


MIR.

2. Electroacoustic music analysis and audio descriptors

The field of musical analysis has seen a growing interest in the
exploration of digital signal processing (DSP) resources, namely those related
to machine listening and audio descriptors (LERCH, 2012). However, if, on
the one hand, these tools are undeniably compelling – allowing for correlations
between quantitative data and complex sound characteristics – on the other
hand, they give rise to a number of questions regarding their application in
music analysis: How can we approximate these tools, holding their high degree
of technical specificity, to the framework provided by traditional music analysis?
How to develop consistent analyses using these tools, retrieving and processing
data that may corroborate for making inferences and deductions? How to treat
the diversity of generated data in order to enable the identification of multiples
relations between more extensive excerpts and sound objects? How to correlate
psychoacoustic and sensory features of a given sound object with the quantitative
data retrieved by computational means without simplifying the sonic phenomena?

Wishart makes a meticulous selection of sonic materials in order to
achieve particular purposes of his poetic goals: produce sound metamorphoses1,
which could be perspicuously perceived by the listeners. In this text, we
demonstrate the pertinence of developing and applying some computational
methods to bear analyses that could address the resulting sounds taking into
account these compositional goals, making it possible to create parametric
representations of these processes that may help to identify, verify and confirm
paths, stages and particularities of these sound transformations.

Firstly, however, it seems relevant to discuss some issues concerning key
analytical concepts, considering, at same time, the tools and the methodology of
the current study.

3. Analytical concepts, computational tools and methodology

The creative practices related to electroacoustic/computer music and
sound arts cover a wide diversity of genres, ranging from fixed media/acousmatic
music to creations that explore new technologies such as interactive means,
visual resources, and live-coding processes. Despite the specificities of these new
practices, the analytical approaches to the works and performances created with
those contemporary resources are still primarily based on theoretical frameworks
and methodologies of typo-morphology and spectro-morphology: namely, on
the seminal works of composers/theorists such as Pierre Schaeffer and Denis

1By sound metamorphosis, Wishart means the seamless temporal transformations of one sonic
material into another. This procedure can be achieved in a more continuous process (e.g., by
using spectral interpolations) or through a sequence of discrete steps of transformations.
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Smalley. While the main focus of these theories is to provide means to describe
the features and qualities of individual sound objects and moments, it is relevant,
especially in the context of these new practices, to pose the question: have we
developed means and approaches to draw comparisons, conduct evaluations and
make conjectures regarding the meaningful relationship between these objects
and moments?

Overall, it is possible to identify three comprehensive analytical
methodologies to address this repertoire: (1) listening-based analysis – which
conceives the conscientious listening as an analytical imperative, considering that
our listening skills circumscribe our comprehension of any sound phenomenon;
(2) visual analysis – based on representations such as sonograms, features
plots and other graphic forms, holding, more or less overtly, the idea that visual
representations can reveal to us essential aspects of sounds that would not be
explicit or obvious to the raw listening perception; (3) data-driven analysis – which
exploits computational tools and techniques, often imported from several different
areas, to generate quantitative data and suitable processing mechanisms that may
lead to meaningful analytical deductions (EMMERSON, 2016; ZATTRA, 2005).

Parallel to the researches in music analysis, an extensive number of
tools and methods have been developed in the field of computer music to fulfill
the audio industry demands. These resources are related to the field of music
information retrieval (MIR). The development of such tools did not happen for
their primary application in analytical and creative processes but, above all, for
their massive application, often associated with artificial intelligence techniques, in
services such as music streaming and recommendation, for example. Gradually,
however, many initiatives such as EOrema, EASY, EAnalysis, SQEMA, and others
have fitted these techniques for the analysis of electroacoustic/computer music.
These efforts allowed the analysts to deal with a diversity of visual representations
and data-based investigations (COUPRIE, 2019; EOREMA, 2019; PARK; LI; WU,
2009; PARK et al., 2010).

The methodology of our study explores the practical application of
descriptors and statistical methods in music analysis while taking into account
some principles and concepts of Schaeffer’s theoretical work. More specifically,
we intend to balance these strategies in order to evaluate our hypothesis regarding
Wishart’s sound metamorphoses on Imago. Previous researches proposed
to correlate Schaeffer’s typo-morphological categories with low and high-level
features retrieved by descriptors (PEETERS; DERUTY, 2010; PEETERS et al.,
2011; RICARD, 2004). As this association may give rise to several practical
and theoretical issues, our approach is to delve into the potentialities of these
different approaches by undertaking an exploratory analysis. This is done not
only by applying the mentioned techniques but also by taking into account general
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aspects of these sound objects identified by listening.

4. Audio features, descriptors, and retrieved data

The employment of terms such as feature, descriptor, and audio-retrieved
data often involves some degree of polysemy and ambiguity, even in MIR related
texts. For this reason, it is strategic, in the context of this paper, to clarify their
meaning.

By feature, we mean psycho-sensory characteristics that may be
described by more traditional parameters (pitch or intensity, for instance) or
by categories (such as brightness, loudness, harmonic timbre, and others). In
the context of retrieval systems, the term descriptor may be used to refer to
processing techniques used to retrieve data from signals or to indicate the very
data extracted through this process. For the sake of clarity, we use here this term
to designate the computational processing techniques rather than the resulting
retrieved data. Lastly, it is also relevant to underline the difference between the
audio-retrieved data and the features to which they are related. Indeed, different
data sets can express parameters that one could relate to different audio features
and qualities. Likewise, different versions of the same descriptor can generate
quite different data, which in turn could be deciphered in different ways.

The general workflow in the field of music information retrieval (MIR)
consists of retrieving data from audio signals by using descriptors that target
particular features. This process is usually followed by analysis/processing
techniques that perform tasks like automatic music transcription, source
identification, music recommendation, etc. (LERCH, 2012).

Further categories to characterize both the MIR related DSP techniques
and the data they produce are those of low-level and high-level descriptors. The
first ones are more directly related to the very mathematical descriptions of a
signal (e.g., signal mean, standard deviation, kurtosis). High-level descriptors, in
turn, designate processes that render data related to psycho-sensory parameters
of human listening (e.g., tempo, pitch, sensory dissonance, etc.).

In the context of music analysis, it is possible to find descriptors based on
psychoacoustic models (e.g., sensory dissonance, basilar membrane activation,
etc.) or typo-morphological classifications (allure, spectral evolution, and others)
(PEETERS; DERUTY, 2010; PEETERS et al., 2011; RICARD, 2004). While these
descriptors are pertinent for music analysis, few of them address idiosyncrasies
of electroacoustic music. For instance, we have not found any descriptor or
toolbox which focuses on glitch parameters, on the difference among frequency
and phase modulation, or randomness comparison.

Likewise, while there is a vast literature comparing, contrasting and
correlating low-level audio descriptors and high-level ones, few studies appraise
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their use in the context of electroacoustic music analysis. Remarkable efforts
to fill this gap were carried out to build a basic framework for approaching
electroacoustic music employing traditional MIR techniques (PARK et al., 2010;
PARK; LI; WU, 2009).

In this text, we use the following audio features, which are outlined
below2:

Descriptor Explanation
Chroma represents the frequency spectrum onto 12 pitch class

slots (C, C#, D, D#, ..., B), condensing the information
about octaves and giving information about tonal
properties of the audio

Root Mean Square (RMS) also known as ‘effective value’, generally corresponds to
the power of a signal – translating the oscillatory energy
of waves into its equivalent performed work through a
single value.

Spectral Centroid represents the barycenter (center of mass) of the
spectral energy. It is often related to features such
as brightness and sharpness

Spectral Spread is the standard deviation around the spectral centroid
and is also designated as spectral bandwidth

Spectral Rolloff the frequency below which 85% of the total spectral
energy lies.

Zero Crossing Rate (ZCR) indicates the number of times that a signal crosses the
horizontal axis

Mel-frequency cepstral
coefficients (MFCC)

represents the shape of the spectral envelope in a
highly compact form, consisting of few coefficients. It
is widely used in speech processing and instrument
recognition tasks due to its correlation with the human
perception of timbre.

Tab. 1 – Brief explanation about the used audio features

5. Principal component analysis (PCA)

The principal component analysis (PCA) is a statistical procedure that
allows the conversion of a set of possibly correlated variables into a smaller
number of non-correlated linear components, the so-called principal components.
The first component retains a more prominent variability regarding the analyzed
data, while each successive component retains less variability compared with the
previous one.

As the PCA is based on means and variances calculated from the
observation variables3, the method is scaling-sensitive. For a given experiment,
if one measures the pitches in Hertz or MIDI-note values, for example, different

2The definitions provided here are based on (PEETERS, 2004; LERCH, 2012)
3In our case, the observation variables are, for a given sample, the values of the data retrieved
by each audio descriptor.
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results are to be achieved while applying the PCA. Thus, feature scaling (translate
the variable quantities into zero mean and unity variation) is essential to assure
the uniformity weight of the observed variables. The explained variance shows
how much information is condensed into each graph axis, representing how much
variance each axis holds. If one axis holds significantly more explained variance
than another, each variation along the first axis should be more proportionally
taken into account by the analyst.

Even if it promotes some lossy compression, PCA is a highly powerful
tool because it allows the reduction of data dimensionality and variance. This
technique is commonly used for exploratory analysis, allowing the visualization
of distances and proximities between the sample’s characteristics. A reasonable
strategy to differentiate two C4 tones played by a large number of different
flute players, for instance, would be to employ PCA to data retrieved by audio
descriptors. In the first stage, one could use descriptors to estimate the
fundamental frequency, pitch, duration, intensity, vibrato’s frequency/amplitude,
reverberation time, MFCCs, etc. Further, PCA could be used to reduce the
dimensionality of this data, allowing for inferences to be drawn about the flutists
distinctive features. As the multiple descriptors data are likely to be correlated in
several levels, the PCA tends to work at its best for MIR-related tasks.

6. Imago - structural, aesthetical and theoretical aspects

Imago (2002) is an acousmatic stereo piece by Trevor Wishart, which is
entirely based on the sound sample of a clink between two whiskey glasses. Two
criticisms to the acousmatic creations motivated Wishart (2012a, p. 101) to start
working on Imago: firstly, the idea that it would be impossible to follow the logical
assemblage of the events on acousmatic compositions; secondly, that all kinds of
electroacoustic music would sound monophonic, being impossible to distinguish
among its objects, lines, streams and textures.

In order to confront the first critique, Wishart selected sound materials,
which hold potential connections with the original ones – bell, drum, and
similar sounds with more tonic or nodal harmonic timbre (SCHAEFFER, 1966,
p. 516-528). From this collection, he labors processes of sound metamorphosis
in order to generate audibly seamless transformations of these materials, with the
intended purpose of allowing the active aural perception by the audience of the
micro and macro features of these gradual changes.

Wishart’s answer to the second critique is to generate sequences and
grain-streams4 that move continuously within the stereo field, giving rise to multiple
spatial layers that relate to each other in parallel or contrary movement.

4These two concepts are extensively described and developed in Audible Design (WISHART,
1994, p. 55-65).
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For the analytical purposes of this text, we have selected the following
sound materials explored in Imago and their corresponding transformations:

Sound material/transformation Description
clink high pitched clink sound between two whisky glasses

[source material]
motif source material repeated rapidly with ascending pitch

transposition
clink-timestretched source material gradually time-stretched using a phase

vocoder
bell-generation a section of the sample’s attack is frozen by employing

spectral looping; after that, this sound is shaped by
an attack-resonance envelope; at last, frequency-shifted
copies of the sound created with the previous
transformations are synchronized (in order to have the
same onset)

fugu a time-reversed copy of the original sample – or a
cropped part of it – is spliced into the beginning of the
original sample

morph-to-drum two different materials are distorted by employing
waveset5 manipulation techniques, being mixed many
times; each step of the morphing process uses different
weights for mixing the sounds generated from both
materials

time-contract-by-mix the distance between successive events is reduced
– through cutting and mixing, without changing the
playback speed of the events – until the point they
form a sound perceive as a single event

Tab. 2 – Wishart’s materials and transformations that where analysed in our
study6.

7. Methodology

On the following work, we utilized the audio samples provided by
Wishart on the book which he describes and details his compositional processes
(WISHART, 2012b). Two aural criteria were used for selecting samples:
firstly, they needed to be spectro-morphologically closely related, or at least
its transformation path should sounded continuous; secondly, we selected only
monophonic samples, i.e. samples that aurally presented only one sound object.

Later, the samples were manually segmented 7, mixed down to mono

5A waveset is any wave section selected between three zero-crossings. While for sine waves,
this corresponds to the waveform, for complex waves, they consist of small parts of the
waveform. The most straightforward waveset distortion is achieved by clipping only some of the
sample’s wavesets. However, Wishart’s CDP presents dozens of possible waveset distortion
techniques.

6The names in the first column are those given by the composer himself (WISHART, 2012b,
p. 101-108).

7The segmented samples are available on <https://soundcloud.com/fellipe-miranda-martins/sets/
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and loaded into Python through libROSA package. The audio features, all from
libROSA, were retrieved using a 2048 window size with 512 hop size. We
utilize only the arithmetic mean of each windowed features points 8 and finally
each sample’s feature vector were normalized and applied to a PCA from the
scikit-learn package.

8. Results

After submitting all the samples to the PCA, the data in figure 1
was separated by the algorithm as we expected aurally: clink and motif
are closely related as they have been submitted only to simple pitch-shift
processes; clink-timestretched samples are highly correlated among themselves;
time-contracted-by-mix and morph-to-drum exhibits clear transformation patterns.
Although the samples located on the extremes points of the axis sound clearly
different, it is difficult to deduce a clear correlation axis’ most significant features
and typo-morphological criteria.

analysis-informed-by-audio>
8Whereby this is a quite aggressive data reduction, we also tested the system with a less
reductionist treatment, for instance using 4 means of equally spaced segments of each
windowed features points, however the final results were almost the same
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deep and slow allure; the contrary trend was observed on the right-hand located
sample(bell-generation05) low frequency content, unclear pitch ( channeled sound
or band-passed noise) as well as a fast and less intense allure.

On the other hand, when analyzing the upper end samples of the
principal component 2 (vertical axis), fugu01 exhibits strong amplitude and
frequency modulations (grain and allure) as well as longer durations with energy
envelope consisting of a gradual crescendo, reaching a peak then followed
by gradual decrescendo. All these characteristics are also displayed by the
cluster formed by clink-timestretched samples, which are specially located close
to fugu01. On the lowest side of the axis, we find morph-to-drum05 and
time-contracted-by-mix03, which shows clear attack-ressonance energy envelopes
and are the shortest samples among the whole database and therefore does not
exhibit almost any timbral evolution over time.
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MFCCs.

No Windowing Three Frames

Weight PC1 PC2 PC1 PC2

1 MFCC 1 MFCC 2 Spectral Bandwidth 3 MFCC 1
2 MFCC 5 MFCC 17 Spectral Rolloff MFCC 5
3 MFCC 7 ZCR MFCC 2 RMS 1
4 MFCC 4 MFCC 12 Spectral Bandwidth 2 RMS 3
5 RMS Spectral Centroid Spectral Centroid 2 MFCC 3
6 MFCC 6 MFCC 11 Spectral Centroid 3 RMS 2
7 MFCC 3 Spectral Rolloff Spectral Rolloff 3 MFCC 4
8 Spectral Bandwidth MFCC 16 Spectral Centroid 1 MFCC 20
9 MFCC 8 MFCC 8 ZCR 2 MFCC 6

10 MFCC 15 MFCC 14 Spectral Bandwidth 1 MFCC 7

Tab. 3 – Feature sorted by contributions for the two first PCA components

The sequence of samples morph-to-drum and time-contract-by-mix
unveils clear patterns in both PCA plots, furthermore they are closely located
together into one of the plot’s regions, detached from all other samples.
Accordingly, they tend to be similar and also retain similar differences when
compared with the source material (clink ). When zooming into their region , we
distinctly see two different trends concerning their transformation trajectories.

When aurally comparing the source material(clink ) with the initial
transformations (morph-to-drum00) and (time-contract-by-mix00) they sound highly
related, especially clink and time-contract-by-mix00 which sound almost identical,
differing only by a small difference in middle and high frequency, probably caused
by the comb-filter effect as a result of pushing together the copies of the original
sample.

Along the transformation path, morph-to-drum00 has gone through a
reduction of its high content (aurally perceived as a low pass filter with descending
cut-off frequency) as well as is attacks gradually sounds more percussive.
This transformation path is clearly correlated with the features that are mostly
important for the principal component 1. When analysing the path traced by
time-contract-by-mix00 we can see a clear change in direction after the fourth
sample. Aurally, we perceive a clear resonance on the lows together with a
moveable filter frequency effect from this point onwards, therefore the moveable
filter can be correlated with the spectromorphological trend of the principal
component 2 and the increased presence of low frequencies with the samples
going towards the positive side of the principal component 1.
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analytical method by using the CDP to generate more correlated transformed
samples checking how well our model behaves and inferring what could be the
linking materials among transformations that are strongly separated in the graph.

Even though the present work focuses on music analysis, the tools and
methods outlined here retain multiple creative potentials, which will be explored
in further works. Moreover, we are currently testing methods that could identify
the presence of the analysed materials in the middle of dense sections of the
piece. Lastly, we intend to extend the present study towards a comparison
with Schaefferian morphological descriptors such as the ones presented on
(PEETERS; DERUTY, 2010; PEETERS et al., 2011; RICARD, 2004).
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