (M,0M) with f. and f° are injectives, where

(3,0%) is a connected surface which is neither disk nor a cylinder.

Remark 3.4. Note that if a 3-dimensional manifold (M,0M) has a essential surface which
is neither a disk nor a cylinder then M & Cs.

Example 3.5. Consider the 3-dimensional manifold M = S x ¥, where (3,0%) is a con-
nected surface which is neither a disk nor a cylinder. Note that ¥ is a essential surface in

M. Therefore, from Remark 3.4 we have that M ¢ Cs.

Corollary 3.6. Let (M,0M) be a 3-dimensional manifold. If M ¢ Cs, then there is no

metric on M with non-negative scalar curvature and mean convex boundary.

Example 3.7. It follows from Example 3.5 and Corollary 3.6 that the 3-dimensional mani-
fold M = S* x X, where (X,0%) is a connected surface which is neither a disk nor a cylinder,

admits no metric with non-negative scalar curvature and mean convexr boundary.

Definition 3.8. Define C3 as the set of all smooth 3-manifolds (M,0M) such that there is
no continuous map f : (%,08) — (M,0M) with f, and f2 injectives, where (X,0%) is a

connected surface which is not disk.
Remark 3.9. Note that
1. 83 C C~3, and

2. If a 3-dimensional manifold (M,0M) has a essential surface which is not a disk then
M ¢&Cs.
Example 3.10. Consider the solid torus M = S' x D?. Since w1 (M,0M) = 0, we have that
M € Cs.

Example 3.11. The 3-dimensional manifold M = S' x X, where (3,0%) is a connected
surface which is not a disk. Note that X is a essential surface in M. It follows from Remark

3.9 that M & Cs.
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Example 3.12. Consider the 3-dimensional manifold M = I x S%. Since M is simply
connected, we have that M € Cs.

Example 3.13. As see in Example 2.25 that the 3-dimensional manifold I x S, where S is

a closed surface with positive genus, has a essential cylinder. Therefore, from Remark 3.9 it

follows that I x S & Cs.

Theorem 3.2.3. Let (M,0M) be a smooth 3-dimensional manifold. Assume that the con-
nected components of OM are spheres or incompressible tori, but at least one of the compo-
nents is a torus. Then M & Cs. However, if the number of the incompressible tori in OM is

exactly one, then M & Cs.

Proof. First, from Theorem 2.5.2, we have that M contains a properly embedded, connected
and incompressible surface (3, 0%) such that 0 # [0X] € H (OM). If ¥ is a disk we have
that 0% represents a non-trivial class in w1 (0M ), since 0 # [0%] € H,(OM). It follows that

0¥ is in a connected component 1" of M which is a torus (see Figure 3.1).

L

T

Figure 3.1: Properly embedded disk X in the torus 7'

So 0% is a non-trivial curve in the torus 7" which is trivial in M. But this is a contradic-
tion, since T is incompressible. Therefore, ¥ is not a disk.

As Y is an incompressible surface, which is not a disk, we have that each connected
component of 0¥ represents a non-trivial class in 71 (0M). This implies that 03 is contained
in the union of the tori of 9M. Hence, either ¥ is boundary-incompressible or it is a cylinder
boundary-compressible (see Lemma 2.1 in [17]). If 3 is a boundary-compressible cylinder, the
connected components ¢; and ¢y of 0% are contained in a same torus of 9M. Consequently,
we have only two possible situation for the circles ¢; and ¢y, as we can see in the figures 3.2

and 3.3.
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T

Figure 3.3: Possibility 2

Note that in both situation we have that ¢; and ¢y are homologous in M. This implies
that 0% represent the trivial class in H;(0M). But this is a contradiction. It follows that ¥
is not a boundary-compressible cylinder. Hence, ¥ is an essential surface in M which is not
a disk. Therefore, M ¢ C3. However, note that if the number of the incompressible tori in

OM is exactly one, then the essential surface ¥ can not be a cylinder. In this case, we have
that M & Cs. m

Remark 3.14. The incompressibility condition of at least one torus of OM in the proposition
above is necessary. Actually, just consider the 3-dimensional manifold M = S' x D?. Note

that the connected component of OM is a compressible torus and M € Cs (see Evample 3.10).

Corollary 3.15. Let (M,0M) be a smooth 3-dimensional manifold such that OM is the
disjoint union of exactly one torus and k spheres, k > 0. If M has a metric with non-

negative scalar curvature and mean convexr boundary then

M = N#(S' x D*)#*B3,
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where N is a closed 3-dimensional manifold.

Proof. The prime factorization of M is

M = Ni# - #NA4N'#"B>,

where Np,---, N, are closed and prime 3-dimensional manifolds and N’ is a prime 3-
dimensional manifold such that 0N’ is a torus. If M has a metric with non-negative scalar
curvature and mean convex boundary, it follows from Theorem 3.2.3 that N’ is a compress-
ible torus in N’. Since the solid torus is the unique prime 3-dimensional manifold whose

boundary is a compressible torus, we have that N/ = S! x D?. Therefore,
M = N#(S' x D*)#*B3,
where N = Ny# - - - #N,. [ ]

Corollary 3.16. Let (My,0M,), -+, (M, OMy) be 3-dimensional manifolds as in proposi-
tion 4.15, and Ny,--- , Ny closed 3-dimensional manifolds. For every integer | > 0, we have

that
1. My# - #M#'B* ¢ Cs,
2. Mi# - #MH#FNH# - #NAHB ¢ Cs.
Moreover, if the number of the incompressible tori in OM; is exactly one then
3. Mi#'B? ¢ Cs,
4o My#N# - #NHB ¢ Cs.

Example 3.17. Define the 3-dimensional manifolds My, = (S' x T?)#N and M, = (S' x
T2)#(I x S?), where T2 is a torus minus an open disk and N is a closed 3-dimensional
manifold. It follows from the corollary 3.16 that My, My & Cs. Therefore, from Corollary
3.6, we have that My and My have no metric with non-negative scalar curvature and mean

convex boundary.

Lemma 3.18. Let (M,0M, g) be a connected Riemannian 3-dimensional manifold such that

g is flat with totally geodesic boundary. Then, M is covered by I xT?. In particular, M & Cs.

Proof. It follows from the Theorem 5 in [25] that either M is diffeomorphic to a 3-dimensional
handlebody or M is covered by I x T?. Since (M, g) is flat with totally geodesic boundary,

from Gauss Equation, we have that (0M, g) is a flat surface. Assume M is a 3-dimensional
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handlebody. In this case, we have that OM is connected. It follows from the Gauss-Bonnet
theorem that OM is a 2-dimensional torus. This implies that M = S! x D?. It follows
from second variation of area OM is a stable minimal flat torus in (M, g). But, this is a
contradiction (see Theorem 8 in ([25]). Therefore, M is covered by I x T?. Consider then
p: I xT?* — M a covering map. It follows from Example 2.25 that there is an essential
cylinder C' which is properly embedded in I x T?. Define f = poi : (C,0C) — (M,0M),
where i : C' — I x T? is the inclusion map. We have that f, = p, o, and f2 = p? 0i?. Since
p is a covering map, we have that p, and p? are injectives. Furthermore, since C is essential

in I x T?, we have that 4, and i are injectives. Consequently, f, and f? are injectives.
Therefore, M & Cs. [ ]

Theorem 3.2.4. Let (M,0M, g) be a 3-dimensional Riemannian manifold such that Ré” >0
and H;?M > 0. Then either M € C3 or (M, g) is flat with totally geodesic boundary.

Proof. Note that as Ry > 0 and HgM > 0, it follows from Corollary 3.6 that M € Cs.
Assume that M ¢ C3 and g is not flat or BgM 2 0. Since M € C; and M & Cs, we have that
there is a continuous map f : (C,0C) — (M,0M) such that f, and f2 are injectives, where
C'is a cylinder. As g is not flat or
a Riemannian metric i on M such that RM > 0 and H?™ = 0. It follows from the Theorem

3.2.1 that there exists a stable free-boundary minimal immersion F' : (C,0C) — (M,0M)

BgM # 0, it follows from the Proposition 3.1.3 there exists

with respect to the metric h. Hence, from Theorem 3.2.2, we have a contradiction. This
implies that M € C3 or (M, g) is flat with totally geodesic boundary. It follows from Lemma
3.18 that either M € Cs or (M, g) is flat with totally geodesic boundary. ]

Corollary 3.19. If a 3-dimensional Riemannian manifold (M,0M) admits a metric with

positive scalar curvature and mean convexr boundary then M € Cs.

Example 3.20. Consider the 3-dimensional manifold I x S, where S is a closed surface
with positive genus. From Ezample 3.13, we have that I x S & Cs. It follows from the
Corollary 3.19 that there is no metric on I x S with positive scalar curvature and mean

convez boundary. In particular, there is no such metric on I x T?.

Example 3.21. It follows from the Corollary 3.16 that the 3-dimensional manifolds bellow
are not in the set Cs.

(1) (I x T2)#(I x T%)

(2) (! x T2)#(S! x T?)

(3) (I x T2)#(S* x T?)

(4) (I x T*)#(I x S?)
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(5) (S' x T2)#(I x %)

(6) (I x T*)#N, where N is a closed 3-dimensional manifold.

Therefore, from the Theorem 3.2.4 that these manifolds have no metric with positive
scalar curvature and mean convex boundary. Furthermore, every metric in these manifolds
with non-negative scalar curvature and mean convex boundary are flat with totally geodesic

boundary.

3.3 n-dimensional case, 3 <n <7

In this section, we are going to study possible generalizations of some results on the
existence of certain metrics in 3-dimensional manifolds to manifolds with dimension not
greater than seven and we are going to prove the main theorem of this chapter. The following
theorem is a very important result from geometric measure theory which plays a fundamental

role in our investigations.

Theorem 3.3.1 (See Chapter 8 in [27] and Theorem 5.4.15 in [10]). Let (M,0M, g) be a
Riemannian n-dimensional manifold, 3 < n < 7. Assume that o € H,_1(M,0M) is a non-
trivial class. Then there exists a free-boundary, minimal and stable hypersurface > properly

embedded in (M, g) which represents the class «.

For n > 4, we define inductively the set C, as the set of all smooth n-dimensional
manifolds (M, M) such that every non-trivial homology class o € H,_1(M,0M) can be
represented by a hypersurface (2, 0%) such that ¥ € Coi.

Example 3.22. Consider the n-dimensional manifold M™ = T"2 x 3, where (X%,0%) is a
connected surface which is neither a disk nor a cylinder. We have that M"™ ¢ Cn, for every
n > 3. In fact, it follows from Fxample 3.5 that this claim is true for n = 3. Assume
this claim is valid for n — 1. Consider the hypersurface M™* C M™. It is well know that
M"Y represents a non-trivial homology class o € H,,_(M™, OM™) and every hypersuface of

M™ which represents the homology class a is homeomorphic to M™ 1. From the induction

hypothesis we have that M™* & C,_1. Therefore, M™ & C,,.

Theorem 3.3.2. Let (M,0M) be a n-dimensional manifold such that 3 < n < 7 and
M & C,. Then there is no metric on M with non-negative scalar curvature and mean convez

boundary.

Proof. We note that it follows from a Corollary 3.6 the result is true for n = 3. We proof by
induction on n. Assume the result is valid for n — 1. Assume there exists a metric g on M

such that R}’ >0 and H, gaM > (0. It follows from Theorem 3.1.3 that two cases can occurs.
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Case 1: There exists a metric h on M such that R, > 0 and H? = 0.

In this case, since M & C,., from the Theorem 3.3.1 we have that there exists a free-
boundary, minimal and stable hypersurface 3 properly embedded in (M, h) such that ¥ ¢
C~n,1. From the Theorem 3.1.4 there exists a metric on X with positive scalar curvature and
minimal boundary. However, this is a contradiction since ¥ ¢ C,_; and from the induction
hypothesis does not exists such metric.

Case 2: Ric)! =0 and B?M = 0.

Arguing as in the case 1, there exists a free-boundary, minimal and stable hypersurface
52 properly embedded in (M, g) such that ¥ ¢ C,_;. Since ¥ is free-boundary in (M, g), we

have

HY = HM — B?(v,v) = 0,

where v is a unit vector field of ¥ em (M, g). Also, it follows from the Gauss Equation and
of the stability of 3 that RgE = 0. However, this is a contradiction, since ¥ ¢ C,_1, from the
induction hypothesis, does not exists a metric on ¥ with null scalar curvature and minimal
boundary.

Therefore, there is no metric on M with non-negative scalar curvature and mean convex
boundary.

Example 3.23. Consider the n-dimensional manifold M™ = T"? x 3, where (X%,0%) is a
connected surface which is neither a disk nor a cylinder. we showed in the Example 3.22
that M™ & C,, for every n > 3. It follows from Theorem 3.3.2 that there is no metric on

M™ with non-negative scalar curvature and mean conver boundary, if 3 <n < 7.

For n > 4, we define inductively C,, as the set of all smooth n-dimensional manifolds
(M, 0M) such that every non-trivial class o € H,,_1(M,0M) can be represented by a hyper-
surface (3, 0%) such that ¥ € C,,_;. Note that C,, C C,., for every n > 3.

Theorem 3.3.3. Let (M,0M,g) be a Riemannian n-dimensional manifold, 3 < n < 7,
such that Ré” >0 and HgaM > 0. Then M € C,, or (M, g) is Ricci-flat with totally geodesic

boundary.

Proof. 1t follows from Theorem 3.2.4 that the result is valid for n = 3. Let us do it by
induction on n. Assume the result is valid for n — 1. Suppose that Ric, # 0 or By, # 0 and
M ¢ C,. It follows from the Theorem 3.1.3 that there exists a metric » on M such that
Ry, > 0 and H, = 0. Since M & C,, from the Theorem 3.3.1 we have that there exists a
free-boundary, minimal and stable hypersurface > properly embedded in (M, h) such that
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Y & C,_1. From the induction hypothesis we have that ¥ does not admit a metric with
positive scalar curvature and minimal boundary. This is a contradiction with the proposition

3.1.4. Therefore, M € C,, or (M, g) is Ricci-flat with totally geodesic boundary. |

Corollary 3.24. If a n-dimensional Riemannian manifold (M,0M), 3 < n <7, admits a

metric with positive scalar curvature and mean convex boundary then M € C,,.

Example 3.25. Consider the n-dimensional manifold M™ = I x T" 1. Arquing as in the
Ezample 3.22, we can show that M"™ & C,,, for every n > 3. Hence, from the Corollary 3.24,
there exists no metric on M"™ with positive scalar curvature and mean convex boundary, if

3<n<T.

Denote by M,, the set of all n-dimensional manifolds with non-empty boundary. We
have that C,, C én C M,,. Consider 3 < n < 7. Putting together what we have done so far:

(1) The n-dimensional manifolds of M,, \ C, do not admit a metric with non-negative

scalar curvature and mean convex boundary (Theorem 3.3.2).

(2) The n-dimensional manifolds of M, \ C,, do not admit a metric with positive scalar

curvature and mean convex boundary (Corollary 3.24).

(3) The metrics with non-negative scalar curvature and mean convex boundary in n-
dimensional manifolds of én\En are Ricci-flat with totally geodesic boundary (Theorem

3.3.3).

Lemma 3.26. Let (M,0M) be a n-dimensional manifold such that there is a non-zero degree
map F : (M,0M) — (X xT" 2,02 xT"2), where (3, 0%) is a connected surface andn > 3.
Then there ezists a properly embedded hypersurface (3,_1,0%,-1) C (M,0M) such that

1. 0 7& [Enfl] € anl(Ma 8M)7
2. The map Flg  :(3p-1,0%,1) = (X x 773,05 x T"%) has non-zero degree.

Proof. Without loss of generality, we assume that F is a smooth function. Consider
the projection p : ¥ x T" 2 — S given by p(z, (t1, -+ ,tn_2)) = tn_o, for x € ¥ and
(t1, =+ sty o) €T 2=8S"x--- xS Define f =poF : M — S'. It follows from the Sard’s
Theorem that there is # € S* which is a regular value of f and f|,,,. Define

Yoot = f710) = F7Y(D x T3 x {6}).

Note that 3, 1 C M is a properly embedded hypersurface which represents a non-trivial
class in H,_1(M,0M) and the map Flg  : (3,-1,0%,_1) = (X x 773,08 x T"®) has

non-zero degree. ]
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Theorem 3.3.4. Let (M,0M) be a n-dimensional manifold, , 3 < n <7, such that there is
a non-zero degree map F : (M,0M) — (3 x T" 2,05 x T"2), where (%,0%) is a connected
surface which is not a disk. Then there exists no metric on M with positive scalar curvature
and mean convex boundary. However, if ¥ is neither a disk nor a cylinder, then there exists

no metric on M with non-negative scalar curvature and mean convex boundary.
Proof. Firstly, we are going to prove the following claim.

Claim 6. Every n-dimensional manifold which admits a non-zero degree map to the manifold
Y x T2 wheren > 3 and (X,0%) is a connected surface which is not a disk, is not in the

set En.

We proof this claim by induction on n. Assume n = 3. Consider (M,0M) be a 3-
dimensional manifold such that there is a non-zero degree map F : (M,0M) — (X x
St 0% x S1). Tt follows from Lemma 3.26 that there exists a properly embedded surface
(39, 0%5) C (M, 0M) which represents a non-trivial homology class v € Ho(M,0M) and the
map Flg, @ (32,0%;) — (X,0%) has non-zero degree. It follows from Theorem 2.5.1 that
there is a properly embedded surface S, C M which represents the homology class a such that
its connected components are either spheres or essential surfaces. Since S5 and X5 represent
the same homology class in Hy(M,dM) and deg(F|y,) # 0, we have that F(S;) C X and
the map F[g : (S2,053) — (X,0%) has non-zero degree. Since the degree of a map is the
sum of the degree of such a map restricted to each connected component, it follows that
there is a connected component (55, 0S5) of Sy such that F3|s; 2 (S5,05%) — (X,0%) has
non-zero degree. Consequently, the first betti number of S} is greater than or equal to the
first betti number of . This implies that x(S5) < x(X). Since ¥ is not a disk, we have that
x(S%) < 0. This implies that S} is not a disk. It follows that S} is an essential surface in M
which is not a disk. Hence, M & Cs.

Assume this claim is true for n — 1. Consider (M, M) be a n-dimensional manifold such
that there is a non-zero degree map F : (M,0M) — (3 x T"2,0% x T™2). It follows from
Lemma 3.26 that there exists a properly embedded hypersurface (%,_1,0%,_1) C (M,0M)
which represents a non-trivial homology class o € H, (M,0M) and the map Fly,
(Xh_1,0%,_1) = (X x T"3,0% x T™?) has non-zero degree. From induction hypothesis we
have that ¥, & C,_;. Consider a hypersurface S,_; C M which represents the homology
class a. Since S,_; and ¥, 1 represent the same homology class in H,,_{(M,0M) and
deg(Flg, ) # 0, we have that F'(S,_1) C X x T"% and the map F|g  : (Sp-1,05.-1) —
(X x T™=3,0% x T"3) has non-zero degree. From induction hypothesis we have that S, | ¢
C,_1. Hence, M ¢ C,.. Therefore, it follows the claim.
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From Claim 6 we obtain that M & C,. Therefore, it follows from Corollary 3.24 that there
exists no metric on M with positive scalar curvature and mean convex boundary. However,
note that if ¥ is neither a disk nor a cylinder, we can replace C by C in the Claim 6 and
conclude that M ¢ C,. Consequently, from Theorem 3.3.2, we have that there exists no

metric on M with non-negative scalar curvature and mean convex boundary. [ ]

Corollary 3.27. We have that

1. The manifold (I x T V)#N admits no metric with positive scalar curvature and mean

convex boundary.

2. The manifold (T2 X T 2)#N admits no metric with non-negative scalar curvature and

mean convex boundary

where N is a closed manifold of dimension 3 <n < 7.
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Chapter 4

Disks area-minimizing in mean convex

n-dimensional Riemannian manifold

Consider (M,0M,g) a n-dimensional Riemannian manifold. Let Fj; be the set of all
immersed disks in M whose boundaries are curves in M that are homotopically non-trivial
in OM. If Fpr # 0, we define

A(M,g) = jnf [T e LM, g) = inf [05]y.
The goal of this chapter is to prove the following theorem.

Theorem 4.0.1. Let (M,0M, g) be a (n+2)-dimensional Riemannian manifold, 3 < n+2 <
7, with positive scalar curvature and mean convex boundary. Assume that there is a non-zero

degree map F : (M,0M) — (D* x T",0D* x T™). Then,

1. .
5 inf RéMA(M, g) + inf HgaME(M, g) < 2m.

Moreover, if the boundary OM 1is totally geodesic and the equality holds above, then the
universal covering of (M, g) is isometric to (R™ x g, + go), where 0 is the standard metric

in R™ and (X0, go) is a disk with constant Gaussian curvature %inf Rg/[ and 0% has null

geodesic curvature in (3o, go)-

4.1 Warped product

In this section, we are going to study the geometry of special warped products that will
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allow us to better understand the content of this chapter, namely

k
(M xTF g+ fgdtf,)

p=1
where (M, g) is a Riemannian manifold and fy,--- , fr € C*°(M) are positive functions.

Let (M, g1) and (Ms, g2) be Riemannian manifolds and let f € C°°(M;) be a positive
function. On the manifold M; x M, consider the warped metric g; + f2g». Denote by V!
and V2 the Riemannian connections of (M, g;) and (M, g3), respectively. The Riemannian
connection V of (My X My, g1 + f2go) is

X(f)e, . Yi(f)
;o

Vxix,(Y1+Ys) = Vi Y1 + Xo + V3, Ys — f92(X2,Y2)V,, f,

for every X;,Y; € X(M;),i=1,2.
The curvature endomorphism R of (M; X Mo, g; + f2go) satisfies:

<1> R(XbYl)Zl = Rl(Xin)Zl;
(2) R(X1,Y2)Z = —fga(Ya, ZZ)v}leglf;
(3) R(X1,Y1)Zy =0;

(4) R(X3,Y2)Z = 0;

1
f
(6) R(X2,Y2)Z> = R*(X2,Y2)Zo + g1(V, [, Vg, ) (92(Xa, Z2)Ya — 92(Z5, Y2) X5)

(5) R(X2,Y1)Zl = (V?,lf) (Yh Zl)XQ;

for every X;,Y;, Z; € X(M;), i = 1,2, where v§1f is the hessian of f and R!, R? are the

curvature tensors of (M, g1) and (Ma, g2), respectively.

Proposition 4.1. Let (M, g) be a m-dimensional Riemannian manifold and f € C*(M) a
positive function. Then the Ricci curvature of (M x S', g + f2dt?) is

1
o

. 1 .
RicM*S" = RicM

(V2f) — fA, fdi?,
where Ric™ is the Ricci curvature of (M, g).

Proof. Consider (xy,-++ ,Tp,t = Tmy1) a local chart in M x S! such that (21, ,2,) is
a local chart in M. Denote by VM the Riemannian connection of (M, g) and R, R the
curvature tensors of (M x S',h = g + f2dt?) and (M, g), respectively. Note that

m—+1 m 1
. M xSt kl kl
RZCZ-]- = E h Rkijl = E h Rkijl + FRtijt.
k=1 k=1
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Fori,5 =1,---,m, we have that

. - 1
RZC?]-JXSI = Z gklR]]gjl + FRtijt

k=1
1
.M 2
1
_ M 2
Furthermore,
- 1
RiC%X81 = Z A Riin + FRtitt =0,
k=1
and

m
. M xSt E kl
Rlctt == h Rkttl
k=1

= =Y "9 (VV,f.0)

k=1
_ kl (2
= —f Z 9 (ng) kl
k=1
- _ngf
Therefore, we have that
s MxSt M 1 2
Ric;;™ = Ric; — 5 (ng)ij
i 1
Ricy*S = —fA,f
RicM*S" = 0
for every 1,7 =1,--- ,m. [

Proposition 4.2. Let (M, g) be a m-dimensional Rieamannian manifold and f € C>°(M)
a positive function. Then the scalar curvature of (M x S, g + f2dt?) is

2

1

RMXS = Ri]w - ?Agf,

where R} is the scalar curvature of (M, g).

Proof. Consider (z1,+++ ,Tpm,t = Tpy1) a local chart in M x S such that (z1,--- ,2,,) is a
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local chart in M. Denote the metric h = g + f2dt?. From Proposition 4.1, we have that

m+1
1 . . 1
RMXS — § :hZ]RZCf\;[XS
1,j=1
m

. 1
= Z h”Ricf\]/-[XS1 + ﬁRiCi\t/lxgl
ij=1
- Zg Cij _?Zg ( gf)ij_? of
ij=1 ij=1
= R) - zAgf.
/

Proposition 4.3. Let (M, g) be a m-dimensional Riemannian manifold, > C M be a hy-
persurface and f € C*(M) be a positive function. Then, the second fundamental form of
Y x Stin (M x S, g+ f2dt?) is

B¥E = B — fu(f)dt*,
where v is a globally defined unit normal vector field in X and B* is the second fundamental
form of ¥ in (M, g).

Proof. Consider (z1,+++ ,Tpm_1,t = x,,) a local chart in ¥ x S! such that (zy,--+ ,Z,,_1) is a
local chart in . Denote by V and VM the Riemannian connections of (M xS, h = g+ f2dt?)
and (M, g), respectively. Fori,j =1,--- m — 1, we have that

0i(f)

Vo,0; = V50, Vo0 = Oy and V0, = —fV,f.
It follows that,

B = W(V,0;,v) = W(V30;,v) = g(V5!0;,v) = B,

and
B = h(Vg,0;,v) = @‘;f @y v) = 0.
Furthermore,
B = MVo,0nv) = W= fVef.v) = = [9(Vef.v) = = fr(]).
Therefore,
=B
B = =)
BXS = ¢
for every 1,7 =1,--- ,m — 1. [
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Proposition 4.4. Let (M, g) be a m-dimensional Riemannian manifold and fi,--- , fr €
C>(M) positive functions. Then scalar curvature of (M x TF g+ Z fgdti) is
p=1
RMXT —RM—2Z Agfy =2 > g(Vylog f,, Vylog f,),
1<p<q<k

where R} is the scalar curvature of (M, g).

Proof. We proof by induction on k. From Proposition 4.2, this result is valid for £ = 1.

k—1
Assume the result is valid for k£ — 1, i.e., the scalar curvature of <M x TF1 g+ Z f;dt?,)

p=1
is
RMXTT = RM 9 Z 7 Agfy—2 Y g(Vglog f,, Vylog f,). (4.1)
P 1<p<q<k—1
Note that,
k k—1
(M x TF g+ Z fjdti) = ((M x TF1) xS g+ Z frdi2 + f,fdti) .
p=1 p=1

It follows from Proposition 4.2 that

RMka _ RMXTk_l . EAhfk (4.2)
k

k-1
where Ay, is the laplacian in (N, h) = (M x TH1, Z f;dt}%).

p=1

Claim 7. We have that,

1
Ahfk:Agfk+Z 9V gfp, Vafi).
p=1 fp
In fact, consider (1, -+, ZTpm,t1 = Tins1, -+ 5 tk—1 = Tmyk—1) & local chart in N such that
(1, ,2y) is a local chart in M. Denote by V and Vj; the Riemannian connection of
(N, h) and (M, g), repectively. Note that
m+k—1
Anfr = Y BNV, Vifi,0))
ij=1
m m+k—1
= Z h”h(Vathfk, 8]) + Z hpph(vapvhfka 8p)
3,j=1 p=m+1
k—1
= Z g”h Vo,V fr, 0 )+ Z f2 Vatpvhfk,atp)
i,7=1
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Since f, is a function defined in M, we have that V, f, = V, fr. Consequently,

Apfe = Zg“h (Vo. Vg fr,0; +Zf2 (Vor, Vg fr,0,)

1,7=1

S A A +Zf2 (Yellla, 0, )

2,7=1

= Agfk‘l‘z%(fp)
p=1 P

k—1

1
- Agfk+zf 9(Vafp, Vafr).

p=1
Hence, it follows the claim.

It follow from (4.2), (4.1) and Claim 7 that

k—1
< T¥ 1
R = Ry_QZf_Agfp_2 Z 9(Vglog fp, Vglog fy)

1<p<q<k-—1

- Ay k_2z (Vofp, Vafi)

1
= R¥—2§ i;Agfp—Q > 9(V,log f,,Vylog f,)
p=1"P

1<p<qg<k-1

k—1
— 2> g(V,log f,, V,log fr)
p=1

k
= R;”—2Z Ngfy=2 Y g(Vylog f,, Vylog fy).
p:l

1<p<q<k

Proposition 4.5. Let (M, g) be a (m+1)-dimensional Riemannian manifold, ¥ C M a hy-

persurface and let fi,--- , fr € C°(M) be positive functions. Then, the second fundamental
k
form of ¥ x T* in (M xTF g+ ngdt;) is
p=1
k
BT = p¥ — Z fp’/(fp)dt;% (4.3)
p=1

where v is a globally defined unit normal vector field in ¥ and B* is a second fundamental

form of ¥ in (M, g). In particular,

=xTk 2
’B -

B+ (v(logu,))*. (4.4)
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Proof. We are going to proof the equality (4.3) by induction on k. From Proposition 4.3, the
equality (4.3) is valid for k = 1. Assume this is valid for k¥ — 1, i.e., the second fundamental

k—1
form of ¥ x TF!in (M x TF1 g+ Z f;dti) is

p=1
k—1
BT = BE =N fu(f)di. (4.5)
p=1
Note that

k—1
SxTF=(ExTY xS ¢ ((M X T xSt g+ ) frde + fﬁdti)

p=1

k
— (M x Tk,g+Zf§dt§> .

p=1

It follows from Proposition 4.3 that
BT = BT fu( fi)dt.

Therefore, from (4.5) we have that

k
B> = B* — Z fp’/(fp)dtfo-
p=1

For (4.4), consider a orthonormal basis { £y, - - - , E,, } of TY with respect to metric g. For
eachm+1 <[l <m+k, define £, = fl_—%’natl—m' Note that {E}, -+, Epnyx} is a orthonormal
basis of T'(X x T*) with respect to the metric g + 22:1 fgdti. It follows that

’Bsz’v‘Q _ mir:k <B§xT’f)2'
ij=1
From (4.3) we have that
BT B
By = 0
BT — 0
| BT = —vllog fim)

forevery i,7=1,--- mand l,r =m+1,--- k4 [, where r # [. This implies that

) m m—+k
‘BZXTk = 3B+ Y (wllog frm))?
ij=1 l=m+1

- ‘lez + Z(V(log )2
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4.2 Free boundary minimal k-slicings

4.2.1 Definition and Examples

Let (M,0M,g) be a n-dimensional Riemannian manifold. Assume there is a properly
embedded free-boundary hypersurface ¥,,_; C M which minimizes volume in (M, g). Choose
un—1 > 0 a first eigenfunction for the second variation .S, _; of the volume of ¥, _; in (M, g).

Define p,,—1 = u,—1 and the weighted volume functional V), | for hypersurfaces of ¥,_1,

Voo (5) = [ pucaos,
where dvsy, is the volume form in (X, g). Assume there is a properly embedded free-boundary
hypersurface ¥, _o C X,_; which minimizes the weighted volume functional V,, . Choose a
first eigenfunction u,_o > 0 for the second variation S5, 5 of the weighted volume functional
V.1 in X9, Define p,_o = pp_1un—o. Assume that we can keep doing this, inductively.

Hence, we obtain a family of free-boundary minimal submanifolds
Ek - Ek+1 c---C Enfl C (Envg) = (Mag)a

which was constructed by choosing, for each j € {k,--- ,n — 1}, a properly embedded free-
boundary hypersurface 3; C X;;; which minimizes the weighted volume functional V, ,,
where pji1 = pjsoljiy1 = Ujp1Ujpe - Up—1. We call such family of free-boundary minimal

hypersurfaces a free-boundary minimal k-slicing in (M, g).

Example 4.6. Let (N,0N,g) be a k-dimensional Riemannian manifold. Consider the fol-
lowing n-dimensional Riemannian manifold (N x T"% g+ §), where § is the flat metric on

the torus T . The family of hypersurfaces
NCNxS'CNxT?*C---CNxT"*1c(NxT" % g+9),

where p; = u; = 1, for every j = k,---,n — 1, is a free-boundary minimal k-slicing in

(N x T % g+9).

4.2.2 Geometric formulas for free-boundary minimal k-slincing

Let (M,0M,g) be a n-dimensional Riemannian manifold. Consider a free-boundary k-
slicing in M:
Ek c---C Z]n—l - (Enag> = (Mag)

Notation:
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e R;:= Scalar curvature of (X;, g).

e v;:= Unit vector field of X; in (3,41, g).

B;:= Second fundamental form of ¥; in (X;41, g).

Hj:= Mean curvature of ¥; in (X;41,9)

nj:= Outward unit normal smooth vector field on the boundary 0%; in (X;, g).
e BY%i:= Second fundamental form of 9%; in (3;, g) with respect to ;.

e HP%%i:= Mean curvature of 9%; in (3}, g).

Remark 4.7. Since ¥; is a free-boundary hypersurface in (X441, 9), for every j =k,--- ,n—
1, we have that

1. n; =np in 0%;, for every p > j.

n—1

2. H% = HO%w1 — B%ri(v;,v;) = HOM =3 " B4 (1, 1),
p=j

For each j € {k,--- ,n — 1}, define on X; x T"7 a metric

n—1
gi=9g+ Zuidti.
p=j
Note that, for every hypersurface ¥ C X;;, we obtain

Vol(Ex 775 gyua) = [ praady = V(D) (4.6

Since Y; is a free-boundary hypersurface of ¥;;; which minimizes the weight volume
functional V,, ., we have that ¥; x 7"~ is a free-boundary hypersurface which minimizes
volume in (3;11 x 7" g;11). We define

S, =% x TV e B, =%, x T"I7L,

Notation:

e B;:= Second fundamental form of ¥; in (f]jﬂ, Gj+1)-

e Rj;:= Scalar curvature of (X, §;41).

e R;:= Scalar curvature of (%}, ;)

e B;:= Second fundamental form of 9%; in (3;, §;).
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. flj:: Mean curvature of 623- in @,gj).

Lemma 4.8. For every j =k,--- ,n— 1, we have that

n—1

B; = B, — Z upv;i (uy)dt. (4.7)

p=j+1

In particular,

n—1
Bil* = B> + Y (v(loguy))*.

p=j+1
Proof. 1t follows from Proposition 4.5. [
Lemma 4.9. We have that

n—1

Bj = B%i — Z Up; (up)dtf,.
p=J

In particular,

By (v vy) = BP+ (v, 15).

Proof. Tt follows from Proposition 4.5. [ ]
Denote by S; the second variation for weight volume functional V) ., on X; and S;

the second variation for volume functional of 3 in (341, §j41). It follows from (4.6) that

S;(p) = S;j(p), for every ¢ € C*°(X;). This implies that

Si(p) = / (IVi0l? = ¢;0*)pjadu; — /8 @B (v;, v;) pjado;

2 X

- Op .
= —/ @Li(p)pj+1dv; +/ © <_3 , _90382”1(’/1,’0)) pj+1do;
55 %, 1

for every ¢ € C*(%;), where L; : C=(%;) — C=(%;) is a differential operator given by

L(p) = Ajp + cjp

where A; denote the Laplacian operator of (3;, g;41) and ¢; = %(Rjﬂ — R, + |B,|?). Here,

dv; and do; are the volume forms of (3;, g) and (0%;, g), respectively.

Consider A; the first eigenvalue of S; associated the first eigenfunction u;. We have that,

Li(u;) = —Aju; on X

s 4.8
ﬂ = UjBanJFl (l/j,Vj) on 823 ( )
on;

Lemma 4.10. For every j <p <n—1, we have that, in 0%,
B4 (1, 1) = (V1log uy, 1;).
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Proof. 1t follows from (4.8) that, in 0%,

1 0y,

Bazp+1 (Vp7 Vp) - an
P P

= (Vploguy, mp),
for every p =k, --- ,n — 1. Consider j < p <n — 1. Note that, in 0%,
Bazp“(ypa vp) = (Vploguy,, m;),

because we have 7, = 1, in 0%; (see remark 4.7). In ¥;, we can write

p—1
V,logu, = V;logu, + Z(Vp log u,, vy

I=j
Hence, in 03}, we have that

p—1
B (Vp, vp) = (V log up, ;) + Z<Vp log up, vi) (v, mj).-
=

However, we have n; L v; in 0%;, for every j <1 <n — 1. Therefore,

B82p+1 (Vp7 Vp) = <VJ log Up, 77j>

Lemma 4.11. For k < j7 <n — 1, we have that

n—1
R; = R;—2 Z u, Ay, — 2 Z (V,logu,, V;logu,)

p=j+1 j+1<p<q<n 1
3 2
— 2
= R, — 4p]Jrl Py E |V, logu,|.
p=j+1

(4.9)

(4.10)

Proof. The equality (4.9) follows from proposition 4.4. For the equality (4.10), note that

n—1
' Z V,logu,

p=j+1

p=j+1 q=j+1 p,g=j+1

n—1
= Z |V, log u,|* + 2 Z (Vjlogu,, V;logu,)

p=j+1 J+H1<p<g<n—1

It follows from (4.9) that

2

n—1
Z V;logu,

p=j+1

n—1
éj = Rj -2 Z UglAjUp—

p=j+1

p=j+1

46

n—1
+ Z |V log u,|?.

2 n—1 n—1 n—1
= < Z V;logu,, Z V; loguq> + Z (V;logu,, V;logug,)
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Since

2
—2Alogu, = —U—Ajup + 2|V, log u,|*
p
we have that

n—1 n—1 2 n—1
Ry = R;i—2 )Y (Ajlogu,+|Vilogu,[?) — | Y Vjlogu,| + Y |V;logu,l?
p=j+1 p=j+1 p=j+1
n—1 n—1 n—1 2
= R, — Z |V, log u,|* — 24, ( Z logup> -1V, ( Z logup>
p=j+l1 p=j+1 p=j+1
Since,
n—1
Z log u, = log(uj41ujr2 - - up—1) = log pj11
p=j+1
we obtain that
n—1
Rj = Rj - Z |V] IOgUp|2 - 2A] 10g Pi+1 — \VJ Ingj+1|2
p=j+1
= R;— 4pjj1A 2y Z |V log u,|?.
p=j+1
[ ]
Lemma 4.12. For k < j <n —1, we have that
n—1
R, = R;— QZu}lejup -2 Z (V,logu,, V;logu,) (4.11)
=j J<p<g<n-—1
= Ry + B2 +2) (4.12)
n—1 n—1
= RM+Y B +2> A, (4.13)
p=j p=j

Proof. The equality (4.11) follows from proposition 4.4. For the equality (4.12), note that

from proposition 4.2 that scalar curvature Z%j of

<2j X ,_Tni‘7 g; = =g+ Zu2dt2> = (ij X Sl,g]’ = ngrl + U?dt?)

is given by
R _ 2
Ri=R; — —A
J 1T 3 Uj
So, from (4.8)
2A] = —A U; — RJ_|_1 + R |B |2
u;
= Rj— Ry —|B|
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Hence, it follows the equality (4.12). To get (4.13) we iterate (4.12) n — j times. [ |

Proposition 4.13. If Ré” >0 and H!?M > 0 then

4/ V02 dv; > —2/ ©*H%ido; —/ O’ Ridv;,
5 0%, 55

J

for every ¢ € C*(%;) and j =k,--- ,n— 1.

Proof. Since ¥; minimizes the weighted volume functional V,,

for every ¢ € C*(%;). It follows that,

4/ Viel*pjradv; > 2/
25 2

for every ¢ € C*(%;). Since R)' > 0, from lemma 4.12, we have that R; > 0, for every
k<i<n-—1. It follows from the lemma 4.11 that

we have that S;(¢) > 0,

+17

¢j9° pjp1dvj + 2/@2 P? B (15, v5) pj1adoy,
J J

1 1
2¢; > —Rj +4p; 51 8j(p3 1)

Thus,
1 1
4/ Vel pjpadu; > —/ ij2pj+1dvj+4/ ;i (P )¢’ dv;
55 f 5

i / 0B (v, v5) pjaadoy,

0%,
1
for every p € C*°(%;). Replacing ¢ by ¢p, 7 at the last inequality, we obtain that
_% 9 2 _% % 2
4 IVilep )l piadv; > — | Rjptdoj +4 | p A0 (pf )¢ dy;
Xj Xj Xj
+2/ QOQBaZj+1 (Vj, l/j)dO'j.
0%,

Observe that
1 1 1
vj(‘zppjfl) = ‘:Ovjpjf1 + ijlvj(vo

This implies that,
—3 (2 —1 2 2 -3 12 -1 -1
IVi(ep, 2017 = pialViel” + oI Vp 417 + 200, 4(Vjp 2, Vie)
Thus,

_1 _1 _1
pi1|Vilep; )12 = IVl + ©*pin|Vip AP+ (Vilog p, 2, Vi(9?))
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Using integration by parts, we have that

1
_1 -1 3(10gﬂ_§1)
/ (Vjlogp, 2, V(¢*))dv; = — / p*Ajlog p; Adv; + / w2a—"+d0j
f f % 1j
_1 1 1
=+ [ Frhaplatn - [ 9080l P
J J

/ ©*(V;log pjy1,1;)do;
5

N | —

1 _1 1
= —/ 802|Vj IOgPJ?H’Qde"'/ 802Pj+21AjP;+1de

% %

/ ©*(V;log pji1,m;)do;
0%,

N | —

Then,

1 1
[ plVilen Pde, = 4 [ ViaPdu e [ Pol ok P
5, 5, 5

J J

1 _1 1
- 4 / ©*|V;log p2,, [Pdv; + 4 / CHTRYANT RN

X Xj

- 2/& ©*(V;1og pjy1,1;)do;

2

Since,
1 B 1
Vioid = =i Vibi
we obtain that
1 1
Pj+1|vjpj+21|2 = |V, log P;+1|2'
This implies that
EER, ) , —1 1
4/E pi+1|Vi(pp; )| dv; = 4/E Vel dvj+4/2 © pj1Ajpi 1 dv;
. ; .

J J

- 2 /8 ©*(V;log pjs1,n;)do;
P

Consequently,

4/ IV odv; > 2/ ©* (B? 1 (v;,v5) + (V;log pjt1, ;) do; —/ R;o%dv;.
Zj

%5 5,
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Since H;)M > 0, from the remark 4.7 and lemma 4.10 that

n—1
4/ |VolPdv; > 2/ ©* ZBQZP“(VP,VP) daj—/ R;*dv;

p=j

= 2/ ©* (HgM — Hazf)daj —/ R;o*dv;
1o}

J X

Z —2/ ¢2H82jd0j—/ Rjg02d?)j
0%

4/ V0Pdv; > —2/
P %,

Therefore,
©*H%ido; — / ©*R;dv;,

X

for every p € C*(%;). u

Teorem a 4.14. Let (M,0M, g) be a n-dimensional Riemannian manifold such that R;VI >0

and HgaM > 0. Consider the free boundary minimal k-slicing in (M, g)
Yp C- C Yy C Y, =M.
Then:

(1) The manifold ¥; has a metric with positive scalar curvature and minimal boundary,

forevery3 <k <j<n-—1.
(2) If k = 2, then the connected components of Yo are disks.
Proof.

(1) Consider j € {k,---,n — 1}, here k > 3. It follows from Proposition 4.13 that

—4]€J/ |Vj§0|2d1)j < 2]@/
5 os;

3

§02H82jd0'j —|— k’j / g02Rjdvj,

%

for every ¢ € C*°(%;) such that ¢ # 0 and k; = Lljj;_Ql > (. This implies that

-1
/ Vel dv; + ij/a p?H™ do; + kj/ p*Rjdv; > (1 — 4’%’)/ Vil duy,
O D Zj

J X

for every ¢ € H'(X;) such that ¢ # 0. It follows that

/ |V02dvj + 2k; / ©?*H%ido; + k; / O’ Ridv;
. P %5 P
A\ = inf > 0.

0ZpeH(Z5) / gdev‘
]
)

J

Therefore, there exists a metric in ¥ with positive scalar curvature and minimal bound-

ary (see section 2.4).
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(2) From proposition 4.13 we have that

4/ (Va2 dvy > —2/ @2H822d02—2/ ©? K dvs,
S 8%,

3o

for every ¢ € C°(Xs) such that ¢ # 0, because Ry = 2K5, where K, is the Gaussian

curvature of (X9, ¢). In particular, for ¢ = 1 we have that

/ H?doy + | Kdvy > 0. (4.14)
0X9

Let S be a connected component of 5. From inequality (4.14) and from Gauss-Bonnet

theorem, we have that x(S5) > 0. Therefore S is a disk.

4.3 Proof of the main theorem

Proposition 4.15. There is a free boundary minimal 2-slicing

ZQCEgC"‘CEn+1C(M7g>7

such that Xy, is connected and the map Fy, := Flg : (3§, 0%) — (D* x T*72,0D* x T*7?)

has non-zero degree, for every k =2,--- . n+ 1.

Proof. Without loss of generality, we assume that F' is a smooth function. Consider the

projection p; : D? x TV — S* given by

pj(l" (tb T ?tj)) = tj’

for every x € ¥ and (t1,--- ,t;) € T9 =S' x .-+ x SL.
We will start constructing the manifold ¥,,,,. For this, define f,, = p,, o F. It follows from
the Sard’s Theorem that there is 6, € S* which is a regular value of f, and f,|,,,. Define

Spir = f7H0,) = F1(D* x T" ! x {6,}).

n

Note that S, 11 C M is a properly embedded hypersurface which represents a non-trivial
homology class in H,,41(M,0M) and Flg  : (Sps1,08,41) — (D? x T771,0D? x T"1) is
a non-zero degree map. It follows from Theorem 3.3.1 that there is a properly embedded
free-boundary hypersuface >/, C M which minimizes volume in (M, g) and represents the
homology class [S,41] € Hp1(M,0M). Since X, and S, represent the same homology
class in Hyy(M,0M), we have that Fly, —: (3,,,0%,,) — (D% x T"1,0D? x T 1)
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has non-zero degree. Since the degree of a map is the sum of the degree of such a map
restricted to each connected component, we have that there is ¥,,11 a connected component
of 7,4, such that F,uy = Flg 1 (Zn41,08,41) — (D? x T"71,0D? x T"') has non-zero
degree. It follows from Lemma 33.4 in [33] that ¥, is still a properly embedded free-
boundary hypersurface which minimizes volume in (M, g). Consider u,.; € C*(3,41) a
positive first eigenfunction for the second variation S, of the volume of ¥, in (M, g).
Define p, 11 = 1.

By a similar reasoning used to construct X,.;, we obtain a properly embedded free
boundary connected smooth hypersurface ¥, C 3,11 which minimizes the weighted volume

functional V,, ., and F, := Fly, : (X,,0%,) = (D*xT"2 0D x T"~?) has non-zero degree.

Pn+1

Consider u,, € C*(X,41) a positive first eigenfunction for the second variation S, of V, .,

on X,. We then define p,, = u,p,+1 and we continue this process. [ |
Lemma 4.16. We have that X9 € Far.

Proof. Since Ré” > (0 and HgM > 0, it follows from Theorem 4.14 that ¥, is a disk. Since
there is a non-zero degree map Fy : (33,0%) — (D? 0D?), then the map By, © 0%y —
OD? has non-zero degree. It follows that 9%, is a curve homotopically non-trivial in M.

Therefore, X9 € Fyy. [

Lemma 4.17. We have that,

1. .
§1nfRéW]22|g +1anjM\22]g < 2.

Moreover, if equality holds then Ry = inf R!]]W, H?EZ = inf HgaM and uyly, are positive

constants, for every k =2,--- . n+ 1.

Proof. From the Remark 4.7 and Lemma 4.10

n+1
inf H;?M < Z<V2 log uy, o) + H?2.
p=2
This implies that
n+1
inf HM 0], < / (Vayloguy,, m)doy + | Hdoy. (4.15)
2 J 0% 0%
From Lemma 4.12, we have that
n+1
Ry = Ry— 2Zu;1A2up -2 Z (Valogu,, Valogu,)
p=2 2<p<g<n+l
n+1 n+1 2 phl
= Ry—2) u'Mou,— DX, + ) |X,P
p=2 p=2 p=2
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where X, := Vslogu,. Since
u;lAgup = Aglogu, + | X, %,

we have that

n+1 n+1 2 n+1
Rngg—QZAzlogup— ZXP —Z|Xp|2.
p=2 p=2 p=2
Since Ry > inf Ré” , we obtain
L fRM|%,|, < 1/ Ryd
—in - v
5 g 122l = 5 ., 20V
1 n+1
= = Rodvy — Ay log u,duy
2 D)) p; Py} 8
1 ntl 2 | !
- = X d?]g - = / |X |2d2)2

sy
< = Rodvy — As log u,dvs.
> )y, 20V p; ., 2 paU2

It follows from Divergence Theorem that

1 1 n+1
5 inf RM|5,|, < 5 [ FRadvs — Z/ (Valog uy, no)dos. (4.16)
P 2 /O

By inequalities (4.15) and (4.16), we have that

1 1

—inf RM|%,|, + inf H?M|0%,|, < —/ Rodv, + H?2 e,
2 2 s, %

Therefore, from Gauss-Bonnet Theorem, we obtain

1
5inf RM|22|g + ianaM|822|g < 2mx(39) = 27.

However, note that if holds equality then the field X, = 0 for every p = 2,--- ,n + 1.

It follows that up|22 are positive constants for every p = 2,--- ;n 4+ 1. Consequently, Ry =
Ry > inf R) and H?* > inf H). Therefore, from Gauss-Bonnet theorem, we have that
Ry = inf Rg/f and H% = inf H;)M. [

Corollary 4.18. We have that,
1. .
5 inf RéVIA(M, g) + inf H?ME(M, g) < 2m.

Moreover, if equality holds then R, = inf Rg/[, HP%2 — inf HgaM and uk‘zg are positive

constants, for every k =2,--- ,n+ 1.

53



Bibliography

[10]

[11]

Ambrézio L. - Rigidity of area-minimizing free boundary surfaces in mean convex three-

manifolds, Journal of Geometric Analysis, Volume 25 (2015), Issue 2, 1001-1017.

Bray H., Brendle S., Eichmair M. and Neves A. - Area-minimising projective planes in

three-manifolds. Comm. Pure. Appl. Math. 63 (1980), 1237-1247.

Bray H., Brendle S. and Neves A. - Rigidity of area-minimising two-spheres in three-

manifolds. Comm. Anal. Geom. 18 (2010), 821-830.

Cai M. and Galloway G. - Rigidity of area minimising tori in 3-manifolds of nonnegative

scalar curvature. Comm. Anal. Geom. 8 (2000), 565-573.

Carlotto A. and Li C. - Constrained deformations of positive scalar curvature metrics.

arXiv:1903.11772v2 (2019).

Carmo M. P. - Geometria riemanniana, Projeto Euclides, Instituto de Matematica Pura

e Aplicada, 5 ed., Rio de Janeiro (2011).

Chen J., Fraser A. and C. Pang C. - Minimal immersions of compact bordered Riemann

surfaces with free boundary.

Colding T. H. and Minicozzi W. P. - A course in minimal surfaces, Graduate studies

in mathematics, American Mathematical Society (2011).

Escobar J. F. - The Yamabe problem on manifolds with boundary, Jour. Diff. Geom. 35
(1992), 21-84.

Federer H. - Geometric measure theory, Die Grundlehren der mathematischen Wis-

senschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.

Fraser A. and Li M. - Compactness of the space of embedded minimal surfaces with free

boundary in three-manifolds with nonnegative Ricci curvature and convexr boundary.

o4



BIBLIOGRAPHY

[13]

[14]

[15]

[22]
23]

[24]

[25]

[26]

[27]

Gromoll D. and Meyer W. - On complete open manifolds of positive curvature, Ann.

Math., 90 (1969), 75-90.

Gromov M. - Stable mappings of foliations into manifolds, Izv. Akad. Nank SSSR Ser.
Mat., 33 (1969), 707-734; English transl., Math. USSR-Izv., 3 (1969), 671-694.

Gromov M. and Lawson H.- Positive scalar curvature and the Dirac operator on complete

Riemannian manifolds, Inst. Hautes Estudes Sci. Publ. Math. No. 58 (1983), 83-196.

Gromov M. and Lawson H. - Spin and scalar curvature in the presence of a fundamental

group. I, Ann. of Math. (2) 111 (1980), no. 2, 209-230.

Gromov M. and Lawson H. - The classification of simply connected manifolds of positive

scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423-434.

Hass J., Rubinstein J. H. and Wang S. - Boundary slopes of immersed surfaces in 3-

manifolds, J. Differential Geometry, 52 (1999), 303-325.

Hatcher A. - Notes on basic 3-manifold topology.

Hempel J. - 3-manifolds, Annals of Math. studies 86, Princeton Univ. Press 1976.
Jaco W. H. - Lectures on Three-Manifold Topology, American Mathematical Soc., 1980.

Kazdan J. and Warner F.- Prescribing Curvatures, Proc. Symp. in Pure Math. 27 (1975),
309-319.

Lee J. M. - Riemannian manifolds: An introduction to curvature, Springer Verlag (1997).
Martelli B. - An Introduction to Geometric Topology, arXiv:1610.02592 [math.GT], 2016.

Mazet L. and Rosenberg H. - On minimal spheres of area 4w and rigidity.Comment.

Math. Helv. 89 (2014) 921-928

Meeks W., Simon L. and Yau S. T. - Embedded minimal surfaces, exotic spheres, and

manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621-659.

Micallef M. and Moraru V. - Splitting of 3-manifolds and rigidity of area-minimising
surfaces. arXiv:1107.5346.

Morgan F. - Geometric measure theory. A biginner’s guide. Fourth edition. Elsevier/

Academic Press, Amsterdam,2009. viii+249 pp.

55



BIBLIOGRAPHY

28]

[31]

[32]

[33]

[35]

Nunes 1. - Rigidity of Area-Minimising hyperbolic surfaces in three-manifolds. PhD.
thesis. IMPA (2011).

Nunes L. - Rigidity of Area-Minimising hyperbolic surfaces in three-manifolds. J. Geom.

Anal. 23 (2013), 1290-1302.

Schoen R. and Yau S. T.- Existence of incompressible minimal surfaces and the topology
of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110

(1979), no. 1, 127-142.

Schoen R. and Yau S. T. - On the structure of manifolds with positive scalar curvature,

Manuscripta Mathematica, 28 (1-3), 159-183,1979.

Schoen R. and Yau S. T. - Positive Scalar Curvature and Minimal Hypersurface Singu-

larities, arXiv:1704.05490 [math.DG], 2017.

Simon L. Lectures on geometric measure theory, Proceedings of the Centre for Mathe-
matical Analysis,Australian National University, vol. 3, Australian National University,

Centre for Mathematical Analysis,Canberra, 1983. MR 756417.

Topping P. - Lectures on the Ricci Flow, Volume 325 of Lecture note series, London
Mathematical Society, Issue 325 of London Mathematical Society Lecture Note Series,
London Mathematical Society, 2006.

Zhu J. - Rigidity of area-minimising 2-spheres in n-manifolds with positive scalar cur-

vature. arXiv:1903.05785v3. 2019.

56



	Introduction
	Preliminaries
	Initial concepts
	Geometry of submanifolds
	Stable minimal hypersurfaces with free boundary
	Conformal Laplacian with minimal boundary conditions
	Topology of 3-dimensional manifolds
	Essential surfaces
	Prime 3-dimensional manifolds


	Topological obstructions to the existence of metrics with non-negative or positive scalar curvature and mean convex boundary
	Technical results
	3-dimensional case
	n-dimensional case, 3n7

	Disks area-minimizing in mean convex n-dimensional Riemannian manifold
	Warped product
	Free boundary minimal k-slicings
	Definition and Examples
	Geometric formulas for free-boundary minimal k-slincing

	Proof of the main theorem


