UNIVERSIDADE FEDERAL DE MINAS GERAIS

Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas

Tese de Doutorado

FLOTAÇÃO DIRETA DE REJEITOS DE MINÉRIO DE FERRO: AVALIAÇÃO DE COLETORES MISTOS

Autor: Leonardo Júnior Fernandes Campos

Orientador: Prof. Dr. Roberto Galery

Belo Horizonte

2022

Leonardo Júnior Fernandes Campos

FLOTAÇÃO DIRETA DE REJEITOS DE MINÉRIO DE FERRO: AVALIAÇÃO DE COLETORES MISTOS

Tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas da Universidade Federal de Minas Gerais, como requisito parcial para obtenção do Grau de Doutor em Engenharia Metalúrgica, Materiais e de Minas

Área de Concentração: Tecnologia Mineral

Orientador: Prof. Dr. Roberto Galery

Belo Horizonte

2022

C198f	Campos, Leonardo Júnior Fernandes. Flotação direta de rejeitos de minério de ferro [recurso eletrônico]: avaliação de coletores mistos / Leonardo Júnior Fernandes Campos. – 2022. 1 recurso online (225 f.: il., color.): pdf.
	Orientador: Roberto Galery.
	Tese (doutorado) - Universidade Federal de Minas Gerais, Escola de Engenharia.
	Apêndices: f.178-225. Bibliografia: f. 170-177. Exigências do sistema: Adobe Acrobat Reader.
	 Engenharia de Minas - Teses. Tecnologia mineral - Teses. Flotação – Teses. Resíduos – Teses. Galery, Roberto. Universidade Federal de Minas Gerais. Escola de Engenharia. III. Título.
	CDU:622(043)
Ficha ca	atalográfica elaborada pela bibliotecária Letícia Alves Vieira – CRB-6/2337

Biblioteca Prof. Mário Werneck - Escola de Engenharia da UFMG

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas

A tese intitulada **"Flotação de Rejeitos de Minério de Ferro: Avaliação de Coletores Mistos"**, área de concentração: Tecnologia Mineral, apresentada pelo candidato <u>Leonardo Júnior Fernandes Campos</u>, para obtenção do grau de Doutor em Engenharia Metalúrgica, Materiais e de Minas, foi aprovada pela comissão examinadora constituída pelos seguintes membros:

Belo Horizonte, 27 de outubro de 2022

"O senhor é meu pastor e nada me faltará"

Agradecimentos

Em primeiro lugar, agradeço a Deus, ao Senhor do Bonfim e São Judas Tadeu por ter me ajudado, me guiado e me iluminado durante toda a minha trajetória.

Agradeço aos meus pais Leonardo e Eliane, meus avós Cassiano e Zélia e minha tia Sandra por todo o apoio e incentivo que me deram e continuam dando para mim. Sem vocês, esta caminhada seria bem mais complicada.

Agradeço, de forma muito especial, ao meu orientador Roberto Galery. Um profissional ímpar, que me acolheu na área da pesquisa científica desde 2014, e me confiou a realização desta pesquisa, me ajudando em todos os percalços que ocorreram no decorrer do doutorado, mas sempre com boa vontade e um coração imenso, passando diariamente seus ensinamentos e valiosos conselhos.

Agradeço ao professor Toninho Peres, que me auxiliou na obtenção dos hidroxamatos e sulfosuccinamato – reagentes que apresentaram papel decisivo no sucesso do projeto.

Agradeço a professora Andreia Bicalho pelos testes de difração de raios-X da minha amostra.

Agradeço aos demais professores do Departamento de Engenharia de Minas (DEMIN), que me auxiliaram em dúvidas pertinentes ao meu projeto no decorrer desta pesquisa, em especial, ao professor Gilberto, Luiz Cláudio, Douglas, Valadão e Rísia.

Agradeço a todos os profissionais do CEFET Campus Araxá, que foram extremamente receptivos e atenciosos comigo durante os dois anos em que trabalhei como professor substituto, mesmo que o contato presencial tenha sido muito reduzido, por causa da pandemia. A Michelly, ao Fábio e ao Leandro, com seus ensinamentos; a Kelly, pela parceria nas aulas que lecionamos em dupla; a Bruna, pelas caronas e bom papo; ao Chico, pelas resenhas incríveis; ao João Victor, pela ajuda providencial no Laboratório de Tratamento de Minérios, e a todos os demais profissionais que não foram citados, mas que direta ou indiretamente, contribuíram para o sucesso da minha passagem pelo CEFET entre os anos de 2020 e 2022.

Agradeço a todos os funcionários do Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas (PPGEM), especialmente na pessoa da Cida, por auxiliar na resolução dos problemas burocráticos sempre com boa vontade e rapidez. Agradeço ao Alberto, sempre solícito no Laboratório de Tratamento de Minérios, a Patrícia, Giselle e Cláudia, pela ajuda nas questões da sala de estudos, e a todos os funcionários do DEMIN que de forma direta ou indireta, contribuíram para que esta pesquisa fosse um sucesso.

Agradeço à Amanda, por ter resolvido o problema das análises químicas quantitativas, e ao Itamar, pela ajuda na obtenção das imagens de microscópio óptico, nos acréscimos da prorrogação do projeto.

Agradeço a todos os colegas do PPGEM que tornaram a busca incessante para o sucesso deste trabalho uma tarefa mais alegre e fácil, especialmente ao Igor, Tiago, Flávia, Bruna, Taynara e Guilherme.

Finalmente, agradeço a todos que, de alguma forma, seja com um abraço, um conselho, um sorriso, ou mesmo envio de energias positivas, contribuíram para a conclusão desta pesquisa com extremo sucesso.

Ao CNPq, pelo apoio financeiro na realização desta pesquisa.

Resumo

Os recentes eventos envolvendo rompimentos de barragem de rejeitos de minério de ferro evidenciaram a necessidade de buscar alternativas para a disposição deste material. Este trabalho tem como objetivo principal a avaliação do uso da flotação direta para um rejeito de minério de ferro proveniente de Mariana - MG. A caracterização da amostra mostrou que se trata de um material de baixo teor de Fe (10,8% Fe), e com mineralogia simplificada, contendo basicamente, apenas quartzo (85%) e hematita (15%). A amostra apresenta uma quantidade significativa de pequenas inclusões de grãos de hematita em partículas de quartzo, responsáveis por um reduzido grau de liberação para as faixas granulométricas mais grossas grosseiras. O uso de dodecilamina (DDA) e do reagente a base de ácidos graxos, denominado AGEM, foram avaliados de forma isolada e na forma de coletor misto. Os resultados mostraram que o coletor misto na proporção mássica DDA:AGEM de 1:5 apresentou os melhores resultados, com 54,06% Fe no concentrado final, e 32,60% de recuperação metalúrgica de Fe. O melhor desempenho do coletor misto pode ser creditado ao maior grau de compactação da monocamada formada pelo reagente, oriundo da redução da repulsão eletrostática entre íons de mesma espécie. Um corte granulométrico em 150µm na alimentação dos testes foi analisado, apresentando uma melhora significativa no teste com o coletor misto 1:5, obtendo um concentrado final com 64,06% Fe. Uma mudança de fluxograma, envolvendo o acréscimo de uma etapa scavenger, foi testada, mas sem sucesso. Também foi examinada a possibilidade da adoção de uma etapa de separação magnética anterior à flotação direta, que apresentou resultados promissores para a pré concentração e também potencial para a obtenção de quartzo de alta pureza. Outra possibilidade explorada foi o uso do hexametafosfato de sódio como depressor, ao invés do silicato de sódio, utilizado nos testes anteriores. Neste caso, o resultado foi positivo, com o incremento na recuperação metalúrgica de Fe para 35,69%, tendo um concentrado final com 61,08% Fe. Também, foi abordada neste estudo a viabilidade do uso de diversos hidroxamatos e um sulfosuccinamato para a flotação direta de minério de ferro, tanto em sua forma isolada, como na composição do coletor misto na proporção mássica 1:5. Os resultados mostraram que o hidroxamato Aero[®] 6494 Promoter apresentou o melhor desempenho ao ser empregado de forma isolada no sistema de flotação direta. No entanto, ao explorar o uso destes reagentes na constituição do coletor misto, os hidroxamatos não apresentaram desempenho satisfatório, ao contrário do sulfosuccinamato Aero® 845 Promoter, que apresentou um concentrado final com 62,84% Fe e 59,01% de recuperação metalúrgica de

Fe. Este coletor misto foi testado em célula pneumática, no entanto, obteve-se um desempenho inferior ao teste em célula de bancada, no que se refere a recuperação metalúrgica de Fe.

Palavras-Chave: Flotação Direta, Coletor Misto, Rejeito de Minério de Ferro, Dodecilamina, Ácido Graxo, Hidroxamato, Sulfosuccinamato.

Abstract

Recent events involving iron ore tailings dam collapses have highlighted the need to seek alternatives for the disposal of this material. This work has as main goal the evaluation of the use of direct flotation for an iron ore tailing from Mariana - MG. The characterization of the sample showed that the material displays low Fe content (10.8% Fe) and a simplified mineralogy, containing only quartz (85%) and hematite (15%). The sample shows a substantial amount of small inclusions of hematite grains in quartz particles, which leads to a reduced degree of liberation for the course granulometric ranges. The use of dodecylamine (DDA) and a reagent based on fatty acids, named AGEM, were evaluated separately and as a mixed collector. The results showed that the mixed collector in the mass ratio DDA:AGEM of 1:5 presented the best results, with 54.06% Fe in the final concentrate, and 32.60% Fe recovery. The better performance of the mixed collector can be explained by the greater stability of the monolayer formed by the reagent, as a result of the reduced electrostatic repulsion between ions of the same species. A granulometric sieving on 150µm in the test feed was analyzed, showing a significant improvement in the test with the mixed collector 1:5, obtaining a final concentrate with 64.06% Fe. A flowsheet change, with the addition of a scavenger stage, was evaluated, although without success. It was also examined the possibility of adopting a magnetic separation step prior to direct flotation, which showed promising results for pre-concentration and also potential for obtaining high purity quartz. Another possibility explored by the study was the use of sodium hexametaphosphate as a depressant, instead of sodium silicate, used in the previous tests. In this case, the result was positive, with an increase in Fe recovery to 35.69%, with a final concentrate with 61.08% Fe. The feasibility of using some hydroxamates and a sulfosuccinamate for the direct flotation, both separately and in the composition of the mixed collector in a 1:5 mass ratio, was also addressed in this study. The results showed that the hydroxamate Aero[®] 6494 Promoter presented the best performance when used alone in the direct flotation system. However, when exploring the use of these reagents in the constitution of the mixed collector, the hydroxamates did not present satisfactory performance, unlike the sulfosuccinamate Aero® 845 Promoter, which lead to a final concentrate with 62.84% Fe and 59.01% Fe recovery. The mixed collector was evaluated in a pneumatic cell, however, a lower performance was obtained compared to the tests in bench cell, regarding Fe recovery.

Key Words: Direct Flotation, Mixed Collector, Iron Ore Tailing, Dodecylamine, Fatty Acid, Hydroxamate, Sulfosuccinamate.

Lista de Ilustrações

Figura 3-1: Teor médio dos depósitos brasileiros de minério de ferro (Fonte: Adaptado	de
JESUS <i>et al.</i> , 2019)	29
Figura 3-2: Variação do preço do minério de ferro nos últimos 10 anos (Fonte: Index Mun	di,
2022)	30
Figura 3-3: Circuito de Beneficiamento de Minério de Ferro inicialmente aplicado (Fon Adaptado de VALADÃO, 2016).	te: 31
Figura 3-4: Circuito de Beneficiamento de Minério de Ferro com etanas de separação gravít	ica
(Fonte: Adaptado de VALADÃO 2016)	32
Figura 3-5: Relação entre a intensidade de magnetização e o campo magnético (Fon	J2
Adaptado de VALADÃO 2016)	36
Figure 3-6: Separador de correjas	37
Figure 2.7: Separador de Tembor	27
Figura 5-7. Separador de Tambor	21
Figura 3-8: Separador do upo carrossel (Fonte: Adaptado de VALADAO, 2010)	38
Figura 3-9: Modelo da Dupia Camada Eletrica para uma particula de carga de superfic	
negativa em solução (Fonte: Adaptado de LOBATO, 2020)	40
Figura 3-10: Eventos necessários para a flotação de uma partícula	42
Figura 3-11: Representação de uma operação unitária de flotação	43
Figura 3-12: Relação entre o diâmetro médio das partículas e a ordem da cinética de flotaç	ao
(Fonte: FINCH e DOBBY, 1990).	44
Figura 3-13: Esquema deum banco de células de flotação (Fonte: Adaptado de LUZ et d	al.,
2018)	46
Figura 3-14: Esquema simplificado do conjunto célula/máquina de flotação (Fonte: Adapta	do
de BALTAR (2021))	46
Figura 3-15: Principais tipos de conjuntos célula/máquina de flotação (Adaptado de SILV	Ά,
2015)	47
Figura 3-16: Eventos marcantes no desenvolvimento e aplicação das colunas de flotação	no
Brasil e no Mundo (Fonte: Adaptado de LUZ et al., 2018)	50
Figura 3-17: Ilustração simplificada de uma coluna de flotação (Fonte: Adaptado de BALTA	R,
2021)	51
Figura 3-18: Esquema simplificado de uma célula pneumática	54
Figura 3-19: Características da solução de dodecilamina na concentração de 5,0 x 10 ⁻⁵ mo	lar
(Fonte: Adaptado de FERREIRA, 2018).	57
Figura 3-20: Classificação das Aminas (Fonte: NEDER et al., 2006).	58
Figura 3-21: Fórmula química do Triglicéride.	58
Figura 3-22: Reacão de Hidrólise do Triglicéride para produção de ácido graxo e gliceri	ina
(Fonte: NEDER <i>et al.</i> , 2006)	60
Figura 3-23: Reação de produção de álcool graxo a partir de triglicéride, metanol e hidrogêt	nio
(Fonte: NEDER <i>et al.</i> 2006).	60
Figura 3-24: Fluxograma simplificado de produção da amina e derivados (Fonte: NEDER	ρt
al 2006)	67
Figura 3-25: Fórmula estrutural da D-glicose (Fonte: LEIA 1982)	63
Figura 3-26: Fórmula estrutural da amilose (Fonte: I FIA 1982)	63
1 15010 5 20. 1 0111010 050 010101 00 01111050 (1 0110. DD3A, 1702)	00

Figura 3-27: Estrutura helicoidal da amilose (Fonte: BRANDÃO, 2016)	64
Figura 3-28: Fórmula estrutural da amilopectina (Fonte: LEJA, 1982).	64
Figura 3-29: Estrutura irregular da amilopectina (Fonte: BRANDÃO, 2016)	65
Figura 3-30: Modelo de interação entre oleato de sódio e hematita (esquerda: antes da adse	orção,
direita: depois da adsorção) (Fonte: ZHANG et al. (2022)).	68
Figura 3-31: Gráfico de especiação do silicato de sódio em função do pH (Fonte: FERRI	EIRA,
2018)	69
Figura 3-32: Gráfico de especiação iônica do ácido silícico em função do pH (Fonte: LO 2009).	OPES,
Figura 3-33: Reação de neutralização do ácido hidroxâmico para a formação do hidrox	amato
(Fonte: BALTAR, 2021).	72
Figura 3-34: Formação do quelato de ferro na interface sólido-líquido (Fonte: BALTAR, 2	2021).
Figura 3-35: Formação do quelato de ferro na superfície do mineral portador de ferro (l	Fonte:
BAL1AR, 2021)	/ 3
figura 3-36: Adsorção do acido hidroxamico em multicamadas na superficie de um mine ferro (Fonte: BALTAR, 2021).	ral de
Figura 3-37: Fórmulas químicas do sulfosuccinato (esq.) e sulfosuccinamato (dir.) (l	Fonte:
BALTAR, 2021)	76
Figura 3-38: Estrutura química do quelato formado pelos sulfosuccinamatos (Fonte: BAL	TAR,
2021)	76
Figura 3-39: Esboço da concentração do coletor misto Oleato de Sódio/Dodecilamin	na em
proporção molar 1:1 na interface água/ar (Fonte: Adaptado de WANG et al., 2016 ^b)	79
Figura 3-40: Recuperação da moscovita na presença de oleato de sódio, dodecilamina	ı e do
coletor misto na razão molar 1:3, com a concentração de 2,0 x 10 ⁻⁴ mol/L (Fonte: Ada	iptado
de XU et al. 2016)	80
Figura 3-41: Recuperação da moscovita na presença de oleato de sódio, dodecilamina	ı e do
coletor misto na razão molar 1:3, em pH 7,0. (Fonte: Adaptado de XU et al. 2016).	80
Figura 3-42: Microflotação da fluorita e calcita com coletor misto formado entre oleato de	sódio
(NaOL) e dodecilamina (DDA) em diferentes proporções molares (Fonte: Adaptado	de LI
et al., 2022)	81
Figura 3-43: Influência do coletor misto formado entre dodecilamina e ácido graxo na flo	otação
de um minério manganífero (Fonte: CAMPOS, 2022)	82
Figura 4-1: Amostra utilizada na realização dos testes	83
Figura 4-2: Divisor de rifles utilizado na amostragem do rejeito	85
Figura 4-3: Peneiras circulares de 20 cm de diâmetro	87
Figura 4-4: Cyclosizer utilizado para os testes.	87
Figura 4-5: Gráfico do fator de correção f1 em função da temperatura (Fonte: BRAGA	et al.,
2007)	89
Figura 4-6: Gráfico do fator de correção f2 em função da densidade (Fonte: BRAGA	et al.,
2007)	89
Figura 4-7: Gráfico do fator de correção f3 em função da vazão de água (Fonte: BRAGA	et al.,
2007)	90

Figura 4-9: Picnômetro 91
Figura 4-10: Equipamento utilizado para a realização dos testes de Difratometria de Raios-X.
Figura 4-11: Máquina de fusão elétrica utilizada para a preparação das amostras para o teste de FRX
Figura 4-12: Espectrômetro de fluorescência de raios X utilizado para a quantificação das amostras
Figura 4-13: Politriz utilizada na preparação das seções polidas96
Figura 4-14: Conjunto Microscópio/Câmera utilizado para a obtenção das imagens97
Figura 4-15: Imagens de campos diferentes de uma mesma seção polida para a classe de tamanho [150-106] um 99
Figura 4-16: Imagem antes (esq.) e depois (dir.) do uso do filtro <i>unsharp mask</i> 99
Figura 4-17: Célula de flotação utilizada nos testes de flotação
Figura 4-18: Fluxograma inicialmente adotado para a realização dos testes de flotação direta
em bancada102
Figura 4-19: Fluxograma adotado para a etapa 4105
Figura 4-20: Fluxograma A analisado na etapa 5107
Figura 4-21: Fluxograma B analisado na etapa 5107
Figura 4-22: Vista frontal do separador magnético utilizado nos testes109
Figura 4-23: Vista lateral esquerda do separador magnético utilizado nos testes110
Figura 4-24: Célula Pneumática "Pneuflot [®] " utilizada nos testes
Figura 4-25: Fluxograma simplificado do procedimento adotado nos testes com a célula pneumática "Pneuflot [®] "
Figura 5-1: Curva granulométrica da amostra cabeca
Figura 5-2: Distribuição granulométrica do Fe e SiO2 na amostra cabeça
Figura 5-3: Difratograma da amostra cabeca
Figura 5-4: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica
[150-106] um identificando os minerais quartzo e hematita, hem como a resina utilizada
na confecção da seção polida
Figura 5-5: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica
[150-106] um, identificando inclusões de hematita (H) no grão de quartzo (Otz)
Figura 5-6: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica
[106-75] µm, identificando grãos de hematita (H) e quartzo (Qtz)
Figura 5-7: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica
[106-75] µm, identificando pequenas inclusões de grãos de hematita (H) no grão de quartzo
(Qtz)
Figura 5-8: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica [75-
53] μm, identificando os grãos de hematita (H) e quartzo (Qtz), bem como as pequenas
inclusões de hematita no quartzo

Figura 5-9: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica [53-
38] µm, identificando os grãos de hematita (H) e quartzo (Qtz), bem como as pequenas
inclusões de hematita no quartzo
Figura 5-10: Balanço de massas simplificado do teste T01
Figura 5-11: Balanço de massas simplificado do teste T02
Figura 5-12: Efeito da mudança da dosagem do reagente AGEM no teor e recuperação133
Figura 5-13: Teor versus Recuperação Metalúrgica e Mássica em função dos diferentes
coletores mistos testados na Etapa 2
Figura 5-14: Efeito do aumento da dosagem do coletor misto na proporção 1:5 no teor e na
recuperação136
Figura 5-15: Efeito do corte granulométrico em 150 µm realizado na amostra cabeca na flotação
do material
Figura 5-16: Resultados obtidos na Etapa 4 com a amostra cabeca (testes T10 a T13)140
Figura 5-17: Resultados obtidos na Etapa 4 com a amostra -150um (testes T14 a T17)140
Figura 5-18: Balanco de massa simplificado do fluxograma A, realizado na etapa 5,
Figura 5-19: Gráfico comparativo sobre a eficiência do fluxograma A proposto na etapa 5, 143
Figura 5-20: Balanco de massa simplificado do fluxograma B. realizado na etana 5
Figura 5-21: Gráfico comparativo sobre a eficiência do fluxograma B proposto na etapa 5 com
a amostra -150um
Figura 5-22: Efeito da utilização do hexametafosfato de sódio como depressor na flotação da
amostra -150 um
Figura 5-23: Efeito da utilização do hexametafosfato de sódio utilizando a rota proposta pelo
fluxograma B da etana 5 com a amostra -150 um
Figura 5-24: Resultados dos testes utilizando os hidroxamato e sulfosuccinato testados
utilizados de forma isolada e tendo a amostra cabeca como alimentação 149
Figura 5-25: Resultados dos testes utilizando os hidroxamato e sulfosuccinato testados
utilizados de forma isolada, e tendo a amostra -150um como alimentação 150
Figura 5-26: Resultados dos testes utilizando os hidrovamato e sulfosuccinato testados
utilizados na composição do coletor misto 1:5 e tendo a amostra -150 um como
alimentação
Figure 5 27: Distribuição granulomátrica dos produtos do teste realizado com o coletor misto
formado entre DDA e o Aero [®] 845 Promoter 153
Figura 5-28: Distribuição de Fe para os fluxos do teste realizado com o coletor misto formado
entre DDA e o Aero [®] 845 Promoter 154
Figure 5 20: Distribuição de SiOs para os fluxos do teste realizado com o coletor misto formado
antra DDA a a A ara [®] 845 Promotor
Figure 5 20: Palance de Masses resumide de teste realizade na cálula proumática
Figura 5-50. Balanço de Massas resultido do teste realizado na celula pneumática
rigura 5-51. Distribuição granutometrica dos nuxos do teste realizado na celula prietinatica.
Figura 5-32: Recuperação metalúrgica do Fe por faiva granulomátrica no teste realizado no
célula pneumática
Figura 5-33: Cinética de flotação para o teste realizado em célula preumática
1 Gura 2 25. Chiertea de notação para o teste realizado em certa phetinatica

Figura 5-34: Recuperação m	etalúrgica de F	e por faixa	granulométrica	para célula	pneumática
e bancada	•••••••••••••••••	•••••			

Lista de Tabelas

Tabela 3-1: Principais minerais que contém ferro na fórmula química (Fonte: YANG, 1	988).
	27
Tabela 3-2: Altura da coluna de flotação de diversas minas	49
Tabela 3-3: Composição dos principais óleos utilizados para a síntese de aminas e deriv	vados
(Fonte: GUNSTONE, 2004).	59
Tabela 3-4: Referencial teórico sobre o uso do hidroxamato em diversos minérios (F	onte:
Adaptado de BALTAR, 2021).)	75
Tabela 4-1: Diâmetros de corte para cada ciclone do cyclosizer	88
Tabela 4-2: Condições padrão para a operação de um cyclosizer	88
Tabela 4-3: Programação da máquina de fusão para o preparo da pastilha fundida	94
Tabela 4-4: Parâmetros adotados no desbaste das seções polidas	96
Tabela 4-5: Parâmetros utilizados no polimento das seções.	97
Tabela 4-6: Condições operacionais dos testes realizados na etapa 1	103
Tabela 4-7: Condições operacionais dos testes realizados na etapa 2	104
Tabela 4-8: Condições operacionais do teste realizado na etapa 3	104
Tabela 4-9: Condições operacionais dos testes realizados na etapa 4	106
Tabela 4-10: Condições operacionais dos testes realizados na etapa 5	106
Tabela 4-11: Condições operacionais dos testes realizados na etapa 6	108
Tabela 4-12: Condições operacionais dos testes realizados na etapa 7	108
Tabela 4-13: Parâmetros utilizados para a realização dos testes de separação magnética	110
Tabela 4-14: Parâmetros utilizados nos testes com a célula pneumática "Pneuflot®"	111
Tabela 5-1: Análise química por faixa e global	114
Tabela 5-2: Teores da amostra cabeça com granulometria superior e inferior a 150 $\mu m. \ldots$	115
Tabela 5-3: Análise quantitativa por Rietveld	117
Tabela 5-4: Resultados da picnometria.	117
Tabela 5-5: Grau de liberação obtido para a faixa granulométrica [150-106] µm	121
Tabela 5-6: Grau de liberação obtido para a faixa granulométrica [106-75] µm	124
Tabela 5-7: Grau de liberação obtido para a faixa granulométrica [75-53] µm	124
Tabela 5-8: Grau de liberação obtido para a faixa granulométrica [53-38] µm	126
Tabela 5-9: Composição do reagente AGEM utilizado nos testes	128
Tabela 5-10: Balanço de massas do teste T00	129
Tabela 5-11: Partição de massa entre os produtos do teste realizado com o coletor misto 1:	5 por
faixa granulométrica	137
Tabela 5-12: Teores de Fe por fração granulométrica e por fluxo analisado no teste reali	izado
em célula pneumática	159
Tabela 5-13: Teores de SiO2 por fração granulométrica e por fluxo analisado no teste reali	izado
em célula pneumática	159
Tabela 5-14: Valores da constante de cinética k e R_{∞} por faixa granulométrica	161

Lista de Anexos

Anexo 1: Análise Granulométrica por peneiramento	178
Anexo 2: Resultados obtidos no Cyclosizer	
Anexo 3: Resultado da picnometria	178
Anexo 4: Cromatograma obtido para o reagente AGEM	179
Anexo 5: Índices determinados para a classe [150-106]µm	
Anexo 6: Índices determinados para a classe [106-75]µm	
Anexo 7: Índices determinados para a classe [75-53]µm	
Anexo 8: Índices determinados para a classe [53-38]µm	
Anexo 9: Dados do teste T01	
Anexo 10: Dados do teste T02	
Anexo 11: Dados do teste T02a	
Anexo 12: Dados do teste T03	
Anexo 13: Dados do teste T04	
Anexo 14: Dados do teste T05	
Anexo 15: Dados do teste T06	
Anexo 16: Dados do teste T07	
Anexo 17: Dados do teste T08	
Anexo 18: Análise granulométrica do Afundado Rougher do teste T07	
Anexo 19: Análise granulométrica do Afundado Cleaner do teste T07	
Anexo 20: Análise granulométrica do Flotado Cleaner do teste T07	
Anexo 21: Dados do teste T09	
Anexo 22: Dados do teste T10	
Anexo 23: Dados do teste T11	
Anexo 24: Dados do teste T12	
Anexo 25: Dados do teste T13	
Anexo 26: Dados do teste T14	
Anexo 27: Dados do teste T15	
Anexo 28: Dados do teste T16	
Anexo 29: Dados do teste T17	
Anexo 30: Separação Magnética realizado com a amostra cabeça	
Anexo 31: Separação Magnética realizado com a amostra +150µm	
Anexo 32: Separação Magnética realizado com a amostra -150µm	
Anexo 33: Dados do teste T18	
Anexo 34: Dados do teste T19	
Anexo 35: Dados do teste T20	
Anexo 36: Dados do teste T21	
Anexo 37: Dados do teste T22	
Anexo 38: Dados do teste T23	
Anexo 39: Dados do teste T24	210
Anexo 40: Dados do teste T25	210

Anexo 41: Dados do teste T26	211
Anexo 42: Dados do teste T27	212
Anexo 43: Dados do teste T28	213
Anexo 44: Dados do teste T29	214
Anexo 45: Dados do teste T30	215
Anexo 46: Dados do teste T31	
Anexo 47: Dados do teste T32	217
Anexo 48: Dados do teste T33	
Anexo 49: Dados do teste T34	219
Anexo 50: Análise Granulométrica do Flotado Cleaner do teste T34	
Anexo 51: Análise Granulométrica do Afundado Cleaner do teste T34	
Anexo 52: Análise Granulométrica do Afundado Rougher do teste T34	221
Anexo 53: Teores por fração granulométrica do flotado <i>cleaner</i> do teste T34	221
Anexo 54: Teores por fração granulométrica do afundado cleaner do teste T34	221
Anexo 55: Teores por fração granulométrica do afundado rougher do teste T34	222
Anexo 56: Análise Granulométrica do Flotado 0-10min	223
Anexo 57: Análise Granulométrica do Flotado 10-20min	223
Anexo 58: Análise Granulométrica do Flotado 20-35min	223
Anexo 59: Análise Granulométrica do Afundado	223
Anexo 60: Cálculo do Modelo Cinético de 1ª Ordem - Teste de Célula Pneumática	224

Sumário

1	INTI	RODUÇÃO	23
2	OBJ	ETIVOS	
	2.1	Objetivos Gerais	25
	2.2	Objetivos Específicos	25
3	REV	ISÃO BIBLIOGRÁFICA	26
	3.1	Minério de Ferro	26
	3.1.1	Geologia dos depósitos de minério de ferro	27
	3.1.2	Reservas e Produção de Minério de Ferro	
	3.1.3	Preço e Mercado do Minério de Ferro	
	3.2	Beneficiamento do Minério de Ferro	
	3.2.1	Circuitos Iniciais	
	3.2.2	Métodos Gravíticos	
	3.2.3	Métodos Magnéticos	
	3.3	Flotação	
	3.3.1	Aspectos Básicos	
	3.3.2	Cinética de Flotação	
	3.3.3	Células Convencionais de Flotação	
	3.3.4	Flotação em Coluna	
	3.3.5	Células Pneumáticas	
	3.4	Flotação Catiônica Reversa de Minério de Ferro	54
	3.4.1	Amina – Coletor Catiônico	
	3.4.2	Amido – Depressor	
	3.5	Flotação Aniônica Direta de Minério de Ferro	67
	3.6	OUTROS REAGENTES COLETORES	71
	3.6.1	Hidroxamatos	
	3.6.2	Sulfosuccinatos e Sulfosuccinamatos	
	3.7	MISTURA DE REAGENTES COLETORES	77
4	MET	[ODOLOGIA	83

	4.1 I	MATERIAIS	83
	4.1.1	Amostras	83
	4.1.2	Reagentes	84
	4.2 I	PREPARAÇÃO	84
	4.2.1	Amostras	84
	4.2.2	Reagentes	85
	4.3 (Caracterização Tecnológica	86
	4.3.1	Análise Granulométrica por peneiramento	86
	4.3.2	Cyclosizer	87
	4.3.3	Picnometria	91
	4.3.4	Difratometria de Raios X (DRX)	92
	4.3.5	Fluorescência de Raios X (FRX)	93
	4.3.6	Microscopia Óptica	94
	4.4 0	Caracterização Tecnológica dos Reagentes	100
	4.5	Festes de Flotação em Bancada	101
	4.6	Separação Magnética	109
	4.7	Festes de Flotação em Célula Pneumática	110
5	RESU	ULTADOS E DISCUSSÕES	113
	5.1 0	Caracterização do Minério	113
	5.1.1	Análise Granulométrica Completa	113
	5.1.2	Análise Granuloquímica	114
	5.1.3	Difratometria de Raios X (DRX)	116
	5.1.4	Picnometria	117
	5.1.5	Microscopia Óptica	118
	5.1.5.	1 Faixa granulométrica [150-106] μm	118
	5.1.5.	2 Faixa granulométrica [106-75] μm	121
	5.1.5.	3 Faixa granulométrica [75-53] μm	124
	5.1.5.	4 Faixa granulométrica [53-38] μm	126
	5.2 0	Cromatografia Gasosa do Óleo Utilizado	128
	5.3	Testes de Flotação em Bancada	128
	5.3.1	Etapa 0 – Flotação sem reagentes	129
	5.3.2	Etapa 1 – Reagentes puros	130
	533	Etapa 2 – Coletor Misto	133

	5.3.4	4 Etapa 3 – Corte granulométrico na malha de 150 μm	138
	5.3.	5 Etapa 4 – Possibilidade do uso da etapa scavenger	139
	5.3.0	6 Etapa 5 – Uso da separação magnética como pré-concentração	141
	5.3.	7 Etapa 6 – Uso do hexametafosfato de sódio como depressor	146
	5.3.8	8 Etapa 7 – Uso de hidroxamatos e sulfosuccinato como coletor	148
	5.4	Testes de Flotação em Célula Pneumática	155
	5.4.	l Definição das condições operacionais	155
	5.4.2	2 Resultados obtidos	156
	5.4.	3 Comparação com teste de flotação em bancada	162
6	CO	NCLUSÕES	164
7	CO	NTRIBUIÇÕES ORIGINAIS AO CONHECIMENTO	167
8	REI	LEVÂNCIA DOS RESULTADOS	168
9	SUC	GESTÕES PARA TRABALHOS FUTUROS	169
10	REI	FERÊNCIAS BIBLIOGRÁFICAS	170
10 11	REI APÍ	FERÊNCIAS BIBLIOGRÁFICAS	170 178
10 11	REI APÍ	FERÊNCIAS BIBLIOGRÁFICAS NDICE	
10 11	REI APÍ 11.1	FERÊNCIAS BIBLIOGRÁFICAS NDICE Análise Granulométrica Picnometria - Amostra Careca	170 178 178 178
10 11	REI APÍ 11.1 11.2 11.3	FERÊNCIAS BIBLIOGRÁFICAS NDICE Análise Granulométrica Picnometria – Amostra Cabeça Cromatografia Gasosa	
10 11	REI APÍ 11.1 11.2 11.3 11.4	FERÊNCIAS BIBLIOGRÁFICAS NDICE Análise Granulométrica Picnometria – Amostra Cabeça Cromatografia Gasosa Microscopia Óptica	
10 11	REI APÍ 11.1 11.2 11.3 11.4 11.5	FERÊNCIAS BIBLIOGRÁFICAS NDICE Análise Granulométrica Picnometria – Amostra Cabeça Cromatografia Gasosa Microscopia Óptica Flotação em Bancada – Etapa 01	
10	REI APÍ 11.1 11.2 11.3 11.4 11.5 11.6	FERÊNCIAS BIBLIOGRÁFICAS NDICE Análise Granulométrica Picnometria – Amostra Cabeça Cromatografia Gasosa Microscopia Óptica Flotação em Bancada – Etapa 01 Flotação em Bancada – Etapa 02	
10	REI APÍ 11.1 11.2 11.3 11.4 11.5 11.6 11.7	FERÊNCIAS BIBLIOGRÁFICAS NDICE Análise Granulométrica Picnometria – Amostra Cabeça Cromatografia Gasosa Microscopia Óptica Flotação em Bancada – Etapa 01 Flotação em Bancada – Etapa 02 Flotação em Bancada – Etapa 03	
10	REI APÍ 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	FERÊNCIAS BIBLIOGRÁFICAS NDICE Análise Granulométrica Picnometria – Amostra Cabeça Cromatografia Gasosa Microscopia Óptica Flotação em Bancada – Etapa 01 Flotação em Bancada – Etapa 02 Flotação em Bancada – Etapa 03 Flotação em Bancada – Etapa 04	
10	REI APÍ 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	FERÊNCIAS BIBLIOGRÁFICAS ÉNDICE ANÁLISE GRANULOMÉTRICA PICNOMETRIA – AMOSTRA CABEÇA CROMATOGRAFIA GASOSA MICROSCOPIA ÓPTICA FLOTAÇÃO EM BANCADA – ETAPA 01 FLOTAÇÃO EM BANCADA – ETAPA 02 FLOTAÇÃO EM BANCADA – ETAPA 03 FLOTAÇÃO EM BANCADA – ETAPA 04 FLOTAÇÃO EM BANCADA – ETAPA 05	
10	REI APÍ 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10	FERÊNCIAS BIBLIOGRÁFICAS ANÁLISE GRANULOMÉTRICA PICNOMETRIA – AMOSTRA CABEÇA CROMATOGRAFIA GASOSA MICROSCOPIA ÓPTICA FLOTAÇÃO EM BANCADA – ETAPA 01 FLOTAÇÃO EM BANCADA – ETAPA 02 FLOTAÇÃO EM BANCADA – ETAPA 03 FLOTAÇÃO EM BANCADA – ETAPA 04 FLOTAÇÃO EM BANCADA – ETAPA 05 FLOTAÇÃO EM BANCADA – ETAPA 06	
10	REI APÍ 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11	FERÊNCIAS BIBLIOGRÁFICAS ANÁLISE GRANULOMÉTRICA PICNOMETRIA – AMOSTRA CABEÇA	
10	REI APÍ 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12	FERÊNCIAS BIBLIOGRÁFICAS ENDICE ANÁLISE GRANULOMÉTRICA PICNOMETRIA – AMOSTRA CABEÇA CROMATOGRAFIA GASOSA MICROSCOPIA ÓPTICA FLOTAÇÃO EM BANCADA – ETAPA 01 FLOTAÇÃO EM BANCADA – ETAPA 02 FLOTAÇÃO EM BANCADA – ETAPA 03 FLOTAÇÃO EM BANCADA – ETAPA 03 FLOTAÇÃO EM BANCADA – ETAPA 04 FLOTAÇÃO EM BANCADA – ETAPA 05 FLOTAÇÃO EM BANCADA – ETAPA 06 FLOTAÇÃO EM BANCADA – ETAPA 07 FLOTAÇÃO EM BANCADA – ETAPA 07	

1 INTRODUÇÃO

O minério de ferro é uma *commodity* extremamente importante no mercado global. O Brasil possui papel fundamental nesse mercado, por ser o segundo maior produtor de minério de ferro. A siderurgia é a principal atividade consumidora de minério de ferro, para a fabricação de aços.

No Brasil, a produção de minério de ferro se concentra em dois estados: Minas Gerais e Pará. O primeiro concentra a maioria absoluta da produção nacional (81,6% da produção), no entanto, por terem vários depósitos próximos do fim de sua vida útil, o estado apresenta um teor médio baixo (43,6% Fe). Já o segundo, apesar de ter uma menor fração da produção nacional (10,6%), apresenta um teor médio elevado (65,0% Fe) (JESUS *et al.*, 2019).

Em usinas de processamento de minério de ferro de baixo teor, somente as etapas de cominuição e classificação não são suficientes para obter o produto final, nas especificações necessárias. Torna-se necessário o uso de técnicas de concentração para a diminuição dos teores dos elementos contaminantes – quartzo, minerais portadores de alumínio, fósforo e manganês são os principais contaminantes do minério de ferro.

A flotação é o método de concentração mais utilizado para separação de minerais atualmente, devido à facilidade em alterar as propriedades superficiais destes com reagentes diversos, além de possuir um custo operacional compatível com as plantas de processamento mineral. No caso do minério de ferro, é tradicionalmente empregada a flotação catiônica reversa, onde os contaminantes são carreados junto com as bolhas de ar para o flotado, enquanto os minerais portadores de ferro permanecem no afundado. A escolha da flotação catiônica reversa se deu, principalmente, pelos baixos teores dos elementos contaminantes, em comparação com os teores de ferro na alimentação.

No entanto, existem estudos na literatura (LOPES, 2009; NASCIMENTO, 2010) que mostram a possibilidade da realização da flotação aniônica direta de minério de ferro, para materiais de baixo teor de ferro. Porém, não houve grandes avanços nestes estudos, pelo fato da flotação catiônica reversa ainda atender de forma relativamente satisfatória as necessidades de teor e recuperação das grandes empresas mineradoras.

Contudo, após os rompimentos das barragens de rejeitos de minério de ferro em Mariana – MG (2015) e Brumadinho – MG (2019), onde houve danos ambientais irreparáveis e centenas de vidas humanas perdidas, a questão do manuseio e disposição dos rejeitos ganhou notoriedade

na indústria mineral e na sociedade como um todo. Desde então, passou-se a buscar alternativas para diminuir os riscos da disposição dos rejeitos. Uma das possibilidades consiste no reprocessamento do rejeito da flotação reversa através de uma etapa de flotação direta do minério de ferro, buscando um concentrado com condições de ser blendado com um material de alto teor de ferro, e um rejeito que possa ser empregado em outras atividades, como a fabricação de geopolímeros ou a indústria de construção civil.

Busca-se, neste trabalho, portanto, desenvolver uma rota de processamento de rejeitos de minério de ferro, oriundos da flotação catiônica reversa, através do uso de coletores mistos na flotação direta, com o objetivo de obter um concentrado com alto teor de Fe e recuperações metalúrgicas de Fe relevantes.

2 OBJETIVOS

Este trabalho possui os seguintes objetivos gerais e específicos, a serem listados abaixo.

2.1 Objetivos Gerais

O objetivo geral deste trabalho é a proposição de uma rota de concentração de um rejeito de minério de ferro de baixo teor, através da flotação direta, visando a obtenção de um concentrado com alto teor de Fe.

2.2 Objetivos Específicos

Os objetivos específicos deste trabalho são os seguintes:

- Caracterização de um rejeito de minério de ferro de baixo teor;
- Avaliação da possibilidade da utilização de coletores mistos na flotação direta de minério de ferro, bem como a comparação entre os resultados obtidos pelos coletores mistos e os coletores em sua forma isolada;
- Avaliação do uso de etapa *scavenger* para o reaproveitamento máximo dos minerais úteis presentes na amostra;
- Avaliação do uso da separação magnética como uma etapa de pré-concentração deste rejeito;
- Avaliação do uso de outros reagentes coletores, como hidroxamatos e sulfosuccinamato, na flotação direta de minério de ferro;
- Avaliação da reprodutibilidade dos resultados obtidos em escala de bancada em equipamentos que reproduzem a escala piloto, como a célula pneumática.

3 REVISÃO BIBLIOGRÁFICA

Nesta revisão bibliográfica, serão abordados aspectos gerais referentes ao minério de ferro, aos principais métodos de concentração de minério de ferro, dando enfoque à flotação, destacando a flotação reversa, tradicionalmente utilizada, e apresentando os principais estudos realizados sobre a flotação direta de minério de ferro. Também será ressaltada a utilização de coletores mistos na flotação, assim como os principais equipamentos utilizados industrialmente para a flotação.

3.1 Minério de Ferro

O ferro é o quarto elemento químico mais abundante na crosta terrestre, com aproximadamente 5% da composição, em peso, da crosta. Os três elementos mais abundantes na crosta são O, Si e Al. Levando-se em consideração somente as áreas continentais, a crosta terrestre contém aproximadamente 7% de hematita (Fe₂O₃) e 7% de wustita (FeO). Além disso, o ferro é o principal constituinte, junto ao Níquel (Ni), do núcleo da Terra (MARANGON, 2009).

O ferro é um metal de transição, encontrado no estado sólido à temperatura ambiente e apresentando características ferromagnéticas. O ferro é o principal metal usado atualmente, com cerca de 95% da produção mundial de metal. Isto se deve, principalmente, ao seu baixo custo e baixa dureza, permitindo ser moldado em diversas formas. A principal aplicação deste metal se dá na produção de aço – liga metálica com teor máximo de carbono de 2% e fundamental na produção de ferramentas, máquinas, veículos de transporte, como elemento estrutural e uma infinidade de outras aplicações.

A Tabela 3-1 a seguir mostra os principais minerais que apresentam ferro em sua composição química.

Nome	Sistema Cristalino	Fórmula	Densidade	Teor de
		Química	(g/cm ³)	Fe (%)
Magnetita	Cúbico	Fe ₃ O ₄	4,18-4,97	72,4
Hematita	Romboédrico-hexagonal	Fe ₂ O ₃	4,9-5,3	70,0
Goethita	Romboédrico	Fe_2O_3 . H_2O	4,0-4,4	62,9
Limonita	Misto, principalmente	$2 \operatorname{Fe_2O_3}$.	3,6-4,0	60,0
	Goethita	$3H_2O$		
Siderita	Romboédrico-hexagonal	FeCO ₃	3,0-3,88	48,2
Pirita	Cúbico	FeS_2	4,95-5,17	46,6

Tabela 3-1: Principais minerais que contém ferro na fórmula química (Fonte: YANG, 1988).

Destes minerais, a hematita é o principal mineral-minério presente nos minérios de ferro explotados. Sílica, minerais portadores de alumínio, álcalis e compostos de enxofre e fósforo são as principais impurezas encontradas nos minérios de ferro(NASCIMENTO, 2010).

3.1.1 Geologia dos depósitos de minério de ferro

De acordo com ALECRIM (1982), os depósitos de minério de ferro podem ser classificados em três grupos distintos, de acordo com sua gênese: Algoma, Rapitan e Lago Superior.

Os depósitos do tipo Algoma são datados do período Arqueano (3,7 - 2,6 bilhões de anos), sendo formados por processos resultantes de atividades vulcânicas submarinas, responsáveis pela geração e concentração de diversos metais. Normalmente ocorre em regiões onde a crosta siálica é menos espessa (LOPES, 2009).

Já os depósitos do tipo Rapitan estão relacionados a idades do Proterozoico Superior entre 900 e 650 milhões de anos, sendo formados, provavelmente, por sedimentação glacial. No Brasil, este tipo de depósito é observado no Grupo Jacadigo, em Urucum-MS (LOPES, 2009).

Os depósitos do tipo Lago Superior são de idades que datam do Proterozoico Inferior, entre 2,5 e 1,8 bilhões de anos, sendo constituídos través da formação de grandes bacias marginais rasas que receberam grandes quantidades de sedimentos de natureza clástica e de natureza vulcânica. Estes sedimentos precipitaram-se em duas fácies principais, que deram origem às formações ferríferas bandadas (no inglês, *BIF – banded iron formation*), característica dos itabiritos. Os minérios encontrados neste tipo de depósito possuem alto teor de ferro e são os mais explotados na região do Quadrilátero Ferrífero, em Minas Gerais (LOPES, 2009).

3.1.2 Reservas e Produção de Minério de Ferro

O Brasil possui a segunda maior reserva de minério de ferro do mundo, com cerca de 34 bilhões de toneladas, correspondendo a 19,8% das reservas globais. A Austrália detém as maiores reservas de minério de ferro no mundo (36,7% das reservas globais). Em 2020, o Brasil foi responsável por produzir 387,9 milhões de toneladas de ferro, com um teor médio de Fe de 63,61%, correspondendo a 18,9% da produção global (BRASIL, 2021).

No Brasil, as reservas de minério de ferro estão localizadas, basicamente, em 3 estados. Minas Gerais detém as maiores reservas (74,4% das reservas, com teor médio de 41,1%), seguido por Pará (19,5% das reservas, com teor médio de 65,6%) e Mato Grosso do Sul (2,2% das reservas, com teor médio de 63,7%) (JESUS *et al.*, 2019).

Com o passar dos anos, percebe-se que os depósitos de alto teor de ferro no Brasil estão se esgotando, levando a um teor médio de ferro cada vez menor, como mostra a Figura 3-1. No entanto, cabe ressaltar a variação positiva no teor médio de ferro apresentada em 2016, em comparação com 2015. Esta variação ocorreu devido ao *startup*, no ano de 2016, do complexo S11D Eliezer Batista, pertencente a Vale, em Canaã dos Carajás-PA. Este é o maior empreendimento mineiro da empresa, tendo capacidade nominal de atingir 90 milhões de toneladas/ano, com teor médio de 66,7% de ferro. Atualmente, a empresa está com projetos para permitir o aumento da capacidade nominal para 140 milhões de toneladas/ano. Isto permite à empresa realizar a blendagem do minério desta mina com o material oriundo de minas do complexo Sul-Sudeste (Minas Gerais) em portos da China, Omã e Malásia, levando a maiores ganhos financeiros.

3.1.3 Preço e Mercado do Minério de Ferro

A Figura 3-2 mostra a variação do preço de venda do minério de ferro nos últimos 10 anos. O produto escolhido para a análise foi o *Iron Ore Fines 62% FE spot*, sendo apresentado o preço CFR – *Cost and Freight* (onde o transporte da mercadoria é de responsabilidade do vendedor) no porto de Tianjin, na China.

Durante a última década, o minério de ferro sofreu muitas variações de preço, devido a diversos fatores, como crises econômicas, especialmente da China – principal *player* consumidor da *commodity* – e crises internas das empresas produtoras de minério de ferro.

Nesse aspecto em específico, é interessante relatar sobre a variação do preço sofrida pelo minério de ferro em 2019, devido ao rompimento da barragem de rejeitos da mina Córrego do Feijão, pertencente à Vale, em Brumadinho – MG. Em dezembro/2018 – mês anterior ao referido acidente – o preço do minério de ferro estava em US\$69,16, seguindo um período de relativa estabilidade que já durava 2 anos. No entanto, após o rompimento da barragem, houve a paralisação temporária das operações de diversas minas da empresa Vale no Estado de Minas Gerais, devido ao fato de possuírem barragens de rejeitos com o mesmo método construtivo da

barragem que se rompeu em Brumadinho. Esta paralisação acarretou uma redução abrupta da oferta global de minério de ferro, da ordem de 10%, o que gerou, em consequência, um aumento significativo do preço da *commodity*, chegando a US\$120 em julho/2019. No entanto, com o retorno parcial de algumas das minas paralisadas, o preço reduziu rapidamente para valores próximos a US\$90.

Figura 3-2: Variação do preço do minério de ferro nos últimos 10 anos (Fonte: Index Mundi, 2022).

A pandemia de Covid-19 alterou drasticamente a economia global, com a paralisação de serviços, obras e empresas. Por causa disso, o preço do minério de ferro também sofreu variações bruscas de preço, chegando a US\$214 em julho/2021.

Atualmente (setembro/2022 – última atualização deste texto), o preço do minério de ferro se encontra próximo a US\$100. O mercado futuro da *commodity* prevê que o preço não sofra alterações bruscas nos próximos meses e anos. Não existem, no momento, fortes *triggers* (gatilhos) para a alta do preço no horizonte, devido à demanda em queda por parte da China. No entanto, as perspectivas de baixa do preço também são limitadas, devido à redução na oferta de minério de ferro por parte das mineradoras e relacionadas a problemas climáticos nas regiões das principais minas (AZEVEDO, 2022).

3.2 Beneficiamento do Minério de Ferro

Neste tópico, serão apresentadas as principais técnicas utilizadas para o beneficiamento de minério de ferro, bem como suas principais características.

3.2.1 Circuitos Iniciais

Inicialmente, os depósitos ferríferos brasileiros não necessitavam de técnicas robustas de beneficiamento mineral, pois o minério *in situ* já apresentava as condições de teor mínimo do elemento útil e máximo dos contaminantes, definidas de acordo com as especificações das próximas etapas que o material será submetido. Nesse contexto, eram realizadas apenas operações de fragmentação e classificação do material, dando enfoque nos materiais mais grossos, com granulometria superior a 6,35mm, denominados "Granulado", por apresentar maior valor de mercado. Uma representação esquemática deste circuito está ilustrada na Figura 3-3.

Figura 3-3: Circuito de Beneficiamento de Minério de Ferro inicialmente aplicado (Fonte: Adaptado de VALADÃO, 2016).

3.2.2 Métodos Gravíticos

À medida que o tempo foi passando, foi necessário lançar mão de técnicas de beneficiamento mineral para elevar o teor de ferro, visto que se tornou necessário fragmentar o material para atingir o tamanho de liberação dos grãos.

De acordo com VALADÃO (2007), a separação gravítica foi muito usada durante um certo período de tempo, onde a faixa granulométrica predominante dos minérios de ferro se encontravam na região do *Sinter Feed* (entre 6,35mm e 0,15mm). Nesse sentido, foram utilizados em diversos depósitos de ferro do quadrilátero ferrífero equipamentos de jigagem (equipamento que realiza a separação dos minerais em um leito dilatado por uma corrente pulsante de água, levando a uma estratificação dos minerais) e espiral (equipamento que realizada a separação através de diferentes velocidades de escoamento em um fluxo centrífugo). A Figura 3-4 mostra parte de um fluxograma de uma mineradora que possuía estes equipamentos. No entanto, atualmente, devido à evolução das atuais características dos minérios de ferro, os métodos gravíticos entraram em desuso.

Figura 3-4: Circuito de Beneficiamento de Minério de Ferro com etapas de separação gravítica (Fonte: Adaptado de VALADÃO, 2016).

3.2.3 Métodos Magnéticos

Outra técnica bastante empregada para a concentração de minérios de ferro são os métodos magnéticos. Esse método explora a diferença de propriedades magnéticas entre os minerais do minério e a ganga, sendo utilizados para separar minerais que apresentam susceptibilidade magnética de minerais que não são susceptíveis magneticamente.

De acordo com RASO (2018), quando um campo magnético externo é aplicado em um material com propriedades magnéticas, algumas de suas regiões alinham os seus momentos magnéticos atômicos paralelamente em uma única direção, constituindo, assim, os domínios magnéticos do material. As origens dos momentos magnéticos são:

- O movimento do elétron em torno do núcleo, dado pelo momento angular orbital;
- O movimento do elétron em torno do próprio eixo, dado pelo momento de *spin* dos elétrons. O *spin* é uma propriedade quântica apresentando orientação em duas direções: *spin up* (↑) e *spin down* (↓). O *spin* sofre uma rotação no sentido mais fácil para se alinhar com o campo magnético aplicado.

As propriedades magnéticas em referência são resultantes do ordenamento dos momentos de dipolo magnéticos das espécies que constituem o material.

As partículas podem ser divididas em três grupos, de acordo com a sua susceptibilidade magnética, conforme mostrado abaixo:

- Partículas diamagnéticas: Apresentam comportamento magnético fraco, não é permanente e só é percebido quando um campo magnético extremo é aplicado, e que desaparece quando o campo extremo é removido. Quando este grupo de partículas são submetidos a um campo magnético, os momentos de dipolo magnético dos átomos alinham-se no sentido contrário ao campo aplicado, fazendo com que os valores de susceptibilidade magnética sejam negativos e pequenos. No beneficiamento de minério de ferro, o principal exemplo de partícula diamagnética é o quartzo (SiO₂).
- Partículas ferromagnéticas: Possuem momentos atômicos magnéticos alinhados paralelamente, que só desaparecem na temperatura de Curie (para a hematita, 682 °C). Na presença de um campo extremo, os dipolos magnéticos se alinham na direção do campo magnético, sendo exibidos valores positivos altos de susceptibilidade magnética, da ordem de 10⁶. Acima da temperatura de Curie, estes materiais se tornam

paramagnéticos. Outra característica marcante das partículas ferromagnéticas é que elas retêm o magnetismo por um certo intervalo de tempo após o afastamento do campo magnético. O principal mineral ferromagnético é a magnetita (Fe₃O₄).

Partículas paramagnéticas: Apresentam seus momentos angulares alinhados dos dipolos na direção do campo ao serem colocados nas proximidades de um campo magnético extremo. Classe de partículas que não sofrem repulsão na presença do campo magnético, porém não são magnetizadas na intensidade e na velocidade apresentada pelas partículas ferromagnéticas. No afastamento do campo magnético, as partículas paramagnéticas perdem o seu magnetismo de forma quase instantânea, ou seja, os dipolos adjacentes não interagem entre si. Os momentos magnéticos encontram-se orientados de forma aleatória, não havendo magnetização líquida ou total. Possuem valores de susceptibilidade magnética positivos, pequenos e dependentes da temperatura, da ordem de 10⁻⁵. A hematita (Fe₂O₃) é um exemplo de mineral paramagnético.

Duas grandezas distintas são citadas ao se descrever um campo magnético: A densidade de fluxo magnético \vec{B} , que se refere ao número de linhas de indução que passam através da partícula mineral, e a intensidade de campo \vec{H} , que é a força de magnetização que induz a passagem das linhas de indução através da partícula mineral (RASO, 2018)

O campo magnético externo, ou campo magnético aplicado $\overrightarrow{B_0}$, pode ser relacionado com a densidade de fluxo magnético, de acordo com a equação 1 a seguir:

$$\vec{B} = \vec{B_0} + \vec{B_M} \tag{1}$$

Onde $\overrightarrow{B_M}$ representa a magnetização. Quando um material está sob a ação de um campo magnético externo $\overrightarrow{B_0}$, ele adquire uma magnetização $\overrightarrow{B_M}$, que por sua vez, modifica o campo magnético total. Para os materiais diamagnéticos e paramagnéticos, o campo magnético de magnetização criado no interior dos materiais pode ser calculado através da equação 2:

$$B_M = x_M * B_0 \tag{2}$$

Onde a constante x_M é denominada susceptibilidade magnética, cujo valor é positivo para as partículas paramagnéticas e negativo para as diamagnéticas. Substituindo a equação 2 na equação 1, tem-se a equação 3:

$$B_0 = \frac{B}{1+x_M} \tag{3}$$

A susceptibilidade de um dado material é determinada a partir de um campo magnético B_0 externo produzido pela corrente I_0 , que circula em um solenoide no qual se introduz o material. Aplicando a lei de Ampère, de acordo com a equação 4, tem-se:

$$\oint \overrightarrow{B_0} * d\overrightarrow{r} = \mu_0 * I_0 \tag{4}$$

Onde μ_0 é a permeabilidade magnética no vácuo. Utilizando a equação 3, pode-se reescrever a equação 4 da seguinte forma, mostrado na equação 5 a seguir:

$$\oint \frac{\vec{B} * d\vec{r}}{1 + x_M} = \mu_0 * I_0 \tag{5}$$

A partir da qual se pode definir a permeabilidade magnética do material de acordo com a equação 6:

$$\oint \vec{B} * d\vec{r} = \mu * I_0 \tag{6}$$

Onde $\mu = \mu_0 * (1 + x_M)$. Reescrevendo a lei de Ampère, utilizando o vetor campo magnético (\vec{H}) ao invés do vetor de indução magnética (\vec{B}) , tem-se a equação 7 abaixo:

$$\oint \vec{H} * d\vec{r} = I_0 \tag{7}$$

Dessa forma, define-se o campo magnético como sendo:

$$H = \frac{B}{\mu} \tag{8}$$

No sistema S.I., o valor de \vec{B} é dado em Tesla (T), e no sistema CGS é dado em Gauss (G), sendo que 1 Gauss = 10^{-4} T e \vec{H} é medido em A/m.

A Figura 3-5 mostra um gráfico que relaciona a intensidade de magnetização com o campo magnético aplicado para cada grupo de partículas.

Figura 3-5: Relação entre a intensidade de magnetização e o campo magnético (Fonte: Adaptado de VALADÃO, 2016).

Dessa forma, percebe-se que não é necessário aplicar um campo magnético elevado para promover a separação da magnetita dos demais minerais. Neste caso, são utilizados equipamentos que possuem baixo campo magnético. No entanto, para promover a separação entre a hematita e o quartzo, é necessário a aplicação de um campo magnético elevado.

A separação pode ser realizada tanto a úmido quanto a seco, e pode ser aplicada a uma ampla faixa granulometria, diferentemente dos métodos gravíticos, que possuem restrições a materiais finos. A separação a seco é mais indicada para materiais com granulometria grossa, enquanto a separação a úmido é mais adequada para partículas finas.

Na separação magnética a seco, o principal equipamento utilizado é o separador de correias, mostrado na Figura 3-6. Um dos rolos é um ímã, que será responsável por fazer a magnetização das partículas. Este ímã não possui um alto campo magnético, por ser um ímã permanente.

Figura 3-6: Separador de correias

Para a separação magnética a úmido, temos dois principais equipamentos: o separador de tambor e o carrossel. O separador de tambor, ilustrado na Figura 3-7, é composto por um tambor imantado que irá atrair as partículas magnéticas, que serão recolhidas em um raspador posicionado na superfície do tambor. As partículas não magnéticas serão depositadas na parte inferior do equipamento, saindo pelo *underflow*. Assim como o separador de correias, não é capaz de aplicar um campo magnético muito elevado, por ser composto, geralmente, por ímãs permanentes.

Figura 3-7: Separador de Tambor

Já o separador magnético do tipo carrossel (Figura 3-8) é caracterizado por gerar altos campos magnéticos, por possuir um eletroímã, onde a intensidade do campo magnético é modulada através da alteração do valor da corrente elétrica nas bobinas. Outra característica importante deste equipamento é que ele possibilita a retirada dos médios, que são as partículas ferromagnéticas, uma vez que elas se desmagnetizam rapidamente. Isto faz com que este seja o principal equipamento utilizado para a separação magnética de minério de ferro, por permitir a separação da hematita do quartzo.

Figura 3-8: Separador do tipo carrossel (Fonte: Adaptado de VALADÃO, 2016).

Apesar da separação magnética apresentar diversos pontos positivos para a sua aplicação no beneficiamento de minério de ferro, ela não é empregada na frequência esperada, por causa de alguns fatores, tais como: alto custo de operação do equipamento e baixa capacidade unitária, exigindo a utilização de vários equipamentos em paralelo para atingir o mesmo objetivo.

3.3 Flotação

A flotação é o principal método de concentração utilizado atualmente em minério de ferro, devido a sua grande eficiência na concentração de partículas com tamanho inferior a 212µm. Dessa forma, será apresentado em um primeiro momento, os aspectos básicos referentes à técnica de flotação. Após isso, uma breve explicação sobre o modelamento matemático da cinética de flotação será desenvolvido e, finalmente, os principais equipamentos utilizados para a realização da flotação serão mostrados de forma resumida.

3.3.1 Aspectos Básicos

A flotação é um processo de separação de partículas sólidas que explora as diferenças nas características de superfície entre as várias espécies presentes. O método trata misturas heterogêneas de partículas suspensas numa fase aquosa. A seletividade do processo de flotação se baseia no fato de que a superfície de diferentes espécies minerais pode apresentar diferentes

graus de hidrofobicidade. O conceito de hidrofobicidade de uma partícula está associado à "molhabilidade" da partícula pela água. Partículas mais hidrofóbicas são menos ávidas por água. O conceito oposto à hidrofobicidade é designado como hidrofilicidade. Os fundamentos dos métodos que exploram características de superfícies estão em um campo da ciência conhecido como "Físico-Química das Interfaces", "Química de Superfície", "Química das Interfaces" ou "Propriedade das Interfaces". É discutido a seguir o conceito de interface, imprescindível para o entendimento do processo de flotação.

Interface é uma região limite entre duas fases da matéria. São conhecidos cinco tipos de interface: sólido-sólido, sólido-líquido, sólido-gás, líquido-líquido e líquido-gás. Flotação envolve fenômenos em todos os cinco tipos de interfaces.

Em termos de polaridade, os compostos químicos dividem-se em polares e não polares, em função de apresentarem ou não um dipolo permanente. A importância da polaridade reflete-se no fato de que existe afinidade ente substâncias ambas polares ou ambas não polares, não havendo afinidade entre uma substância polar e outra não polar. Nos sistemas de flotação a fase líquida é sempre a água, um líquido polar. A fase gasosa é sempre o ar, que é não polar (ARAÚJO *et al.*, 2013).

Uma substância hidrofóbica pode agora ser caracterizada como aquela cuja superfície é essencialmente não polar, tendo, portanto, maior afinidade com o ar que com a água. Substância hidrofílica é aquela cuja superfície é polar, indicando maior afinidade com a água que com o ar. A separação entre partículas naturalmente hidrofóbicas e partículas naturalmente hidrofílicas é possível quando um fluxo de ar atravessa uma suspensão aquosa contendo as duas espécies. As partículas hidrofóbicas seriam arrastadas pelo ar e quelas hidrofílicas permaneceriam na suspenção. Em geral a mera passagem de um fluxo de ar não é suficiente para arrastar as partículas hidrofóbicas. Faz-se necessária a adição de reagentes conhecidos como espumantes. Entre os minerais encontrados na natureza muito poucos (molibdenita - MoS₂, grafita – C e talco – Mg₃Si₄O₁₀(OH)₂, exemplos clássicos) são naturalmente hidrofóbicos. Minerais naturalmente podem ter sua superfície tornada hidrofóbicas através da adsorção (concentração na superfície) de substâncias conhecidas como coletores. A coletagem das partículas pelas bolhas de ar é facilitada pela presença de espumantes, que estabilizam a interface líquido/gás.

O termo adsorção significa concentração de íons ou moléculas numa interface. É medida a partir da abstração de um reagente em solução por um sólido. Quando as determinações são realizadas

sob temperatura constante, os resultados são apresentados na forma de isotermas de adsorção. (ARAÚJO *et al.*, 2013).

A adsorção pode ser classificada como sendo:

- Química: Caracterizada por ligações dos tipos iônica, covalente (normalmente o caráter da ligação é covalente parcialmente iônico) ou ponte de hidrogênio, restringindo-se a monocamadas, já que seu mecanismo básico envolve transferência ou compartilhamento de elétrons. Por causa disso, trata-se de um processo irreversível ou de difícil reversão (ARAÚJO *et al.*, 2013).
- Física: Fenômeno reversível em que normalmente ocorre a deposição de mais de uma camada de adsorvato (aquele que se adsorve) sobre a superfície adsorvente (aquele sobre o qual ocorre a adsorção). Apresenta pouca seletividade, visto que pode ocorrer em qualquer superfície que apresente um excesso de carga elétrica de sinal contrário. As energias liberadas são relativamente baixas e o sistema atinge rapidamente o equilíbrio (NUNES, 2009).

As propriedades elétricas das interfaces são extremamente importantes em um sistema de flotação. A carga elétrica dos sólidos suspensos na polpa atrai uma "atmosfera" de íons de carga contrária enquanto íons de mesma carga são repelidos para longe da superfície. Essas duas regiões podem ser representadas pelo modelo da dupla camada elétrica, apresentado na Figura 3-9.

Figura 3-9: Modelo da Dupla Camada Elétrica para uma partícula de carga de superfície negativa em solução (Fonte: Adaptado de LOBATO, 2020).

Essa distribuição de cargas desde a superfície da partícula até o seio da fase líquida acarreta a presença de campo elétrico na interface, gerando uma diferença de potencial. O potencial medido experimentalmente no plano de cisalhamento é definido como potencial zeta (LEJA, 1982). Este potencial indica a carga de superfície das partículas, suas estabilidades na dispersão, ou suas tendências rumo à coagulação.

Os reagentes presentes em um sistema de flotação são compostos orgânicos ou inorgânicos empregados com o objetivo de controlar as características das interfaces envolvidas no processo. Qualquer substância orgânica ou inorgânica que tende a se concentrar numa das interfaces é denominada agente ativo na superfície. A expressão "surfactante" é empregada para designar uma substância ativa na superfície que apresenta um caráter anfipático do tipo R – Z. O grupo Z é polar e consiste em um agregado de dois ou mais átomos ligados por ligação covalente. Esse grupo apresenta afinidade com a água. O grupo R é apolar e consiste na parte hidrofóbica da espécie (ARAÚJO *et al.*, 2013).

Os reagentes de flotação podem ser classificados quanto ao seu papel exercido no processo em:

- **Coletores:** Reagentes que atuam na interface sólido-líquido, modificando a superfície mineral, que passa de hidrofílica para hidrofóbica.
- Espumantes: Compostos não iônicos, geralmente pertencentes à classe dos álcoois ou éteres, e que têm como objetivo principal a redução da tensão superficial da bolha de ar, garantindo a esta uma maior estabilidade e menor risco de coalescência.
- Modificadores: Reagentes que apresentam diversas funções, tais como:
 - o Modulação de pH;
 - Controle do estado de dispersão da polpa;
 - Ativação da superfície para tornar a ação dos coletores mais efetivas;
 - Depressão inibir a ação do coletor e hidrofilizar a superfície de minerais.

3.3.2 Cinética de Flotação

De acordo com FINCH e DOBBY (1990), o processo de flotação pode ser subdividido em uma série de eventos consecutivos que permitem uma visão mais clara dos mecanismos e, consequentemente, seu melhor controle. Inicialmente, após a polpa adentrar a célula de flotação, o sistema deve criar condições para que partículas e bolhas possam se encontrar. Dessa forma, é necessário que as colisões ocorram dentro da célula de flotação. A probabilidade de

que esta colisão ocorra é determinada pelo parâmetro P_C . Após ocorrer uma colisão com sucesso, é necessário que ocorra adesão das partículas às bolhas. Assim sendo, pode-se determinar a probabilidade de adesão P_A . Após a adesão, bolhas e partículas formam um agregado que deverá resistir à turbulência do meio para não ser destruído. A sobrevivência do agregado durante seu transporte até a camada de espuma pode ser interpretada como um evento, e deste modo, deve-se determinar a probabilidade P_P de preservação do agregado. A Figura 3-10 mostra, de forma resumida e esquemática, os eventos necessários para que ocorra a flotação de determinada partícula.

Figura 3-10: Eventos necessários para a flotação de uma partícula.

Os eventos apresentados anteriormente são concatenados, ou seja, o insucesso em um dos eventos acarreta o insucesso de todos os eventos subsequentes. Dessa forma, a probabilidade total de flotação P_F pode ser determinada pela Equação 9:

$$P_F = P_C \times P_A \times P_P \tag{9}$$

É importante projetar sobre como essa probabilidade total de flotação P_F poderia ser relacionada com a recuperação metalúrgica R do processo. Decerto, tal probabilidade vai determinar em larga extensão uma variável cinética importantíssima, que é a constante cinética k de flotação, que está relacionada com P_F e S_B (fluxo superficial de bolhas – min⁻¹ – representando a área superficial de bolhas que passam pela área transversal da célula de flotação por unidade de tempo) através da Equação 10, sendo válida para um modelo cinético de 1^a ordem.

$$k = 0,25 \times S_B \times P_F \tag{10}$$

Para entender melhor sobre ordem de cinética de flotação, considere o processo de flotação ilustrado na Figura 3-11.

Figura 3-11: Representação de uma operação unitária de flotação.

Nesse processo, no instante inicial (t₀=0), a massa do mineral que se deseja flotar é igual a M₀. Decorrido um tempo t, a massa de mineral útil que foi flotada durante o intervalo de tempo Δt (onde $\Delta t = t-t_0$) é representada por M_F e a massa que permaneceu no sistema de flotação é representada por M. Desse modo, são válidas as Equações 11 e 12 apresentadas a seguir:

$$M = M_0 - M_F \tag{11}$$

$$R = \frac{M_F}{M_0} = \frac{(M_0 - M)}{M_0}$$
(12)

Se a velocidade com que ocorrerá a remoção do mineral útil da célula, também definido como velocidade de flotação, for proporcional à quantidade de mineral útil presente na polpa, então a Equação 13 abaixo é válida.

$$\left(\frac{-dM}{dt}\right) = k \times M^n \tag{13}$$

Onde k representa a constante cinética e n o número de ordem da flotação.

Se a cinética de flotação for de primeira ordem (n=1), então a equação diferencial apresentada na Equação 5 apresentará a solução mostrada na Equação 14:

$$R = 1 - e^{-kt} \tag{14}$$

Para n=0, temos a Equação 15, enquanto para n=2, temos a Equação 16, mostradas abaixo.

$$R = M_0^{-1} \times k \times t \tag{15}$$

$$\frac{R}{R-1} = M_0 \times k \times t \tag{16}$$

Comparando as equações 14,15 e 16, e relacionando-as com o processo de flotação, pode-se dizer que uma flotação que apresenta cinética de ordem zero significa que a recuperação não depende dos mecanismos de colisão, adesão e preservação que caracterizam uma flotação

verdadeira. Neste caso, a flotação ocorre exclusivamente por arraste hidrodinâmico. A flotação com cinética de primeira ordem é caracterizada por apresentar uma cinética mais rápida, sendo que quanto maior for a quantidade de partículas hidrofóbicas na polpa, mais rápida será a flotação. Ou seja, os eventos colisão, adesão e preservação do agregado estão ocorrendo com máxima probabilidade. Uma cinética de flotação de segunda ordem é mais lenta que a de primeira ordem, podendo significar que algum(ns) dos três eventos está(ão) ocorrendo com baixa probabilidade.

A ordem da flotação está relacionada com o diâmetro médio das partículas, conforme mostra a Figura 3-12. Para sistemas de flotação com partículas tendo diâmetro médio inferior à 100 μ m, a cinética de flotação pode ser entendida como sendo de primeira ordem, pois todos os eventos necessários para que ocorra a flotação estão em sua probabilidade máxima. No entanto, quando o diâmetro médio da partícula ultrapassa 100 μ m, o número de ordem da flotação cresce de forma exponencial, indicando que estas partículas apresentam cinética muito mais lenta do que as partículas mais finas. Isto se deve, certamente, à dificuldade de preservar o agregado partícula/bolha frente à turbulência criada pelo rotor da célula, uma vez que partículas mais grossas apresentam maior probabilidade de colisão.

Figura 3-12: Relação entre o diâmetro médio das partículas e a ordem da cinética de flotação (Fonte: FINCH e DOBBY, 1990).

3.3.3 Células Convencionais de Flotação

Existem diversos tipos de equipamentos de flotação no mercado. O funcionamento ótimo de cada um exige condições operacionais específicas para cada situação. LUZ *et al.* (2018), em seus estudos, fazem uma discriminação entre célula e máquina de flotação, normalmente consideradas como algo único (denominado célula mecânica). De acordo com os autores, célula é o tanque onde a flotação ocorre e a máquina de flotação é o que se instala dentro da célula.

A célula convencional consiste em um tanque, cuja seção horizontal pode ser circular ou retangular. No tipo retangular, utilizado industrialmente, o tanque tem duas aberturas na parte inferior das paredes laterais opostas. Na primeira, é instalada a caixa de alimentação da polpa. Na abertura de lado oposto, ocorre a saída do material não flotado. Nesse ponto, há também um dispositivo que permite o controle do nível da polpa, variável fundamental para a eficiência da etapa. As duas aberturas apresentam um desnível para facilitar o deslocamento do fluxo não flotado no sentido da descarga. O projeto de uma célula deve ser realizado de forma a evitar "espaços mortos", onde o material não será homogeneizado de forma correta, acarretando redução da eficiência do equipamento (BALTAR, 2021).

As células podem ser usadas de forma isolada, mas não é o usual. Em geral, as células são dispostas em série de duas ou mais células, formando bancos, conforme ilustrado na Figura 3-13. Neste caso, a alimentação ocorre na primeira célula, e o material é transportado de célula a célula. Na última célula, há a conexão com uma caixa de descarga, por onde sai o afundado. O banco pode ter paredes divisórias separando as células (*cell-to-cell*) ou ter células abertas (*free-flow*). Este último é a forma mais comum de junção entre as células, mostrado na Figura 3-13.

No momento de escolher a célula a ser empregada, a relação área/volume deve ser considerada. Para a flotação de minérios de baixo teor, devem ser utilizadas células com menor relação área/volume, visando à produção de espumas mais estáveis e mineralizadas. Já na flotação em etapa *cleaner*, o aumento da razão área/volume facilita o retorno de partículas hidrofílicas retidas na camada de espuma, reduzindo a contaminação do flotado (BALTAR, 2021).

Figura 3-13: Esquema deum banco de células de flotação (Fonte: Adaptado de LUZ et al., 2018).

A máquina de flotação é composta basicamente por um conjunto rotor/estator, sendo responsável pela hidrodinâmica do equipamento. A Figura 3-14 mostra um esquema simplificado do sistema célula/máquina de flotação. O rotor é posicionado próximo ao fundo do tanque, sendo suspenso por um eixo vertical rotativo, que é conectado a um acionamento mecânico fora da célula. A presença do estator nas proximidades do rotor ajuda na formação de regiões quiescentes na célula, devido ao efeito amortecedor na velocidade horizontal do fluxo de polpa, contribuindo também na melhoria da distribuição das bolhas de ar, em direção às extremidades do tanque (HARRIS, 1976).

Figura 3-14: Esquema simplificado do conjunto célula/máquina de flotação (Fonte: Adaptado de BALTAR (2021)).

O ar pode introduzido na célula por auto aeração – através de sucção – ou por aeração forçada – através de um soprador externo. A formação das bolhas de ar ocorre em duas etapas (BALTAR, 2021):

- A princípio, uma cavidade de ar se prende às extremidades de fuga do rotor (uma região de baixa pressão);
- Em meio à turbulência, um "vórtice" se desprende da cauda da cavidade, formando as bolhas que são arremessadas contra o estator. O estator promove o desvio horizontal da trajetória, auxiliando na distribuição das bolhas.

Existem diversos tipos de formatos do conjunto célula/máquina de flotação, com diversas capacidades. Estas diversas possibilidades de formatos e capacidades têm como objetivo principal o favorecimento do contato partícula/bolha e a redução do arraste mecânico. A Figura 3-15 mostra alguns desses tipos.

Figura 3-15: Principais tipos de conjuntos célula/máquina de flotação (Adaptado de SILVA, 2015).

Alguns fatores são levados em consideração no momento de escolha da célula a ser adotada, tais como:

- Facilidade e custo de manutenção;
- Tempo de inatividade (*down-time*);
- Facilidade de automação;
- Facilidade de controle (vazão de ar, tamanho de bolha, nível de polpa), dentre outros.

O volume total do banco de células é calculado de acordo com a Equação 17. Claramente, este volume total pode ser preenchido por várias células de menor capacidade ou poucas células de maior capacidade.

$$Volume \ total \ (m^3) = Vazão \ de \ alimentação \ \left(\frac{m^3}{h}\right) * \frac{Tempo \ de \ Residência \ (minutos)}{60}$$
(17)

A utilização de células de pequeno volume para a composição dos bancos de células tem as seguintes vantagens (BALTAR, 2021):

- Maior eficiência na mistura da polpa e dispersão das bolhas;
- Maior flexibilidade para modificação do circuito;
- Minimização do problema com "curto-circuito" quando uma partícula entra e sai da célula rapidamente, sem permanecer o tempo necessário para ser flotada. Isto afeta diretamente a recuperação;
- Durante eventual parada de uma célula para manutenção, a extensão do problema é menor quando há maior número de células compondo o banco.

Em contrapartida, a formação de um banco com um número menor de células de maior volume apresentam as seguintes vantagens:

- Menor custo de investimento;
- Menor custo operacional de manutenção;
- Menor consumo energético total;
- Maior facilidade para controle e automação;
- Menor ocupação de espaço horizontal na usina.

3.3.4 Flotação em Coluna

O estudo da flotação em coluna teve início em 1962, quando foi registrada uma patente referente à técnica de flotação em coluna. Nos anos seguintes, foram realizados os primeiros testes em escala piloto com o novo equipamento. No entanto, apenas no início da década de 1980 que foi instalada a primeira unidade industrial de flotação em coluna, em Mines Gaspé, no Canadá – sendo utilizada para a flotação *cleaner* de circuito de concentração de molibdenita.

No Brasil, a primeira aplicação industrial da coluna de flotação ocorreu na mina do Germano, em Mariana – MG, pertencente à empresa Samarco, em 1991, para a flotação reversa do minério de ferro. Posteriormente, outras empresas do setor também instalaram colunas de flotação em seus empreendimentos. Atualmente, a coluna de flotação é utilizada nas principais minas de minério de ferro do Brasil (SILVA, 2016). A Figura 3-16 apresenta um resumo dos principais marcos no desenvolvimento da coluna de flotação no mundo.

Existem diversos tipos de coluna de flotação desenvolvidos. No entanto, o principal tipo de coluna de flotação utilizado industrialmente nos circuitos de beneficiamento do Brasil e do Mundo é conhecido como "Coluna Canadense". A Coluna Canadense é caracterizada por uma elevada relação altura/base, pela ausência de agitação mecânica, por possuir um regime de fluxo em contracorrente, e pela possibilidade de uso de água de lavagem.

O principal detalhe técnico de uma coluna de flotação é a sua altura. A Tabela 3-2 mostra um resumo da literatura sobre a altura da coluna de flotação de diversos empreendimento mineiros.

Referência	Altura da Coluna (m)	Observação		
Rubinstein (1995)	10 a 13	-		
Dobby e Finch (1985)	13	Coluna em Mines Gaspé - Canadá		
Schena e Casali (1994)	13,6 a 14,5	Principais minas no Chile		
Schnellrath et al. (2001)	14,5	Flotação de fosfatos no Brasil		
Newcombe (2016)	17,8	Mina <i>Kanowna Belle Gold Mine</i> , na Austrália		

Tabela 3-2: Altura da coluna de flotação de diversas minas.

Figura 3-16: Eventos marcantes no desenvolvimento e aplicação das colunas de flotação no Brasil e no Mundo (Fonte: Adaptado de LUZ *et al.*, 2018).

A Figura 3-17 mostra um esquema simplificado de uma coluna de flotação do tipo canadense.

Figura 3-17: Ilustração simplificada de uma coluna de flotação (Fonte: Adaptado de BALTAR, 2021).

Segundo a Figura 3-17, a coluna apresenta duas zonas de operação distintas (BALTAR, 2021):

- Zona de coleta: Se estende da interface (polpa/espuma) até o ponto de entrada de fluxo de ar. Neste espaço ocorrem as etapas de colisão partícula/bolha, adesão das partículas hidrofóbicas às bolhas, e é iniciada a etapa de transporte. A partir do ponto de alimentação do minério (que ocorre a 2/3 da altura da coluna), as partículas iniciam um percurso de sedimentação, em contracorrente com o fluxo ascendente do ar, favorecendo dessa forma o contato partícula/bolha. Quanto menor o tamanho da partícula, maior será o tempo de sedimentação e maior será a probabilidade do contato partícula/bolha. Por esse motivo, a coluna de flotação é mais adequada para a flotação de material muito fino.
- **Zona de limpeza:** Corresponde a região compreendida entre a interface (polpa/espuma) e a descarga do flotado por transbordo. Nessa zona, completa-se a etapa de transporte.

Devido à ausência de agitação mecânica, as partículas hidrofílicas (com exceção às partículas coloidais) têm pouca chance de chegar à zona de limpeza. Ainda assim, as colunas convencionais dispõem de um sistema de água de lavagem que dificulta a chegada da água de alimentação ao topo da coluna. Dessa forma, o arraste de partículas hidrofílicas é minimizado, possibilitando a obtenção de concentrados com teor elevado. No entanto, a água de lavagem pode provocar a destruição do agregado partícula/bolha, diminuindo a recuperação. Por causa disso, a vazão da água de lavagem deve ser calibrada.

A flotação em coluna possui algumas vantagens, quando comparada ao sistema de flotação por células convencionais, listadas abaixo:

- Maior tempo de permanência dos finos, implicando em mais oportunidades para contato partícula/bolha;
- Melhor aproveitamento das bolhas, devido à maior distância percorrida na coluna. Isso permite a redução do volume de ar introduzido, resultando em um aumento da capacidade;
- Menor contaminação por arraste, devido ao sistema de água de lavagem;
- Maior eficiência no transporte, por causa da ausência de turbulência, garantindo maior estabilidade ao agregado partícula/bolha;
- Maior chance de recaptura das partículas desprendidas das bolhas, uma vez que, diferentemente das células mecânicas, no caso de ocorrer o rompimento do agregado partícula/bolha na zona de espuma, a partícula retorna ao ponto de alimentação e volta a ter a mesma chance inicial de adesão a uma nova bolha;
- Maior capacidade, devido à ausência de peças mecânicas no interior da coluna;
- Maior facilidade de controle e automação;
- Menor ocupação do espaço horizontal, devido a sua relação diâmetro/altura;
- Melhor desempenho metalúrgico para os finos.

De acordo com HARBORT e CLARKE (2017), 73% do total de colunas instaladas no mundo são destinadas à etapa *cleaner* de flotação, enquanto 16% são para etapa *rougher* e 11% para

etapa *scavenger*. Isto mostra a capacidade que a coluna de flotação tem em gerar produtos com alta seletividade, especialmente para partículas finas.

3.3.5 Células Pneumáticas

As células pneumáticas são caracterizadas por não possuírem partes móveis dentro da célula, assim como as colunas de flotação. No entanto, diferentemente das colunas, a aeração da polpa é realizada antes desta ser introduzida à célula. Esta característica contribui para que se tenha um menor tempo de adesão, por fornecer um contato partícula/bolha intenso. A manutenção da polpa em suspensão no interior da célula é garantida pela velocidade com que a polpa é injetada dentro da célula.

A Figura 3-18 mostra, de forma simplificada, o esquema de funcionamento de uma célula pneumática. O condicionamento dos reagentes é feito em um tanque prévio à adição da polpa no equipamento. Neste equipamento, a probabilidade de adesão partícula-bolha é bastante elevada. Isso se deve ao intenso contato bolha-partícula no sistema de aeração, que além de favorecer a turbulência necessária ao encontro da partícula com a bolha, trabalha de forma a reduzir o diâmetro de bolha, oferecendo maior superfície de contato e, dessa forma, favorecendo a adesão (SILVA, 2015).

Assim, a probabilidade de flotação da partícula (que leva em consideração, além da probabilidade de contato partícula/bolha e adesão, a probabilidade do transporte entre a polpa e a espuma) é superior aos sistemas de flotação convencional (célula e coluna). Devido a estas características, a célula pneumática apresenta menores dimensões, quando comparado com as células mecânicas e a coluna de flotação, assim como menores custos de infraestrutura.

Figura 3-18: Esquema simplificado de uma célula pneumática

3.4 Flotação Catiônica Reversa de Minério de Ferro

Em 1931, se iniciou as pesquisas visando a utilização da flotação como um método de concentração para o minério de ferro. Os resultados mostraram que a flotação é o processo mais efetivo do ponto de vista tecnológico e econômico, devido a sua versatilidade (FILLIPOV, 2014).

Atualmente, a flotação é um método alternativo aos métodos gravíticos e magnéticos. Porém, ainda não atendem, em algumas situações, as limitações de teores de sílica, óxido de alumínio e outras impurezas para a fabricação do *pellet feed* (material que apresenta como especificação estar 100% abaixo de 150µm).

Os primeiros registros históricos sobre a flotação são datados do início do século XIX, onde foram registradas as primeiras patentes relacionadas ao processo. Em 1860, na Inglaterra, Havness patenteou a flotação em óleo, denominada *bulk oil flotation*. Porém, esse processo não foi aplicado imediatamente na indústria a época (SANTOS, 2012).

Já em 1905, a empresa australiana Minerals Flotation tratou aproximadamente 1 milhão de toneladas de minério de chumbo e zinco da Broken Hill usando a flotação. A possibilidade do tratamento de maior quantidade de minério foi visto como uma das grandes vantagens do método.

Em 1911, a técnica começou a ser utilizada nos EUA. Inicialmente, as empresas americanas utilizavam a flotação para recuperar os rejeitos finos da separação gravítica, permitindo um considerável aumento na recuperação. Com o passar do tempo, os processos de flotação passaram a substituir quase que completamente os métodos gravíticos na recuperação de minerais metálicos (SANTOS, 2012).

A flotação foi inicialmente implementada no Brasil na década de 1950, sendo utilizada inicialmente no tratamento de minério de chumbo próximo à divisa entre São Paulo e Paraná. Já na década de 1960, após o *startup* da planta de concentração do minério fosfático da Serrana, em Cajati-SP, o número de concentradores de flotação cresceu rapidamente (ARAÚJO *et al.,* 1995).

Atualmente no Brasil, a flotação é empregada para o tratamento de minerais de ferro, fosfato, ouro, nióbio, cobre, zinco, chumbo-zinco, carvão, grafita, potássio, níquel, magnesita, feldspato, fluorita, barita, talco, tungstênio e resíduos hidrometalúrgicos contendo prata (SANTOS, 2012).

O processo de flotação mais usado no Brasil para minério de ferro é o catiônico reverso, visto os baixos teores de quartzo comparativamente com os teores de ferro presentes. Neste processo, o quartzo é flotado, sendo utilizado como reagente coletor eteraminas (R-O-(CH₂)₃-NH₂) parcialmente neutralizadas (25% a 30%) com ácido acético (ARAÚJO *et al.*, 2013). Os minerais de ferro são deprimidos por amido não modificado, geralmente amido de milho previamente solubilizados por água quente ou através da adição de NaOH – processo denominado gelatinização. O NaOH também atua como modulador de pH, mantendo-o em torno de 10,5. Nesta faixa de pH, o sistema se mantém disperso e apresenta, em equilíbrio, aproximadamente

50% de amina na forma iônica – a qual atua como coletor – e 50% de amina na forma molecular – que atua como espumante (OLIVEIRA, 2016).

3.4.1 Amina – Coletor Catiônico

As aminas e seus derivados estão entre os reagentes mais utilizados como coletores no processo de flotação. Segundo dados de 2006, aproximadamente 5.500 toneladas de derivados de amina eram utilizadas anualmente no Brasil em processos de concentração de diversos minérios, entre eles, o minério de ferro (NEDER *et al.*, 2006).

A amina graxa pode ser definida como sendo um composto derivado da amônia, de cadeia linear, constituída por um número par de carbonos, variando de 8 a 22 átomos de carbono, sendo que as matérias-primas principais são óleos ou gorduras (ROSE, 1957).

As aminas são caracterizadas por possuírem um caráter anfipático, sendo composta por um grupo iônico positivo e uma parte hidrofóbica, composta por uma cadeia carbônica. Isto permite que as aminas adsorvam na interface mineral/solução transformando o caráter naturalmente hidrofílico das partículas em hidrofóbico, possibilitando o carregamento do mineral a ser flotado pelas bolhas de ar. A parte molecular da amina irá influenciar na cinética de adesão partícula/bolha, atuando como reagente espumante da flotação. A flotação de minério de ferro é realizada com o pH entre 10,0 e 10,5, na qual a amina se encontra 50% dissociada, havendo equilíbrio entre a forma iônica e a forma molecular (OLIVEIRA, 2016). A Figura 3-19 mostra o diagrama de especiação da dodecilamina em função do pH, revelando que, até pH 10,0, a espécie predominante é a RNH₃⁺, e em pH aproximadamente igual a 10,6, a espécie RNH₂ apresenta a mesma concentração da espécie RNH₃⁺ (FERREIRA, 2018).

Figura 3-19: Características da solução de dodecilamina na concentração de 5,0 x 10⁻⁵ molar (Fonte: Adaptado de FERREIRA, 2018).

A combinação de dois mecanismos é a responsável por explicar a adsorção das aminas e seus derivados na interface mineral/solução. O primeiro é a adsorção física, através da atração eletrostática entre a superfície negativa do mineral e o grupo funcional catiônico do reagente dissociado (R-NH₃⁺). Para que ocorra esse tipo de adsorção, é necessário que o pH da suspensão seja maior do que o pH do ponto de carga zero (PCZ) do mineral a ser flotado. O PCZ do quartzo é observado entre pH 2,0 e 2,5. Como o pH de flotação do minério de ferro ocorre na faixa de pH entre 10,0 e 10,5, a superfície do quartzo se encontra negativa, e com módulo significativamente maior que o da hematita, explica-se a adsorção física existente no processo. O segundo mecanismo é referente às interações laterais do tipo Van der Walls entre as cadeias hidrocarbônicas da amina, fazendo com que o filme hidrofóbico formado na interface mineral-água fique mais compacto (RAMACHANDRAN *et al.*, 1986).

As aminas podem ser classificadas em primárias, secundárias ou terciárias. Esta classificação é baseada na quantidade de átomos de hidrogênio da amônia que foram substituídos por grupos alquil. Na Figura 3-20, R indica um radical carbônico qualquer.

Figura 3-20: Classificação das Aminas (Fonte: NEDER et al., 2006).

Na produção de aminas graxas, é necessário a presença de compostos precursores, que, neste caso, são ácidos graxos (para a produção de aminas primárias) e álcoois graxos (para a produção de eteraminas). Os ácidos e álcoois graxos, por sua vez, são produzidos a partir dos triglicérides que possuem a função éster, conforme pode ser observado na Figura 3-21.

Figura 3-21: Fórmula química do Triglicéride.

A Tabela 3-3 mostra a composição típica dos principais óleos usados para a síntese dos compostos amínicos. Como pode ser observado na Tabela 3-3, as aminas primárias graxas apresentam cadeias carbônicas muito variadas e dependem de qual óleo ou gordura foi utilizado como precursor para sua síntese.

Ácido/	Tipo de Óleo								
Fórmula Molecular	Arroz	Soja	Tall Oil	Сосо	Mamona	Linhaça	Oliva	Milho	
Caprílico (C ₈ H ₁₆ O ₂₎	-	-	-	3,5	-	-	-	-	
Cáprico (C ₁₀ H ₂₀ O ₂₎	-	-	-	4,5	-	-	-	-	
Láurico (C ₁₂ H ₂₄ O ₂₎	-	-	-	44,7	-	-	-	-	
Mirístico (C14H28O2)	-	0,1	-	17,5	-	-	-	-	
Palmítico (C ₁₆ H ₃₂ O ₂₎	17,5	10,5	0,2	9,7	1,2	7,0	16,9	14,0	
Esteárico (C ₁₈ H ₃₆ O ₂₎	1,3	3,2	2,2	3,1	1,0	4,0	2,7	3,3	
Oleico (C ₁₈ H ₃₄ O ₂₎	39,9	22,8	59,3	15,2	3,3	15,0	61,0	35,1	
Linoleico (C ₁₈ H ₃₂ O ₂₎	39,1	54,5	36,8	1,8	3,6	18,0	14,8	44,4	
Linolênico (C ₁₈ H ₃₀ O ₂₎	0,3	8,3	-	-	0,2	56,0	0,6	<2,0	
Ricinoleico (C ₁₈ H ₃₄ O ₃₎	-	-	-	-	89,2	-	-	-	

Tabela 3-3: Composição dos principais óleos utilizados para a síntese de aminas e derivados (Fonte: GUNSTONE, 2004).

Segundo NEDER *et al.* (2006), os álcoois graxos utilizados na produção de eteraminas podem ser tanto sintéticos ou derivados de óleos, sendo mais comum os óleos que apresentam 10 carbonos em sua cadeia, como o iso-decanol de origem sintética e o n-decanol de origem vegetal.

Os ácidos graxos são produzidos por processos contínuos, que são chamados de "*Colgate-Emery*". Neste processo, ácido graxo e glicerina são separados de maneira contínua, com a adição de água no topo de um reator com aquecimento e pressão. A alimentação do óleo ocorre na parte inferior e a reação com a água ocorrem em contracorrente (NEDER *et al.*, 2006). A cisão entre o ácido e a glicerina é mostrada na Figura 3-22.

$$\begin{array}{c} O \\ \parallel \\ CH_2-O-C-R \\ 0 \\ \parallel \\ CH-O-C-R' + 3 H_2O \rightarrow R(R' e R'')-C \\ 0 \\ \parallel \\ O \\ \parallel \\ OH \\ -DH \\ -D$$

Figura 3-22: Reação de Hidrólise do Triglicéride para produção de ácido graxo e glicerina (Fonte: NEDER *et al.*, 2006).

A produção dos álcoois graxos ocorre de forma semelhante à dos ácidos graxos. Porém, é utilizado metanol (CH₃OH) ou hidróxido de sódio (NaOH) ao invés de água. A reação obtida é mostrada na Figura 3-23.

$$\begin{array}{c} O \\ \parallel \\ CH_2-O-C-R \\ \mid & O \\ \parallel & 3H_2 \\ CH-O-C-R' + CH_3OH \xrightarrow{3H_2} R(R' e R'')-C-OH + HC-OH + CH_3OH \\ \mid & 0 \\ \parallel & 1 \\ O \\ \parallel \\ CH_2-O-C-R'' \end{array}$$

Figura 3-23: Reação de produção de álcool graxo a partir de triglicéride, metanol e hidrogênio (Fonte: NEDER *et al.*, 2006).

As aminas primárias são produzidas através da hidrogenação catalítica das nitrilas graxas. As nitrilas, por sua vez, são sintetizadas a partir da reação de ácidos graxos com amônia gasosa em reatores de nitrilação com o aumento da temperatura, conforme mostra a Equação 18.

$$R - COOH + NH_3 \rightarrow R - C \equiv N + 2H_2O \tag{18}$$

A partir das nitrilas graxas, são obtidas as aminas primárias através da reação com hidrogênio em alta pressão e com presença de catalisador, conforme mostrado pela Equação 19.

$$R - C = N + H_2 \xrightarrow[Pressão/Temperatura]{Catalisador}} R - CH_2 - NH_2$$
(19)

A produção das diaminas envolve a reação das aminas primárias com as acrilonitrila (CH₂=CH− C≡N), de modo que se obtenha o produto intermediário, que são as aminonitrilas, mostradas na Equação 20.

$$\begin{array}{c} CH_{3} \\ | \\ R-NH_{2} + CH_{2} = CH-C \equiv N \longrightarrow R-NH-CH-C \equiv N \end{array}$$

$$(20)$$

Após a reação de hidrogenação, as aminonitrilas são convertidas em diaminas, conforme mostrado na Equação 21.

$$\begin{array}{ccc} CH_3 & CH_3 \\ \downarrow \\ R-NH-CH-C\equiv N + H_2 \rightarrow & R-NH-CH-CH_2-NH_2 \end{array}$$
(21)

Na flotação industrial de minério de ferro, os derivados da amina mais utilizados são as eteraminas. A presença da ligação covalente C – O dão às eteraminas uma maior solubilidade, facilitando seu acesso às interfaces sólido-líquido e líquido-gás, melhorando a contribuição espumante da amina (ARAÚJO *et al.*, 2013).

A formação das etermonoaminas ocorre em duas etapas, como relatado por NEDER (2005):

- 1. Reação de um álcool graxo com acrilonitrina (Equação 22);
- O produto da etapa 1 (eternitrila) sofre hidrogenação catalítica a alta pressão, formando-se as etermonoaminas (Equação 23)

$$R - OH + CH_2 = CH \equiv N \rightarrow R - O - CH_2 - C \equiv N$$
⁽²²⁾

$$R - O - CH_2 - CH_2 - C \equiv N + H_2 \xrightarrow{Pressão} R - O - CH_2 - CH_2 - CH_2 - NH_2$$
(23)

Já as eterdiaminas são originadas através dos seguintes processos (NEDER et al., 2006):

- 1. Reação de etermonoaminas com acrilonitrina (Equação 24);
- O produto da etapa 1 (eternitrila) sofre hidrogenação catalítica a alta pressão, formando-se as eterdiaminas (Equação 25)

$$R - O - (CH_2)_3 NH_2 + CH_2 = CH \equiv N \rightarrow R - O - (CH_2)_3 - NH - (CH_2)_2 - C \equiv N$$
(24)

$$R - O - (CH_2)_3 - NH - (CH_2)_2 - C \equiv N + H_2 \xrightarrow{Pressão} R - O - (CH_2)_3 - NH - (CH_2)_3 - NH_2$$
(25)

Um fluxograma simplificado com um resumo das rotas de produção das aminas e seus derivados é mostrado na Figura 3-24.

Figura 3-24: Fluxograma simplificado de produção da amina e derivados (Fonte: NEDER *et al.*, 2006).

3.4.2 Amido – Depressor

O amido é uma reserva energética vegetal formada basicamente pela condensação de moléculas de glicose geradas através do processo fotossintético, tendo como fórmula simplificada $(C_6H_{10}O_5)_n$, onde n é o número de unidade D-glicose, que é ilustrada na Figura 3-25 (ALBUQUERQUE, 2010). Essa unidade possui átomos de 6 carbonos, 5 grupos hidroxila e uma dupla ligação de oxigênio arranjada de forma cíclica, possuindo ainda mobilidade conformacional e 16 possíveis isômeros oticamente ativos. O amido é o segundo polissacarídeo mais encontrado na natureza, sendo superado somente pela celulose. O reagente apresenta alto peso molecular, e sua capacidade hidrofílica é determinada pela presença de grupos OH fortemente polares (LEJA, 1982).

Figura 3-25: Fórmula estrutural da D-glicose (Fonte: LEJA, 1982).

Obtido de várias raízes, tubérculos e cereais, os amidos constituem-se basicamente de dois compostos de composição química similar e estrutura de cadeia distinta (BRANDÃO, 2005):

 i) Amilose: Polímero linear com ligações glicosídicas α (1→ 4) e massa molecular média a alta. A Figura 3-26 mostra a fórmula estrutural da amilose.

Figura 3-26: Fórmula estrutural da amilose (Fonte: LEJA, 1982).

Quando a amilose se encontra em solução aquosa, ela se apresenta na forma helicoidal, através da ligação de seis grupos D-glicose. Neste tipo de estrutura helicoidal e devido à localização das ligações dos grupos D-glicose, os grupos hidroxila se orientam para o lado de fora, enquanto os grupos C – H se localizam na parte interna da hélice. Dessa forma, temos que o interior da hélice apresenta um caráter hidrofóbico, enquanto a parte externa tem caráter hidrofílico. A Figura 3-27 mostra a forma helicoidal da amilose.

Figura 3-27: Estrutura helicoidal da amilose (Fonte: BRANDÃO, 2016).

ii) Amilopectina: Polímero altamente ramificado, de massa molecular muito alta, com as mesmas ligações da amilose e ligações adicionais α (1→ 6), que fazem a ramificação das cadeias, tornando-as menos flexíveis. A Figura 3-28 apresenta a fórmula estrutural da amilopectina.

Figura 3-28: Fórmula estrutural da amilopectina (Fonte: LEJA, 1982).

A estrutura altamente ramificada da amilopectina impede a formação de uma estrutura helicoidal, diferentemente da amilose. Isso resulta em uma conformação altamente irregular, como mostra a Figura 3-29.

Figura 3-29: Estrutura irregular da amilopectina (Fonte: BRANDÃO, 2016).

De acordo com PERES (2016), o número de unidades D-glicose para a amilose permanece na faixa de 200 a 1000 e para a amilopectina esse valor supera 1500. A proporção amilopectina/amilose pode diferir bastante. No caso do amido de milho, a relação 3/1 prevalece para as modalidades comuns do milho amarelo. Além de amilopectina e amilose, os amidos não modificados contêm matéria mineral, proteínas, umidade, fibras e óleo. Este último deve representar um teor máximo de 1,5%, pois quantidades de óleo superiores a este teor atuariam inibindo o processo de espumação.

O amido de milho apresenta como característica essencial um alto peso molecular (<300.000 u.m.a.), cuja determinação precisa é difícil, principalmente por tratar-se de um composto constituído por dois componentes de peso molecular e estrutura distinta. Além da alta hidrofilicidade das macromoléculas devido à presença dos grupos OH na unidade básica, o tamanho da molécula faz com que ela se estenda na solução e passe a agir como ponte entre as partículas minerais na polpa, atuando como floculante (ALBUQUERQUE, 2010).

As aplicações fundamentais dos amidos e de seus derivados na indústria mineral residem em flotação, aglomeração/floculação e filtração. Segundo HADZERIGA *et al* (1988), algumas das principais características que os tornam de extremo interesse e utilização são:

- i) Abundância;
- ii) Baixo custo;

- iii) Facilidade de obtenção na sua forma pura e de uso imediato, mantendo suas propriedades estáveis e típicas;
- iv) Biodegradabilidade.

O amido é largamente utilizado em operações de flotação no Brasil devido a sua eficiência como depressor. No entanto, a sua aplicação na flotação somente é possível após a sua gelatinização com hidróxido de sódio. MARTINS *et al* (2012) define a gelatinização como o processo de destruição da carapaça dos grãos e consequentemente, a liberação da amilose e amilopectina para a solução. A temperatura na qual o amido começa a sofrer este processo de liberação da amilose e amilopectina é denominada de temperatura de gelatinização. Segundo THOMAS *et al* (1999), a temperatura de gelatinização dos amidos de raízes e tubérculos como batata encontra-se entre 58°C e 65°C, enquanto o amido de mandioca se gelatiniza entre 52°C e 65°C. Já para o amido de milho, essa faixa de temperatura se encontra entre 62°C e 80°C, e de 59°C a 85°C para o amido de trigo.

O amido tem sido empregado em vários sistemas de flotação, dentre os quais se destacam (PERES, 2016; SAMPAIO *et al*, 2001; BRANDÃO, 2016):

- Flotação reversa de quartzo em minérios itabiríticos, atuando na depressão de minerais de ferro;
- ii) Flotação de minério fosfático, deprimindo silicatos e carbonatos;
- iii) Flotação direta de minério de silvinita com amina para produção de concentrados de KCl;
- iv) Floculador de lamas argilosas nos sistemas descritos nos itens (i) a (iii), que geram o excessivo consumo de reagente devido a sua enorme área superficial;
- v) Floculação da lama vermelha no processo Bayer de produção de alumina e alumínio.

Os amidos de milho podem ser divididos em amidos não modificados e amidos modificados. Os amidos não modificados são caracterizados por possuírem alto peso molecular, sendo superior a 300.000 u.m.a., o que dá a eles a capacidade de, além de agir como depressores, atuar como floculante. Essas moléculas podem sofrer transformações químicas que têm como objetivo a diminuição do seu grau de polimerização, passando a ser reconhecidos como amidos de milho modificados, ou dextrina (OLIVEIRA, 2016). As dextrinas são caracterizadas por possuírem um peso molecular muito inferior aos amidos de milho não modificados – variando entre 7.000 u.m.a. e 3.000 u.m.a. No entanto, não é alterada a proporção amilopectina/amilose original. Essa modificação no peso molecular faz com que, ao adsorver nas partículas minerais, ao invés de agirem como reagentes floculantes, as dextrinas irão agir como dispersantes das partículas na polpa, aumentando a eficiência do processo. Em temperatura ambiente, as dextrinas são solúveis em água fria (OLIVEIRA, 2016).

De acordo com MAPA (2006), na flotação catiônica reversa de minério de ferro, os amidos atuam principalmente como reagente depressor da hematita, ao reforçarem o caráter hidrofílico do mineral e, assim, reduzindo a flotabilidade dessas partículas diante da atuação da amina como coletor. Por causa da presença de grupos hidroxila, tanto os amidos não modificados quanto as dextrinas apresentam alto grau de hidrofílicidade, sendo capazes de tornar hidrofílicas as superfícies das partículas minerais nas quais se adsorvem (PERES, 2016).

Segundo BRANDÃO (2005), o amido possui a capacidade de se adsorver extensivamente na superfície da hematita e em menor quantidade na superfície do quartzo, fazendo com que o coletor, posteriormente, não consiga adsorver na hematita em quantidade suficiente para tornar sua superfície hidrofóbica. PERES *et al.* (1992) relatam, em seus estudos, que a adsorção do amido na superfície da hematita se deve às interações do tipo ligação de hidrogênio, formação de sais e interações eletrostáticas.

3.5 Flotação Aniônica Direta de Minério de Ferro

Para minérios com baixo teor de ferro, a flotação catiônica reversa não se mostra eficiente pois, devido à grande quantidade de sílica presente no material, a recuperação mássica tende a ser muito elevada, acarretando uma baixa seletividade dos minerais presentes. A partir disso, deuse estudos para uma nova combinação de reagentes que possibilitasse a concentração destes materiais de baixo teor.

A opção identificada foi a realização de uma flotação direta do minério de ferro, sendo flotado os óxidos de ferro, e os silicatos sendo deprimidos. Os coletores utilizados para esse tipo de flotação são os ácidos graxos (reagente aniônico) e os depressores ainda precisam de estudos mais aprofundados (VALADÃO, 2007). No entanto, depressores comumente utilizados para a depressão de silicatos são os mais utilizados na flotação aniônica direta.

O primeiro relato de utilização da flotação aniônica direta de minério de ferro ocorreu na mina de Humboldt, Michigan, EUA, pertencente à Cleveland Cliffs Iron Company, em 1954. Essa mina não se encontra mais em operação atualmente (REIS, 2004).

De acordo com ZHANG *et al.* (2022), o oleato de sódio adsorve-se quimicamente na superfície dos oximinerais que são coletados na espuma. A adsorção ocorre pela formação de ligações de hidrogênio entre os grupos C–H do oleato de sódio e o grupo O da hematita, conforme mostrado na Figura 3-30.

Figura 3-30: Modelo de interação entre oleato de sódio e hematita (esquerda: antes da adsorção, direita: depois da adsorção) (Fonte: ZHANG *et al.* (2022)).

O silicato de sódio tem fórmula química geral Na₂SiO₃. Porém a composição química pode ser expressa por mNa₂OnSiO₂, sendo a razão m/n conhecida como módulo do silicato de sódio. Nos sistemas de flotação, os silicatos utilizados normalmente possuem módulo entre 2,2 e 3,0. A Equação 26 mostra a dissolução do metassilicato de sódio em água.

$$Na_2SiO_3 + H_2O \rightleftharpoons NaHSiO_3 + NaOH$$
 (26)

Os mecanismos de ação do silicato de sódio são de difícil compreensão, uma vez que a hidrólise gera diversas espécies monoméricas, poliméricas e coloidais, conforme mostra o gráfico de especiação do silicato de sódio na Figura 3-31.

O silicato de sódio é citado por RAO (2004) como um possível depressor da ganga silicática, uma vez que as espécies altamente hidrofílicas formadas pela dissolução do silicato de sódio em água são as responsáveis pelo aumento da hidrofilicidade do mineral, e, consequentemente, a depressão da ganga silicática. FUERSTENAU *et al.* (1976) relatam que a eficácia do silicato de sódio como depressor em sistemas de flotação ocorre em faixas estreitas de pH, devido à natureza química do reagente. Quanto maior a proporção SiO₂/Na₂O, maior é a efetividade do silicato de sódio como depressor, devido à maior proporção de íons silicato.

Figura 3-31: Gráfico de especiação do silicato de sódio em função do pH (Fonte: FERREIRA, 2018).

A Figura 3-32 mostra o gráfico de especiação do ácido silícico em função do pH da solução. Através do gráfico, podemos perceber que, em pH < 7, o silicato de sódio está em sua forma protonada (como ácido silícico) e, dessa forma, não é um depressor efetivo nestas condições. Porém, em pH > 10, aumenta-se a proporção de Na₂O e, assim, diminui-se a quantidade de espécies silicáticas, diminuindo a eficiência da depressão dos minerais.

LUZ (1996) realizou ensaios em células de Fuerstenau e de flotação em escala de bancada utilizando como reagentes coletores dos óxidos de ferro o sulfonato de petróleo, o óleo de arroz e o óleo de rícino, saponificados em meio aquoso e alcoólico. Silicato de sódio, hexametafosfato de sódio e ácido tânico (tanino) foram utilizados como depressores da ganga silicática. Os resultados mostraram que o sulfonato de petróleo obteve resultados promissores para a faixa de pH entre 6,0 e 8,0. Já o óleo de arroz, saponificado em meio alcoólico, teve melhores resultados comparado com o mesmo óleo, porém, saponificado em meio aquoso. O óleo de arroz apresentou melhor desempenho, quando comparado ao óleo de rícino saponificado em meio alcoólico, apresentou alta

flotabilidade para hematita e baixa para a sílica, com a dosagem de 400 g/t, indicando uma boa seletividade entre os minerais.

Figura 3-32: Gráfico de especiação iônica do ácido silícico em função do pH (Fonte: LOPES, 2009).

Ainda segundo LUZ (1996), o silicato de sódio obteve baixa eficácia na depressão do quartzo. Já o hexametafosfato de sódio realiza a depressão tanto do quartzo quanto da hematita. Nesse estudo, o depressor que apresentou o melhor desempenho foi o ácido tânico (tanino), apresentando uma maior seletividade. Porém, a hematita é parcialmente deprimida com o tanino, fazendo com que a recuperação obtida não seja muito elevada.

Estudos de microflotação com amostras de hematita e quartzo utilizando oleato de sódio, realizados por LOPES (2009), mostraram que a flotabilidade máxima para a hematita era alcançada com a dosagem de 50 mg/L, pH 7,0 e 4 minutos de condicionamento. Já para o quartzo, a flotabilidade máxima foi atingida utilizando-se a dosagem de 70 mg/L, pH 9,0 e 6 minutos de condicionamento. Porém, o metassilicato de sódio não foi eficiente para a depressão do quartzo, deprimindo em maior quantidade a hematita do que o quartzo.

Em outro estudo realizado por LOPES (2009), foi analisada a concentração de minério de ferro proveniente da Serra da Serpentina, em Morro do Pilar – MG, através de flotação direta, por apresentar baixo teor. No estudo, foram utilizados o oleato de sódio, hidroxamato comercial (Aero[®] 6493 Promoter) e o sulfonato comercial (Aero[®] 825 Promoter) como reagentes coletores. O hidroxamato se mostrou o coletor capaz de produzir o concentrado com o maior teor de Fe (61,5%) e menor teor de SiO₂ (9,8%). Já os concentrados obtidos com o oleato de

sódio apresentaram 58,1% de Fe e 14,4% de SiO₂, enquanto, com o sulfonato, foram obtidos 57,9% de Fe e 13,2% de SiO₂.

Já NASCIMENTO (2010) realizou testes de flotação direta utilizando o depressor fluorsilicato de sódio e metassilicato de sódio, juntamente com o oleato de sódio – como coletor –, porém os produtos obtidos nesses testes apresentaram valores fora da especificação de mercado, não apresentando a seletividade necessária entre a hematita e os minerais de ganga. O melhor resultado obtido nos testes teve como concentrado final teor de Fe de 46,7% e 28,9% de SiO₂, utilizando minério não deslamado, 60% de sólidos, 2.400 g/t de fluorsilicato de sódio e 1.200 g/t de oleato de sódio.

JOSÉ *et al.* (2018) propuseram um novo circuito de flotação para um minério de ferro da empresa Vale, proveniente do Quadrilátero Ferrífero (MG), onde o material, após ser deslamado, era submetido a uma ciclonagem em 75µm, onde o *underflow* era submetido a uma flotação catiônica reversa (tradicional), com 550 g/t de amido e 400 g/t de amina. Já o *overflow* da ciclonagem em 75µm seria enviado a um circuito de flotação aniônica direta, utilizando Flotigam 5806-25 (Ácido Graxo) como coletor na dosagem de 600 g/t em pH 7,0, e um cloreto quaternário de amônio e acrilamida como depressor, na dosagem de 600 g/t. A escolha desta divisão de fluxos se deu pelo fato de que o material mais fino (<75µm) apresentava menor teor de Fe (37,1%), comparativamente com a faixa mais grossa (>75µm) – 48,1% de Fe. Os resultados mostraram que a flotação aniônica direta não obteve resultados satisfatórios, com um concentrado final com teor de 53,4% de Fe e 39,67% de SiO₂, também muito abaixo das especificações comerciais.

Isto mostra que, apesar de estudos já realizados, os resultados obtidos até o momento ainda estão longe de serem considerados promissores para uma possível mudança do sistema de flotação empregado para a concentração dos minérios de ferro brasileiros.

3.6 Outros Reagentes Coletores

Em algumas situações, os coletores usuais (aminas, ácidos graxos e tiocompostos, como xantatos) não apresentam resultados satisfatórios no que se refere ao teor ou à recuperação. Nestes casos, a solução pode estar no uso de coletores alternativos. Para a flotação direta de minério de ferro, três grupos de coletores se enquadram nesta situação, sendo eles: os

hidroxamatos, sulfososuccinatos e sulfosuccinamatos. Todos eles têm uma característica em comum: são considerados reagentes quelantes.

Os reagentes quelantes são caracterizados por uma molécula orgânica com dois os mais átomos doadores, capazes de se ligar a um único metal para formar um complexo com estrutura anelar. Os principais átomos doadores presentes nos quelantes são o nitrogênio (N), oxigênio (O) e o enxofre (S) (BALTAR, 2021).

Para que um reagente quelante possa ser utilizado como um coletor, deve-se respeitar dois requisitos. Primeiro deve-se haver especificidade com relação a um determinado metal presente no mineral que se deseja flotar. Em segundo lugar, a cadeia da molécula do reagente quelante deve ser suficientemente grande para promover a hidrofobicidade necessária a uma flotação eficiente (NAGARAJ, 1987; BALTAR, 2021).

Os agentes quelantes, em geral, combinam com metais pesados e de transição, e não formam ligações com os íons Si⁴⁺ nem com os metais alcalinos (como Li, Na e K) e alcalino terrosos (como Mg, Ca e Ba). Isto ocorre devido à configuração eletrônica desses elementos que dificulta a recepção do par de elétrons doado pelo quelante. Este fato confere aos coletores quelantes um caráter bastante seletivo, já que os elementos citados estão presentes na maioria dos minerais de ganga (BALTAR, 2021).

3.6.1 Hidroxamatos

Os hidroxamatos são sais de ácidos hidroxâmicos (obtidos a partir de reação de ácidos carboxílicos com hidroxilamina) de vários tamanhos de cadeia, sendo obtidos por neutralização com uma base, normalmente hidróxido de sódio ou potássio. A Figura 3-33 mostra a reação de neutralização do ácido hidroxâmico.

Os ácidos hidroxâmico são agentes quelantes do tipo O–O, ou seja, a complexação do metal se dá por meio dos átomos de oxigênio do grupo funcional do coletor e envolve a liberação do hidrogênio do grupo hidroxilamina do quelante. Portanto, a adsorção do hidroxamato na superfície mineral é de natureza química (PARKER *et al.,* 2012), e pode ocorrer por quimissorção ou reação química, com a formação de precipitado na superfície mineral.

Na quimissorção, o quelato é formado entre a molécula do coletor e o metal da superfície que não sai de sua posição. Essa é a forma mais produtiva de adsorção já que só prossegue até a formação da monocamada. Já na adsorção por reação química, cada íon metálico removido da superfície necessita de, pelo menos, duas moléculas do coletor para a formação do quelato na interface. Este processo é favorecido pela prévia formação do hidróxido metálico, uma vez que isto facilita a remoção do metal da superfície, disponibilizando-o para a formação do precipitado (FUERSTENAU *et al.;* 2000, BALTAR, 2021). A Figura 3-34 mostra a formação do quelato de ferro na interface sólido-líquido, enquanto a Figura 3-35 mostra a formação do quelato de ferro na superfície mineral.

Figura 3-34: Formação do quelato de ferro na interface sólido-líquido (Fonte: BALTAR, 2021).

Figura 3-35: Formação do quelato de ferro na superfície do mineral portador de ferro (Fonte: BALTAR, 2021).

A adsorção por reação química na interface pode ocorrer em multicamadas, o que sugere a possibilidade de desperdício do coletor. A formação do coletor pode envolver ligações de hidrogênio ou, como é o mais comum, ligações hidrofóbicas do tipo cadeia-cadeia. As duas opções são ilustradas na Figura 3-36.

Figura 3-36: Adsorção do ácido hidroxâmico em multicamadas na superfície de um mineral de ferro (Fonte: BALTAR, 2021).

A formação de precipitados também pode ocorrer na solução. No entanto, esse precipitado geralmente não contribui para a hidrofobização da superfície mineral, ou seja, representa um consumo improdutivo do coletor. A formação de precipitados fora dos limites da interface sólido-líquido costuma acontecer quando a velocidade de dissolução e difusão do metal para a fase aquosa é maior do que a velocidade de difusão do coletor para a superfície (BALTAR, 2021).

Os ácidos hidroxâmico e seus derivados formam os quelatos mais estáveis com Fe, Cu e metais de alta valência, tais como Ta⁵⁺ e Nb⁵⁺. Em ordem decrescente de estabilidade, vêm, na sequência, os minerais de terras raras e, depois os metais de transição e metais alcalino terrosos (NAGARAJ, 1987).

Uma das principais características dos hidroxamatos é a sua lenta cinética de adsorção e uma forte relação com a solubilidade dos minerais presentes no sistema de flotação, isto é, minerais com baixa solubilidade exibem cinética de adsorção mais lenta comparada aos mais solúveis (ALBUQUERQUE, 2010).

Os hidroxamatos podem se adsorver em uma ampla faixa de pH. No entanto, a hidrofobicidade máxima têm sido observada próximo a pH 9, que coincide com o pKa do coletor e, consequentemente, com a coexistência das formas iônica e molecular. A coadsorção dessas espécies aumenta a densidade de adsorção na superfície e a flotabilidade do mineral (NAGARAJ, 1987).

Deve-se considerar também a região de pH que favorece a formação de hidróxido metálico na superfície. RAGHAVAN e FUERSTENAU (1975) observaram condições mais favoráveis de adsorção do hidroxamato nas proximidades do ponto isoelétrico da hematita (entre pH 6,5 e 7,0), o que coincide com a maior presença do hidróxido metálico.

O ácido hidroxâmico e seus derivados costumam ser usados em dosagens mais elevadas do que as praticadas com os coletores tradicionais. Em vários sistemas, a concentração utilizada é igual ou superior a 1000g/t (BALTAR, 2021).

O uso dos hidroxamatos na indústria mineral como coletor de flotação surgiu inicialmente na Rússia e China. Atualmente, o hidroxamato é o agente quelante mais usado em estudos de flotação de uma variedade de minerais oxidados, a serem listados na Tabela 3-4:

Elementos	Referências
Titânio (Ti)	CELIK et al., 1988
	YOON et al., 1992
Nióbio (Nb)	NI et al., 2012
	GIBSON et al., 2015
Estanho (Sn)	WU e ZHU, 2006
Ferro (Fe)	RAGHAVAN e FUERSTENAU, 1975
Manganês (Mn)	NATARAJAN e FUERSTENAU, 1983
	ZHOU et al., 2015
Cobre (Cu)	HANSON e FUERSTENAU, 1991
	FUERSTENAU et al., 2000
	LEE et al., 2009
	HOPE <i>et al.</i> , 2012
Zinco (Zn)	NATARAJAN e NIRDOSH, 2006
Chumbo (Pb)	MARABINI et al., 1989

Tabela 3-4: Referencial teórico sobre o uso do hidroxamato em diversos minérios (Fonte: Adaptado de BALTAR, 2021).)

3.6.2 Sulfosuccinatos e Sulfosuccinamatos

Os coletores sulfosuccinatos e sulfosuccinamatos são derivados do ácido sulfosuccínico que, por sua vez, é produzido a partir da sulfonação do ácido succínico (um ácido dicarboxílico saturado). Suas estruturas são apresentadas na Figura 3-37.

$$\begin{array}{ccc} \text{ROOC} - \text{CH}_2 & \text{RNHCO} - \text{CH}_2 \\ & & | \\ \text{CH} < \begin{array}{c} \text{COO^-Na^+} \\ & \text{SO}_3^-\text{Na^+} \end{array} \end{array} & \begin{array}{c} \text{RNHCO} - \text{CH}_2 \\ & | \\ \text{CH} < \begin{array}{c} \text{COO^-Na^+} \\ & \text{SO}_3^-\text{Na^+} \end{array} \end{array}$$

Sulfosuccinato

Sulfosuccinamato

Figura 3-37: Fórmulas químicas do sulfosuccinato (esq.) e sulfosuccinamato (dir.) (Fonte: BALTAR, 2021).

Assim como os hidroxamatos, os sulfosuccinatos e sulfosuccinamatos apresentam potencial para a formação de quelatos, conforme a Figura 3-38. Até a formação da monocamada, a adsorção é predominantemente de natureza química, uma vez que pode ocorrer em superfícies acima do PIE.

Figura 3-38: Estrutura química do quelato formado pelos sulfosuccinamatos (Fonte: BALTAR, 2021).

Algumas espécies catiônicas como Ca^{2+} , Fe^{2+} e Fe^{3+} formam precipitados insolúveis com o sulfosuccinato/sulfosuccinamato. Dessa forma, consomem parte do coletor, prejudicando a flotação. Em meio ácido (pH < 4), os precipitados formados com esses cátions são solúveis, o que possibilita a chegada de uma maior quantidade de moléculas do coletor à superfície mineral. Por esse motivo, a máxima adsorção e, consequentemente, a máxima flotabilidade com este tipo de coletor costuma ocorrer em meio de elevada acidez. (BALTAR, 2021).

No Brasil, o sulfosuccinato é constituinte do sistema de reagentes da unidade industrial da Mosaic Fertilizantes em Tapira (MG), utilizado numa mistura com ácido graxo hidrogenado. Os estudos de teste de flotabilidade em tubo de Hallimond realizados por OLIVEIRA (2007) em um minério sílico-carbonatado de Catalão (GO) mostraram que oleato de sódio e Eumulgin MC-711 apresentaram seletividade entre apatita e carbonatos. A concentração de MC-711 favorável para a separação foi de 8 mg/L, em meio alcalino (pH=9). De acordo com OLIVEIRA (2007), o mecanismo de adsorção do MC-711 nos minerais que contêm cálcio é semelhante àquele observado para o oleato de sódio, uma adsorção química. No entanto, nenhuma explicação detalhada sobre este mecanismo e sobre a maior seletividade do sulfosuccinato frente aos ácidos graxos foi encontrada.

ALBUQUERQUE *et al.* (2007) realizaram testes piloto de flotação em coluna com um fosfato proveniente da Bahia, utilizando uma amostra de sulfosuccinamato, fabricado pela Clariant S/A. Os resultados obtidos mostraram que utilizando amido de milho e uma mistura de ácido graxo hidrogenado e sulfosuccinamatos em meio alcalino (pH = 10,4), foi obtido um concentrado com teor e recuperação de P_2O_5 de 32,0 e 96,4%, respectivamente.

3.7 Mistura de Reagentes Coletores

Nos dias atuais, o estudo dos efeitos da mistura de reagentes coletores distintos vêm sendo realizado por uma série de autores, mostrando ser uma direção promissora na pesquisa sobre flotação, tendo em vista uma série de desafios que estão sendo colocados a indústria mineral, como: diminuição dos custos para se produzir o concentrado final, diminuição do consumo de reagentes químicos aliado ao empobrecimento dos depósitos já existentes e possíveis reprocessamentos dos rejeitos obtidos de etapas anteriores.

Um dos ganhos com o uso de misturas de coletores consiste no aumento da seletividade no processo de flotação, propriedade fundamental para o beneficiamento de minérios com baixo teor e/ou rejeitos do processamento mineral, seja de etapas de flotação ou de outros métodos de concentração.

BRADSHAW *et al.* (1998) relataram, em seus estudos, que a adição de apenas um único coletor em um sistema de flotação pode acarretar a adsorção somente em sítios fortes (*strong sites*), gerando uma cobertura não uniforme e, dessa forma, diminuindo a capacidade de adsorção do reagente. No entanto, quando é feita a mistura de coletores de forma prévia à sua adição ao sistema de flotação, a cobertura ocorre de forma mais homogênea, tanto nos sítios fortes quanto nos sítios fracos, aumentando o poder de adsorção do coletor misto.

VIDYADHAR *et al.* (2012) realizaram testes de microflotação em tubo de Hallimond com amostras puras de hematita avaliando a adsorção de coletores mistos formados por dodecilamina (coletor catiônico) e sulfatos e oleato de sódio (coletores aniônicos). Os resultados mostraram que a presença de oleato aumentou a quantidade de dodecilamina adsorvida na superfície da hematita, originando maior taxa de flotabilidade, por causa da diminuição da repulsão eletrostática entre os componentes de mesma carga. Estudos realizados por WANG *et al.* (2014) mostraram a eficiência da mistura de oleato de sódio e dodecilamina na separação entre muscovita e quartzo. Inicialmente, foram realizados testes utilizando os reagentes de forma isolada, chegando a conclusão de que somente havia condições de seletividade entre os dois minerais em pH muito ácido (inferior a 3,0). No entanto, ao utilizar o coletor misto oleato de sódio/dodecilamina na proporção molar de 2:1, obteve-se uma seletividade significativa em pH 10,0. Neste pH, a recuperação da muscovita foi superior a 90% enquanto a recuperação do quartzo foi inferior a 10%.

O aumento do pH na presença do coletor misto afetou especialmente a flotabilidade do quartzo, mostrando que a mistura de reagentes pode acarretar uma depressão do quartzo. Isto foi explicado por WANG *et al.* (2016^a), ao realizar testes de ângulo de contato, chegando à conclusão de que o ângulo de contato do quartzo na presença do coletor misto é muito inferior ao apresentado com uma solução pura de dodecilamina. Quanto menor o ângulo de contato, mais hidrofílica se torna a partícula.

Os mesmos autores, em publicação posterior (WANG *et al.*, 2016^b), analisaram o comportamento da adsorção do coletor misto na interface ar/água, utilizando simulações de dinâmica molecular. Os resultados da simulação mostraram que, comparativamente a dodecilamina pura e ao oleato de sódio puro, os compostos oriundos da mistura dos dois reagentes são mais compactos e possuem a capacidade de formar uma monocamada compacta na interface água/ar, indicando uma maior atividade de sua superfície. Os grupos polares dos reagentes são inclinados para a fase líquida, devido a fortes interações com a água. Enquanto isso, as cadeias carbônicas hidrofóbicas do coletor misto se estendem em direção ao ar com um ângulo menor do que nas situações em que foram analisados os reagentes puros. Os resultados ainda mostraram que a ordem de atividade de superfície é a seguinte (considerando as proporções molares oleato de sódio/dodecilamina): 3:1 > 1:1 > 1:3. A Figura 3-39 mostra um esboço da concentração do coletor misto na proporção 1:1 na interface água/ar.

A utilização de coletores mistos também foi investigada para outros sistemas minerais. WANG *et al.* (2016^c) analisaram o sistema calcita/scheelita, onde um coletor misto entre dodecilamina e oleato de sódio na proporção molar de 2:1 obteve os melhores resultados em termos de seletividade entre os minerais analisados, em pH 7,0.

XU *et al.* (2016) realizaram uma série de testes de flotabilidade da moscovita com oleato de sódio e dodecilamina pura, assim como o coletor misto na proporção molar entre dodecilamina e oleato de 1:3. A Figura 3-40 mostra o gráfico da flotabilidade variando o pH, enquanto que a Figura 3-41 mostra a influência da concentração no processo.

WANG *et al.* (2019) realizaram testes com uma mistura entre ácido benzohidroxâmico e oleato de sódio para o sistema smithsonita/dolomita. Os resultados mostraram, mais uma vez, o melhor desempenho do coletor misto frente ao oleato de sódio puro na flotação da smithsonita. Com uma razão molar oleato/ácido benzohidroxâmico 2:1, obteve-se uma recuperação de 92% da smithsonita.

Figura 3-40: Recuperação da moscovita na presença de oleato de sódio, dodecilamina e do coletor misto na razão molar 1:3, com a concentração de 2,0 x 10⁻⁴ mol/L (Fonte: Adaptado de XU *et al.* 2016).

Figura 3-41: Recuperação da moscovita na presença de oleato de sódio, dodecilamina e do coletor misto na razão molar 1:3, em pH 7,0. (Fonte: Adaptado de XU *et al.* 2016).

LI *et al.* (2022) avaliaram a possibilidade do uso de um coletor misto formado entre oleato de sódio (NaOL) e dodecilamina (DDA) na flotação seletiva entre fluorita e calcita. Os resultados dos testes de microflotação realizados (Figura 3-42) mostraram que o coletor misto apresenta forte seletividade para ambos os minerais. No entanto, na proporção molar NaOL:DDA 9:1, houve a maior diferença entre a flotabilidade da fluorita para a calcita. O uso do depressor composto pela mistura entre sulfato de alumínio e silicato de sódio na proporção molar 1:4 potencializou a depressão seletiva da calcita. Os autores fizeram análises de espectrometria de infravermelho, que mostraram que a DDA e o NaOL são coadsorvidos na superfície da fluorita, enquanto apenas o NaOL é adsorvido na superfície da calcita.

Figura 3-42: Microflotação da fluorita e calcita com coletor misto formado entre oleato de sódio (NaOL) e dodecilamina (DDA) em diferentes proporções molares (Fonte: Adaptado de LI *et al.,* 2022).

Ainda segundo LI *et al.* (2022), os coletores mistos podem formar micelas grandes, reduzindo a concentração micelar crítica (CMC) e obtendo, assim, uma maior atividade molecular em comparação com o uso de um único coletor. Dessa forma, o uso de coletores mistos favorece a flotação seletiva da fluorita em relação a calcita.

CAMPOS (2022), em seus estudos, executou testes para avaliar a eficácia de um coletor misto formado entre dodecilamina e ácido graxo para um minério manganífero de baixo teor (16,9% Mn). Os resultados indicaram que o coletor misto na proporção mássica dodecilamina/ácido graxo 1:4 apresentou um excelente desempenho, comparado com o uso da dodecilamina e do

ácido graxo de forma isolada, obtendo 36,3% Mn, conforme ilustrado na Figura 3-43. Outro ponto também revelado pelo estudo está na alta seletividade do coletor misto para os minerais portadores de Mn, apresentando teores significativos de Mn (29 a 30% Mn) em testes realizados na ausência de um reagente depressor.

Figura 3-43: Influência do coletor misto formado entre dodecilamina e ácido graxo na flotação de um minério manganífero (Fonte: CAMPOS, 2022).

4 METODOLOGIA

Neste capítulo será abordado a metodologia adotada para a realização desta pesquisa, dando destaque para a amostra e reagentes empregados, bem como os testes realizados e os parâmetros adotados para a realização deles.

4.1 Materiais

4.1.1 Amostras

Para a realização desta pesquisa, foram utilizadas aproximadamente 200 kg de uma amostra de rejeito de minério de ferro obtidas de depósito localizado na região do Quadrilátero Ferrífero, conforme ilustrado na Figura 4-1. Este rejeito foi obtido após o descomissionamento de uma barragem de rejeitos e já se encontrava seco no momento da obtenção da amostra pelo autor da pesquisa.

Figura 4-1: Amostra utilizada na realização dos testes.

4.1.2 Reagentes

Foram utilizados os seguintes reagentes para a realização desta pesquisa:

- Dodecilamina P.A. (DDA), utilizada como reagente coletor, fornecido pela Sigma Aldrich;
- Reagente a base de ácidos graxos, denominado AGEM, utilizado industrialmente em plantas de concentração de minérios diversos, utilizado como reagente coletor;
- Hidroxamatos Aero[®] 6493 Promoter, Aero[®] 6494 Promoter e Aero[®] OX 102 Promoter, utilizados como reagentes coletores, fornecidos pela Solvay;
- Sulfosuccinato Aero[®] 845 Promoter, utilizado como reagente coletor, também fornecido pela Solvay;
- Silicato de Sódio P.A. e Hexametafosfato de Sódio P.A., como depressor de ganga silicática na flotação aniônica reversa.

Para o ajuste do pH, foram utilizados hidróxido de sódio e ácido acético, todos em forma P.A.

4.2 Preparação

4.2.1 Amostras

As amostras foram homogeneizadas e quarteadas para a obtenção das alíquotas necessárias para a realização dos testes, com o auxílio de um divisor de rifles, mostrado na Figura 4-2. Não foi necessário realizar etapas de cominuição com as amostras, pois, devido ao fato de serem amostras já submetidas a etapas de concentração, já se encontravam na granulometria adequada para a realização dos testes.

Figura 4-2: Divisor de rifles utilizado na amostragem do rejeito.

4.2.2 Reagentes

Os reagentes utilizados nos testes realizados foram submetidos a distintos processos de preparação, a serem listados a seguir.

A preparação da DDA envolveu a sua diluição em água para a formação de uma solução 1% p/v. Não foram realizados procedimentos adicionais na preparação da DDA. O mesmo procedimento foi adotado para a preparação das soluções dos hidroxamatos, do sulfosuccinato, do silicato de sódio e do hexametafosfato de sódio.

O reagente AGEM teve que ser submetido ao processo de saponificação, para que houvesse a conversão dos ácidos graxos – insolúveis em água –, em sabões – sais de ácidos graxos, solúveis em água –, para serem utilizados na flotação. O método de saponificação escolhido é o que mais se aproxima das condições praticadas em uma planta industrial. As etapas do método de saponificação adotado estão a seguir:

- 1. Pesar 10g da amostra saponificável;
- 2. Pesar 20g de água, e colocar juntamente com o material pesado no item (1);
- 3. Pesar 3g de NaOH 50%;
- 4. Misturar o NaOH com o saponificável e a água até ficar uma mistura homogênea;

 Adicionar 167g de água, para formar uma solução de 200mL de óleo saponificado a uma concentração de 5%p/v.

Os coletores mistos foram preparados através da mistura prévia das soluções de cada um dos constituintes da mistura em proporções mássicas definidas, para a formação de uma nova solução com 1% p/v. As soluções preparadas possuíam validade de 48 horas.

4.3 Caracterização Tecnológica

A caracterização tecnológica objetiva o conhecimento das principais propriedades dos materiais utilizados nos testes realizados. Para as amostras utilizadas nos testes de flotação em bancada, foram realizados testes de análise granulométrica, picnometria, difratometria de raios-X, análise química quantitativa via fluorescência de raios X e análise por microscópio eletrônico de varredura com analisador de dispersão de energia de raios X (MEV-EDS).

4.3.1 Análise Granulométrica por peneiramento

A análise granulométrica foi realizada utilizando peneiras circulares de 20 cm de diâmetro, com tamanhos de abertura seguindo a série Tyler, como mostra a Figura 4-3. O procedimento foi dividido em duas etapas. Na primeira, foi realizado um peneiramento via úmida na malha de 38µm, durante 10 minutos, com a vazão de água de 1L/min. O objetivo desta primeira etapa foi retirar as partículas menores que este tamanho. Feito isso, o material retido foi secado e posteriormente realizada a segunda etapa, que consiste em um peneiramento a seco com uma sequência de peneiras com aberturas da série Tyler durante 30 minutos. O peneiramento realizado seguiu o critério de Gaudin, que estabelece a massa máxima que pode ficar retida em cada peneira de modo que não afete a eficiência do peneiramento.

Figura 4-3: Peneiras circulares de 20 cm de diâmetro.

4.3.2 Cyclosizer

O *cyclosizer* é um equipamento tradicionalmente utilizado para determinar a distribuição granulométrica de partículas com granulometria inferior a 38µm. O equipamento é caracterizado por apresentar uma série de hidrociclones invertidos, conectados em série, conforme mostra a Figura 4-4. Os diâmetros de cada ciclone também estão ilustrados na Figura 4-4.

Figura 4-4: Cyclosizer utilizado para os testes.

De acordo com WILLS (1988), a geometria de cada hidrociclone favorece a classificação, em decorrência dos diâmetros decrescentes na tubulação de entrada (alimentação) e de saída (*vórtex*) na direção do fluxo. Essa redução dos diâmetros resulta em maiores velocidades da suspensão e forças centrífugas com intensidades elevadas no interior dos hidrociclones, promovendo um decréscimo do tamanho limite de separação das partículas.

O *cyclosizer* foi projetado para ter os seguintes diâmetros de corte para cada ciclone, mostrados na Tabela 4-1, desde que respeitadas as condições operacionais descritas na Tabela 4-2.

Ciclone	Tamanho Limite (µm)
1	42,7
2	30,5
3	22,1
4	15,0
5	12,0

Tabela 4-1: Diâmetros de corte para cada ciclone do cyclosizer.

Tabela 4-2:	Condições	padrão	para a	operação	de um	cyclosizer
		L	L	· · · · · · · · · ·		

Variável	Valor padrão	Unidade
Vazão de água	696	L/h
Temperatura da água	20	°C
Densidade da amostra	2,65	g/cm ³
Tempo de elutriação	infinito	-

Caso os valores obtidos não correspondam aos valores padrão, fatores de correção devem ser aplicados, de acordo com a Equação 27.

$$d_e = d_l \times f_1 \times f_2 \times f_3 \times f_4$$

Onde:

- d_e = Tamanho efetivo de separação;
- d_l = Tamanho limite de separação;
- f_1 = Fator de correção para a temperatura;
- f_2 = Fator de correção para a densidade;
- f_3 = Fator de correção para a vazão;
- f_4 = Fator de correção para o tempo de elutriação.

As Figura 4-5, Figura 4-6, Figura 4-7 e Figura 4-8 mostram os gráficos para a obtenção dos fatores f₁ a f₄, respectivamente.

(27)

Figura 4-5: Gráfico do fator de correção f₁ em função da temperatura (Fonte: BRAGA *et al.,* 2007).

Figura 4-6: Gráfico do fator de correção f₂ em função da densidade (Fonte: BRAGA et al., 2007).

Figura 4-7: Gráfico do fator de correção f₃ em função da vazão de água (Fonte: BRAGA *et al.,* 2007).

Figura 4-8: Gráfico do fator de correção f₄ em função do tempo de elutriação (Fonte: BRAGA *et al.*, 2007).

A massa de alimentação (aproximadamente 50g) do *cyclosizer* precisa ser diluída e o seu pH ajustado para 10,5, de forma a garantir a dispersão das partículas. Essa polpa é adicionada ao recipiente de alimentação do *cyclosizer* de forma a não ter perda de massa. Após isso, o recipiente de alimentação é acoplado ao *cyclosizer* e se fecha as válvulas de controle e de ápex dos 5 ciclones.

Nesse momento, o equipamento é ligado, onde é ajustado a vazão de água para o valor padronizado (696L/h), e retirado o vórtex de ar que é formado em cada um dos ciclones, através da abertura da válvula do ápex e posterior fechamento dela. Em seguida, a válvula de alimentação da amostra é aberta e a contagem do tempo de elutriação é iniciada no instante em

que o recipiente de alimentação se encontrar completamente transparente, sem nenhuma partícula dentro.

Ao término do teste, os materiais são recolhidos pela válvula do ápex e colocados em um funil com um filtro de papel para sua filtragem. Após a filtragem, os filtros de papel são levados à uma estufa para secagem. Após a secagem, os filtros são pesados e as massas retidas em cada ciclone são determinadas pela diferença entre a massa do filtro após a secagem e a massa inicial do filtro seco.

4.3.3 Picnometria

A picnometria é uma técnica utilizada para a determinação da densidade de uma substância sólida. Para isso, é necessário utilizar o picnômetro (Figura 4-9), que é um balão de vidro com o fundo chato e uma rolha, também de vidro, no qual passa um canal capilar.

Figura 4-9: Picnômetro.

O procedimento do teste inicia-se com a pesagem do picnômetro limpo e seco em uma balança com precisão de 3 casas decimais. Posteriormente, é adicionado o minério dentro do recipiente, de modo que ocupe cerca de um terço do volume por imposição operacional, e então é pesado o conjunto picnômetro + minério. Em seguida, acrescenta-se água no balão de modo a ocupar todo o volume do picnômetro (até transbordar o capilar da rolha), e pesa-se o conjunto picnômetro + minério + água. Por fim, o balão é pesado contendo apenas água em todo o seu volume. Para melhorar a precisão dos dados, o processo é realizado em triplicata. De posse dessas 4 massas, foi possível determinar a densidade da amostra pela Equação 2.

$$d = \frac{(m_2 - m_1)}{(m_4 - m_1) - (m_3 - m_2)} \tag{28}$$

Em que:

- d = densidade da amostra.
- m₁ = massa do picnômetro vazio.
- m₂ = massa do picnômetro + amostra.
- m₃ = massa do picnômetro + amostra + água.
- m₄ = massa do picnômetro + água.
- $m_2 m_1 = massa da amostra.$
- m₄ m₁ = volume total do picnômetro.
- $m_3 m_2 =$ volume do picnômetro não ocupado pela amostra.

4.3.4 Difratometria de Raios X (DRX)

A técnica de Difratometria de Raios X tem como objetivo determinar a composição mineralógica da amostra analisada. Para isso, foi utilizado um difratômetro da marca PANalytical. modelo EMPYREAN, com tubo de anodo de cobre, como mostra a Figura 4-10. As análises foram realizadas no Laboratório de Caracterização do Departamento de Engenharia de Minas da Universidade Federal de Minas Gerais (DEMIN-UFMG), a partir do cruzamento dos valores obtidos das distâncias interplanares e intensidades dos picos das amostras do estudo registrados pelo equipamento com valores de referência, pertencentes ao banco de dados do PDF-2 Release 2010 do ICDD (Internacional Centre for Diffraction Data).

Figura 4-10: Equipamento utilizado para a realização dos testes de Difratometria de Raios-X.

4.3.5 Fluorescência de Raios X (FRX)

A quantificação dos elementos químicos presentes na amostra foi realizada através do método de fluorescência de raios X, no Laboratório de Caracterização do Departamento de Engenharia de Minas da Universidade Federal de Minas Gerais (DEMIN-UFMG).

Inicialmente, a amostra foi fundida na máquina de fusão elétrica C1 - Nieka[™], mostrada na Figura 4-11. A programação utilizada para o preparo das amostras está descrita na Tabela 4-3. A proporção amostra:fundente utilizada foi de 1:10, sendo o fundente Oregon[™] P0441E adotado nesta preparação, sendo composto por 66,17% de tetraborato de lítio (Li₂B₄O₇), 33,33% de metaborato de lítio (LiBO₂) e 0,5% de iodeto de lítio (LiI).

Figura 4-11: Máquina de fusão elétrica utilizada para a preparação das amostras para o teste de FRX.

Etapa	Tempo (s)	Temperatura (°C)	Agitação (%)	Resfriamento (%)
0	15	700	0	0
1	190	750	0	0
2	150	1200	30	0
3	120	1200	70	0
4	95	1250	70	0
5	30	900	0	0
6	60	0	0	0
7	120	0	0	50
8	60	0	0	70

Tabela 4-3: Programação da máquina de fusão para o preparo da pastilha fundida.

As amostras, após fundidas, foram analisadas em um espectrômetro de fluorescência de raios-X (Figura 4-12) com dispersão de energia (EDFRX) ARL[™] QUANT'X, da empresa Thermo Scientific[™], equipado com tubo de ródio de 50 W. O processamento dos dados foi realizado através do software WINTRACE.

Figura 4-12: Espectrômetro de fluorescência de raios X utilizado para a quantificação das amostras.

4.3.6 Microscopia Óptica

Neste trabalho, foram analisadas através de microscopia óptica, as fases minerais presentes na amostra cabeça nas faixas granulométricas [150-106]µm, [106-75]µm, [75-53]µm e [53-

38]μm, com o objetivo de conhecer a distribuição mineralógica da amostra a ser testada, bem como a determinação do grau de liberação das partículas, e o estudo das partículas mistas presentes na amostra.

Para a obtenção das imagens no microscópio óptico, seguiu-se o método de preparação de amostras definido por DELBEM (2010), que consiste em três etapas, sendo: embutimento das amostras em resina epóxi; desbaste das seções e polimento das seções.

Inicialmente, para a confecção de cada seção, foram utilizados 7,0g de resina epóxi, 0,7g de catalisador e 1,5g da amostra. O material foi misturado de forma lenta, para garantir que a resina molhasse toda a superfície das partículas, que não ocorresse a agregação das mesmas e que não houvesse a formação de bolhas de ar na superfície da seção. Em seguida, cada mistura foi depositada em formas cilíndricas próprias, com dimensões de 1¼ polegadas de diâmetro e 1¼ polegadas de altura. Uma câmara de vácuo foi utilizada para retirar as bolhas de ar formadas durante a mistura do material e durante seu depósito nas formas. As formas foram untadas com vaselina de forma prévia à adição da mistura, de modo a facilitar a retirada das pastilhas após a secagem delas.

Após o material secar completamente nas formas cilíndricas – o que demora 24 h –, acontece o desbaste da seção, para deixar a superfície da seção completamente plana, evitando assim o problema da orientação preferencial. O desbaste foi realizado através de uma politriz semiautomática, marca Buehler, modelo Minimet 1000 (Figura 4-13) com acessórios e materiais de consumo pertencentes ao Departamento de Engenharia de Minas da UFMG (DEMIN-UFMG). Foram utilizadas lixas de grãos 240, 320, 400 e 600, com os ajustes de tempo, velocidade e força mostrados na Tabela 4-4.

Figura 4-13: Politriz utilizada na preparação das seções polidas.

Lixa (grãos)	Tempo de desbaste (min)	Velocidade (rpm)	Força (lb)
240	7	30	5
320	7	30	5
400	5	30	5
600	5	30	5

Tabela 4-4: Parâmetros adotados no desbaste das seções polidas.

Após o desbaste das seções, e a verificação de que as seções estão todas planas, e sem poros, foi realizada a etapa de polimento, no mesmo equipamento onde foi realizado o desbaste. Para o polimento, foi utilizado pastas de diamante de 15 μ m, 9 μ m, 6 μ m, 3 μ m, 1 μ m e 0,25 μ m, nesta ordem. Os parâmetros utilizados em cada pasta estão descritos na Tabela 4-5.

Pasta (µm)	Tempo de polimento (min)	Velocidade (rpm)	Força (lb)
15	15	30	5
9	15	30	5
6	15	30	4
3	15	25	4
1	15	25	3
0,25	15	25	3

Tabela 4-5: Parâmetros utilizados no polimento das seções.

Ao término de polimento com todas as pastas, a seção foi limpa com éter de petróleo para retirar os restos de gordura presentes na seção.

Nos ensaios de microscopia óptica, foi utilizado o microscópio óptico marca Leitz/Leica, modelo Orthoplan Pol, com câmera digital Canon PowerShot S80, pertencente ao Departamento de Engenharia de Minas (DEMIN – UFMG), mostrado na Figura 4-14.

Figura 4-14: Conjunto Microscópio/Câmera utilizado para a obtenção das imagens.

O microscópio foi ajustado para operar com luz refletida simplesmente polarizada. A câmera do microscópio foi configurada para capturar imagens RGB com quantização de 24 bits e resolução espacial de 1600x1200 pixels.

Inicialmente, o microscópio foi configurado para que todas as imagens fossem obtidas de acordo com as mesmas condições. Para isso, é necessário que a sensibilidade da câmera, a exposição e o ajuste de branco sejam inicialmente otimizados e mantidos constante durante todo o processo de captura das imagens. Também é importante que a iluminação seja mantida constante, através do controle de tensão da lâmpada. As imagens de todas as faixas granulométricas analisadas ([150-106] µm, [106-75] µm, [75-53] µm e [53-38] µm) foram obtidas através da lente objetiva de 20x, o que garantiu a visualização das partículas com uma boa qualidade dos detalhes presentes.

A manutenção dos parâmetros de configuração do microscópio é um fator fundamental para a aquisição de imagens de uma mesma seção polida. Sendo assim, as imagens capturadas apresentam características de intensidades similares. A verificação desse critério se dá através da determinação do histograma do nível de cinza das imagens obtidas em uma mesma seção polida. Para isto, foi utilizado o *software* de processamento de imagens *ImageJ*, de licença livre. A Figura 4-15 mostra duas imagens obtidas em campos diferentes da mesma seção polida de classe de tamanho [150-106] µm, com seus respectivos histogramas, onde se percebe que os parâmetros típicos de um histograma, tais como valores mínimo e máximo, média, desvio padrão e moda apresentam valores muito próximos entre si, quase idênticos. Dessa forma, confirmou-se que as imagens foram obtidas de acordo com uma mesma configuração.

As imagens obtidas no microscópio, após serem convertidas para a escala de cinza, no *ImageJ*, foram submetidas a um filtro de nitidez, denominado *unsharp mask*. O objetivo deste filtro é a correção de um leve embaçamento que as imagens adquirem no momento de sua digitalização. Foi adotado o raio de 1pixel e um fator de máscara (*mask weight*) de 0,6. O filtro foi utilizado 2 vezes consecutivas na mesma imagem. A Figura 4-16 mostra um exemplo da aplicação deste filtro para uma imagem obtida da seção polida da faixa granulométrica [106-75] µm.

Figura 4-15: Imagens de campos diferentes de uma mesma seção polida para a classe de tamanho [150-106] µm.

Figura 4-16: Imagem antes (esq.) e depois (dir.) do uso do filtro unsharp mask.

A determinação do grau de liberação das faixas granulométricas para os minerais quartzo e hematita foi realizado de acordo com o método proposto por Gaudin. Neste método, são dados índices para cada partícula, variando de 0 a 100, onde 0 indica que o mineral em análise não está presente na partícula, e 100 representa uma partícula livre do mineral em análise. A determinação dos índices foi realizada de contagem manual, através da análise das imagens obtidas para cada faixa granulométrica. Foram contabilizadas número de partículas suficientes para garantir a representatividade dos resultados obtidos.

Após a determinação dos índices para cada partícula, foi determinado o grau de liberação através da fórmula apresentada na Equação 29:

Grau Liberação (%) =
$$\frac{n_{l^*} 100}{n_{l^*} 100 + \sum_{i=5}^{i=95} n_{m^*i}} * 100$$
 (29)

Onde n_l representa o número de partículas livres da espécie analisada e n_m representa o número de partículas que apresenta o índice i. Para efeito de organização, os índices foram padronizados em múltiplos de 5. Dessa forma, o menor índice dado a uma partícula mista é 5, enquanto o maior índice para uma partícula mista é 95.

4.4 Caracterização Tecnológica dos Reagentes

Devido ao fato de que o reagente AGEM é constituído por uma mistura de ácidos carboxílicos, é necessário fazer uma caracterização detalhada deste óleo, realizando a cromatografia gasosa da amostra.

O procedimento utilizado para a determinação da composição em ácidos graxos dos óleos utilizados foi baseado nos métodos da *American Oil Chemists Society* (AOCS) e foi realizado no Laboratório de Cromatografia do Departamento de Química da Universidade Federal de Minas Gerais, conforme o procedimento descrito abaixo.

Inicialmente, dissolveu-se, em um tubo criogênico de 2 mL, aproximadamente 5 mg do óleo em 100 μ L de uma solução de etanol (95%)/hidróxido de potássio 1 mol/L (5%). Após agitação em vórtex por 10 s, o óleo foi hidrolisado em um forno de micro-ondas doméstico (Panasonic Piccolo), à potência de 80 W (Potência 2), durante 5 minutos. Após o resfriamento, adicionou-se 300 μ L de água. A fase aquosa foi então acidificada com 100 μ L de ácido clorídrico concentrado e os ácidos graxos livres extraídos com 600 μ L de acetato de etila. Após agitação em vórtex por 10 s e repouso por 1 min, uma alíquota de 300 μ L da camada orgânica foi retirada, colocada em tubos de microcentrífuga e seco por evaporação, obtendo-se assim os ácidos graxos livres.

Os ácidos graxos livres foram metilados com 100 μ L de trifluoreto de boro (BF₃)/metanol (14%) e aquecidas durante 10 minutos em banho de água a 80 °C.

As análises foram realizadas em um cromatógrafo a gás Varian CP-3380 equipado com detector por ionização de chamas. Utilizou-se uma coluna DB-wax (J%W Scientif) 30 m x 0,25 mm

com gradiente de temperatura: 120°C, 1 min, 7 °C/min até 240 °C; injetor (split de 1/100) e detector a 260 °C. Hidrogênio como gás de arraste (2 mL/min) e volume de injeção de 1 μL. A identificação dos picos foi realizada por comparação com padrões de ácidos graxos metilados SUPELCO37.

Os hidroxamatos e sulfosuccinamato testados, por serem reagentes comerciais, não necessitaram de testes de caracterização adicional.

4.5 Testes de Flotação em Bancada

Para a realização dos testes de flotação em bancada, foi utilizada uma célula mecânica Denver, modelo McDarma D12, ilustrada na Figura 4-17.

Figura 4-17: Célula de flotação utilizada nos testes de flotação.

O fluxograma inicialmente adotado para os testes está esquematizado na Figura 4-18 e está detalhado a seguir:

Figura 4-18: Fluxograma inicialmente adotado para a realização dos testes de flotação direta em bancada.

- 1. Pesagem de aproximadamente 680 g do material a ser utilizado no teste;
- 2. Adição do material pesado no item (1) a uma cuba de 1500 ml;
- 3. Adição de cerca de 680 ml de água, para formar uma polpa com 50% de sólidos;
- 4. Liga-se o rotor da célula de flotação a uma rotação de 1000 rpm;
- 5. Ajusta-se o pH da solução para $7,5 \pm 0,2$, através dos moduladores de pH.
- 6. Coloca-se o reagente depressor na dosagem correta;
- 7. Espera-se por cinco minutos tempo de condicionamento do reagente depressor;
- Após o término do tempo de condicionamento do depressor, adiciona-se o reagente coletor a ser testado na dosagem especificada;
- 9. Espera-se por 2 min tempo de condicionamento do reagente coletor;
- 10. Medir o pH da polpa. Caso o valor de pH não esteja nos valores adequados, ajustar o valor com o auxílio de reagentes moduladores de pH (NaOH e CH₃COOH);
- Avoluma-se a cuba com água previamente modulada no pH adequado para a realização do teste até o limite operacional da cuba (a massa inicial foi calculada para que o teste seja realizado com 35% de sólidos);
- 12. Ligam-se as bolhas de ar na vazão de 4 NL/min e inicia-se a etapa *rougher* da flotação, com o auxílio de duas espátulas;
- Ao término da flotação, o material afundado na cuba é destinado a secagem, sendo identificado como "Afundado *Rougher*";
- 14. A etapa *rougher* é realizada em duplicata, para geração da massa necessária para a etapa *cleaner*

- O material flotado dos dois testes realizados anteriormente é colocado em uma cuba de 800mL para a realização da etapa *cleaner*;
- 16. A nova cuba é colocada na célula de flotação a uma rotação de 1000 rpm;
- 17. Condiciona-se o material por dois minutos, sem a adição de nenhum reagente;
- Após esse tempo, liga-se novamente as bolhas de ar na vazão de 4 NL/min e é dado início a etapa *cleaner* da flotação, com o auxílio de duas espátulas;
- Ao término da flotação, tanto o material flotado quanto o afundado são destinados a secagem, sendo identificados, respectivamente por "Flotado *Cleaner*" e "Afundado *Cleaner*";
- 20. Após a secagem de todos os produtos obtidos no teste, estes são pesados, e são retiradas pequenas alíquotas para serem enviadas para a análise química.

Os testes de flotação em bancada foram realizados em 8 etapas, de acordo com a progressão dos ensaios.

A etapa 0, considerada como uma etapa preliminar à realização dos testes propriamente dito, consiste na execução de um teste de flotação em etapa *rougher*, na ausência de reagentes depressor e coletor, visando avaliar o impacto de algum reagente que, por acaso, se encontre adsorvido na superfície dos minerais contidos na amostra.

Na etapa 1, foram realizados testes com a DDA e com o reagente a base de ácido graxo de forma isolada, para verificar o desempenho individual de cada reagente. Nestes testes, foi utilizado o silicato de sódio como depressor. A escolha inicial do silicato de sódio se deu por análise bibliográfica sobre o tema. A Tabela 4-6 mostra a nomenclatura adotada para os testes realizados na etapa 1.

ID			Condições Operacionais				
Teste	Etapa	Amostra	Depressor	Dosagem (g/t)	Coletor	Dosagem (g/t)	
T01	1	Cabeça	Silicato de Sódio	500	DDA	100	
T02	1	Cabeça	Silicato de Sódio	500	AGEM	100	
T02a	1	Cabeça	Silicato de Sódio	500	AGEM	500	

Tabela 4-6: Condições operacionais dos testes realizados na etapa 1.

Já na etapa 2, partiu-se para os testes realizados com a mistura da DDA e do reagente a base de ácido graxo nas seguintes proporções mássicas:

- 1:1 (1 parte de DDA e 1 parte do reagente AGEM);
- 1:2 (1 parte de DDA e 2 partes do reagente AGEM);
- 1:3 (1 parte de DDA e 3 partes do reagente AGEM);
- 1:4 (1 parte de DDA e 4 partes do reagente AGEM);
- 1:5 (1 parte de DDA e 5 partes do reagente AGEM).

Estes testes tiveram como objetivo analisar a atuação do coletor misto, bem como definir a proporção que oferece os melhores desempenhos. Esta proporção seria adotada nas etapas subsequentes. A nomenclatura utilizada nos testes realizados na etapa 2 é apresentada na Tabela 4-7.

ID		Amostra	Condições Operacionais					
Teste	Etapa		Depressor	Dosagem (g/t)	Coletor	Dosagem (g/t)		
T03	2	Cabeça	Silicato de Sódio	500	Mix 1:1	100		
T04	2	Cabeça	Silicato de Sódio	500	Mix 1:2	100		
T05	2	Cabeça	Silicato de Sódio	500	Mix 1:3	100		
T06	2	Cabeça	Silicato de Sódio	500	Mix 1:4	100		
T07	2	Cabeça	Silicato de Sódio	500	Mix 1:5	100		
T08	2	Cabeça	Silicato de Sódio	500	Mix 1:5	200		

Tabela 4-7: Condições operacionais dos testes realizados na etapa 2.

A etapa 3 consistiu em verificar a possibilidade de um corte granulométrico da amostra cabeça em 150 μ m, visto que a caracterização da amostra identificou uma grande quantidade de quartzo nas frações mais grosseiras (superior a 150 μ m), de acordo com o capítulo 5.1.2 desta tese. A escolha do coletor para esta etapa e as seguinte se deu por causa dos resultados apresentados na Etapa 2 (capítulo 5.3.3). As condições operacionais dos testes realizados nesta etapa se encontram na Tabela 4-8.

Tabela 4-8: Condições operacionais do teste realizado na etapa 3.

ID		Etapa Amostra	Condições Operacionais			
ID Teste	Etapa		Depressor	Dosagem (g/t)	Coletor	Dosagem (g/t)
T09	3	-150 µm	Silicato de Sódio	500	Mix 1:5	100

Uma mudança no fluxograma inicialmente definido foi analisada na etapa 4, com a adição de uma etapa *scavenger* após a etapa *rougher*. O material flotado das etapas *rougher* e *scavenger* foram unidos e serviram como alimentação da etapa *cleaner*, conforme mostrado na Figura 4-19. O objetivo de testar esta mudança é buscar recuperar parte do Fe que não foi coletado na etapa *rougher*.

Figura 4-19: Fluxograma adotado para a etapa 4.

Neste fluxograma descrito acima, a etapa *rougher* foi realizada de forma similar à realizada nos demais testes, com a mesma dosagem do depressor (500 g/t) e do coletor (100 g/t), bem como os mesmos tempos de condicionamento para os reagentes depressor e coletor. Na etapa *scavenger*, houve uma dosagem extra de depressor (variável) e, também, houve dosagem extra do coletor (padronizada em 50 g/t). A Tabela 4-9 apresenta as condições operacionais adotadas nos testes realizados na etapa 4.

ID			Condições Operacionais				
Teste	Etapa	Amostra	Depressor	Dosagem (g/t)	Coletor	Dosagem (g/t)	
T10	4	Cabeça	Silicato de Sódio	500+100	Mix 1:5	100 + 50	
T11	4	Cabeça	Silicato de Sódio	500+200	Mix 1:5	100 + 50	
T12	4	Cabeça	Silicato de Sódio	500+300	Mix 1:5	100 + 50	
T13	4	Cabeça	Silicato de Sódio	500+500	Mix 1:5	100 + 50	
T14	4	-150µm	Silicato de Sódio	500+100	Mix 1:5	100 + 50	
T15	4	-150µm	Silicato de Sódio	500+200	Mix 1:5	100 + 50	
T16	4	-150µm	Silicato de Sódio	500+300	Mix 1:5	100 + 50	
T17	4	-150µm	Silicato de Sódio	500+500	Mix 1:5	100+50	

Tabela 4-9: Condições operacionais dos testes realizados na etapa 4.

Na etapa 5, a incorporação da separação magnética como uma etapa prévia a flotação foi analisada. Os parâmetros dos testes de separação magnética serão explicados no capítulo 4.6. O objetivo desta etapa é verificar a eficiência dos testes de flotação utilizando um minério com um teor de Fe superior, devido a utilização prévia da separação magnética. Foram analisados dois fluxogramas distintos nesta etapa, denominados A e B, ilustrados nas Figura 4-20 e Figura 4-21, respectivamente. No fluxograma A, a amostra inicial é submetida a etapa de separação magnética e o material magnético é enviado para a etapa de flotação, seguindo os parâmetros definidos na etapa 2. Já no fluxograma B, é realizado um corte granulométrico em 150 µm na amostra inicial, e ambos os produtos (retido e passante na malha de 150 µm) são submetidos a etapas de separação magnética e flotação.

A Tabela 4-10 mostra a nomenclatura utilizada nos testes de flotação em bancada realizados na etapa 5.

m			Condições Operacionais			
Teste	Etapa	Amostra	Depressor	Dosagem (g/t)	Coletor	Dosagem (g/t)
T18	5	Conc. Mag - 150 μm - 150μm	Silicato de Sódio	500	Mix 1:5	100
T19	5	Conc. Mag. Cabeça	Silicato de Sódio	500	Mix 1:5	100
T20	5	Conc. Mag. +150 μm	Silicato de Sódio	500	Mix 1:5	100

Tabela 4-10: Condições operacionais dos testes realizados na etapa 5.

Figura 4-20: Fluxograma A analisado na etapa 5.

Figura 4-21: Fluxograma B analisado na etapa 5.

As duas últimas etapas (6 e 7) serviram para analisar a possibilidade da utilização de outros reagentes depressores e coletores, respectivamente. Enquanto, na etapa 6, foi analisado a possibilidade da utilização do hexametafosfato de sódio como depressor da ganga silicática, na etapa 7 foram analisados a utilização dos seguintes reagentes – hidroxamatos e sulfosuccinato comerciais, fornecidos pela Solvay e listados abaixo – em substituição ao reagente a base de ácido graxo, tanto de forma isolada, como na composição do coletor misto definida na etapa 2.

- Aero[®] 6493 Promoter (Hidroxamato);
- Aero[®] 6494 Promoter (Hidroxamato);
- Aero[®] OX 102 Promoter (Hidroxamato);
- Aero[®] 845 Promoter (Sulfosuccinato).

As Tabela 4-11 e Tabela 4-12 mostram as condições operacionais adotadas na realização dos testes das etapas 6 e 7, respectivamente.

m	Etapa	Amostra	Condições Operacionais				
Teste			Depressor	Dosagem (g/t)	Coletor	Dosagem (g/t)	
T21	6	-150 μm	Hexametafosfato de Sódio	500	Mix 1:5	100	
T22	6	Conc. Mag150 μm	Hexametafosfato de Sódio	500	Mix 1:5	100	

Tabela 4-11: Condições operacionais dos testes realizados na etapa 6.

ID	Etapa	Amostra	Condições Operacionais				
Teste			Depressor	Dosagem (g/t)	Coletor	Dosagem (g/t)	
T23	7	Cabeça	Hexametafosfato de Sódio	500	Aero [®] 6493 Promoter	100	
T24	7	Cabeça	Hexametafosfato de Sódio	500	Aero® 6494 Promoter	100	
T25	7	Cabeça	Hexametafosfato de Sódio	500	Aero® OX 102 Promoter	100	
T26	7	Cabeça	Hexametafosfato de Sódio	500	Aero® 845 Promoter	100	
T27	7	-150µm	Hexametafosfato de Sódio	500	Aero® 6493 Promoter	100	
T28	7	-150µm	Hexametafosfato de Sódio	500	Aero® 6494 Promoter	100	
T29	7	-150µm	Hexametafosfato de Sódio	500	Aero® OX 102 Promoter	100	
ID Teste	Etapa	Amostra	Condições Operacionais				
-------------	-------	---------	-----------------------------	------------------	---	------------------	
			Depressor	Dosagem (g/t)	Coletor	Dosagem (g/t)	
T30	7	-150µm	Hexametafosfato de Sódio	500	Aero® 845 Promoter	100	
T31	7	-150µm	Hexametafosfato de Sódio	500	Mix 1:5 c/ Aero [®] 6493 Promoter	100	
T32	7	-150µm	Hexametafosfato de Sódio	500	Mix 1:5 c/ Aero [®] 6494 Promoter	100	
T33	7	-150µm	Hexametafosfato de Sódio	500	Mix 1:5 c/ Aero [®] OX 102 Promoter	100	
T34	7	-150µm	Hexametafosfato de Sódio	500	Mix 1:5 c/ Aero [®] 845 Promoter	100	

Todas as amostras oriundas dos testes realizados foram enviadas para a realização da análise química quantitativa, através da técnica de fluorescência de raios X (FRX). Após o recebimento dos resultados, foram realizadas análises, levando-se em consideração a seletividade entre os minerais, promovida pela ação do reagente testado e a relação teor *versus* recuperação metalúrgica.

4.6 Separação Magnética

Os testes de separação magnética foram realizados no separador magnético de correias, com ímã de terras raras, fornecido pela Inbrás. As Figura 4-22 e Figura 4-23 mostram as vistas frontal e lateral do equipamento, respectivamente.

Figura 4-22: Vista frontal do separador magnético utilizado nos testes.

Figura 4-23: Vista lateral esquerda do separador magnético utilizado nos testes.

A Tabela 4-13 mostra os parâmetros que foram utilizados para a realização dos testes.

Fabela 4-13: Parâmetros utilizados	para a realização dos	s testes de separação	magnética.
------------------------------------	-----------------------	-----------------------	------------

Parâmetro	Valor	Unidade
Campo Magnético do Ímã	5000	Gauss
Diâmetro do rolo	4	pol
Velocidade da correia	0,4	m/s
Frequência de vibração do alimentador	60	Hz

Foram realizados testes de separação magnética com a amostra cabeça e com o passante e retido no corte granulométrico realizado em 150 µm. Em todas as amostras, o procedimento adotado foi o mesmo.

Inicialmente, a amostra foi colocada dentro do alimentador vibratório. Em seguida, a correia e o alimentador foram ligados e as velocidades ajustadas para manter a alimentação em fluxo contínuo e em velocidade adequada. Os produtos foram coletados e, após o teste, submetidos à análise química para avaliação da qualidade do teste realizado.

4.7 Testes de Flotação em Célula Pneumática

A Figura 4-24 mostra a célula pneumática, modelo "Pneuflot[®]", existente no Laboratório de Tratamento de Minérios da UFMG, fornecida pela empresa MBE e utilizada neste trabalho.

Figura 4-24: Célula Pneumática "Pneuflot[®]" utilizada nos testes.

A Tabela 4-14 apresenta os parâmetros adotados na realização do teste com a célula Pneuflot[®].

Parâmetro	Valor	Unidade
Massa de alimentação do teste	15.000	g
Diâmetro da célula	190,00	mm
Área da seção	283,53	cm ²
% de sólidos no condicionamento dos reagentes	50	%
% de sólidos do teste	35	%
Vazão de polpa do teste	150	m³/h
Vazão de ar	200	NL/h
Altura da camada de espuma	70	mm
Altura da zona de coleta	280	mm

Tabela 4-14: Parâmetros utilizados nos testes com a célula pneumática "Pneuflot[®]".

O teste na célula pneumática foi montado de acordo com o fluxograma mostrado abaixo, na Figura 4-25. O afundado da célula pneumática retornava para o tanque de condicionamento, onde se encontra a alimentação do teste. O material deste tanque é bombeado até a Pneuflot[®]. O material fica em recirculação até a exaustão do sistema, com a espuma formada não sendo mais mineralizada.

Figura 4-25: Fluxograma simplificado do procedimento adotado nos testes com a célula pneumática "Pneuflot[®]".

O material flotado foi recolhido nos tempos de 10, 20 e 35 min (quando o teste foi encerrado), de forma a avaliar a cinética de flotação no equipamento. Todos os produtos, assim como a alimentação (optou-se por fazer testes apenas com a amostra com granulometria inferior a 150 µm, tendo como base os resultados obtidos na escala de bancada) e o afundado, foram submetidos à análise química, para avaliação dos resultados obtidos, em termos de teor *versus* recuperação.

5 RESULTADOS E DISCUSSÕES

Neste capítulo, serão apresentados os principais resultados obtidos nesta pesquisa, iniciando-se pela caracterização do minério e dos reagentes, seguindo pelos resultados dos testes de flotação em bancada e finalizando pelo teste de flotação em célula pneumática.

5.1 Caracterização do Minério

5.1.1 Análise Granulométrica Completa

A Figura 5-1 mostra a distribuição granulométrica da amostra cabeça utilizada na realização deste trabalho. Os resultados detalhados dos testes de análise granulométrica e do *cyclosizer* estarão nos Anexo 1 e Anexo 2.

Figura 5-1: Curva granulométrica da amostra cabeça.

Os resultados mostram que a amostra possui um P_{80} aproximado de 167 μ m, dentro dos limites aceitáveis para o uso da flotação como método de concentração. Isto era esperado, uma vez que este minério já foi submetido a etapas de flotação em um momento prévio.

A quantidade de lamas (material com granulometria inferior a 30 μ m) é muito baixo, de aproximadamente 5%. Portanto, este material não foi considerado um empecilho para a eficiência da etapa de flotação. No entanto, há de se ressaltar que a presença de materiais finos

(especialmente abaixo de 53 μ m) é bem significativa, de aproximadamente 20%. Portanto, deve-se ter uma atenção especial para este material.

5.1.2 Análise Granuloquímica

A Tabela 5-1 mostra os resultados obtidos na análise química realizada por faixas granulométricas, bem como a análise química da amostra global. As frações granulométricas superiores a 212 µm foram aglutinadas em uma única amostra para obter uma alíquota representativa para ser enviada ao laboratório que realizou a quantificação dos elementos. Esta aglutinação de faixas granulométricas não causou prejuízo a análise dos resultados.

Tamanha (um)	0/ Datida			Teores		
Tamanno (µm)	70 Kellua	Fe	SiO ₂	Al ₂ O ₃	Mn	LOI
>212	10,21	3,35	95,30	0,11	0,01	0,35
212-150	13,70	4,63	92,80	0,07	0,01	0,18
150-106	29,84	5,07	93,00	0,07	0,01	0,40
106-75	13,48	6,18	91,50	0,07	0,01	0,30
75-53	13,09	9,17	87,00	0,04	0,01	0,29
53-45	3,13	13,60	81,00	0,12	0,01	0,23
45-30	11,03	36,90	46,90	0,27	0,01	0,44
30-9	4,70	29,20	51,90	0,83	0,02	1,17
<9	0,82	50,34	21,10	0,14	0,16	1,37
Cabeça calculada	100,00	10,80	84,24	0,13	0,01	0,38
Cabeça medida	100,00	10,80	83,90	0,13	0,01	0,38

Tabela 5-1: Análise química por faixa e global.

Os teores apresentados pela amostra global indicam que se trata de um rejeito de baixo teor de Fe (10,80%) com teor de SiO₂ de 83,90%. Os resultados obtidos pela amostra global são praticamente idênticos a soma ponderada dos teores de todas as faixas granulométricas analisadas. O único desvio ocorreu na análise do teor de SiO₂, mas o erro apresentado (0,4% do teor de SiO₂ medido) é pequeno. Além de indicar a boa qualidade das análises químicas realizadas, este resultado comprova a qualidade da amostragem realizada para a obtenção das alíquotas que foram analisadas.

Os resultados apresentados na Tabela 5-1 ilustram um comportamento previsível e já esperado. As frações mais grosseiras apresentam teores de SiO₂ bem superiores ao valor médio da amostra, enquanto, nas frações mais finas, ocorre o fenômeno oposto, com teores de Fe muito superiores ao valor médio da amostra, e teores baixos de SiO₂. Por isso, é interessante fazer a análise da distribuição do Fe e do SiO₂ nas faixas granulométricas analisadas, mostrado na Figura 5-2 abaixo.

Figura 5-2: Distribuição granulométrica do Fe e SiO₂ na amostra cabeça

A análise da figura acima mostra que as frações mais grosseiras (>150 μ m) apresenta menos de 10% do Fe presente na amostra global, enquanto cerca de 27% do SiO₂ geral está presente nestas frações granulométricas. Este resultado abre a possibilidade da realização de um corte granulométrico em 150 μ m, para uma maior eficiência na concentração do Fe presente nesta amostra. Tal possibilidade será investigada na etapa 4 dos testes de flotação em bancada, cujo resultados serão apresentados no tópico 5.3.4. A Tabela 5-2 mostra a composição da amostra com granulométria superior e inferior a 150 μ m.

Tabela 5-2: Teores da amostra cabeça com granulometria superior e inferior a 150 µm.

Tamanha (um)	0/ Datida			Teores		
Tamanno (µm)	%Retida	Fe	SiO ₂	Al ₂ O ₃	Mn	LOI
>150	23,92	4,08	93,87	0,10	0,01	0,25
<150	76,08	12,91	81,22	0,14	0,01	0,42

5.1.3 Difratometria de Raios X (DRX)

O difratograma obtido da amostra cabeça é apresentado na Figura 5-3. A análise do difratograma mostra que a amostra é composta, basicamente, por apenas dois minerais, sendo eles quartzo (SiO₂) e hematita (Fe₂O₃). Os principais picos correspondentes ao mineral hematita, apesar de se apresentarem nítidos no difratograma, sem interferência dos picos do quartzo, tiveram baixa intensidade, reafirmando o baixo teor de Fe contido na amostra cabeça. Na interpretação do difratograma, não foram identificados minerais adicionais ao quartzo e a hematita.

Figura 5-3: Difratograma da amostra cabeça.

Com base nos dados do difratograma da amostra cabeça, foi feito também uma análise quantitativa através do método de Rietveld. Os resultados são mostrados na Tabela 5-3, e vão de encontro aos resultados apresentados na fluorescência de raios X para a amostra cabeça (83,90% SiO₂ e 10,80% Fe).

Mineral	Teor (%)
Quartzo (SiO ₂)	85
Hematita (Fe ₂ O ₃)	15
TOTAL	100

Tabela 5-3: Análise quantitativa por Rietveld.

5.1.4 Picnometria

Os resultados da picnometria estão apresentados na Tabela 5-4. Os resultados detalhados de cada teste realizado se encontram no Anexo 3.

Tabela 5-4: Resultados da picnometria.

Teste	Densidade (g/cm ³)
1	2,866
2	2,836
3	2,849
Média	$2,850 \pm 0,015$

A densidade real de uma mistura binária, cuja proporção de cada elemento é dada em massa, pode ser determinada através da média harmônica (CAMPOS, 2019), conforme a Equação 30:

Densidade
$$\left(\frac{g}{cm^3}\right) = \frac{100}{\frac{\%A}{\rho_A} + \frac{\%B}{\rho_B}}$$
 (30)

Onde %A e %B são os percentuais dos minerais A e B, respectivamente, enquanto $\rho_A e \rho_B$ correspondem as densidades reais dos minerais A e B, respectivamente.

Tendo em vista os resultados da Tabela 5-3 e as densidades padrão para o quartzo e hematita (2,65g/cm³ e 5,20g/cm³), a aplicação da Equação 22 estima que o valor da densidade para a amostra cabeça é igual a 2,860g/cm³ - dentro do erro calculado para a densidade real através do teste da picnometria. Este resultado corrobora o uso da média harmônica para a estimativa da densidade real de misturas binárias, ponderadas pela massa, bem como a precisão do teste de picnometria realizado, tendo como referência a quantificação mineralógica feita pelo método de Rietveld.

5.1.5 Microscopia Óptica

5.1.5.1 Faixa granulométrica [150-106] μm

A Figura 5-4 mostra uma das imagens obtidas da seção polida do material pertencente à faixa granulométrica [150-106] µm. Nela, estão presentes algumas partículas de quartzo em sua forma livre e uma partícula mista de hematita e quartzo, característica do tipo justaposição. Esta forma de partículas mistas é caracterizada por possuir uma liberação facilitada, devido ao contato muito definido entre as espécies minerais, tendo uma zona de fraqueza neste contato, favorecendo a quebra da partícula mista, gerando duas partículas livres, sendo uma de cada mineral.

As regiões escuras próximas às bordas das partículas de quartzo, principalmente, caracterizamse como regiões onde houve um desgaste maior da partícula no processo de polimento da seção polida, representando uma região de maior fraqueza da partícula. Isto é algo comumente observado nas seções polidas como um todo.

Já a Figura 5-5 mostra outras partículas mistas presentes nesta faixa granulométrica. Um destaque maior merece ser dado à partícula mista presente no canto superior direito da imagem. Esta partícula apresenta pequenas inclusões de hematita no meio da partícula de quartzo. Este tipo de partícula apresenta uma difícil liberação, pois é necessário fragmentar até tamanhos tão pequenos, que pode tornar o processo de concentração inviável sob o ponto de vista técnico e/ou econômico. Dessa forma, a presença de inclusões se torna um problema para o beneficiamento mineral, pois acarretará perdas significativas na recuperação metalúrgica de Fe.

Figura 5-4: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica [150-106] μm, identificando os minerais quartzo e hematita, bem como a resina utilizada na confecção da seção polida.

Figura 5-5: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica [150-106] μm, identificando inclusões de hematita (H) no grão de quartzo (Qtz).

A tabela completa com os índices dados para as partículas desta faixa granulométrica está no Anexo 5. A Tabela 5-5 mostra os valores obtidos para o grau de liberação dos grãos de quartzo e hematita na faixa granulométrica [150-106] µm. O baixo valor para o grau de liberação para a hematita se dá pelo baixo número de partículas livres de hematita, bem como o número significativo de partículas de quartzo com pequenas inclusões de hematita.

Tamanho	Grau de Liberação (%)		
(µm)	Hematita	Quartzo	
150-106	36,46	81,64	

Tabela 5-5: Grau de liberação obtido para a faixa granulométrica [150-106] µm.

5.1.5.2 Faixa granulométrica [106-75] μm

A Figura 5-6 apresenta uma das imagens obtidas da seção polida do material pertencente à faixa granulométrica [106-75] μm. Percebe-se que os grãos de hematita estão em maior proporção na imagem, comparativamente com as Figura 5-4 e Figura 5-5, bem como as partículas mistas presentes nesta imagem conterem uma maior proporção de hematita do que quartzo. Isso vai de encontro com os resultados obtidos na análise química por faixa granulométrica, onde há uma elevação do teor de Fe na faixa granulométrica [106-75] μm.

No entanto, as pequenas inclusões de grãos de hematita no quartzo continuam presentes nesta faixa granulométrica, como representado na Figura 5-7. Dessa forma, continua a preocupação em relação a possíveis perdas na recuperação metalúrgica de Fe devido à presença destas inclusões de difícil liberação.

Figura 5-6: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica [106-75] μm, identificando grãos de hematita (H) e quartzo (Qtz).

Figura 5-7: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica [106-75] μm, identificando pequenas inclusões de grãos de hematita (H) no grão de quartzo (Qtz).

A Tabela 5-6 mostra os valores obtidos para o grau de liberação dos grãos de quartzo e hematita na faixa granulométrica [106-75] μ m. Os dados completos com os índices determinados para as partículas desta faixa granulométrica estão no Anexo 6. Percebe-se que houve uma elevação significativa do grau de liberação dos grãos de hematita para a faixa granulométrica [106-75] μ m, em relação ao apresentado na faixa granulométrica [150-106] μ m, justificado pela maior presença de partículas livres de hematita.

Tamanho	Grau de Liberação (%)				
(µm)	Hematita	Quartzo			
106-75	71,20	81,20			

Tabela 5-6: Grau de liberação obtido para a faixa granulométrica [106-75] µm

5.1.5.3 Faixa granulométrica [75-53] µm

A Figura 5-8 apresenta uma das imagens obtidas da seção polida do material pertencente à faixa granulométrica [75-53] μm. As características analisadas nesta faixa granulométrica são similares às apresentadas na faixa granulométrica [106-75] μm, tanto em relação a proporção de partículas livres de hematita na amostra, quanto em relação às pequenas inclusões de hematita nos grãos de quartzo.

Os valores obtidos para o grau de liberação dos grãos de quartzo e hematita na faixa granulométrica [75-53] µm são apresentados na Tabela 5-7, enquanto que os dados completos com os índices determinados para as partículas desta faixa granulométrica estão no Anexo 7. Verifica-se que houve uma redução do grau de liberação da hematita em relação à faixa granulométrica [106-75] µm. A justificativa para essa redução se encontra na distribuição das partículas mistas presentes na faixa granulométrica [75-53] µm.

Tabela 5-7: Grau de liberação obtido para a faixa granulométrica [75-53] µm.

Tamanho	Grau de Liberação (%)			
(µm)	Hematita	Quartzo		
75-53	60,95	82,32		

Figura 5-8: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica [75-53] μm, identificando os grãos de hematita (H) e quartzo (Qtz), bem como as pequenas inclusões de hematita no quartzo.

5.1.5.4 Faixa granulométrica [53-38] µm

A Figura 5-9 apresenta uma imagem obtida da seção polida do material pertencente à faixa granulométrica [53-38] μ m. Nela, percebe-se o grande número de partículas livres de hematita, diferentemente do analisado nas imagens obtidas das outras faixas granulométricas estudadas. As pequenas inclusões de hematita no grão de quartzo continuam presentes nesta faixa granulométrica, demonstrando novamente a dificuldade existente na liberação dos grãos de hematita nestas condições de inclusão.

Os valores obtidos para o grau de liberação dos grãos de quartzo e hematita na faixa granulométrica [53-38] µm são apresentados na Tabela 5-8, enquanto os dados completos com os índices determinados para as partículas desta faixa granulométrica estão no Anexo 8. Os resultados mostram que as partículas presentes nesta faixa granulométrica se encontram com um grau de liberação adequado (>90%) para o processamento deste material.

Tamanho	Grau de Liberação (%)			
(µm)	Hematita	Quartzo		
53-38	94,09	92,18		

Tabela 5-8: Grau de liberação obtido para a faixa granulométrica [53-38] µm.

Figura 5-9: Imagem obtida por MOLR para a seção polida referente à faixa granulométrica [53-38] μm, identificando os grãos de hematita (H) e quartzo (Qtz), bem como as pequenas inclusões de hematita no quartzo.

5.2 Cromatografia Gasosa do Óleo Utilizado

A Tabela 5-9 mostra a composição dos ácidos graxos presentes no reagente AGEM, utilizado como coletor de minério de ferro nos testes realizados.

Nome	Fórmula	Valor (%)	Nome	Fórmula	Valor (%)
Mirístico	C14:0	0,4	Oleico	C18:1(9)	28,6
Palmítico	C16:0	17,5	Linoleico	C18:2(9,12)	40,1
Palmitoleico	C16:1(9)	0,4	Linolênico	C18:3(9,12,15)	0,2
Esteárico	C18:0	5,1	Araquídico	C20:0	1,6
			Outros		6,1

Tabela 5-9: Composição do reagente AGEM utilizado nos testes.

De acordo com a tabela acima, os principais ácidos graxos presentes no reagente AGEM são: linoleico (40,1%), oleico (28,6%) e palmítico (17,5%). Vale ressaltar, também, a quase ausência do ácido linolênico (0,2%) e a presença de 6,1% de outros componentes, que não foram detectados pelo cromatógrafo.

Percebe-se que, após comparação entre os dados apresentados na Tabela 5-9 com o referencial teórico mostrado na Tabela 3-3, que a composição dos ácidos graxos do reagente AGEM se aproxima mais do óleo de arroz, especialmente pelos percentuais dos ácidos palmítico, linoleico e linolênico. No entanto, há de se ressaltar, porém, que o percentual de ácido oleico no reagente AGEM está significativamente abaixo do relatado na literatura (28,6% contra 39,9%, respectivamente). A presença de ácido esteárico, por outro lado, é superior no reagente AGEM em comparação com o óleo de arroz (5,1% contra 1,3%, respectivamente).

Isso indica que o reagente AGEM apresentou algum tipo de alteração estrutural – corroborado pelo percentual significativo de material não identificado pelo cromatógrafo – em relação ao óleo vegetal de arroz. Estas alterações estruturais têm como principal objetivo aumentar o poder de coleta do reagente, bem como aumentar a seletividade na flotação.

5.3 Testes de Flotação em Bancada

A análise dos resultados obtidos nos testes de flotação em bancada segue a ordem das etapas realizadas, uma vez que resultados obtidos em etapas anteriores serviram como parâmetros básicos para a definição das etapas subsequentes. O balanço de massa detalhado, com todos os teores analisados, está no Apêndice.

5.3.1 Etapa 0 – Flotação sem reagentes

A Tabela 5-10 mostra o balanço de massas obtido no teste preliminar T00 sem a adição de reagentes. Não foi realizado a análise química dos produtos deste teste, tendo em vista que o único propósito para a realização do ensaio é a verificação da flotabilidade da amostra na ausência de reagentes.

Fluxo	Massa (g)	Massa (%)	
Alimentação	683,1	100,00%	
Flotado	0,9	0,13%	
Afundado	682,2	99,87%	

Tabela 5-10: Balanço de massas do teste T00.

A análise dos resultados da tabela acima mostra que a flotabilidade foi de apenas 0,13%, representando, basicamente, partículas que foram arrastadas mecanicamente pelas bolhas de ar, não havendo qualquer mineralização das bolhas de ar que chegaram a superfície da célula de flotação.

Este resultado comprova que a amostra utilizada na realização destes testes não possui reagentes adsorvidos em sua superfície – especialmente amina residual adsorvida na superfície do quartzo – em quantidade suficiente para interferir nos testes de flotação direta a serem realizados nas etapas seguintes deste trabalho.

Assim sendo, a dessorção da amina da superfície do quartzo não se mostra necessária para a execução dos testes planejados para este estudo. No entanto, há de se ressaltar que, para a aplicação dos resultados obtidos neste trabalho para rejeitos que acabaram de ser submetidos à etapas de flotação catiônica reversa, deve-se fazer a dessorção da superfície do quartzo, pois a amina presente na superfície deste mineral irá comprometer o desempenho da flotação aniônica direta a ser realizada em sequência.

5.3.2 Etapa 1 – Reagentes puros

Os resultados obtidos nos testes realizados com o AGEM e com a DDA são mostrados nas Figura 5-10 e Figura 5-11, respectivamente.

Figura 5-10: Balanço de massas simplificado do teste T01.

Figura 5-11: Balanço de massas simplificado do teste T02.

Os resultados mostram que a flotação utilizando a DDA ocorre de forma reversa, como era esperado, uma vez que a amina é o coletor tradicional de ganga silicática na flotação catiônica reversa de minério de ferro. No entanto, os resultados não foram satisfatórios, visto que o afundado apresentou um teor de Fe de 21,46%, com apenas 12,19% de recuperação metalúrgica do Fe. Isto pode ser explicado pelo reagente depressor utilizado – silicato de sódio – não possuir capacidade para deprimir minerais portadores de Fe.

Já o AGEM conseguiu elevar significativamente o teor de Fe da amostra inicial, obtendo 55,13% de Fe no flotado global do teste T02. Há de se ressaltar também a baixíssima recuperação de SiO₂ no concentrado obtido utilizando o reagente a base de ácido graxo (0,83%). No entanto, a recuperação mássica e, consequentemente, a recuperação metalúrgica do Fe neste teste também foram muito baixos (3,56% e 18,23%, respectivamente). Isto indica que o AGEM é muito seletivo, porém com baixo poder de coleta dos minerais portadores de Fe.

Uma possibilidade para esse baixo poder de coleta pode ser dada a uma possível baixa dosagem do coletor. Dessa forma, fez-se um teste extra, denominado T02a, onde todas as condições operacionais do teste T02 foram mantidas, com exceção da dosagem do coletor, que foi elevada para 500 g/t. Os resultados obtidos neste teste extra, bem como os valores comparativos em relação ao teste T02, estão apresentados na Figura 5-12.

Percebe-se que o aumento da dosagem do coletor acarretou uma diminuição drástica no teor de Fe no concentrado final (55,13% para 27,70%), mesmo que tenha havido um acréscimo significativo nas recuperações mássica e metalúrgica. Isto indica que um aumento de dosagem do coletor não gera o resultado esperado (aumento da recuperação sem diminuir a qualidade do produto obtido). O aumento da dosagem também gera uma maior coleta do quartzo, observada pelo acréscimo na recuperação metalúrgica de SiO2, de 0,72% para 11,82%.

Dessa forma, comprova-se que os reagentes utilizados de forma individual não possuem o desempenho necessário para a flotação de um material pobre como é este rejeito sob análise neste trabalho. Portanto, é necessário utilizar outra estratégia para viabilizar a flotação deste material. A primeira possibilidade que foi testada é a mistura da DDA com o reagente AGEM, que será analisada na etapa 2 deste trabalho.

Figura 5-12: Efeito da mudança da dosagem do reagente AGEM no teor e recuperação.

5.3.3 Etapa 2 – Coletor Misto

A Figura 5-13 mostra a relação entre teor de Fe e SiO_2 e as respectivas recuperações metalúrgicas e mássica para os testes realizados com o coletor misto nas proporções mássicas analisadas (testes T03 a T07). Os balanços de massas detalhados destes testes realizados se encontram entre o Anexo 12 e o Anexo 16.

Figura 5-13: Teor *versus* Recuperação Metalúrgica e Mássica em função dos diferentes coletores mistos testados na Etapa 2.

A análise das figuras acima mostra que o teste realizado com o coletor misto na proporção 1:1 apresenta um desempenho similar ao do teste T01, que foi realizado somente com a DDA como coletor, porém com uma recuperação metalúrgica do Fe cerca de 4 vezes superior (49,30% contra 12,19%). Isto indica que a mistura entre a DDA e o reagente a base de ácido graxo faz com que o coletor misto obtido tenha um alto poder de coleta, o que pode ser explicado pela diminuição na repulsão entre os íons da monocamada, deixando-a mais compacta (WANG *et al.,* 2016^b), e sendo, portanto, mais efetiva na coleta do mineral de interesse. No entanto, este alto poder de coleta do coletor misto na proporção 1:1 resultou em uma queda da seletividade, com uma recuperação metalúrgica do SiO₂ de 18,04% - quase 3 vezes superior ao obtido no teste T01 (6,72%). Isto pode ser explicado pela presença elevada de DDA (um tradicional coletor de minerais silicáticos) na composição do coletor misto (50% em massa).

Percebe-se que, a medida em que a proporção do reagente AGEM é elevada na composição do coletor misto, o teor de Fe segue a mesma tendência, atingindo 54,06% no teste realizado na proporção mássica de 1:5. Este valor é ligeiramente inferior ao obtido no teste com o reagente

AGEM de forma isolada (55,13% no teste T02), porém a recuperação metalúrgica do Fe obtida no teste com o coletor misto na proporção 1:5 foi de 32,60%, com uma recuperação mássica de 6,51%. Estes valores são, aproximadamente, 80% superiores aos apresentados no teste T02. No que se refere à contaminações de SiO₂ no concentrado, os resultados obtidos no teste com o coletor misto na proporção 1:5 são similares aos obtidos no teste T02 (0,95% de recuperação metalúrgica do SiO₂ com o coletor misto 1:5 e 0,83% no teste T02).

Portanto, o coletor misto na proporção 1:5 consegue gerar produtos com especificações similares ao reagente AGEM de forma isolada, porém, em quantidades bem superiores, sendo assim, uma alternativa interessante à flotação de rejeitos de minério de ferro, e minérios de baixo teor em geral.

No entanto, os resultados obtidos pelo coletor misto na proporção 1:5 ainda não podem ser considerados excepcionais, pois a quantidade de Fe sendo descartada no rejeito ainda é extremamente relevante (67,40% do Fe total vai em direção ao rejeito desta flotação). Portanto, partiu-se para investigar qual etapa do processo pode ser aprimorada para aumentar o desempenho total desta flotação.

A primeira possibilidade investigada foi aumentar a dosagem do coletor misto na proporção 1:5, de 100 g/t para 200 g/t. O objetivo desta mudança era verificar se a seletividade do coletor misto se manteria a mesma com o aumento da dosagem do coletor, onde se espera que haja um aumento na recuperação mássica. Os resultados destes testes (teste T08) são mostrados na Figura 5-14. O balanço de massas completo do teste T08 é apresentado no Anexo 17.

Figura 5-14: Efeito do aumento da dosagem do coletor misto na proporção 1:5 no teor e na recuperação.

Os resultados mostram que o aumento da dosagem para 200g/t não ofereceu resultados superiores aos obtidos com a dosagem de 100 g/t. Os resultados mostram um aumento na recuperação mássica como previsto – acarretando aumento da recuperação metalúrgica de Fe e SiO₂ –porém isto teve como contrapartida a queda abrupta do teor de Fe obtido no concentrado final – caindo de 54,06% para 33,17%. Portanto, não pode ser considerado viável um aumento da dosagem do coletor misto na proporção 1:5.

Partiu-se, portanto, para investigar a distribuição granulométrica dos produtos do teste com o coletor misto na proporção 1:5. Foi realizado a distribuição granulométrica dos três produtos obtidos no teste com o coletor misto na proporção 1:5 com a dosagem de 100 g/t, e a partir dos resultados obtidos (análises granulométricas completas disponíveis nos Anexo 18, Anexo 19 e Anexo 20), foi calculado a partição do material entre os produtos por faixa granulométrica, conforme mostrado na Tabela 5-11.

Tamanho (µm)	Afundado <i>Rougher</i>	Afundado <i>Cleaner</i>	Flotado <i>Cleaner</i>	Total
150	99,48	0,47	0,06	100,00
106	95,40	3,88	0,72	100,00
75	82,54	14,10	3,36	100,00
53	61,80	26,16	12,04	100,00
45	56,83	24,46	18,71	100,00
30	32,11	32,67	35,22	100,00
9	36,78	33,18	30,04	100,00
0	36,32	16,82	46,86	100,00

Tabela 5-11: Partição de massa entre os produtos do teste realizado com o coletor misto 1:5 por faixa granulométrica.

Os resultados mostram que as frações mais grosseiras se direcionam preferencialmente para o afundado *rougher*, especialmente a fração granulométrica superior a 150 µm, onde 99,48% do material se direcionou ao rejeito na primeira etapa de flotação. Isto ocorre por três fatores, a serem listados a seguir:

- O material contido desta fração granulométrica apresenta um baixo teor de Fe (de acordo com a Tabela 5-1 tendo assim, baixa possibilidade de massa contida nessa faixa se direcionar ao flotado *cleaner*, especialmente;
- O baixo valor do grau de liberação apresentado para as frações granulométricas mais grosseiras;
- Existe uma facilidade da descoleta das partículas grossas, devido a sua maior massa e, também, uma baixa probabilidade de arraste aerodinâmico destas partículas.

Dessa forma, ao analisar em conjunto os resultados apresentados pelas Tabela 5-11 e Tabela 5-2, chega-se à conclusão de que a retirada do circuito de flotação do material com granulometria superior a 150 µm é uma possibilidade viável, visto que a massa de Fe contida nesta fração granulométrica não é significativa e a possibilidade de uma partícula com este tamanho ser coletada é pouco significativa.

5.3.4 Etapa 3 – Corte granulométrico na malha de 150 µm

A Figura 5-15 mostra os resultados obtidos com os testes realizados com o corte granulométrico prévio à flotação na malha de 150 μ m (teste T09). O balanço de massa completo dos testes realizados nesta etapa se encontram disponíveis no Anexo 21.

Figura 5-15: Efeito do corte granulométrico em 150 µm realizado na amostra cabeça na flotação do material.

Os resultados apresentados na Figura 5-15 indicam que, ao retirar as partículas com tamanho superior a 150 µm do sistema de flotação, a qualidade do produto final obtido melhora, significativamente, com a elevação do teor final de Fe de 54,06 para 64,04%. O concentrado final *standard* de minério de ferro apresenta 62% de Fe, portanto, o teste realizado com o corte granulométrico em 150µm já apresenta características básicas para ser considerado um concentrado final.

No que se refere ao SiO₂ presente no concentrado final, houve também uma redução significativa, de 12,28% para 7,93%, assim como uma redução na recuperação metalúrgica de SiO₂, de 0,95% para 0,46%, mostrando que o corte granulométrico favoreceu ainda mais a seletividade entre os minerais presentes na amostra analisada.

Entretanto, este aumento do teor de Fe no teste realizado com o corte granulométrico na amostra que alimentou a flotação acarretou uma redução da recuperação mássica (6,51% para 4,66%) e metalúrgica do Fe no concentrado final (32,60% para 23,13%). Esse é um comportamento previsível, mas não desejável. Teor e recuperação são grandezas inversamente proporcionais na maior parte dos casos analisados. O interesse principal do engenheiro de processos é encontrar um sistema em que o teor seja ótimo e a recuperação a melhor possível.

Neste contexto, a realização do corte granulométrico mostrou ser uma possibilidade muito interessante, no entanto, a queda na recuperação mostrou que a perda de Fe ainda é muito relevante e, dessa forma, deve-se buscar alternativas para aumentar a recuperação, especialmente na etapa *rougher*, onde ocorre a maior parte da perda de Fe no circuito. Por causa disso, partiu-se para a Etapa 4, em que foi analisado a possibilidade da implantação de uma etapa *scavenger* após a etapa *rougher*.

5.3.5 Etapa 4 – Possibilidade do uso da etapa scavenger

A Figura 5-16 mostra os resultados dos testes T10 a T13 realizados utilizando etapa *scavenger* com diferentes dosagens do reagente depressor para a amostra cabeça, enquanto a Figura 5-17 mostra os resultados dos testes T14 a T17, realizados com as mesmas dosagens, porém com a amostra previamente submetida ao corte granulométrico em 150 μm. Todos os balanços de massas detalhados estão descritos entre o Anexo 22 e o Anexo 29.

A análise inicial dos resultados obtidos mostra que a utilização da etapa *scavenger* não mostrou ser eficiente, gerando concentrados finais com teores de Fe muito baixos (variando entre 21,82% e 25,70% nos testes realizados com a amostra cabeça e entre 34,60% e 40,62% nos testes realizados com a amostra submetida previamente ao corte granulométrico em 150 µm). Isto pode ser explicado pelo fato de que, na etapa *scavenger*, o silicato de sódio adicionado em dosagem extra não é capaz de fazer a depressão completa dos minerais de ganga, fazendo com que grande parte desses minerais fossem arrastados pelas bolhas de ar, dirigindo-se ao flotado.

Figura 5-16: Resultados obtidos na Etapa 4 com a amostra cabeça (testes T10 a T13).

Figura 5-17: Resultados obtidos na Etapa 4 com a amostra -150µm (testes T14 a T17).

A variação da dosagem de silicato de sódio nos testes realizados nesta etapa mostra que o aumento da dosagem não impactou diretamente nos valores de teor e recuperação, como se esperava inicialmente. A variabilidade da recuperação mássica e metalúrgica não foi tão significativa nos testes realizados, confirmando a baixa influência da alteração da dosagem do

silicato de sódio nos testes realizados nesta etapa. Os melhores resultados em termos de teor de Fe foram obtidos com a dosagem de 500 g/t de silicato de sódio para a amostra cabeça e de 200 g/t de silicato de sódio para a amostra previamente submetida ao corte granulométrico em 150 µm.

5.3.6 Etapa 5 – Uso da separação magnética como pré-concentração

A Figura 5-18 mostra os resultados obtidos com a execução dos testes previstos no fluxograma A (Figura 4-20), em termos de recuperação mássica, metalúrgica e teores de Fe e SiO₂ nos fluxos analisados. Os resultados detalhados destes testes, bem como os teores dos demais elementos químicos se encontram entre o Anexo 30 e o Anexo 35.

Os resultados obtidos mostram que a separação magnética elevou o teor de Fe de 10,80% para 20,88%, com 88,88% de recuperação metalúrgica de Fe. No entanto, a recuperação metalúrgica de SiO₂ no concentrado magnético também foi muito significativa (37,57%). Isto indica que a separação magnética pode ter favorecido a recuperação de partículas grossas de quartzo que apresentavam pequenas inclusões de hematita. Dessa forma, a separação magnética tem potencial para ser uma etapa de pré-concentração do rejeito, porém, ainda necessita de ajustes operacionais para que se obtenha um concentrado magnético de maior qualidade.

A Figura 5-19 mostra o comparativo realizado entre os concentrados finais obtidos nos testes sem a realização de etapa prévia a flotação (resultado já apresentado na etapa 2 - Figura 5-11) e o teste realizado através do fluxograma A. Os resultados indicam que, apesar da elevação do teor final de Fe para 57,37%, houve também uma elevação do teor final de SiO₂, acarretando uma queda na recuperação mássica e na recuperação metalúrgica de ambos os elementos, com destaque para a redução de 32,60% para 21,25% na recuperação metalúrgica do Fe. Dessa forma, o uso da separação magnética conforme o fluxograma A não contribuiu efetivamente para a melhoria da qualidade do produto final e nem propiciou uma maior recuperação mássica-parâmetros desejados para a maior eficiência do processo analisado.

Figura 5-18: Balanço de massa simplificado do fluxograma A, realizado na etapa 5.

Figura 5-19: Gráfico comparativo sobre a eficiência do fluxograma A proposto na etapa 5.

A Figura 5-20 apresenta o fluxograma simplificado com os resultados obtidos na execução dos testes referentes ao fluxograma B (Figura 4-21) em relação aos teores de Fe e SiO₂, bem como as recuperações metalúrgicas dos mesmos e a partição em massa de cada fluxo.

Nesta nova configuração de testes, com o peneiramento sendo realizado previamente à separação magnética, temos que os resultados obtidos com a amostra que possui granulometria inferior a 150 µm foram inferiores aos obtidos com a amostra cabeça (19,70% Fe contra 20,88% Fe), mesmo tendo a alimentação da separação magnética com teor superior (12,91% Fe contra 10,80% Fe). O mesmo comportamento foi encontrado no que se refere a recuperação mássica e metalúrgica dos elementos analisados. Isto era previsível, uma vez que o equipamento utilizado para a separação magnética durante a realização dos testes apresenta baixa eficiência para materiais finos.

Figura 5-20: Balanço de massa simplificado do fluxograma B, realizado na etapa 5.

Os testes de separação magnética e flotação realizados com o material grosso (+150µm) não foram bons sob o ponto de vista da concentração do Fe, obtendo apenas 31,93% de Fe, com uma recuperação mássica quase nula (0,13% da alimentação inicial e 0,54% da massa +150 µm). Isto se explica principalmente pelo fato de que partículas com este tamanho possuem dificuldades de serem flotadas pelas bolhas de ar, devido a sua maior massa. Dessa forma, a eficiência do processamento da amostra com granulometria superior a 150 µm com o objetivo de recuperar o Fe fica muito comprometida.

No entanto, a separação magnética desta amostra, em todos os cenários analisados, mostrou ser uma técnica promissora para a obtenção de quartzo de alta pureza (>99% SiO₂). Em apenas um único estágio de separação magnética, já foi possível obter um material com teor de SiO₂
superior a 97% e teor de Fe de 0,73% Fe com a amostra $+150\mu$ m. A justificativa para este desempenho da separação magnética deste material é devido ao quartzo estar concentrado nesta faixa granulométrica (93,87% SiO₂) e, também, por se encontrar com um alto grau de liberação.

A Figura 5-21 mostra um gráfico comparativo entre o concentrado final obtido com a amostra -150 μm através da realização do fluxograma B proposto nesta etapa e o teste realizado na etapa 3 (Figura 5-15) com a amostra -150μm, onde não houve a realização de testes de separação magnética. Os valores de recuperação metalúrgica e mássica para o teste com etapa prévia de separação magnética foram recalculados para considerar como alimentação inicial a amostra - 150 μm, para que se possa ter a mesma base comparativa.

A análise do gráfico mostra que o uso da separação magnética em uma etapa prévia à flotação foi responsável por elevar a recuperação mássica (de 4,66% para 7,18%) e a recuperação metalúrgica de Fe (de 23,13% para 33,53%) e de SiO₂ (de 0,46% para 1,10%). No entanto, em termos de teores, o resultado foi pior, com a queda no teor de Fe (de 64,04% para 60,33%) e aumento no teor de SiO₂ (de 7,93% para 12,42%).

Dentre as propostas de fluxograma analisadas, fica claro a maior eficiência do fluxograma B, quando comparado com o fluxograma A. Apesar do aumento no teor de SiO₂ e o pequeno impacto no teor de Fe, o aumento na recuperação metalúrgica de Fe, assim como a redução do fluxo de alimentação de 100% para 63%, considerando apenas o material -150 μ m (considerando a amostra cabeça, a redução é ainda maior, de 100% para 48%), justifica a aplicação do fluxograma B no processamento deste rejeito. Vale ressaltar, ainda, que existem possibilidades para a otimização da separação magnética, como a utilização do separador magnético de alta intensidade via úmido, que possuem maior eficácia na separação de partículas mais finas.

Figura 5-21: Gráfico comparativo sobre a eficiência do fluxograma B proposto na etapa 5, com a amostra -150µm.

5.3.7 Etapa 6 – Uso do hexametafosfato de sódio como depressor

A Figura 5-22 mostra a, comparativamente, a influência do depressor o hexametafosfato de sódio na flotação da amostra com granulometria inferior a 150 µm. Esses resultados referemse aos testes realizados na etapa 3 (Figura 5-15). Os resultados mostram que as recuperações mássica e metalúrgica aumentaram, com destaque para a recuperação metalúrgica de Fe que subiu de 23,13%, utilizando o silicato de sódio, para 35,69% utilizando o hexametafosfato de sódio. No entanto, houve uma queda no teor final de Fe nas mesmas condições de 64,04% para 61,08%. Estes resultados mostram que o hexametafosfato de sódio apresenta um efeito depressor significativo na flotação direta de minério de ferro, mesmo com um desempenho, no teor, um pouco inferior ao obtido utilizando o silicato de sódio como depressor.

Figura 5-22: Efeito da utilização do hexametafosfato de sódio como depressor na flotação da amostra -150 µm.

A Figura 5-23 apresenta o impacto da mudança do depressor, porém realizando a rota proposta pelo fluxograma B da etapa 5 (corte granulométrico em 150µm + separação magnética + flotação – Figura 4-21 e Figura 5-20). Os valores das recuperações metalúrgica e mássica apresentados para os testes realizados com o silicato de sódio como depressor foram recalculados para que a alimentação do teste fosse a mesma utilizada para o teste realizado utilizando o hexametafosfato de sódio como depressor.

Os resultados obtidos mostram que o hexametafosfato de sódio promoveu um aumento no teor de Fe do concentrado final (de 60,33% para 63,77%). No entanto, houve uma queda da recuperação metalúrgica e mássica de Fe e SiO₂. Este comportamento foi oposto ao discutido na Figura 5-22. Não existe uma justificativa clara para esta diferença no comportamento. No entanto, vale ressaltar que as alimentações dos testes possuem diferenças claras no que se refere aos teores. Enquanto os testes apresentados na Figura 5-22 têm a alimentação com 12,9% Fe, os testes mostrados na Figura 5-23 foram alimentados com o concentrado da separação magnética enriquecido para 19,7% Fe. Esta diferença nos teores da alimentação deve ser analisada com cuidado principalmente com relação a eficiência, uma vez que a dosagem do coletor não foi alterada.

Figura 5-23: Efeito da utilização do hexametafosfato de sódio utilizando a rota proposta pelo fluxograma B da etapa 5, com a amostra -150 µm.

5.3.8 Etapa 7 – Uso de hidroxamatos e sulfosuccinato como coletor

A Figura 5-24 mostra os resultados obtidos nos testes realizados com os hidroxamatos e sulfosuccinato, sendo empregados de forma isolada como coletores, e utilizando a amostra cabeça sem corte granulométrico em 150 Em função aos resultados obtidos na etapa anterior optou-se por utilizar, nesta fase, o hexametafosfato de sódio como depressor.

Figura 5-24: Resultados dos testes utilizando os hidroxamato e sulfosuccinato testados, utilizados de forma isolada, e tendo a amostra cabeça como alimentação.

Ao analisar o teor final de Fe obtido, o reagente Aero[®] OX 102 Promoter apresentou o pior resultado, com 53,09% Fe. No entanto, a recuperação metalúrgica de Fe no teste realizado com este reagente foi a maior de todas as analisadas (50,57%). Dentre os reagentes testados nesta etapa, o que apresentou o melhor desempenho na análise teor *versus* recuperação foi o Aero[®] 6494 Promoter, tendo 61,94% Fe no produto final e 35,89% de recuperação metalúrgica de Fe.

Já a Figura 5-25 mostra os testes realizados nas mesmas condições operacionais descritas anteriormente, porém com a alimentação sendo feita pela amostra -150 µm.

Figura 5-25: Resultados dos testes utilizando os hidroxamato e sulfosuccinato testados, utilizados de forma isolada, e tendo a amostra -150µm como alimentação.

Os resultados obtidos mostram que os resultados apresentados para todos os reagentes testados, em termos de teor final de Fe, foram superiores aos obtidos na Figura 5-24, tendo como alimentação a amostra cabeça. Isto é algo esperado, visto que a flotação não é tão eficiente com partículas maiores que 150 µm. Vale destacar o teor final de Fe obtido pelo teste com o reagente Aero[®] 6494 Promoter, de 64,31% Fe, o que corrobora seu alto poder de seletividade na flotação direta de minério de ferro.

A Figura 5-26 apresenta os resultados obtidos utilizando os hidroxamatos e sulfosuccinato testados nesta etapa como constituinte da formação do coletor misto na proporção mássica 1:5 (1 parte de DDA e 5 partes do reagente testado). A alimentação deste teste foi a amostra -150 μm.

Figura 5-26: Resultados dos testes utilizando os hidroxamato e sulfosuccinato testados, utilizados na composição do coletor misto 1:5, e tendo a amostra -150 μm como alimentação.

Análise dos resultados mostram que os coletores mistos formados com os hidroxamatos não tiveram um desempenho satisfatório, com uma queda drástica na seletividade dos óxidos de ferro nos concentrados. O pior resultado foi obtido com o coletor misto formado com o Aero[®] 6494 Promoter, tendo apenas 26,89% Fe no concentrado final, e 25,50% de recuperação metalúrgica de SiO₂. Isto vai ao contrário do que foi analisado nas Figura 5-24 e Figura 5-25, onde o Aero[®] 6494 Promoter foi o reagente mais seletivo em termos dos minerais portadores de Fe. Dessa forma, percebe-se que a mistura entre a dodecilamina e os hidroxamatos não surtiu o efeito esperado de melhoria na qualidade do produto final.

Uma possível explicação para este fato está detalhado no trabalho de ASSIS *et al.* (1996), no que se refere a cinética de adsorção do hidroxamato. Os autores relatam que a cinética de adsorção está diretamente ligada à solubilidade do mineral. Como a hematita é um mineral quase que insolúvel em água, é de se esperar que a cinética de adsorção do hidroxamato seja muito lenta, Já a adsorção da DDA sobre o quartzo é física, apresentando uma cinética de adsorção muito rápida. Dessa forma, a adsorção da DDA sobre o quartzo irá acontecer em maior

extensão comparativamente com a adsorção do hidroxamato na superfície da hematita, o que afeta diretamente na recuperação e na seletividade do processo.

No entanto, o sulfosuccinato testado – Aero[®] 845 Promoter – teve um desempenho diametralmente oposto ao dos hidroxamatos analisados, quando misturado com a DDA na proporção 1:5. Os resultados mostraram que o produto final obteve 62,84% Fe, com 59,01% de recuperação metalúrgica do Fe, sendo substancialmente superior aos valores obtidos com o coletor misto anteriormente testado, utilizando o reagente AGEM (61,08% Fe e 35,69% de recuperação metalúrgica do Fe). Os valores obtidos pelo coletor misto composto entre DDA e Aero[®] 845 Promoter também foram significativamente superior aos obtidos com o uso do Aero[®] 845 Promoter de forma isolada, onde obteve 61,12% Fe no concentrado final e 23,13% de recuperação metalúrgica do Fe.

Este desempenho superior se deu muito por conta do alto poder de coleta que o coletor misto formado entre DDA e Aero[®] 845 Promoter possui, sem a diminuição da qualidade do concentrado final. A recuperação mássica obtida neste teste foi de 12,12%, contra 7,54% de recuperação mássica no teste realizado com o coletor misto utilizado anteriormente – um acréscimo de aproximadamente 60% na massa flotada. Este alto poder de coleta do Aero[®] 845 Promoter pode ser explicado por sua maior capacidade espumante observada neste reagente na execução dos testes. No entanto, ao contrário do que se poderia prever, este aumento da recuperação mássica não foi acompanhado de uma redução expressiva do teor final de Fe, o que garantiu a este coletor misto formado entre a DDA e o Aero[®] 845 Promoter o melhor resultado na análise do par teor *versus* recuperação dentre todos os testes realizados até este momento.

A Figura 5-27 mostra a distribuição granulométrica dos produtos obtidos no teste realizado com o coletor misto formado entre DDA e o Aero[®] 845 Promoter. Os dados das análises granulométricas realizadas para a construção do gráfico abaixo se encontram entre os Anexo 50 e Anexo 52.

Figura 5-27: Distribuição granulométrica dos produtos do teste realizado com o coletor misto formado entre DDA e o Aero[®] 845 Promoter.

Para avaliar o desempenho do coletor misto formado entre DDA e Aero[®] 845 Promoter, foi realizado a análise química por faixa de todos os fluxos obtidos no teste realizado com o coletor misto formado entre DDA e o Aero[®] 845 Promoter. Os valores obtidos estão descritos no Apêndice, entre os Anexo 53 e Anexo 55. As Figura 5-28 e Figura 5-29 mostram as distribuições de Fe e SiO₂, respectivamente, em cada um dos três fluxos obtidos.

Figura 5-28: Distribuição de Fe para os fluxos do teste realizado com o coletor misto formado entre DDA e o Aero[®] 845 Promoter.

Figura 5-29: Distribuição de SiO₂ para os fluxos do teste realizado com o coletor misto formado entre DDA e o Aero[®] 845 Promoter.

A análise dos gráficos acima mostra que as frações grossas apresentam uma recuperação metalúrgica de Fe muito baixa, com destaque para a fração granulométrica +106 μ m, que apresentou recuperação metalúrgica de Fe de apenas 5,58% para o flotado *cleaner*. A medida em que o tamanho das partículas diminui, a recuperação metalúrgica de Fe aumenta, tendo o ápice na faixa granulométrica [38-45] μ m, com 73,16% do Fe total se direcionando para o

flotado *cleaner*. A faixa granulométrica -38 μm teve uma recuperação metalúrgica de Fe alta, porém inferior à faixa [38-45] μm (67,01%).

De acordo com a Figura 5-28, a etapa *cleaner* cumpriu seu propósito em todas as faixas granulométricas, pois houve a elevação do teor de Fe no flotado para a obtenção de um produto final com alto teor de Fe, e a quantidade de Fe que se direcionou ao afundado *cleaner* foi baixa para todas as frações granulométricas analisadas. A fração granulométrica que apresentou a maior recuperação de Fe para o afundado *cleaner* foi a -38 µm, com 5,49% do Fe total.

No que se refere a contaminação de Fe no produto final (Figura 5-29), o coletor misto se mostrou ser muito eficiente, tendo uma recuperação de SiO₂ muito baixa em todas as faixas granulométricas analisadas. A fração granulométrica [38-45] µm foi a que apresentou a maior recuperação de SiO₂ no flotado *cleaner*, com 6,37% do SiO₂ total. A faixa granulométrica -38 µm também apresentou uma recuperação de SiO₂ significativa nos fluxos da etapa *cleaner*, indicando que o sistema de reagentes utilizados neste teste apresentou uma menor eficácia para as partículas menores do que 45µm, no que se refere à contaminação do produto final por parte de SiO₂.

5.4 Testes de Flotação em Célula Pneumática

5.4.1 Definição das condições operacionais

O primeiro passo realizado para a execução dos testes de flotação em célula pneumática foi a definição dos reagentes a serem utilizados, bem como suas dosagens. Buscou-se, portanto, replicar nesse equipamento o teste de flotação em bancada que apresentou o melhor desempenho em relação a teor e recuperação.

Dessa forma, conforme a análise feita de todos os testes de flotação em bancada realizados anteriormente, foi escolhido o teste T34 (Tabela 4-12) para ser replicado em célula pneumática, devido ao alto teor de Fe obtido (62,84% Fe) aliado a recuperação metalúrgica de Fe excepcional (59,01%).

Assim sendo, foi realizado um teste exploratório na célula pneumática, utilizando as mesmas condições operacionais empregadas no teste T34, ou seja, com dosagem de 100g/t do coletor

misto formado entre a DDA e o Aero[®] 845 Promoter na proporção mássica de 1:5, e dosagem de 500g/t do depressor hexametafosfato de sódio.

No entanto, este teste exploratório não obteve sucesso, pois a camada de espuma formada não estava mineralizada, e nem com espessura suficiente para que a operação fosse possível de ser realizada. Por causa disso, o teste nem chegou a ser concluído, e não houve coleta de massas para a quantificação dos resultados obtidos.

Tendo em vista este resultado inicial negativo, buscou-se, portanto, ajustar as condições operacionais para que a camada de espuma fosse estável e mineralizada. A primeira atitude tomada foi aumentar a dosagem do coletor misto de 100g/t para 200g/t. Porém, mesmo com a dosagem dobrada, a espuma obtida ainda não estava mineralizada o suficiente para a reprodução do teste, assim como continuava instável.

Diante do cenário apresentado, houve uma nova tentativa exploratória, com uma nova alteração da dosagem do coletor, de 200g/t para 400g/t. Com esta nova dosagem, finalmente a camada de espuma se apresentou estável e bastante mineralizada, sendo muito seletiva, pela análise visual inicial. Não foi feito a quantificação dos dados obtidos nestes testes exploratórios, tendo em vista que, além das dosagens, foram ajustados também as vazões de polpa e de ar para o melhor desempenho do teste – valores descritos na Tabela 4-14.

5.4.2 Resultados obtidos

A Figura 5-30 mostra o resultado global obtido no teste realizado na célula pneumática. Os resultados mostraram que o teste apresentou um concentrado final com teor 61,57% em Fe, apresentando 9,04% de recuperação mássica e 39,85% de recuperação metalúrgica. A recuperação de SiO₂ no concentrado foi muito baixa, de apenas 1,12%. Ao analisar o concentrado obtido em cada fração de tempo (0-10 min, 10-20 min e 20-35 min), percebe-se que a maior parte da massa é flotada nos primeiros 10min, representando 68,66% da massa total flotada. Outro ponto que merece destaque é a qualidade do concentrado obtido nos primeiros 10 min, tendo 62,52% Fe, superior ao valor médio final obtido (61,57% Fe).

O concentrado obtido nos últimos minutos de flotação (20-35 min) apresentou 56,14% Fe, indicando que o coletor misto utilizado já não apresentava a mesma seletividade apresentada

nos primeiros minutos de flotação, e que o tempo definido inicialmente para o término do teste (35 min) foi uma escolha adequada.

A Figura 5-31 mostra a distribuição granulométrica da alimentação do teste realizado na célula pneumática, bem como do afundado e do flotado nos tempos 0-10 min, 10-20 min e 20-35 min. Os dados completos das análises granulométricas realizadas nestas amostras se encontram disponíveis no Apêndice, entre os Anexo 56 e Anexo 59.

O gráfico mostra que praticamente inexiste a diferença de granulometria entre os materiais flotados nos tempos analisados, pois as curvas granulométricas correspondentes a estas amostras estão praticamente sobrepostas. Isto mostra que o mecanismo de flotação não teve variação brusca com o passar do tempo, mesmo com a redução da ação do reagente coletor nos minutos finais do teste.

Figura 5-30: Balanço de Massas resumido do teste realizado na célula pneumática.

Figura 5-31: Distribuição granulométrica dos fluxos do teste realizado na célula pneumática.

No entanto, é notório a diferença entre a distribuição granulométrica entre o material flotado e o afundado. O flotado apresenta cerca de 70% da massa com granulometria inferior a 38 μ m, enquanto no afundado, este percentual é inferior a 20%. Isto era previsível, tendo em consideração o fato de que o Fe está concentrado nas frações granulométricas mais finas, e, também, a eficiência da célula pneumática na flotação de finos.

As Tabela 5-12 e Tabela 5-13 mostram a distribuição dos teores de Fe e SiO₂, respectivamente, para os fluxos analisados no teste realizado na célula pneumática. A análise dos resultados mostra que o teor de Feno flotado aumenta progressivamente a medida que o tamanho da partícula reduz, chegando a 66,22% Fe na fração granulométrica inferior a 38µm do material flotado nos primeiros 10min de teste. Em relação ao SiO₂ ocorre o comportamento inverso ao apresentado pelo Fe, com a redução progressiva do teor a medida em que as partículas ficam menores, tendo um mínimo de 3,61% SiO₂ na fração granulométrica -38 µm no material flotado entre 10 e 20 min.

			Teor I	Fe		
I amanho	Alimontação		A fundada			
(µm)	Annentação	0-10 min	10-20 min	20-35 min	Global	Alulluauo
106	5,56	38,72	44,61	35,91	39,40	5,22
75	7,01	43,64	38,20	40,96	42,12	6,18
53	9,06	53,34	52,53	46,50	52,28	7,04
45	14,79	59,95	58,68	51,93	58,95	10,02
38	18,28	62,89	61,07	54,59	61,32	11,53
0	33,53	66,22	65,80	59,63	65,26	21,38
Global	13,97	62,52	61,93	56,14	61,57	9,24

Tabela 5-12: Teores de Fe por fração granulométrica e por fluxo analisado no teste realizado emcélula pneumática.

Tabela 5-13: Teores de SiO₂ por fração granulométrica e por fluxo analisado no teste realizado em célula pneumática.

ті			Teor Si	02		
I amanno	Alimontação		A fundada			
(μπ)	Alimentação	0-10 min	10-20 min	20-35 min	Global	Alunuauo
106	91,64	43,02	34,85	46,85	42,07	92,13
75	89,70	36,19	44,10	39,67	38,33	90,92
53	86,70	22,30	23,81	32,60	23,94	89,64
45	78,39	13,23	14,93	24,91	14,66	85,27
38	73,22	8,90	10,66	20,53	10,92	82,99
0	50,56	3,64	3,61	7,99	4,21	68,30
Global	79,38	9,04	9,40	14,53	9,83	86,30

No entanto, nas frações grossas, com destaque para as partículas superiores a 75 µm, os resultados obtidos não foram interessantes. O sistema de reagentes utilizado, bem como o equipamento utilizado, não foi capaz de elevar o teor de Fe nestas frações para valores superiores a 50%. Vale ressaltar, porém, que o teor de Fe contido na alimentação nestas faixas granulométricas é muito baixo – inferior a 7% Fe, tendo aproximadamente 90% SiO₂. Isto contribui de forma decisiva para os resultados abaixo do esperado nas frações granulométricas grossas. No entanto, o uso da célula pneumática também é um fator contribuinte, visto que o equipamento é projetado para favorecer a flotação de finos, preferencialmente, por não ter sistema de agitação da polpa na célula de flotação.

A Figura 5-32 mostra a recuperação metalúrgica de Fe por faixa granulométrica no teste realizado na célula pneumática. Os resultados mostram que, apesar do bom resultado obtido,

ainda tem muito espaço para melhorias. Para as partículas de maior tamanho (+106 μ m e +75 μ m), a flotação não está sendo eficiente, com a baixa recuperação metalúrgica de Fe. Isto ocorre devido as características do equipamento, que é voltado para a flotação de partículas finas. Já nas frações mais finas, especialmente a fração -38 μ m, a recuperação metalúrgica de Fe obtida (53,88%) não pode ser considerada como um resultado excepcional, pois 46,12% do Fe existente nesta faixa granulométrica está se direcionando ao afundado.

Figura 5-32: Recuperação metalúrgica do Fe por faixa granulométrica no teste realizado na célula pneumática

A Figura 5-33 mostra as curvas obtidas para a determinação dos parâmetros para o modelamento da cinética de flotação de primeira ordem (de acordo com a Equação 6) para cada faixa granulométrica do teste realizado em célula pneumática, enquanto a Tabela 5-14 mostra os valores dos parâmetros k e R_{∞} obtidos no modelamento da cinética de flotação de primeira ordem. O modelamento foi realizado através da utilização da ferramenta *"Solver"* do Microsoft Excel, para minimizar o erro quadrático entre os valores experimentais e os valores calculados. Os valores calculados estão disponíveis no Apêndice.

Figura 5-33: Cinética de flotação para o teste realizado em célula pneumática

Tamanho (µm)	Constante cinética k (min ⁻¹)	R ∞ (%)
106	0,1246	6,99
75	0,1008	14,12
53	0,1174	25,88
45	0,1436	38,49
38	0,1014	46,50
<38	0,1133	54,21

Tabela 5-14: Valores da constante de cinética k e R_∞ por faixa granulométrica

Percebe-se que há uma boa correlação entre os valores experimentais e os valores calculados, confirmando a eficácia do método utilizado para a determinação dos parâmetros da cinética de flotação.

No que se refere a cinética de flotação em si, os resultados mostram que, para o smaiores tamanho de partículas (especialmente $+106\mu$ m), a recuperação atinge seu ápice em 20min, tendo um incremento mínimo nos 15 minutos finais de flotação. A medida em que o tamanho das partículas diminui, se torna necessário um maior tempo de flotação, especialmente para as faixas granulométricas inferiores a 45 μ m, onde a curva de cinética não atingiu a assíntota

(definida como R_{∞}). Isto ocorre devido a menor probabilidade de contato entre partículas menores e a bolha de ar, mesmo em um equipamento que possui uma atenção especial para o contato partícula/bolha, como a célula pneumática. O maior valor da constante cinética k foi observado para a faixa granulométrica +45µm (0,1436 min⁻¹), indicando que a célula pneumática apresentou as melhores condições hidrodinâmicas para a flotação das partículas desta classe de tamanho.

5.4.3 Comparação com teste de flotação em bancada

A Figura 5-34 mostra a recuperação metalúrgica de Fe por faixa granulométrica para o teste realizado em célula pneumática e para o teste T34 de flotação em bancada, onde foram utilizados os mesmos reagentes. Os pontos obtidos foram linearizados através do método de regressão linear, e o grau de correlação entre os pontos experimentais e a reta obtida através da linearização foi determinado através do parâmetro R² gerado pelo Microsoft Excel. O parâmetro R² varia de 0 a 1 e, quanto maior o valor de R², mais próximo de uma reta perfeita os pontos analisados estão.

Figura 5-34: Recuperação metalúrgica de Fe por faixa granulométrica para célula pneumática e bancada

A análise inicial da Figura 5-34 mostra que a reta obtida pelos pontos referentes ao teste de flotação em bancada apresenta uma inclinação superior à reta referente ao teste de flotação em célula pneumática. Isto significa que, para partículas mais finas, o teste de flotação em bancada apresentou maior eficiência em comparação com o teste em célula pneumática. Este comportamento pode ser explicado através do maior controle das variáveis de processo em um

equipamento de bancada do que em uma célula pneumática, que é um equipamento de escala piloto, já em situação similar à de escala industrial.

Já para partículas de maior tamanho (+106µm), os resultados nos dois equipamentos foram próximos, mas com uma menor recuperação metalúrgica de Fe para o teste em bancada (5,58% contra 6,96%). Apesar da pequena diferença, este resultado também era previsível, e é explicado pelo fato de que, na célula pneumática, existe menor turbulência dentro da célula de flotação, quando comparado com a turbulência existente dentro de uma célula de flotação de bancada. Esta menor turbulência acarretará maior probabilidade de que o agregado partícula/bolha suba pela célula de flotação e chegue a superfície.

Estas análises comparativas puderam ser realizadas mesmo com o valor de R² bem abaixo de 1 para a linearização realizada com os pontos obtidos do teste realizado em bancada (0,7922). Apesar dos pontos não representarem de forma fiel uma reta, a tendência da variação dos pontos é muito clara e distinta da tendência apresentada pelos pontos obtidos no teste de flotação em célula pneumática.

6 CONCLUSÕES

A análise dos resultados obtidos neste trabalho nos permite chegar às seguintes conclusões, agrupadas abaixo de acordo com a ordem de apresentação dos resultados.

Rejeito de Minério de Ferro

A amostra analisada neste trabalho apresenta baixo teor de Fe, com apenas 10,8% Fe, e sua mineralogia consiste, basicamente, em quartzo (85%) e hematita (15%). A análise do grau de liberação do material mostrou que apenas a partir de tamanhos de partícula inferiores a 53 µm o material apresenta grau de liberação aceitável (>90%). Em faixas granulométricas maiores, é notório a presença de pequenas inclusões de hematita nos grãos de quartzo, fazendo com que a liberação destas partículas seja difícil, resultando em baixas recuperações metalúrgicas nessas faixas granulométricas. Os minerais presentes na amostra não apresentaram reagentes adsorvidos em quantidade suficiente para interferir nos testes de flotação direta realizados posteriormente.

Reagentes Isolados versus Coletor Misto

Os testes realizados com os reagentes testados (AGEM e DDA) de forma isolada mostraram que o reagente AGEM apresentou um concentrado final com 55,13% Fe e 18,26% de recuperação metalúrgica de Fe. O uso da DDA como reagente coletor não se mostrou eficiente, devido ao baixo teor de Fe da amostra. O uso do coletor misto formado entre DDA e AGEM mostrou ser eficiente, especialmente a medida em que a proporção de AGEM no coletor misto aumentou. O melhor resultado obtido foi com o coletor misto na proporção mássica DDA:AGEM 1:5, tendo 54,06% Fe no concentrado final e recuperação metalúrgica de Fe em 32,60%. Apesar do teor final de Fe ser ligeiramente inferior ao teste realizado com o reagente AGEM de forma isolada, o incremento na recuperação metalúrgica de Fe mostrou que o coletor misto tem um maior poder de coleta atrelado a uma maior seletividade. Este comportamento pode ser explicado devido ao maior grau de compactação da monocamada formada pelo reagente, oriundo da redução da repulsão eletrostática entre íons de mesma espécie. Um aumento da dosagem do coletor misto para 200 g/t foi testado, mas a seletividade entre os minerais existente anteriormente foi drasticamente reduzida, obtendo um teor final de Fe de apenas 33,17%, fazendo com que esta possibilidade não fosse viável.

Corte granulométrico em 150 µm

Os testes realizados com a amostra -150µm mostraram que houve um acréscimo significativo na qualidade do produto final, chegando a 64,04% Fe. No entanto, houve uma redução da recuperação metalúrgica de Fe para 23,13%. Estes resultados mostram a viabilidade da realização do corte granulométrico, no entanto, ainda possui margem para melhorias no resultado final, especialmente no que se refere ao poder de coleta do reagente.

Uso de etapa scavenger

Os resultados da etapa 4 mostraram que a etapa *scavenger* não apresentou o resultado esperado, independente da dosagem de silicato de sódio adotada. Isto pode ser explicado pelo fato de que, na etapa *scavenger*, o silicato de sódio adicionado em dosagem extra não é capaz de fazer a depressão completa dos minerais de ganga.

Uso da Separação Magnética

O uso combinado da separação magnética com a flotação direta apresentou um pequeno ganho para o fluxograma A testado – onde não foi realizado o corte granulométrico na amostra – quando comparado com o teste realizado sem a etapa prévia de separação magnética. O teor final de Fe foi elevado para 57,37% e a recuperação metalúrgica de Fe subiu para 21,25%. Já a utilização do fluxograma B – envolvendo um corte granulométrico na malha de 150 µm prévio à separação magnética – houve uma redução na qualidade do concentrado final (de 64,04% Fe para 60,33% Fe), e um acréscimo na recuperação metalúrgica de Fe (de 23,13% para 33,53%). Dessa forma, a aplicação do fluxograma B se mostrou uma alternativa interessante, com possibilidades de otimizações para melhorias dos resultados obtidos. No entanto, há de se ressaltar que a separação magnética foi capaz de reduzir o teor de Fe no rejeito para até 0,73% Fe. Dessa forma, a separação magnética se mostra um método extremamente eficiente para a obtenção de quartzo de alta pureza (>99%) – um novo subproduto oriundo da indústria do minério de ferro.

Mudança do depressor

Os resultados obtidos na etapa 6 mostraram que o hexametafosfato de sódio se mostrou como uma alternativa viável ao silicato de sódio como depressor dos minerais de ganga, apresentando uma recuperação metalúrgica de Fe de 35,69% e um teor final de 61,08% Fe.

Uso de hidroxamatos e sulfosuccinamato

Os testes realizados com os hidroxamatos e sulfosuccinamato mostraram que, dentre os reagentes analisados, o que apresentou o melhor desempenho, quando utilizado de forma isolada como coletor, foi o Aero[®] 6494 Promoter, obtendo 64,31% Fe e 44,71% de recuperação metalúrgica de Fe (tendo como alimentação a amostra -150 μ m).

No entanto, ao analisar a possibilidade de utilização destes reagentes na composição do coletor misto com DDA na proporção mássica 1:5, os resultados mostraram que não houve sinergia entre DDA e os hidroxamatos analisados. Os concentrados obtidos nestes testes obtiveram baixos teores de Fe e altas recuperações de SiO₂, indicando perda de seletividade destes coletores mistos. Já o sulfosuccinamato Aero[®] 845 Promoter apresentou o melhor resultado dentre todos os testes de flotação em bancada realizados, no que se refere ao par teor *versus* recuperação, com 62,84% Fe e 59,01% de recuperação metalúrgica de Fe. Isso pode ser explicado devido ao alto efeito sinérgico apresentado pela combinação entre a DDA e o Aero[®] 845 Promoter. Necessita-se de mais estudos para entender melhor os motivos pelos quais esta combinação apresentou este resultado excepcional.

Uso da célula pneumática

Os resultados do teste realizado em célula pneumática mostraram que a dosagem do coletor misto formado entre DDA e Aero[®] 845 Promoter precisou ser quadruplicada para que a espuma formada fosse mineralizada. O aumento de dosagem para equipamentos de escala piloto, como o utilizado, é previsível, devido às condições operacionais do equipamento. A recuperação metalúrgica de Fe obtida ao final do teste em célula pneumática foi significativamente menor (39,85%) do que o valor obtido em bancada, devido, especialmente, a menor recuperação de Fe nas frações mais finas, comparativamente com o teste realizado em bancada.

7 CONTRIBUIÇÕES ORIGINAIS AO CONHECIMENTO

O presente trabalho consiste em uma análise inédita do uso de reagentes coletores mistos na flotação direta de rejeitos de minério de ferro. Os resultados obtidos mostraram que a utilização de coletores mistos – sendo compostos por reagentes aniônicos e catiônicos – promovem uma maior seletividade entre os minerais presentes no sistema, e, ao mesmo tempo, aumenta o poder de coleta do reagente, através da maior estabilidade na monocamada formada pelo reagente na interface, devido a redução da repulsão eletrostática entre os íons de mesma espécie.

Dessa forma, o estudo mostra que o uso de coletores mistos para a flotação de rejeitos de minério de ferro é factível, gerando melhores resultados, em termos de teor e recuperação, quando comparado com o uso dos mesmos reagentes de forma isolada. Essas conclusões não haviam sido apresentadas anteriormente por outros autores na literatura, sendo, portanto, contribuições originais ao conhecimento, e que servirão de base para novos estudos na área de reprocessamento de rejeitos de minério de ferro.

8 RELEVÂNCIA DOS RESULTADOS

Nos dias atuais, há uma crescente pressão da sociedade para que as empresas mineradoras criem políticas para o manuseio e reaproveitamento dos rejeitos gerados pelos processos de beneficiamento mineral. Tendo em vista este desafio, uma das possibilidades consiste no reprocessamento dos rejeitos oriundos da rota tradicional de processamento mineral, para recuperar parte do mineral útil presente, agregando valor econômico a este material que antes era considerado como resíduo. Dentro dessa problemática, foi concebido este trabalho, para o desenvolvimento de uma rota alternativa ao (re)processamento de rejeitos de minério de ferro de baixo teor, sendo inviável o seu beneficiamento pelas técnicas tradicionais, devido à baixa recuperação e alto consumo de reagentes.

O presente trabalho apresentou resultados relevantes para a indústria de processamento mineral do minério de ferro, pois mostrou o desenvolvimento de uma rota de concentração de rejeitos de minério de ferro onde, com uma alimentação de apenas 10,80% Fe, foi possível obter um concentrado final com 62,84% Fe e 59,01% de recuperação metalúrgica de Fe, utilizando apenas duas etapas de flotação. Em outras rotas analisadas neste estudo, foi possível obter um concentrado final ainda mais puro, chegando até a 64,31% Fe, no entanto, tendo uma menor recuperação metalúrgica de Fe. Dessa forma, o trabalho mostrou a viabilidade em se fazer o reprocessamento de rejeitos de baixo teor de Fe e, consequentemente, reduzindo os impactos ambientais gerados pela deposição destes rejeitos no meio ambiente.

Um outro aspecto relevante nestes resultados obtidos é o baixo consumo de reagentes para a obtenção destes concentrados finais. Em rotas convencionais, o uso de ácidos graxos para a flotação direta de minério de ferro é caracterizada pelo emprego de dosagens significativas, normalmente superiores a 500 g/t. Neste trabalho, a dosagem do coletor misto adotada foi cinco vezes menor. Esta redução da dosagem acarreta diminuição dos custos do processo de flotação, tornando este reprocessamento um processo menos oneroso.

9 SUGESTÕES PARA TRABALHOS FUTUROS

O desenvolvimento dos testes realizados deixaram algumas lacunas que não foram respondidas de forma clara neste estudo, e que necessitam de análises posteriores para a melhor compreensão do tema sob investigação.

Sugere-se que sejam realizados estudos para a avaliação dos impactos da amina adsorvida na superfície do quartzo no processo de flotação catiônica reversa, na flotação direta do rejeito de minério de ferro. E, em um segundo momento, a proposição de uma rota industrial para promover a dessorção da amina adsorvida na superfície do quartzo, de modo que a rota de processamento do rejeito de minério de ferro proposta neste estudo tenha sucesso.

Outra sugestão está na análise do uso da separação magnética como uma etapa *scavenger*, visto que os testes de separação magnética promoveram um ligeiro acréscimo no teor de Fe, mas sem perder a seletividade, ao contrário dos testes de flotação *scavenger* realizados neste estudo, onde o teor final de Fe obtido foi significativamente inferior aos testes realizados sem a etapa *scavenger*.

Também é recomendável que sejam realizados estudos de caracterização do coletor misto formado entre DDA e o sulfosuccinamato Aero[®] 845 Promoter, para compreender os motivos pelos quais este coletor misto em específico apresentou um desempenho superior aos demais coletores mistos analisados neste trabalho.

Outra possibilidade de trabalho futuro se encontra no estudo da combinação entre o ácido graxo AGEM e o sulfosuccinamato Aero[®] 845 Promoter, e avaliar o tempo de condicionamento da flotação desta mistura, tendo em vista a cinética lenta de flotação dos sulfosuccinamatos.

E, finalmente, propor estudos detalhados com o uso de coletores mistos em células pneumáticas, para compreender o mecanismo de atuação destes coletores neste tipo de equipamento, bem como propor melhorias na recuperação de partículas mais finas e também de partículas mais grossas.

10 REFERÊNCIAS BIBLIOGRÁFICAS

ALBUQUERQUE, R.O., RUIZ, M.C.T., OLIVEIRA LUZ, A.F. *Relatório RC-EC4-04/2007,* CDTN/CNEN, 2007, 68p.

ALBUQUERQUE, R.O. Alternativas de processo para concentração do minério fósforouranífero de Itataia. Belo Horizonte, Escola de Engenharia da UFMG, 2010, 214p. (Tese, Doutorado, Tecnologia Mineral).

ALECRIM, J.D. Recursos Minerais do Estado de Minas Gerais. Belo Horizonte: Metaning, 1982. 297 p.

ARAÚJO, A. C., PERES, A. E. C. Froth flotation: relevant facts and the Brazilian case. Rio de Janeiro: CETEM/CNPq, 1995. (Tecnologia Mineral, 70).

ARAÚJO, A.C.; PERES, A.E.C. *A flotação como operação unitária no Tratamento de Minérios*. In: CHAVES, A.P. Teoria e Prática do Tratamento de Minérios: A Flotação no Brasil.
3 ed. São Paulo, Oficina de Textos, 2013. Capítulo 01, p. 9-39.

ASSIS, S. M., MONTENEGRO, L. C. M., PERES, A. E. C. Utilization of hydroxamates in minerals froth flotation. Minerals Engineering, v.9, nº1, p.103-114, 1996.

AZEVEDO, V. Preço do Minério de ferro se afasta das mínimas em 12 meses, mas segue sem gatilho claro de retomada. InfoMoney, São Paulo – SP. 20/09/2022. Disponível em: <u>https://www.infomoney.com.br/mercados/preco-minerio-de-ferro-afasta-minimas-ano-mas-</u>sem-gatilho-alta/. Acesso em 22/09/2022.

BALTAR, C. A. M., ARAÚJO. J. M. M., CUNHA, A. S. F. *Estudo das condições para dessorção e reutilização de coletor na flotação de quartzo*. In: Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, XIX, 2002. Recife. Vol. I, p.241-246.

BALTAR, C.A.M. Flotação: em nova abordagem. Recife – PE, Editora UFPE, 2021, 537p.

BRADSHAW, D.J.; HARRIS, P.J.; O'CONNOR, C.T. *Synergistic interactions between reagents in sulphide flotation*. The Journal of The South African Institute of Mining and Metallurgy. 1998. p.189-94.

BRANDÃO, P. R. G. *A seletividade na flotação reversa de minério de ferro: adsorção dos reagentes*. In: XII Encontro Nacional de Tratamento de Minérios e Hidrometalurgia. Natal (RN), Novembro, p.22-33, 2005.

BRANDÃO, P.R.G. *Notas de aula da disciplina "Agregação/Dispersão"*. Belo Horizonte: Universidade Federal de Minas Gerais, 2016.

BRASIL. Agência Nacional de Mineração. Anuário Mineral Brasileiro: principais substâncias metálicas / Agência Nacional de Mineração; Coordenação Técnica de Marina Dalla Costa. –
Brasília: ANM, 23p., 2021.

CAMPOS, L.J.F. SILVA, P.H., MAZZINGHY, D.B., TAVARES, L.M., CAMPOS, P.H.A., GALERY, R. *O índice de Trabalho de Bond para Moagem de Bolas (BWI) é uma Variável Aditiva?* IN: Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, 28, 2019, Belo Horizonte – MG.

CAMPOS, L.J.F. GALERY, R. Uso de coletor misto formado entre dodecilamina e reagente a base de ácidos graxos na flotação de um minério de manganês de baixo teor. IN: Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, 29, 2022, Armação dos Búzios – RJ.

CELIK, M.S., CAN, I., EREN, R.H. Removal of titanium impurities from feldspar ores by new flotation collectors. Minerals Engineering, v. 11, p. 1201-1208, 1998.

DOBBY, G.S.; FINCH, J.A. *Mixing characteristics of industrial flotation columns*. Chemical Engineering Science, 40 (7), 1985, p. 1061-8.

FERREIRA, P.H.T. Flotação de Minério de Zinco Oxidado com Oleato de Sódio e Amina. Ouro Preto – MG. Escola de Minas da UFOP. 2018 (Dissertação, Mestrado, Engenharia Mineral)

FILLIPOV, L.O., SEVEROV, V.V., FILLIPPOVA, I.V., *An overview of the beneficiation of iron ores via reverse cationic flotation*. International Journal of Mineral Processing, vol 127, pp. 62-69. 2014.

FINCH, J. A.; DOBBY, G. S. Column Flotation., Oxford, Pergamon Press, 1990. 180 p.

FUERSTENAU, D.W., HERRERA-URBINA, R., MCGLASHAN, D.W. Studies on the applicability of chealing agents as universal collectors for copper minerals. International Journal of Mineral Processing, v.58, p. 15-33, 2000.

FUERSTENAU, M.C. *Flotation – A.M. Gaudin Memorial Volume*. American Institute of Mining, Metallurgical and Petroleum Engineers, Inc. New York, v.1, 1976, p. 148-96.

GIBSON, E.E., KELEBEL, S. AGHAMIRIAN, M. *Niobium oxide mineral flotation: A review of relevant literature and the current state of industrial operations*. International Journal of Mineral Processing. v.137, p. 82-97, 2015.

GUNSTONE, F. D. The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses. USA: CRC Press, 307p. 2004.

HADZERIGA, P., GIANNINI, R. A. *Amidos como reagente na indústria mineral - pequena revisão*. IN: Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, 13, 1988, São Paulo, APEMI, p. 1031-1045, 1988.

HANSON, J.S., FUERSTENAU, D.W. *The electrochemistry and flotation behavior of chalcocite and mixed oxide/sulfide ores*. International Journal of Mineral Processing. v. 33, p. 33-47, 1991.

HARBORT, G., CLARKE, D. Fluctuations in the popularity and usage of flotation columns – An overview. Minerals Engineering, 100, 2017, p. 17-30

HARRIS, C.C. *Flotation Machines*. In: FUESTENAU, M.C. *Flotation*. A.M. Gaudin Memorial Volume. New York, 1976. v.2, cap.27, p. 753-815

HOPE, G.A., BUCKLEY, A.N. PARKER, G.K. NUMPRASANTHAI, A. WOODS, R., MCLEAN, J. *The interaction of n-octanohydroxamate with chrysocolla and oxide copper surfaces*. Minerals Engineering. v. 36-38, p. 2-11, 2012.

INDEX MUNDI. Minério de ferro Preço Mensal - Dólares americanos por tonelada métricaseca.Disponívelemhttps://www.indexmundi.com/pt/pre%E70s-de-mercado/?mercadoria=min%C3%A9rio-de-ferro&meses=120. Acesso em 22/09/2022.

JESUS, C.A.G., JOAQUIM, L.G. *Sumário Mineral Brasileiro 2018 - Ferro*. Departamento Nacional de Produção Mineral, 2019.

JOSÉ, F.S., BROD, E.R., PEREIRA, C.A. *Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant.* REM: Int. Eng. J. Ouro Preto – MG, 71 (2), 2018, p. 299-304.

LEE, K., ARCHIBALD, D., MCLEAN, J., REUTER, M.A. *Flotation of mixed copper oxides and sulphide minerals with xanthate and hydroxamate collectors*. Minerals Engineering. v. 22, p. 395-401, 2009.

LEJA, J. Surface Chemistry of Froth Flotation. New York: Plenum Press, Cap. 1, 2 e 6, 1982.

LI, M.; LIU,Z.; WANG, B.; TENG,X. JIANG, H. Selective flotation separation of fluorite from calcite using mixed anionic/cationic collectors. Minerals Engineering. v.178, 107423. 2022.

LOBATO, M.B. *Emulsificação de coletor para a flotação de grafita*. Belo Horizonte – MG: Escola de Engenharia da UFMG. 2020. 87p. (Dissertação, Mestrado, Tecnologia Mineral).

LOPES, G.M. *Flotação Direta de Minério de Ferro*. Ouro Preto – MG. Escola de Minas da UFOP, 2009 (Dissertação, Mestrado, Tratamento de Minérios e Resíduos).

LUZ, A.B.; FRANÇA, S.C.A.; BRAGA, P.F.A. *Tratamento de Minérios*. 6 ed. Rio de Janeiro – RJ, CETEM/MCT, 2018, 984p.

LUZ, J. A. M. *Flotação aniônica de rejeito itabirítico: estudo de reagentes alternativos e modelamento polifásico do processo.* Belo Horizonte (MG). Escola de Engenharia da UFMG. 1996. (Tese, Doutorado, Tecnologia Mineral).

MAPA, P. S. Rota de processo para o underflow da deslamagem de minério de ferro do concentrador da Samarco Mineração S.A. Belo Horizonte: Escola de Engenharia da UFMG, 2006. 172p. (Dissertação, Mestrado, Tecnologia Mineral)

MARABINI, A.M., BARBARO, M. PASSARIELLO, B. *Flotation of cerussite with a synthetic chelating collector*. International Journal of Mineral Processing. v.25, p. 29-40, 1989.

MARANGON, M. Notas de Aula – Elementos sobre a Terra e Crosta Terrestre. Juiz de Fora – MG: Universidade Federal de Juiz de Fora, 2009.

MARTINS, M., LIMA, N. P., LEAL FILHO, L. S. *Depressão de minerais de ferro: influência da mineralogia, morfologia e pH de condicionamento*. Revista Escola de Minas, Ouro Preto – MG, v.65, nº 3, p. 393-399, 2012.

NAGARAJ, D.R. *The chemistry and application of chelating or complexing agents in mineral separation*. In: SOMASUNDARAN, P., MOUDGIL, B.M. (Eds.), *Reagents in Mineral Technology*, New York, Marcel Dekker, 1987.

NATARAJAN, R., FUERSTENAU, D.W. Adsorption and flotation behavior of manganese dioxide in the presence of octyl hydroxamate. International Journal of Mineral Processing. v. 11, p. 139-153, 1983.

NATARAJAM, R. NIRDOSH, I. *New collectors for sphalerite flotation*. International Journal of Mineral Processing. v. 79, p. 141-148, 2006.

NASCIMENTO, D.R. *Flotação Aniônica de Minério de Ferro*. Ouro Preto – MG. Escola de Minas da UFOP, 2010 (Dissertação, Mestrado, Tratamento de Minérios).

NEDER, E.E; LEAL FILHO, L.S. *O uso de aminas graxas e seus derivados na flotação de minérios brasileiros*. HOLOS, v. 1, p. 53-75, 2006.

NEWCOMBE, B. Comparison of flash and column flotation performance in an industrial sulphide rougher application. Minerals Engineering, 96-97, 2016, p. 203-14.

NI, X., PARRENT, M., CAO, M., HUANG, L., BOUAJILA, A., LIU, Q. Developing flotation reagents for niobium oxide recovery from carbonatite Nb ores. Minerals Engineering, v. 36-38, p. 111-118, 2012.

NUNES, A.P.L. *Flotação de Fosfatos Presentes em Minérios de Ferro Brasileiros*. Belo Horizonte, Escola de Engenharia da UFMG, 2009, 184p. (Dissertação, Mestrado, Tecnologia Mineral).

OLIVEIRA, M.F.M. *Poliacrilamidas na flotação catiônica reversa de minério de ferro*. Belo Horizonte, Escola de Engenharia da UFMG, 2016, 70p. (Dissertação, Mestrado, Tecnologia Mineral).

OLIVEIRA, M.S. *Minério fosfático sílico-carbonatado: estudo fundamental.* Belo Horizonte, Escola de Engenharia da UFMG, 2007, 207 p. (Tese, Doutorado, Engenharia Metalúrgica e Minas).

PARKER, G.K., BUCKLEY, A.N., WOODS, R., HOPE, G.A. *The interaction of n-octanohydroxamate with sulfide minerals*. Minerals Engineering, v. 36–38, p. 81-90, 2012

PERES, A. E. C. Apostila de Flotação. Belo Horizonte, Escola de Engenharia da UFMG, 2016.

PERES, A. E. C.; ARAUJO, A. C.; PINTO, C. L. L. The effect of starch, amylase, amylopectin and glucose monomer and their effect on flotation of hematite and quartz. Minerals Engineering. Amsterdam, v. 16, p. 1117-1122, 1992.

RAGHAVAN, S., FUERSTENAU, D.W. *The adsorption of aqueous octylhydroxamate on ferric oxide*. Journal of Colloid and Interface Science, v. 50, p. 319-330, 1975.

RAMACHANDRAN, P., SOMASUNDARAN, R. *Effect of Temperature on the Interfacial Properties of Silicates*. Colloids and Surfaces, v.21, p. 355-369, 1986.

RAO, S.R. *Surface Chemistry of Froth Flotation*. 2.ed. New York, Kluwer Academic/Plenum Publishers, 744 p., 2004.

RASO, E.R. *Rota de processo para concentração de minério de ferro dolomítico, da mina de Conceição – MG*. Belo Horizonte – MG: Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). 2018. 187p. (Tese, Doutorado, Ciência e Tecnologia dos Minerais).

REIS, O. B. Estudo preliminar sobre reciclagem das aminas utilizadas em flotação de minério de ferro. Ouro Preto – MG: Escola de Minas da UFOP. 2004. (Dissertação, Mestrado, Engenharia Ambiental).

ROSE, A.; ROSE, E. *The condensed chemical dictionary*. 5.ed. New York: Reinhold Publishing Company, 1957.

RUBINSTEIN, J.B. Column Flotation – Processes, Designs and Practices. Moscow: Gordon and Breach Science Publishers, 1995. 296 p.

SAMPAIO, J. A., LUZ, A. B., LINS, F. F. Usinas de beneficiamento de minérios do Brasil. Rio de Janeiro (RJ), CETEM/MCT, 398 p., 2001

SANTOS, R.H. *Flotação de Minério de Ferro*. Belo Horizonte – MG: Escola de Engenharia da UFMG, 2009 (Monografia, Especialização, Tecnologia Mineral).

SCHNELLRATH, J. CORREIA, J.C.G., GUIMARÃES, R.C., TEIXEIRA, S.H.A. Fosfato – Serrana/ Mina de Araxá. IN: SAMPAIO, J.A. LUZ, A.B., LINS, F.A.F. (Ed.) Usinas de Beneficiamento de Minérios no Brasil. Rio de Janeiro – RJ. CETEM/MCT. 2001, p. 347-57. SCHENA, G., CASALI, A. Column flotation circuits in Chilean copper concentrators. Minerals Engineering, 7 (12), 1994, p. 1473-86.

SILVA, A.Q.N. Modelagem da Relação Teor/Recuperação da Célula de Flotação Pneumática. Belo Horizonte, Escola de Engenharia da UFMG, 2015, 134p. (Dissertação, Mestrado, Tecnologia Mineral).

SILVA, E.R. Avaliação Técnica e Econômica Sobre a Aplicação de Colunas de Flotação para Aumento da Recuperação Metalúrgica da Flotação Catiônica Reversa de Minério de Ferro do Sistema Minas-Rio. Belo Horizonte, Escola de Engenharia da UFMG, 2016, 121p. (Dissertação, Mestrado, Tecnologia Mineral)

THOMAS, D. J., ATWELL, W. Practical for guides the food industry – Starch. Saint Paul, Eagan Press, 94p, 1999.

VALADÃO, G.E.S., ARAÚJO A.C. *Introdução ao Tratamento de Minérios*. Belo Horizonte-MG, Editora UFMG, 2007, 234p.

VALADÃO, G.E.S. *Notas de aula da disciplina "Tratamento de Minérios"*. Belo Horizonte: Universidade Federal de Minas Gerais, 2016.

VIDYADHAR, A., KUMARI, N., BHAGAT, R.P. *Adsorption mechanism of mixed collector system on hematite flotation*. Minerals Engineering, v. 28, p. 102-104, 2012.

WANG, J., GAO, Z., GAO, Y., HU, Y., SUN, W. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Minerals Engineering, v.98, p. 261-263, 2016 (c).

WANG, L., HU, G., SUN,W. KHOSO, S.A., LIU, R., ZHANG, X. Selective flotation of smithsonite from dolomite by using novel mixed collector system. Transactions of Nonferrous Metals Society of China. v.29, p. 1082-1089, 2019.

WANG, L., LIU, R., HU, Y., LIU, J., SUN, W. Adsorption behavior of mixed cationic/anionic surfactants and their depression mechanism on the flotation of quartz. Powder Technology. v.302, p. 15-20, 2016 (a).

WANG, L., LIU, R., HU, Y., SUN,W. Adsorption of mixed DDA/NaOL surfactants at the air/water interface by molecular dynamics simulations. Chemical Engineering Science. v.155, p. 167-174. 2016 (b).

WANG, L., SUN, W., HU, Y., XU, L. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite – Quartz flotation system. Minerals Engineering. v.64, p. 44-50, 2014.

WU, X.Q., ZHU, J.G. Selective flotation of cassiterite with benzohydroxamic acid. Minerals Engineering. v. 19, p. 1410-1417, 2006.

XU, L., HU, Y., TIAN, J., WU, H., WANG, L., YANG, Y., WANG, Z. Synergistic effect of mixed cationic/anionic collectors on flotation and adsorption of muscovite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. v.492, p. 181-189. 2016.

YANG, D.C. *Reagents in Iron Ore Processing*. In: SOMASUNDARAM, P., MOUDGIL, B.M.; ed. Reagents in Mineral Technology. Surfactant Science Series, New York, Marcel Dekker, 1988, v.27, p. 579-640.

YOON, R.H., NAGARAJ, D.R., WANG, S.S., HILDEBRAND, T.M. *Beneficiation of kaolin clay by froth flotation using hydroxamate collectors*. Minerals Engineering. v. 5, p. 457-467, 1992.

ZHANG, J., YANG, C., NIU, F., GAO, S. Molecular dynamics study on selective flotation of hematite with sodium oleate collector and starch-acrylamide flocculant. Applied Surface Science, 2022; v. 592, 153208.

ZHOU, F., YAN, C., WANG, H., SUN, Q., WANG, Q., ALSHAMERI, A. *Flotation behavior of four C18 hydroxamic acids as collectors of rhodochrosite*. Minerals Engineering, 2015, v. 78, p. 15-20.

11 APÊNDICE

11.1 Análise Granulométrica

Massa Alimenta	ição (g) 365,	,1						
					Peneirame	nto		
	Corte a úmido	Tamanho (µm)	Massa (g)	Massa Corrigida (g)	% Retida	% Ret. Acumul.	% Passante	
Tamanho	Massa (g) Massa	a Corrigida (g)	600	0,60	0,61	0,17	0,17	99,83
>38µm	313,10	313,10	425	1,60	1,62	0,44	0,61	99,39
<38µm	52,00	52,00	300	4,80	4,85	1,33	1,94	98,06
TOTAL	365,10	365,10	212	29,90	30,22	8,28	10,21	89,79
			150	49,50	50,03	13,70	23,92	76,08
			106	107,80	108,95	29,84	53,76	46,24
			75	48,70	49,22	13,48	67,24	32,76
			53	47,30	47,80	13,09	80,33	19,67
			45	11,30	11,42	3,13	83,46	16,54
			0	8,30	60,39	16,54	100,00	0,00
			TOTAL	309,8				

Anexo 1: Análise Granulométrica por peneiramento

Anexo 2: Resultados obtidos no Cyclosizer

Cialana	Tamanha Taáriaa	Tamanha mal-		Massa		0/ Datida	0/ Dot Agum	%Passante
Cicione	Tamanno Teorico	Tamanno real	Filtro	Filtro+Amostra	Amostra	70 Netiua	70 Net.Acuil.	
1	42,70	36,91	3,834	14,527	10,693	20,84	20,84	79,16
2	30,50	26,36	3,762	27,28	23,518	45,84	66,69	33,31
3	22,10	19,10	3,803	13,931	10,128	19,74	86,43	13,57
4	15,00	12,97	3,781	6,993	3,212	6,26	92,69	7,31
5	12,00	10,37	3,776	4,998	1,222	2,38	95,07	4,93
OF					2,527	4,93	100,00	0,00

11.2 Picnometria – Amostra Cabeça

Anexo 3: Resultado da picnometria

Teste realizado em Picnometro em triplicata									
Teste	Massa Pic Vazio	Massa Pic.+Min	Massa Pic+Min+	Massa Pic+Agua Min (g)		Vol Pic (mL)	Massa Agua (g)	Vol Min (cm ³)	Densidade (g/cm³)
	(g)	(g)	Agua (g)	(g)		. ,	0 (0)	()	(ð)
1	26,436	70,710	111,454	82,629	44,274	56,193	40,744	15,449	2,866
2	40,280	85,415	125,275	96,054	45,135	55,774	39,860	15,914	2,836
3	24,823	68,277	108,954	80,754	43,454	55,931	40,677	15,254	2,849
Média	30,513	74,801	115,228	86,479	44,288	55,966	40,427	15,539	2,850
							Desv	vio Padrão	0,015

11.3 Cromatografia Gasosa

Anexo 4: Cromatograma obtido para o reagente AGEM

11.4 Microscopia Óptica

Índiaa -	Número de Partículas					
Indice	Hematita	Quartzo				
0	137	7				
5	14	0				
10	6	2				
15	0	0				
20	5	2				
25	0	2				
30	4	0				
35	0	0				
40	3	1				
45	0	0				
50	4	4				
55	0	0				
60	1	3				
65	0	0				
70	0	4				
75	2	0				
80	2	5				
85	0	0				
90	2	6				
95	0	14				
100	7	137				
TOTAL	187	187				
G.L. (%)	36,46	81,64				

Anexo 5: Índices determinados para a classe [150-106]µm
Índiaa	Número de Partículas					
mulce	Hematita	Quartzo				
0	273	44				
5	36	1				
10	14 3					
15	1 0					
20	11	3				
25	0	2				
30	2	0				
35	0	0				
40	1	2				
45	0	0				
50	5	5				
55	0	0				
60	2	1				
65	0	0				
70	0	2				
75	2	0				
80	3	11				
85	0	1				
90	3	14				
95	1	36				
100	44	273				
TOTAL	398	398				
G.L. (%)	71,20	81,20				

Anexo 6: Índices determinados para a classe [106-75]µm

Índiae	Número de Partícul					
Indice	Hematita	Quartzo				
0	305	32				
5	33	1				
10	20	3				
15	5	3				
20	5	4				
25	1	1				
30	2	0				
35	0	0				
40	3	4				
45	0	0				
50	1	1				
55	0	0				
60	4	3				
65	0	0				
70	0	2				
75	1	1				
80	4	5				
85	3	5				
90	3	20				
95	1	33				
100	32	305				
TOTAL	423	423				
G.L. (%)	60,95	82,32				

Anexo 7: Índices determinados para a classe [75-53]µm

ŕ r	Número de Partícu Hematita Qu 611 18 13 8 10 1 2 2 1 0 6 0 1 0 1 1	Partículas
Indice —	Hematita	Quartzo
0	611	226
5	18	0
10	13	1
15	8	1
20	10	1
25	1	0
30	2	1
35	2	0
40	1	1
45	0	0
50	6	6
55	0	0
60	1	1
65	0	2
70	1	2
75	0	1
80	1	10
85	1	8
90	1	13
95	0	18
100	226	611
TOTAL	903	903
G.L. (%)	94,09	92,18

Anexo 8: Índices determinados para a classe [53-38]µm

11.5 Flotação em Bancada – Etapa 01

Identificação do Teste	T01					
Amostra	Cabeça					
Condições do Teste – Etapa <i>Rougher</i>						
Coletor usado	DDA					
Dosagem do coletor (g/t)	100					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa <i>Scavenger</i>						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor						
Condições do Teste – Etapa	Cleaner					
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)						
рН	7,32					

Anexo 9: Dados do teste T01

Balanço de Massa			Balanco Metalúrgico					
Eta	apa Roughe	r			Dalanço	sicular gico	,	
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	683,80	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	659,60	96,46%	10,76	84,29	0,16	#VALOR!	#VALOR!	0,32
Afundado	24,20	3,54%	22,90	65,00	0,65	0,03	0,02	1,56
RECUPERA ETA	ÇÃO META PA ROUGH	ALÚRGICA IER	⁴ 96,06% 96,91% 122,11% #VALOR! #VALOR! 8					81,01%
Et	apa Cleane	r			Balanço I	Metalúrgico)	
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	659,60	100,00%	10,76	84,29	0,16	#VALOR!	#VALOR!	0,32
Flotado	629,57	95,45%	10,30	85,00	0,15	<0,008	<0,005	0,28
Afundado	30,03	4,55%	20,30	69,50	0,47	0,02	0,01	1,14
RECUPERA ETA	ÇÃO META PA CLEAN	ALÚRGICA ER	91,41%	96,25%	87,00%	#VALOR!	#VALOR!	83,74%
	Global				Balanço I	Metalúrgico)	
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	683,80	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	629,57	92,07%	10,30	85,00	0,15	<0,008	<0,005	0,28
Afundado	54,23	7,93%	21,46	67,49	0,55	0,02	0,01	1,33
RECUPERA	ÇÃO META GLOBAL	ALÚRGICA	87,81%	93,28%	106,23%	#VALOR!	#VALOR!	67,84%

Identificação do Teste	T02				
Amostra	Cabeça				
Condições do Teste – Etapa <i>Rougher</i>					
Coletor usado	AGEM				
Dosagem do coletor (g/t)	100				
Depressor usado	Silicato de Sódio				
Dosagem do depressor	500				
Condições do Teste – Etap	a Scavenger				
Coletor usado	-				
Dosagem do coletor (g/t)	-				
Depressor usado	-				
Dosagem do depressor	-				
<u> </u>	pa <i>Cleaner</i>				
Coletor usado	Sem adição				
Dosagem do coletor (g/t)	-				
Depressor usado	Sem adição				
Dosagem do depressor (g/t)	-				
рН	7,40				

Anexo 10: Dados do teste T02

Balanç	o de Massa		Balanco Metalúrgico					
Etapa	Rougher				Daranço M	ictarur greo		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	682,60	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	75,28	11,03%	42,56	38,03	0,27	0,04	0,01	0,91
Afundado	607,32	88,97%	6,86	89,59	0,11	0,01	#VALOR!	0,31
RECUPERAÇÃO METAL	ÚRGICA ETAPA	ROUGHER	43,46% 5,00% 22,85% 40,55% #VALOR! 2				26,49%	
Etapa Cleaner					Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	75,28	100,00%	42,56	38,03	0,27	0,04	0,01	0,91
Flotado	24,32	32,31%	55,33	19,46	0,31	0,03	0,01	0,96
Afundado	50,95	67,69%	36,47	46,90	0,25	0,04	0,01	0,89
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	42,01%	16,53%	37,19%	26,37%	32,31%	33,99%
0	Jobal				Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	682,60	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	24,32	3,56%	55,33	19,46	0,31	0,03	0,01	0,96
Afundado	658,28	96,44%	9,15	86,28	0,12	0,01	#VALOR!	0,36
RECUPERAÇÃO MI	ETALÚRGICA G	LOBAL	18,26%	0,83%	8,50%	10,69%	#VALOR!	9,00%

Identificação do Teste	T02a				
Amostra	Cabeça				
Condições do Teste – E	tapa <i>Rougher</i>				
Coletor usado	AGEM				
Dosagem do coletor (g/t)	500				
Depressor usado	Silicato de Sódio				
Dosagem do depressor	500				
Condições do Teste – Etapa <i>Scavenger</i>					
Coletor usado	-				
Dosagem do coletor (g/t)	-				
Depressor usado	-				
Dosagem do depressor	-				
Condições do Teste – I	Etapa <i>Cleaner</i>				
Coletor usado	Sem adição				
Dosagem do coletor (g/t)	-				
Depressor usado	Sem adição				
Dosagem do depressor (g/t)	-				
рН	7,45				

Anexo 11: Dados do teste T02a

Balanço de Massa					Ralanco N	letalúrgico		
Etapa	Rougher				Dalanço iv	kunui 5100		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	680,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	181,74	26,73%	21,90	66,14	0,23	#VALOR!	0,01	0,59
Afundado	498,26	73,27%	6,44	89,20	0,14	<0,008	<0,005	0,38
RECUPERAÇÃO METAL	ÚRGICA ETAPA	A ROUGHER	4 54,20% 21,07% 48,17% #VALOR! #VALOR! 41				41,75%	
Etapa Cleaner					Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	P2O5	SiO2	Al2O3	Fe2O3	CaO	LOI
Alimentação	181,74	100,00%	21,90	66,14	0,23	#VALOR!	0,01	0,59
Flotado	116,71	64,22%	27,70	57,80	0,22	<0,008	0,01	0,59
Afundado	65,03	35,78%	11,50	81,10	0,26	<0,008	0,01	0,60
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	81,21%	56,12%	60,30%	#VALOR!	70,53%	63,83%
0	Hobal				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	P2O5	SiO2	Al2O3	Fe2O3	CaO	LOI
Alimentação	680,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	116,71	17,16%	27,70	57,80	0,22	<0,008	0,01	0,59
Afundado	563,29	82,84%	7,02	88,26	0,15	#VALOR!	#VALOR!	0,41
RECUPERAÇÃO MI	ETALÚR <mark>GICA</mark> G	LOBAL	44,02%	11,82%	29,05%	#VALOR!	#VALOR!	26,65%

Identificação do Teste	Т03				
Amostra	Cabeça				
Condições do Teste – Etapa <i>Rougher</i>					
Coletor usado	Mix 1:1				
Dosagem do coletor (g/t)	100				
Depressor usado	Silicato de Sódio				
Dosagem do depressor	500				
Condições do Teste – Etapa <i>Scavenger</i>					
Coletor usado	-				
Dosagem do coletor (g/t)	-				
Depressor usado	-				
Dosagem do depressor	-				
Condições do Teste – Etapa	Cleaner				
Coletor usado	Sem adição				
Dosagem do coletor (g/t)	-				
Depressor usado	Sem adição				
Dosagem do depressor (g/t)	-				
рН	7,47				

11.6 Flotação em Bancada – Etapa 02

Anexo 1	2: Dados	do teste T03
---------	----------	--------------

Bala	Balanço de Massa			Balanço Metalúrgico				
Eta	apa Roughe	r			20000		•	
Fluxo	Massa (g)	Massa (%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	LOI
Alimentação	683,10	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	250,03	36,60%	22,17	66,71	0,32	#VALOR!	#VALOR!	0,35
Afundado	433,07	63,40%	7,76	89,30	0,12	<0,008	<0,005	0,35
RECUPERA ETA	ÇÃO META PA ROUGH	ALÚRGICA IER	* 75,14% 29,10% 88,84% #VALOR! #VALOR				#VALOR!	33,65%
Et			Balanço	Metalúrgic	0			
Fluxo	Massa (g)	Massa (%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	LOI
Alimentação	250,03	100,00%	22,17	66,71	0,32	#VALOR!	#VALOR!	0,35
Flotado	158,82	63,52%	22,90	65,10	0,29	<0,008	<0,005	0,28
Afundado	91,21	36,48%	20,90	69,50	0,36	<0,008	0,01	0,47
RECUPERA ETA	ÇÃO META PA CLEAN	ALÚRGICA IER	65,61%	61,99%	58,38%	#VALOR!	#VALOR!	50,92%
	Global				Balanço	Metalúrgic	0	
Fluxo	Massa (g)	Massa (%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	LOI
Alimentação	683,10	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	158,82	23,25%	22,90	65,10	0,29	<0,008	<0,005	0,28
Afundado	524,28	76,75%	10,05	85,86	0,16	#VALOR!	#VALOR!	0,37
RECUPERA	ÇÃO META GLOBAL	ALÚRGICA	49,30%	18,04%	51,87%	#VALOR!	#VALOR!	17,13%

Identificação do Teste	T04					
Amostra	Cabeça					
Condições do Teste – Etapa <i>Rougher</i>						
Coletor usado	Mix 1:2					
Dosagem do coletor (g/t)	100					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa <i>Scavenger</i>						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Etapa <i>Cleaner</i>						
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,40					

AIICAU 15. Dauus uu iesie 10	Anexo	13:	Dados	do	teste	T0 4
------------------------------	-------	-----	-------	----	-------	-------------

Bala	anço de Mas	ssa	Balanco Metalúrgico					
Eta	apa Roughe	r			Daranço	ivic tarur gre	0	
Fluxo	Massa (g)	Massa (%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	LOI
Alimentação	682,10	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	140,07	20,53%	23,05	66,09	0,30	#VALOR!	#VALOR!	0,50
Afundado	542,03	79,47%	7,71	87,00	0,12	<0,008	<0,005	0,52
RECUPERA ETA	ÇÃO META PA ROUGI	ALÚRGICA IER	43,82%	16,18%	48,14%	#VALOR!	#VALOR!	26,94%
Etapa Cleaner					Balanço	Metalúrgic	0	
Fluxo	Massa (g)	Massa (%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	LOI
Alimentação	140,07	100,00%	23,05	66,09	0,30	#VALOR!	#VALOR!	0,50
Flotado	73,34	52,36%	26,00	60,80	0,30	<0,008	<0,005	0,47
Afundado	66,73	47,64%	19,80	71,90	0,31	<0,008	0,01	0,53
RECUPERA ETA	ÇÃO META PA CLEAN	ALÚRGICA IER	59,07%	48,17%	51,54%	#VALOR!	#VALOR!	49,36%
	Global				Balanço	Metalúrgic	0	
Fluxo	Massa (g)	Massa (%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	LOI
Alimentação	682,10	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	73,34	10,75%	26,00	60,80	0,30	<0,008	<0,005	0,47
Afundado	608,76	89,25%	9,04	85,34	0,14	#VALOR!	#VALOR!	0,52
RECUPERA	ÇÃO META GLOBAL	ALÚRGICA	25,88%	7,79%	24,81%	#VALOR!	#VALOR!	13,30%

Identificação do Teste	T05					
Amostra	Cabeça					
Condições do Teste – Etapa <i>Rougher</i>						
Coletor usado	Mix 1:3					
Dosagem do coletor (g/t)	100					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa <i>Scavenger</i>						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Eta	pa <i>Cleaner</i>					
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,57					

Anexo 14: Dados do teste T05

Bala	anço de Mas	ssa	Balanco Metalúrgico					
Eta	apa Roughe	r			Datanço	victarui greo		
Fluxo	Massa (g)	Massa (%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	LOI
Alimentação	680,40	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	133,74	19,66%	27,23	60,40	0,26	#VALOR!	0,01	0,46
Afundado	546,66	80,34%	6,31	89,70	<0,1	<0,008	<0,005	0,30
RECUPERA ETA	ÇÃO META PA ROUGH	ALÚRGICA IER	49,56%	14,15%	39,31%	#VALOR!	#VALOR!	24,02%
Etapa Cleaner				Balanço Metalúrgico				
Fluxo	Massa (g)	Massa (%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	LOI
Alimentação	133,74	100,00%	27,23	60,40	0,26	#VALOR!	0,01	0,46
Flotado	68,12	50,93%	34,20	49,70	0,26	<0,008	0,01	0,43
Afundado	65,62	49,07%	20,00	71,50	0,26	<0,008	0,01	0,50
RECUPERA ETA	ÇÃO META PA CLEAN	ALÚRGICA ER	63,96%	41,91%	50,93%	#VALOR!	47,60%	47,17%
	Global		Balanço Metalúrgico					
Fluxo	Massa (g)	Massa (%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	LOI
Alimentação	680,40	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	68,12	10,01%	34,20	49,70	0,26	<0,008	0,01	0,43
Afundado	612,28	89,99%	7,78	87,75	#VALOR!	#VALOR!	#VALOR!	0,32
RECUPERA	ÇÃO META GLOBAL	ALÚRGICA	31,70%	5,93%	20,02%	#VALOR!	#VALOR!	11,33%

-

Identificação do Teste	T06					
Amostra	Cabeça					
Condições do Teste – Etapa <i>Rougher</i>						
Coletor usado	Mix 1:4					
Dosagem do coletor (g/t)	100					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa Scavenger						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Etapa <i>Cleaner</i>						
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,61					

Anexo 15: Dados	do	teste	T06
-----------------	----	-------	------------

Bala	anço de Mas	ssa	Balanco Metalúrgico					
Eta	apa Roughe	r			Dalançoı	victarul gr		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	681,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	126,78	18,62%	31,38	54,91	0,28	0,01	0,01	0,53
Afundado	554,22	81,38%	6,01	90,82	0,05	0,00	0,00	0,34
RECUPERA ETA	ÇÃO META PA ROUGH	ALÚRGICA IER	54,09%	12,18%	40,33%	16,35%	#VALOR!	25,86%
Etapa Cleaner					Balanço I	Metalúrgi	co	
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	126,78	100,00%	31,38	54,91	0,28	0,01	0,01	0,53
Flotado	70,87	55,90%	37,34	46,26	0,23	0,01	0,01	0,55
Afundado	55,91	44,10%	23,83	65,88	0,34	0,01	0,01	0,50
RECUPERA ETA	ÇÃO META PA CLEAN	ALÚRGICA IER	66,52%	47,09%	46,36%	54,83%	69,23%	57,88%
	Global		Balanço Metalúrgico					
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	681,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	70,87	10,41%	37,34	46,26	0,23	0,01	0,01	0,55
Afundado	610,13	89,59%	7,65	88,54	0,07	0,00	0,00	0,35
RECUPERA	ÇÃO META GLOBAL	ALÚRGICA	35,98%	5,74%	18,69%	8,97%	#VALOR!	14,97%

Identificação do Teste	T07					
Amostra	Cabeça					
Condições do Teste – Etapa <i>Rougher</i>						
Coletor usado	Mix 1:5					
Dosagem do coletor (g/t)	100					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa Scavenger						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Etapa <i>Cleaner</i>						
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,46					

Anexo 1	6: D	ados	do	teste	T07
---------	------	------	----	-------	-----

Bala	anço de Mas	ssa	Balanco Metalúroico					
Eta	apa Roughe	r			Daranço	i i i i i i i i i i i i i i i i i i i	0	
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	681,90	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	137,02	20,09%	38,17	43,66	0,40	0,01	0,01	0,74
Afundado	544,88	79,91%	6,90	88,50	0,13	<0,008	<0,005	0,25
RECUPERA ETA	ÇÃO META PA ROUGH	ALÚRGICA IER	71,02%	10,46%	61,42%	20,09%	#VALOR!	39,08%
Etapa Cleaner					Balanço	Metalúrgic	0	
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	137,02	100,00%	38,17	43,66	0,40	0,01	0,01	0,74
Flotado	55,51	40,51%	46,20	32,30	0,32	0,01	0,01	0,62
Afundado	81,51	59,49%	32,70	51,40	0,45	0,01	0,01	0,82
RECUPERA ETA	ÇÃO META PA CLEAN	ALÚRGICA IER	49,04%	29,97%	32,63%	40,51%	42,63%	33,99%
	Global				Balanço	Metalúrgic	0	
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	681,90	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	55,51	8,14%	46,20	32,30	0,32	0,01	0,01	0,62
Afundado	626,39	91,86%	10,26	83,67	0,17	#VALOR!	#VALOR!	0,32
RECUPERA	ÇÃO META GLOBAL	ALÚRGICA	34,82%	3,13%	20,04%	8,14%	#VALOR!	13,28%

Identificação do Teste	T08					
Amostra	Cabeça					
Condições do Teste – Etapa <i>Rougher</i>						
Coletor usado	Mix 1:5					
Dosagem do coletor (g/t)	200					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa Scavenger						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Etapa <i>Cleaner</i>						
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,46					

Anexo	17:	Dados	do	teste	T08
-------	-----	-------	----	-------	------------

Balanço de Massa					Ralanco I	Metalúrai	<u>.</u>		
Eta	apa Roughe	r			Dalalıçu I	victarur gr			
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI	
Alimentação	1360,60	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	306,41	22,52%	26,79	61,31	0,27	0,02	0,02	0,56	
Afundado	1054,19	77,48%	6,15	90,47	0,09	0,01	#VALOR!	0,33	
RECUPERA ETA	ÇÃO META PA ROUGH	ALÚRGICA IER	55,87%	16,46%	46,50%	48,44%	#VALOR!	32,96%	
Et	apa Cleane	r		Balanço Metalúrgico					
Fluxo	Massa (g)	Massa (%)	P2O5	SiO2	Al2O3	Fe2O3	CaO	LOI	
Alimentação	306,41	100,00%	26,79	61,31	0,27	0,02	0,02	0,56	
Flotado	207,21	67,63%	33,17	52,11	0,26	0,02	0,02	0,54	
Afundado	99,20	32,37%	13,48	80,52	0,28	0,02	0,02	0,59	
RECUPERA ETA	ÇÃO META PA CLEAN	ALÚRGICA ER	83,71%	57,48%	65,96%	76,50%	68,45%	65,66%	
	Global				Balanço I	Metalúrgi	co		
Fluxo	Massa (g)	Massa (%)	P2O5	SiO2	Al2O3	Fe2O3	CaO	LOI	
Alimentação	1360,60	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	207,21	15,23%	33,17	52,11	0,26	0,02	0,02	0,54	
Afundado	1153,39	84,77%	6,78	89,61	0,11	0,01	#VALOR!	0,35	
RECUPERA	ÇÃO META GLOBAL	ALÚRGICA	46,77%	9,46%	30,67%	37,05%	#VALOR!	21,64%	

Г

Afundado Rougher						
Tamanho Massa % %						
(µm)	(g)	Retido	Passante			
150	222,8	33,83	66,17			
106	242,2	36,77	29,40			
75	50,7	7,70	21,70			
53	59,4	9,02	12,68			
45	26,2	3,98	8,70			
0	57,3	8,70	0,00			

Anexo 18: Análise granulométrica do Afundado Rougher do teste T07

Anexo 19: Análise granulométrica do Afundado Cleaner do teste T07

A	Afundado Cleaner						
Tamanho (µm)	Massa (g)	% Retido	% Passante				
150	0,5	3,01	96,99				
106	1,0	6,02	90,96				
75	1,5	9,04	81,93				
53	2,2	13,25	68,67				
45	0,8	4,82	63,86				
0	10,6	63,86	0,00				

Anexo 20: Análise granulométrica do Flotado Cleaner do teste T07

Flotado <i>Cleaner</i>						
Tamanho (µm)	Massa (g)	% Retido	% Passante			
150	0,0	0,00	100,00			
106	0,1	1,54	98,46			
75	0,2	3,08	95,38			
53	1,0	15,38	80,00			
45	0,7	10,77	69,23			
0	4,5	69,23	0,00			

11.7 Flotação em Bancada – Etapa 03

Identificação do Teste	Т09				
Amostra	-150µm				
Condições do Teste – Etapa <i>Rougher</i>					
Coletor usado	Mix 1:5				
Dosagem do coletor (g/t)	100				
Depressor usado	Silicato de Sódio				
Dosagem do depressor	500				
Condições do Teste – Etapa Scavenger					
Coletor usado	-				
Dosagem do coletor (g/t)	-				
Depressor usado	-				
Dosagem do depressor	-				
Condições do Teste	e – Etapa <i>Cleaner</i>				
Coletor usado	Sem adição				
Dosagem do coletor (g/t)	-				
Depressor usado	Sem adição				
Dosagem do depressor (g/t)	-				
pH	7,46				

Anexo 21: Dados do teste T09

Balanç	o de Massa				Palanao N	lotolúngiao		
Etapa	Rougher				Daranço IV	letarur gico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1360,60	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	92,49	6,80%	55,70	19,66	0,50	0,02	0,02	0,49
Afundado	1268,11	93,20%	7,53	88,59	0,10	0,01	#VALOR!	0,37
RECUPERAÇÃO METAL	ÚRGICA ETAPA	A ROUGHER	29,32%	1,65%	#VALOR!	#VALOR!	#VALOR!	7,91%
Etapa	Cleaner				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	92,49	100,00%	55,70	19,66	0,50	0,02	0,02	0,49
Flotado	63,44	68,59%	64,04	7,93	0,40	0,02	0,02	0,30
Afundado	29,05	31,41%	37,49	45,26	0,71	0,04	0,02	0,89
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A CLEANER	78,86%	27,69%	55,01%	46,55%	67,61%	42,78%
0	Hobal				Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1360,60	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	63,44	4,66%	64,04	7,93	0,40	0,02	0,02	0,30
Afundado	1297,16	95,34%	8,20	87,62	0,12	0,01	#VALOR!	0,38
RECUPERAÇÃO MI	ETALÚRGICA G	LOBAL	23,13%	0,46%	#VALOR!	#VALOR!	#VALOR!	3,38%

11.8 Flotação em Bancada – Etapa 04

Identificação do Teste	T10					
Amostra	Cabeça					
Condições do Teste – Etapa <i>Rougher</i>						
Coletor usado	Mix 1:5					
Dosagem do coletor (g/t)	100					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa Scavenger						
Coletor usado	Mix 1:5					
Dosagem do coletor (g/t)	50					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	100					
Condições do Teste – E	tapa <i>Cleaner</i>					
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
pH	7,46					

Anexo 22: Dados do teste T10

Balanç	Balanço de Massa				Balanco N	latalúraiaa			
Etapa Rougl	her + Scavenger		Dinnişo Menini greo						
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI	
Alimentação	680,60	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	265,84	39,06%	18,23	72,79	0,53	0,01	0,01	0,44	
Afundado	414,76	60,94%	6,04	91,02	-0,12	0,01	#VALOR!	0,34	
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A ROUGHER	65,92%	33,88%	158,30%	42,96%	#VALOR!	45,65%	
Etapa	a Cleaner				Balanço N	Balanço Metalúrgico			
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI	
Alimentação	265,84	100,00%	18,23	72,79	0,53	0,01	0,01	0,44	
Flotado	172,01	64,70%	21,82	67,78	0,47	0,01	0,01	0,43	
Afundado	93,83	35,30%	11,64	81,97	0,64	0,01	0,02	0,47	
RECUPERAÇÃO METAI	LÚRGICA ETAP.	A CLEANER	77,46%	60,25%	57,29%	64,40%	61,69%	62,65%	
(Hobal				Balanço M	letalúrgico			
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI	
Alimentação	680,60	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	172,01	25,27%	21,82	67,78	0,47	0,01	0,01	0,43	
Afundado	508,59	74,73%	7,07	89,35	0,02	0,01	#VALOR!	0,36	
RECUPERAÇÃO METALÚRGICA GLOBAL			51,06%	20,42%	90,70%	27,66%	#VALOR!	28,60%	

Identificação do Teste	T11				
Amostra	Cabeça				
Condições do Teste – Etapa <i>Rougher</i>					
Coletor usado	Mix 1:5				
Dosagem do coletor (g/t)	100				
Depressor usado	Silicato de Sódio				
Dosagem do depressor	500				
Condições do Teste – Etapa <i>Scavenger</i>					
Coletor usado	Mix 1:5				
Dosagem do coletor (g/t)	50				
Depressor usado	Silicato de Sódio				
Dosagem do depressor	200				
Condições do Teste – Etapa	Cleaner				
Coletor usado	Sem adição				
Dosagem do coletor (g/t)	-				
Depressor usado	Sem adição				
Dosagem do depressor (g/t)	-				
рН	7,46				

Anexo 23: Dados do teste T11

Balanço de Massa					Balanco M	lotalúrgica		
Etapa Rough	ner + Scavenger		Duniyo neururgreo					
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	681,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	253,26	37,19%	19,81	70,69	0,52	0,01	0,01	0,47
Afundado	427,74	62,81%	5,46	91,72	-0,10	0,01	#VALOR!	0,33
RECUPERAÇÃO METAL	ÚRGICA ETAPA	A ROUGHER	68,22%	31,34%	148,63%	39,70%	#VALOR!	46,11%
Etapa	Etapa Cleaner				Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	253,26	100,00%	19,81	70,69	0,52	0,01	0,01	0,47
Flotado	158,75	62,68%	24,41	64,39	0,46	0,01	0,01	0,46
Afundado	94,51	37,32%	12,09	81,29	0,61	0,01	0,01	0,49
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	77,23%	57,09%	56,06%	59,13%	59,42%	61,19%
	Jobal				Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	681,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	158,75	23,31%	24,41	64,39	0,46	0,01	0,01	0,46
Afundado	522,25	76,69%	6,66	89,83	0,03	0,01	#VALOR!	0,36
RECUPERAÇÃO MI	ETALÚRGICA G	LOBAL	52,69%	17,89%	83,32%	23,48%	#VALOR!	28,22%

Identificação do Teste	T12				
Amostra	Cabeça				
Condições do Teste – Etapa <i>Rougher</i>					
Coletor usado	Mix 1:5				
Dosagem do coletor (g/t)	100				
Depressor usado	Silicato de Sódio				
Dosagem do depressor	500				
Condições do Teste – Etapa <i>Scavenger</i>					
Coletor usado	Mix 1:5				
Dosagem do coletor (g/t)	50				
Depressor usado	Silicato de Sódio				
Dosagem do depressor	300				
Condições do Teste – Eta	apa <i>Cleaner</i>				
Coletor usado	Sem adição				
Dosagem do coletor (g/t)	-				
Depressor usado	Sem adição				
Dosagem do depressor (g/t)	-				
рН	7,46				

Anexo 24: Dados do teste T12

Balanço de Massa Etapa Rougher + Scavenger			Balanço Metalúrgico					
Alimentação	680,30	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	250,28	36,79%	19,49	70,89	0,54	0,01	0,01	0,53
Afundado	430,02	63,21%	5,74	91,47	-0,11	0,01	#VALOR!	0,29
RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER			66,39%	31,09%	153,71%	43,69%	#VALOR!	51,70%
Etapa Cleaner					Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	250,28	100,00%	19,49	70,89	0,54	0,01	0,01	0,53
Flotado	170,40	68,08%	23,27	65,46	0,60	0,01	0,01	0,55
Afundado	79,88	31,92%	11,44	82,49	0,42	0,01	0,02	0,50
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	81,27%	62,86%	75,47%	63,50%	61,11%	70,12%
(Hobal				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	680,30	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	170,40	25,05%	23,27	65,46	0,60	0,01	0,01	0,55
Afundado	509,90	74,95%	6,63	90,06	-0,03	0,01	#VALOR!	0,32
RECUPERAÇÃO METALÚRGICA GLOBAL			53,96%	19,54%	116,00%	27,74%	#VALOR!	36,25%

Identificação do Teste	T13					
Amostra	Cabeça					
Condições do Teste – Etar	ba Rougher					
Coletor usado	Mix 1:5					
Dosagem do coletor (g/t)	100					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa Scavenger						
Coletor usado	Mix 1:5					
Dosagem do coletor (g/t)	50					
Depressor usado	Silicato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Eta	pa <i>Cleaner</i>					
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,46					

Anexo 25: Dados do teste T13

Balanço de Massa Etapa Rougher + Scavenger			Balanço Metalúrgico					
Alimentação	682,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	205,60	30,15%	23,10	65,92	0,59	0,01	0,01	0,37
Afundado	476,40	69,85%	5,49	91,66	-0,07	0,01	#VALOR!	0,38
RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER			64,47%	23,69%	136,01%	35,44%	#VALOR!	29,69%
Etapa Cleaner					Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	205,60	100,00%	23,10	65,92	0,59	0,01	0,01	0,37
Flotado	140,79	68,48%	25,70	62,17	0,49	0,01	0,02	0,39
Afundado	64,80	31,52%	17,44	74,06	0,79	0,01	0,01	0,34
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	76,21%	64,59%	57,34%	70,32%	70,73%	71,36%
	Hobal				Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	682,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	140,79	20,64%	25,70	62,17	0,49	0,01	0,02	0,39
Afundado	541,21	79,36%	6,92	89,55	0,04	0,01	#VALOR!	0,38
RECUPERAÇÃO METALÚRGICA GLOBAL			49,13%	15,30%	77,99%	24,92%	#VALOR!	21,19%

Identificação do Teste	T14						
Amostra	-150µm						
Condições do Teste – Etapa <i>Rougher</i>							
Coletor usado	Mix 1:5						
Dosagem do coletor (g/t)	100						
Depressor usado	Silicato de Sódio						
Dosagem do depressor	500						
Condições do Teste – Etapa	Scavenger						
Coletor usado	Mix 1:5						
Dosagem do coletor (g/t)	50						
Depressor usado	Silicato de Sódio						
Dosagem do depressor	100						
Condições do Teste – Etap	a <i>Cleaner</i>						
Coletor usado	Sem adição						
Dosagem do coletor (g/t)	-						
Depressor usado	Sem adição						
Dosagem do depressor (g/t)	-						
рН	7,46						

Anexo 26: Dados do teste T14

Balanço de Massa Etapa Rougher + Scavenger			Balanço Metalúrgico					
Alimentação	682,70	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	192,65	28,22%	28,65	57,90	0,52	0,01	0,01	0,33
Afundado	490,05	71,78%	6,72	90,38	#VALOR!	#VALOR!	#VALOR!	0,45
RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER			62,62%	20,12%	#VALOR!	#VALOR!	#VALOR!	22,36%
Etapa Cleaner					Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	192,65	100,00%	28,65	57,90	0,52	0,01	0,01	0,33
Flotado	117,55	61,02%	34,60	49,45	0,43	0,01	0,02	0,29
Afundado	75,10	38,98%	19,34	71,13	0,66	0,01	0,01	0,40
RECUPERAÇÃO METAL	LÚRGICA ETAPA	A CLEANER	73,69%	52,11%	50,68%	64,60%	69,32%	53,16%
G	Jobal				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	682,70	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	117,55	17,22%	34,60	49,45	0,43	0,01	0,02	0,29
Afundado	565,15	82,78%	8,40	87,83	#VALOR!	#VALOR!	#VALOR!	0,45
RECUPERAÇÃO METALÚRGICA GLOBAL			46,14%	10,48%	#VALOR!	#VALOR!	#VALOR!	11,89%

Identificação do Teste	T15						
Amostra	-150µm						
Condições do Teste – Etapa <i>Rougher</i>							
Coletor usado	Mix 1:5						
Dosagem do coletor (g/t)	100						
Depressor usado	Silicato de Sódio						
Dosagem do depressor	500						
Condições do Teste – Etapa S	Scavenger						
Coletor usado	Mix 1:5						
Dosagem do coletor (g/t)	50						
Depressor usado	Silicato de Sódio						
Dosagem do depressor	200						
Condições do Teste – Etapa	Cleaner						
Coletor usado	Sem adição						
Dosagem do coletor (g/t)	-						
Depressor usado	Sem adição						
Dosagem do depressor (g/t)	-						
рН	7,46						

Anexo 27: Dados do teste T15

Balanço de Massa Etapa Rougher + Scavenger			Balanço Metalúrgico					
Alimentação	680,10	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	180,89	26,60%	29,94	55,84	0,72	0,01	0,01	0,53
Afundado	499,21	73,40%	6,74	90,41	#VALOR!	#VALOR!	#VALOR!	0,38
RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER			61,66%	18,29%	#VALOR!	#VALOR!	#VALOR!	33,41%
Etapa Cleaner					Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	180,89	100,00%	29,94	55,84	0,72	0,01	0,01	0,53
Flotado	85,09	47,04%	40,62	40,39	0,78	0,01	0,01	0,57
Afundado	95,80	52,96%	20,44	69,56	0,66	0,01	0,02	0,49
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	63,84%	34,03%	51,21%	52,01%	41,86%	50,82%
0	Hobal				Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	680,10	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	85,09	12,51%	40,62	40,39	0,78	0,01	0,01	0,57
Afundado	595,01	87,49%	8,95	87,06	#VALOR!	#VALOR!	#VALOR!	0,40
RECUPERAÇÃO METALÚRGICA GLOBAL			39,36%	6,22%	#VALOR!	#VALOR!	#VALOR!	16,98%

Identificação do Teste	T16
Amostra	-150µm
Condições do Teste – Etapa	Rougher
Coletor usado	Mix 1:5
Dosagem do coletor (g/t)	100
Depressor usado	Silicato de Sódio
Dosagem do depressor	500
Condições do Teste – Etapa S	cavenger
Coletor usado	Mix 1:5
Dosagem do coletor (g/t)	50
Depressor usado	Silicato de Sódio
Dosagem do depressor	300
Condições do Teste – Etapa	Cleaner
Coletor usado	Sem adição
Dosagem do coletor (g/t)	-
Depressor usado	Sem adição
Dosagem do depressor (g/t)	-
рН	7,46

Anexo 28: Dados do teste T16

Balanço de Massa Etapa Rougher + Scavenger			Balanço Metalúrgico					
Alimentação	681,10	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	217,51	31,94%	28,04	59,02	0,52	0,01	0,02	0,46
Afundado	463,59	68,06%	5,81	91,63	#VALOR!	#VALOR!	#VALOR!	0,40
RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER			69,35%	23,21%	#VALOR!	#VALOR!	#VALOR!	34,90%
Etapa Cleaner					Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	217,51	100,00%	28,04	59,02	0,52	0,01	0,02	0,46
Flotado	119,78	55,07%	36,35	47,31	0,44	0,01	0,02	0,45
Afundado	97,73	44,93%	17,85	73,37	0,61	0,01	0,01	0,47
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	71,39%	44,14%	46,76%	48,58%	59,23%	53,99%
	Hobal				Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	681,10	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	119,78	17,59%	36,35	47,31	0,44	0,01	0,02	0,45
Afundado	561,32	82,41%	7,91	88,45	#VALOR!	#VALOR!	#VALOR!	0,41
RECUPERAÇÃO METALÚRGICA GLOBAL			49,51%	10,24%	#VALOR!	#VALOR!	#VALOR!	18,84%

Identificação do Teste	T17
Amostra	-150µm
Condições do Teste – Eta	apa <i>Rougher</i>
Coletor usado	Mix 1:5
Dosagem do coletor (g/t)	100
Depressor usado	Silicato de Sódio
Dosagem do depressor	500
Condições do Teste – Eta	pa <i>Scavenger</i>
Coletor usado	Mix 1:5
Dosagem do coletor (g/t)	50
Depressor usado	Silicato de Sódio
Dosagem do depressor	500
Condições do Teste – Et	apa <i>Cleaner</i>
Coletor usado	Sem adição
Dosagem do coletor (g/t)	-
Depressor usado	Sem adição
Dosagem do depressor (g/t)	-
рН	7,46

Anexo	29:	Dados	do	teste	T17
-------	-----	-------	----	-------	-----

Balanço de Massa Etapa Rougher + Scavenger			Balanço Metalúrgico					
Alimentação	681,10	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	173,06	25,41%	30,72	54,87	0,57	0,01	0,02	0,47
Afundado	508,04	74,59%	6,85	90,20	#VALOR!	#VALOR!	#VALOR!	0,40
RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER			60,45%	17,16%	#VALOR!	#VALOR!	#VALOR!	28,33%
Etapa Cleaner					Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	173,06	100,00%	30,72	54,87	0,57	0,01	0,02	0,47
Flotado	103,07	59,56%	35,24	48,57	0,56	0,01	0,02	0,44
Afundado	69,99	40,44%	24,06	64,14	0,60	0,01	0,01	0,51
RECUPERAÇÃO METAL	LÚRGICA ETAPA	A CLEANER	68,32%	52,72%	57,88%	67,29%	70,79%	55,96%
G	Hobal		Balanço Metalúrgico					
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	681,10	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	103,07	15,13%	35,24	48,57	0,56	0,01	0,02	0,44
Afundado	578,03	84,87%	8,93	87,04	#VALOR!	#VALOR!	#VALOR!	0,42
RECUPERAÇÃO METALÚRGICA GLOBAL			41,30%	9,05%	#VALOR!	#VALOR!	#VALOR!	15,85%

Separação Magnética – Amostra Cabeça							
Fluxo	MassaTeor FeTeor SiO2Rec. MássicaRec. Metal.(g)(%)(%)(%)						
Alimentação	2307,80	10,80	83,90	100,00	100,00		
Magnético	1060,80	20,88	68,57	45,97	88,88		
Não Magnético	1247,00	2,22	96,94	54,03	11,12		

Anexo 30: Separação Magnética realizado com a amostra cabeça

Anexo 31: Separação Magnética realizado com a amostra +150µm

Separação Magnética – Amostra +150µm							
Fluxo	Massa Teor Fe Teor SiO ₂ Rec.Mássica Rec. Metal. (α) (0 () (0 () (0 () (0 ()) (0 ()) (0 ())						
Alimentação	<u>(g)</u> 136,30	4,08	93,87	100,00	100,00		
Magnético	21,70	21,81	74,46	15,92	85,02		
Não Magnético	114,60	0,73	97,54	84,08	14,98		

Anexo 32: Separação Magnética realizado com a amostra -150µm

Separação Magnética – Amostra -150µm								
Fluxo	Massa (g)	Teor Fe (%)	Teor SiO ₂ (%)	Rec.Mássica (%)	Rec. Metal. (%)			
Alimentação	410,30	12,91	81,21	100,00	100,00			
Magnético	259,40	19,70	70,16	63,22	96,47			
Não Magnético	150,90	1,24	100,21	36,78	3,53			

Anexo 33: Dados do teste T18

Identificação do Tes	te T18				
Amostra	Conc. Magnético -150µm				
Condições do Teste – Etapa <i>Rougher</i>					

Coletor usado	Mix 1:5
Dosagem do coletor (g/t)	100
Depressor usado	Silicato de Sódio
Dosagem do depressor	500
Condições do Teste – Etapa Sca	avenger
Coletor usado	-
Dosagem do coletor (g/t)	-
Depressor usado	-
Dosagem do depressor	-
Condições do Teste – Etapa C	leaner
Coletor usado	Sem adição
Dosagem do coletor (g/t)	-
Depressor usado	Sem adição
Dosagem do depressor (g/t)	-
рН	7,46

Balanço de Massa			Balanco Metalúrgico					
Etapa Rougher					Daranço M	ictarur greo		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1361,60	100,00%	19,70	70,16	0,24	0,01	0,01	1,14
Flotado	219,45	16,12%	54,18	21,05	0,58	0,02	0,02	0,66
Afundado	1142,15	83,88%	13,08	79,59	0,18	0,01	0,01	1,23
RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER			44,32%	4,84%	38,33%	24,52%	19,90%	9,39%
Etapa Cleaner			Balanço Metalúrgico					
Fluxo	Massa (g)	Massa (%)	P2O5	SiO2	Al2O3	Fe2O3	CaO	LOI
Alimentação	219,45	100,00%	54,18	21,05	0,58	0,02	0,02	0,66
Flotado	154,49	70,40%	60,33	12,42	0,57	0,01	0,02	0,54
Afundado	64,96	29,60%	39,54	41,59	0,61	0,04	0,01	0,96
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A CLEANER	78,39%	41,53%	69,16%	49,63%	76,02%	57,22%
(Hobal				Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	P2O5	SiO2	Al2O3	Fe2O3	CaO	LOI
Alimentação	1361,60	100,00%	19,70	70,16	0,24	0,01	0,01	1,14
Flotado	154,49	11,35%	60,33	12,42	0,57	0,01	0,02	0,54
Afundado	1207,11	88,65%	14,50	77,55	0,20	0,01	0,01	1,22
RECUPERAÇÃO METALÚRGICA GLOBAL		34,75%	2,01%	26,51%	12,17%	15,13%	5,37%	

Anexo 34: Dados do teste T19

Identificação do Teste	T19					
Amostra	Conc. Magnético Cabeça					
Condições do Teste – Etapa <i>Rougher</i>						
Coletor usado	Mix 1:5					
Dosagem do coletor (g/t)	100					

Depressor usado	Silicato de Sódio
Dosagem do depressor	500
Condições do Teste – Etapa <i>Scav</i>	enger
Coletor usado	-
Dosagem do coletor (g/t)	-
Depressor usado	-
Dosagem do depressor	-
Condições do Teste – Etapa <i>Cle</i>	aner
Coletor usado	Sem adição
Dosagem do coletor (g/t)	-
Depressor usado	Sem adição
Dosagem do depressor (g/t)	-
рН	7,46

Balanço de Massa			Balanco Metalúrgico					
Etapa Rougher			1		Dalaliçu IV.	ictarur gico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1363,10	100,00%	20,88	68,57	0,10	0,01	0,02	1,20
Flotado	212,51	15,59%	49,89	26,10	0,36	0,02	0,02	2,20
Afundado	1150,59	84,41%	15,52	76,41	0,06	0,01	0,02	1,02
RECUPERAÇÃO METAI	ÚRGICA ETAP	A ROUGHER	37,25%	5,94%	53,30%	19,80%	17,55%	28,55%
Etapa Cleaner			Balanço Metalúrgico					
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Fe2O3	CaO	LOI
Alimentação	212,51	100,00%	49,89	26,10	0,36	0,02	0,02	2,20
Flotado	118,69	55,85%	57,37	16,49	0,35	0,01	0,02	1,01
Afundado	93,83	44,15%	40,43	38,26	0,36	0,02	0,02	3,70
RECUPERAÇÃO METAI	LÚRGICA ETAP.	A CLEANER	64,22%	35,28%	55,00%	48,09%	60,78%	25,67%
(Hobal				Balanço M	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Fe2O3	CaO	LOI
Alimentação	1363,10	100,00%	20,88	68,57	0,10	0,01	0,02	1,20
Flotado	118,69	8,71%	57,37	16,49	0,35	0,01	0,02	1,01
Afundado	1244,41	91,29%	17,40	73,54	0,08	0,01	0,02	1,22
RECUPERAÇÃO METALÚRGICA GLOBAL			23,92%	2,09%	29,31%	9,52%	10,67%	7,33%

Anexo 35: Dados do tes	te T20
------------------------	--------

Identificação do Teste	T20
Amostra	Conc. Magnético +150µm
Condições do Teste – Etapa <i>l</i>	Rougher
Coletor usado	Mix 1:5
Dosagem do coletor (g/t)	100
Depressor usado	Silicato de Sódio
Dosagem do depressor	500

Condições do Teste – Etapa <i>Scavenger</i>					
Coletor usado	-				
Dosagem do coletor (g/t)	-				
Depressor usado	-				
Dosagem do depressor	_				
Condições do Teste – Etapa <i>Cleaner</i>					
Coletor usado	Sem adição				
Dosagem do coletor (g/t)	-				
Depressor usado	Sem adição				
Dosagem do depressor (g/t)	-				
рН	7,46				

Balanço de Massa Etapa Rougher			Balanço Metalúrgico					
Alimentação	1390,40	100,00%	21,81	74,46	0,10	0,01	0,02	1,20
Flotado	87,95	6,33%	29,09	56,92	0,27	0,02	0,02	0,87
Afundado	1302,45	93,67%	21,31	75,64	0,09	0,01	0,02	1,22
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A ROUGHER	8,44%	4,84%	16,19%	7,92%	6,12%	4,61%
Etapa Cleaner					Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	P2O5	SiO2	Al2O3	Fe2O3	CaO	LOI
Alimentação	87,95	100,00%	29,09	56,92	0,27	0,02	0,02	0,87
Flotado	46,99	53,42%	31,93	53,05	0,23	0,01	0,01	0,73
Afundado	40,96	46,58%	25,83	61,36	0,30	0,02	0,02	1,04
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	58,64%	49,79%	46,91%	44,23%	41,41%	44,60%
(Hobal		Balanço Metalúrgico					
Fluxo	Massa (g)	Massa (%)	P2O5	SiO2	Al2O3	Fe2O3	CaO	LOI
Alimentação	1390,40	100,00%	21,81	74,46	0,10	0,01	0,02	1,20
Flotado	46,99	3,38%	31,93	53,05	0,23	0,01	0,01	0,73
Afundado	1343,41	96,62%	21,45	75,21	0,10	0,01	0,02	1,22
RECUPERAÇÃO METALÚRGICA GLOBAL			4,95%	2,41%	7,59%	3,50%	2,53%	2,06%

11.10 Flotação em Bancada – Etapa 06

Identificação do Teste	T21						
Amostra	-150µm						
Condições do Teste – Eta	pa <i>Rougher</i>						
Coletor usado	Mix 1:5						
Dosagem do coletor (g/t)	100						
Depressor usado	Hexametafosfato de Sódio						
Dosagem do depressor	500						
Condições do Teste – Etapa Scavenger							
Coletor usado	-						
Dosagem do coletor (g/t)	-						
Depressor usado	-						
Dosagem do depressor	-						
Condições do Teste – Eta	apa <i>Cleaner</i>						
Coletor usado	Sem adição						
Dosagem do coletor (g/t)	-						
Depressor usado	Sem adição						
Dosagem do depressor (g/t)	-						
pH	7,46						

Anexo 36: Dados do teste T21

Balanço de Massa Etapa Rougher			Balanço Metalúrgico						
Alimentação	1362,80	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42	
Flotado	156,19	11,46%	47,98	29,85	0,54	0,02	0,04	0,71	
Afundado	1206,61	88,54%	8,37	87,87	#VALOR!	#VALOR!	#VALOR!	0,38	
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A ROUGHER	42,59%	4,21%	#VALOR!	#VALOR!	#VALOR!	19,46%	
Etapa Cleaner					Balanço N	letalúrgico			
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI	
Alimentação	156,19	100,00%	47,98	29,85	0,54	0,02	0,04	0,71	
Flotado	102,81	65,82%	61,08	11,07	0,65	0,02	0,04	0,58	
Afundado	53,38	34,18%	22,75	66,03	0,33	0,02	0,05	0,97	
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	83,79%	24,41%	79,14%	65,71%	60,64%	53,52%	
(Hobal		Balanço Metalúrgico						
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI	
Alimentação	1362,80	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42	
Flotado	102,81	7,54%	61,08	11,07	0,65	0,02	0,04	0,58	
Afundado	1259,99	92,46%	8,98	86,94	#VALOR!	#VALOR!	#VALOR!	0,41	
RECUPERAÇÃO METALÚRGICA GLOBAL			35,69%	1,03%	#VALOR!	#VALOR!	#VALOR!	10,42%	

Identificação do Teste	T22					
Amostra	Conc. Magnético -150µm					
Condições do Teste – Etapa R	ougher					
Coletor usado	Mix 1:5					
Dosagem do coletor (g/t)	100					
Depressor usado	Hexametafosfato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa <i>Scavenger</i>						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Etapa C	leaner					
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,46					

Anexo 37: Dados do teste T22

Balanço de Massa Etapa Rougher				Balanco Metalúrgico						
			Baranço wetarur greo							
Fluxo	Massa (g)	Massa (%)	Fe	Fe SiO2 Al2O3 Mn P L						
Alimentação	1362,80	100,02%	19,70	70,16	0,24	0,01	0,01	1,14		
Flotado	145,82	10,70%	54,36	20,71	0,56	0,02	0,03	0,65		
Afundado	1216,69	89,30%	15,55	76,10	0,21	0,01	0,01	1,20		
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A ROUGHER	29,52%	3,16%	24,61%	15,86%	25,44%	6,05%		
Etapa Cleaner				Balanço Metalúrgico						
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI		
Alimentação	145,82	100,00%	54,36	20,71	0,56	0,02	0,03	0,65		
Flotado	91,73	62,91%	63,77	7,29	0,64	0,02	0,02	0,43		
Afundado	54,08	37,09%	38,39	43,48	0,43	0,02	0,05	1,01		
RECUPERAÇÃO METAI	ÚRGICA ETAP.	A CLEANER	73,81%	22,14%	71,63%	62,80%	40,42%	41,93%		
(Hobal		Balanço Metalúrgico							
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI		
Alimentação	1362,80	100,02%	19,70	70,16	0,24	0,01	0,01	1,14		
Flotado	91,73	6,73%	63,77	7,29	0,64	0,02	0,02	0,43		
Afundado	1270,78	93,27%	16,52	74,71	0,22	0,01	0,01	1,19		
RECUPERAÇÃO METALÚRGICA GLOBAL			21,79%	0,70%	17,63%	9,96%	10,28%	2,54%		

11.11 Flotação em Bancada – Etapa 07

Identificação do Teste	Т23							
Amostra	Cabeça							
Condições do Teste – Etapa <i>Rot</i>	Condições do Teste – Etapa <i>Rougher</i>							
Coletor usado	Aero 6493 Promoter							
Dosagem do coletor (g/t)	100							
Depressor usado	Hexametafosfato de Sódio							
Dosagem do depressor	500							
Condições do Teste – Etapa Scavenger								
Coletor usado	-							
Dosagem do coletor (g/t)	-							
Depressor usado	-							
Dosagem do depressor	-							
Condições do Teste – Etapa <i>Cle</i>	eaner							
Coletor usado	Sem adição							
Dosagem do coletor (g/t)	-							
Depressor usado	Sem adição							
Dosagem do depressor (g/t)								
pH	7,47							

Anexo 38: Dados do teste T23

Balanço de Massa Etapa Rougher			Balanço Metalúrgico						
Alimentação	1365,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	198,50	14,54%	37,48	11,73	0,30	0,02	0,01	0,62	
Afundado	1166,50	85,46%	6,26	96,18	0,10	0,01	#VALOR!	0,34	
RECUPERAÇÃO METAL	ÚRGICA ETAP	A ROUGHER	50,47%	2,03%	33,37%	28,92%	#VALOR!	23,85%	
Etapa Cleaner					Balanço N	letalúrgico			
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI	
Alimentação	198,50	100,00%	37,48	11,73	0,30	0,02	0,01	0,62	
Flotado	131,60	66,30%	56,54	17,69	0,45	0,03	0,02	0,94	
Afundado	66,90	33,70%							
RECUPERAÇÃO METAI	ÚRGICA ETAP	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%	
0	Hobal		Balanço Metalúrgico						
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI	
Alimentação	1365,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	131,60	9,64%	56,54	17,69	0,45	0,03	0,02	0,94	
Afundado	1233,40	90,36%	5,92	90,96	0,10	0,01	#VALOR!	0,32	
RECUPERAÇÃO METALÚRGICA GLOBAL			50,47%	2,03%	33,37%	28,92%	#VALOR!	23,85%	

*Foi feito a análise química apenas do flotado cleaner, para o fechamento do balanço metalúrgico da etapa global. Por isso, não tem dados do afundado cleaner, e a etapa cleaner consta com 100% de recuperação metalúrgica para todos os elementos.

Identificação do Teste	T24					
Amostra	Cabeça					
Condições do Teste – Etapa	a Rougher					
Coletor usado	Aero 6494 Promoter					
Dosagem do coletor (g/t)	100					
Depressor usado	Hexametafosfato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa <i>Scavenger</i>						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Etapa	a <i>Cleaner</i>					
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,47					

Anexo 39: Dados do teste T24

Balanço de Massa			Balanco Metalúrgico						
Etapa Rougher			baranço wetarur gico						
Fluxo	Massa (g)	Massa (%)	Fe	Fe SiO2 Al2O3 Mn P La					
Alimentação	1364,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	169,44	12,42%	31,21	4,92	0,21	0,01	0,01	0,44	
Afundado	1194,56	87,58%	7,91	95,10	0,12	0,01	#VALOR!	0,37	
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A ROUGHER	35,89%	0,73%	19,74%	12,52%	#VALOR!	14,49%	
Etapa Cleaner				-	Balanço N	letalúrgico			
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI	
Alimentação	169,44	100,00%	31,21	4,92	0,21	0,01	0,01	0,44	
Flotado	85,37	50,38%	61,94	9,77	0,41	0,02	0,02	0,88	
Afundado	84,07	49,62%							
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%	
(Hobal				Balanço M	letalúrgico			
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI	
Alimentação	1364,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	85,37	6,26%	61,94	9,77	0,41	0,02	0,02	0,88	
Afundado	1278,63	93,74%	7,39	88,85	0,11	0,01	#VALOR!	0,35	
RECUPERAÇÃO METALÚRGICA GLOBAL			35,89%	0,73%	19,74%	12,52%	#VALOR!	14,49%	

*Foi feito a análise química apenas do flotado cleaner, para o fechamento do balanço metalúrgico da etapa global. Por isso, não tem dados do afundado cleaner, e a etapa cleaner consta com 100% de recuperação metalúrgica para todos os elementos.

Anexo 40: Dados do teste T25

Identificação do Teste	T25
Amostra	Cabeça

Condições do Teste – Etapa <i>Rougher</i>						
Coletor usado	Aero OX 102 Promoter					
Dosagem do coletor (g/t)	100					
Depressor usado	Hexametafosfato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa Scavenger						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Eta	apa <i>Cleaner</i>					
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,47					

Balanço de Massa Etapa Rougher			Balanco Metalúrgico						
				Datanço metalurgico					
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI	
Alimentação	1363,50	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	225,82	16,56%	32,98	14,17	0,24	0,01	0,01	0,52	
Afundado	1137,68	83,44%	6,40	97,74	0,11	0,01	#VALOR!	0,35	
RECUPERAÇÃO METAL	ÚRGICA ETAPA	A ROUGHER	50,57%	2,80%	30,86%	10,29%	#VALOR!	22,74%	
Etapa Cleaner			Balanço Metalúrgico						
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI	
Alimentação	225,82	100,00%	32,98	14,17	0,24	0,01	0,01	0,52	
Flotado	140,27	62,12%	53,09	22,82	0,39	0,01	0,02	0,84	
Afundado	85,55	37,88%							
RECUPERAÇÃO METAI	LÚRGICA ETAP.	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%	
(Hobal		Balanço Metalúrgico						
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI	
Alimentação	1363,50	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38	
Flotado	140,27	10,29%	53,09	22,82	0,39	0,01	0,02	0,84	
Afundado	1223,23	89,71%	5,95	90,90	0,10	0,01	#VALOR!	0,33	
RECUPERAÇÃO METALÚRGICA GLOBAL			50,57%	2,80%	30,86%	10,29%	#VALOR!	22,74%	

Anexo 41: Dados do teste T26

Identificação do Teste	T26
Amostra	Cabeça
Condições do Teste – l	Etapa <i>Rougher</i>
Coletor usado	Aero 845 Promoter
Dosagem do coletor (g/t)	100
Depressor usado	Hexametafosfato de Sódio
Dosagem do depressor	500

Condições do Teste – Etapa Scavenger						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Etapa <i>Cleaner</i>						
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,47					

Balanç	o de Massa		Balanco Motalúrgico					
Etapa	Rougher				Dalaliçu IV.	ictarur gico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1361,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	108,61	7,98%	36,66	8,08	0,17	0,01	0,01	0,65
Afundado	1252,39	92,02%	8,56	90,48	0,13	0,01	#VALOR!	0,36
RECUPERAÇÃO METAL	ÚRGICA ETAPA	A ROUGHER	R 27,09% 0,77% 10,55% 9,80% #VALOR! 13			13,73%		
Etapa	Cleaner		Balanço Metalúrgico					
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	108,61	100,00%	36,66	8,08	0,17	0,01	0,01	0,65
Flotado	66,68	61,39%	59,71	13,16	0,28	0,02	0,02	0,43
Afundado	41,94	38,61%						1,01
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	40,37%
Global					Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	1361,00	100,00%	10,80	83,90	0,13	0,01	<0,005	0,38
Flotado	66,68	4,90%	59,71	13,16	0,28	0,02	0,02	0,43
Afundado	1294,32	95,10%	8,28	87,54	0,12	0,01	#VALOR!	0,38
RECUPERAÇÃO MI	ETALÚRGICA G	LOBAL	27,09%	0,77%	10,55%	9,80%	#VALOR!	5,54%

Identificação do Teste	Т27
Amostra	-150μm
Condições do Test	e – Etapa <i>Rougher</i>
Coletor usado	Aero 6493 Promoter
Dosagem do coletor (g/t)	100
Depressor usado	Hexametafosfato de Sódio
Dosagem do depressor	500
Condições do Teste	e – Etapa <i>Scavenger</i>
Coletor usado	-
Dosagem do coletor (g/t)	-

Anexo 42: Dados do teste T27

Depressor usado	-	
Dosagem do depressor	-	
Condições do Teste	– Etapa <i>Cleaner</i>	
Coletor usado	Sem adição	
Dosagem do coletor (g/t)	-	
Depressor usado	Sem adição	
Dosagem do depressor (g/t)	-	
рН	7,47	

Balanç	o de Massa							
Etapa	Rougher				Dalanço Iv	ictarur gico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1361,50	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	223,47	16,41%	38,37	8,20	0,54	0,01	0,01	0,43
Afundado	1138,03	83,59%	7,91	95,56	#VALOR!	#VALOR!	#VALOR!	0,42
RECUPERAÇÃO METAL	ÚRGICA ETAP	A ROUGHER	R 48,77% 1,66% #VALOR! #VALOR! #VALOR!			16,79%		
Etapa	Cleaner		Balanço Metalúrgico					
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	223,47	100,00%	38,37	8,20	0,54	0,01	0,01	0,43
Flotado	143,33	64,14%	59,82	12,79	0,84	0,02	0,01	0,67
Afundado	80,14	35,86%						
RECUPERAÇÃO METAI	ÚRGICA ETAP.	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%
	Hobal				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	1361,50	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	143,33	10,53%	59,82	12,79	0,84	0,02	0,01	0,67
Afundado	1218,17	89,47%	7,39	89,27	#VALOR!	#VALOR!	#VALOR!	0,39
RECUPERAÇÃO MI	ETALÚRGICA G	LOBAL	48,77%	1,66%	#VALOR!	#VALOR!	#VALOR!	16,79%

Anexo 43: Dados do teste T28

Identificação do Teste	T28				
Amostra	-150µm				
Condições do Teste – Etapa <i>Roi</i>	ıgher				
Coletor usado	Aero 6494 Promoter				
Dosagem do coletor (g/t)	100				
Depressor usado	Hexametafosfato de Sódio				
Dosagem do depressor	500				
Condições do Teste – Etapa <i>Scavenger</i>					
Coletor usado	-				
Dosagem do coletor (g/t)	-				
Depressor usado	-				
Dosagem do depressor					
Condições do Teste – Etapa <i>Cleaner</i>					
Coletor usado	Sem adição				
Dosagem do coletor (g/t)	-				

Depressor usado Desegom de depressor (g/t)	Sem adição
pH	7,47

Balanç	o de Massa		Balanco Motalúrgico					
Etapa	Rougher				Dalaliçu IV	letarur greo		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1361,10	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	175,44	12,89%	44,79	4,78	0,38	0,01	0,01	0,46
Afundado	1185,66	87,11%	8,19	92,53	#VALOR!	#VALOR!	#VALOR!	0,41
RECUPERAÇÃO METAL	ÚRGICA ETAPA	A ROUGHER	R 44,71% 0,76% #VALOR! #VALOR! #VALOR! 14			14,10%		
Etapa	Cleaner				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	175,44	100,00%	44,79	4,78	0,38	0,01	0,01	0,46
Flotado	122,18	69,64%	64,31	6,86	0,55	0,02	0,01	0,66
Afundado	53,26	30,36%						
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%
Global					Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	1361,10	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	122,18	8,98%	64,31	6,86	0,55	0,02	0,01	0,66
Afundado	1238,92	91,02%	7,84	88,55	#VALOR!	#VALOR!	#VALOR!	0,40
RECUPERAÇÃO MI	ETALÚRGICA G	LOBAL	44,71%	0,76%	#VALOR!	#VALOR!	#VALOR!	14,10%

Anexo 44: Dados do teste T29

Identificação do Teste	T29					
Amostra	-150µm					
Condições do Teste – Etapa	Rougher					
Coletor usado	Aero OX 102 Promoter					
Dosagem do coletor (g/t)	100					
Depressor usado	Hexametafosfato de Sódio					
Dosagem do depressor	500					
Condições do Teste – Etapa <i>Scavenger</i>						
Coletor usado	-					
Dosagem do coletor (g/t)	-					
Depressor usado	-					
Dosagem do depressor	-					
Condições do Teste – Etapa <i>Cleaner</i>						
Coletor usado	Sem adição					
Dosagem do coletor (g/t)	-					
Depressor usado	Sem adição					
Dosagem do depressor (g/t)	-					
рН	7,47					

Balanç	o de Massa		Balanco Metalúrgico					
Etapa	Rougher				Dalaliço IV	ictariar gree		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1363,50	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	195,20	14,32%	31,93	11,43	0,25	0,01	0,01	0,47
Afundado	1168,30	85,68%	9,73	92,88	#VALOR!	#VALOR!	#VALOR!	0,41
RECUPERAÇÃO METAL	ÚRGICA ETAPA	A ROUGHER	R 35,41% 2,02% #VALOR! #VALOR! #VALOR! 1			16,00%		
Etapa	Etapa Cleaner			Balanço Metalúrgico				
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	195,20	100,00%	31,93	11,43	0,25	0,01	0,01	0,47
Flotado	113,13	57,95%	55,10	19,73	0,43	0,01	0,02	0,81
Afundado	82,07	42,05%						
RECUPERAÇÃO METAI	LÚRGICA ETAPA	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%
Global					Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	1363,50	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	113,13	8,30%	55,10	19,73	0,43	0,01	0,02	0,81
Afundado	1250,37	91,70%	9,09	86,78	#VALOR!	#VALOR!	#VALOR!	0,38
RECUPERAÇÃO MI	ETALÚRGICA G	LOBAL	35,41%	2,02%	#VALOR!	#VALOR!	#VALOR!	16,00%

Anexo 45:	Dados	do	teste	T30
-----------	-------	----	-------	-----

Identificação do Teste	Т30			
Amostra	-150µm			
Condições do Teste – Etapa <i>Rougher</i>				
Coletor usado	Aero 845 Promoter			
Dosagem do coletor (g/t)	100			
Depressor usado	Hexametafosfato de Sódio			
Dosagem do depressor	500			
Condições do Teste – Etapa <i>Scavenger</i>				
Coletor usado	-			
Dosagem do coletor (g/t)	-			
Depressor usado	-			
Dosagem do depressor				
Condições do Teste – Etapa <i>Cleaner</i>				
Coletor usado	Sem adição			
Dosagem do coletor (g/t)	-			
Depressor usado	Sem adição			
Dosagem do depressor (g/t)				
рН	7,47			

Balanço de Massa		Ralanco Metalúrgico							
Etapa	Rougher		Baranço Metarur gico						
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI	
Alimentação	1364,60	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42	
Flotado	113,40	8,31%	35,94	6,79	0,18	0,01	0,02	0,49	
Afundado	1251,20	91,69%	10,82	87,96	#VALOR!	#VALOR!	#VALOR!	0,41	
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A ROUGHER	23,13% 0,69% #VALOR! #VALOR! #VALOR! 9			9,77%			
Etapa	Cleaner		Bala			alanço Metalúrgico			
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI	
Alimentação	113,40	100,00%	35,94	6,79	0,18	0,01	0,02	0,49	
Flotado	66,68	58,80%	61,12	11,55	0,30	0,02	0,03	0,84	
Afundado	46,72	41,20%							
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A ETAPA CLEANER 100,00% 100,00% 100,00% 100,00% 100,00%			100,00%				
(Hobal				Balanço N	letalúrgico			
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI	
Alimentação	1364,60	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42	
Flotado	66,68	4,89%	61,12	11,55	0,30	0,02	0,03	0,84	
Afundado	1297,92	95,11%	10,43	84,80	#VALOR!	#VALOR!	#VALOR!	0,40	
RECUPERAÇÃO METALÚRGICA GLOBAL		23,13%	0,69%	#VALOR!	#VALOR!	#VALOR!	9,77%		

Anexo	46:	Dados	do	teste	T31
1 meno		Daaos		ceste	

Identificação do Teste	T31							
Amostra	-150µm							
Condições do Teste – Etapa <i>Rougher</i>								
Coletor usado	Mix 1:5 com Aero 6493 Promoter							
Dosagem do coletor (g/t)	100							
Depressor usado	Hexametafosfato de Sódio							
Dosagem do depressor	500							
Condições do Teste – Etapa <i>Scavenger</i>								
Coletor usado	-							
Dosagem do coletor (g/t)	-							
Depressor usado	-							
Dosagem do depressor	-							
Condições do Teste – Etapa <i>Cleaner</i>								
Coletor usado	Sem adição							
Dosagem do coletor (g/t)	-							
Depressor usado	Sem adição							
Dosagem do depressor (g/t)	-							
pH	7.47							
Balanç	o de Massa				Ralanco N	lotolúrgico		
-------------------	---------------------------------------	------------	----------------	----------------	----------------	----------------	----------------	---------
Etapa	Rougher				Dalaliçu IV.	ictatul gico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1361,70	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	366,61	26,92%	27,20	30,70	0,17	0,01	0,01	0,45
Afundado	995,09	73,08%	7,65	99,83	#VALOR!	#VALOR!	#VALOR!	0,41
RECUPERAÇÃO METAL	RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER				#VALOR!	#VALOR!	#VALOR!	28,84%
Etapa	Balanço Metalúrgico							
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	366,61	100,00%	27,20	30,70	0,17	0,01	0,01	0,45
Flotado	257,76	70,31%	38,69	43,67	0,24	0,02	0,01	0,64
Afundado	108,85	29,69%						
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%
0	Jobal				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	1361,70	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	257,76	18,93%	38,69	43,67	0,24	0,02	0,01	0,64
Afundado	1103,94	81,07%	6,89	89,99	#VALOR!	#VALOR!	#VALOR!	0,37
RECUPERAÇÃO MI	56,72%	10,18%	#VALOR!	#VALOR!	#VALOR!	28,84%		

Identificação do Teste	Т32							
Amostra	-150µm							
Condições do Teste – Etapa <i>Rougher</i>								
Coletor usado	Mix 1:5 com Aero 6494 Promoter							
Dosagem do coletor (g/t)	100							
Depressor usado	Hexametafosfato de Sódio							
Dosagem do depressor	500							
Condições do Teste – Etapa <i>Scavenger</i>								
Coletor usado	-							
Dosagem do coletor (g/t)	-							
Depressor usado	-							
Dosagem do depressor	-							
Condições do Teste – E	tapa <i>Cleaner</i>							
Coletor usado	Sem adição							
Dosagem do coletor (g/t)	-							
Depressor usado	Sem adição							
Dosagem do depressor (g/t)	-							
pH	7,47							

Anexo 47: Dados do teste T32

Balanç	o de Massa				Ralanco N	letelúrgico		
Etapa	Rougher				Dalanço Iv	ictarur greo		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1363,20	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	758,04	55,61%	16,50	37,25	0,06	0,01	0,01	0,28
Afundado	605,16	44,39%	8,42	136,30	#VALOR!	#VALOR!	#VALOR!	0,59
RECUPERAÇÃO METAI	RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER				#VALOR!	#VALOR!	#VALOR!	37,37%
Etapa		Balanço Metalúrgico						
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	758,04	100,00%	16,50	37,25	0,06	0,01	0,01	0,28
Flotado	465,15	61,36%	26,89	60,70	0,10	0,01	0,01	0,46
Afundado	292,89	38,64%						
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%
(Hobal				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	1363,20	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	465,15	34,12%	26,89	60,70	0,10	0,01	0,01	0,46
Afundado	898,05	65,88%	5,67	91,85	#VALOR!	#VALOR!	#VALOR!	0,40
RECUPERAÇÃO M	71,06%	25,50%	#VALOR!	#VALOR!	#VALOR!	37,37%		

Anexo 48: Dados do teste T33

Identificação do Teste	T33						
Amostra	-150µm						
Condições do Teste – Etapa <i>Rougher</i>							
Coletor usado	Mix 1:5 com Aero OX 102 Promoter						
Dosagem do coletor (g/t)	100						
Depressor usado	Hexametafosfato de Sódio						
Dosagem do depressor	500						
Condições do Teste – Etapa Scavenger							
Coletor usado	-						
Dosagem do coletor (g/t)	-						
Depressor usado	-						
Dosagem do depressor	-						
Condições do Teste	– Etapa <i>Cleaner</i>						
Coletor usado	Sem adição						
Dosagem do coletor (g/t)	-						
Depressor usado	Sem adição						
Dosagem do depressor (g/t)	-						
рН	7,47						

Balanç	o de Massa				Ralanco N	letelúrgico		
Etapa	Rougher				Dalaliço IV	ictarur greo		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1361,30	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	209,34	15,38%	23,45	40,01	0,13	0,01	0,01	0,36
Afundado	1151,96	84,62%	11,00	88,71	#VALOR!	#VALOR!	#VALOR!	0,43
RECUPERAÇÃO METAL	RECUPERAÇÃO METALÚRGICA ETAPA ROUGHER				#VALOR!	#VALOR!	#VALOR!	13,32%
Etapa		Balanço Metalúrgico						
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	209,34	100,00%	23,45	40,01	0,13	0,01	0,01	0,36
Flotado	155,44	74,25%	31,58	53,88	0,18	0,01	0,01	0,49
Afundado	53,90	25,75%						
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%
0	Jobal				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	1361,30	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	155,44	11,42%	31,58	53,88	0,18	0,01	0,01	0,49
Afundado	1205,86	88,58%	10,50	84,74	#VALOR!	#VALOR!	#VALOR!	0,41
RECUPERAÇÃO MI	27,93%	7,58%	#VALOR!	#VALOR!	#VALOR!	13,32%		

Anexo 49: Dados do teste T34

Identificação do Teste	Т34						
Amostra	-150µm						
Condições do Teste – Etapa <i>Rougher</i>							
Coletor usado	Mix 1:5 com Aero 845 Promoter						
Dosagem do coletor (g/t)	100						
Depressor usado	Hexametafosfato de Sódio						
Dosagem do depressor	500						
Condições do Teste – Etapa <i>Scavenger</i>							
Coletor usado	-						
Dosagem do coletor (g/t)	-						
Depressor usado	-						
Dosagem do depressor	-						
Condições do Teste – Eta	pa <i>Cleaner</i>						
Coletor usado	Sem adição						
Dosagem do coletor (g/t)	-						
Depressor usado	Sem adição						
Dosagem do depressor (g/t)	-						
рН	7,47						

Balanç	o de Massa				Ralanco N	letelúrgico		
Etapa	Rougher				Dalaliço IV	ictarur greo		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	Р	LOI
Alimentação	1363,50	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	200,91	14,73%	51,71	7,18	0,70	0,01	0,01	0,58
Afundado	1162,59	85,27%	6,21	94,01	#VALOR!	#VALOR!	#VALOR!	0,39
RECUPERAÇÃO METAL	59,01%	1,30%	#VALOR!	#VALOR!	#VALOR!	20,21%		
Etapa	Balanço Metalúrgico							
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	200,91	100,00%	51,71	7,18	0,70	0,01	0,01	0,58
Flotado	165,32	82,28%	62,84	8,72	0,85	0,01	0,01	0,70
Afundado	35,59	17,72%						
RECUPERAÇÃO METAI	ÚRGICA ETAPA	A CLEANER	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%
	Jobal				Balanço N	letalúrgico		
Fluxo	Massa (g)	Massa (%)	Fe	SiO2	Al2O3	Mn	CaO	LOI
Alimentação	1363,50	100,00%	12,91	81,22	#VALOR!	#VALOR!	#VALOR!	0,42
Flotado	165,32	12,12%	62,84	8,72	0,85	0,01	0,01	0,70
Afundado	1198,18	87,88%	6,02	91,22	#VALOR!	#VALOR!	#VALOR!	0,38
RECUPERAÇÃO MI	59,01%	1,30%	#VALOR!	#VALOR!	#VALOR!	20,21%		

Anexo 50: Análise Granulométrica do Flotado Cleaner do teste T34

1	Massa de ali	mentação (g)	44,17						
Corte a úmido			Tamanho (µm)	Massa (g)	Massa Corrigida (g)	% Retido	% Ret. Acumul.	% Passante	
Tamanho) Massa (g)	Massa Corrigida (g)		150	0,00	0,00	0,00	0,00	100,00
>38	13,76	13,81		106	0,81	0,83	1,87	1,87	98,13
<38	30,25	30,36		75	2,23	2,28	5,16	7,03	92,97
TOTAL	44,01	44,17		53	3,45	3,52	7,98	15,01	84,99
				45	1,60	1,63	3,70	18,71	81,29
				38	3,88	3,96	8,97	27,68	72,32
				0	1,55	31,94	72,32	100,00	0,00
				TOTAL	13,52	44,17			

Anexo 51: Análise Granulométrica do Afundado Cleaner do teste T34

N	Aassa de aliment	ação (g)	34,48						
	Corte a úmi	do		Tamanho (µm)	Massa (g)	Massa Corrigida (g)	% Retido	% Ret. Acumul.	% Passante
Tamanho	Massa (g) Mas	sa Corrigida (g)		150	0,00	0,00	0,00	0,00	100,00
>38	17,39	18,11		106	3,05	3,22	9,34	9,34	90,66
<38	15,72	16,37		75	4,43	4,68	13,57	22,91	77,09
TOTAL	33,11	34,48		53	4,71	4,97	14,42	37,33	62,67
				45	2,08	2,20	6,37	43,70	56,30
				38	2,37	2,50	7,26	50,96	49,04
				0	0,51	16,91	49,04	100,00	0,00
				TOTAL	17,15	34,48			

N	Aassa de ali	imentação (g)	282,85						
	Corte a	a úmido		Tamanho (µm)	Massa (g)	Massa Corrigida (g)	% Retido	% Ret. Acumul.	% Passante
Tamanho	Massa (g)	Massa Corrigida (g)		150	0,00	0,00	0,00	0,00	100,00
>38	244,6	246,32		106	110,39	111,28	39,34	39,34	60,66
<38	36,28	36,53		75	60,01	60,50	21,39	60,73	39,27
TOTAL	280,88	282,85		53	46,69	47,07	16,64	77,37	22,63
				45	17,31	17,45	6,17	83,54	16,46
				38	6,95	7,01	2,48	86,02	13,98
				0	2,99	39,55	13,98	100,00	0,00
				TOTAL	244,34	282,85			

Anexo 52: Análise Granulométrica do Afundado Rougher do teste T34

Anexo 53: Teores por fração granulométrica do flotado *cleaner* do teste T34

	Flotado Cleaner									
	Teores									
Tamanho	% Retido	% Retido Global	Fe	SiO ₂	Al ₂ O ₃	MnO	P_2O_5			
106	1,87	0,23	46,09	32,59	0,44	0,03	0,09			
75	5,16	0,63	46,09	32,59	0,44	0,03	0,09			
53	7,98	0,97	53,83	21,60	0,40	0,02	0,08			
45	3,70	0,45	60,72	12,15	0,33	0,01	0,07			
38	8,97	1,09	60,72	12,15	0,33	0,01	0,07			
0	72,32	8,77	65,84	4,18	0,48	0,01	0,06			
TOTAL	100,00	12,12	62,84	8,58	0,45	0,01	0,06			

Anexo 54: Teores por	fração granulométrica	do afundado	cleaner do teste T34
----------------------	-----------------------	-------------	----------------------

	Afundado Cleaner									
Teores										
Tamanho	% Retido	% Retido Global	Fe	SiO ₂	Al ₂ O ₃	MnO	P_2O_5			
106	9,34	0,24	12,82	80,87	0,50	0,02	0,04			
75	13,57	0,35	14,38	78,65	0,50	0,02	0,04			
53	14,42	0,38	15,84	76,51	0,56	0,02	0,05			
45	6,37	0,17	18,76	71,98	0,74	0,02	0,05			
38	7,26	0,19	18,76	71,98	0,74	0,02	0,05			
0	49,04	1,28	36,95	45,67	1,00	0,04	0,09			
TOTAL	100,00	2,61	26,11	61,47	0,79	0,03	0,07			

	Afundado Rougher										
Teores											
Tamanho % Retido % Retido Global Fe SiO ₂ Al ₂ O ₃ MnO P											
106	39,34	33,55	5,18	92,19	0,36	0,03	0,02				
75	21,39	18,24	5,36	92,08	0,41	0,00	0,02				
53	16,64	14,19	6,05	91,06	0,41	0,00	0,02				
45	6,17	5,26	8,21	87,86	0,44	0,00	0,02				
38	2,48	2,11	9,78	85,48	0,46	0,01	0,03				
0	13,98	11,92	19,86	70,48	0,68	0,01	0,05				
TOTAL	100,00	85,27	7,72	88,51	0,43	0,01	0,02				

Anexo 55: Teores por fração granulométrica do afundado rougher do teste T34

11.12 Flotação em Célula Pneumática

	Massa de aliment	ação (g) 221,5	<u> </u>					
	Corte a úmio	do	Tamanho (µm)	Massa (g)	Massa Corrigida (g)	% Retido	% Ret. Acumul.	% Passante
Tamanho) Massa (g) Mass	sa Corrigida (g)	150	0,17	0,17	0,08	0,08	99,92
>38	70,17	70,79	106	7,87	8,03	3,62	3,70	96,30
<38	149,39	150,72	75	9,69	9,88	4,46	8,16	91,84
TOTAL	219,56	221,51	53	17,37	17,72	8,00	16,16	83,84
			45	15,54	15,85	7,16	23,32	76,68
			38	12,81	13,07	5,90	29,22	70,78
			0	5,96	156,80	70,78	100,00	0,00
			TOTAL	69,41	221,51			

Anexo 56: Análise Granulométrica do Flotado 0-10min

Anexo 57: Análise Granulométrica do Flotado 10-20min

	Massa de alimentação (g)	125,74						
	Corte a úmido		Tamanho (µm)	Massa (g)	Massa Corrigida (g)	% Retido	% Ret. Acumul.	% Passante
Taman	ho Massa (g) Massa Corrigida (<u>g)</u>	150	0,00	0,00	0,00	0,00	100,00
>38	37,79 38,	14	106	3,89	3,92	3,12	3,12	96,88
<38	85,81 87,	30	75	6,59	6,65	5,29	8,41	91,59
TOTAL	L 123,6 125,	74	53	9,54	9,62	7,65	16,06	83,94
		_	45	6,56	6,62	5,26	21,32	78,68
			38	9,33	9,41	7,49	28,81	71,19
			0	2,20	89,52	71,19	100,00	0,00
			TOTAL	38,11	125,74			

Anexo 58: Análise Granulométrica do Flotado 20-35min

Ν	Aassa de ali	imentação (g)	86,66						
	Corte a	a úmido		Tamanho (µm)	Massa (g)	Massa Corrigida (g)	% Retido	% Ret. Acumul.	% Passante
Tamanho	Massa (g)	Massa Corrigida (g)		150	0,00	0,00	0,00	0,00	100,00
>38	24,76	25,53		106	2,22	2,29	2,65	2,65	97,35
<38	59,29	61,13		75	4,87	5,03	5,81	8,46	91,54
TOTAL	84,05	86,66		53	6,75	6,98	8,05	16,51	83,49
				45	4,18	4,32	4,99	21,49	78,51
				38	5,66	5,85	6,75	28,24	71,76
				0	1,02	62,19	71,76	100,00	0,00
				TOTAL	24,7	86,66			

Anexo 59: Análise Granulométrica do Afundado

	Massa de al	imentação (g)	199,57						
	Corte	a úmido	-	Tamanho (µm)	Massa (g)	Massa Corrigida (g)	% Retido	% Ret. Acumul.	% Passante
Tamanh	o Massa (g)	Massa Corrigida (g)	-	150	0,68	0,77	0,39	0,39	99,61
>38	161,21	164,52	-	106	60,33	68,41	34,28	34,67	65,33
<38	34,34	35,05		75	35,26	39,98	20,03	54,70	45,30
TOTAL	195,55	5 199,57	-	53	29,67	33,64	16,86	71,56	28,44
			-	45	10,58	12,00	6,01	77,57	22,43
				38	7,03	7,97	3,99	81,56	18,44
				0	1,54	36,79	18,44	100,00	0,00
				TOTAL	145,09	199,57			

Cálculo da Recuperação - Modelo Cinético de 1ª ordem											
		Valores Ex	xperimenta	is							
			Tamanh	o (µm)							
	106	75	53	45	38	0					
0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000					
10	0,0503	0,0924	0,1821	0,2973	0,2999	0,3743					
20	0,0632	0,1178	0,2275	0,3538	0,3975	0,4732					
35	0,0696	0,1395	0,2582	0,3883	0,4547	0,5388					
		Valores	Modelados								
_			Tamanh	o (µm)							
Tempo (min)	106	75	53	45	38	0					
0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000					
10	0,0498	0,0897	0,1787	0,2934	0,2962	0,3675					
20	0,0641	0,1224	0,2340	0,3632	0,4037	0,4859					
35	0,0690	0,1371	0,2545	0,3824	0,4516	0,5319					
		Erro Q	uadrático								
_			Tamanh	o (µm)							
Tempo (min)	106	75	53	45	38	0					
0	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00					
10	2,17E-07	7,48E-06	1,14E-05	1,50E-05	1,32E-05	4,60E-05					
20	9,21E-07	2,18E-05	4,30E-05	8,73E-05	3,87E-05	1,63E-04					
35	3,09E-07	5,65E-06	1,34E-05	3,48E-05	1,01E-05	4,85E-05					
TOTAL	1,45E-06	3,49E-05	6,78E-05	1,37E-04	6,20E-05	2,57E-04					
		Parâmet	ros obtidos								
_			Tamanh	o (µm)							
Parâmetro	106	75	53	45	38	0					
R∞	0,0699	0,1412	0,2588	0,3849	0,4650	0,5421					
k	0,1246	0,1008	0,1174	0,1436	0,1014	0,1133					

Anexo 60: Cálculo do Modelo Cinético de 1ª Ordem - Teste de Célula Pneumática