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Resumo

A metáfora da Dı́vida Técnica (TD, do inglês Technical Debt) refere-se aos custos in-

eqúıvocos de manutenção e evolução gerados por decisões sub-ótimas comumente tomadas

por desenvolvedores de software. Desde a sua concepção, o termo foi rapidamente adotado

na indústria e tornou-se objeto de diversos estudos, investigando técnicas de identificação,

gerenciamento e pagamento de TD. Nos últimos anos, vários estudos surgiram em torno

do fato de que desenvolvedores documentam explicitamente suas d́ıvidas, o que a literatura

conhece como Dı́vida Técnica Auto-Admitida (Satd, do inglês Self-Admitted Technical

Debt). Particularmente, a maioria dos estudos anteriores investigou essa prática anal-

isando comentários de código-fonte para identificar ind́ıcios de admissão de TD. Nesta

tese, denotamos essa forma de Satd como Satd-C. No entanto, ainda não está claro como

diferentes artefatos de software são utilizados para admitir TD. Especificamente, poucos

estudos investigaram profundamente Satd em sistemas de rastreamento de issues, apesar

da sua crescente adoção no desenvolvimento de software. Para contribuir na resolução

desse problema, descreve-se nesta tese um estudo aprofundado sobre a adoção de issues

para documentar e gerir a Dı́vida Técnica Auto-Admitida (denotado como Satd-I). Esta

pesquisa está organizada em quatro unidades de trabalho. Inicialmente, são exploradas

as caracteŕısticas da adoção do Satd-I, em termos dos tipos de TD comumente docu-

mentados em issues, e as motivações para a criação e o pagamento delas. Em seguida,

estende-se os resultados iniciais investigando a interação entre Satd-C e Satd-I em um

dataset de larga escala. Com base nas evidências de que elas possuem naturezas distintas,

avaliam-se as circunstâncias em que cada forma de Satd é mais adequada. Finalmente,

reune-se o conhecimento produzido nos estudos emṕıricos anteriores para propor e avaliar

um framework leve para apoiar o gerenciamento de TD através da criação de issues.

Esse framework é denominado LTD: Less Technical Debt Framework. No geral, os re-

sultados obtidos confirmam que os desenvolvedores também utilizam issues para admitir

TD em seus projetos. Mostra-se também que issues são mais adequadas para documen-

tar d́ıvidas de alto ńıvel e alta prioridade. Por fim, foram obtidos resultados promissores

após a adoção do LTD em duas equipes de desenvolvimento em uma grande empresa

pública. Por exemplo, as equipes conseguiram reduzir o TD e criar uma lista de issues

para gerenciar o TD durante a execução dos sprints.

Palavras-chave: d́ıvida técnica, documentação, mineração de repositórios de software,

sistemas de rastreamento de issues, framework LTD.



Abstract

The Technical Debt (TD) metaphor refers to the unavoidable maintenance and evolution

costs of the not-quite-right decisions commonly taken by software developers. The term

was quickly adopted in industry and became the subject of various studies in the literature,

mostly regarding techniques for TD identification, management and payment. In recent

years, several studies emerged around the observation that developers explicitly document

their debts, which the literature refers as Self-Admitted Technical Debt (Satd). Particu-

larly, most previous studies investigated this practice by analyzing source code comments

as indications of TD admission. In this thesis, we denote this form of Satd as Satd-C.

However, there is a lack of knowledge about the adoption of different artifacts to admit

TD. Particularly, few studies deeply investigated Satd in issue tracker systems, despite

the increasing adoption of issues in software development. In order to contribute to this

problem, we describe in this thesis an in-depth study on the adoption of issues to docu-

ment and manage Self-Admitted Technical Debt (which we refer as Satd-I). We organize

the research in four major working units. We start by exploring the characteristics of

Satd-I adoption, in terms of the types of TD commonly documented in issues, and the

motivations of its insertion and payment. Next, we strengthen our initial results by inves-

tigating the interplay between Satd-C and Satd-I in a large-scale dataset. Based on the

evidences that they have distinct natures, we assess the circumstances when each form

is more suitable. Finally, we wrap-up the knowledge produced in our empirical studies

by proposing and evaluating a light-weight framework to support developers to manage

TD through the creation of issues. We call this framework as LTD: Less Technical Debt

Framework. Overall, our results confirm that developers also use issues to admit TD

in their projects. We also show that issues are more suitable to document high-level

and high-priority debts, mostly regarding concerns that need visibility and discussions

between developers. Finally, we achieved promising results after adopting LTD in two

development teams in a large public company. For example, the teams could reduce TD

and create a backlog of issues to manage TD during the execution of sprints.

Keywords: technical debt, documentation, mining software repositories, issue tracking

systems, LTD framework.
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Chapter 1

Introduction

We start this chapter by introducing the problem that motivates this thesis (Section 1.1).

Then, we highlight the major goals and contributions obtained around our work (Sec-

tion 1.2). Finally, we present the list of publications resulted from this thesis (Section 1.3),

as well as the outline of the remaining of this document (Section 1.4).

1.1 Problem and Motivation

Modern software developers are under constant pressure to evolve their systems,

in order to preserve existing clients or to explore new markets. During this process, it is

inevitable to incur in sub-optimal technical decisions, whose accumulation will eventually

emerge in the form of features that are more risky and difficult to implement. To frame

this practice, Cunningham [1992] coined the Technical Debt (TD) metaphor:

Although immature code may work fine and be completely acceptable to the cus-

tomer, excess quantities will make a program unmasterable, leading to extreme

specialization of programmers and finally an inflexible product. Shipping first

time code is like going into debt. A little debt speeds development so long as it

is paid back promptly with a rewrite. Objects make the cost of this transaction

tolerable. The danger occurs when the debt is not repaid. Every minute spent

on not-quite-right code counts as interest on that debt. (Cunningham [1992])

In fact, the term has been widely adopted since its definition [Kruchten et al., 2012]

and became subject of various studies, mostly regarding its identification [Liu et al., 2018;

Rios et al., 2018; Alves et al., 2016], management [Lim et al., 2012; Storey et al., 2008;

Sierra et al., 2019a] and assessment [Wehaibi et al., 2016; Kamei et al., 2016; Silva et al.,

2016]. In this context, the majority of these studies were based on the occurrence of code

smells as a proxy to indicate TD. Moreover, they mostly focused on exploring business
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aspects that characterize the circumstances which companies introduce TD and prioritize

the repayment of particular types of debts.

For example, Zazworka et al. [2011] first focused on the detection of Technical Debt,

comparing the efficiency of automated tools against human assessments. In a follow-up

study, Zazworka et al. [2013] measured the impact of Technical Debt in software quality,

showing that God Classes have a higher impact on the overall measures. Fontana et al.

[2012] also investigated the occurrence of TD in the form of code smells, proposing an

approach to classify the debts based on their potential risk. Ernst et al. [2015] conducted a

survey with 1.8K developers and found that architectural decisions are the most important

cause of TD.

Due to its importance to the software process and quality, it is not a surprise to

observe that developers also create explicit documentation to manage TD. Based on this

practice, Potdar and Shihab [2014] took a novel direction from TD studies and coined

the concept of Self-Admitted Technical Debt (Satd). In this context, they used

code comments as proxy to identity TD admission. For example, they showed that

developers use terms such as TODO, fixme, and hack in comments to remind themselves

or other developers that a given part of the code should be changed and improved in

future sprints. As an example, Figure 1.1 illustrates an instance of Satd extracted from

pytorch/pytorch source code.

Figure 1.1: Example of Satd in pytorch/pytorch (see the TODO term in the top
left corner).

Most previous studies on Satd followed this path, using code comments to identify

TD and deepening the understanding about this form of debt. For example, Bavota and

Russo [2016] used a larger dataset to replicate the original study conducted by Potdar

and Shihab [2014]. They confirmed the usage of code comments as means to admit

TD and observed a similar behavior in comparison to previously studied TD instances.

Maldonado et al. [2017a] showed that most Satd instances are self-removed—paid by the

same developer who introduced them—as part of bug fixing and enhancement activities.

Zampetti et al. [2018] investigated the aforementioned removal operations to qualitatively

characterize how Satd is paid. Sierra et al. [2019b] showed that Satd can be used as an

indicator of architectural divergences.
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In contrast to a plethora of studies performed on Satd, few studies relied on

other artifacts to identify Technical Debt admission. Particularly, they explored the

existence of TD admission in issue trackers by analyzing developers discussions and other

textual interactions. For example, Bellomo et al. [2016] prospected this idea by manually

examining a sample of 1,264 issues mined from four industry and governmental issue

trackers. They found that developers discussed TD in 109 issues. Dai and Kruchten

[2017] also studied this possibility by applying natural language processing and machine

learning techniques to identify TD in 8,149 issues. As a result, the authors provided a set

of 114 keywords that can be used to detect different types of TD from issue descriptions.

Lastly, Li et al. [2020] conducted a case study to investigate the existence of Satd in

issue discussions. They manually investigated a sample of 500 issues and identified a set

of 117 discussion excerpts about TD.

In this thesis, we follow this less-studied direction by making an in-depth

investigation on the adoption of issues to identify, admit, and document TD.

In this context, we refine the state-of-the-art by arguing that TD in issues can also be

indicated by the adoption of labels such as technical debt, debt, and workaround. As

an example, Figure 1.2 illustrates this practice. Particularly, the issue in this figure

highlights the need of cleaning part of the code of microsoft/vscode to better handle

similar terminal ID names. As we can see, it received a debt label.

Figure 1.2: Example of TD in microsoft/vscode documented using an issue (see the
debt label in the bottom right corner).

In this thesis, we assume that there are two types of Satd1:

1. Satd documented using source code comments (Satd-C), which has been

extensively studied in the past;

2. Satd documented using issues (Satd-I), which has been less studied in the

literature, usually only in a restrict set of textual interactions (issue descriptions

and discussions).

1In fact, Satd can also be documented in other artifacts, such as commit messages, wikis, forum
discussions, etc. However, these other artifacts are not the focus of this thesis.
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1.2 Goals and Contributions

As early stated, most previous studies investigated Satd by analyzing TD-related

concerns in source code comments [Potdar and Shihab, 2014; Huang et al., 2018; Liu

et al., 2018; Sierra et al., 2019a]. The ones that relied on other software artifacts to

identify Satd are restricted to primarily exploring indications of TD admission (i.e.,

investigating whether developers self-admit TD by other means). Particularly, few studies

deeply investigated Satd in issue tracker systems, despite the increasing adoption of issues

in software development [Cabot et al., 2015]. Therefore, there is still a lack of knowledge

about this practice, including the characteristics of the debts documented in issues, as

well as the effectiveness of creating and managing issues to reduce TD. In other words,

the current knowledge on Satd is mostly restricted to debts documented in a single type

of artifact (i.e., most previous results consider only Satd in code comments). Hence, the

general objective of this thesis is described as follows:

We aim to provide an in-depth study on Technical Debt documented using issues

(Satd-I), including its characteristics, the interplay with Satd-C, and the circum-

stances to adopt one or another. We also intend to propose and evaluate a lightweight

framework to support developers to manage TD through the creation of issues.

To accomplish this objective, we divided the work in four major working units:

1. First, we explore the characteristics of Satd-I adoption, assessing the types of

TD frequently documented in issues, as well as the reasons of its introduction and

payment.

2. In the second working unit, we strengthen our initial results by collecting a large-

scale dataset of Satd-C and Satd-I items and by investigating the interplay be-

tween both forms of Satd.

3. Based on the results of the second working unit—in which we found that Satd-C

and Satd-I have distinct natures— we dedicate the third work to investigate the

circumstances that drive developers to document Satd either in code comments,

or in issues. We also propose a set of guidelines to support developers to choose

between one or another.

4. Finally, in the fourth working unit, we propose a framework that considers Satd-I as

means to document and manage Technical Debt. The framework includes four major

activities concerning TD identification, monitoring, repayment, and documentation.
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We also assess its adoption in a real scenario, including two development teams from

a large public company.

We summarize each work and highlight their contribution in the remainder of this section.

1.2.1 Characterization of SATD in Issues

Although previous studies have prospected the existence of TD admission in issues

excerpts, there is a lack of solid understanding about the adoption of this artifact as means

to document Technical Debt. Particularly, we are not sure whether documenting TD in

issues is a common practice, as well we are unaware about the characteristics of the

TD commonly reported in issues, and the circumstances that drive developers to create

and pay such debts. Therefore, in this thesis we initially seek to empirically study and

characterize this practice and provide solid insights about Satd-I adoption. In this study,

we present the following contributions:

• We identify and study Satd by mining issue tracker systems. We confirm that

developers use issues to admit Technical Debt in their projects, i.e., Satd does not

appear only in code. For that, we collect and characterize a dataset of 286 Satd-I

instances, from five relevant open-source systems.

• We show that almost 60% of the studied Satd-I is related to Design flaws. Other

types of Satd-I include UI (10%), Tests (9%), and Performance (8%).

• We also surveyed developers involved in Satd-I payment. As a result, we show that

almost 45% of them indicate that Satd-I was introduced as a deliberate choice to

ship earlier. Regarding the reasons to pay Satd-I, most of the debts are paid to

reduce their interest (65%) or to clean code (28%).

1.2.2 Interplay Between SATD Types

Based on the results of our initial study—in which we show that issues are indeed

adopted to document TD—we investigate the interplay between the debts reported in

code comments and issues. To accomplish that, we explore the feasibility of implementing

a tool to document Satd. Particularly, we evaluate developers interest in transforming
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Satd-C instances into GitHub issues, and we also investigate whether it is a common

practice to link both forms of Satd. In fact, this tool was suggested by many commenters

after our initial study was discussed at Hacker News, in 2020.2 Therefore, we emphasize

the following contributions of this second working unit:

• We strengthen our initial observations by collecting a large-scale dataset of 20K

Satd-I issues and 72K Satd-C comments.

• We implement AdmiTD: a prototype tool that identifies code comments indicating

TD and automatically transforms them in GitHub issues (Satd-I). By applying

AdmiTD and surveying core developers from 10 GitHub repositories, we show that

there is a negligible interest in such transformations.

• We also investigate the viability of tools for linking Satd-C to existing instances

of Satd-I. Such tools can make the navigation from Satd-C to Satd-I easier

and straightforward. However, we show that linking both forms of Satd is not a

common practice (i.e., we found less than 1% of explicit references).

• We conclude by arguing that there is a minor interplay between both forms of Satd,

i.e., Satd-C and Satd-I are adopted to report TD in different circumstances.

1.2.3 Guidelines to Document SATD

As we concluded in our second study that Satd-C and Satd-I are adopted to

document TD in distinct situations, we dedicate our third study to document the cir-

cumstances that drive developers to report Satd either in code comments or issues.

Specifically, we elicit a catalog of guidelines to support developers to better document

Satd. With this study we achieved the following contributions:

• After surveying 59 developers that documentedTD using both Satd-C and Satd-I,

we present a catalog of 13 guidelines to better document Satd (six recommendations

for choosing Satd-C and seven for Satd-I).

• We show that developers mostly use source code comments to provide context to

the reader (58%), to report low priority debts (24%), and to document local-scoped

TD (19%).

2https://news.ycombinator.com/item?id=22915584

https://news.ycombinator.com/item?id=22915584
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• By contrast, issues are used to foster discussion with other team members (31%),

to document TD that needs to be tracked (27%), and to report debts that spans in

multiple places (25%).

1.2.4 LTD: Less Technical Debt Framework

In the previous studies, we found that (i) issues are indeed adopted to document

Satd; (ii) debts documented in code comments and in issues have distinct natures; and

(iii) there are specific circumstances where developers find more suitable to adopt one

or another. Based on these results, in our fourth effort we explore the effectiveness of

adopting issues in activities to manage TD. Particularly, we wrap up the previous knowl-

edge gained with our studies into LTD (Less Technical Debt): a lightweight framework

that aims to inject TD concerns in agile-based methodologies. To accomplish that, LTD

proposes four activities:

1. TD Consensus: in this activity, the team aims to create a common understanding

among developers about TD concepts.

2. TD Discovery: next, the team is stimulated to prospect the TD that already

exists in the system and document them through the creation of labeled issues

(which we now refer as TD Story).

3. TD Planing: based on the backlog produced during the TD Discovery, in this

activity the team plans the payment of TD in every sprint.

4. TD Payment: finally, in TD Payment days, developers dedicate effort to pay the

planned debts.

We also assess LTD in a real-world scenario, involving 30 stakeholders and two de-

velopment teams (in different development stages) from a large public company. We show

that LTD was indeed effective to reduce TD in the studied systems, creating awareness

in both teams and stimulating a culture of constantly documenting and paying debts.
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1.3 Publications

This thesis encompasses the contributions contained in the following publications:

IEEE Software ’22 Xavier, L., Montandon, J. E., and Valente, M. T. Comments or

issues: Where to document technical debt? IEEE Software, 39(5):84–91, 2022b

(Chapter 5).

EMSE ’22 Xavier, L., Montandon, J. E., Ferreira, F., Brito, R., and Valente, M. T.

On the documentation of self-admitted technical debt in issues. Empirical Software

Engineering, 27(163):1–34, 2022a. (Chapter 4).

MSR ’20 Xavier, L., Ferreira, F., Brito, R., and Valente, M. T. Beyond the code: Mining

self-admitted technical debt in issue tracker systems. In 17th International Confer-

ence on Mining Software Repositories (MSR), pages 137–146, 2020. (Chapter 3).

Furthermore, we also contributed to the following work during this Ph.D. research:

EMSE ’20 Brito, A., Valente, M. T., Xavier, L., and Hora, A. You broke my code:

Understanding the motivations for breaking changes in APIs. Empirical Software

Engineering, 25:1458–1492, 2020

SANER ’18 Brito, A., Xavier, L., Hora, A., and Valente, M. T. Why and how Java

developers break APIs. In 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER), pages 255–265, 2018

1.4 Thesis Outline

We organize this thesis as follows:

Chapter 2 covers background information to support this thesis. We provide an overview

about Technical Debt, Self-Admitted Technical Debt, and Issue Tracker Systems.

We also discuss previous research on Satd, separated in two categories: studies

related to Satd-C and studies related to Satd-I. Finally, we highlight the main

differences between these works and ours.
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Chapter 3 presents our two initial studies aiming to characterize Technical Debt doc-

umented in issues. In the first, we present the types of Technical Debt commonly

documented in issues. In the second, we unveil the circumstances that drive devel-

opers to introduce and pay these debts.

Chapter 4 reports two studies on the interplay between Satd-C and Satd-I. In the

first, we investigate developer’s interest in automatically creating Satd-I based

on Satd-C instances. In the second, we explore the practice of creating explicit

references to Satd-I in Satd-C comments.

Chapter 5 unveils a catalog of 13 guidelines to support developers to decide whether to

document Technical Debt in comments or issues. For that, we performed a survey

with developers responsible for creating both forms of debt.

Chapter 6 presents the Less Technical Debt framework (LTD), describing the four main

activities proposed to be injected in agile-based development teams. We also provide

the results of an initial case study conducted with two teams from a large public

company from Brazil.

Chapter 7 summarizes the conclusions we leveraged throughout this thesis and outlines

some ideas we find interesting to investigate in the future.
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Chapter 2

Background

We start this chapter by providing an overview about the Technical Debt metaphor and

its concepts (Section 2.1). Similarly, we also discuss in Section 2.2 the concept of Self-

Admitted Technical Debt and its major fields of study. Then, we present papers that rely

on issue tracker systems to collect software engineering artifacts and investigate developers

practices (Section 2.3). In Section 2.4, we present the studies that are most directly related

to this thesis. Finally, we provide our final remarks in Section 2.5.

2.1 Technical Debt Overview

In 1992, Ward Cunningham resorted to a financial analogy to frame the costs and

benefits of sub-optimal implementation decisions in software development [Cunningham,

1992]. Particularly, the Technical Debt (TD) metaphor warns developers about the long-

term impact of the quality workarounds commonly adopted to promote earlier releases or

rapid software growth. Although the term was quickly embraced by industry, TD began

to be investigated in the literature by the early 2000s [Ciolkowski et al., 2021]. In 2010,

the first workshop dedicated to the subject promoted the increase of interest in academia.

Recently, to consolidate the state-of-the-practice and unify several concepts about TD,

researchers and practitioners gathered in 2016 at a Dagstuhl seminar. By the end of the

event, it was proposed the following definition of Technical Debt:

In software-intensive systems, technical debt is a collection of design or imple-

mentation constructs that are expedient in the short term, but set up a technical

context that can make future changes more costly or impossible. Technical debt

presents an actual or contingent liability whose impact is limited to internal

system qualities, primarily maintainability and evolvability. (Avgeriou et al.

[2016])
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In comparison to Cunningham’s initial proposition, this last definition is not re-

stricted to source code, but also includes concerns related to the whole software devel-

opment cycle. For example, it considers cases when developers deliver software without

tests, neglect documentation updates, or create sub-optimal infrastructure solutions. In

this thesis, we follow this modern definition.

A second relevant outcome of this seminar is the conceptual model presented in

Figure 2.1. This view summarizes the elements related to Technical Debt. Based on the

premise that a system has a set of concerns, the model includes TD as one of them. In this

case, the Technical Debt associated to a system is composed by a set of TD Items, which

are related to three relevant elements: Cause, Consequence, and DevelopmentArtifact.

The first, reflects the circumstances that drive developers to create an item: a process,

schedule pressure, or an arbitrary decision. The Consequences associated to a TD item

include its impact in terms of the cost of future changes, the value of the system, the

schedule, and the quality of the system. Finally, a TD item is also associated to one or

more artifacts, such as: the code of the system, its documentation, tests, and defects.

Figure 2.1: Conceptual model for Technical Debt proposed by Avgeriou et al. [2016].

In this thesis, we assume a relationship that is not detailed in the model: a TD

Item can be documented—or self-admitted, as we better discuss in Section 2.2—in one

or more artifacts. As illustrated in Figure 2.2, we include a many to many association

between “TD Item” and a new element called “DocumentationArtifact”. These artifacts

can be of at least two types: code comments and issues.
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TD Item DocumentationArtifact

Code Comment Issue

+ documentedAt

0..*1..*

Figure 2.2: Extension of the conceptual model for Technical Debt assumed in this thesis.

After assuming that, in this PhD thesis we conduct an in-depth investigation of the

TD items documented using issues, including its characteristics, the interplay with the

ones documented in code comments (Chapters 3 and 4), and the circumstances to adopt

one or another (Chapter 5). Finally, we propose and evaluate a lightweight framework

to support developers to manage TD through the creation of issues (Chapter 6). In

the remaining of this chapter, we also discuss two relevant concepts for this thesis: TD

categorization (Section 2.1.1), and TD management (Section 2.1.2).

2.1.1 Technical Debt Categorization

Identifying and categorizing a TD Item is useful to promote its payment and

prioritization (i.e., different categories of debts usually require different solutions and

priorities). For this reason, several authors presented distinct perspectives to organize

and classify Technical Debt. In this section, we present two perspectives adopted in this

thesis to characterize Self-Admitted Technical Debt documented in issues (Chapter 3).

The first refers to the origin and motivations of the debt, resulting in a classification

of TD into four categories depicted in the form of a quadrant. The second refers to a

set of more specific categories that can be used during the identification, payment, and

prevention of TD.

The Technical Debt Quadrants

Firstly, McConnell [2007] divided the Technical Debt into two basic kinds: the ones

incurred unintentionally and the ones incurred intentionally. According to the author,

debts of Type I (Unintentional Debt) include “the non-strategic result of doing a poor

job”. For example, a code produced by a novice developer that turns out to be difficult to

maintain and evolve. By contrast, debts of Type II (Intentional Debt) occur “when

an organization makes a conscious decision to optimize for the present rather than for the
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future”. In this case, the author argues that time constraints and release pressure are the

most common motivations to provoke such debts.

Extending this initial classification, Fowler [2009] embraced situations when TD

is originated by a reckless or prudent posture of developers. In other words, the author

considers that TD is originated deliberately or inadvertently, as well as recklessly or

prudently. Such categories are represented by the author in the form of a quadrant, as

illustrated in Figure 2.3. The four segments in this figure can be explained as follows:

Reckless Prudent

Deliberate

Inadvertent

"We don't have time 
for design" 

"We must ship now 
and deal with 
consequences"

"What's Layering?" "Now we know how we
should have done it"

Figure 2.3: The Technical Debt quadrants proposed by Fowler [2009].

• Reckless—deliberate debt: this category of TD is originated by the careless-

ness of developers. In this case, although they know that they are creating a debt,

they are not aware about its negative effects.

• Reckless—inadvertent debt: in this type of debt, there is a lack of knowledge

on software engineering best practices. In this case, the development team is not

aware of the existence of such debts, which can lead to unexpected negative surprises.

• Prudent—deliberate debt: this category includes TD created on purpose, to

reach short-term benefits. Particularly, developers that incur in this type of debt

take into consideration the potential long-term consequences. As illustrated in the

figure, they assume a posture of “we must ship now and deal with consequences”.

• Prudent—inadvertent debt: finally, this type of debt refers to poor solutions

latter identified, mostly after the knowledge acquired during the development pro-

cess. In this case, the debt was originated by developer’s lack of knowledge at the

time when they were producing the solution.
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Specific Types of Technical Debt

Several other authors proposed taxonomies to classify TD according to different as-

pects [Alves et al., 2014, 2016; Li et al., 2015]. In Chapter 3 of this thesis, we classify the

Satd-I in our initial dataset according to the categories proposed by Li et al. [2015]. In

this work, the authors describe a systematic mapping to identify and analyze scientific

papers on TD from 1992 to 2013. As a result, they propose the following categories:

• Design: refers to technical shortcuts used in internal method design and high-level

architecture.

• UI: refers to debt on the elements of user interfaces.

• Tests: refers to the absence of tests or to workarounds on existing code for testing.

• Performance: refers to debt that affects system performance (e.g., in time and

memory usage).

• Infrastructure: refers to debt on third-party tools, obsolete technologies or

deprecated APIs.

• Documentation: refers to insufficient, incomplete, or outdated documentation.

• Code Style: refers to code style violations.

• Build: refers to debt in building code, as when using scripts that make the build

more complex or slow.

• Security: refers to shortcuts that expose system data or compromises user per-

mission access.

• Requirements: refers to debt on requirements specification that leads to imple-

mentation problems.

2.1.2 Technical Debt Management

As a financial debt—which interest increases over the time—it is crucial that Tech-

nical Debt concerns are well managed. Particularly, developers (or other stakeholders)

should be aware about the TD Items included in the project, constantly trying to pay the

debts, and consequently improving software quality. In most cases, they should find the

right balance between keeping postponing the removal of a debt—and accepting its un-

avoidable increase of interest—or dedicating efforts to pay it. Additionally, deciding which
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debts should be addressed first is another relevant aspect to be taken into consideration

in such scenarios.

In this context, several studies proposed different methodologies to manageTD [Freire

et al., 2020; Pérez et al., 2021; Freire et al., 2021; Besker et al., 2019; Eliasson et al., 2015;

Rocha et al., 2017; Guo et al., 2016; Rios et al., 2020; Li et al., 2015]. Particularly, they

mostly agree on a subset of the activities proposed in the seminal work of Li et al. [2015].

According to the authors, the following activities should be addressed to manage TD:

• Identification: refers to finding TD Items, e.g., by using static code analysis

tools.

• Measurement: includes techniques to quantify the amount of TD in a system.

• Prioritization: supports the decision-making process about the debts that should

be addressed first.

• Prevention: aims to avoid incurring further debts on top of the already accumu-

lated ones.

• Monitoring: once TD is identified, this activity seeks to keep unpaid debt under

observation (in order to avoid letting it go out of control).

• Repayment: refers to actually eliminate the Technical Debt instances from the

system.

• Representation/documentation: aims to make TD well-documented and vi-

sualized, promoting awareness on the overall situation of the system.

• Communication: promotes an open-space communication among stakeholders,

which promotes the discussion of the necessary measures to prevent and pay TD.

The Less Technical Debt (LTD) Framework—proposed in Chapter 6 of this thesis

to manage TD through the creation of issues—includes activities that directly promotes

Identification, Monitoring, Repayment, and Documentation of TD.

2.2 Self-Admitted Technical Debt

The concept of Self-Admitted Technical Debt (Satd) was first introduced by Pot-

dar and Shihab [2014]. In opposition to a number of previous works—that focused on the

detection of TD Items using static analysis tools—the authors observe that developers
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commonly document TD through source code comments. Through the analysis of more

than 100K code comments, they show that (i) 2.4%–31% of source code files document

Self-Admitted Technical Debt items, (ii) experienced developers tend to introduce more

debts, and (iii) 26%–63% of Satd items gets removed.

Thus, Potdar and Shihab [2014] inaugurated a new branch of study in the Technical

Debt field. In this scenario, the relevance of this study emerges not only because it was

the first to prospect this strategy to document TD, but also because it contributed with a

set of recurrent textual patterns used by developers to this purpose. By manually reading

more than 100K code comments, the authors distilled a set of 62 recurring patterns, which

include terms like: hack, fixme, is problematic, this isn’t very solid, probably a bug, hope

everything will work, fix this crap. Table 2.1 presents a sample of comments that were

identified as indicating Satd.

Table 2.1: Sample of Satd comments identified by Potdar and Shihab [2014].

Project Comment

Eclipse // TODO this is such a hack it is silly

Chromium OS // Unsafe; should error.

ArgoUML // FIXME: This is such a gross hack...

Apache /* Ugly, but what else? */

Based on these patterns, several studies flourished in the literature. Particu-

larly, Sierra et al. [2019a] mapped the knowledge regarding Satd in three categories:

• Detection studies: includes the literature focused on “proposing, studying or

improving approaches, techniques, and tools to identify or detect instances of Satd”.

Particularly, these studies advanced the initial approach of Potdar and Shihab [2014]

by presenting alternatives that include pattern-based detection, text mining, NLP

detection, or change-level detection approaches.

• Comprehension studies: comprises studies that aim to investigate developer’s

practice of self-admitting TD, and to characterize the life cycle of a Satd. Specifi-

cally, studies focused on comprehending Satd seeks to characterize its introduction,

evolution, payment, and relation with different aspects of the software process.

• Repayment studies: includes the works focused on approaches, techniques, and

tools that seek to remove or mitigate Satd instances.

As we will better discuss in Section 2.4, most previous studies on Satd relies

on source code comments to identify and manage Technical Debt. We denote

this form of Satd as Satd-C. By contrast, in this thesis we follow a less populated

branch on the Comprehension studies field, by investigating Self-Admitted Technical



2.3. Issue Tracker Systems 29

Debt in issues (Satd-I). Particularly, we conduct an in-depth investigation of Satd-I,

including its characteristics (Chapter 3), the interplay with Satd-C (Chapter 4), and

the circumstances to adopt one or another (Chapter 5). We also propose and evaluate

a lightweight framework to support developers to manage TD through the creation of

issues (Chapter 6).

2.3 Issue Tracker Systems

Issue Tracker Systems are software systems that maintain a dataset of tickets (or

requests) for one or more projects. Such requests are usually related to problems identified

by developers, issues, bug reports, or feature enhancements. These systems also provide

an interface that allows developers to interact with the reported issues [Bissyandé et al.,

2013]. Such interaction may include operations like reporting a new issue, sending an

attachment file, or providing comments for an issue [Anvik et al., 2006].

Most open-source projects use a tracking system to support their development

process. They provide a central knowledge repository about the issue’s handling progress,

as well as a communication channel for contributors [Rocha et al., 2016; Anvik et al.,

2006]. Currently, there are several Issue Tracker Systems that are used in open-source

software development. In this thesis, we mine and analyze issues from the tracking systems

associated to GitHub’s and GitLab’s repositories. In both systems, the reported issues

contain elements that provide relevant information about developers activities, such as:

issue’s title, description, comments, authors, status, opening and closing dates, labels,

and closing commits.

In software engineering research, mining Issue Tracker Systems and their associated

issues can provide insightful information about developer’s activities. This approach has

become a commonplace, in which issues are assessed for different purposes. For example,

previous studies have collected issues from tracking systems to evaluate tasks related to

classification of bug reports [Bettenburg et al., 2008; Camilo et al., 2015; Alonso-Abad

et al., 2019]. Other authors assess historical data to identify patterns to assist with

automating particular tasks, such as: Rocha et al. [2016]; Choetkiertikul et al. [2015];

Wang et al. [2021]; Kallis et al. [2019]. However, as we will better discuss in Section 2.4.2,

few previous authors look at Issue Tracker Systems through the lens of TD.
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2.4 Related Work

As a natural consequence of the first studies on Self-Admitted Technical Debt

(Satd)—which started with Potdar and Shihab [2014] identifying TD admission in source

code comments—most subsequent studies also relied on this kind of artifact to empirically

assess Satd. As discussed in Section 2.2, such studies provide insights and conclusions

related to detection, comprehension, and repayment concerns. However, in very few cases,

different software artifacts were considered as means to document TD. When it comes

to studies that relied on issues, previous works prospected this possibility in restricted

scenarios and using limited and small datasets [Dai and Kruchten, 2017; Bellomo et al.,

2016]. In this section, we discuss the state-of-the-art on Satd, including studies that

rely on code comments (Section 2.4.1), and issues (Section 2.4.2). We also include a

discussion about studies regarding TD Management (Section 2.4.3). Finally, we conclude

by comparing this thesis with previous studies in the literature (Section 2.4.4).

2.4.1 Studies on SATD-C

In order to replicate the findings of Potdar and Shihab [2014], Bavota and Russo

[2016] collected a larger dataset of Satd comments, based on the analysis of more than

600K commits and 2 billion comments, from 159 software projects. As a result, the

authors first confirm the previous findings. They also observe that the amount of Satd

instances increases over time (in different releases) and tends to survive a long time in

the system.

Maldonado et al. [2017a] investigate five Java open-source projects with the pur-

pose of examining the amount of TD removed, the developers who performed the removal,

the period in which the debt remained in the project, and the activities that lead to its re-

moval. As a result, the authors show that the majority of Satd is removed from projects

by the same developer who introduced the debt (i.e., self-removed), as part of bug fixing

activities or as part of the addition of new features. Zampetti et al. [2018] perform a

follow-up study, based on the dataset elicited by Maldonado et al. [2017a], to quanti- and

qualitatively investigate how Self-Admitted Technical Debt is removed. Specifically, the

authors assess the amount of Satd removals that are actually accidental transformations,

as well as the extent to which Satd removals are documented in commit messages.

Sierra et al. [2019b] investigate the possibility of using source code comments that

indicate Technical Debt to resolve architectural divergences. The authors used a dataset of
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previously classified Satd comments to trace architectural divergences in an open-source

system. They found that 14% of divergences could be directly traced. Therefore, they

stand that it is viable to use Satd comments as an indicator of architectural divergences.

Zampetti et al. [2017] investigated the adoption of Satd-C as a proxy to recommend

developers to write new code. The authors also indicated when Satd should be docu-

mented (or “self-admitted”). As a result, the proposed approach achieved good results,

improving readability, size, and complexity metrics.

Regarding Satd-C identification, Farias et al. [2016], Huang et al. [2018], Liu

et al. [2018], and Guo et al. [2021] also identify Satd by mining source code comments.

Moreover, other studies propose the use of natural language processing (NLP) techniques

to support Satd identification [Maldonado and Shihab, 2015]. For example, Flisar and

Podgorelec [2019], Huang et al. [2018], Ren et al. [2019], Fahid et al. [2019], and Wang

et al. [2020] use machine learning techniques for automating Satd detection. Maldonado

et al. [2017b] proposed a technique to precisely identify Satd, outperforming the current

state-of-the-art, based on fixed keywords and phrases. de Freitas Farias et al. [2020]

evaluate a set of contextualized patterns to detect Satd-C using code comment analysis.

As a result, the authors show that the adoption of pattern-based analysis can contribute

to improve existing methods for automatically identifying and classifying Satd items.

Recent research moved in the direction of improving Satd-C identification, re-

moval, and management. For example, Zampetti et al. [2020] showed that Satd removal

follows recurrent patterns. They indicated that it is feasible to automatically recommend

strategies to pay Satd concerns related to changing API calls, conditionals, method

signatures, exception handling, and return statements. Iammarino et al. [2019, 2021]

investigated the relationship between refactoring and Satd-C removal. Although, the

authors show that refactorings tend to co-occur with Satd-C removals, they highlight

that such improvements are part of different activities performed at the same time. Fucci

et al. [2020] investigated the extent to which the term “self-admitted” can be used in the

context of TD documented in source code. The results suggest that Satd-C may pos-

sibly be used as a sub-optimal alternative to perform code review. Kashiwa et al. [2022]

investigated the nature of Satd comments introduced during modern code reviews. The

authors show that 28%–48% of Satd-C are introduced during code reviews, as such

comments are used as means of communication between reviewers and authors.

To explore Satd-C in-depth, several studies focused on particular aspects of this

practice. For example, Tan et al. [2021] conducted an online survey to investigate whether

practitioners repay their own debt intentionally. As results, the authors highlight the rele-

vance of the sense of self-responsibility in driving developers to repay Satd-C. Maipradit

et al. [2020a,b] investigate a particular class of Satd-C, named as “on-hold” Satd. In

this case, the authors provide an automated classifier that can identify debts that contain

a condition to indicate that a developer is waiting for a certain event or an updated func-
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tionality. Fucci et al. [2021] explore developers’ habits in Satd annotation. They mainly

show that Satd-C related to functional problems or on-hold conditions tend to be more

negative. Besides, few Satd comments include external references. Other research in-

clude the investigation of Satd-C in particular environments. For example, Azuma et al.

[2022] investigate Satd in Dockerfiles. Xiao et al. [2021] characterize Satd-C in build

systems. da Fonseca Lage et al. [2019] study usability TD, and Vidoni [2021] explores

Satd in R packages.

In this thesis, we expand the conclusions of previous studies on Satd by evaluating

TD documented in issues (Satd-I). We also investigate the interplay between the

two forms of documenting TD, i.e., by using code comments and by using issues.

2.4.2 Studies on SATD-I

Early researches indirectly tackled the adoption of issues as means to document

Technical Debt. For example, Martini et al. [2018] conducted qualitative studies to inves-

tigate the cost of managing TD, the tools used to track it, and how a tracking process

is introduced in practice. As a result, they show that only 7.2% of the participants

methodically track Technical Debt. In this context, the majority of them adopt issues

and backlog tools for this purpose. Yli-Huumo et al. [2016] investigated the practices

adopted by eight development teams to manage Technical Debt. For TD documentation,

the authors observed that six teams informally adopted the strategy of creating JIRA

issues to document TD concerns. As a result, they provide recommendations for adopt-

ing the Technical Debt Management activities, including the suggestion of creating issues

to document their occurrence. Silva et al. [2016] also investigate the occurrence of TD

discussions beyond the code. Particularly, the authors investigate the different types of

TD that can lead to the rejection of pull requests. As a result, the authors highlight that

design and test debts cause 63% of the rejections.

The first study to directly prospect the idea of analyzing Satd in issues (i.e.,

Satd-I) was performed by Bellomo et al. [2016]. In this work, the authors manually

examined a sample of 1,264 issues, mined from four industry and governmental issue

trackers. They found that developers discussed TD in 109 examples. Dai and Kruchten

[2017] also studied the possibility of detecting TD in comments of issues by applying

natural language processing and machine learning techniques to identify TD in 8,149

issues. As a result, the authors provide 114 keywords that can be used to detect different

types of TD from issue descriptions.
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Recently, Li et al. [2020] conducted a case study to investigate the existence of

Satd in issue discussions. For this, they manually investigated a sample of 500 issues

from two open-source projects (Hadoop and Camel). As a result, the authors classified a

set of 117 discussions about TD in categories previously proposed in the literature. They

also used these discussions to explore identification strategies and payment activities. In

a follow-up study, Li et al. [2022] focused on identifying TD evidences in issue trackers.

The authors collected a training dataset that includes 4.2K issues. From this dataset, they

identified 23K evidences of TD admission. They used this dataset to propose an approach

to automatically identify TD evidences in issue trackers. This approach outperforms

baseline techniques and indicates that Satd keywords are intuitive.

In this thesis, we advance the knowledge on Satd by conducting studies that are

not restricted to TD documented using code comments. In addition to a first study

on Satd-I characteristics, we also investigate the interplay between both forms of

documenting TD, i.e., using comments or issues. We also propose and assess in a real

and large software organization a lightweight framework to manage TD through the

creation of issues.

2.4.3 Studies on TD Management

Managing Technical Debt is relevant, as there is a common understanding about

its negative impact in the long-term. In practice, identifying and documenting TD Items

should drive developers to reach the ultimate goal of paying debts, and consequently

improving software quality. Several experiences in industry demonstrate this particular

interest. For example, Haki et al. [2022] report a one-year experience of managing Techni-

cal Debt at Credit Suisse (a large and relevant financial company from Switzerland). To

help raise awareness about TD, and stimulate actions related to its payment, the authors

proposed a digital nudge that was adopted by more than 3,000 teams in the company.

The purpose of the nudge was to create a visual overview of the main concerns related to

TD in decision-making processes, such as: overall rating, progress circle, evolution trend,

etc. As a result, they observed that such approach was effective in reducing TD. The

nudge also supported decisions related to software quality and TD management.

In fact, Technical Debt Management is also a well-studied field in the literature.

Several previous studies proposed different methodologies to handle TD, regarding pre-

vention strategies [Freire et al., 2020; Pérez et al., 2021; Freire et al., 2021], awareness

raise [Besker et al., 2019; Eliasson et al., 2015; Rocha et al., 2017], and project manage-
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ment [Guo et al., 2016; Rios et al., 2020; Li et al., 2015]. For example, Guo et al. [2016]

proposed a framework to manage Technical Debt through three general activities: TD

Identification, TD Measurement, and TD Monitoring. The central component of the

framework is a Technical Debt list, composed by TD items with a set of properties (e.g.,

its definition, location, and detection date). Ramasubbu and Kemerer [2018] integrated

TD management into quality assurance processes. The proposed framework organizes

the different processes for Technical Debt Management in three steps: (i) make Technical

Debt visible, (ii) perform cost-benefit analysis, and (iii) control Technical Debt.

More recently, Wiese et al. [2022] proposed the TAP framework, which is an

acronym for Technical debt Aware Project management. The framework aims to shed

light on intentional and unintentional TD, by promoting awareness of the former, and

prevention of the latter. Particularly, the authors propose that development teams should

create tickets to handle four types of TD-related tasks: Maintenance Ticket, Maintenance

Project, TD Tickets, and Deconstruction Tickets. In this context, Maintenance Ticket

and Maintenance Project aim to handle short- and long-term unintentional TD, respec-

tively. TD Tickets refer to intentional debts that should be reported by the time the

sup-optimal decision is made. Deconstruction Tickets tackle debts that cannot be paid

during the project (e.g., legacy code that needs to be kept in parallel). In addition to the

creation of TD tickets, the framework also defines: (i) the period when they should be

paid (e.g., TD Tickets should be handled before the project ending date); (ii) the person

responsible for the ticket (e.g., architect or business analyst).

In this thesis, we propose and evaluate a framework to manage TD through the

creation of issues, called LTD (Less Technical Debt Framework). This framework

advances the previous efforts on the field by concentrating efforts on essential activities

that can be injected on agile-based methodologies. Besides, it intends to be flexible,

customizable, and centered on the creation and management of issues.

2.4.4 Comparison with Previous Studies

As previously stated, most of the studies in the literature focused on a single form

of Satd to conduct analysis related toDetection, Comprehension, andRepayment,

as classified by Sierra et al. [2019a] (see Section 2.2). The majority of these studies focused

on Satd-C. To better position this thesis in the state-of-the-art, we compare in Table 2.2

our work with the top-10 most related studies previously published in the literature. For

each work, we provide the number of studied Satd-C instances, Satd-I instances, and



2.5. Final Remarks 35

systems. In two cases, we filled the Satd-C and Satd-I columns with “N/A” because the

selected works conducted case studies to assess TD management (i.e., they did not study

any Satd instance). We also highlight that none of the studies analyzed the interplay

between Satd types (i.e., only our thesis has a “Y” sign in the Interplay column). To

provide a better understanding about their focus, we also detail the category of each work.

Table 2.2: Comparison with previous studies.

Study Satd-C Satd-I Syst. Inter. Category

This Thesis 72,669 20,265 190 Y Comprehension,
Repayment

Li et al. [2022] 0 4,200 7 N Detection

Wiese et al. [2022] N/A N/A 1 N Comprehension

Fucci et al. [2021] 1,038 0 10 N Comprehension

Li et al. [2020] 0 500 2 N Comprehension,
Detection

Maipradit et al. [2020a,b] 335 0 10 N Comprehension,
Detection

Dai and Kruchten [2017] 0 8,149 1 N Detection

Bellomo et al. [2016] 0 1,264 4 N Comprehension

Bavota and Russo [2016] 7,584 0 159 N Comprehension,
Detection

Guo et al. [2016] N/A N/A 1 N Comprehension

Potdar and Shihab [2014] 1,263 0 4 N Comprehension,
Detection

2.5 Final Remarks

In this chapter, we started by providing an overview about Technical Debt and its

concepts (Section 2.1). Particularly, we presented a modern definition of TD, that is not

restricted to debts in source code, and discussed a conceptual model that supports the

understanding about the topic. We also detailed two different perspectives to classify TD,

as well as the main activities proposed in the literature to manage TD. In Section 2.2, we

refined the TD subject, presenting the Self-Admitted Technical Debt field of study. Next,

we presented the adoption of Issue Tracker Systems in software development and empirical

software engineering (Section 2.3). Finally, we concluded by discussing in Section 2.4

the studies that closely relate with this thesis. We also highlighted in each section the

differences between such previous studies and the work described in this thesis.
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Chapter 3

Characterization Study

In this chapter, we perform two exploratory studies to characterize Satd documented in

issues. Our goal with these studies is to advance the knowledge about this practice and

provide the first insights about Satd-I adoption. In Section 3.1 we introduce and motivate

both studies. Next, we dedicate Section 3.2 to present our initial dataset. Section 3.3

presents the classification study performed to assess the types of TD paid in Satd-I. In

Section 3.4, we detail the survey conducted to identify the motivations behind Satd-

I introduction and payment. Sections 3.5 and 3.6 present implications and threats to

validity, respectively. Finally, Section 3.7 concludes the chapter.

3.1 Introduction

Self-Admitted Technical Debt (Satd) is a particular case of TD where developers

explicitly admit their sub-optimal implementation decisions [Potdar and Shihab, 2014;

Bavota and Russo, 2016; Maldonado et al., 2017a; Zampetti et al., 2018]. To our knowl-

edge, the majority of Satd studies rely on source comments to identify Satd instances.

Particularly, they search for specific TD-related terms in source code comments—such as

fixme, TODO, and hack. By contrast, in this thesis we argue that developers can admit

Technical Debt out of the source code, by creating issues in tracking systems

documenting their sub-optimal decisions. To document the debt, they label these issues

with terms such as technical debt or debt. An example is presented in Figure 3.1. The

figure shows an issue from GitLab requesting the removal of duplicated code (in this case,

a permission variable). As we can see, it received a technical debt label.

To better characterize Satd documented in issues (Satd-I), we first study its

occurrence through the analysis of paid instances, i.e., issues documenting TD that were

successfully closed by developers. Our intention is to study Satd-I instances that had a

practical and positive impact on the projects. For that, we collect and characterize an

initial dataset containing 286 Satd-I instances from five relevant open-source systems,



3.2. Initial Dataset 37

Figure 3.1: Example of Satd in a GitLab’s issue.

including GitLab (a git-hosting platform that is publicly developed and maintained using

its own services), and VS Code (the popular IDE from Microsoft). Developers of these

repositories follow a practice to create and label issues that refer to TD problems, i.e.,

we view these instances as cases of Satd-I. We use this dataset to answer three research

questions:

RQ1. What types of Technical Debt are paid in Satd-I? In this RQ, we manu-

ally analyze and classify the TD problems documented, discussed, and fixed in the 286

instances of Satd-I from our dataset. To perform this classification, we reuse ten cate-

gories of TD from the literature [Li et al., 2015].

RQ2. Why do developers introduce Satd-I? Next, we perform a survey with de-

velopers directly involved on Satd-I payment. We analyze 30 received answers (response

rate of ∼35%) describing why they introduced the studied Satd-I.

RQ3. Why do developers pay Satd-I? We also elicit a list of five main reasons

that drive developers to pay Satd-I by asking the participants of our survey why they

decided to close the studied issues. We also shed light on TD interests by investigating

the maintenance problems caused by Satd-I.

3.2 Initial Dataset

We first conduct two studies to investigate (i) the types of Satd commonly re-

ported in issues (Section 3.3); and (ii) the motivations that drive developers to introduce

and pay such debts (Section 3.4). For these studies, we collect an initial dataset con-

taining Satd-I instances from five open-source systems: GitLab and four GitHub-based
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systems. We selected GitLab because it is a well-known platform that supports a git-

based version control service and also a CI/CD pipeline. Moreover, we had previous

knowledge—from our research in the area—on GitLab’s practice to label TD-related is-

sues.

In this section, we explain how we selected the GitLab issues used in these initial

studies (Section 3.2.1). We also explain how we mined and selected four GitHub projects

that follow a practice similar to the one used by GitLab, i.e., they also use specific labels

on issues that discuss Technical Debt (Section 3.2.2). Finally, we provide a quantitative

overview of this first dataset (Section 3.2.3).

3.2.1 GitLab CE

Differently from GitHub, GitLab’s source code is publicly available in the platform,

i.e., GitLab is an open-source project that is developed and maintained using its own

services. In fact, the project has two editions: Community (CE) and Enterprise (EE).

The latter is a commercial version and the former is an open-source edition. GitLab’s

development happens on both repositories, which are continuously synchronized. Since

they are public, we rely on issues from GitLab CE.

First, we used GitLab’s REST API to select all issues with a technical debt label

that were closed in the six months before our search. We only selected closed issues because

our primary focus is to explore Technical Debt that was paid. Moreover, we restricted the

selection to the last six months to increase the chances of receiving answers in the survey

that we performed with GitLab’s developers—and also to increase the confidence on the

survey answers (see Section 3.4).

After applying the described selection criteria, we found 188 issues. The author

of this thesis carefully inspected each one and removed 65 issues (34.6%) that represent

duplicated issues, issues that only include discussions, and ignored issues. He also verified

that no issue was automatically tagged by a static analysis tool. For example, he discarded

an issue where the developer concluded that:

Heh, this is a duplicate of gitlab-ee#3861 (closed), which is being worked on right now by

@cablett. I’ll close it!1

Besides, during the classification of the 123 remaining issues, we identified and

removed six issues that only request new features, bug corrections, or build failure fixes

(i.e., despite having a technical debt label, they are not related with TD). For example,

1https://gitlab.com/gitlab-org/gitlab-ce/issues/34659

https://gitlab.com/gitlab-org/gitlab-ce/issues/34659
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we discarded an issue that reports:

Commit count and other project statistics are incorrect.2

After this step, we selected 117 Satd-I instances from GitLab.

3.2.2 GitHub-based Projects

We also searched for Satd-I in open-source GitHub systems. We restricted the

search to the top-5,000 most starred GitHub repositories, since stars is a commonly used

proxy for the popularity of GitHub repositories [Borges et al., 2016; Silva and Valente,

2018]. We used GitHub’s GraphQL API to search for all issues of such repositories that

were closed in the previous six months—due to the same reasons explained for GitLab—

and that include one of the following labels: technical debt, Technical Debt, and debt.

In other words, we decided to select Satd issues by using this set of labels as a precise

sign of the presence of such discussions in the issue. As a result, we found 252 issues in

23 repositories. However, we decided to discard 34 issues from 19 repositories with less

than 10 issues. The rationale was to focus the study on repositories where labelling issues

denoting TD is a common practice.

As previously conducted for GitLab issues, the author of this thesis inspected all

218 issues selected in GitHub (i.e., 252 − 34 issues) and discarded 49 issues (22%) that

do not have a clear indication of representing an actual case of TD payment. In the end,

169 Satd-I instances coming from four GitHub repositories were selected for inclusion in

our dataset.

3.2.3 Dataset Characterization

Table 3.1 shows the name of the systems in our dataset, the platform where they

are hosted (GH refers to GitHub and GL refers to GitLab), the tags they use to de-

note Satd-I and the number of issues selected in each system. As we can observe, there

is a concentration of issues in GitLab-CE (40.9%) and on microsoft/vscode (46.2%),

which is the popular IDE from Microsoft whose development history is publicly available

on GitHub. The remaining Satd-I instances come from influxdata/influxdb (7.3%),

2https://gitlab.com/gitlab-org/gitlab-ce/issues/44726

https://gitlab.com/gitlab-org/gitlab-ce/issues/44726
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mirumee/saleor (3.5%), and nextcloud/server (2.1%). influxdata/influxdb is

a platform for time series storage and manipulation. mirumee/saleor is an open-source

eCommerce platform, and nextcloud/server is a framework for communicating with

Nextcloud (a service for hosting files on the cloud).

Table 3.1: Selected repositories.

Repository Plat. Tag Satd-I %

microsoft/vscode GH debt 132 46.2%

gitlab/gitlab-ce GL technical debt 117 40.9%

influxdata/influxdb GH Technical Debt 21 7.3%

mirumee/saleor GH technical debt 10 3.5%

nextcloud/server GH technical debt 6 2.1%

Total 286 100%

Figure 3.2 shows violin plots comparing the issues selected in the study with all

other issues.3 We can see that Satd-I takes more time to be closed (16.7 vs 4.0 days,

median values). They also have more comments (5 vs 3 comments) and labels (3 vs 2

labels). These observations are statistically confirmed by applying the one-tailed variant

of the Mann-Whitney U test (p-value ≤ 0.05). Finally, the last chart shows the code

churn of Satd-I versus all issues in our dataset. This metric refers to the number of

added and deleted lines of code in the commits responsible for closing the issues. The

median code churn is 18 added/deleted lines (paid TD issues) versus 20 added/deleted

lines (for all issues). However, in this case, the distributions are not statistically different

(p-value = 0.13). i.e., Satd issues are not different from other issues in terms of added

and deleted lines of code.

3.3 Classification Study

In this section, we present our first exploratory study. Exploratory research is

commonly adopted to investigate a problem that is not clearly defined or studied in the

literature. It is conducted to provide a better understanding of the phenomenon and

support further conclusions [Wohlin et al., 2012]. In this context, few previous research

assessed the usage of issues to admit TD [Cunningham, 1992; Bellomo et al., 2016].

Particularly, none of them used labels as a proxy for TD identification. Therefore, in this

3We acknowledge that some of the non-selected issues might also refer to TD (for example, developers
may have forgotten to label them as such). Despite that, this fact does not invalidate our key goal in the
studies, which is exploring a valid and large sample of issues that explicitly document TD.
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Figure 3.2: Distribution of days, comments, labels, and code churn per issue.

study we aim to explore the types of TD commonly documented, discussed and fixed

using labeled issues. Particularly, we seek to answer our first research question:

RQ1. What types of Technical Debt are paid in Satd-I? We aim to reveal the

main types of TD documented in Satd-I. Similar classifications have been previously

performed in the literature for Satd-C [Maldonado and Shihab, 2015]. In this RQ, we

seek to expand this knowledge by considering Satd types beyond the code.

We dedicate Section 3.3.1 to present the methodology applied to classify the Satd-

I instances in our dataset. In Section 3.3.2, we present the results as follows: first, we

discuss issues related to Design (the most popular type of TD) and its corresponding

sub-classification; next, we present the results for the other types of Satd-I.
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3.3.1 Study Design

To identify the types of Technical Debt paid by developers, we carefully analyzed

286 Satd-I instances using closed-card sort [Spencer, 2009], a technique to classify a set

of documents into predetermined categories. This technique involves the following steps:

(i) defining the set of categories, (ii) initial reading of the issues, (iii) classifying the

issues by independent researchers, (iv) resolving conflicts. We perform closed card sorting

using categories previously elicited in the literature. Specifically, we reused the categories

described in a study performed by Li et al. [2015]. As described in Section 2.1.1, the

authors conducted a systematic mapping study, providing a taxonomy of TD types that

includes: Design, UI, Tests, Performance, Infrastructure, Documentation,

Code Style, Build, Security, and Requirements.4

Since Design was the most popular case of Satd-I (as we found in our first round

of classification), we decided to perform a sub-classification of this type of issue. Thus,

we defined four categories:

• Complex Code: refers to intra-method poorly implemented code or to naming

issues.

• Architecture: refers to high-level design problems, including inadequate organi-

zation of packages.

• Clean Up: refers to the elimination of obsolete or dead code.

• Code Duplication: refers to code clones that should be removed to improve

maintainability.

After defining the mentioned categories, the author of this thesis and two research

collaborators manually analyzed the issues, by reading their descriptions and existing dis-

cussions, with the goal of assigning one (or more) categories. Each issue was analyzed

by two independent researchers. In 178 cases (62.2%) they agreed in the first proposed

classification. For the Design subclassification (169 issues), the researchers agreed in 92

cases (54.4%). The key challenge in this classification was to understand the purpose

of the issue, based on the different pieces of information that it includes (i.e., title, body,

comments, labels and closing pull/merge-requests). Therefore, there were cases in which

the researchers prioritized different aspects to classify the issue, resulting in conflicting

results. These cases were solved during the final step of the closed-card sort technique,

4 Although this taxonomy is based on research published before the Satd term was coined, we decided
to use it because it covers problems that can occur beyond the source code (e.g., UI and Build problems).
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where the researchers discussed each conflict and reached a consensual classification con-

sidering all aspects of the issue. To facilitate the identification and discussion of the issues

in this section, we label them using the initials of the repository name (i.e., VS refers to

microsoft/vscode; GL to gitlab/gitlab-ce; IF to influxdata/influxdb; SL to

mirumee/saleor; and NX to nextcloud/server). The initials are then followed by

an integer ID (e.g., GL43 refers to issue 43 from GitLab).

3.3.2 What types of Technical Debt are paid in SATD-I?

SATD-I related to Design

With 169 occurrences (59.1%), most of the selected issues refer to Design debt. In this

case, we classified Design Satd-I into four subcategories, as presented in Table 3.2.

As we can see, Complex Code is the type of Design TD more commonly paid by

developers (43.8%), followed by Architecture (33.7%), Clean Up (18.9%), and Code

Duplication (3.5%). Next, we describe and provide examples for each Design category.

Table 3.2: Design Satd-I Classification.

Technical Debt Occ. %

Complex Code 74 43.8%

Architecture 57 33.7%

Clean Up 32 18.9%

Code Duplication 6 3.5%

Complex Code. In 74 cases (43.8%), Design issues are related to technical shortcuts

that developers take when implementing methods. In this case, the payment involves

changes only in the single method where the debt is located. As an example, the following

issues are related to this type of Design Satd-I:

We should unify naming related to checkout functionality, as currently, we’re mixing

“checkout” with “cart”, which leads to confusion when reading the code. I recommend

that we settle on the name “checkout” and rename the Cart model and all other occur-

rences of cart. (SL1)

Currently, errors is an optional list of optional errors. While returning an empty list is

probably not needed, current type forces the client to make sure the errors themselves are

not null. (SL10)
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Architecture. With 57 occurrences (33.7%), the second type of Design TD most

commonly paid by developers is related to high-level design flaws. To pay this type of

debt, it is usually necessary to make changes in the organization of packages and modules,

for example. The following issues are related to this type of Satd-I:

This class is way too big for its own good. For example, there’s no need for it to update

a project’s main language in the same job/thread/process as the other work. (GL43)

The root of the TimeMachine tree contains a TimeSeries component. This component

handles fetching time series data used in the TimeMachine (. . . ) The aim of this refactor

would be to move all state from the TimeSeries component into Redux and all logic into

a thunk. (IF12)

Clean Up. Next, issues related to the presence of obsolete or dead code represent the

third most common type of Satd-I, with 32 instances (18.9%). As an example, the

following issue is related to this type of Design TD:

In Milestone 11.4, we introduced personal access tokens. token digest, so we can now

remove personal access tokens.token. (GL47)

Code Duplication. Finally, with 6 occurrences (3.5%), the least common type of De-

sign Satd-I refers to duplicated code, as illustrated by the following issue:

There has been a lot of duplication of frontend code between Protected Branches and Pro-

tected Tag feature, this issue is intended to reduce duplication. (GL81)

Other Types of SATD-I

Table 3.3 presents the classification of the remaining Satd issues. As we can see, if we do

not count issues related to Design (59.1%), the most common type of paid TD refers to

UI (10.1%), Tests (8.7%), and Performance (8%). Next, we describe these categories.

Table 3.3: Other Types of Satd-I.

Technical Debt Occ. %

UI 29 10.1%

Tests 25 8.7%

Performance 23 8%

Infrastructure 18 6.3%

Documentation 12 4.2%

Code Style 8 2.8%

Build 4 1.4%

Security 3 1.1%

Requirements 3 1.1%
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UI. With 29 occurrences (10.1%), the second most common type of Satd-related issues

refers to debt on user interface code. In this case, developers implemented shortcuts that

result in usability flaws, as mentioned in the following issue:

Today there is a “Building...” label appearing around the problems entry when building a

project. I think this originates from a time where we did not have support to show progress

in the status bar. (VS29)

Tests. In 25 cases (8.7%), Satd-related issues report technical debt concerned to tests.

This type of debt is mostly related to: (i) the absence of tests; or (ii) the suboptimal

implementation of existing tests. Particularly, the latter refers to automated tests poorly

implemented (e.g., tests that need to be refactored to include mocks or to avoid direct

access to API servers). The following issue illustrates this type of TD:

I want to have some tests that will give me a better perspective for usage of DB queries

under GraphQL API. I would like to have explicit logic to validate that it works as expected.

(SL3)

Performance. With 23 occurrences (8%), the fourth most common type of Satd-I is

related to performance concerns, in terms of time or memory usage. This is illustrated as

follows:

underscore.js is bundled in vendor/core.js but it’s the unminified version. Can we replace

it with the minified version? The file size is a lot smaller. (NX1)

Every widget and actions in each extension has a global listener to check if there is a

change and update itself. This causes 100s of listeners being added to a global event.

(VS65)

Satd-I is paid mostly to fix Design flaws (∼60%). But we also found paid TD

related to UI (10%), Tests (9%), and Performance (8%), for example.

Multiple-Category Types of SATD-I

After concluding this classification study, a research collaborator involved in the card

sorting activity reanalyzed all TD issues classified as UI, Performance, Build, and

Infrastructure. The goal was to check whether these issues also include a discussion

related to design or architecture concerns. The results are summarized in Table 3.4. As

can be seen, multiple-category discussions are not common. In fact, they occurred in only

two categories.
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Table 3.4: Multiple-Category Discussion in Satd-I.

Technical Debt # Instances # Multiple-Category

UI 29 2

Performance 23 2

Infrastructure 18 0

Build 4 0

3.4 Survey with Developers

In the initial part of our study, we also conducted a survey to reveal developers

motivations for Satd-I insertion and payment. Particularly, we surveyed developers

responsible for closing the 286 Satd-I instances collected in our first dataset. We relied

on their responses to answer the following research questions:

RQ2. Why do developers introduce Satd-I? In this RQ, we reuse Martin Fowler’s

quadrant [Fowler, 2009] to understand the origin of the studied Satd-I instances (i.e.,

TD latter admitted vs TD introduced to ship earlier).

RQ3. Why do developers pay Satd-I? Next, we move a step further to investigate

the motivations that drive developers to pay Satd-I. Besides, we also elicit the main

problems caused by these debts.

We first present the methodology followed in this survey (Section 3.4.1). After

that, we present the results for each research question (Sections 3.4.2 and 3.4.3).

3.4.1 Survey Design

To conduct this survey, we sent emails to developers that closed the Satd issues

studied in this chapter. Specifically, we selected from our initial dataset developers with

public email address who were responsible for (i) closing a specific issue; or (ii) accepting

a pull/merge-request that closes the issue (in GitLab, merge-requests are equivalent to

pull-requests). From the total of 286 issues, we retrieved a list of 85 distinct emails. In

the cases where the same developer was responsible for more than one issue, we selected

the most recently closed one.

For each developer, we sent the questionnaire in an interval of at most six months

after the date when the issues were closed. Figure 3.3 shows the template of the survey
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I figured out that you closed the following issue from [repository name]:

[issue title] [issue link]

which is labeled as [TD-related tag].

I kindly ask you to answer the following questions:

1. Why did you decide to pay this TD?

2. Could you describe the maintenance problems caused by this TD?

3. Could you classify this TD under the following categories:

a. It was deliberately introduced to ship earlier
b. When it was introduced, we were not aware about the best design
c. Other answers (please clarify)

Figure 3.3: Email sent to developers who paid Satd-I.

email. First, we presented the issue that represents the debt paid by the developer.

Next, we proposed three questions with the goal of (1) investigating the reasons why

developers pay Technical Debt; (2) unveiling maintenance problems caused by TD; and

(3) understanding the intentions behind TD insertion. Questions (1) and (2) were open-

ended, while question (3) provided two predefined options, reused from the Technical

Debt quadrant proposed by Fowler [2009]. According to the author, Technical Debt can

be classified into a quadrant divided into reckless/prudent and deliberate/inadvertent

debt. We decided to give options only related to the deliberate/inadvertent axis. The

rationale is that the reckless/prudent classification might result in biased answers because

it requires the developer to make a self-judgment of his/her own work (i.e., he/she needs

to classify his/her own work as reckless or prudent). Although developers could simply

select one of the answers, we allowed them to provide their own answers or to include

comments to predefined answers.

We received 30 answers coming from developers of four repositories (i.e., response

rate of 35.3%). Table 3.5 details the number of emails sent and the answers received per

repository. microsoft/ vscode and influxdata/influxdb have the highest response

rate (both with 40%). However, they do not represent the majority of the answers, once

we received 23 answers from GitLab developers.5

To interpret the survey answers (1) and (2), the author of this thesis followed an

5It is worth mentioning that 33 developers (out of the 85 contacted) were also responsible for opening
the corresponding issues. Among the 30 developers who answered our emails, 10 were also the authors
of the Satd-I.
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Table 3.5: Survey answers.

Repository Sent Answers %

microsoft/vscode 10 4 40%

influxdata/influxdb 5 2 40%

gitlab/gitlab-ce 66 23 34.9%

nextcloud/server 3 1 33.3%

mirumee/saleor 1 0 0%

Total 85 30 35.3%

open card-sorting [Spencer, 2009]. This technique is used to identify themes (i.e., patterns)

in textual documents through the following steps: (i) identifying themes from the answers,

(ii) reviewing the themes to find opportunities for merging, and (iii) defining and naming

the final themes. During the analysis, one answer was discarded because the developer

did not actually discuss the issue. In a final step, a research collaborator reviewed and

confirmed the proposed themes. In the following discussion, we label the quotes with D1

to D29 to indicate developer’s answers.

3.4.2 Why do developers introduce SATD-I?

To answer this question, we provided two predefined options: the first is related to

developer’s decision of introducing TD as a choice for agility. The second corresponds to

the scenario where developers only perceived the debt after it was introduced. We also left

the opportunity for developers to clarify their answers and provide further information.

Figure 3.4 presents the obtained results. As we can observe, most of the studied debts

were intentionally introduced by developers to ship earlier (12 answers). In nine cases,

developers were not aware of the TD when it was introduced (i.e., the debt was initially

unintentional and then later admitted). Finally, six developers provided other motivations.

Next, we detail each of these reasons and provide quotes from extra comments discussed

by developers.

SATD introduced to ship earlier. In 12 answers (44.5%), developers confirmed that

the Technical Debt was introduced to speed up development. In other words, to deliver

faster, developers consciously added shortcuts in their code which were expected to be

fixed in the future. To remind about this fact, they also decided to document the TD

using an issue. D7, D16, and D9 provided further details for this reason:

It was thoroughly discussed and weighed up before we take the decision to accept the TD
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Figure 3.4: Reasons for introducing Satd-I.

to be dealt with on a next release. The TD wasn’t introducing any critical performance

issues or bugs to the system. Furthermore, we were confident that we could fix the TD in

the next release, which happened. (D7)

I think that usually when we introduce a technical debt it either helps us to ship something

earlier/faster or makes first iteration of implementation much easier in general. (D16)

We were aware and were ok with the implementation for now as long as we fixed it

afterwards (D9)

Later admitted TD. For nine developers (33.3%), the debt was originated by their

lack of understanding about the best design solution at the time the code was initially

implemented. After discovering or facing the TD, they decided to admit it opening an

issue. The following answers illustrate this scenario:

We figured we’d never hit “that” usecase. But we did. (D23)

The class just grew over time without planning. (D15)

Other reasons. Finally, six developers provided other reasons for introducing TD in

their code (22.2%). Answers include the advent of new technologies that turned the old

code a debt, and also the mischoice of design alternatives. This is illustrated in the

following examples:

It slowly became TD while at the time of the initial development it was most likely fine

to code that way. (D29)

I think the original author just overlooked that exposing these methods wasn’t really needed.

(D13)

In most of the cases, Satd-I is introduced as a deliberate choice for agility (44.5%).
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3.4.3 Why do developers pay SATD-I?

In order to investigate the reasons why developers pay Satd-I, we combine an-

swers from questions (1) and (2) of our e-mails (Section 3.4.1). First, we directly asked

developers the reasons that drive such payment. Next, we complement our findings by

eliciting a list of associated maintenance problems.

We first identified five distinct reasons why developers pay Satd-I, as reported

in Table 3.6. As we can see, reducing TD interest is the most common motivation for

Satd-I payment (65.5%), followed by the desire to have a clean code (27.6%). In some

cases, a given answer produced more than one motivation. This explains why the number

of occurrences is higher than the number of answers (29 answers). Next, we discuss these

reasons.

Table 3.6: Reasons why developers pay Satd-I.

Why did you decide to pay this TD? Occ. %

To reduce TD interest 19 65.5%

To clean code 8 27.6%

To get familiarised with the codebase 2 6.9%

To collocate with other related work 2 6.9%

To increase test coverage 1 3.5%

To reduce TD interest. With 19 answers (65.5%), the most common reason for paying

Satd-I is to reduce TD interest. Although developers did not directly mention the term

interest, eliminating the maintenance burden caused by the studied issues was mentioned

in several answers. For example, D1 and D19 mention this motivation:

This was adding extra maintenance for me. (D1)

The component was growing too big, making it difficult to maintain. (D19)

To clean code. In eight cases (27.6%), Technical Debt payment is related to the desire

of having a clean codebase (e.g., to reduce code complexity and remove duplication). For

example, the following answers are related to this motivation:

To keep the code clean and easy to read/maintain. (D27)

To get the benefits of a cleaner code (. . . ). After fixing the TD, understanding the code

got easier. It also got smaller. (D7)



3.5. Implications 51

Technical Debt is periodically paid to reduce its interests (66%), and to clean code

(28%).

We also asked the survey participants to comment on the specific maintenance

problems that motivated them to close the studied Satd-I instances. Table 3.7 presents

the list of the most common answers. In this case, three answers (out of the 29 analyzed)

were discarded because they were not clear. According to the remaining answers, TD is

mostly responsible for slowing down code evolution, increasing maintenance effort due to

duplicated code, and making it harder to read and understand code. The three problems

occur with the same frequency (six answers for each).

Table 3.7: Maintenance problems caused by Technical Debt.

What problems are caused by this TD? Occ. %

Code was difficult to evolve 6 20.7%

Duplicated code was demanding extra effort 6 20.7%

Code was difficult to read and understand 6 20.7%

Code performance was poor 5 17.2%

Code was error-prone 4 13.8%

UI presented visual defects 1 3.5%

Technical Debt is commonly responsible for slowing down code evolution, duplicating

maintenance effort, and making it harder to read and understand code.

3.5 Implications

Based on the results presented in this chapter, in this section we highlight impli-

cations on tool support and process improvement.

Tool Support. In this chapter, we confirmed that Technical Debt is also docu-

mented using issues and we characterized this practice in a set of well-known

open-source projects. Particularly, in RQ2 developers point that the majority of

SATD-I instances are intentionally created to ship earlier. Therefore, these results re-

inforce that developers usually decide to follow the “done is better than perfect” maxim,

implementing suboptimal code solutions in order to deliver on time. To tackle this prob-

lem, we envision research on new tools to allow developers to explicitly label new debts
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inserted on GitHub/GitLab-based systems. Specifically, such tools would be responsi-

ble for asking pull/merge-requests authors whether the contribution contains any type of

TD. In the cases when they admit it, the tool would suggest the automatic opening of

a follow-up issue, tagged with a SATD-related label (as in the issues we studied in this

chapter). These tools would be effective for various roles of contributors, since: (i) core

developers would benefit from managing code quality and better reviewing contributions,

(ii) pull/merge-request authors would feel responsible for their own debts (and possibly

will come back to pay them), and (iii) newcomers could pay these issues as a way to get

familiarized with the code (as we will better discuss in the next implication). Moreover,

the number of open TD-related issues could be used as a metric to measure the quality

of the system. Although there are several approaches to automatically identify TD on

source code (e.g., Maldonado et al. [2017b]; Huang et al. [2018]; Liu et al. [2018]), we

claim this tool is based on developers’ feedback right after TD insertion. It would also be

independent of programming language.

Process Improvement. Among the reasons that drive developers to pay Technical Debt

(elicited in RQ3), we identified two motivations explicitly related to software development

process: to reduce TD interest (with 65.5% of occurrences) and to get familiarized with

the codebase (with 7%). In other words, this result shows that paying Technical Debt

represents an actual activity introduced in the development process of the studied projects

to preserve internal quality and to train new contributors on the structure of the code.

Therefore, we extrapolate this finding by suggesting two particular implications:

1. We suggest the formalization of Technical Debt payment as an actual activity on

modern development processes. Indeed, in Chapter 6 we propose the Less Technical

Debt framework (LTD). The general purpose of LTD is to introduce TD-related

concerns into agile-based methodologies—in a non-invasive and customizable way—

supporting development teams to better manage and pay TD. To accomplish that,

the framework proposes the injection of four distinct activities: TD Consensus,

TD Discovery, TD Planning, and TD Payment, which are better described

in Section 6.2.

2. We also advocate that paying Technical Debt may be included on onboarding ac-

tivities for new team members [Steinmacher et al., 2016]. In this case, team leaders

would “delegate this work to newcomers to give them easy stuff to familiarize them-

selves with the work process” (D19).
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3.6 Threats to Validity

We acknowledge that the studies reported in this chapter are restricted to 286

closed issues classified as Technical Debt according to Satd-related labels. Although the

issues were selected from relevant repositories, maintained by organizations like Microsoft

and GitLab, we cannot generalize our findings to other systems, especially to the ones

that apply different approaches to manage Technical Debt (i.e., do not use TD-related

labels). Moreover, we selected the issues in our initial dataset by using TD-related labels

as a proxy for Technical Debt identification. However, as discussed by Kruchten et al.

[2012], the concept of Technical Debt has been diluted since its original proposition. Thus,

the misunderstanding of this concept by those who added the TD-labeled issues would

affect the results of our study. To alleviate this threat, the author of this thesis carefully

analyzed the initial selection of 406 TD-labeled issues, and discarded 120 issues (29.6%)

that did not have a clear indication of TD payment.

Regarding the classification study reported in Section 3.3, we should mention the

subjective nature of the closed-card sort method. Despite the rigor followed by the re-

searchers to perform the classification, the replication of this activity may lead to different

results. To mitigate this threat, special attention was paid during the discussions to re-

solve conflicts and to assign the final themes.

We also acknowledge that the results presented in our second study (Section 3.4)

are based on the opinion of 29 developers, mostly from GitLab. Despite that, we claim

that the obtained response rate (35.3%) represents a relevant mark in typical software

engineering studies. Finally, against our belief, the correctness of developers answers is

also a threat to be reported. To alleviate it, we restricted our study to issues closed in the

last six months, which was important to guarantee a higher response rate and to increase

answers reliability.

3.7 Final Remarks

In this chapter, we performed two exploratory studies with the purpose of an-

swering three research questions on Self-Admitted Technical Debt documented through

labelled issues (Satd-I). We analyzed 286 Satd-I instances to (1) identify the types of

Satd-I more frequently paid, (2) understand the intentions behind Satd-I insertion, and

(3) investigate the reasons why developers pay Satd-I. As a result, we show that:
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• In almost 60% of the cases, we found that Satd-I is related to Design flaws (with

a concentration on method-level debt in 44% of this total);

• About 45% of the studied debt was introduced to ship earlier;

• Most developers pay Satd-I to reduce its interest, and to have a clean code.

Replication Package. We provide the complete dataset used in this chapter and a

replication package at: https://doi.org/10.5281/zenodo.5119967.

https://doi.org/10.5281/zenodo.5119967
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Chapter 4

Interplay between SATD Types

In this chapter, we investigate the interplay between TD documented in source code com-

ments (Satd-C) and issues (Satd-I). Particularly, we collect and explore a large-scale

dataset—including instances of both Satd types—to asses whether there is an overlap

between both strategies. We dedicate Section 4.1 to introduce and motivate the chapter.

In Section 4.2, we detail our new large-scale dataset. Next, in Section 4.3, we present

AdmiTD tool and asses the interest of developers to create issues from Satd-C. Sec-

tion 4.4 explores the links between Satd-C and Satd-I. In Sections 4.5 and 4.6, we

provide implications and threats to validity, respectively. Finally, Section 4.7 concludes

the chapter.

4.1 Introduction

In Chapter 3, we first confirmed that Technical Debt is also admitted using issues

and then we characterized this practice in a set of well-known open-source projects. How-

ever, there is still a lack of knowledge on the interplay between Satd-C and

Satd-I. Particularly, it is not clear whether developers adopt only one of these approaches

to admit their debts or whether there is an overlap between them. In this chapter, we

tackle this problem by investigating the adoption of tools to support developers in docu-

menting Technical Debt using issues, based on the occurrence of Satd-C instances. i.e.,

we investigate whether Satd-C comments refer or can be converted to Satd-I instances.

Specifically, we evaluate the feasibility of tools to deal with Satd in two distinct aspects:

• To automatically create issues to document TD concerns expressed in source code

comments.

• To automatically create links between Satd-C and Satd-I instances that are re-

lated.
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This tool support was suggested by many commenters after our initial study (Chap-

ter 3) was indexed by Hacker News, in 2020.1 Indeed, a search on GitHub shows that

open-source developers are already working on similar tools, particularly on tools of type

(a), as labelled before. As examples, we have tools such as github-todos2 (1.3K stars),

todo[bot]3 (701 stars) and TODO to Issue Action4 (211 stars). Our key motivation

is to show whether such tools are effectively useful.

To accomplish that, we first create a large-scale dataset of 20,265 Satd-I instances

and 72,669 Satd-C instances, extracted from 190 GitHub projects. We use this dataset

to answer two research questions:

RQ4. Are developers interested in tools to create issues from Satd-C? First, we

implement a prototype tool for automatically generating issues from Satd comments as

GitHub issues, called AdmiTD. We equipped this tool with a set of heuristics to enhance

the acceptance of its recommendations. Then, we validate our results with the principal

developers of ten open-source projects.

RQ5. Do developers refer to Satd-I in Satd-C? Next, we search for explicit links

between Satd comments and Satd issues. Specifically, we intend to check whether

developers mention Satd-I IDs or URLs in Satd-C instances, such as in following code

comment from cockroachdb/cockroach:

// TODO(irfansharif): We should reconsider usage of

NodeLivenessStatus. (...) See #50707 for more details.

The existence of such links would mean that Satd-C and Satd-I are somehow

related (at least in some cases). As a consequence, it would be feasible to implement

tools that detect related Satd-C and Satd-I instances, although the Satd-C does not

include a reference to the associated Satd-I. In such cases, the tool could recommend the

creation of the link.

4.2 Extended Dataset

To perform this extended study, we first build a new dataset, including both Satd-

C and Satd-I instances. We decided to replace our initial dataset for three reasons:

1. To include more systems (5 systems vs 190 systems in this new dataset);

1https://news.ycombinator.com/item?id=22915584
2https://github.com/naholyr/github-todos
3https://github.com/JasonEtco/todo
4https://github.com/alstr/todo-to-issue-action

https://news.ycombinator.com/item?id=22915584
https://github.com/naholyr/github-todos
https://github.com/JasonEtco/todo
https://github.com/alstr/todo-to-issue-action
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2. To include Satd-C instances (the initial dataset covered only Satd-I instances);

3. To also consider opened issues, since they might also benefit from the kind of tool

investigated in this section.

As a result, this new dataset includes 20,265 Satd-I instances and 72,669 Satd-C

instances from 190 GitHub projects. We explain the mining steps that we followed to

select the new repositories and their Satd instances in Section 4.2.1. Next, we provide

an overview of the new dataset in Section 4.2.2.

4.2.1 Mining Steps

To build this new dataset, we performed the following steps:

1. Project selection. We first focused on retrieving repositories in which Satd-I is

a common practice (since it is the least explored form of Satd). As in Section 3.2,

we searched for TD-related labels among the top-5,000 GitHub repositories, ordered by

number of stars [Silva and Valente, 2018; Borges et al., 2016]. In contrast to our initial

dataset—where we selected repositories containing three specific labels—we now adopted

different steps to increase the number of retrieved repositories. We started this procedure

by identifying the labels related to TD among all the 97,106 labels adopted in the 5K

most-popular GitHub repositories. From this initial amount, we removed labels associated

with less than 10 issues. The rationale is to discard labels that are not frequently used.

By applying this filter, we discarded 60,032 labels, such as: today, announcement, and

Partner. After that, we adopted multiple regular expressions to remove commonly used

labels that do not denote TD [Cabot et al., 2015]. For example, we removed labels like bug

(2,635 labels), enhancement (1,828 labels), feature (1,606 labels), and question (1,455).

By applying these heuristics, we discarded 19,209 labels. Finally, the author of this thesis

manually read the remaining 17,865 labels (97, 106− 60, 032− 19, 209), in order to select

the ones that explicitly indicate Technical Debt. e.g., tech debt, debt, cleanup, workaround.

A research collaborator also inspected a set of 500 randomly selected labels to confirm

the classification. As a result, we obtained 219 labels, related to 190 repositories.

2. Mining Satd-I instances. Based on the initial selection of 190 repositories, we used

GitHub’s GraphQL API to search for issues tagged with the defined Satd-related labels.

i.e., we used the set of 219 labels collected in Step 1 as an indication of TD concerns

documented in the studied issues. We also considered both open and closed issues. The
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rationale is to investigate both existing and paid instances of TD. As a result, we selected

20,265 Satd-I instances (4,866 open issues and 15,399 closed issues).5

3. Identifying Satd-C instances. Finally, we collected Satd-C instances by cloning

and parsing the source code of the 190 repositories selected in Step 1. We analyzed

the latest version of each repository at the moment of cloning. For each file, we first

extracted code comments by using a regex-based service provided by the Python API

comment parser.6 Then, we filtered every comment containing at least one of the follow-

ing terms: TODO, workaround, fixme, and hack. We selected these terms as they are

the most popular ones when reporting TD instances in source code comments [Huang

et al., 2018; Potdar and Shihab, 2014; Bavota and Russo, 2016]. As a result, we identi-

fied 74,306 comments, distributed through 182 repositories, i.e., in eight repositories, no

comment including such terms were identified. To validate this selection, the author of

this thesis inspected 3K comments (randomly selected). He confirmed all of them indeed

refer to Satd-C. However, in order to have an additional opinion, a research collaborator

analyzed a subset of 500 comments, also randomly selected from the initial sample of 3K

comments. He also confirmed all of them are Satd-C instances. Next, a second research

collaborator inspected the same subset of 500 comments. During the analysis, he raised

a discussion about Satd-C instances that do not include any description about the debt

(e.g., comments that only include a TODO without any further textual description). As

a result, we decided to remove 1,592 comments that not include text besides the searched

words. During this validation, we found a bug (or a limitation) in our regex tool when

handling very large comments. Therefore, we decided to remove comments with more

than 64K characters (i.e., 45 comments, in total). We also inspected some of these re-

moved comments and found they are indeed false positives (all of them refer to minified

JavaScript files, for example). In the end, our extended dataset includes 72,669 Satd-C

instances (i.e., 74, 306− 1, 592− 45).

4.2.2 Dataset Characterization

Our extended dataset includes 20,265 Satd-I and 72,669 Satd-C instances, col-

lected from 190 well-known GitHub repositories (10,075 stars per repository, on the me-

dian). For example, the list of studied repositories includes: vuejs/vue (186K stars),

5We acknowledge that some of the selected issues might not document TD concerns (for example,
developers may have incorrectly labeled some issues). Despite that, this fact does not invalidate our key
goal in this study, which is studying tool support for Satd documentation.

6https://pypi.org/project/comment-parser/

https://pypi.org/project/comment-parser/
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microsoft/vscode (114K stars), kubernetes/ kubernetes (79K stars) and angu-

lar/angular (75K stars). Figure 4.1 describes the distribution of both Satd forms in

such repositories, in terms of absolute and relative numbers. We can observe a concen-

tration on code comments as means to document Satd (i.e., 81 Satd-C vs 42 Satd-I

instances per repository, median values). The same behavior is observerd when analyzing

relative distributions. In this case, Satd-C items are more frequently used as means

to document Satd (i.e., 58% of Satd-C vs 41% of Satd-I per repository, median val-

ues). These observations are statistically confirmed by applying the Mann-Whitney U

test (p-value ≤ 0.05).

42

81
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SATD−C

1 10 100 1000 10000

# SATD instances (log scale)

Absolute

41.48
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% SATD instances
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Figure 4.1: Distribution of Satd-I and Satd-C instances per repository, in terms of
absolute and relative numbers.

To better characterize our dataset and shed light on key quantitative measures

about both datasets of Satd instances, we defined four dimensions7:

• Size: represents the volume of text used to describe TD.

• Age: characterizes how long the debt remains in code.

• Activity: represents the level of activity to document TD.

• Engagement: characterizes community involvement.

Satd-C Characterization. In Figure 4.2, we provide violin plots to describe the Satd-

C instances in our dataset. To measure the first dimension (size), we counted the number

of characters used in comment texts. In this case, the first quartile, median, and third

quartile are 30, 63 and 131 characters. For age, we calculated the difference (in days,

rounded with two decimal places) between the date of our data collection and the com-

mit date when the Satd-C was introduced. The introduction date was obtained after

traversing back the git tree until we find the commit responsible for adding each debt. As

a result, the obtained quartiles are: 448.24, 823.71, 1,465.41 days, respectively. To charac-

terize the level of activity performed by developers to document Satd-C, we counted the

7However, we highlight that it is not possible to directly compare and contrast the two sets (Satd-C
and Satd-I), since the metrics used in each one are distinct.
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Figure 4.2: Characterization of Satd-C instances in terms of size, age, activity and
engagement.

number of commits that modified the comment since its introduction. The first quartile,

median, and third quartile are 1, 1 and 2 commits. Finally, to measure the community

engagement, we counted the number of developers that modified the Satd-C comment.

In this case, the three quartiles are equal to 1 author per Satd-C.

Satd-I Characterization. Figure 4.3 details the distribution of results for the metrics

defined in each dimension, considering the Satd-I instances in our dataset. As for Satd-

C, we used the number of characters as measure for the size dimension. The obtained

quartiles are 203, 442 and 1,005 characters. To characterize the age of the studied Satd-

I, we calculated the delta between the data collection and creation dates for the opened

issues. In this case, the first quartile, median, and third quartile are 281.77, 671.22 and

1,251.18 days. Next, we selected the number of comments as a metric to characterize
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Figure 4.3: Characterization of Satd-I instances in terms of size, age, activity and en-
gagement.

the activity in Satd-I issues. We observed 2 comments in the first quartile, 3 in the

median, and 6 in the third quartile. Finally, we used the number of participants in the

issue to describe the community engagement. The results for this dimension are 2, 3 and

4 participants per issue.
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4.3 Transforming SATD-C in SATD-I

In this section, we assess developers’ interest in tools to automatically create

GitHub issues from Satd-C. Such tools might be effective to support the migration

of Satd-C into Satd-I. In this case, developers can benefit from issue trackers features

to manage Satd, such as: discussions, assignments, and increased visibility. Particularly,

we aim to answer the following research question:

RQ4. Are developers interested in tools to create issues from Satd-C? To an-

swer the RQ, we first implement and evaluate a prototype tool, called AdmiTD. This tool

automatically identifies and reports Satd-C as GitHub issues. To evaluate its feasibility,

we survey developers from 10 GitHub projects.

We dedicate Section 4.3.1 to present AdmiTD. Section 4.3.2 details our study

design. Finally, in Section 4.3.3, we answer RQ4.

4.3.1 AdmiTD Tool

We first implemented AdmiTD, a prototype tool that automatically identifies and

reports Satd-C as GitHub issues. To identify Satd comments, AdmiTD relies on the

heuristics reported in Section 4.2.1 (i.e., we extract source code comments and search by

common TD-related terms reported in the literature). For each identified Satd-C, our

prototype tool automatically creates an issue in the analyzed repository, containing three

major parts: (1) title; (2) body; and (3) label. To create the title of the issue (flagged

with #1 in Figure 4.4), AdmiTD relies on the first sentence of the comment. Next, to

create the body of the issue (flag #2), the tool analyzes the git log of the Satd-C lines

and retrieves its introducing commit, author, and date. The issue body describes this

information, as well as the code snippet of the debt. We fixed a length of at most the

next 10 lines of code. Finally, the issue is automatically labelled with the TD-related

label commonly used in the repository (flag #3).

Particularly, the issue shown in Figure 4.4 was created by AdmiTD for ge-

tredash/redash. It was generated from the following Satd-C introduced in April

1st, 2015 (see flags #1 and #2 in the figure):

# TODO: this test can be refactored to use mock version of

should schedule next to simplify it.
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1
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3

Figure 4.4: Example of issue automatically created by AdmiTD, highlighting the gener-
ated (1) title, (2) body, and (3) label.

In this case, the Satd-C author reports that a referred test should be refactored

to use mocks. Besides, the Tech Debt label was included as adopted in the repository

(flag #3).

Finally, to improve the quality of the generated issues and reduce duplicates, Ad-

miTD merges issues related to the same code comment (i.e., Satd-C instances that

would generate the same title). For that, issue bodies are appended with a separating

line between each occurrence.

4.3.2 Survey Design

To explore developers interest in automatically transforming Satd-C in Satd-I,

we conducted a survey with a sample of developers from 10 repositories selected in our

dataset. For this, we first forked each repository, and applied AdmiTD in the fork (to

avoid polluting the original repository with possibly unwanted issues). We also added two

restrictions in AdmiTD to highlight relevant debts and facilitate developers’ evaluation:

(i) we only created issues for Satd-C instances retrieved from relevant files (i.e., files that

concentrate 80% of the source code changes in the repository); and (ii) we limited the

number of Satd-I to 25 issues, randomly selected (i.e., we restricted the report to the

first page of GitHub issue tracker).

Table 4.1 shows the repositories selected to answer this second RQ, the number

of existing Satd-C and Satd-I, as well as the number of issues generated by AdmiTD.
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As we can see, the tool created 154 issues for 1,314 Satd-C instances. The difference

between the number of generated issues and Satd-C instances is due to the restrictions

for relevant files, and due to the maximum size of GitHub issue pages, as well as to the

merge approach implemented by AdmiTD. For example, in mkdocs/mkdocs two issues

were merged and one Satd-C does not occur in a relevant file. All issues can be found

at the forked repositories listed at AdmiTD GitHub page.8

Table 4.1: Satd-I instances automatically generated by AdmiTD.

Repository # Satd-C # Satd-I # Gen.

osquery/osquery 45 22 25

balderdashy/sails 53 216 25

getredash/redash 834 40 25

falconry/falcon 51 39 25

naver/pinpoint 280 48 23

gabime/spdlog 13 19 11

encode/django-rest-framework 14 63 6

gionkunz/chartist-js 12 15 6

appium/appium 5 37 4

mkdocs/mkdocs 7 16 4

Total 1,314 515 154

After generating the aforementioned issues, we emailed the core developers of each

repository, sharing the link of the issues in our forked repository, explaining our tool

and goals, and asking a single question: Is it worthwhile to create such issues in your

repository?

4.3.3 Are developers interested in tools to create issues from

SATD-C?

From a total of 10 mails sent, we received four answers (response rate of 40%).

However, none of the received answers included strong evidence of a positive perception

of the automatically generated issues. In other words, although developers use GitHub

issues to document and discuss their debts, they may not be interested in the automatic

Satd-C→Satd-I transformation. For example, the core developer of mkdocs/mkdocs

commented on the noise produced by Satd-I issues:

8https://github.com/admitd

https://github.com/admitd


4.4. Linking SATD-C to SATD-I 65

This is an interesting idea, but I don’t think it is appropriate for mkdocs. Some projects

may use a workflow where they would like to track each TODO as a bug. However,

generally speaking I think that it will just create noise. For me a TODO is something that

can be improved or fixed, but it isn’t urgent. So if a developer spots it and has time they

can take a look. Adding the noise of Github doesn’t seem useful.

He also commented on the usage of IDE-based tools to search and index Satd-C

instances:

Many IDEs or other developer tools can let you easily view these. I think that is enough.

A relevant example of such tools is the Todo Tree: an extension for VS Code

with more than 1M installs.9

In addition, the core developer of osquery/osquery discussed the easiness of

annotating TD in code comments to speed up development:

I think having TODOs/debt annotated in code is OK and we want to encourage folks to

ship (tested) code quickly without having to be perfect or with all features implemented.10

Developers did not provide strong evidence of being interested in tools to automati-

cally create Satd-I from Satd-C.

4.4 Linking SATD-C to SATD-I

Given the negative results in Section 4.3, we decided to study another approach to

support developers handling both Satd-C and Satd-I. Instead of creating new Satd-I

from Satd-C, we investigate the viability of implementing tool support for connecting

Satd-C to existing instances of Satd-I. We claim that such tools can make the navigation

from Satd-C to Satd-I easier and straightforward. Therefore, these tools might help

developers to include more details about a given debt, and to keep track of duplicated

and outdated reports.

Our first step is to assess how often Satd-I issues are referenced from Satd-C

comments (Satd-C→Satd-I). Thus, we seek to answer the following research question:

9https://marketplace.visualstudio.com/items?itemName=Gruntfuggly.todo-tree
10Interestingly, this comment suggests that previous studies on Satd-C might have maximized the

occurrence of TD, by considering any TODO to be problematic. As stated by the respondent, a TODO
can just be a minor observation for the developer in the future.

https://marketplace.visualstudio.com/items?itemName=Gruntfuggly.todo-tree
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RQ5. Do developers refer to Satd-I in Satd-C? To answer this last RQ, we search

for explicit links between Satd-C and Satd-I. For this, we mine the occurrences of

Satd-I’s URLs and IDs in Satd-C’s comments. The existence of such links would mean

that it is feasible to create such tool.

We dedicate the remaining of this section to describe the methods applied to find

these links, as well as the obtained results.

4.4.1 Do developers refer to SATD-I in SATD-C?

We implemented a custom procedure to triangulate the debts from both groups.

Basically, we implemented a script to analyze the code comments of each Satd-C and to

extract the numbers that matched one of the following conditions:

(a) Considered as a single token, such as “TODO: Issue 949 - the following code . . . ”.

(b) Preceded by the # symbol, e.g., “TODO #7967 help refactor”.

(c) Preceded by the /issue/ token, for example: “TODO: change to 200 https: //

github. com/ loadimpact/ k6/ issues/1250”.

Then, we cross-check these numbers with the issue codes of the Satd-I collected

in Section 4.2 to link both Satd-C and Satd-I. Satd-C instances referring to issues

outside of the extended dataset were discarded as they do not fulfill the Satd-I criteria

adopted initially, i.e., contain at least one TD-related label. Lastly, the author of this

thesis manually inspected each link to ensure they indeed represent actual Satd instances

(which indeed was confirmed in all cases).

From the 190 repositories initially analyzed, 23 of them contained at least one

Satd-C→Satd-I occurrence (12.1%). Figure 4.5 presents the number of Satd-C and

Satd-I collected in these repositories, as well as the number of Satd-C→Satd-I oc-

currences we found. Our triangulation process matched 80 references in total. From

the perspective of Satd-C, this means that 0.36% of them refer to a Satd-I instance;

conversely, 1.28% of Satd-I is referenced by at least one Satd-C instance in our dataset.

Table 4.2 lists the number and distribution of these references for each of the 23

repositories. cockroachdb/cockroach has the highest number of references (20),

followed by radareorg/radare2 (11), and both elastic/kibana and kubernetes/

kubernetes, with 8 instances, each; together these four hold 58.8% of all Satd-C→Satd-

I links. By contrast, 13 repositories have only one reference. Despite this high concentra-

https://github.com/loadimpact/k6/
https://github.com/loadimpact/k6/
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80 6,23422,572

SATD-ISATD-C

Figure 4.5: Number of Satd-I and Satd-C instances considering only repositories with
at least one Satd-C→Satd-I reference.

tion, the occurrence of Satd-C→Satd-I represents less than 5% in the top-4 from both

Satd-I and Satd-C perspectives.

Table 4.2: Number of Satd-C→Satd-I references for each repository.

Repository # Ref % Satd-C % Satd-I

cockroachdb/cockroach 20 0.61% 2.79%

radareorg/radare2 11 0.62% 4.06%

elastic/kibana 8 0.70% 2.69%

kubernetes/kubernetes 8 0.21% 0.92%

adobe/brackets 5 0.78% 3.29%

loadimpact/k6 5 0.71% 7.25%

dotnet/roslyn 3 0.23% 1.20%

kubernetes/minikube 3 6.38% 1.97%

angular/angular-cli 2 0.41% 1.27%

withspectrum/spectrum 2 0.93% 1.57%

microsoft/vscode 1 0.23% 0.06%

grpc/grpc 1 0.32% 0.36%

metabase/metabase 1 0.28% 0.45%

hashicorp/consul 1 0.08% 1.30%

influxdata/influxdb 1 0.21% 0.71%

firecracker-microvm/firecracker 1 5.26% 0.83%

microsoft/react-native-windows 1 0.26% 1.25%

elastic/beats 1 0.34% 5.56%

openshift/origin 1 0.03% 0.34%

jetstack/cert-manager 1 0.35% 2.38%

WordPress/gutenberg 1 0.74% 0.71%

tektoncd/pipeline 1 0.10% 2.08%

perkeep/perkeep 1 0.13% 8.33%

Total 80 0.36% 1.28%
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After manually inspecting the content of such Satd-C→Satd-I occurrences, we

noted that Satd-C were generally created to highlight the points in the code impacted

by the associated Satd-I instance. For instance, the following Satd-C was identified at

kubernetes/kubernetes:

#TODO refactor all tests to use real watch mechanism, see #72327

The referenced Satd-I, in turn, describes the need to “Use fake client real watch

mechanism in PV controller tests”.

In any case, mentioning Satd-I in Satd-C is not a widespread practice in GitHub

projects. Even after reducing our analysis to the few projects containing such a link, we

observe that such referral is, in fact, barely used. Moreover, an in-depth analysis showed

that 26 references (out of the 80 references initially detected) refer to duplicate links. In

other words, 26 Satd-C comments refer to duplicate issues. This result suggests that

Satd-I may be used to document TD that spans in multiple places in code.

Overall, only 80 out of 22,327 (0.36%) Satd-C explicitly refer to Satd-I. Thus,

cross-referring Satd-C and Satd-I is not a widespread practice.

4.4.2 Other Matching Approaches

In order to try to expand our dataset of Satd-C→Satd-I references, we analyzed

more flexible matching techniques. The idea was to search for other traces that could

relate both Satd. In this sense, we decided to try out two distinct approaches: textual

similarity, where a pair of Satd-C→Satd-I is created in case they are textually similar

to each other; and timestamp proximity, where the link is generated if both Satd are

created next to each other given a time interval.

Textual Similarity. For each pair of Satd-C and Satd-I, we assume that the former

is semantically related to the latter whenever there is a high textual similarity between

them. For this, we relied on the SequenceMatcher class, available at the difflib11 Python

module; this class provides functions to compute the textual similarity level between two

string sequences, returning a score in [0, 1] range. We calculated the ratio for all possible

Satd-C→Satd-I combinations, considering the texts retrieved from Satd-C comment

blocks and Satd-I issue bodies. Then, we filtered the pairs with a ratio of 0.75 or higher.

However, we did not find any references based on these criteria.

11https://docs.python.org/3/library/difflib.html#module-difflib

https://docs.python.org/3/library/difflib.html#module-difflib
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Timestamp Proximity. We considered that one Satd-C instance refers to a Satd-I

if the latter was created at most 24 hours after the creation of the former; as a result,

we leveraged a total of 879 pairs through this pattern. To verify the effectiveness of this

approach, we selected a random sample of 87 occurrences and analyzed each one in order

to validate this temporal connection.12 However, we were not able to identify any real

association. To illustrate this finding, consider the following Satd-C:

#Workaround for https://github.com/microsoft/vscode/issues/12865

check new scrollY and reset if necessary

As noted, this comment clearly mentioned issue #12865, but it was wrongly linked

with issue #15515, as they were created in an interval of three hours.

Mixed Approach. We performed one last experiment by combining both approaches.

This time, we considered a Satd-C→Satd-I as valid if they were created in a 24-hour

window, but have a similarity of 0.30 or higher. As a result, this procedure returned 12

references. The author of this thesis manually checked each one, but observed that they

were all invalid.

More flexible approaches did not improve our search for Satd-C→Satd-I references.

We were not able to find any new reference using such approaches.

4.5 Implications

Based on our results, we shed light on the following practical implications:

1. Satd-C and Satd-I probably have different natures. This difference could

explain the negative results we reported when investigating tool support for Satd-I (RQ4

and RQ5). We hypothesize this result happened due to the distinct natures of Satd-C

and Satd-I. In this case, we believe that Satd-C could be more adopted to report low-

level TD (i.e., debts associated with code snippets located next to the TD comment). For

example, in the following Satd-C comment, a developer from elastic/kibana indicates

that a particular excerpt of the code is duplicated and should be cleaned up:

// TODO: everything below performs verification of manifest.yml

// files, and hence duplicates functionality already implemented

// in the package registry. At some point this should probably

12Determined after specifying a limit of 95% confidence level, with a margin of error of 10%.

https://github.com/microsoft/vscode/issues/12865
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// be replaced (or enhanced) with verification based on

// https://github.com/elastic/package-spec/

On the other hand, Satd-I could be more suitable to document high-level concerns

(i.e., debts that tend to spread out over the code, such as the ones referring to design

concerns). Figure 4.6 illustrates an example of a high-level TD concern documented

through an issue. In this case, the developer from cockroachdb/cockroach created

this Satd-I to report a debt that spans in multiple places of the code.

Figure 4.6: Example of high-level Satd in cockroachdb/cockroach issues.

Moreover, we also hypothesize that the decision for adopting code comments or

issues may also depend on other factors, such as the priority, impact or importance of

TD problems. Therefore, we highlight that it would be relevant to empirically validate

these hypothesis, supporting developers to better document TD.

2. Issues might be more useful to report TD related to crosscutting concerns.

In addition to the previous implication, we conjecture that issues might be more useful to

document crosscutting TD. Particularly, in RQ1 we show that 40% of the studied Satd-I

instances were related to TD more challenging to be documented in code comments (e.g.,

UI, Performance, and Build debts). In fact, this result complements previous Satd-

C studies—that mainly identified Satd types related to source code—and prospects new

horizons to Satd research, mainly related to less studied TD types.

3. Tools for linking Satd types might not be worthy. Still based on our negative

results in RQ4 and RQ5, the implications to tool builders seem to be clear: they should

not invest in tools to connect both types of Satd, using approaches similar to AdmiTD.

In terms of Satd-C tools, the most promising ones are related to indexing Satd-C

instances, as mentioned by one of the surveyed developers. Similarly, we also envision

similar tools for indexing Satd-I instances.

4. Researchers should include Satd-I in Satd studies. Although there is a relevant

difference between the amount of TD documented in GitHub issues and in code comments

(42 Satd-I and 81 Satd-C instances per repository, on the median), we consider that
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issues must be considered by Satd researches, as they tend to represent Technical Debt

in a different shape. Therefore, it is recommended that studies on Satd rely not only on

debts reported in comments (as usual), but also include instances documented in issue

trackers.

4.6 Threats to Validity

First, our new dataset is based on a list of 219 TD-related labels, manually elicited

from labels present in the top-5K most popular GitHub repositories. Although this list is

based on the state-of-the-art [Xavier et al., 2020], we acknowledge that it is not exhaustive.

Moreover, we relied on a conservative set of terms to identify Technical Debt in code

comments, such as: TODO, workaround, fixme, and hack. Therefore, it is possible that

other Satd-C instances were not selected in our study, i.e., comments with different

keywords. Even though, we claim that our final dataset is one of the largest in the

literature, including more than 20K Satd-I and 72K Satd-C instances.

Another threat that would affect this study refers to the decision to rely on devel-

opers’ self-admission to identify both Satd-I and Satd-C. We mitigate it by adopting a

conservative list of TD-related keywords to mine Satd-C, and by manually analyzing the

GitHub labels used to document Satd-I. Additionally, the author of this thesis manually

inspected a relevant subset of the final dataset. We also mitigate the bias of developers’

answers by restricting our survey to core developers.

We also acknowledge that it is possible that some Satd-I instances in our extended

dataset do not refer to TD concerns. For example, developers’ misunderstanding of the

definition of the TD concept may result in incorrectly labeled issues. Our strategy to

identify Satd-C comments may also represent a threat, since we adopted a simple and

straightforward pattern-based approach. For both threats, we claim that we relied on

conservative decisions to mitigate the occurrence of false-positives (i.e., we selected a

precise set of TD-related labels, as well as a meaningful set of TD keywords).

Additionally, we highlight that this study is limited to the 20,265 issues and 72,669

comments classified as Satd. Despite the size of the studied dataset and the relevance

of their respective repositories (10K stars, on the median), our findings may not be gen-

eralized. Moreover, the results discussed in RQ6 are based on the impressions of few

developers. However, we claim that the received answers provided valuable insights.

Regarding our study to answer RQ7, we acknowledge that our strategies to match

Satd-C and Satd-I are not exhaustive. In fact, developers can adopt different ap-

proaches to link them (e.g., by using a tertiary software artifact). Moreover, to assess
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textual similarity, we deal with the construct validity by adopting well-known functions in

the Python community. Finally, we highlight that we set relaxed thresholds for the tex-

tual similarity ratio (0.75 and 0.30) in order to increase the chances of finding references.

Even with such decisions, we could not improve our search.

4.7 Final Remarks

In this chapter, we explored the interplay between Satd-C and Satd-I instances

by investigating the adoption of tools to report TD. For that, we first built a dataset

of 20,265 Satd-I instances and 72,669 Satd-C instances, mined from 190 well-known

GitHub projects (e.g., vuejs/vue, microsoft/vscode and kubernetes / kuber-

netes). We also implemented AdmiTD, a prototype tool that automatically identifies

and reports Satd-C in GitHub issues. We used this dataset and tool to (1) explore devel-

opers interest in automatically creating GitHub issues based on Satd-C; (2) investigate

whether developers cross-reference Satd-I in Satd-C. As a result, we show that:

• Developers are not interested in tools to automatically create Satd-I from Satd-C.

We attempted to use AdmiTD in 10 GitHub repositories without success;

• It might not be feasible to create a tool to link Satd-C and Satd-I instances. When

looking for such references in our dataset we find out that this is not a widespread

practice, i.e., it happens for less than 1% of the Satd-Cs.

Replication Package. We provide the complete dataset used in this chapter and a

replication package at: https://doi.org/10.5281/zenodo.6532378.

https://doi.org/10.5281/zenodo.6532378
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Chapter 5

Documentation Guidelines

In this chapter, we investigate the circumstances that drive developers to choose between

code comments and issues when documenting Technical Debt. Particularly, we conduct a

survey with authors of Satd-C and Satd-I instances to elicit a catalog of guidelines to

better document Satd. In Section 5.1 we introduce the chapter. In Section 5.2 we detail

the survey design. Section 5.3 presents the obtained catalog. Finally, in Sections 5.4

and 5.5 we discuss threats to validity and conclude the chapter, respectively.

5.1 Introduction

In Chapter 4, we showed that there is a minor interplay between Satd-C and

Satd-I. Particularly, our results indicate that code comments and issues are used by

developers to document Technical Debt in distinct scenarios. However, there is still

a lack of knowledge on the circumstances that drive developers to choose

between them. In this chapter, we tackle this problem by surveying developers who

documented TD using both comments and issues, as they have practical experience with

both forms of Satd.

To accomplish that, we first leverage the authors of both Satd-C and Satd-I

instances from our large-scale dataset (Section 4.2). From a set of 1,006 developers, we

contacted 137 developers to answer the following research question:

RQ6. Where do developers document TD? In this RQ, we conduct a survey with

developers that documented TD using both comments and issues. We received answers

from 59 authors who created both Satd-C and Satd-I instances in our dataset. Specif-

ically, we aim to unveil guidelines to support developers to better document TD.
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5.2 Study Design

Our ultimate goal is to conduct a survey to reveal how developers select between

issues and comments to report Technical Debt. For that, we first we leveraged the list

of developers who created at least one of the Satd instances collected in our large-scale

dataset (Section 4.2): the author who opened the issue for Satd-I, and the commit author

for Satd-C. We identified 8,082 authors who reported these debts in the 20,265 issues

and 72,669 comments available in our extended dataset. We used the author name, as

provided in GitHub profile and in git commit, to identify authorship and then compute the

intersection of authors who adopted both strategies. Figure 5.1 depicts the relationship

between the authors of each group, considering the whole dataset. As we can observe,

3,243 (40%) authors reported Satd-C only, while 3,833 (47%) authors reported only

Satd-I. Finally, 1,006 authors (12%) reported both.

1,006 3,8333,243

SATD-ISATD-C

Figure 5.1: Number of developers who reported each type of Satd.

As we are primarily interested in comparing the motivations for choosing between

Satd strategies, we considered only authors who created both Satd-I and Satd-C, i.e.,

1,006 authors in the intersection. From this total, we selected the ones who (i) created

both Satd instances in the previous 1.5 years (from September 3rd, 2019 to March 3rd,

2021); and (ii) provided their email address publicly in GitHub. Overall, we contacted

137 developers from 51 repositories.

In each email, we first presented both Satd-C and Satd-I instances authored by

the developer (as a GitHub permanent link). In situations where developers created more

than one instance of Satd in the studied time frame, we used the most recent one. Next,

we asked two open-ended questions:

1. When do you recommend documenting TD using code comments?

2. When do you recommend opening an issue?



5.3. Where do developers document TD? 75

We received 52 answers, which represents a response rate of 38% (52 answers to

137 inquiries). Furthermore, after being reached by our email, two participants considered

our research interesting and asked to share the discussion in the Slack channel of their

repositories. We then included seven answers received from this “snowballing phase”,

resulting in a total of 59 answers.

Finally, the author of this thesis followed an open-card sorting [Spencer, 2009]

approach to extract guidelines from the survey answers. We decided to follow this method

because it allows the emergence of themes based on the qualitative analysis of answers.

It consists in the following steps: (i) identifying themes from answers, (ii) reviewing the

themes to find opportunities for merging, and (iii) defining and naming the final themes.

Specifically, the author of this thesis first analyzed each answer and extracted 18 themes.

Next, these themes were reviewed and merged into 13 semantically equivalent themes. In

a final step, they were packed into the guidelines presented in Section 5.3. For example,

in the first round, the themes acknowledges TD in code review and adds hints

to the reader were elicited. In the second phase, they were merged and, finally,

rephrased as If it provides context to the reader. To conclude this analysis,

a research collaborator independently analyzed the 59 answers. He agreed with all the

proposed guidelines. However, in ten cases, he argued the answers also discuss additional

guidelines, which were then included in our final classification.

5.3 Where do developers document TD?

As presented in Table 5.1, we identified 13 guidelines, divided in two categories: six

guidelines to document TD using comments (Satd-C); and seven to create issues (Satd-

I). To better discuss each guideline, we labeled them with a unique identifier (C#Id for

Satd-C and I#Id for Satd-I).

In most cases, a given answer produced more than one guideline. This explains

why the total number of occurrences is higher than the number of answers (59 answers).

Next, we detail the catalog explaining each guideline and illustrating them with quotes

from developers. We label quotes with D1 to D59 to indicate developers answers.
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Table 5.1: Guidelines to document Satd.

It is recommended to use. . . Occ.

Satd-C

C1. If it provides context to the reader 34

C2. If it has low priority 14

C3. If it has a local scope 11

C4. If it requires small effort to fix 8

C5. If it will be addressed soon 5

C6. If you revisit the code frequently 2

Satd-I

I1. If it requires discussion 18

I2. if it needs to be tracked 16

I3. If it spans to multiple places 15

I4. If it requires visibility 15

I5. If it has high priority 10

I6. If it requires medium/large effort to fix 8

I7. If it is a good first issue 5

5.3.1 Guidelines for Using Comments

We elicited six main guidelines for using comments as means to document TD.

In general, developers suggest that it is preferable to rely on source code comments to

provide additional context to code debts, and to document low priority or local concerns.

Specifically, developers suggest that it is recommended to use comments:

C1. If it provides context to the reader. With 34 answers (58%), the most

discussed advice for Satd-C is related to including details about implementation deci-

sions. In this case, authors should provide hints that allow future readers to understand

workarounds or refactor the code to better solutions, as follows:

TODOs can also be helpful to explain a hacky implementation so that a future reader of

the code can improve it or at least understand why the original implementer made the

choice that they did. (D9)

I would recommend documenting TD using code comments when the information helps to

understand the code by giving additional context for either myself or a colleague in the

future, but is only necessary information in this very local context. (D26)

C2. If it has low priority. In 14 answers (24%), developers suggest that it is

preferable to use comments for low priority TD. In this case, they claim that paying

these debts happens by chance when other developers pass through the comment. D10

and D25 illustrate this guideline:
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I left this as a TODO comment because it was a small implementation detail and I didn’t

see it as an important issue to tackle. (D10)

TODOs should be for short, one-off examples of tech debt that aren’t a high priority to

tackle rightaway. (D25)

C3. If it has a local scope. For 11 developers (19%), comments should be used to

document local and specific debts. For example, D2 cite this guideline:

I would use a FIXME-like comment for something local to the code where the comment is

(like a rare edge case not handled which should be handled near the comment). (D2)

C4. If it requires small effort to fix. Eight developers (14%) recommend to

use Satd-C to document debts that would not require a significant effort to pay. For

example:

If it’s something fairly small (which will take <1h), but that you don’t want or can’t spend

time doing at that moment. (D17)

C5. If it will be addressed soon. In five answers (8%), developers recommend

to use code comments to document debts that will be removed in a short time. D47

illustrates this guideline:

When you’re writing a lot of temporary code that you know will change in a few days, so

it is pointless to open issues just to close them tomorrow. (D47)

C6. If you revisit the code frequently. Two developers (3%) highlight that

comments should be used when they are constantly in touch with the debt. For example:

I would use comments in small projects where I have control over the whole code and I

revisit the code frequently. (D6)

5.3.2 Guidelines for Using Issues

Our catalog also includes seven guidelines to document TD in issues. Generally,

our analysis shows that developers use Satd-I to document debts that needs to be better

discussed with other contributors or tracked by managers. Developers suggest to report

debts as issues in the following scenarios:

I1. If it requires discussion. The most discussed recommendations for Satd-I (18

answers, 31%) refers to using issues to gather discussions with other contributors. Partic-
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ularly, developers highlight that issues are preferable to document debts that need to be

discussed to find better solutions, make clarifications or explore management alternatives

(e.g., their priority). For instance:

It’s also a way for other members of the project to put in their advice about the issue being

discussed. (D23)

It enables discussions of technical debt in more abstract terms, as the documentation is not

tied to the code. This allows other developers to provide their input and thus collaboratively

allow a team to find solutions. (D31)

Writing issues makes it easier to collaborate on solutions, make clarifications, and gather

information before doing the work. (D59)

I2. If it needs to be tracked. In 16 answers (27%), developers argue that issues

are useful to support TD management as they are better tracked than code comments.

For example:

Opening tech debt issues also helps to get data about the code quality of a project that can

be used to convince management to invest in either cleaning-up time, or a refactor/rewrite

of the code. (D26)

It allows us to measure at a project management level how much technical debt we’ve

taken on (e.g. this week, we opened 5 technical debt issues, maybe we need to slow down

development). (D39)

I3. If it spans to multiple places. Fifteen developers (25%) recommend that issues

should be used to document debts that either occur in more than one location of the code

or relate to abstract decisions. In both cases, finding one specific point in code to highlight

the debt is not possible. This is illustrated as follows:

Fixing the TD would span multiple files and involve touching quite a lot of places in the

codebase. (D2)

If TODO is more of architectural thing, spans multiple modules, and needs input from

different teams, then I’d create an issue. (D5)

I’d say it’s less about a specific hacky code block, and more about some more abstract

design decision. (D23)

Anything larger that affects multiple parts of the code base should be an issue. (D25)

I4. If it requires visibility. For 15 developers (25%), issues should be used as a

means to provide visibility to TD, preventing it from being forgotten in code. Developers

D11 and D23 highlight this recommendation in the following answers:
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An issue in the backlog is the actual ‘should do this thing’ record, that could cause it to

actually get done. (D11)

Opening an issue is always better in the case of a community project, where the issue is

far more visible/searchable than a code comment. (D23)

I5. If it has high priority. Ten developers (17%) contrast the usage of issues and

comments according to their priority. In opposition to guideline C2, they argue that

Satd-I should be used for high priority debts that ought to be paid. For instance, D30

illustrates this recommendation as follows:

I would say that issues are probably the most important form of communication for actually

fixing the problem. So there should be an issue created for any tech debt which absolutely

needs to be fixed. (D30)

I6. If it requires medium/large effort to fix. The cost for paying TD was also

mentioned as criteria to decide for creating issues according to eight developers (14%).

For example, D2 states:

An issue or tracker is for some bigger beast, like ‘refactor this class’ or ‘change the way

those classes interact’. (D2)

I7. If it is a good first issue. Finally, five developers (8%) included in their

answers the recommendation of using Satd-I as a means to engage new contributors.

D10 illustrates this recommendation in the following:

GitHub issues are particularly useful in the [project] because they can be tagged with ’/good-

first-issue’ which enables new contributors to find things to work on and get familiar with

the project. (D10)

5.3.3 Guidelines for Using Both Strategies

In 14 answers (19%), developers mention that the best practice to document TD is

to mix both strategies. They argue that it is preferable to report TD in issues and make

reference to them in comments. The goal of this mixed approach is to benefit from local

documentation in comments and from features like discussion, tracking, and visibility in

issues. D4 illustrates this guideline as follows:

There should be a 1:N relationship between issues and todos in the codebase. When looking

at an issue, there needs to be a way to refer to all the locations in the code where a TODO
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references that issue. The reverse direction also needs to be possible, i.e. when looking at

a TODO, it should be easy to navigate to the issue tracking it. (D4)

In fact, this mixed strategy was documented in cockroachdb/cockroach wiki

after developers raised internal discussions on this topic due to our survey (in this reposi-

tory, our questions were shared with contributors in their Slack channel, as we mentioned

in Section 5.2). Figure 5.2 illustrates an excerpt of their recommendation. The wiki

entry begins by proposing the best practice of adopting both strategies, but also high-

lights situations in which a single strategy is acceptable (guidelines C1, C2, I3, I6 in our

catalog).

Figure 5.2: Guidelines included in cockroachdb/cockroach wiki, after the discussion
raised by our survey.

5.4 Threats to Validity

In addition to the threats reported in Section 4.6—related to the selection of Satd-

C and Satd-I instances in our large-scale dataset as well as to generalization concerns—we

highlight that the author of this thesis performed an open-card sorting to leverage the

guidelines provided in RQ6. Despite the rigor followed by him to perform this classifica-

tion, its replication may lead to different results. We mitigate this threat by constantly

discussing the leveraged categories. We also mitigate the risk of bias in developers’ an-
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swers by restricting our survey to developers who documented TD in the last year. These

decisions were also important to increase the obtained response rates. Finally, the catalog

provided in Section 5.3 is based on the impressions of 59 developers. However, we claim

that the received answers provided valuable insights and deeply discussed the proposed

questions, e.g., the biggest answer had more than 2.4K characters.

5.5 Final Remarks

In this thesis, we studied the circumstances that drive developers to document

Technical Debt using code comments (Satd-C) or issues (Satd-I). To accomplish that,

we surveyed 59 developers who authored both types of debts in a large-scale dataset

containing 20,265 Satd-I and 72,669 Satd-C instances. We used the obtained answers

to unveil practical guidelines to support developers to better document TD.

Figure 5.3: Technical Debt documentation guidelines.

The results of this work can directly benefit practitioners, since the leveraged

guidelines provide empirical reference for choosing between issues, comments, or both

when documenting TD. In fact, we summarized these guidelines in a cheat sheet, pre-

sented in Figure 5.3 and also available at https://bit.ly/3HVZwVY. Moreover, one

project (cockroachdb/ cockroach) is already providing similar guidelines, upon be-

ing contacted by ourselves (see Figure 5.2). For researchers, our work shows that most

developers (81%) report TD either as comments or issues, which reinforces the need to

consider both situations when conducting empirical software engineering studies. Fur-

thermore, our guidelines can help researchers when investigating solutions and tools to

https://bit.ly/3HVZwVY
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automatically detect debts in code and issues. Finally, educators may rely on this study

to convey a list of best practices on how to report TD.

Before concluding, it is important to mention that in some projects issues are used

by managers to take key development decisions. In this case, issues can be used for more

critical TD that are of interest to managers; and comments can be used for low-level

discussions that do not require managers’ revision. By contrast, in very small projects,

where the developers know and revisit the code frequently, using only Satd-C can be the

most recommended practice. Finally, we also acknowledge that fixing TD, even the most

simple instances, might be risky and have negative effects in other parts of the system.

Replication Package. The data used in this chapter is publicly available at https:

//doi.org/10.5281/zenodo.6418088.

https://doi.org/10.5281/zenodo.6418088
https://doi.org/10.5281/zenodo.6418088
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Chapter 6

LTD: Less Technical Debt

In this chapter, we propose and assess LTD: a lightweight framework to support develop-

ment teams to manage Technical Debt through the creation of issues. First, we introduce

the chapter in Section 6.1. Next, in Section 6.2 we better present the LTD framework

and its activities. Next, in Section 6.3, we detail the case study conducted to assess its

adoption in a real-world scenario. In Section 6.4 we present the results of the study.

Sections 6.5 and 6.6 discuss implications and threats to validity, respectively. Finally,

Section 6.7 concludes the chapter.

6.1 Introduction

In this thesis, we aim to study the adoption of issue tracker systems to document

and manage Self-Admitted Technical Debt. To accomplish that, we first explored Satd

documentation in issues. Therefore, in Chapter 3 we characterized this practice by ana-

lyzing an initial dataset of 286 issues marked with a TD-related label. In this case, we

investigated the types of Satd documented in these artifacts, as well as the motivations

behind their introduction and payment. In Chapter 4, we advanced this understanding

by investigating the interplay between Satd items documented in code comments and

issues. At this point, we concluded that both Satd-C and Satd-I seem to be used to

document Technical Debt from different natures (e.g., with distinct characteristics and

purposes). Finally, in Chapter 5 we elicited the circumstances that drive developers to

choose between code comments and issues when documenting Satd.

As a final step to achieve our general objective, in this chapter we propose and

assess LTD: Less Technical Debt framework. Particularly, our motivation is to encompass

the knowledge produced in the previous studies into a lightweight framework that may

support development teams to better document and pay Technical Debt. The general

idea is to introduce TD-related concerns into well-adopted methodologies (e.g., Scrum,

Kanban, XP, etc.) [Valente, 2020], in a non-invasive and customizable way. Therefore,
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the framework proposes to inject four activities into agile-based methodologies already

adopted by a team: TD Consensus, TD Discovery, TD Planning, and TD Pay-

ment.

Figure 6.1 illustrates the main activities proposed by LTD. As we can observe, the

first activity (flag #1 in the figure), TD Consensus, seeks to produce a common under-

standing among developers about TD concepts (i.e., TD definitions, types, and priorities

for the team). During TD Discovery (flag #2), we propose that developers prospect the

debts already existing in the system, documenting and prioritizing the identified items.

For that, LTD indicates that the team should follow the practice described in

the previous chapters and document the debts in labeled issues (which now

we call as TD Stories). The third activity (flag #3), TD Planning, aims to let

developers select TD Stories to be paid. Finally, during TD Payment days (flag #4),

developers should concentrate efforts to pay the debts selected during TD Planning.

LESS TECHNICAL DEBT

FRAMEWORK

TD CONSENSUS 

1 2 3 4

TD DISCOVERY TD PLANNING TD PAYMENT

Goal: to produce a
common understanding
about TD 

Frequency: once, before
introducing LTD  

Outcome: decisions on 
 the priority types of TD
for the team   

Goal: to identify and 
 document existing debts 

Frequency: once, before
introducing LTD  

Outcome: inclusion of TD
Stories in the backlog of
the system

Goal: to select TD Stories
to be repaid in a sprint 

Frequency: recurrent,
during sprint planning (or
equivalent events)

Outcome: inclusion of TD
Stories in the sprint
backlog 

Goal: to repay the TD
Stories includded in the
Sprint Backlog
 
Frequency: recurrent,
along with other
development tasks 

Outcome: reducing the
debts existing  in the
system

Figure 6.1: Overview of the four activities proposed in LTD.

As discussed in Chapter 2, TD Management is a well-studied field in the literature.

Previous studies proposed different methodologies to handle TD, regarding prevention

strategies [Freire et al., 2020; Pérez et al., 2021; Freire et al., 2021], awareness raise [Besker

et al., 2019; Eliasson et al., 2015; Rocha et al., 2017], and project management [Guo et al.,
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2016; Rios et al., 2020; Li et al., 2015]. By contrast, we argue that the previous proposed

frameworks differ from LTD as (i) they focus on particular strategies to deal exclusively

with TD (disregarding other activities that should be performed by developers); (ii) they

do not take into account the singularities of different process methodologies (i.e., they

are not flexible and customizable); (iii) they do not emphasize the adoption of a specific

artifact to document TD (as we propose with the TD Stories, created with issues in

tracking systems). In this chapter, we seek to answer the following research question:

RQ7. What are the perceptions of developers about LTD? In this RQ, we con-

duct a preliminary case study with two development teams from a large public company.

They represent different development scenarios, in terms of development stages, deadline

pressure, and technology stacks. In both, we conducted the activities proposed by LTD,

observing the adoption of the framework and discussing its pros and cons with developers

for one month.

6.2 LTD Framework

In order to support development teams to better document and to reduce Tech-

nical Debt, we propose LTD: Less Technical Debt framework. The primary goal of the

framework is to introduce TD-related concerns into agile-based development methods,

including activities that support developers to constantly document, prioritize and pay

Technical Debt. To reach this goal, we propose that teams should: (i) reach a common

understanding about TD, and its importance; (ii) identify and document TD stories; (iii)

prioritize and plan TD payment; and (iv) dedicate a qualified time to pay TD Stories.

In LTD, we propose that developers create issues in tracking systems to better document

and manage TD (which we denote as TD Stories). As we showed in the previous chap-

ters, this is a common practice among top-starred systems in GitHub (see Section 4.2).

In Chapter 5, we also described the main circumstances in which the documentation of

TD using issues is recommended.

In fact, LTD differs from previous frameworks as it intends to be (i) lightweight,

with flexible and customizable activities; (ii) integrable with existing development pro-

cesses (i.e., it is not intended to be an additional process that the team should master);

and (iii) centered on the creation and management of TD Stories (i.e., issues in tracking

systems). Therefore, we propose to inject four activities into agile-based development:

TD Consensus, TD Discovery, TD Planning, and TD Payment. In this section,

we detail LTD activities and provide examples about their adoption.
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6.2.1 TD Consensus

Although the Technical Debt metaphor is intuitively known by developers, there

is a lack of solid consensus about its actual definition and types [Kruchten et al., 2012;

Rios et al., 2020; Ciolkowski et al., 2021]. For example, in Chapter 3, we showed that

TD is related to 14 different types of concerns, varying from Requirements to Infras-

tructure. Therefore, the first activity proposed in LTD seeks to produce a common

understanding among developers about TD concepts. Particularly, in this initial activity

we propose that the team discuss the definitions of Technical Debt internalized by de-

velopers with the purpose of identifying possible misunderstandings that may affect the

upcoming activities. It is also recommended that the team discuss the types of Technical

Debt (e.g., Design, Test, Build, etc.), as well as the debts that they may consider

most relevant to prioritize in the context of the software that they are developing. The

results obtained in our characterization study (Chapter 3) can support this discussion

and consensus. In practice, this activity has the goal of creating an essential agreement

in the team to support the upcoming activities. It is also intended to promote awareness

about TD, possibly preventing new debts.

We acknowledge that TD Consensus is not intended to be an activity that needs

to be constantly conducted by teams (in every sprint, for example). By contrast, this

activity is perhaps essential to happen in the initial phases of a project, or by the time

LTD starts to be incorporated in the process. It may also be carried out in the form

of workshops, webinars, or internal brainstorming. In methods that include an inception

phase, it might be worthy including this discussion during the activities proposed at this

stage of development. In any case, the project manager, scrum master, or any other

external expert may lead the discussions.

As a result of this activity, it may also be relevant to document the definitions

that the team reached out. For example, the team may decide to document and label TD

in issue tracker systems, defining the meaning of these labels with the adopted concept.

Although we cannot affirm that the repositories collected in Section 4.2 have conducted

any activity equivalent to LTD’s TD Consensus, we observe that they adopt a common

understanding about TD concept by defining the meaning of their TD-related label. In

microsoft/vscode, the team uses the label debt to document “Code quality issues”. In

influxdata/influxdb, the label kind/tech-debt stands for issues that “Needs cleanup,

will make the developer experience better”.
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6.2.2 TD Discovery

Based on the knowledge produced inTD Consensus, the second activity proposed

by LTD aims to prospect Technical Debt instances. During this activity, developers are

intended to elicit a catalog of TD Stories. We now denote as TD Stories the Satd-I

instances studied in the previous chapters (i.e., during this activity, we recommend that

developers document TD with issues in tracking systems). The rationale for switching

from the term “Satd-I” to “TD Story” is to promote developer’s understanding, as they

tend to be more familiar with user stories, commonly adopted in agile methods.

Each TD Story should document and describe the debt, providing essential infor-

mation that might be necessary for its payment. For example, Figure 6.2 illustrates an

ideal TD Story, from elastic/kibana. As we can observe, the story includes a mean-

ingful title (flag #1, in the figure), a not too long description (flag #2), and an indication

of TD, with the technical debt label (flag #3).

1

2

3

Figure 6.2: Example of TD Story from elastic/kibana.

In practice, during TD Discovery the team should work to create a TD Back-

log, which is essential to increase awareness, and to plan the payment of the debts. In

fact, previous frameworks proposed in the literature also include the idea of such lists [Guo

et al., 2016; Schmid, 2013]. However, in LTD we propose that the debts should be docu-

mented as stories, and the TD Backlog should be included in the same backlog managed

by the team (i.e., for the sake of simplicity, it is recommended that the teams use a single

and unique backlog. Of course, searching and filtering mechanisms can be easily used

to select only the TD Stories). This may increase the visibility of the debts, as well as
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facilitate their management in parallel with other development activities. To this end, we

recommend the creation of labeled issues, as described in the previous chapters. It is also

recommended that developers prioritize the stories created, according to their relevance,

complexity, or any other criteria decided by the team.

In relation to its execution, we claim that the first TD Discovery is an essential

activity for ongoing teams that decide to adopt LTD after the beginning of the project. In

this case, the implementation has started and it might be relevant to document already-

existing debts. After the initial creation of the TD Backlog, it should be encouraged that

developers keep the backlog updated, including the debts inserted in the codebase. In

this scenario, it is essential the execution of an initial event, perhaps as a follow-up of

the TD Consensus activity, in which the team should come up with the first version of

the TD Backlog. In projects that decide to adopt LTD since its beginning, it is feasible

that developers maintain the backlog as a daily activity (i.e., the initial discovery may not

be relevant). In both cases, it is recommended that project managers or scrum masters

include this discussion during sprint reviews, updating the backlog and discovering debts

that developers might have forgotten to document during the sprint.

6.2.3 TD Planning

The ultimate goal of managing Technical Debt is to promote its payment. In

this case, we claim that an essential key to achieve this goal is including this discussion

during planning activities. To accomplish that, LTD proposes TD Planning, in which

developers are intended to plan the inclusion of TD Stories in the sprint backlog (or

any other artifact that describes the goal of the team during a given time box). In

practice, during the planning activities already adopted by the team, it is recommended

that developers select TD Stories with the highest priority that fit in the team capacity.

Although LTD is intended to be flexible and integrable with any agile-based method, we

acknowledge that this activity should be executed iteratively (e.g., during Sprint Planning

events). In this case, developers may continuously reprioritize TD Stories, as well as plan

their payment during a fixed time frame.

LTD also defines a percentage of the sprint that should be dedicated to TD Pay-

ment. In general, we recommend that the teams define around 20% of the sprint to pay

Technical Debt. This threshold was inspired by the so-called “20% rule” used by some

companies, such as Google. This rule allows developers to use 20% of their time to work

on any project of their choice [Henderson, 2017]. For example, sprints of ten days should

dedicate two days to pay Technical Debt. In practice, this time should be included as
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slack [Beck, 2000] or cool down activities [Singer, 2019]. In any case, it is essential that

the team divide the team capacity considering this dedicated time, selecting TD Stories

viable to be paid during this time. Finally, it is also worth mentioning that LTD is

intended to be flexible. Thus, this percentage might be adjusted according to the team

necessity or availability (e.g., projects in initial phases may not need the whole capacity).

6.2.4 TD Payment

Finally, the TD Payment activity refers to the days in which developers should

concentrate effort to pay the TD Stories selected for the sprint. In this context, developers

are intended to close the TD Stories opened in the backlog, refactoring suboptimal code

or fixing workarounds previously identified. In this activity, it is important that project

managers and scrum masters (or other equivalent leaders) guarantee that: (i) the teams

cultivate a culture of actually carrying out the TD Stories (i.e., not postponing or giving

low priority); (ii) clients or product owners agree that a portion of the sprint is dedicated

to quality improvements (in this case, paying TD Stories). As a result, the team might

cultivate an environment of recognizing the importance of such activities, mainly consid-

ering the future interest of the debts. Finally, it is important to permanently reinforce

to the team that newly identified debts during TD Payment days should be included in

the backlog in the form of a new TD Story.

6.3 Case Study Design

To explore the effectiveness of LTD, we conducted a case study with two distinct

development teams from Prodemge, a large public company from Minas Gerais, Brazil.

The company is responsible for developing and maintaining software solutions for more

than 70 public clients from the state, such as: the state transport department (DETRAN-

MG), the state gas company (GASMIG), and the educational and health councils (SEE

and SES, respectively). Prodemge agreed to participate in an exploratory case study, in

which we executed and evaluated LTD activities in two development teams, working for

two distinct clients. Both teams adopt Scrum to develop their software solutions.

The first team (which we refer as Team 1) is composed of 14 employees, including

one Product Owner, one Manager, one Scrum Master, two DevOps, two Software Ar-
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chitects, three Software Developers, one Requirements Analyst, one UX Intern and two

Software Development Interns. Starting on November 30th, 2020, the goal of the team

is developing software solutions to issue certificates for agricultural products, for identi-

fication of People with Autism Spectrum Disorder, and for declaration of days worked

for people deprived of liberty. The main technologies adopted by the team are: Java,

Jboss, Prodigio, ZK, Hibernate, EJB, Spring boot, and Oracle Database. In the second

team (Team 2), 16 employees are dedicated to develop a solution that aims to manage

information of legal actions in health. The team is composed of one Scrum Master, one

Requirements Analyst, one Manager, one Supervisor, one Software Architect, one De-

vOps, four Software Developers, two Software Development Interns, one UX Engineer,

one Product Owner and two Product Owner Assistants. The project started on July 10h,

2021 and is developed with PHP, Laravel, and Angular.

The execution of the study lasted one month. During this period, we conducted

each LTD activity described in Section 6.2 and supported the teams along three sprints

(two sprints with Team 1 and one sprint with Team 2). Figure 6.3 illustrates the adoption

of LTD in both Teams and provides an example of the introduction of the framework in

Scrum-based teams.
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Figure 6.3: Example of LTD in Scrum-based teams (as conducted in the case study).

As we can observe in the figure, we conducted TD Consensus in the form of

two online meetings (1.5 hour, each), one for each team (flag #1 in the figure). In these
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meetings, we started by discussing with the teams their initial knowledge onTD. Then, we

presented the concept proposed by Cunningham [1992], detailing the most frequent types

of debt (as presented in Section 3.3.1). We also provided examples to better support

our definitions. The second part of the meetings were dedicated to explain LTD and

propose the execution of TD Discovery. In this second activity (flag #2), the teams

were invited to elicit TD Stories. As both projects started a few years ago, this activity

was essential to include already existing TD issues into their backlogs. In both teams,

the TD Discovery activities were performed asynchronously (i.e., the teams elicited

TD Stories without any guidance, before the beginning of the upcoming sprint). Both

teams started to adopt LTD in the sprint that began right after our first interactions.

Therefore, we participated in the teams’ Sprint Planning, in which they included the TD

Planning activities (flag #3). During these meetings, we clarified the doubts about the

TD Stories elicited and we also supported the prioritization of the ones selected for the

sprint. During the sprint execution (flag #4), we participated in the teams’ Daily Scrum

meetings related to the TD Payment days (i.e., the meeting that happened in the days

selected to pay TD). In the first team, the TD Payment days happened along the first

three days of each sprint (this team adopted LTD in two sprints). Team 2 dedicated

the last day of the sprint adopting LTD for paying the planned debts. During the Daily

Scrums, we also clarified doubts and assessed developers’ engagement on the activities.

Finally, to gather information about the teams’ perceptions about LTD and answer RQ7,

we participated in their Sprint Retrospectives.

6.4 What are the perceptions of developers about

LTD?

In this section, we answer RQ7 by reporting the experience of including LTD in

two development teams from Prodemge. As described in Section 6.3, our study lasted

one month, involving 30 employees working in three sprints (two sprints with Team 1 and

one sprint with Team 2). Next, we describe the results achieved by the teams in each

activity, as well as the perceptions collected about the adoption of the framework.
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6.4.1 Team 1

Team 1 was the first to start adopting LTD, incorporating the proposed activi-

ties in two consecutive sprints. As described in Section 6.3, the team firstly participated

in the TD Consensus activity, in which we discussed the concepts necessary to better

identify and manage TD. During this meeting, we noticed that few members of the team

were aware about the term “technical debt”. The ones who have already heard about the

metaphor, were not sure about its meaning. However, as the activity progressed, we also

observed that the team was already familiar with the need of conducting maintenance

activities to improve code quality. Indeed, they already had the practice of allocating an

amount of time from the sprint to fix bugs, refactor code and improve documentation.

However, the execution of these tasks did not follow a well-defined process of identifica-

tion, prioritization and planning. By the end of the TD Consensus, the team defined

strategies to document and maintain TD Stories. Particularly, they decided to docu-

ment the stories into the product backlog of the project, including issues marked with

a TD-related label (i.e., “d́ıvida técnica”, in Portuguese). Therefore, the stories were

incorporated into their repository’s project board in GitLab, as recommended in LTD

(based on the practice described in Sections 3.2 and 4.2).

The TD Discovery activity was conducted asynchronously, before the beginning

of the upcoming sprint. In this activity, the team elicited and documented six TD Sto-

ries. Furthermore, 16 additional stories were included in the backlog during the study.

They were mainly identified while developers were paying the initially identified debts,

discussing payment strategies, or implementing other development tasks planned in the

sprint. Table 6.1 describes the final backlog of TD Stories documented by Team 1, in-

cluding their description, the type of TD (as classified in Section 3.3.1), the status of the

issue (closed or open), and the event when it was paid (the first or the second sprint in

which the studied was performed). The table is divided by the event when the debt was

identified (i.e., during TD Discovery, Sprint #1, and Sprint #2, respectively).

As we can observe in Table 6.1, the team identified more TD Stories after TD

Discovery (6 stories in TD Discovery vs 16 during the sprints). This might be

explained by the fact that the team was not familiar with the concept in the beginning of

the study. Therefore, during LTD implementation, it might be worthwhile to cultivate

a culture of discussing TD items during the execution of the sprint, as well as keeping

the backlog open so that developers may create new stories while working on payment

activities. Moreover, we also claim that Team 1 mostly documented debts related to

Design, UI and Build (as classified in Section 3.3). For example, the story #14 refers

to the need of refactoring the requests of the system to create a common approach to

pass parameters. Therefore, it is classified as Design debt, since it refers to technical
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Table 6.1: Final backlog of TD Stories documented by Team 1.

TD Story Type Status Paid

1. Define ZK upload components for Por-
tuguese

UI Closed SP.1

2. Migrate chosenbox components to the
theme class

Design Closed SP.1

3. Configure chosenbox component classes Design Closed SP.1

4. Create the radio component classes in the
theme class

UI Closed SP.1

5. Define a standardized way of passing pa-
rameters in requests

Architecture Closed SP.1

6. Change the way to interpret the compo-
nents when it occupies 100% of the line

UI Closed SP.1

7. Migrate toggle components to the theme
class

UI Closed SP.2

8. Configure toggle component classes UI Closed SP.2

9. Migrate colorbox components to the
theme class

Design Closed SP.2

10. Configure colorbox component classes UI Closed SP.2

11. Treat uppercase fields by the theme’s css
and not by zul

UI Closed SP.2

12. Define a group in git and change the API
to accept group configuration

Build Closed SP.2

13. Request creation of a user for git inte-
gration and change git API to accept user
configuration

Build Closed SP.2

14. Implement a standardized way of passing
parameters in requests

Architecture Open -

15. Isolate the implementation of communi-
cation with git in a microservice

Build Open -

16. Create the project for CI/CD Infrastructure Open -

17. Configure the publishing material and
properties

Design Open -

18. Create the repository in GIT for automa-
tion prototype

Infrastructure Open -

19. Make the log available in graylog Architecture Open -

20. Migrate auto-publishing logic Architecture Open -

21. CSS from radio to theme UI Open -

22. CSS from buttons without btn class UI Open -

shortcuts used when defining high-level architecture.

In both sprints that we supported Team 1 to incorporate LTD, we participated

in the team’s Sprint Planning meetings. During these events, the team estimated and
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prioritized the stories remaining open in the backlog. For example, before the first sprint

adopting LTD, the backlog included the six stories identified during TD Discovery

(as detailed in Table 6.1). During the sprint planning, they decided to include all of

them in the sprint, since the time estimated to pay the stories was compatible with the

20% time window. In both sprints, the team decided to follow our recommendation of

starting the sprint with TD Payment days. Therefore, we participated in four Daily

Scrum meetings (two in each sprint), in which we observed that the team engaged in the

activities of paying debts, as well as incorporated the culture of documenting new debts

in the backlog. In some cases, the team also needed support to classify and identify new

debts (e.g., a common doubt was related to what items were actual debts or actually new

feature requests).

In the end, we participated in the team’s Sprint Retrospective meetings to observe

their impressions about the framework. In both meetings, the team highlighted two main

elements of LTD: the creation of TD Stories and the allocation of time for exclusively

payingTD. In relation to the documentation of the debts, the team discussed the relevance

of having a common artifact in which they could concentrate the debts identified. By

adopting such practice, they acknowledged that it was easier to remember the existence

of the concerns, increasing the chances of fixing the workarounds. In fact, this practical

observation is in accordance with the literature that also discusses the importance of TD

awareness [Besker et al., 2019; Eliasson et al., 2015]. Equally, the team also discussed the

relevance of allocating a fixed time-frame for paying TD. In this case, they compared this

strategy with their previous practice of including time for code improvements. In this

case, they argued that LTD was able to promote the improvement of artifacts that were

not commonly considered in this initial practice (i.e., artifacts not related to code, e.g.,

documentation), and created a structured approach to reduce the debts.

As a result, we observed that Team 1 paid 59% of the debts identified during the

study (13 TD Stories closed, among the 22 included in the backlog). Moreover, they

could manage to pay 100% of the debts planned in each sprint, as detailed in Table 6.1.

Therefore, we claim that LTD was effective to reduce TD in Team 1.

6.4.2 Team 2

The second team to adopt LTD at Prodemge included the activities proposed in

the framework for one sprint. Similarly to Team 1, we started our case study with Team

2 by supporting the execution of the TD Consensus activity. In this team, we perceived

that more developers were familiar with the metaphor and its concept, although they
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claimed that they have never adopted any process to manage TD. By contrast, the team

seemed to be caught by the different types of TD. Initially, they had a previous impression

that the concept was restricted to code workarounds. By the end of this first activity, the

team decided to document TD stories in the form of Trello cards, labeling the cards with

a TD-related tag (i.e., “d́ıvida técnica”, in Portuguese). Similarly to GitHub or GitLab

Projects, Trello also allows the team to create backlogs, with several cards. Each card

can include a title, a description, its assignees, comments and due date. For this team,

the cards are used to represent the stories that they should implement in the sprint. As

for Team 1, Team 2 also followed LTD instructions and decided to include TD Stories

into their usual backlog.

Because this team adopted LTD for one single sprint, the identification of TD

Stories was restricted to the TD Discovery activity. For that, the team also conducted

this activity asynchronously, creating TD Stories before the beginning of the upcoming

sprint. As a result, Team 2 elicited seven TD Stories. Table 6.2 details the description of

these stories, as well as the type of TD (as classified in Section 3.3), its final status and

the event when they were paid. This table is not divided by the event when the debts were

identified because all of them were discovered during TD Consensus. As we can see, this

team mostly identified debts related to Design, Architecture, and UI. For example,

the TD Story #3 refers to the necessity of fixing a workaround in which the relationships

in the code architecture are not mapped to the database entities’ relationships. In this

case, the database was not created to reflect the structure of the relationships in code.

Table 6.2: Final backlog of TD Stories documented by Team 2.

TD Story Type Status Paid

1. Document API endpoints Documentation Open -

2. Conclude the integration with WSO2 Architecture Ongoing -

3. Create relationships on foreign keys in
JUD tables

Architecture Ongoing -

4. Improve return of users type (Group and
Level)

Design Closed SP.1

5. Improve return of users type (Health Es-
tablishment)

Design Closed SP.1

6. Refactor User registration Design Closed SP.1

7. Fix interface to search unit of measure (+
sign)

UI Closed SP.1

One particularity of the team refers to its current scenario of development. In

contrast to Team 1, they were under pressure to deliver important features. Because

of that, during the TD Planning activities, the team could not allocate 20% of their

capacity to pay TD. Instead, the team planned to dedicate 10% of the sprint to pay the
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most priority debts identified during TD Discovery. Therefore, they planned to pay

six stories (leaving story #1 for a future sprint). Even though, during the TD Payment

days, the team was surprised with urgent demands that resulted in the delay of the

payment of two stories (i.e., #2 and #3). Finally, during TD Payment the team could

conclude four TD Stories, and left three for future sprints. Therefore, the team paid

almost 67% of the debts identified during TD Discovery.

By observing the team’s Sprint Retrospective, we could perceive that the inclusion

of LTD into the team process of development was relevant to increase the awareness about

the debts existing in the project. Besides, it was common to observe the team discussing

strategies to avoid TD during the implementation of other stories, which represents an

important progress to prevent future debts. During the retrospective, the team also

highlighted the importance of documenting the debts along with other stories of the

project, creating an important reminder of workarounds that need to be fixed. Moreover,

the team suggested the importance of creating an agreement at the business level (with

clients and product owners), so that the 20% time frame could be effectively allocated.

Even though we claim that LTD was effective to reduce TD in Team 2.

6.5 Implications

Based on our results and the perceptions observed during the study, we shed light

on the following practical implications:

1. LTD can be effective to reduce TD. Both of the teams that participated in

this exploratory study closed a relevant percentage of the debts documented during TD

Discovery (59% in Team 1 and 67% in Team 2). We highlight that Team 1 and Team 2

were experiencing distinct scenarios of development during the study. Team 2 was under

pressure to deliver important features. Even thought, this context did not impact in our

observations (in terms of percentage of paid debts). Moreover, we also claim that the

obtained results were not influenced by previous knowledge and practices of the team. As

discussed in Section 6.4, Team 1 used to conduct an informal activity of code improvement

before the study, which was not restricted to managing TD. By contrast, developers in

Team 2 were less aware about the concept. Even thought, we observe that the obtained

results were equally satisfactory.

2. LTD does not require extra-effort of the teams. Besides the time needed to con-

duct TD Consensus and TD Discovery—which are necessary for new adopters of the

framework—we highlight that no extra-effort was required to inject LTD activities in the
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teams’ development processes. Particularly, after the conduction of the aforementioned

activities, both teams included TD Planning and TD Payment as part of their usual

Scrum activities. Moreover, as the debts were documented in the form of TD Stories,

included in their backlogs, their payment was dealt by developers as a regular activity of

the sprint. In comparison to previous studies in the literature, we claim that this light-

weight characteristic of LTD may facilitate its adoption, as the team is not required to

follow extra workflows.

3. LTD promotes awareness about TD. The adoption of LTD was also responsible

for including TD as a subject of discussions in the teams, which contributed to the

identification of more TD Stories. We claim that this implication may be a consequence

of two relevant aspects of the framework: (i) the TD Consensus activity is indeed a

relevant event for the alignment of a team; (ii) the existence of TD Stories in the backlog

calls attention about the necessity of dealing with this concern. Particularly, the latter

aspect was also discussed by developers in Chapter 5 (i.e., 25% of the surveyed developers

recommended documenting TD in issues to foster its visibility). As previously discussed

in the literature, TD awareness is also a key for preventing the inclusion of new TD

items, which can be measured in these teams as future work.

6.6 Threats to Validity

First, our exploratory study was restricted to two development teams, from one

public software company. Although we selected teams in distinct scenarios of development,

adopting different stacks of technology, from a large software company, we claim that our

results can not be generalized. Besides, we only included LTD in Scrum-based teams.

Therefore, the results of its adoption in different methodologies is still unclear. Next,

our study lasted one month, including two sprints of Team 1 and one sprint of Team 2.

Because of that, our results were restricted to analyzing the amount of debts paid by the

teams, during this period. The long-term impact of the adoption of LTD is also a threat

to validity to our conclusions. Finally, several considerations included in this chapter are

fruit of the observation of the author of this thesis. However, we claim that this is a

natural path in this kind of study and that a critical point of view was also assumed by

the author, while analyzing the results.
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6.7 Final Remarks

In this chapter, we proposed and evaluated LTD: Less Technical Debt Frame-

work. With the purpose of supporting developers to better document and manage TD,

the framework proposes the inclusion of four lightweight activities into the development

process adopted by a team. They are:

• TD Consensus: in this activity, the team seeks to create a common understanding

about the Technical Debt metaphor and its types. Besides, it is also expected that

they agree with the most relevant TD types for the team and decide the strategies

that will be adopted to document TD Stories (i.e., TD items present in the project).

• TD Discovery: following the TD Consensus, in this activity the team aims to

identify the TD Stories already existing in the system, including such debts in the

project’s backlog.

• TD Planning: before the execution of a development cycle, during its planning,

the team is also expected to decide the most priority TD Stories that can be paid.

For that, LTD suggests that the team allocates 20% of its capacity to dedicate for

TD payment.

• TD Payment: finally, the team is expected to pay the planned TD Stories during

the days allocated for this purpose. Particularly, LTD suggests that TD Payment

days should be carried out in the beginning of the development cycle.

To evaluate the effectiveness of LTD, we conducted a case study with two devel-

opment teams from Prodemge (a large public company from Minas Gerais, Brazil). The

teams adopted LTD during three sprints and carried out each proposed activity with our

support and guidance. As a result, we observed the payment of 13 TD Stories in Team 1

and four in Team 2. Besides, the teams’ backlog also included 12 additional TD Stories

identified during the study. By observing the execution of the activities, we could also

perceive the teams’ engagement to pay the identified debts, highlighting the importance

of (i) creating a common artifact in which TD is documented; (ii) allocating a fixed time

frame to pay TD; (iii) including TD concerns among the team discussions and decisions.

As a next step, we aim to explore the inclusion of LTD in additional teams, from differ-

ent companies, facing different development scenarios. Besides, we also plan to explore

strategies to prioritize and estimate TD Stories.
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Chapter 7

Conclusion

In this chapter, we first describe the four major works conducted throughout this thesis

(Section 7.1). Next, in Section 7.2 we list the main contributions of these efforts. Finally,

Section 7.3 outlines the future work that we find interesting for follow-up researches.

7.1 Thesis Recapitulation

The Technical Debt (TD) metaphor frames a common practice in modern software

development: to increase productivity and release earlier, developers usually compromise

the internal quality of the software by taking suboptimal solutions. Indeed, in the short-

term, TD may contribute to faster feedbacks and to the rapid growth of the software.

However, in the long-term, the cost of TD accumulation can be devastating. To deal with

this problem, developers usually document their decisions, which the literature denotes

as Self-Admitted Technical Debt (Satd). Most previous studies investigated this docu-

mentation strategy by analyzing source code comments. In this case, they concentrate

efforts in mining indications of TD in developers comments, e.g., by searching TODO,

Fixme, or Hack keywords. We denote this practice as Satd-C. By contrast, few previous

studies prospected TD indications in issue tracker systems (which we refer as Satd-I).

In this context, they analyzed very particular excerpts of issues (e.g., title and comments)

to explore this practice. We report in this thesis a set of four major work units where

we extensively analyzed Satd-I, investigating its adoption as means to document and

manage Technical Debt.

We started by defining what Technical Debt is, with particular focus on Satd

(Chapter 2). We also discussed the most common techniques proposed in the literature

to identify, manage, and pay Satd, mostly regarding the ones documented in source

code comments. Finally, we described the state-of-the-art concerning studies related to

Satd-C and Satd-I.

Next, we reported in Chapter 3 our first exploratory study, in which we empir-
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ically characterized the adoption of issues as means to document Satd. For

that, we first collected an initial dataset with 286 issues tagged with a TD-related label

(which we consider as a proxy of TD admission). Based on this dataset, we investigated

the main types of debts documented in Satd-I (e.g., debts related to Design, Tests,

or Documentation flaws). We also surveyed developers involved in Satd-I payment to

assess the circumstances of the creation and payment of such debts.

In Chapter 4, we strengthen our first work by investigating the interplay between

debts reported in code comments and in issues. Particularly, we assumed that issues are

indeed adopted to document TD (Chapter 3) and concentrated our efforts to understand

the relationship between Satd-C and Satd-I. For that, we implemented a prototype

tool called AdmiTD, whose goal is to automatically transform Satd-C comments in

GitHub issues. To assess the interest in such transformations, we surveyed the core

developers of 10 GitHub repositories. Moreover, we also investigated whether it is a

common practice to link both forms of Satd (i.e., to include references to Satd-I in

Satd-C comments). The existence of such references would indicate the feasibility of

creating a tool to automatically identify and link debts reported in both forms of Satd.

In summary, we concluded in this second study that Satd-C and Satd-I are

adopted to document TD in distinct situations.

Next, we dedicated Chapter 5 to explore the circumstances that drive developers

to choose between one or another. For that, we identified and surveyed developers who

reported Satd using both strategies (i.e., the ones who created both Satd-C comments

and Satd-I issues). As a result, we elicited a catalog of recommendations to

support developers to better document Satd.

Finally, in Chapter 6 we wrapped up the knowledge gained with our previous

studies and explored the effectiveness of adopting issues in activities to manage TD. For

that, we proposed the Less Technical Debt framework (LTD): a customizable

and lightweight framework that aims to inject TD concerns in agile-based methodologies.

Specifically, the framework defines four main activities: TD Consensus, to create a com-

mon understanding among developers about TD concepts; TD Discovery, to prospect

and document the TD already existing in the system; TD Planning, to include the

payment of TD into the activities planned by the team; and TD Payment, to define

days in a sprint that the team should pay TD. We also assessed LTD in a real-world

scenario, involving 30 stakeholders and two development teams.
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7.2 Contributions

In the context of the research conducted in this thesis, we highlight the following contri-

butions:

• We initially confirmed that developers use issues to admit Technical Debt in their

projects, i.e., Satd does not appear only in code (Chapter 3). We also showed that

the majority of the debts documented in issues are related to Design flaws (60%),

followed by UI, Tests, and Performance concerns. We also provided insights

about the reasons of Satd-I creation and payment, indicating that almost 45% of

the studied debts were introduced to ship earlier and almost 65% are paid to reduce

their interest.

• We created a large-scale dataset that includes 20K Satd-I issues and 72K Satd-C

comments.1 To the best of our knowledge, it is the largest dataset containing both

forms of Satd. We also implemented a prototype tool that automatically transforms

Satd-C comments in GitHub issues (Satd-I).2 However, we showed that there is

a negligible interest in such transformations. Moreover, we also showed that linking

Satd-C and Satd-I is not a common practice among developers. Ultimately, we

concluded that there is a minor interplay between both forms of Satd (Chapter 4).

• We provided a catalog with 13 guidelines to support developers to choose between

code comments and issues when documenting Satd (Chapter 5). The catalog in-

cludes six recommendations to use Satd-C, including the circumstances when de-

velopers aim to provide context to the reader (58%), to report low priority debts

(24%), and to document local-scoped TD (19%). By contrast, developers mostly use

issues to foster discussion with other team members (31%), to document TD that

needs to be tracked (27%), and to report debts that span in multiple places (25%).

Moreover, the proposed catalog was partially included in the wiki documentation of

an open-source repository (cockroachdb/cockroach).

• We proposed a lightweight framework that promotes TD management and docu-

mentation through the adoption of issues (Chapter 6). We denote the framework

as LTD, for Less Technical Debt framework. We showed that LTD was indeed

effective to reduce TD in the teams that participated in our case study in a large

public software company, creating awareness and stimulating a culture of constantly

documenting and paying debts.

1https://doi.org/10.5281/zenodo.6532378
2https://github.com/admitd

https://doi.org/10.5281/zenodo.6532378
https://github.com/admitd
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7.3 Future Work

During the works conducted in this thesis, we identified some unexplored questions

that can result in relevant studies. We enumerate these future works in the following

topics:

Automatically Labelling SATD-I: Although recent studies explored the automatic

recommendation of labels for GitHub issues, to the best of our knowledge, there is

a lack of studies that rely on such techniques in the Technical Debt field. Indeed,

as discussed in Chapter 2, Satd-I is barely studied in the literature. Therefore, we

claim that future work may include efforts with the goal of proposing and evaluating

techniques responsible for identifying unlabeled Satd-I: issues that document TD

concerns but do not include any TD-related label. In this case, such studies may

evaluate (i) the extent of this problem (i.e., to answer the question: what is the

frequency of unlabeled Satd-I?); and (ii) the benefits of such labels in terms of

time to resolve the issue or developers engagement.

Catalog of SATD-I Payment Strategies: Despite the evident interest in the litera-

ture on Satd payment, we claim that there is a lack of understanding about this

activity under the Satd-I perspective. As observed in Chapter 5, developers usually

recommend the adoption of issues to document debts with global scope and high

priority concerns, which may require different/more complex code changes to be

paid. Thus, we suggest as future work the conduction of studies with the purpose

of cataloging the code changes performed by developers to pay Satd-I. Moreover,

we highlight that such studies may focus on Design debts—the most common type

of Satd-I—to understand how developers effectively pay such debts. For that, it

is possible to rely on the closed issues in our dataset (Section 4.2), qualitatively

analyzing the commits associated to their closing event (i.e., the closed by field

in GitHub issues). For example, such studies may analyze the commit messages

provided by developers, as well as the associated code diff. As a result, this analy-

sis may reveal some patterns that might extend the catalog presented by Zampetti

et al. [2018].

Expand LTD Assessment: In Chapter 6, we assessed LTD with two development

teams, from a large public company from Minas Gerais (Brazil). Although we

selected teams in distinct stages of development, working on systems from different

domains, and adopting distinct technologies, it is worthwhile assessing the adoption

of the framework in other scenarios. For example, future studies may investigate the

adoption of LTD in teams adopting a development process different from Scrum
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(e.g., Lean, XP, or Kanban). Moreover, it might be relevant to use and evaluate

LTD activities in private companies, or exploring new contexts (e.g., startups or

newly created projects). In such cases, it would be interesting to investigate the

adoption of the framework since the beginning of the development process, and the

effects of managing TD right after the first decisions of the project.

Explore Strategies to Prioritize and Estimate TD Stories: As discussed in Chap-

ter 6, it is also relevant to explore strategies to support developers in prioritizing

and estimating the effort needed to pay TD Stories. Particularly, during the TD

Planning activities, we observed that developers commonly discussed the most

relevant stories for a following sprint. In such cases, it could be relevant to include

a strategy to highlight this information during TD Discovery activities (e.g., by

including a priority label in the created stories). Moreover, considering that LTD

relies on a fixed time frame to pay TD, we also highlight the importance of exploring

strategies to help developers to better estimate the effort needed to pay a debt.
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