ScienceDirect

Available online at www.sciencedirect.com

IFAC “*i%

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 53-4 (2020) 89-94

Automatic Translation of Blocking Flexible
Job Shop Scheduling Problems to Automata
Using the Supervisory Control Theory

Daniel Sarsur C.* Patricia N. Pena **
Ricardo H. C. Takahashi ***

* Graduate Program in Electrical Engineering - Universidade Federal
de Minas Gerais, Belo Horizonte, Brazil (e-mail: danielsc@ufmg.br).
** Department of Electronics Engineering - Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil (e-mail: ppena@ufmg.br).
** Department of Mathematics - Universidade Federal de Minas
Gerais, Belo Horizonte, Brazil (e-mail: taka@mat.ufmg.br).

Abstract: This work presents an algorithm to automatically translate a Blocking Flexible
Job Shop Scheduling Problem modeling into automata using the Supervisory Control Theory.
Different problems of the literature are analyzed in their textual form and the algorithm returns
an automaton that implements the closed-loop behavior under the Supervisory Control Theory.
A heuristic is applied to find, among all sequences, the sequence that minimizes the makespan.
With our approach, we find makespan values near to those in the literature. This methodology
faces memory usage boundaries, but it was able to find solutions for instances of some well-known

problems.

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0)

Keywords: Supervisory Control Theory; Optimization; Job Shop Scheduling; Blocking;

Application;

1. INTRODUCTION

Over the years the task scheduling problem has been
increasingly studied due to its importance to the industry.
This problem consists on a decision-making process and
deals with the resource allocation in order to optimize
an objective (Baker and Trietsch, 2013). In the problem
formulation, a number of jobs, divided into operations,
must be assigned to available machines. Different environ-
ments can be found depending on how jobs are processed,
like unrelated parallel machines, flow shop, job shop, open
shop, and others (Pinedo, 2016).

The job shop scheduling problem (JSSP) defines that each
job has its own predetermined route to be processed and
they can be different from each other. A generalization of
this problem is the flexible job shop scheduling problem
(FJSSP) where an operation can be processed by more
than one machine. In this case, each job may have more
than one route (Pinedo, 2016). Brucker et al. (1994),
Adams et al. (1988) and Van Laarhoven et al. (1992) are
some works dedicated to solve the FJSSP, using different
techniques.

This work focuses in the Blocking FJSSP where a machine
can only release the processed job if the next machine is
available, otherwise it remains blocked. This scenario is
pretty common in manufacturing systems where there are
no intermediate buffers between the machines (Mascis and
Pacciarelli, 2002).

Generally, precedence relation and processing times at
each machine are presented in tables or in textual form.

The first one is more suitable for visual interpretation
while the second one is easier to be read by software. Each
set of data of a problem can also be called an instance.

It is important to mention the common usage of a discrete
event system abstraction to represent the behavior of a sys-
tem. The machine’s state changes with events occurrences,
that initiates and ends an operation in the machine. The
languages and automata framework (Hopcroft et al., 2001)
is used in this work.

Along with the automata representation, we use the Su-
pervisory Control Theory (SCT) (Ramadge and Wonham,
1989) to restrict the behavior of the plant to a mini-
mally restrictive and nonblocking closed loop behavior.
The SCT uses automata to model the open loop plant and
the system restrictions to generate a supervisor, an agent
that enforces the legal behavior. Besides that, the entire
problem search space is contained in the supervisor.

Therefore, the main purpose of this work is to generate au-
tomatically the automaton that models a Blocking FJSSP
from instances in the textual form as they are found in the
literature. Other goals are: to generate a supervisor that
models the closed-loop behavior of each problem and apply
to them an heuristic to minimize makespan. Thus, we show
that it is possible to use DES and SCT to solve a practical
problem of a different area, specifically, the Operational
Research Area.

The paper is organized as follows. The next section in-
troduces preliminary concepts to help understanding the
results. Section 3 presents the procedure to automatic

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2021.04.009

90 Daniel Sarsur C. et al. / IFAC PapersOnLine 53-4 (2020) 89-94

translate the problem and some information about the su-
pervisors found. The following section gives the makespan
results when a heuristic is applied to the mentioned super-
visors. Section 5 discuss the achievements and difficulties
of this work.

2. PRELIMINARIES

Concepts related to the Blocking Flexible Job Shop
Scheduling Problem are introduced in Section 2.1. Then,
we introduce the main concepts related to languages, au-
tomata (Section 2.2) and the Supervisory Control Theory
(Section 2.3). In Section 2.4 some considerations about the
“blocking” term are presented.

2.1 Blocking Flexible Job Shop Scheduling Problem

The Flexible Job Shop Scheduling Problem (FJSSP) is one
of the variations of the task scheduling problems, which
deals with resource allocation to complete tasks. The tasks
are called jobs and the resources are called machines. A set
of n jobs {Ji}, <, <, consisting of h operations {O; }, <,
must be processed by a set of m machines {My},_, .,
with a processing time of p; ;. Each machine can process
one operation at a time.

Table 1 presents the assignment of operations’ processing
time in relation to the machines. A value p € R, is
assigned to an operation if it can be processed by a
machine and an infinite value (c0) is assigned if it cannot
(Behnke and Geiger, 2012).

Table 1. Processing time assignment for the
FJSSP with total flexibility

Di,jk My My, M,
J1 01,1 P1,1,1 P11,k P1,1,m
O1,2 P1,2,1 P1,2,k P1,2,m
O1,ny | P1hyl Plhyk P1,hy,m
Ji 0i1 Pi1,1 Pilk Di,1,m
O; 2 Di,2,1 Di 2,k Di,2,m
Oi,}Li Pi,hji,1 Pi,hj,k Pih;,m
Jn On,l Pn,1,1 Pn, 1,k Pn,1,m
On,? Pn,2,1 Pn,2,k Pn,2,m
On,hn Pn,hy,1 Pn . hy,k Pn,hy,,m

The FJSSP considers the existence of unlimited buffers
between the machines, which means that when a machine
processes an operation, it becomes immediately available
to receive the next operation. That kind of statement is
only possible for simulation purposes, because in the real
world is not possible to conceive a storage with unlimited
space. A realistic scenario considers that buffers are limited
or nonexistent. In this last case, the machine plays the
role of the buffer keeping the job until the next machine
is available to receive it. This machine is, then, blocked to
process the next job. When this restriction is considered
the problem is called Blocking FJSSP.

Two different cases of blocking must be considered: block-
ing with swap (BWS) and blocking no-swap (BNS). In a
cycle of two or more machines blocked, each one waiting

for another machine of this cycle, a swap moves all jobs,
simultaneously, to the next machine. When a swap is not
allowed, that situation leads to a deadlock.

Some studies (Pranzo and Pacciarelli, 2016) and (Louaqad
and Kamach, 2015) mention the solution infeasibility as an
issue in Blocking FJSSP. Depending on how an algorithm
is implemented, a solution that is found may not be
feasible. An alternative is to refuse it, which is a waste of
computational resources. Another alternative is to go back
a few steps and try to find a new path to the solution.
It’s important to consider that there are no guarantees
that the new path will lead to a feasible solution, so this
process may happen several times, which is also a waste
of computational resources. To work around this problem,
some techniques can be used, such as the one chosen in
this work.

2.2 Discrete Event Systems

Discrete event system are dynamic systems driven by
events, which are internal and external entities that in-
teract with the model changing its state instantly. These
events can represent a sensor signal, the push of a button,
the end of a task, etc. This kind of system is different from
those driven by time, for example, where the state changes
continuously and its solutions are based on the Classical
Control Theory.

Let ¥ be the finite and nonempty set of events, called
alphabet. A finite sequence of events from an alphabet is
called a string. The set of all possible strings built from
alphabet Y, is called Kleene Closure ¥*, and it includes
the empty string e. The length of a string is defined by
|o109...0;] = i, where & > 0. The length of the empty
string is |e| = 0.

The concatenation of two strings is represented by su,
where s,u,su € %*. A string s is prefix of t € X*, s < ¢,
if Ju € ¥* such that su = t. A language is defined as
a subset L C ¥* and the prefix closure L of a language
L C ¥* is the set of all string prefixes in L, expressed by
L ={s e ¥*s <t for somet € L}.

Automata are oriented graphs whose vertices are the states
and the edges are the transitions. A deterministic finite
automaton is defined as a 5-tuple G = (Q, %, 0, g0, Qm),
where Q is the finite set of states, X the alphabet, § : @ x
¥ — (@ the transition function, gg € @ the initial state
and @,, C @ the set of marked states. An automaton
is deterministic if §(¢,0) = ¢1 and §(¢,0) = g2 implies
q1 = q2.

The transition function can be extended to strings in the
form 6(q,08) = ¢ if 6(q,0) = = and §(z,s) = ¢/, where
s € ©* and 0 € X. The active event function I' : Q — 2%
is given by the event set o € X, in a given state ¢, where
0(g,0) is defined, 6(q,0)!.

The automaton generated language is given by L(G) =
{s € X*|6(qo, s)!} and represents the set of strings that,
starting from the initial state, leads to some state of the
automata G. The automaton recognized language is given
by Ln(G) = {s € ¥*|s € L(G) and §(qo,s) € Qm} and
represents the set of strings that, starting from the initial
state, leads to some marked state ¢ € Q,, of G.

Daniel Sarsur C. et al. / IFAC PapersOnLine 53-4 (2020) 89-94 91

An important operation to represent the combined behav-
ior of automata is the parallel composition. This operation
is applied to automata G; = (@1, 21, 01,901, @m1) and
G2 = (Q2,%2, 02,02, Qm2) leading to Gi2 = Gy || G2 =
(Q1 X Q2,%1 U Xy, 012, (o1, g02); @m1 X Qma), with
512 = 6(((]17 QQ),U) =
(01(q1,0),02(q2,0)),
(01(q1,0),42),
(q1,02(g2,0)),
undefined,

ifo e F] (ql) N FQ(QQ)
ifo e Fl(ql)\ZQ

if o S FQ(QQ)\Zl
otherwise

where I'(¢)\X indicates subtraction of sets.
2.8 Supervisory Control Theory

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) allows to find a nonblocking and mini-
mally restrictive supervisor that implements restrictions
regarding safety and liveness. The SCT leads to a control
structure that works disabling events that lead the system
to unsafe behaviors.

The open loop system is called plant and its behavior
can be found by the parallel composition of each machine
G = ||G;, where 7 is the machine index. The set of system
restrictions, so called specifications, is the result of the
parallel composition of each specification F = || E;.

For the SCT modeling the alphabet is splitted into two
disjoint subsets ¥ = X. U X,.. The first one, X, is
composed by the controlled events and the second one X,

is composed by the uncontrolled events, which cannot be
disabled.

The parallel composition between the plant and the spec-
ifications leads to the desired closed loop behavior K =
G| E, so L(K) C L,,(G). The automaton K is said to
be controllable regarding G if KX,. N L(G) C K.

The controllability property establishes that uncontrol-
lable events cannot be disabled. If the supervisor is not
controllable, the supremal controllable and nonblocking
sublanguage SupC(K,G) C K must be found. This is
done by eliminating all the states that disable uncontrolled
events and then checking for the controllability property
until it becomes satisfied.

In this case, the supervisor contains all sequences that
respect the restrictions and it can be considered as the
optimization problem search space. It means that any
string chosen from the closed loop behavior is certainly
feasible, so there will be no waste of computational re-
sources dealing with infeasible solutions, which is the main
advantage of using the SCT to model the Blocking FJSSP.

2.4 “Blocking” Meaning Considerations

The word “blocking” has different meanings depending on
the context in which it appears.

When in SCT context the term represents a scenario in
which a deadlock or a livelock occurs in a system. Deadlock
characterizes the situation where the system is stuck in a
state and this state is not a marked state, where a task
is ended. In the Blocking FJSSP, when this happens, the

system crashes because some of the processes involved are
unable to complete their tasks. A livelock is when the
system gets stuck in a cycle of actions that never take
the system to complete a task.

When it comes to task scheduling problems, “blocking”
exists when buffers are limited or nonexistent, so one
machine needs to hold a job until the next machine can
receive it. Thus, the job that remains on the machine
blocks it from processing another job. Although a blocking
in JSSP problems makes deadlocks possible, the difference
in both contexts should be clear.

3. AUTOMATIC TRANSLATION

A set of benchmark problems from the literature was
chosen to perform the automatic translation, presented in
Table 2. The modeling was done considering that swap is
not allowed.

Table 2. FJSSP Instances

Instances Jobs | Machines Reference
mt06, 10, 20 6..20 5..10 Muth et al. (1963)
mk01..10 10..20 4..15 Brandimarte (1993)
01..18a 10..20 5..10 Dauzere-Péres and Paulli (1997)
la01..40 10..30 5..15 Lawrence (1984)
orbl..10 10 10 Applegate and Cook (1991)
mt10_, setb4_, seti5_ | 10..15 11..18 Chambers and Barnes (1996)
abz5..9 10..20 10..15 Adams et al. (1988)
carl..8 7..14 4.9 Carlier (1978)
hurink s,e,r,v data 6..30 4..15 Hurink et al. (1994)

3.1 Instance Interpretation

All the information related to machine assignment and
processing times for each operation are, typically, pre-
sented in two different ways. One of them is as a table like
Table 1 and the other is in a textual format as presented
in Figure 1. The first one is more appropriate for visual
interpretation and the second one is more appropriate for
software interpretation.

Hurink_edata_mt0§ - o x

6 1.15
3

w
@

=)
©
=)

B
NE RN e
MWW
WAoo e
PRRORR
W e u W e
FwrRrw
N N
IRV RSV N
Puuneeo
E C E T
[EN SRS
boE W
PNRRREN
EARwWworo
S
FRRroE W
NSRS
Bwo ks w
PR RroRR
[EENT
PR oR

Figure 1. Instance example

The first row of the textual file has at least two fields: 1)
number of jobs n; 2) number of machines m; 3) (optional)
mean of the number of machines able to process each
operation, which indicates the problem flexibility.

In the example of Figure 1, the first row is

6 6 1.15

which represents a problem with 6 jobs, 6 machines and
1.15 machines per operation.

The first row is followed by n rows with the data of each
job. The first value of each row indicates the number
of operations h of the job and is followed by h sets of
data for each operation: the first value is the number of
machines r that can process that operation followed by
r pairs (machine, processing time). An example is shown
based on the instance presented in Figure 1.

92 Daniel Sarsur C. et al. / IFAC PapersOnLine 53-4 (2020) 89-94

The second line has all data related to the first job (J1) as
presented below:

h O11 O1,2 O1,3
[I I I
6 1 3 1 1 1 3 1 2 6
(— I — I — |
r=1 pair r=1 pair r=1 pair
01’4 01,5 O1,6

[I I I
1 4 7 2 6 3 4 3 1 5 6
[[— I I — J

r=1 r=2 pair

pair pair pair r=1
In this job, the first operation (O,) is performed by
machine 3 and has a processing time of 1 unit. The second
operation (Oq,2) is performed by machine 1 with process-
ing time of 3 units. Only operation O; 5 can be processed
by two machines which are machine six and four, both
with processing time of three units. The interpretation of

this line leads to Table 3.

Table 3. Processing time assignment for the

given job
Di,j My Mz Mz My Ms Ms
J1 O1,1 00 00 1 0o 00 00
O1,2 3 0o 0o 0o 0o 0o
O1,3 00 6 00 00 00 00
O1,4 S oS [7 [S
O15 0o 0o 0o 3 0o 3
O1,6 0o 00 00 0o 6 0o

8.2 Blocking FJSSP Modeling as Automaton

The main purpose of this work is to develop a method to
automatically translate a Blocking FJSSP into automata,
with the objective of minimizing makespan upon such
automata. The job modeling as an automaton is done
based on the following steps:

e create an automaton for each job;
e cach operation is composed by a pair of events, one
for its beginning and other for its ending;:
- events initiated with the letter a are controllable
and represent the beginning of an operation;
- events initiated with the letter b are uncontrol-
lable and represent the end of an operation;
- the index of each event is ijkl, where:
- 1 refers to the job;
- j refers to the operation;
- k refers to the current machine;
- [refers to the previous machine (I = 0 if the
event refers to the first operation);
e the automaton marked language corresponds to the
job operations’ sequence;
e the states are named as sd.xz, where:
- d is the automaton’s depth;
- x is a natural number to distinguish states in the
same depth.

Figure 2 shows a job modeled as described above. In this
example the job has six operations and only one of them
can be processed by more than one machine. Notice that
in state 8.0 there are two futures, to reach state s9.1 with

the execution of event a1564 (job 1, 5*® operation, machine
6 is picked, and the previous machine was 4) or state 9.0
by executing event a1544 (job 1, 5 operation, machine 4
is picked, and the previous machine was 4).

b1130

all30 al2l3

J1

b1321®a1442
_/

s7.0
=

b1442
b1564

389
21654
b1656 m al1656 b1544/
$12.0 @ @ 9.0

Figure 2. An example of job modeling as automaton

b1654

The machine modeling for the FJSSP without blocking can
be done with only two states: one for when the machine is
available (s0) and another for when the machine is working
(s1). When blocking is considered an extra state (s2) is
needed because after finishing an operation, the machine
cannot go to the available state until the job is admitted
in the next machine. The modeling is done as follows,
Figure 3.

ald42, a2641, a3243, a3246,

ad443, a5641, a6140, a6242

My

b1442, b1544,
3243, b3246,
h4443, b6140,
b6242, b6244

Figure 3. Machine M, of instance of Figure 1 modeled as
an automaton

A machine in the initial state s0 is available. When it
starts processing a job, the machine goes to state sl and
at the end it goes to state s2. If the subsequent operation
is admitted by the same machine, it returns to the state
s1, but if the subsequent operation is admitted by another
machine, the machine is then released going back to state
s0.

A particular case should be considered regarding the
scenario in which the machine processes the last operation
of a job. In this case the machine is immediately released
because the job is removed from the system once it has
been fully processed. From an automaton standpoint, this
represents a transition from state s1 (working) directly to
state sO (released). This is shown in Figure 3, where the
machine four of the instance in Figure 1 is modeled.

The events’ names are the same created in the job model-
ing, which means that the data for the machine modeling
also comes from the instance. In order to illustrate the
creation of the automaton for the machines, we relate the

Daniel Sarsur C. et al. / IFAC PapersOnLine 53-4 (2020) 89-94 93

events of Machine 4 with Job 1 (Table 3). Machine 4 does
operation 4 (aj442 and by442) and operation 5 (a1544 and
bis44) of job 1. From the initial state, machine M, can
do event (aj442) that moves it from state sy to state sq,
and from where it will exit with the end of such operation
(b1442) going to state so. In the case of job 1, the next
operation is also performed by machine 4, so event ai544
will take the machine back to state si, from where it
exits with bis544 to state sy. From state sp (machine is
off, but blocked waiting the next machine to take the job),
after the 5th operation, the machine is released only after
event a1¢54. The same process of labeling is done for every
job in the instance until Machine M, is complete. The
events above mentioned are underlined to facilitate the
observation.

Each machine is dealt with as an specification to the SCT
problem, since they process one operation at each time,
applying restriction to the execution of the jobs.

3.8 Supervisor Generation for Blocking FJSSP

To perform this step, a computer with Windows 10 64-bit
operating system, RAM 64.00G' B and Intel Xenon proces-
sor E5-2650/2.00 GHz was used. Procedures for modeling
jobs and machines were implemented in a program, as
presented in Algorithm 1 and the automata were gener-
ated using the UltraDES library (Alves et al., 2017). The
monolithic supervisor was obtained from the plants (jobs
models) and specifications (machines restrictions).

Algorithm 1: Supervisor generation from FJSSP instance
Input: FJSSP_instance
Qutput: supervisor

1 foreach job, do

2 depth < 0

3 foreach operation; do

4 xe 0

3 foreach machine,, do

6 add [depth.x — ajjr — (depth + 1).x] 10 job,
7 add [(depth + 1).x = bijr — (depth +2).x] 1o joby
8 X Xx++

9 add [0 — ajjrr — 1] to magm

10 add [1 — bjji; — 0] o magy,

11 depth «— depth + 2

12 G_sel « generate job, automaton

13 foreach mag,, do
14 ‘ E_set «— generate magy, automaton

supervisor «— generate_monolithic_supervisor (G_set, E_set)

o

The number of states and transitions of each supervisor are
presented in Table 4. The table presents only the instances
that had a computable solution. Note that | M x| indicates
the average of machines per operation (flexibility).

Although the size of the supervisors found is relatively
large, the entire search space is contained within it. This
means that any path chosen from the initial state to the
supervisor’s marked state represents a feasible, nonblock-
ing production sequence that satisfies the constraints of
the problem.

Other instances were subjected to the same procedure, but
could not compute their supervisor for lack of memory on
the computer where they were processed. This is due to
the state space explosion problem that can be observed

Table 4. Size of obtained supervisors

Instance Dimension | |Mj x| States Transitions
Hurink sdata_mt06 6x6 1.00 346.328 1.085.803
Hurink edata_mt06 6x6 1.15 761.494 2.782.216
Hurink rdata_mt06 6x6 2.00 36.923.146 234.222.896
Hurink_vdata_mt06 6x6 3.00 110.097.999 | 1.128.024.299
Hurink sdata_carl 11x5 1.00 121.529.344 394.521.601
Hurink sdata_car2 13x4 1.00 111.562.752 314.163.201
Hurink_sdata_car3 12x5 1.00 383.021.056 | 1.253.793.793
Hurink sdata_car4 14x4 1.00 300.498.944 850.755.585
Hurink sdata_carb 10x6 1.00 249.672.704 915.118.081
Hurink sdata_car? <7 1.00 10.787.520 40.741.569
Hurink_edata_car7 =T 1.15 20.944.494 90.622.826
Hurink sdata_car8 8x8 1.00 235.018.496 | 1.007.106.049
Hurink sdata_la01 10x5 1.00 9.709.952 29.609.025
Hurink_edata_la01 10x5 1.15 44.678.169 154.143.493
Hurink sdata_la02 10x5 1.00 11.018.176 33.899.137
Hurink edata_la02 10x5 1.15 38.742.965 133.536.014
Hurink sdata_la03 10x5 1.00 7.694.720 23.422.209
Hurink_edata_la03 10x5 1.15 30.685.423 105.835.602
Hurink sdata_la04 10x5 1.00 8.495.232 25.624.577
Hurink edata_la04 10x5 1.15 23.228.017 79.958.694
Hurink_sdata_la05 10x5 1.00 12.766.336 39.199.041
Hurink edata_la05 10x5 1.15 46.370.480 162.824.604

for example, comparing the “Hurink sdata_la01.fjs” and
“Hurink_sdata_carl.fjs” instances where a 10% increase in
the number of jobs causes a ~ 1,150% increase in the
number of states. A small increase in the flexibility causes
a huge increase in the size of the problem, as can be seen
from “Huring_edata_mt06” to “Huring_rdata_mt06”.

4. AN HEURISTIC FOR THE BLOCKING FJSSP

Since it was possible to find the state space for the
instances, a solution was sought for them. A heuristic
was chosen based on Alves et al. (2019) with some im-
provements to deal with temporal feasibility and is called
Heuristic Time Minimization (HTM). The HTM principle
is to prioritize controllable over non-controllable events so
that the branch-factor is significantly reduced. Another
procedure is that whenever a path reaches a state already
visited, it keeps the one with the shortest time, eliminating
all other branchings.

This heuristic was applied to some instances and the
results are presented in Table 5. The first and sec-
ond columns identify the instance. The third and fourth
columns show the size of the supervisor obtained. Next,
the processing time of the heuristic applied over such
supervisor is presented and the makespan found. The last
two columns present the value of makespan presented in
the literature. It can be noticed that there are many empty
cells, meaning that there are no known results for such
instances. In some cases (instances marked with and *),
we used a computer with 256 GB of RAM.

The heuristic had a better performance than Mascis and
Pacciarelli (2002) results and worse performance than
Pranzo and Pacciarelli (2016) results. These and other
works present results for larger instances, such as (10 x
10), which were not possible to compute with the proposed
methodology.

The execution time of the heuristic ranges from a few
seconds for instances of up to 41 millions of states to a
few hours for instances around 400 millions of states. This
is justified by the large number of evaluations that the
algorithm has to perform given the number of paths in the
supervisor.

94 Daniel Sarsur C. et al. / IFAC PapersOnLine 53-4 (2020) 89-94

Table 5. Makespan results for Blocking FJSSP

. Makespan
Instance Dimension States Transitions Et)i(frf:t(lsc;n HTM Pranzo & Mascis &
Pacciarelli (2016) | Pacciarelli (2002)
Hurink_sdata_mt06 6x6 346.328 1.085.803 0,11 69 74
Hurink_sdata_car1* 11x5 121.529.344 394.521.601 7.654,70 7.409
Hurink_sdata_car2* 13x4 111.562.752 314.163.201 22.934,44 7.503
Hurink sdata_car3 12x5 383.021.056 | 1.253.793.793 | Unable to find a solution
Hurink_sdata_car5* 10x6 249.672.704 915.118.081 1.513,88 8.218
Hurink sdata_car7 <7 10.787.520 40.741.569 6,29 6.788
Hurink_sdata_car8* 8x8 235.018.496 | 1.007.106.049 86,85 8.585
Hurink _sdata_la01 10x5 9.709.952 29.609.025 0,59 965 881 1066
Hurink sdata_la02 10x5 11.018.176 33.899.137 1,16 944 900 1077
Hurink sdata_la03 10x5 7.694.720 23.422.209 2,19 821 808 884
Hurink_sdata_la04 10x5 8.495.232 25.624.577 0,50 889 862 881
Hurink sdata_la05 10x5 12.766.336 39.199.041 0,53 803 742 995
Hurink sdata_la06 15x5 Unable to find a supervisor

5. CONCLUSIONS

This work showed that it is possible to use the Supervisory
Control Theory to represent Job Shop Scheduling prob-
lems. An algorithm to automatically translate a Blocking
Flexible Job Shop Scheduling Problem to automata using
the Supervisory Control Theory was developed and su-
pervisors are generated for a number of instances in the
literature.

The full search space is within the supervisor and other
heuristics may be applied over it, with the advantage that
no back-forward search is ever going to be necessary. The
modeling proposed can be extended to other classes of
JSSP problems.

To illustrate the use of the search space, we applied a
heuristic over the supervisor and we were able to find
optimized sequences for some problems and they turned
out to be close to the results in the literature.

The search for other heuristics that may provide better
results is left for future work. Also is left for future work,
the search for a different way of storing the transition
structure in order to decrease the memory usage and the
processing time, expanding the computation limits.

REFERENCES

Adams, J., Balas, E., and Zawack, D. (1988). The shifting
bottleneck procedure for job shop scheduling. Manage-
ment science, 34(3), 391-401.

Alves, L.V.R., Pena, P.N., and Takahashi, R.H.C. (2019).
Planning on Discrete Event Systems Using Paral-
lelism Maximization. arXiv e-prints, arXiv:1912.12985.
Https://arxiv.org/abs/1912.12985.

Alves, L.V., Martins, L.R., and Pena, P.N. (2017).
Ultrades-a library for modeling, analysis and control
of discrete event systems. [FAC-PapersOnLine, 50(1),
5831-5836.

Applegate, D. and Cook, W. (1991). A computational
study of the job-shop scheduling problem. ORSA Jour-
nal on computing, 3(2), 149-156.

Baker, K.R. and Trietsch, D. (2013). Principles of sequenc-
ing and scheduling. John Wiley & Sons.

Behnke, D. and Geiger, M.J. (2012). Test instances for
the flexible job shop scheduling problem with work
centers. Logistics Management Department, Hamburg,
Germany.

Brandimarte, P. (1993). Routing and scheduling in a
flexible job shop by tabu search. Annals of Operations
research, 41(3), 157-183.

Brucker, P., Jurisch, B., and Sievers, B. (1994). A branch
and bound algorithm for the job-shop scheduling prob-
lem. Discrete applied mathematics, 49(1-3), 107-127.

Carlier, J. (1978). Ordonnancements a contraintes disjonc-
tives. RAIRO-Operations Research, 12(4), 333-350.

Chambers, J.B. and Barnes, JJW. (1996). Tabu search for
the flexible-routing job shop problem. Graduate program
in Operations Research and Industrial Engineering, The
University of Texas at Austin, Technical Report Series,
ORPY96-10.

Dauzere-Péres, S. and Paulli, J. (1997). An integrated
approach for modeling and solving the general multipro-
cessor job-shop scheduling problem using tabu search.
Annals of Operations Research, 70, 281-306.

Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2001).
Introduction to automata theory, languages, and com-
putation. Aem Sigact News, 32(1), 60-65.

Hurink, J., Jurisch, B., and Thole, M. (1994). Tabu search
for the job-shop scheduling problem with multi-purpose
machines. Operations-Research-Spektrum, 15(4), 205—
215.

Lawrence, S. (1984). An experimental investigation of
heuristic scheduling techniques. Supplement to resource
constrained project scheduling.

Louagad, S. and Kamach, O. (2015). Scheduling of
blocking and no wait job shop problems in robotic cells.

Mascis, A. and Pacciarelli, D. (2002). Job-shop scheduling
with blocking and no-wait constraints. European Jour-
nal of Operational Research, 143(3), 498-517.

Muth, J.F., Thompson, G.L., and Winters, P.R. (1963).
Industrial scheduling. Prentice-Hall.

Pinedo, M.L. (2016). Scheduling: theory, algorithms, and
systems. Springer, New York, New York, 5 edition.
Pranzo, M. and Pacciarelli, D. (2016). An iterated greedy
metaheuristic for the blocking job shop scheduling prob-

lem. Journal of Heuristics, 22(4), 587-611.

Ramadge, P.J. and Wonham, W.M. (1989). The control of
discrete event systems. Proceedings of IEEFE, 77, 81-98.

Van Laarhoven, P.J., Aarts, E.H., and Lenstra, J.K.
(1992). Job shop scheduling by simulated annealing.
Operations research, 40(1), 113-125.

