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Abstract

Distinct digitization techniques for biomedical images yield different visual patterns
in samples from many radiological exams. These differences may hamper the use
of data-driven Machine Learning approaches for inference over these images, such
as Deep Learning. Another difficulty in this field is the lack of labeled data, even
though in many cases there is an abundance of unlabeled data available. Therefore
an important step in improving the generalization capabilities of these methods is
to perform Unsupervised and Semi-Supervised Domain Adaptation between dif-
ferent datasets of biomedical images. In order to tackle this problem, in this work,
we propose an Unsupervised and Semi-Supervised Domain Adaptation method for
dense labeling tasks in biomedical images using Generative Adversarial Networks
for Unsupervised Image-to-Image Translation. We merge these generative models
with well-known supervised deep semantic segmentation architectures in order to
create two semi-supervised methods capable of learning from both unlabeled and
labeled data, whenever labeling is available. The first Domain-to-Domain method,
similarly to most other Image Translation methods in the literature, is limited to a
pair of domains: one source and one target. The second proposed methodology
takes advantage of conditional dataset training to encourage Domain Generaliza-
tion from several data sources from the same domain. From this conditional dataset
encoding, we also devise a fully novel pipeline for rib segmentation in X-Ray im-
ages that does not require any label to be computed. We compare our method us-
ing a myriad of domains, datasets, segmentation tasks and traditional baselines in
the Domain Adaptation literature, such as using pretrained models both with and
without fine-tuning. We perform both quantitative and qualitative analysis of the
proposed method and baselines in the multitude of distinct scenarios considered
in our experimental evaluation. We empirically observe the limitations of pairwise
Domain Adaptation approaches to truly generalizable radiograph segmentation, ev-
idencing the better performance of multi-source training methods in this task. The
proposed Conditional Domain Adaptation method shows consistently and signifi-
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cantly better results than the baselines in scarce labeled data scenarios – that is, when
labeled data is limited or non-existent in the target dataset – achieving Jaccard in-
dices greater than 0.9 in most tasks. Completely Unsupervised Domain Adaptation
results were observed to be close to the Fully Supervised Domain Adaptation used
in the traditional procedure of fine-tuning pretrained Deep Neural Networks.
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Resumo

Técnicas de digitalização distintas para imagens médicas resultam em diferentes
padrões visuais nas amostras de vários tipos de exames radiológicos. Essas difer-
enças podem dificultar o uso de técnicas de Aprendizado de Máquina baseadas
em dados para inferência sobre essas imagens, como métodos de Aprendizado
Profundo. Outra considerável dificuldade neste ramo de pesquisa é a falta de
amostras rotuladas, embora haja em muitos casos uma abundância de dados não-
rotulados. Portanto um importante passo para melhorar a capacidade de general-
ização desses métodos é a aprimoração de técnicas de Adaptação de Domínio Não-
Supervisionada e Semi-Supervisionada entre diferentes bancos de dados de ima-
gens médicas. Visando resolver esse problema, neste trabalho são propostos dois
métodos de Adaptação de Domínio Não-Supervisionada e Semi-Supervisionada
para tarefas de rotulação densa em imagens médicas que usa Redes Generati-
vas Adversariais para Tradução Não-Supervisionada de Imagens. Os métodos
mesclam esses modelos generativos com arquiteturas conhecidas para segmentação
semântica visando criar métodos semi-supervisionados capazes de aprender tanto
de dados não rotulados quanto de dados rotulados, sempre que rotulação estiver
disponível. O primeiro método proposto, de forma similar à maioria dos outros tra-
balhos na literatura de Tradução de Imagens, é limitado a um par de domínios: um
domínio fonte e um domínio alvo. O segundo método proposto nesse trabalho uti-
liza treinamento condicional de conjuntos de dados para encorajar Generalização
de Domínio entre várias fontes de dados do mesmo tipo. A partir desse segundo
método baseado em condicionamento de conjunto de dados, também se propõe
uma nova metodologia para segmentação de costelas em imagens de raio-x que
não necessita de nenhum tipo de rotulação. Os métodos propostos foram compara-
dos usando vários domínios, bancos de dados, tarefas de segmentação e baselines
tradicionais da área de Adaptação de Domínio, tal qual o uso de modelos pré-
treinados com e sem fine-tuning. Foram feitas análises quantitativas e qualitativas
do método proposto e dos baselines nos vários cenários considerados na avaliação
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experimental deste trabalho. São observadas as limitações dos métodos Adaptação
de Domínio entre apenas um par de conjuntos de dados na construção de méto-
dos generalizáveis de segmentação de radiografias, o que evidencia a melhor eficá-
cia de métodos que se utilizam de várias fontes de dados nessa tarefa. O método
baseado em treinamento condicional demonstrou superioridade consistente e sig-
nificante nos cenários de rotulação escassa – ou seja, quando a rotulação é limi-
tada ou não-existente no conjunto de dados alvo – conseguindo valores de Jaccard
maiores que 0.9 na maioria das tarefas. Resultados de Adaptação de Domínio Não-
Supervisionada foram observados como próximos dos casos supervisionados usa-
dos no procedimento padrão de usar modelos pré-treinados de Redes Neurais Pro-
fundas com fine-tuning.
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Chapter 1

Introduction

Radiology has been a useful tool for assessing health conditions since the last
decades of the 19th century, when X-Rays were first used for medical purposes.
Since then, it has become an essential tool for detecting, diagnosing and treating
medical issues. More recently, algorithms have been coupled with radiology imag-
ing techniques and other medical information in order to provide second opinions to
physicians via Computer-Aided Detection/Diagnosis (CAD) systems. In this con-
text, segmentation is a very important task [Elnakib et al., 2011; Masood et al., 2015].
Most common segmentation tools are typically used for delineating nodules, bones
or other kinds of tissues in an unsupervised way but it is also very common the
employment of interactive segmentation.

In recent decades, Machine Learning algorithms were incorporated into the
body of knowledge of CAD systems for biomedical image analysis, providing au-
tomatic methodologies for finding patterns in big data scenarios, improving the ca-
pabilities of human physicians for diagnosing illnesses. Until the early 2010’s, both
computer vision and biomedical image analysis literatures were dominated by shal-
low techniques for both feature extraction and inference, as can be seen in Figure 1.1.
Low-level image processing techniques – such as Wavelet denoising [Unser and Al-
droubi, 1996], edge detection filters, active contours, splines, etc – were used ever
since physicians started to have access to digital versions of radiology exams. With
the advent of more robust computers capable of running more powerful supervised
inference algorithms – such as Support Vector Machines (SVMs) [Cortes and Vap-
nik, 1995], Random Forests (RFs) [Ho, 1995], etc – Machine Learning became more
popular for biomedical tasks. Shallow feature extractors based on wavelets [Unser
and Aldroubi, 1996], co-occurrence matrices [Haralick et al., 1973] and histogram of
gradients [Lowe, 2004; Dalal and Triggs, 2005] were common practices since the mid
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1990s and were often paired with image filtering techniques.

Input Feature	Extraction Inference Output

Figure 1.1. Example of a Shallow Learning pipeline for a visual recognition task.

During the last half decade, traditional Machine Learning pipelines have been
losing ground to integrated Deep Neural Networks (DNNs) that can be trained
from end-to-end [Litjens et al., 2017]. DNNs are powerful overcomplete models that
can learn to extract features from and infer over unstructured data such as images,
sounds or texts. DNNs can integrate the steps of feature extraction and statistical in-
ference over unstructured data, such as images. While shallow methods for feature
extraction and inference struggle both in computational complexity and task perfor-
mance to deal with the high dimensionality and strong spatial/temporal correlation
of these kinds of data, DNNs excel at it due to clever architectural designs and GPU
parallelization. DNNs can be understood as ensembles of perceptrons organized
in stacked layers with increasingly more semantic representation, being able to ex-
tract features and perform inference conjointly, as depicted in Figure 1.2. In general,
deeper models are able to recognize information with a higher semantic level, while
shallower models can only optimize for acquiring low-level semantic information,
as, for instance, edge or color detection in images.

Input DNN	Feature	Extraction	+	Inference Output

Figure 1.2. Example of a Deep Learning pipeline for a visual recognition task.

Deep Learning models for images usually are built upon some form of train-
able convolutional operation, which is the basic kind of layer of Convolutional Neu-
ral Networks (CNNs) [Krizhevsky et al., 2012]. CNNs are the most popular archi-
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tectures for image classification in both computer vision and biomedical imaging.
Variations of CNN architectures can be found in object detection [Girshick et al.,
2014; Ren et al., 2015; Redmon and Farhadi, 2018], semantic segmentation [Long
et al., 2015; Ronneberger et al., 2015; Badrinarayanan et al., 2017], instance segmen-
tation [He et al., 2017], image captioning [Karpathy and Fei-Fei, 2015; Xu et al., 2015]
and video understanding [Tran et al., 2018; Wehrmann et al., 2018; Mota et al., 2020]
settings. The semantic representation limits of these networks – as well as a brief
timeline of the most important methods proposed for dealing with these limits – are
further discussed in Section 2.

1.1 Motivations

Several surveys in Biomedical Images [Litjens et al., 2017; Zhou et al., 2019; Haskins
et al., 2020] show the rapid dissemination of Deep Learning on the automated anal-
ysis of biomedical imaging over the last years. As evidenced by Figure 1.3, between
2015 and 2018 it is observed the exponential growth of works employing DNNs in
biomedical image analysis.

One great limitation for Deep Learning models is the amount of data available
for feeding these models, as generalizing useful patterns over unstructured data can
be an exceptionally hard task. Big data is often seen as one of the culprits for the suc-
cess of Deep Learning in Computer Vision problems, as these algorithms may have
hundreds of millions of parameters, which requires a large number of samples to
optimize. There are three basic scenarios for labeling machine learning tasks, which
are depicted in Figure 1.4. The first scenario in Figure 1.4(a) covers data with no su-
pervision at all, while the second scenario (Figure 1.4(b)) shows a dataset with both
labeled and unlabeled data. At last, Figure 1.4(c) presents a fully labeled dataset.
In real-world scenarios, labeled data is often limited and there are large amounts
of unlabeled datasets in the medical community that can be used for unsupervised
learning. To make matters worse, the generalization of DNNs is normally limited
to the variability of the training data, which is a major hamper, as different digi-
tization techniques and devices used to acquire different datasets tend to produce
biomedical images with distinct visual features. Therefore the study for methods
that can use both labeled and unlabeled data – that is, semi-supervised learning al-
gorithms – is an active research area in both Computer Vision and Biomedical Image
Processing. Domain Adaptation (DA) [Zhang et al., 2017] methods are often used to
improve the generalization of DNNs over biomedical images in an unsupervised or
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G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 61 

Fig. 1. Breakdown of the papers included in this survey in year of publication, task addressed ( Section 3 ), imaging modality, and application area ( Section 4 ). The number of 

papers for 2017 has been extrapolated from the papers published in January. 

The medical image analysis community has taken notice of 

these pivotal developments. However, the transition from systems 

that use handcrafted features to systems that learn features from 

the data has been gradual. Before the breakthrough of AlexNet, 

many different techniques to learn features were popular. Bengio 

et al. (2013) provide a thorough review of these techniques. They 

include principal component analysis, clustering of image patches, 

dictionary approaches, and many more. Bengio et al. (2013) intro- 

duce CNNs that are trained end-to-end only at the end of their 

review in a section entitled Global training of deep models . In this 

survey, we focus particularly on such deep models, and do not in- 

clude the more traditional feature learning approaches that have 

been applied to medical images. For a broader review on the ap- 

plication of deep learning in health informatics we refer to Ravi 

et al. (2017) , where medical image analysis is briefly touched upon. 

Applications of deep learning to medical image analysis first 

started to appear at workshops and conferences, and then in jour- 

nals. The number of papers grew rapidly in 2015 and 2016. This 

is illustrated in Fig. 1 . The topic is now dominant at major con- 

ferences and a first special issue appeared of IEEE Transaction on 

Medical Imaging in May 2016 ( Greenspan et al., 2016 ). 

One dedicated review on application of deep learning to med- 

ical image analysis was published by Shen et al. (2017) . Although 

they cover a substantial amount of work, we feel that important 

areas of the field were not represented. To give an example, no 

work on retinal image analysis was covered. The motivation for our 

review was to offer a comprehensive overview of (almost) all fields 

in medical imaging, both from an application and a methodology 

driven perspective. This also includes overview tables of all publi- 

cations which readers can use to quickly assess the field. Last, we 

leveraged our own experience with the application of deep learn- 

ing methods to medical image analysis to provide readers with 

a dedicated discussion section covering the state-of-the-art, open 

challenges and overview of research directions and technologies 

that will become important in the future. 

This survey includes over 300 papers, most of them recent, on 

a wide variety of applications of deep learning in medical image 

analysis. To identify relevant contributions PubMed was queried for 

papers containing (“convolutional” OR “deep learning”) in title or 

abstract. ArXiv was searched for papers mentioning one of a set 

of terms related to medical imaging. Additionally, conference pro- 

ceedings for MICCAI (including workshops), SPIE, ISBI and EMBC 

were searched based on titles of papers. We checked references 

in all selected papers and consulted colleagues. We excluded pa- 

pers that did not report results on medical image data or only 

used standard feed-forward neural networks with handcrafted fea- 

tures. When overlapping work had been reported in multiple pub- 

lications, only the publication(s) deemed most important were in- 

cluded. We expect the search terms used to cover most, if not all, 

of the work incorporating deep learning methods. The last update 

to the included papers was on February 1, 2017. The appendix de- 

scribes the search process in more detail. 

Summarizing, with this survey we aim to: 

• show that deep learning techniques have permeated the entire 

field of medical image analysis; 
• identify the challenges for successful application of deep learn- 

ing to medical imaging tasks; 
• highlight specific contributions which solve or circumvent these 

challenges. 

The rest of this survey is structured as followed. In Section 2 , 

we introduce the main deep learning techniques that have been 

used for medical image analysis and that are referred to through- 

out the survey. Section 3 describes the contributions of deep learn- 

ing to canonical tasks in medical image analysis: classification, 

detection, segmentation, registration, retrieval, image generation 

and enhancement. Section 4 discusses obtained results and open 

challenges in different application areas: neuro, ophthalmic, pul- 

monary, digital pathology and cell imaging, breast, cardiac, abdom- 

inal, musculoskeletal, and remaining miscellaneous applications. 

We end with a summary, a critical discussion and an outlook for 

future research. 

2. Overview of deep learning methods 

The goal of this section is to provide a formal introduction and 

definition of the deep learning concepts, techniques and architec- 

tures that we found in the medical image analysis papers surveyed 

in this work. 

(a)

dropout, batch normalization, Adam optimizer and others, ReLU acti-
vation function and its variants, with that, we can update the weights and
obtain the optimal performance.

Motivated by the success of deep learning, researches in medical
image field have also attempted to apply deep learning-based approaches
to medical image segmentation in the brain [19–21], lung [22], pancreas
[23,24], prostate [25] and multi-organ [26,27]. Medical image seg-
mentation is an important area in medical image analysis and is neces-
sary for diagnosis, monitoring and treatment. The goal is to assign the
label to each pixel in images, it generally includes two phases, firstly,
detect the unhealthy tissue or areas of interest; secondly, decliner the
different anatomical structures or areas of interest. These deep
learning-based methods have achieved superior performance compared
to traditional methods in medical image segmentation task. In order to
obtain more accurate segmentation for better diagnosis, using
multi-modal medical images has been a growing trend strategy. A thor-
ough analysis of the literature with the keywords ‘deep learning’,
‘medical image segmentation’ and ‘multi modality’ on Google Scholar
search engine is performed in Fig. 1, which is queired on July 17, 2019.
We can observe that the number of papers increases every year from
2014 to 2018, which means multi-modal medical image segmentation in
deep learning are obtaining more and more attention in recent years. To
have a better understanding of the dimension of this research field, we
compare the scientific production of the image segmentation community,
the medical image segmentation community, and the medical image
segmentation using multi-modality fusion with and without deep
learning in Fig. 2. From the figure we can see, the amount of papers has a
descent or even tendency in the methods without deep learning, but
there is an increase number of papers using deep learning method in
every research field. Especially in medial image segmentation field, due
to the limited datasets, classical methods take still a more dominant
position, but we can see an obvious increasing tendency in the methods
using deep learning. The principal modalities in medical images analysis
are computed tomography (CT), magnetic resonance imaging (MRI) and
positron emission tomography (PET). Compared to single images,
multi-modal images help to extract features from different views and
bring complementary information, contributing to better data represen-
tation and discriminative power of the network. As pointed out in
Ref. [28], the CT image can diagnose muscle and bone disorders, such as
bone tumors and fractures, while the MR image can offer a good soft
tissue contrast without radiation. Functional images, such as PET, lack
anatomical characterization, while can provide quantitative metabolic
and functional information about diseases. MRI modality can provide

complementary information due to its dependence on variable acquisi-
tion parameters, such as T1-weighted (T1), contrast-enhanced
T1-weighted (T1c), T2-weighted (T2) and Fluid attenuation inversion
recovery (Flair) images. T2 and Flair are suitable to detect the tumor with
peritumoral edema, while T1 and T1c to detect the tumor core without
peritumoral edema. Therefore, applying multi-modal images can reduce
the information uncertainty and improve clinical diagnosis and seg-
mentation accuracy [29]. Several widely used multi-modal medical im-
ages are described in Fig. 3. The earlier fusion is simple and most works
use the fusion strategy to do the segmentation, it focuses on the subse-
quent complex segmentation network architecture designs, but it doesn’t
consider the relationship between different modalities and doesn’t
analyze how to fuse the different feature information to improve the
segmentation performance. However, the later fusion pays more atten-
tion on the fusion problem, because each modality is employed as an
input of one network which can learn complex and complementary
feature information of each modality. In general, compared to the earlier
fusion, the later fusion can achieve better segmentation performance if
the fusion method is ffective enough. And the selection of fusion method
depends on the specific problem.

There are also some other reviews on medical image analysis using
deep learning. However, they don’t focus on the fusion strategy. For
example, Litjens et al. [30] reviewed the major deep learning concepts in
medical image analysis. Bernal et al. [31] gave an overview in deep CNN
for brain MRI analysis. In this paper, we focus on fusion methods of
multi-modal medical images for medical image segmentation.

The rest of the paper is structured as followed. In Section 2 we
introduce the general principle of deep learning andmulti-modal medical
image segmentation. In Section 3, we present how to prepare the data
before feeding to the network. In Section 4, we describe the detailed
multi-modal segmentation network based on different fusion strategies.
In Section 5, we discuss some common problems appeared in the field.
Finally, we summarize and discuss the future perspective in the field of
multi-modal medical image segmentation.

2. Deep learning based methods

2.1. Deep learning

Deep learning refers to a neural network with multiple layers of
nonlinear processing units [32]. Each successive layer uses the output
from the previous layer as input. The network can extract the complex
hierarchy features from a large amount of data by using these layers. In

Fig. 1. The tendency of multi-modal medical image segmentation in deep learning.

T. Zhou et al. Array 3-4 (2019) 100004

2

(b)

8 Page 2 of 18 G. Haskins et al.

Fig. 1 An overview of deep learning-based medical image registration broken down by approach type. The popular research directions are written
in bold

Fig. 2 An overview of the
number of deep learning-based
image registration works and
deep learning-based medical
imaging works. The red line
represents the trend line for
medical imaging-based
approaches, and the blue line
represents the trend line for deep
learning-based medical image
registration approaches. The
dotted line represents
extrapolation (color figure
online)
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learning-based registrationmethods according to the number
of published papers in recent years. As the trends visualized
in Figs. 1 and 2 suggest, this field is moving very quickly
to surmount the hurdles associated with deep learning-
based medical image registration and several groups have
already enjoyed significant successes for their applications
[44,65,96].

Therefore, the purpose of this article is to comprehen-
sively survey the field of deep learning-based medical image
registration, highlight common challenges that practitioners
face, and discuss future research directions that may address
these challenges. Deep learning belongs to a class ofmachine
learning that uses neural networkswith a large number of lay-
ers to learn representations of data [34,91]. When discussing

neural networks, it is important to provide insight into the
different types of neural networks that can be used for vari-
ous applications, the notable architectures that were recently
invented to tackle engineering problems, and the variety of
strategies that are used for training neural networks. There-
fore, this deep learning introduction section is divided into
three sections: neural network types, network architectures,
and training paradigms and strategies. Note that there are
many publicly available libraries that can be used to build
the networks described in the section, for example Tensor-
Flow [1], MXNet [16], Keras [20], Caffe [49], and PyTorch
[82]. Detailed discussion of deep learning-based medical
image analysis and various deep learning research direc-
tions is outside of the scope of this article. Comprehensive

123

(c)

Figure 1.3. Increasing number of papers by year in (a) medical imaging (source:
Litjens et al. [2017]), (b) medical image registration (source: Haskins et al. [2020])
and (c) biomedical image segmentation (source: Zhou et al. [2019]).

semi-supervised manner.

Definitions of Transfer Learning, Knowledge Transfer and Domain Adapta-
tion in the Pattern Recognition literature [Patel et al., 2015; Shao et al., 2015; Zhang
et al., 2017; Wang and Deng, 2018] are often inconsistent and hard definitions of
these concepts are either nonexistent or unclear even in surveys. For the sake of
simplicity, in this work we will treat these three concepts as equals and use the defi-
nition of a well known survey in Visual Domain Adaptation [Wang and Deng, 2018]
to cement this part of our theoretical background. Wang and Deng [2018] define
Domain Adaptation as the use of labeled data from one or more relevant source do-
mains to execute new tasks in a target domain. In other words, Domain Adaptation
reuses labeled data from one or more (source) domains and transfers this super-
vision to another (target) domain, lessening the annotation requirements for novel
datasets, data domains or even related tasks. Even though we chose the defini-
tion of [Wang and Deng, 2018], we find the taxonomy presented by another survey
([Zhang et al., 2017]) more useful, as it captures most nuances found throughout the
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Unlabeled
Image	Set

?????
(a)

Partially	Labeled
Image	Set

???
(b)

Fully	Labeled
Image	Set

(c)

Figure 1.4. Three possible labeling scenarios for biomedical datasets. (a) Fully
unlabeled data. (b) Partially labeled datasets. (c) Fully labeled data.

Transfer Learning literature. DA and some of its subareas will be further explored
in Section 2.4.

The most popular method for deep DA is Transfer Learning via Fine-Tuning
pretrained neural networks from larger datasets, such as ImageNet1 [Deng et al.,
2009]. However, Fine-Tuning only learns from labeled data, ignoring the larger
amounts of unlabeled data available in most real-world scenarios. During the last
years, several approaches have been proposed for Unsupervised Domain Adapta-
tion (UDA) [Cao et al., 2018; Zhang et al., 2018a], Semi-Supervised Domain Adap-
tation (SSDA) [Yamada et al., 2014; Wu and Ji, 2016] and Fully-Supervised Domain
Adaptation (FSDA) [Koniusz et al., 2017]. Depictions of generic UDA, SSDA and
FSDA scenarios in dense labeling tasks can be seen in Figure 1.5. In all scenarios
presented in Figure 1.5, there is a reasonably large source dataset S which will pro-
vide labels for the training of a supervised task in the target dataset T .

There is a considerable gap in the literature for methods of UDA and SSDA
for dense labeling tasks. The Pattern Recognition literature started to bridge this
gap using modern deep approaches as Image Translation and Adversarial Training
over the last years, even though UDA and SSDA in dense labeling tasks still can-
not be considered resolved issues. In addition, there is also a substantial demand
for methods that work over unsupervised data in areas wherein the digitization pa-

1www.image-net.org/

www.image-net.org/
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Unlabeled
Target	Set

Fully	Labeled
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UDA

?????
(a)

Partially	Labeled
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Fully	Labeled
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SSDA

???
(b)

Fully	Labeled
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Fully	Labeled
Target	Set
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Figure 1.5. Depiction of UDA (a), SSDA (b) and FSDA (c) scenarios between a
pair of source (S) and a target (T ) sets in a biomedical image segmentation task.

rameters and equipment considerably alter the visual characteristics of the samples,
as biomedical images and remote sensing.
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1.2 Hypotheses

Taking into account the gap in the literature regarding UDA and SSDA for dense
labeling tasks, the main hypothesis for this thesis is:

H1: Unsupervised Image-to-Image Translation can be used as a basis for DA in se-
mantic segmentation tasks, providing alternatives to the traditional Transfer Learn-
ing based on fine-tuning of DNNs for dense labeling. H1 is further discussed and
analyzed in Sections 3.1 and 5.1.

From this main hypothesis, some secondary hypotheses arose concerning the
adaptability of Image Translation DNNs to multi-source and multi-target DA. Hy-
potheses H2, H3 and H4 presented above are addressed by the proposed method
from Section 3.2. Experiments described in Section 4.3 assess the validity of all three
hypotheses, while results presented in Section 5.2 shed light into H2 and H3. H4 is
validated via the time consumption analysis shown in Section 5.2.5.

H2: In scenarios wherein labeled data is restricted or nonexistent, Conditional DA
performs consistently better than its two main baselines: Pretrained DNNs and
Domain-to-Domain pairwise image translation approach for UDA. If this hypoth-
esis holds true, it is specially interesting to biomedical image analysis, as there of-
ten is a lot of unlabeled data available for a novel domain (i.e. new digitization
techniques, scanners or radiological image modalities), while labeled data is often
unavailable. Domain Generalization via Conditional DA could be employed when-
ever researchers or physicians encounter novel data using the labels from the well-
known datasets in the literature.

H3: The addition of new datasets as labeled or unlabeled data sources can help
DA methods to better perform Domain Generalization [Zhang et al., 2017]. This
hypothesis is based on the premise that, if there are enough distinct datasets in the
training procedure – even if most of them are fully unlabeled – the probability that
at least one of them is closely related to a novel data distribution from the same
domain increases.

H4: Conditional training is a more scalable alternative to the traditional pairwise
training of standard Image-to-Image Translation techniques [Isola et al., 2017; Zhu
et al., 2017a,b; Liu et al., 2017; Huang et al., 2018]. Conditional training should allow
these methods to perform multi-source and multi-target DA while constraining their
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memory requirements in order to improve scalability to an arbitrarily large number
of datasets.

Several other algorithms in the literature of Image Translation for DA [Hoff-
man et al., 2018; Wu et al., 2018; Murez et al., 2018] rely on synthetic data from
3D modelings of the real world [Richter et al., 2016; Ros et al., 2016]. Therefore, as
Conditional DAs proved to be a highly effective method for transferring knowledge
between pairs of radiological datasets, there was the hypothesis that it could be used
in order to infer from a synthetic label source. This supposition is summarized in
H5.

H5: It is possible to use synthetic data – as most of the image translation methods
for Computer Vision applications do (see Section 2.4.3) – to acquire unsupervised
knowledge from biomedical images. Synthetic data has been proved to be useful in
applications as medical equipment calibration (i.e. breast [Mou et al., 2008], spine
[Nord and Miller, 2001] and other phantom organs [Aoyama et al., 2002]), data aug-
mentation for small-data scenarios [Frid-Adar et al., 2018b,a; Pelka et al., 2018] and
even for acquiring useful 2D knowledge from 3D data [Candemir et al., 2016; Zhang
et al., 2018b]. Hence, we hypothesize that the larger amount of information in unla-
beled 3D data can be leveraged for performing Domain Generalization in segmen-
tation tasks in 2D data.

1.3 Contributions

Aiming to answer the research questions revealed by our hypotheses, we organize
this manuscript according to this work’s novelties (Chapter 3), experiments (Chap-
ter 4), results/discussion (Chapter 5) and conclusions (Chapter 6).

This project started with the proposal of an image translation approach for
pairwise Domain-to-Domain (D2D) UDA and SSDA in dense labeling tasks, which
was a novelty at the time. This approach was published in SIBGRAPI 2018 [Oliveira
and dos Santos, 2018] and is described further in Section 3.1, while experiments and
results are detailed in Sections 4.2 and 5.1. This technique was developed concur-
rently with several other closely related methods in the literature [Wu et al., 2018;
Murez et al., 2018; Hoffman et al., 2018] and presented convergence problems, while
not properly solving the problem of Domain Generalization due to its pairwise na-
ture.

The limitations of the pairwise approach became noticeable and we started to
work on Conditional DA for improving the stability, scalability and generalization
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of the algorithm. We also aimed at training a method that could leverage the labeled
data from distinct sources and transfer this knowledge to several unlabeled ones,
therefore it should be multi-source and multi-target from the start. This novel ar-
chitecture for Domain Generalization became the central piece of this work and can
be leveraged for the whole spectrum of Unsupervised to Fully-Supervised Cross-
Dataset Transfer Learning, being able to learn from both labeled and unlabeled data.
Convergence problems from D2D were solved with the proposal of the current iter-
ation of this work, which was published in IEEE Access [Oliveira et al., 2020].

As can be seen in Figure 1.6, apart from stability, a major novelty of our Con-
ditional DA method (henceforth known as Conditional Domain Adaptation Gen-
erative Adversarial Network – CoDAGAN) is allowing for multiple datasets to be
used conjointly in the training procedure. This is contrary to most other works in
the literature of Image Translation for DA, which are limited to pairwise training.
CoDAGANs learn to perform inference over an isomorphic representation of mul-
tiple domains, effectively being able to take into account several sources of sam-
ples with distinct distributions drawn from the joint domain distribution in order
to build more general models. CoDAGANs are described in Sections 3.2 and vali-
dated/evaluated in Sections 4.3 and 5.2.

Based on the CoDAGAN framework, we noticed that well-known techniques
for extracting labels from unlabeled data sources could be generalized to other kinds
of data. More specifically, we used CoDAGANs to devise a pipeline for rib segmen-
tation presented in Section 3.3 and evaluated in Sections 4.4 and 5.3. This method-
ology is currently being reviewed for a special issue in Pattern Recognition Letters.

At last, collateral results from this research for deep semantic segmentation
of anatomical structures were published and presented in both SIBGRAPI 2018
[Oliveira and dos Santos, 2018], CIARP 2018 [Oliveira et al., 2018].

1.4 Structure of the Text

The following chapters in this thesis are organized as follows. Chapter 2 presents
the previous works that paved the way for the proposal of our proposed methods
and gives an overview of both Deep Learning and DA in several distinct scenar-
ios (i.e. supervised vs. unsupervised, sparse vs. dense labeling, discriminative vs.
generative modeling, etc). Chapter 3 describes the original D2D approach from the
first iteration of this work, CoDAGANs and the novel pipeline for rib segmentation
based on Conditional DA. We detail components, architecture, training procedure
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Figure 1.6. CoDAGAN scheme for Cross-Dataset Transfer Learning. A single G
network divided into encoder (GE) and decoder (GD) layers performs transla-
tions conditionally between the datasets. The discriminator D evaluates if the
fake images generated according to the style of the target dataset are likely sam-
ples to have been drawn from the target distribution. A single generalizable
model M is trained using the isomorphic representation I generated by G.

and semi-supervised loss. Chapter 4 shows the experimental setup used in this
work, including datasets, hyperparameters, the experimental protocol and base-
lines. Chapter 5 introduces and discusses the results found during the exploratory
tests of CoDAGANs for UDA, SSDA and FSDA in quantitative and qualitative man-
ners. At last, Chapter 6 finalizes this work with our final remarks and conclusions
regarding the methods and experiments shown in this work, while presenting fu-
ture improvements that are already being studied for CoDAGANs.



Chapter 2

Theoretical Background and
Related Works

CNNs [Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015;
He et al., 2016b; Huang et al., 2017] are the current state-of-the-art architecture in
Computer Vision. Convolutions can be expressed mathematically as a function
with two inputs (the signal s and kernel k), so that f (s, k) = s ∗ k, where ∗ repre-
sents the convolution operation. In the discrete case used in practice, each output

index n is computed independently according to conv(s, k)[n] =
∞
∑

m=−∞
s[m]k[n−m].

CNNs use sets of trainable convolution kernels (also called a filter bank) K =

k(1), k(2), ..., k(K) in the earlier layers that highlight useful information in unstruc-
tured spatially correlated data (i.e. images, video, etc).

Convolutions are stacked into blocks together with max-poolings, given by
pool(x) = maxk×k(x); and/or batch-normalizations, expressed as bnγ,β(x) =

γ( x−µx√
σ2

x+ε
) + β, where µx and σ2

x are the mean and variance of input batch x, re-

spectively; while γ and β are learnable parameters. At last, the Rectified Linear Unit
(ReLU) activation proposed by Nair and Hinton [Nair and Hinton, 2010] is the usual
non-linear function used in deeper DNNs, including modern CNNs. ReLU is com-
posed of a simple maximum operation a(x) = max(0, x) for an input x and presents
a set of desirable properties, as being a non-saturating function, which prevents
vanishing gradients; having simple and fast forward and backward computation;
and sparsity, leading to less overfitting. These operations are organized in blocks
in the earlier layers of CNNs, which are then followed by fully-connected layers for
inference at the end of the network. A convolutional block L is, therefore, a compos-
ite function aL = f (x,KL) = pool(relu(bn(conv(x,KL)))), with the output called

15
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the activations of layer L (aL), albeit with the order and number of operations pos-
sibly altered depending on the architecture. One can see the first layers of CNNs
as deep feature extractors, while the fully-connected layers work similarly to tradi-
tional Multi-Layer Perceptrons (MLPs), combining the features into predictions, as
shown in the upper half of Figure 2.1.

Healthy

Tuberculosis

Pneumonia

Atelectasis

Figure 2.1. Typical architecture of a CNN for image classification with 5 convo-
lutional layers and 3 fully connected layers.

AlexNet [Krizhevsky et al., 2012] reintroduced feature learning in visual recog-
nition tasks, allowing for better scalability than the first CNNs (i.e. LeCun et al.
[1998]) in order to perform inference over harder tasks (i.e. ImageNet [Deng et al.,
2009] and CIFAR [Krizhevsky et al., 2009]). AlexNet took advantage of larger con-
volutional kernels in the earlier layers and contained a total of eight layers, between
convolutional and fully-connected ones. VGG [Simonyan and Zisserman, 2014] sim-
plified CNN architectures by using the same parameters in all convolutions (3× 3
with stride 2 and padding equal to 1) and intermittent max-poolings (2 × 2 with
stride 2). This architecture was based on the premise that larger kernels can be
emulated by smaller sequential convolutions. In contrast to VGG, the GoogleNet
architecture [Szegedy et al., 2015] – also known as Inception – studied use a diverse
set of kernel sizes to enforce disentanglement in activations. Inception modules mix
combinations of 1× 1, 3× 3 and 5× 5 convolutions and 2× 2 poolings in parallel,
which generate a diverse set of activations that are concatenated before serving as
input for the next block. Inception v3 [Szegedy et al., 2016] is the latest version of
the architecture, also exploiting non-square kernel sizes as 1× 3 and 3× 1 mixed
with square convolutions. Both VGG and Inception allow for deeper networks with
smaller convolutional kernels in each module, which proved to be more efficient
than shallower networks with larger convolutions, at least up to around 20 layers.

As CNNs grew larger, so did the vanishing gradient problem, as deepening the
networks progressively degraded the backward propagation that allows training of
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DNNs. It was observed that adding layers beyond a total of 20 was detrimental to
the training of CNNs, as the gradients did not reach the earlier layers, effectively
preventing their training. Residual Networks (ResNets) [He et al., 2016b] based on
residual identity functions ali+1

= ali + f (ali) were then introduced. The gradients
of certain convolutional blocks are given by an addition of the outputs of this con-
volutional blocks with their inputs. This identity has the effect of creating shortcuts
for the backpropagations, enabling them to train the first layers, while also enforc-
ing diversity in the features learned by each module. ResNets with between 18 and
151 convolutional blocks were investigated by He et al. [2016b], with little benefit
being observed beyond that. Soon after the standard ResNets some improvements
to the architectures were observed to increase their recognition performance. The
most famous ones were Wide ResNets (WRNs) [Zagoruyko and Komodakis, 2016]
and ResNeXt [Xie et al., 2017]. However, residual blocks were observed to be highly
inefficient, as the activations of most convolutions all throughout a ResNet could be
dropped with little-to-no effect on classification performance [Huang et al., 2016].
Densely Connected Convolutional Networks (DenseNets) [Huang et al., 2017] im-
proved on the parameter efficiency of ResNets by replacing the identity function by
concatenation. Huang et al. [2017] tested DenseNet with between 121 and 264 lay-
ers, observing them to be more efficient than ResNets in both parameter and flops,
when compared the similar errors in the validation set. DenseNets also presented
alternatives for further efficiency improvements, as bottleneck layers and compress-
ing output activations in transition layers between densely connected modules.

2.1 Deep Semantic Segmentation

Since the resurgence of Neural Network technology as Deep Learning in the early
2010’s, these networks have been adapted to perform dense labeling (i.e. segmenta-
tion tasks). Semantic segmentation has been an active research topic in the area of
biomedical image analysis for decades, as it is a rather common preprocessing and
evaluation tool for several medical applications. Traditionally this field of research
uses several active contour, clustering, atlas and interactive methods. More recently,
with the advent of DNNs, semantic segmentation in Computer Vision has become
dominated by deep-based methods. Therefore, several algorithms comprising the
state-of-the-art of deep semantic segmentation were used in our experimental setup.
Most of these architectures are discriminative models based on improvements over
CNNs and Fully Convolutional Networks (FCNs) [Long et al., 2015] – as shown in
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Sections 2.1.1 and 2.1.2.

2.1.1 Fully Convolutional Networks

The most basic architectures are the FCNs [Long et al., 2015], which are often based
on CNN models like AlexNet [Krizhevsky et al., 2012] and VGG [Simonyan and Zis-
serman, 2014] adapted to dense prediction (Figure 2.2). An FCN can be understood
as a patchwise approach, wherein each pixel in an image is a sample. Whole im-
age fully convolutional training is identical to patchwise training where each batch
consists of all the pixels in an image or set of images. Replacing fully connected
layers in a CNN by convolutional layers and adding a spatial loss produces an ef-
ficient machine for end-to-end dense learning [Long et al., 2015]. While the same
effect could be produced by training a regular CNN for patch classification, FCNs
are several times more efficient than patchwise CNNs.

One should notice that FCNs use the same loss functions as CNNs for image
classification, as dense labeling can be seen as a collection of sparse labels for each
pixel in an image. Therefore, Cross Entropy is the most common loss for supervised
semantic segmentation and it can be expressed by:

Lsup(Y, ŷ) = −Y log (ŷ)− (1−Y) log (1− ŷ), (2.1)

where Y represents the pixelwise semantic map and ŷ the probabilities for each class
for a given sample.

2.1.2 Encoder-Decoder Architectures

Ever since FCNs, several attempts to mitigate the vanishing gradient problem have
been proposed, most relying in alternative paths for information flow [Srivastava
et al., 2015; Larsson et al., 2016; He et al., 2016b; Huang et al., 2017]. Skip connections
are the most common way to create these alternative paths, serving as highways
for backpropagation to reach earlier layers in the network without passing through
all the layers in front of them. U-Nets [Ronneberger et al., 2015] take advantage
of skip connections to map higher-level contextual information to low-level pixel
information. These networks are Encoder-Decoder architectures wherein the down-
sampling half (Encoder) is symmetrical to the upsampling half (Decoder), as shown
in Figure 2.3. Encoder-Decoder DNNs are based on the transposed convolution op-
eration, which is usually implemented quite similarly to a traditional convolution
with trainable kernels. Transposed convolutions present one crucial distinction to
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Figure 2.2. Architecture example of a CNN for image classification and its equiv-
alent FCN architecture with the same backbone for semantic segmentation. Ac-
tivations from layer l are depicted as a(l) for all layers in the network (L1 through
L7 for the CNN and L1 through L5 for the FCN). One should notice that in both
architectures the input layer a(L1) has the number of channels nch depending on
the input data’s number of channels (in the case of RGB images, nch = 3). In radi-
ology, typically the images are grayscale representations of a single x-ray band,
thus, nch = 1 for basically all other examples and applications in this work. In
the CNN, the number of neurons in the output layer must match the number of
classes (nC) in the data. Equivalently, in the FCN, the number of channels in the
output layer nC, as suggested by the notation, depends on the number of classes
of the dataset.

normal convolutions: instead of decreasing (or maintaining) the spatial resolution of
the input, they perform learnable spatial upsampling, thus allowing for symmetrical
architectures. The presence of trainable transposed convolutions stands in contrast
to the bilinear interpolation used to recover the spatial resolution of FCNs, which
has no trainable parameters and, thus, cannot learn upsampling kernels specifically
designed to the task.

SegNets [Badrinarayanan et al., 2017], like U-Nets, are Encoder-Decoder ar-
chitectures for segmentation with an architecture composed of symmetric layers.
The Encoder half of the network is usually composed of the first 13 convolutional
layers in the VGG-16 network [Simonyan and Zisserman, 2014], even allowing for
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Figure 2.3. U-Net architecture. Each conv2d box corresponds to multi-channel
trainable convolutional kernels followed by downsampling or upsampling.
White arrows denote the skip connections between symmetric layers. Adapted
from Ronneberger et al. [2015].

the pretraining of these layers in computer vision tasks. The construction of the
Decoder network is accomplished by simply mirroring the Encoder layers and re-
placing the pooling layers for transposed convolutions, which work as upsampling
layers, as can be seen in Figure 2.4. One main advantage of SegNet compared to
other segmentation architectures is the use of the pooling indices in the Decoder
layers. SegNet uses these indices to concatenate only the activations selected by the
pooling on the Encoder, resulting in sparse activation maps on the skip connections.

Similarly to FCNs, both U-Nets and SegNets for semantic segmentation adapt
supervised classification losses (i.e. Cross Entropy in Eq. 2.1) for training.

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] have been an
active and proliferous subject of research during the last years, being arguably the
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Figure 2.4. An illustration of the SegNet architecture. Each Conv2d box cor-
responds to multi-channel convolutions followed by downsampling or upsam-
pling. Arrows denote the passage of pooling indices and their respective activa-
tions to later layers. Adapted from Badrinarayanan et al. [2017].

main go-to solution to deep generative modeling. Traditional GANs are composed
of two networks trained conjointly: a generator (G) and a discriminator (D), as can
be seen in Figure 2.5.

D is trained to correctly classify real samples x ∼ pdata drawn from the train-
ing dataset from fake samples G(z) ∼ p f ake created by the generator according to
a random vector z drawn from a noise distribution pZ. G is trained to fool D by
approximating p f ake from the true data distribution pdata. Loss functions for opti-
mization for D (LD

adv) and G (LG
adv) are given by Equations 2.2 and 2.3, respectively:

LD
adv_mm = −Ex∼pdata [log (D(x))]−Ez∼pZ [log (1− D(G(z)))] , (2.2)

LG
adv_mm = −LD

adv_mm. (2.3)

As objectives for the generator and discriminator are exact opposites from each
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Figure 2.5. Traditional architecture for a GAN. (a) Training (distribution fitting).
(b) Testing (image synthesis). The composite architecture of a GAN is tradition-
ally composed of two distinct DNNs: one generator G and one discriminator
D that are trained conjointly, while during testing only the generator is used to
synthesize novel samples.

other, the networks can converge together when G and D are trained intermittently.
As detailed by Goodfellow et al. [2014], this scheme is equivalent to a two-player
MiniMax game. Since this first proposal for adversarial generative learning – usu-
ally known as MiniMax Generative Adversarial Network (MMGAN) – several ad-
vances have been made regarding training stability [Goodfellow et al., 2014; Mao
et al., 2017; Gulrajani et al., 2017; Arjovsky et al., 2017; Lucic et al., 2018; Karras et al.,
2018; Brock et al., 2018; Karras et al., 2020], some of which will be further detailed in
the following paragraphs.

MMGAN is especially convenient for theoretical analysis in the sense that both
loss components can be expressed by the same equation, with D minimizing the
Cross Entropy and G maximizing it. However, in practice MMGANs suffers from
convergence problems when D converges at its task at a faster pace than G. As
shown in Figure 2.5(a), all the gradients used to train G flow from the Cross En-
tropy computed at the end of the classification process from D. Thus, if D is able
to correctly classify all samples as real or fake ones at some point in the training
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procedure, no gradients are fed to G because the loss is null. This is known as
the problem of cost saturation in GANs. This and other limitations of the simpler
MMGAN encouraged the proposal of novel non-saturating loss functions for GANs
with distinct regularizations and/or losses that ease the training [Goodfellow et al.,
2014; Mao et al., 2017; Arjovsky et al., 2017; Gulrajani et al., 2017].

As pointed by Goodfellow [2016], instead of flipping the sign of G, it is possi-
ble to fool the discriminator by feeding synthetic data from the generator with the
inverse label – that is, as if they were real samples – and backpropagating the loss to
G. Using a more formal description, this means optimizing for the following couple
of Non-saturating losses for G and D respectively:

LG
adv_ns = −Ez∼pZ [log (D(G(z)] , (2.4)

LD
adv_ns = −Ex∼pdata [log (D(x))]−Ez∼pZ [log (1− D(G(z)))] . (2.5)

These equations form the basis of the first Non-Saturating Generative Adversar-
ial Networks (NSGANs), proposed in the same manuscript as MMGANs, but with
fewer convergence problems due to saturation.

Least Squares Generative Adversarial Networks (LSGANs) were introduced
by Mao et al. [2017] as an alternative to NSGANs with less vanishing gradient prob-
lems, better stability during training and greater visual quality in image synthesis
tasks. These GANs use the Least Squares loss function instead of the traditional
Cross Entropy in D, which unbounds loss values from the interval [0, 1]. The loss
functions for generators and discriminators of LSGANs, respectively, can be seen in
the following equations:

LG
adv_ls = −Ez∼pZ

[
(D(G(z))− c)2

]
, (2.6)

LD
adv_ls = −Ex∼pdata

[
(D(x)− b)2

]
−Ez∼pZ

[
(D(G(z))− a)2

]
, (2.7)

where a is the label for fake data, b is the label for real data and c is the value that
the generator G expects the discriminator D to believe to come from the real data.
The hyperparameters a, b and c are usually set to be 0, 1 and 1, respectively, as this
is shown by Mao et al. [2017] to minimize the Pearson χ2 divergence between the
distributions pdata and p f ake.

Further developments in GAN training were explored in the form of new



24 CHAPTER 2. THEORETICAL BACKGROUND AND RELATED WORKS

loss functions that are able to achieve unsupervised adversarial training, such as
Wasserstein Generative Adversarial Networks (WGANs) [Arjovsky et al., 2017] and
Energy-based Generative Adversarial Networks (EBGANs) [Zhao et al., 2016]. An-
other research branch focused on different kinds of regularization terms to well-
known adversarial losses, as in infoGAN [Chen et al., 2016], Wasserstein Generative
Adversarial Network with Gradient Penalty (WGAN-GP) [Gulrajani et al., 2017],
Boundary Equilibrium Generative Adversarial Network (BEGAN) [Berthelot et al.,
2017] and Deep Regret Analytic Generative Adversarial Network (DRAGAN) [Ko-
dali et al., 2017] and BigGANs [Brock et al., 2018]. Starting from Deep Convolu-
tional Generative Adversarial Networks (DCGANs) [Radford et al., 2015], GAN
architectures have also been explored to enable the training of deeper and more
stable generative models for images. Radford et al. [2015] proposed a set of archi-
tectural guidelines for both D and G that allowed for deeper convolutional GANs.
Recent developments in the literature have observed the effect of distinct architec-
tural choices in generative adversarial training, such as progressively increasing the
depth of GANs [Karras et al., 2018], separating the architecture into style blocks
with internal Adaptive Instance Normalization (AdaIN) layers [Karras et al., 2019]
and the decoupling of biases and demodulation between style blocks [Karras et al.,
2020].

If trained properly, G is able to receive new random vectors z1, z2, ..., zN and
generate fake samples G(z)1, G(z)2, ..., G(z)N drawn from the approximate distri-
bution p f ake. Later iterations on the research in generative modelling proposed
changes in the architectures, input data and losses in order to adapt GANs to tasks
such as deep convolutional architectures [Radford et al., 2015], conditional training
[Mirza and Osindero, 2014], unsupervised mapping of latent variables [Chen et al.,
2016] and modeling joint distributions using only marginal samples – as in Cou-
pled GANs [Liu and Tuzel, 2016]. Current state-of-the-art GANs are able to perform
tasks as diverse as: 1) generating high resolution images with visual quality reason-
ably close to real ones [Karras et al., 2018; Brock et al., 2018; Karras et al., 2020]; 2)
single-image superresolution [Yuan12 et al., 2018]; 3) image-to-image translation be-
tween different domains [Isola et al., 2017; Zhu et al., 2017a; Liu et al., 2017; Huang
et al., 2018; Liu et al., 2019]; 4) one- and few-shot generative modeling [Liu et al.,
2019; Shaham et al., 2019]; and 5) knowledge transfer [Hoffman et al., 2016, 2018;
Wu et al., 2018; Zou et al., 2018]. Some of these tasks have been more recently tack-
led by Variational AutoEncoders (VAEs) [Kingma and Welling, 2013] architectures
as well, both alone and conjointly with GANs [Liu et al., 2017; Zhu et al., 2017b;
Huang et al., 2018].
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For simplicity, from here on out adversarial losses as a whole (be it Non-
Saturating, Least Squares, Wasserstein, etc) will be referred to using the notation
Ladv(X) for a GAN that fits the distribution pX.

2.2.1 Coupled Generative Adversarial Networks

Coupled Generative Adversarial Networks (CoGANs) [Liu and Tuzel, 2016] are
generative networks composed of two generators and two discriminators, which are
trained in two related but distinct image domains A and B simultaneously. CoGANs
aim to model a joint distribution pXA,XB using samples XA and XB drawn from the
marginal distributions pXA and pXB , but no samples XA,B from the joint distribution.
In other words, these DNNs model the correlations between the two image domains
without correspondence supervision between the samples of these domains. Joint
convergence across the domains is enforced in CoGANs by weight sharing in both
the pair of generators and the pair of discriminators, as shown in Figure 2.6. In test
phase, these networks are able to produce paired image samples from the two do-
mains and perform tasks related to the joint probability distribution generated by
the coupled networks.

0 1

realfake

Predictions

fake real

1 0

fakereal

Predictions

real fake

weight
sharing

weight
sharing

Figure 2.6. CoGAN architecture composed of two generators (GA and GB) and
two discriminators (DA and DB). Weight sharing is represented by dashed lines.
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Apart from qualitative evaluations on the samples from the related domains,
Liu and Tuzel [2016] also reports results using CoGANs in tasks such as UDA and
Cross-Domain Image Transformation. The latter will be henceforth referred to as
Image-to-Image Translation.

2.3 Image-to-Image Translation

Image-to-Image (I2I) Translation Networks are GANs [Goodfellow et al., 2014] ca-
pable of transforming samples from one image domain into images from another.
Access to paired images from the two domains simplifies the learning process con-
siderably, as losses can be devised using only pixel-level or patch-level comparisons
between the original and translated images [Isola et al., 2017]. Paired I2I Transla-
tion can be achieved, therefore, by Conditional Generative Adversarial Networks
(CGANs) [Mirza and Osindero, 2014] coupled with simple regression models [Chen
and Koltun, 2017]. In order to achieve image translation, the adversarial com-
ponents presented described in Section 2.2 are added to a paired regression loss
Lpair(X(i)

A , X(i)
B ) between a pair of samples of index i for datasets XA and XB from

domains A and B:

Lpair(X(i)
A , X(i)

B ) = E

∥∥∥X(i)
A − G(X(i)

B )
∥∥∥ . (2.8)

This regression loss is usually the L1 loss, as it tends to produce less blurry results
than the Mean Squared Error (MSE) loss [Isola et al., 2017].

Isola et al. [2017] introduced the first DNN architecture for domain-agnostic
I2I Translation. Before this contribution, image translation tasks (i.e. image color-
ing, mapping remote sensing images to semantic maps, creating photorealistic im-
ages from sketches, etc) were tackled with separate, special-purpose methodologies
[Buades et al., 2005; Chen et al., 2009; Efros and Freeman, 2001; Eigen and Fergus,
2015; Zhang et al., 2016], but the problem remains the same in all these settings:
mapping pixels to pixels. A lot of effort went into designing task-specific losses for
all these restricted domain I2I translation methods. The main contribution of Isola
et al. [2017] was, therefore, to provide a general architecture – henceforth referred to
as pix2pix1 – and loss for this kind of task.

Before pix2pix, the literature had already discovered that naive approaches for
image translation losses – such as using Euclidean Distance – tended to produce
blurry results, as the network tries to minimize the mean of the samples [Zhang

1https://phillipi.github.io/pix2pix/

https://phillipi.github.io/pix2pix/
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et al., 2016; Pathak et al., 2016]. One can see this blurry effect on Figure 2.7. The so-
lution to this problem was to introduce an adversarial loss to the pipeline by using a
GAN [Goodfellow et al., 2014] architecture. Adversarial losses tend to produce more
photorealistic images than traditional losses, as the discriminator is able to identify
blurry images and to force the generator to produce images with sharper edges. A
graphical representation of the pix2pix architecture can be seen in Figure 2.8.

Input Ground truth L1 cGAN L1 + cGAN

Figure 4: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see
https://phillipi.github.io/pix2pix/ for additional examples.

L1 1x1 16x16 70x70 256x256

Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 PixelGAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70x70 PatchGAN forces
outputs that are sharp, even if incorrect, in both the spatial and spectral (coforfulness) dimensions. The full 256x256 ImageGAN produces
results that are visually similar to the 70x70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 2). Please
see https://phillipi.github.io/pix2pix/ for additional examples.

put label maps. Combining all terms, L1+cGAN, performs
similarly well.

Colorfulness A striking effect of conditional GANs is
that they produce sharp images, hallucinating spatial struc-
ture even where it does not exist in the input label map. One
might imagine cGANs have a similar effect on “sharpening”
in the spectral dimension – i.e. making images more color-
ful. Just as L1 will incentivize a blur when it is uncertain
where exactly to locate an edge, it will also incentivize an
average, grayish color when it is uncertain which of several
plausible color values a pixel should take on. Specially, L1
will be minimized by choosing the median of of the con-
ditional probability density function over possible colors.
An adversarial loss, on the other hand, can in principle be-
come aware that grayish outputs are unrealistic, and encour-
age matching the true color distribution [14]. In Figure 7,
we investigate if our cGANs actually achieve this effect on
the Cityscapes dataset. The plots show the marginal distri-

butions over output color values in Lab color space. The
ground truth distributions are shown with a dotted line. It
is apparent that L1 leads to a narrower distribution than the
ground truth, confirming the hypothesis that L1 encourages
average, grayish colors. Using a cGAN, on the other hand,
pushes the output distribution closer to the ground truth.

3.3. Analysis of the generator architecture

A U-Net architecture allows low-level information to
shortcut across the network. Does this lead to better results?
Figure 5 compares the U-Net against an encoder-decoder on
cityscape generation U-Net. The encoder-decoder is created
simply by severing the skip connections in the U-Net. The
encoder-decoder is unable to learn to generate realistic im-
ages in our experiments, and indeed collapses to producing
nearly identical results for each input label map. The advan-
tages of the U-Net appear not to be specific to conditional
GANs: when both U-Net and encoder-decoder are trained

Figure 2.7. Different losses induce different quality of results. Each column
shows results trained under a different loss. Source: Isola et al. [2017].

The generator network is usually either an Encoder-Decoder network such as
U-Net [Ronneberger et al., 2015] or a mixture of downscaling block and residual
ones (i.e. He et al. [2016b]), with both architectures receiving images in the source
domain and translating them to the target domain. The discriminator network is a
traditional architecture for image classification, such as a CNN [Krizhevsky et al.,
2012; Simonyan and Zisserman, 2014]. The discriminator has the job of determining
if the image is a natural sample from the specific domain or if it is a translated
sample originally from another domain. In other words, the discriminator is a CNN
for binary image classification between the classes real and fake.

Samples are fed to the network during the training phase in a supervised man-
ner and, therefore, pix2pix requires paired images in the source and target domains,
as shown in Figure 2.9. Access to paired images from the two domains (XA and XB)
considerably simplifies the learning process, as losses can be devised using only
pixel-level or patch-level comparisons between the original and translated images
[Isola et al., 2017]. One can see in Figure 2.9(b) that in the beginning of the train-
ing process for pix2pix the translation of sample X(i)

A to X(i)
B may produce a warped

translated version (X(i)
A→B) of the source sample due to a poorly fit translation func-
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Real or fake pair?

Positive examples Negative examples

Real or fake pair?

DD

G

G tries to synthesize fake 
images that fool D

D tries to identify the fakes

Figure 2: Training a conditional GAN to predict aerial photos from
maps. The discriminator, D, learns to classify between real and
synthesized pairs. The generator learns to fool the discriminator.
Unlike an unconditional GAN, both the generator and discrimina-
tor observe an input image.

where G tries to minimize this objective against an ad-
versarial D that tries to maximize it, i.e. G∗ =
argminG maxD LcGAN (G,D).

To test the importance of conditioning the discrimintor,
we also compare to an unconditional variant in which the
discriminator does not observe x:

LGAN (G,D) =Ey∼pdata(y)[logD(y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D(G(x, z))].
(2)

Previous approaches to conditional GANs have found it
beneficial to mix the GAN objective with a more traditional
loss, such as L2 distance [29]. The discriminator’s job re-
mains unchanged, but the generator is tasked to not only
fool the discriminator but also to be near the ground truth
output in an L2 sense. We also explore this option, using
L1 distance rather than L2 as L1 encourages less blurring:

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1]. (3)

Our final objective is

G∗ = argmin
G

max
D
LcGAN (G,D) + λLL1(G). (4)

Without z, the net could still learn a mapping from x to
y, but would produce deterministic outputs, and therefore
fail to match any distribution other than a delta function.
Past conditional GANs have acknowledged this and pro-
vided Gaussian noise z as an input to the generator, in addi-
tion to x (e.g., [39]). In initial experiments, we did not find

Encoder-decoder U-Net

Figure 3: Two choices for the architecture of the generator. The
“U-Net” [34] is an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.

this strategy effective – the generator simply learned to ig-
nore the noise – which is consistent with Mathieu et al. [27].
Instead, for our final models, we provide noise only in the
form of dropout, applied on several layers of our generator
at both training and test time. Despite the dropout noise, we
observe very minor stochasticity in the output of our nets.
Designing conditional GANs that produce stochastic out-
put, and thereby capture the full entropy of the conditional
distributions they model, is an important question left open
by the present work.

2.2. Network architectures

We adapt our generator and discriminator architectures
from those in [30]. Both generator and discriminator use
modules of the form convolution-BatchNorm-ReLu [18].
Details of the architecture are provided in the appendix,
with key features discussed below.

2.2.1 Generator with skips

A defining feature of image-to-image translation problems
is that they map a high resolution input grid to a high resolu-
tion output grid. In addition, for the problems we consider,
the input and output differ in surface appearance, but both
are renderings of the same underlying structure. Therefore,
structure in the input is roughly aligned with structure in the
output. We design the generator architecture around these
considerations.

Many previous solutions [29, 39, 19, 48, 43] to problems
in this area have used an encoder-decoder network [16]. In
such a network, the input is passed through a series of lay-
ers that progressively downsample, until a bottleneck layer,
at which point the process is reversed (Figure 3). Such a
network requires that all information flow pass through all
the layers, including the bottleneck. For many image trans-
lation problems, there is a great deal of low-level informa-
tion shared between the input and output, and it would be

Figure 2.8. Training a conditional GAN to predict aerial photos from maps.
The discriminator, D, learns to classify between real and synthesized pairs. The
generator G learns to fool the discriminator. Unlike an unconditional GAN, both
the generator and discriminator observe an input image. Source: Isola et al.
[2017].

tion GA→B. When paired samples from the two domains are accessible, one can
simply compare the real X(i)

B sample with the synthetic sample X(i)
A→B to devise an

objective cost function based on the premise that X(i)
B ≈ X(i)

A→B in order to optimize
GA→B. An example of a distance-based cost function that could be used in such
a scenario is represented in Figure 2.9(c). If convergence is met and the aforemen-
tioned cost is compensated properly, translations A→ B become possible, as shown
in Figure 2.9(d). During testing, pix2pix can perform translations A → B between
generic samples from A to B, as in Figure 2.9(e). The composite loss function for
pix2pix couples this distance-based objective loss with an adversarial loss in order
to enforce photorealistic image translation.

One example of DNN architecture that can perform Paired I2I Translation can
be seen in Figure 2.10. There are two generators (GA→B and GB→A) and two dis-
criminators (DA and DB) in this architecture, that is, one pair {G, D} for each do-
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XA XB

(a)

(b)

cost

(c)

(d) (e)

Figure 2.9. Stages in the training procedure for translations between two paired
sample sets XA and XB from domains A and B on pix2pix. We only show the
process for a translation A → B, but translations B → A are analogous. (a)
Samples from the domains. (b) Beginning of the training procedure with large
translation errors. (c) Distance-based cost function for paired translation. (d)
Correct translation from sample X(i)

A to sample X(i)
B after training. (e) Translation

between samples from A and B.

main. For a pair of images {XA, XB} from domains A and B, one pair of synthetic
images {XA→B, XB→A} is produced by GA→B and GB→A. These synthetic images
are forwarded through DA and DB in order for the discriminators to try to discern
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between real and fake samples. As in standard GANs [Goodfellow et al., 2014],
backpropagation flows from the discriminators to the generators.

Forward	Pass

Adversarial	Loss

Paired	Loss

(a) (b)

Figure 2.10. Example of a standard architecture that performs Paired Image-to-
Image Translation between a pair of domains A and B. In contrast to traditional
GAN architectures (Figure 2.5), these architectures are usually composed of two
generators (GA→B and GB→A) responsible for performing A ↔ B translations
and two discriminators (DA and DB), responsible for trying to discern between
real and synthetic samples from each domain.

The need for paired samples represents a serious hampering for many real
world applications of pix2pix, including biomedical ones. Sample pairing is not
required by Unsupervised I2I Translation methods [Zhu et al., 2017a; Liu et al., 2017;
Huang et al., 2018], further detailed in Section 2.3.1.

2.3.1 Unsupervised Image-to-Image Translation

Requiring paired samples reduces the applicability of I2I translation to a very small
and limited subset of image domains where there is the possibility of generating
paired datasets. This limitation motivated the creation of Unsupervised Image-to-
Image Translation methods [Zhu et al., 2017a; Liu et al., 2017; Huang et al., 2018].
On paired networks as pix2pix, one can simply compare images from the source
domain to images from the target domain, but this strategy does not work for un-
paired samples, thus the need for a new distance-based loss function. As pointed
by Zhu et al. [2017a], in the language domain, verifying and improving translations
via “back translation and reconsiliation” is a technique used by human translators
[Brislin, 1970], as well as by machines [He et al., 2016a]. Unsupervised Image-to-
Image Translation networks are based on the concept of Cycle-Consistency, which
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models the translation process between two image domain as an invertible process
represented by a cycle, as can be seen in Figure 2.11. This cyclic structure allows for
Cycle-Consistent losses to be used together with the adversarial loss components of
traditional GANs.

A Cycle-Consistent loss can be formulated as follows: let A and B be two
image domains containing unpaired image sample sets XA and XB. Consider
then two functions GA→B and GB→A that perform the translations A → B and
B → A respectively. Then a loss Lcyc can be devised by comparing the pairs
of images {X(i)

A , X(i)
A→B→A} and {X(i)

B , X(i)
B→A→B}. In other words, the relations

X(i)
A ≈ GB→A(GA→B(X(i)

A )) and X(i)
B ≈ GA→B(GB→A(X(i)

B )) should be maintained
in the translation process. The counterparts of the generative networks in GANs are
discriminative networks, which are trained to identify if an image is natural from
the domain or translated samples originally from other domains. DA and DB are
referred to as the discriminative networks for datasets A and B, respectively. Dis-
criminative networks are normally traditional supervised networks, such as CNNs
[Krizhevsky et al., 2012; Simonyan and Zisserman, 2014], which are trained in the
classification task of distinguishing real images from fake images generated by the
generators.

In practice, the loss Lcyc is usually the same L1 regression loss Lpair used in

Paired I2I Translation, but due to the lack of paired X(i)
A and X(i)

B samples, the re-
gression is computed instead using the original sample X(i)

A and its reconstruction
X(i)

A→B→A as follows:

Lcyc(X(i)
A , X(i)

A→B→A) = E

∥∥∥X(i)
A − X(i)

A→B→A

∥∥∥ . (2.9)

The case for translations B → A → B is analogous to the case of A → B → A.
Cycle-Consistency can be implemented in a DNN by using an architecture such as
the one presented in Figure 2.12.

The first proposal for such an architecture was the CycleGAN [Zhu et al.,
2017a] and several improvements have been presented in the subject ever since [Li
and Wand, 2016; Liu and Tuzel, 2016; Liu et al., 2017; Huang et al., 2018; Liu et al.,
2019]. Modern Unsupervised I2I Networks [Liu et al., 2017; Huang et al., 2018; Liu
et al., 2019] are built upon the basic architecture of CoGANs [Liu and Tuzel, 2016].

Newer architectures as Unsupervised Image-to-Image Translation (UNIT)
[Liu et al., 2017], Multimodal Unsupervised Image-to-Image Translation (MUNIT)
[Huang et al., 2018], Diverse Image-to-Image Translation via Disentangled Repre-
sentations (DRIT) [Lee et al., 2018], DRIT++ [Lee et al., 2020] and Mode Seeking Gen-
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(a)

(b)

cos
t

(c)

(d) (e)

Figure 2.11. Stages in the training procedure for translations between two un-
paired sample sets XA and XB from domains A and B. We only show the process
for a translation A → B → A, but translations B → A → B are analogous. (a)
Samples from both domains. (b) Beginning of the training procedure with a
large reconstruction error. (c) Distance-based cost function for unpaired transla-
tion. (d) Correct reconstruction to domain A for sample X(i)

A after correcting for
the previous error. (e) Translation for A→ B samples in XA.

erative Adversarial Network (MSGAN) [Mao et al., 2019] achieve state-of-the-art re-
alism in image translation by optimizing for cycle-consistency in the bottlenecks of
the generators. In other words, these DNNs are trained by not only by minimiz-
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Forward	Pass

Adversarial	Loss

Cycle-Consistency	Loss

(a)

(b)

Figure 2.12. Example of GAN architecture based on Cycle-Consistency. Tradi-
tionally, two generators (GA→B and GB→A) and two discriminators (DA and DB)
are trained in order to achieve unsupervised image translation and an objective
loss can be devised by comparing the pairs {XA, XA→B→A} and {XB, XB→A→B}.

ing the expectations E

∥∥∥X(i)
A − X(i)

A→B→A

∥∥∥ and E

∥∥∥X(i)
B − X(i)

B→A→B

∥∥∥, but also in the
bottleneck activations of GA→B and GB→A. One important property of this repre-
sentation is that it forms an isomorphism between A and B, which is explored by
CoDAGANs, as further explained in Section 3.

Generative networks for Unsupervised I2I Translation – specifically UNIT [Liu
et al., 2017], MUNIT [Huang et al., 2018], DRIT/DRIT++ [Lee et al., 2018, 2020] and
MSGAN [Mao et al., 2019] – closely resemble the architecture from Figure 2.13. This
scheme represents the generator GA→B performing a translation between a sam-
ple XA to a synthetic version of this sample in domain B (XA→B), with translations
B→ A being analogous. While the number of each kind of block is a distinct hyper-
parameter to be tuned in these networks, Figure 2.13 depicts an Encoder-Decoder
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composed of two downsampling blocks (G(↓)
1 and G(↓)

2 ), two residual blocks (G(R)1

and G(R)2) and, finally, two upsampling blocks (G(↑)
1 and G(↑)

2 ). In this example,
both the input XA and output XA→B of the generator are tensors with dimensions
nch × 256× 256. Downsampling layers halve the spatial resolution of the input and
increase the channel depth of the input, while their upsampling counterparts do the
exact opposite, doubling the spatial resolution at each step and decreasing the num-
ber of channels back to the original nch value. Residual layers [He et al., 2016b], do
not alter the resolution of the input tensor, instead providing more trainable param-
eters to the DNN – further increasing its representation capabilities – while still pro-
viding shortcuts to the backpropagation gradients, as discussed in the beginning of
Section 2. This architectural design is shown to be highly effective for Unsupervised
I2I Translation, serving as a basis for several state-of-the-art networks that perform
this task [Liu et al., 2017; Huang et al., 2018], while most other unsupervised trans-
lation methods rely on slight variations of this model [Li and Wand, 2016; Zhu et al.,
2017a; Lee et al., 2018; Liu et al., 2019; Mao et al., 2019; Lee et al., 2020].

Legend

Blocks

Padding

Normalization

Activation

Convolution

Upsampling

Figure 2.13. Detailed schematics of a traditional Encoder-Decoder architecture
employed on Unsupervised I2I Translation. The generator GA→B is broken
down into its downscaling (G(↓)), residual (G(R)) and upscaling (G(↑)) blocks.
These blocks are subsequently broken down into their unitary components:
Padding (i.e. Reflection, Replication or Zero Padding), Normalization (i.e. In-
stance Normalization, Batch Normalization, Adaptive Instance Normalization
(AdaIN), etc), Activation (i.e. ReLU, LeakyReLU, Parametric Rectified Linear
Unit (PReLU), Scaled Exponential Linear Unit (SELU), etc), Conv2d layers and
upsampling.
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Some efforts have been spent in proposing Unpaired Image Translation GANs
for multi-domain scenarios, as the case of StarGANs [Choi et al., 2018, 2020], but
these networks do not explicitly present isomorphic representations of the data, as
UNIT and MUNIT architectures do. Other advantages of UNIT and MUNIT over
StarGANs is that they also compute reconstruction losses on the isomorphic repre-
sentations, beside the traditional Cycle-Consistency between real and reconstructed
images. CoDAGANs were built to be agnostic to the image translation network
used as basis for the implementation, being able to transform any Image Transla-
tion GAN that has an isomorphic representation of the data into a multi-domain
architecture with only minor changes to the generator and discriminator networks.

2.4 Domain Adaptation

DNNs often require a large amount of labeled training data in order to converge
properly for performing supervised tasks in visual domains, such as classification
[Krizhevsky et al., 2012], detection [Ren et al., 2015] and segmentation [Long et al.,
2015; Ronneberger et al., 2015; Badrinarayanan et al., 2017]. Due to this hunger for
data, Transfer Learning has become a common procedure and received unprece-
dented attention in the realm of Deep Learning research, mainly using fine-tuning
for adapting DNNs pretrained in larger datasets to perform similar tasks in smaller
datasets. The larger set is usually a massive database, such as ImageNet [Deng
et al., 2009] and is called the source dataset, while the smaller set is called the target
dataset, being composed of the samples from the domain upon which inference will
be performed.

Examples of UDA, SSDA and FSDA can be seen in Figure 2.14. These scenarios
only show cases of fully labeled source domains composed of data (XS ) and labels
(YS ). In UDA scenarios, no labels YT are available for the target set, while SSDA
tasks have both labeled and unlabeled samples on the target domain. FSDA contains
only labeled data in the target domain and it is the most common practice nowadays
among deep DA methods due to the simplicity of fine-tuning pretrained DNNs to
perform new tasks. Computer Vision-related domains have a lot to benefit from
fine-tuning, as most off-the-shelf large labeled datasets are from competitions for
traditional Computer Vision tasks [Deng et al., 2009; Everingham et al., 2015; Lin
et al., 2014].

DA from Computer Vision datasets [Deng et al., 2009; Everingham et al., 2015;
Lin et al., 2014] to biomedical image datasets can lead to a phenomenon known
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(a) (b)

(c)

Figure 2.14. Examples of UDA (a), SSDA (b) and FSDA (c) in a classification
scenario. XS and YS are, respectively, the source dataset data and labels, while
XT and YT represent the target dataset data and labels. The green line represents
a possible decision boundary between the classes.

as Negative Transfer [Kuzborskij and Orabona, 2013], wherein, instead of helping
the training of a model on the target set, the knowledge from the source set makes
it harder to perform inference on the target. Poor knowledge transfer is known to
happen mainly between domains or tasks that have large domain shifts. The seman-
tic proximity between domains can also be explored in the opposite way to discover
pairs of tasks that are likely to result in better knowledge transfer. A more precise
definition for the domain shift between domains has been tackled both in a theoreti-
cal sense by Kuzborskij and Orabona [2013] and in empirical studies [Ferreira et al.,
2018; Zamir et al., 2018].

Zhang et al. [2017] describes a taxonomy for DA tasks comprising most of
the spectrum of deep and shallow knowledge transfer techniques. This taxonomy
comprises several classes of problems with variations in feature and label spaces
between source and target domains, data labeling, balanced/unbalanced data and
sequential/non-sequential data.

CoDAGANs cannot be put in one single category in the taxonomy proposed
by Zhang et al. [2017], as they allow for a dataset to be source and target at the
same time and are adapted for UDA, SSDA and FSDA, being able to learn from
both unsupervised and supervised data. CoDAGANs can also be seen as a form of
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Generalization Learning, as using several data sources leads to more generalizable
models, as discussed in Section 5.2.4.

2.4.1 Domain Generalization

Traditional DA techniques perform knowledge transfer between a single pair of
datasets: a source S and a target T datasets. In many cases it is advantageous to
acquire as much data as possible from multiple sources, mainly when there is a lack
of labels. Multi-source methods [Sun et al., 2011; Gong et al., 2013; Caseiro et al.,
2015; Ming Harry Hsu et al., 2015; Fang et al., 2013] try to infer a joint probability
distribution pX1,X2,...,XN from a multitude of source data X1, X2, ..., XN, each one with
its own marginal probability distribution pX1 , pX2 , ..., pXN . These methods must in-
fer joint distributions for the domains based only on the marginal distributions of
the source data.

CoDAGANs can be classified as a multi-source and multi-target DA method
with the caveat that the distinction between source and target data is not clear in
these DNNs, as translations and knowledge transfer are performed across all pairs
of domains. As pointed by Csurka [2017]; Zhang et al. [2017], Domain Generaliza-
tion is closely related to multi-source DA, as the objective is often to average the
knowledge obtained from related source domains in order to make the model more
robust to novel unseen data that it not available during training. Most Domain Gen-
eralization methods in the literature are based on this premise [Ghifary et al., 2015;
Gan et al., 2016; Ding and Fu, 2017; Li et al., 2019; Carlucci et al., 2019], including
CoDAGANs. Image-to-Image Translation for DA is further discussed in the Sec-
tion 2.4.3.

2.4.2 Dense Visual Domain Adaptation

As described by Patel et al. [2015], algorithms for segmentation, reconstruction, and
tracking are awaiting mechanisms that do not yet exist to be adapted toward emerg-
ing new domains. Due to the lack of methods for adaptation of tasks other than
classification, another survey [Shao et al., 2015] that compiled the advances of DA
in Computer Vision did not even mention segmentation tasks. Even though these
studies are considerably outdated due to DNNs becoming ubiquitous in Computer
Vision during the last years, this context did not change since these surveys, and,
therefore, methods for deep DA in non-classification scenarios are still noticeably
scarce.
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Wang and Deng [2018] compiled so far the only up-to-date survey on visual
DA containing methods specifically designed for semantic segmentation tasks. As
argued by Wang and Deng [2018], only a few works address adaptation beyond
classification and recognition, such as object detection, face recognition, semantic
segmentation and person re-identification. How to achieve these tasks with no or a
very limited amount of data is probably one of the main challenges that should be
addressed by deep DA in the next few years.

Another recent survey [Csurka, 2017] compiles some approaches for perform-
ing visual DA in dense tasks. As far as the authors are aware, the few proposed
approaches for deep DA in dense labeling tasks have been tackled mainly using
synthetic data for specific problems, such as outdoor scene segmentation [Ros et al.,
2016; Richter et al., 2016], depth estimation [Eigen et al., 2014; Bousmalis et al., 2017]
and indoor scene understanding [Papon and Schoeler, 2015; Handa et al., 2016]. Al-
though useful in some scenarios, these are not universal schemes for either UDA or
SSDA in dense labeling tasks, as the application of these techniques depends on the
availability of synthetic data corresponding to the real-world data of the target task.

2.4.3 I2I Translation for Domain Adaptation

Since the introduction of Image-to-Image Translation GANs, several works [Liu and
Tuzel, 2016; Bousmalis et al., 2017; Hoffman et al., 2018; Murez et al., 2018; Wu et al.,
2018; Zou et al., 2018] have used these architectures to perform DA between image
domains. In the following paragraphs, when available, we will mainly focus on the
experiments of the literature in dense labeling tasks.

As far as the authors are aware, the first use of I2I Translation specifically
for Domain Adaptation was shown by CoGANs [Liu and Tuzel, 2016]. This work
showed UDA for digit classification between the MNIST [LeCun et al., 1998] and
USPS [Hull, 1994] datasets. While MNIST contains well-behaved, preprocessed and
high-contrast handwritten digit samples in grayscale, USPS mimics a real-world
scenario for digit classification using RGB images on noisy and highly varied back-
grounds. Thus, being able to adapt a digit classifier from MNIST to USPS without
using labels from the target set is a challenging problem. One should notice that
CoGANs still did not present UDA results in dense labeling tasks.

With time, other works focused on using I2Is for dense labeling scenarios in
either Computer Vision [Hoffman et al., 2018; Murez et al., 2018; Wu et al., 2018;
Zou et al., 2018] or Biomedical Imaging [Cohen et al., 2018; Tang et al., 2019b,a; Yang
et al., 2019] applications, most of them borrowing from the theoretical framework
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of CycleGANs [Zhu et al., 2017a]. Most of these methods were proposed concur-
rently to one of the main contributions of this work and, therefore, will be further
discussed in Section 3.1.

Methods for DA using Cycle-Consistency [Hoffman et al., 2018; Murez et al.,
2018; Wu et al., 2018; Zou et al., 2018] usually attach some fully convolutional archi-
tecture the end of a CycleGAN’s generator (or other Unsupervised I2I architectures),
as shown in Figure 3.1, limiting them to adapting between a pair of source and target
domains {S , T }. One should notice in this base architecture that in the case of total
lack of target labels YT – that is, in a UDA scenario – semantic consistency gradients
are successfully fed to GS→T due to its proximity to MT, but very small gradient
intensities flow from MT to GT→S in S → T → S translations (Figure 3.1(a)). This
represents an imbalance in the training of GS→T and GT→S, which is not desirable
for DA.

Cycle-Consistent Adversarial Domain Adaptation (CyCADA) [Hoffman et al.,
2018] was built upon CycleGANs to perform UDA in dense labeling tasks – more
specifically semantic segmentation. As most other papers in the area, CyCADA
relies on synthetic data from realistic 3D simulations such as third person games to
acquire labeled data for outdoor scene classification. It is much less time-consuming
to annotate synthetic images from these simulations in an automated or semi-
automated manner than to label entire datasets from scratch with pixel-level an-
notations, such as Pascal VOC [Everingham et al., 2015].

Similarly to the basic scheme presented in Figure 3.1, CyCADA uses a pair
of generators (GS→T and GT→S), a pair of discriminators (DS and DT) and a super-
vised model MS trained on the source distribution S for performing UDA in dense
labeling tasks. From an architectural point of view, the main distinctions between
Figure 3.1 and CyCADA are twofold:

1. a couple of supervised models (MS and MT) are trained instead of only MT,
with MS encouraging semantic consistency between MS(XS) and MS(XS→T),
forcing the translations to be semantically consistent, while MT in fact trans-
fers the knowledge between S and T;

2. the addition of another discriminator D f eat for enforcing consistency between
the segmentation predictions obtained from the real target image (MT(XT))
and the synthetic translated source image (MT(XS→T)).

The loss for CyCADA (LCyCADA) is a combination of three supervised losses
Lsup (Equation 2.1); three adversarial losses (Equations 2.5 and 2.4) for enforcing
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that E(XT) ≈ E(XS→T), E(XS) ≈ E(XT→S) and E( fT(XT)) ≈ E( fT(XS→T)); and
two Cycle-Consistent loss Lcyc (Equation 2.9) for ensuring that XS ≈ XS→T→S and
XT ≈ XT→S→T. LCyCADA is given by the following equation:

LCyCADA = Lsup(1)(MT(XS→T), YS)

+ Lsup(2)(MS(XS→T), MS(XT))

+ Lsup(3)(MS(XT→S), MS(XS))

+ Ladv(1)(GS→T, XT)

+ Ladv(2)(GT→S, XS)

+ Ladv(3)( fT(XS→T), fT(XT))

+ Lcyc(1)(XT, XT→S→T)

+ Lcyc(2)(XS, XS→T→S). (2.10)

CyCADA reports successful UDA results between the synthetic GTA5 [Richter
et al., 2016] dataset and the real-world CityScapes dataset [Cordts et al., 2016].
CyCADA reports mIoU results of 35.4%, frequency weighted Intersection over
Union (fwIoU) of 73.8% and Pixel Accuracy of 83.6% in translations between
GTA5→CityScapes. Several works improved on CyCADA by plugging a semantic
segmentation DNN at one end of an Unpaired I2I Translation network [Murez et al.,
2018; Wu et al., 2018], achieving comparable results on Computer Vision datasets.

Similarly to CyCADA and the architecture presented in Figure 3.1, I2IAdapt
[Murez et al., 2018] uses CycleGANs coupled with segmentation architectures to
perform UDA for dense labeling tasks. Again the GTA5 and CityScapes datasets are
used as source and target data in I2IAdapt, comparing the results with simply test-
ing the pretrained DNN in the target domain, yielding considerable improvements.
Their best configuration with a DenseNet [Huang et al., 2017] backbone achieves
35.7% of mIoU on CityScapes.

The Dual Channel-wise Alignment Network (DCAN) [Wu et al., 2018] also
follows close architectural choices to CyCADA and I2IAdapt, attaching a segmenta-
tion architecture to the target end of a translation architecture. DCAN was trained
on two synthetic datasets (GTA5 and SYNTHIA [Ros et al., 2016]) and in one real-
world dataset (CityScapes). Wu et al. [2018] report mIoU values of 38.9% for
GTA5→CityScapes and 41.7% for SYNTHIA→CityScapes, surpassing the baselines
by between 8% and 9% and other similar methods by a small percentage.
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Table 2.1. Comparison between D2D, CoDAGAN and the main baselines in
the literature. Methods are clustered into 4 distinct categories: Image Pairing
(Paired or Unpaired), Pairwise (Domain-to-Domain) or Variable Training, Do-
main (Computer Vision – CV or Biomedical Images – BI) and DA Task Labeling
(Sparse, Dense or Not Applicable).

Method Pairing Training Domain DA Labeling
pix2pix [Isola et al., 2017] Paired Pairwise CV –

CycleGAN [Zhu et al., 2017a] Unpaired Pairwise CV –
CoGAN [Liu and Tuzel, 2016] Unpaired Pairwise CV Sparse

UNIT [Liu et al., 2017] Unpaired Pairwise CV –
MUNIT [Huang et al., 2018] Unpaired Pairwise CV –
StarGAN [Choi et al., 2018] Unpaired Variable CV –

StarGAN v2 [Choi et al., 2020] Unpaired Variable CV –
I2IAdapt [Murez et al., 2018] Unpaired Pairwise CV Dense

DCAN [Wu et al., 2018] Unpaired Pairwise CV Dense
CyCADA [Hoffman et al., 2018] Unpaired Pairwise CV Dense

Zhang et al. [2018b] Unpaired Pairwise BI Dense
XLSor [Tang et al., 2019b] Unpaired Pairwise BI Dense

TUNA-Net [Tang et al., 2019a] Unpaired Pairwise BI Dense
Yang et al. [2019] Unpaired Pairwise BI Dense

Ours (D2D) Unpaired Pairwise BI Dense
Ours (CoDAGAN) Unpaired Variable BI Dense

2.5 I2I Literature and Proposed Methods

According to the background knowledge presented in the current chapter, Chapter 3
presents the proposed methods for DA in biomedical dense labeling. Section 3.1
describes the first studies regarding pairwise DAs for dense labeling in radiology
(D2Ds), Section 3.2 expĺains our proposal for Domain Generalization in biomedical
image segmentation tasks (CoDAGANs) and, finally, Section 3.3 uses CoDAGANs
to gather unlabeled volumetric tomographic data to transfer useful knowledge to
2D images in a step towards cross-modality DA. A concise comparison between the
literature of I2I for DA, D2D and CoDAGANs can be seen in Table 2.1.





Chapter 3

Proposed Methods

This chapter discusses the three main contributions of this work: 1) a D2D approach
(Section 3.1) used in the earlier tests of this work in order to encounter satisfac-
tory architectures and loss components; 2) Section 3.2 describes CoDAGAN, a fully
novel and label efficient framework that allows for Domain Generalization between
a myriad of datasets from the same radiological modality; and 3) a novel pipeline
for Domain Generalization in the task of rib segmentation in CXRs based on Condi-
tional DA, described in Section 3.3.

3.1 I2I for Domain Adaptation

Even though there are several architectural differences among the distinct methods
of Unpaired I2I Translation, the core of the idea of Cycle-Consistency is kept across
most Unpaired Translation networks [Liu and Tuzel, 2016; Zhu et al., 2017a; Liu
et al., 2017; Huang et al., 2018; Lee et al., 2018; Mao et al., 2019; Lee et al., 2020]. Spe-
cific architectures of GS→T, GT→S, DS and DT, as well as customly designed losses
can grant different translation methods special characteristics such as different en-
codings for style and content in an image [Huang et al., 2018] and unsupervised
multimodal translations [Mao et al., 2019].

With only simple modifications to the traditional Unsupervised I2I Translation
pipeline (Figure 2.12), one can adapt the a DNNs as CycleGAN [Zhu et al., 2017a],
UNIT [Liu et al., 2017] or MUNIT [Huang et al., 2018] in order to perform Cross-
Dataset Transfer Learning. Let S be a labeled source dataset and T be a partially
labeled or fully unlabeled target dataset. We propose the architecture shown in
Figure 3.1 for transferring knowledge from S to T. The unsupervised part is simply
an Unsupervised I2I Network, such as Zhu et al. [2017a]. The supervised section

43
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uses a model MS pretrained on domain S to enforce discriminative translations by
GS→T and GT→S – that is, translations from T to S that preserve the visual features
important for the class discrimination in MS. As shown in Figure 3.1, if there are
any labels for the dataset T, they are also taken into account by the architecture,
allowing for a better training of GS→T.

As shown, D2D simply combines the supervised learning from an FCN or an
Encoder-Decoder architecture with a supervised or unsupervised image translation
architecture to perform UDA or SSDA, attaching the pretrained supervised segmen-
tation architecture at one end of the image translation.

Discriminative and generative models in GANs are trained intermittently. At
first, the generators are frozen while both discriminators are trained simultaneously
using backpropagation. Later the inverse occurs: the discriminative networks are
frozen and both generators are trained at the same time. Our method adds a third
optimization procedure to this pipeline, wherein MA is fine-tuned and backpropa-
gates the training errors to GA→B and GB→A, while DA and DB are frozen. These
training steps will be henceforth called generative, discriminative and supervised
steps.

If convergence is met, it is possible to forward an image xb ∼ XB to GB→A,
get its counterpart in xb→a and forward it to MA, as GB→A was enforced to preserve
the visual features important for the segmentation. If YB is nonexistent – indicating
that XB is fully unlabeled, only the YA labels are used in the supervised part of
the network. Therefore, this architecture can use YA labels to train a model for XB

samples in a completely unsupervised setting. Contrary to fine-tuning, our method
uses the whole XB dataset to transfer the knowledge, not only the labeled samples
in XB.

As the proposed DA architecture is built on top of a generic Unpaired Im-
age Translation architecture (Figure 2.12), it is agnostic to the choice of Cycle-
Consistency network. That is, one could easily shift between implementations of
CycleGANs [Zhu et al., 2017a], UNIT [Liu et al., 2017] or MUNIT [Huang et al.,
2018]. D2D simply added a supervised loss to the already existing unsupervised
loss components for I2I in the original architectures. The method for Conditional
DAs discussed in Section 3.2 directly altered the loss terms in order to mitigate sta-
bility concerns in D2D and enforce dataset agnosticism in the intermediate I repre-
sentation, wherein supervision is applied in that scheme.

The D2D architecture was the basis for most of the exploratory tests that re-
sulted in the migration to Conditional DA.
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Forward	Pass

Adversarial	Backward

Cycle-Consistency	Loss

Supervised	Loss

(a)

(b)

Figure 3.1. Simplified scheme for D2D in translations S → T → S (a) and
T → S → T (b). A supervised model M performs the supervised learning by
using the labels YS in the source domain S and, in the case of FSDA or SSDA,
also using the target domain labels YT, when available.

3.1.1 Limitations of Pairwise I2I for DA

Pairwise Image Translation for DAs presented limitations that would prevent the
method to maximize its label efficiency. For instance, in the task of lung segmen-
tation in toracic radiographs there are four labeled large scale datasets that could
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have labels used for training. However, D2D only allows for one of the datasets to
be used as source and another unlabeled dataset to serve as target to the translation.
This was the main motivation to the development of conditional dataset encoding
(Section 3.2.1) in the more recent iteration of this work: CoDAGANs.

CoDAGANs (further discussed in Section 3.2) apply a similar framework
to D2D in order to perform UDA, SSDA and FSDA, mixing the unsupervised
learning of Cycle-Consistent GANs with the supervised pixelwise learning of an
Encoder-Decoder architecture. However, two crucial distinctions between D2D and
CoDAGANs must be addressed, though: 1) only one Encoder, one Decoder and one
Discriminator are used in the image translation process, as different domains are
recognized by G and D via conditional encoding, allowing for multi-target domain
adaptation; 2) supervised learning is performed only on the bottleneck of G, not in
end of the translation process, allowing all domains to share a single isomorphic
space I . These differences allow for drawing supervised and unsupervised knowl-
edge from several distinct datasets, depending on their label availability.

3.2 Deep Conditional DA

CoDAGANs combine unsupervised and supervised learning to perform UDA,
SSDA or FSDA between two or more image sets. These architectures are based on
adaptations of preexisting Unsupervised I2I Translation networks [Zhu et al., 2017a;
Liu et al., 2017; Huang et al., 2018], adding supervision to the process in order to per-
form Transfer Learning. The generator networks (G) in Image Translation GANs are
implemented usually using Encoder-Decoder architectures as U-Nets [Ronneberger
et al., 2015]. At the end of the Encoder (GE) there is a middle-level representation I
that can be trained to be isomorphic in these architectures. I serves as input of the
Decoder (GD). Isomorphism allows for learning a supervised model M based on
I that is capable of inferring over several datasets. This unsupervised translation
process followed by a supervised learning model can be seen in Figure 3.2.

For this work we employed the UNIT and MUNIT architectures as a basis for
the generation of I . On top of that, we added the supervised model M – which is
based on a U-Net [Ronneberger et al., 2015] – and made some considerable changes
to the translation approaches, mainly regarding the architecture and conditional dis-
tribution modelling of the original GANs, as discussed in Section 3.2.1. The exact
architecture for G depends on the basis translation network chosen for the adapta-
tion. In our case, both UNIT and MUNIT use VAE-like architectures [Kingma and
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Figure 3.2. Training procedure for CoDAGANs. This figure exemplifies a trans-
lation a → b → a, but the translation b → a → b is analogous. Notice that the
reconstruction losses are omitted from this view of our architecture for simplifi-
cation. The Encode routine transforms the real images in the mini-batch Xa into
the isomorphic representation Ia between the datasets (through GE ), followed
by the Decode subroutine, which builds (using GD) a corresponding fake mini-
batch Xa→b according to I . The Reencode procedure reconstructs the isomorphic
representation I according to Xa→b. At last, the Redecode subroutine reconstructs
the image Xa→b→a according to Ia→b. The Discriminate subroutine tries to dis-
cern between real (Xa) and synthetic (Xa→b) samples from the datasets. If there
is a ground truth Y(i)

a for the sample i in the mini-batch, the model M compares
the predicted segmentation Ŷa with the ground truth Ya generated by the two
encoding subroutines.

Welling, 2013] for G, containing downsampling (GE), upsampling (GD) and residual
layers.

The shape of I depends on the architecture choice for G. UNIT, for example,
assumes a single latent space between the image domains, while MUNIT separates
the content of an image from its style. CoDAGANs feeds the whole latent space to
the supervised model when it is based on UNIT and only content information when
it is built upon MUNIT, as the style vector has no spatial resolution and as we intend
to ignore style and preserve content.

A training iteration on a CoDAGAN follows the sequence presented in Fig-
ure 3.2. The generator network G – similarly to U-Nets [Ronneberger et al., 2015]
and AEs [Kingma and Welling, 2013] – is an Encoder-Decoder architecture. How-
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ever, instead of mapping the input image into itself or into a semantic map as its
Encoder-Decoder counterparts, it is capable of translating samples from one image
dataset into synthetic samples from another dataset. The encoding half of this ar-
chitecture (GE) receives images from the various datasets and creates an isomorphic
representation somewhere between the image domains in a high dimensional space.
This code will be henceforth described as I and is expected to correlate important
features in the domains in an unsupervised manner [Liu and Tuzel, 2016]. Decoders
(GD) in CoDAGAN generators are able to read I and produce synthetic images from
the same domain or from other domains used in the learning process. This isomor-
phic representation is an integral part of both UNIT [Liu et al., 2017] and MUNIT
[Huang et al., 2018] translations, as they also enforce good reconstructions for I in
the learning process. It also plays an essential role in CoDAGANs, as all supervised
learning is performed on I .

As shown in Figure 3.2, CoDAGANs include five unsupervised subroutines:
a) Encode, b) Decode, c) Reencode, d) Redecode and e) Discriminate; and two f)
Supervision subroutines, which are the only labeled ones. These subroutines will be
detailed further in the following paragraphs.
Encode: First, a dataset pair {a ∼ D, b ∼ D} are sampled from the dataset distribu-
tion pD. A minibatch Xa of images from a is then appended to a code ha generated
by a One-Hot-Encoding scheme, aiming to inform the encoder GE of the samples’
source dataset. The 2-uple {Xa, ha} is passed to the encoder GE, producing an in-
termediate isomorphic representation Ia for the input Xa according to the marginal
distributions computed by GE for dataset a.
Decode: The information flow is then split into two distinct branches: 1) Ia is fed
to the supervised model M; 2) Ia is appended to a code hb and passed through
the decoder GD conditioned to dataset b. The function GD(Ia, hb) produces Xa→b,
which is a translation of images in the minibatch Xa with the style of dataset b.
Reencode: The Reencode procedure performs the same operation of generating an
isomorphic representation as the Encode subroutine, but receiving as input the syn-
thetic image Xa→b. More specifically, the reencoded isomorphic representation Ia→b

is generated by GE(Xa→b, hb).
Redecode: Once again the architecture splits into two branches: 1) Ia→b is passed
to M in order to produce the prediction Ŷa→b; 2) the isomorphic representation is
decoded as in GD(Ia→b, hb), producing the reconstruction Xa→b→a, which can be
compared to Xa via a Cycle-Consistency loss Lcyc (Equation 2.9).
Discriminate: At the end of Decode, the synthetic image Xa→b is produced. The
original samples Xa and the translated images Xa→b are merged in a single batch and
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passed to D, which uses the adversarial loss component LD
adv (Equation 2.7) in order

to classify between real and synthetic samples. In Routines when the generators are
being updated instead of the discriminators, the adversarial loss LG

adv (Equation 2.6)
is computed instead.
Supervision: At the end of Encode and Reencode subroutines, for each sample X(i)

a

which has a corresponding label Y(i)
a , the isomorphisms I (i)a and I (i)a→b are both fed to

the same supervised model M. The model M perform the desired supervised task,
generating the predictions Ŷ(i)

a and Ŷa→b(i). Both these predictions can be compared
in a supervised manner to Y(i)

a by using LS (Equation 2.1), if there are labels for the
image i in this minibatch. As there are always at least some labeled samples in
this scenario, M is trained to perform inference on isomorphic encodings of both
originally labeled data (M(Ia) = Ŷa ≈ Ya) and data translated by the CoDAGAN
for the style of other datasets (M(Ia→b) = Ŷa→b ≈ Ya).

If domain shift is computed and adjusted properly during the training pro-
cedure, the properties Xa ≈ Xa→b→a and Ia ≈ Ia→b are achieved, satisfying Cycle-
Consistency and Isomorphism, respectively. After training, it does not matter which
input dataset among the training ones is conditionally fed to GE to the generation
of isomorphism I , as samples from all datasets should all belong to the same joint
distribution in I-space. Therefore any learning performed on Ia and Ia→b is uni-
versal to all datasets used in the training procedure. Instead of performing only the
translation a→ b→ a for the randomly chosen datasets a and b, all mentioned sub-
routines are run simultaneously for both a→ b→ a and b→ a→ b, as in UNIT [Liu
et al., 2017] and MUNIT [Huang et al., 2018]. Translations b→ a→ b are analogous
to the a→ b→ a case described previously.

One should notice that GE performs spatial downsample, while GD performs
upsample, consequently the model M should take into account the amount of down-
sampling layers in GE. More specifically, we removed the first two layers of U-
Net [Ronneberger et al., 2015] when using them as the model M, resulting in an
asymmetrical U-Net to compensate for GE downsamplings. The amount of input
channels of M must also be compatible with the amount of output channels in GE.
Another constraint for the architecture of the pair {GE, GD} is that the upsampling
performed by GD should always compensate the downsampling factor of GE, char-
acterizing G as a whole as a symmetric Encoder-Decoder network.

The discriminator D for CoDAGANs is basically the same as the discriminator
from the original Cycle-Consistency network, that is, a basic CNN that classifies
between real and fake samples. The only addition to D is conditional training in
order for the discriminator to know the domain the sample is supposed to belong
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to. This allows D to use its marginal distribution for each dataset for determining
the likelihood of veracity for the sample. It is important to notice that our model
is agnostic to the choice of Unsupervised Image-to-Image Translation architecture,
therefore future advances in this area based on Cycle-Consistency should be equally
portable to perform DA and further benefit CoDAGAN’s performance.

3.2.1 Conditional Dataset Encoding

Conditional dataset training allows CoDAGANs to process data and perform trans-
fer from several distinct source/target datasets. Fully or partially labeled datasets
act as source datasets for the method, while unlabeled data is used both to enforce
isomorphism in I and to yield adequate image translations between domains. Par-
tially labeled and unlabeled data are, therefore, the target datasets for in this archi-
tecture.

While D2D approaches use a coupled architecture composed of 2 encoders
(GEa and GEb) and 2 decoders (GDa and GDb) for learning a joint distribution over
datasets a and b, CoDAGANs use only one generator G composed of one encoder
and one decoder (GE and GD). Additionally to the data Xk from some dataset k,
GE is conditionally fed a One-Hot-Encoding hk, as in I = GE(Xk, hk). The addition
of the data in Xk to the code hk is achieved by simple concatenation, as shown in
Figure 3.3. The code hk forces the generator to encode the data according to the
marginal distribution optimized for dataset k, conditioning the method to the visual
style of these data, as exemplified in Figures 3.2 and 3.4. The code hl for a second
dataset l is received by the decoder, as in X̂k→l = GD(I , hl), in order to produce the
translation X̂k→l to dataset l.

3.2.2 Training Routines in CoDAGANs

In each iteration of a traditional GAN there are two routines for training the net-
works: 1) freezing the discriminator and updating the generator (Gen Update); and
2) freezing the generator and updating the discriminator (Dis Update). Performing
these routines intermittently allows the networks to converge together in unsuper-
vised settings. CoDAGANs add a new supervised routine to this scheme in order
to perform UDA, SSDA and FSDA: Model Update. The subroutines described in Sec-
tion 3.2 that compose the three routines of CoDAGANs are presented in Table 3.1

Since the first proposal of GANs [Goodfellow et al., 2014], stability has been
considered a major problem in GAN training. Adversarial training is known to be
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Figure 3.3. Illustration of One-Hot-Encoding on image channels in order to en-
code dataset information.
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Figure 3.4. Comparison between D2D architectures and CoDAGANs regard-
ing architectural choices for computing the isomorphic representation. While
D2D use an Encoder/Decoder pair for each domain, CoDAGANs use One-Hot-
Encoding in order to allow training with more than two domains without scala-
bility hurdles.

more susceptible to convergence problems [Goodfellow et al., 2014; Salimans et al.,
2016] than traditional training procedures for DNNs due to problems as: more com-
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Table 3.1. Subroutines for each routine of CoDAGANs.

Subroutine
Routine G Update D Update M Update

Encode
Decode

Reencode X
Redecode X

Discriminate X X
Supervision X X

plex objectives composed of two or more (often contradictory) terms, discrepancies
between the capacities of G and D, mode collapse etc. Therefore, in order to achieve
more stable results, we split the training procedure of CoDAGANs into two phases:
a) Full Training and b) Supervision Tuning; which will be explained on the following
paragraphs.

Full Training During the first 75% of the epochs in a CoDAGAN training proce-
dure, Full Training is performed. This training phase is composed of the procedures
Dis Update, Gen Update and Model Update, executed in this order. That is, for each
iteration in an epoch of the Full Training phase, first the discriminator D is opti-
mized, followed by an update of G and finishing with the update of the supervised
model. During this phase adversarial training enforces the creation of good isomor-
phic representations by G and translations between the domains. At the same time,
the model M uses the existing (and potentially scarce) label information in order to
improve the translations performed by G by adding semantic meaning to the trans-
lated visual features in the samples.

Supervision Tuning The last 25% of the network epochs are trained in the Supervi-
sion Tuning setting. This phase removes the unstable adversarial training by freezing
G and performing only the Model Update procedure, effectively tuning the super-
vised model to a stationary isomorphic representation. Freezing G has the effect
of removing the instability generated by the adversarial training in the translation
process, as it is harder for M to converge properly while the isomorphic input I is
constantly changing its visual properties due to changes in the weights of G.

3.2.3 CoDAGAN Loss

Both UNIT [Liu et al., 2017] and MUNIT [Huang et al., 2018] optimize con-
jointly GAN-like adversarial loss components and Cycle-Consistency reconstruc-
tion losses. Cycle-Consistency losses (Lcyc) are used in order to provide unsuper-
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vised training capabilities to these translation methods, allowing for the use of un-
paired image datasets, as paired samples from distinct domains are often hard or
impossible to create. Cycle-Consistency is often achieved via Variational inference,
which tries to find an upper bound to the Maximum Likelihood Estimation (MLE)
of high dimensional data [Kingma and Welling, 2013]. Variational losses allow VAEs
to generate new samples learnt from an approximation to the original data distribu-
tion as well as reconstruct images from these distributions. Optimizing an upper
bound to the MLE allows VAEs to produce samples with high likelihood regarding
the original data distribution, but still possessing low visual quality.

Adversarial losses (Ladv) are often complementarily used with reconstruction
losses in order to yield high visual quality and detailed images, as GANs are widely
observed to take bigger risks in generating samples than simple regression losses
[Isola et al., 2017]. Simpler approaches to image generation tend to average the
possible outcomes of new samples, producing low quality images, therefore GANs
produce less blurry and more realistic images than non-adversarial approaches in
most settings. Unsupervised I2I Translation architectures normally use a weighted
sum of these previously discussed losses as their total loss function (Ltot), as in:

Ltot =λcyc
[
Lcyc(Xa, Xa→b→a) + Lcyc(Xb, Xb→a→b)

]
+

λadv [Ladv(Xb, Xa→b) + Ladv(Xa, Xb→a)] .
(3.1)

More details on UNIT and MUNIT loss components can be found in their
respective original papers [Liu et al., 2017; Huang et al., 2018]. One should no-
tice that we only presented the architecture-agnostic routines and loss components
for CoDAGANs in the previous subsections, as the choice of Unsupervised I2I
Translation basis network might introduce new objective terms and/or architectural
changes. MUNIT, for instance, computes reconstruction losses to both the pair of
images {Xa, Xa→b→a} and the pair of isomorphic representations {Ia, Ia→b}, which
are separated into style and content components in this architecture.

CoDAGANs add a new supervised component Lsup to the completely unsu-
pervised lossLtot of Unsupervised Image-to-Image Translation methods. The super-
vised component for CoDAGANs is the default cost function for supervised classifi-
cation/segmentation tasks, the Cross Entropy loss (Equation 2.1). The full objective
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LCoDA for CoDAGANs is, therefore, defined by:

LCoDA = λcyc[Lcyc(Xa, Xa→b→a) + Lcyc(Xb, Xb→a→b)] +

λadv[Ladv(Xb, Xa→b) + Ladv(Xa, Xb→a)] +

λsup[Lsup(Ya, M(Ia)) + Lsup(Yb, M(Ib)) +

Lsup(Ya, M(Ia→b)) + Lsup(Yb, M(Ib→a))], (3.2)

with the values for λcyc, λadv and λsup empirically set to 10, 1 and 1, respectively.

3.3 Rib Segmentation from Synthetic Data

Previous works have explored the larger amount of information encoded into 3D
volumetric radiographs, however they either relied on low-level image processing
techniques [Candemir et al., 2016] or 3D labels from the original data [Zhang et al.,
2018b]. These schemes are prone to limitations in their generalization capabilities,
as they require either a large manual fine-tuning scheme for the methodologies’
hyperparameters for each new dataset or are limited to the variability in the train-
ing data. Based on the CoDAGAN framework, we devised a novel pipeline for rib
segmentation using labels from CT-scans that is able to perform UDA for novel un-
labeled data and achieve Domain Generalization in the task of rib segmentation in
2D radiology samples.

In order to extract useful unsupervised knowledge for 2D images such as CXRs
from volumetric CT-scans, the proposed pipeline for rib segmentation begins with
two operations for flattening 3D volumes into 2D planes: Average Intensity Pro-
jection (Average Intensity Projection) and Maximum Intensity Projection (MIP) in
the PA axis of CT images; resulting in the images XA and YBone

A respectively. AIP
is done by averaging all pixels in a certain location across all the PA axis, while
MIP applies the max operation to this same pixel column. These flattening proce-
dures were previously observed by the literature [Candemir et al., 2016; Zhang et al.,
2018b] to generate useful 2D representations that could be compiled into knowl-
edge for CXRs, especially for delineating anatomical structures such as bones and
organs. Our pipeline explicitly enforces Domain Generalization and performs se-
mantic segmentation using DNNs, according to the scheme presented in Figure 3.5.
The generation of DRR samples by AIP of the PA axis is delineated in green in the
pipeline.

Bone masks generated by the max operation on the CT-scans (YBone
A ) yield an
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Figure 3.5. Proposed rib segmentation pipeline. There are four submodules
highlighted in the image: 1) the procedure for acquiring bone labels from CT-
scans in red; 2) average flattening in the Posterior-Anterior (PA) axis to produce
highlighted in green; 3) Conditional DA for DRR lung segmentation from CXR
labels delineated in blue; and 4) CoDAGAN for segmenting CXR ribs in orange.

acceptable yet noisy segmentation of the bones in the resulting DRR. Simple mor-
phological filtering was observed to fix the noise introduced by the max operation in
the labels. The computation of bone labels from the max operations in CTs volumes
can be seen delineated in red in Figure 3.5. As bones and other natural/artificial
structures prominently appear in DRRs when flattening is done using the max oper-
ation, undesirable objects as scapula and humerus bones, other anatomical features,
and even pacemakers are often present as False Positives in the label maps acquired
for the DRRs. These artifacts are often located outside of the lung field area in the 2D
projection of the DRRs, implying that an efficient lung segmentation could remove
most of them from the training label set. Thus, in order to filter all these undesirable
artifacts from the labels, we first used CoDAGANs to perform UDA for lung field
segmentation from labeled and unlabeled CXR datasets to DRRs, as highlighted in
blue in Figure 3.5. These networks yielded semantic prediction maps for the lung
pixels and allowed us to filter the noisy labels acquired from the noisy max opera-
tion on the PA axis of CT-scans. The resulting masks YRibs

A are, therefore, computed
according to:

YRibs
A = YBone

A & ŶLung
A , (3.3)

where the & operator represents the pixelwise AND operation.
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Similar approaches could be developed using the same framework as ours not
only for thoracic images, but by leveraging CT scans or Magnetic Resonance Imag-
ing (MRI) samples from other parts of the body and transferring it to 2D data. A
task that could easily benefit from this knowledge transfer would be bone fracture
detection, as there are no densely labeled X-Ray datasets for bone segmentation in
the literature, as far as the authors are aware. In this example, even a small CT
dataset of a few hundred images could serve as a source for bone segmentation for
2D X-Rays.

One should notice that in this pipeline we make two distinct uses of
CoDAGANs:

1. CoDALungs for acquiring lung segmentation predictions ŶLungs
A for DRRs from

labeled CXR source datasets (XB and YB) – highlighted in blue in Figure 3.5;

2. CoDARibs for translating the knowledge from the filtered rib segmentation
masks YRibs

A for DRRs in order to use them in CXR data (XB), resulting in the
prediction ŶRibs

B – as delineated in orange in Figure 3.5.

In our experiments these two architecture were trained separately, as they had
distinct objectives and the experimental procedure was conceived to be relatively
lightweight in terms of GPU memory.

3.4 Proposed Methods and Hypotheses Validation

The current chapter described in detail one method for pairwise DA, which is linked
to the first set of experiments and results described in Sections 4.2 and 5.1. These
experiments were used as a basis for validating the main hypothesis (H1), which
guided the other developments of this work.

Section 3.2 described the first proposal for multi-source DA – that is, Domain
Generalization – in biomedical dense labeling. This approach was used for validat-
ing the secondary hypotheses (H2, H3 and H4) that guided the later stages of this
research and allowed for truly generalizable radiological image segmentation, as
shown in the experimental setup and results in Sections 4.3 and 5.2.

At last, this chapter used the framework of Conditional DA to devise a pipeline
that is fed unlabeled CT-scan and CXR datasets and achieves generalization in
rib segmentation even from noisy labels, further reinforcing H2, H3 and H4. The
pipeline that makes this possible is detailed in Section 3.3 and is used as a proof of
concept for hypothesis H5, which conjectures that synthetic data can be leveraged
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to acquire useful knowledge in biomedical data. Rib segmentation experiments for
the proposed pipeline and both deep and shallow baseline methods can be seen in
Section 4.4, while Section 5.3 presents and discusses the results from these experi-
ments.





Chapter 4

Experimental Setup

All code was implemented using the PyTorch1 Deep Learning framework. We used
the MUNIT/UNIT implementation from Huang et al. [2018]2 as a basis. UNIT [Li
et al., 2017] and MUNIT [Huang et al., 2018] were chosen in favor of other Cycle-
Consistent GANs – such as CycleGANs [Zhu et al., 2017a] and CoGANs [Liu and
Tuzel, 2016] – due to the fact that these DNNs have explicit representations for I
in their architectures, while also presenting better visual results in image translation
tasks. All tests were conducted on NVIDIA Titan X Pascal GPUs with 12GB of mem-
ory. Code, supplementary results and materials from this work can be found in the
PATREO website3.

Section 4.1 describes the basic training procedure and hyperparameters for
CoDAGANs. These parameters were found empirically and are used in all exper-
iments described in this thesis. Sections 4.3 and 5.3 describe the main DA experi-
ments in various distinct radiological domains and a rib segmentation pipeline that
uses data acquired from volumetric tomography data for segmenting Chest X-Rays,
respectively.

4.1 Hyperparameters

Architectural choices and hyperparameters can be further analysed according to
the codes and configuration files in the project’s website, but the main ones are de-
scribed in the following paragraphs and are used in all sets of experiments in this
work (Sections 4.2, Sections 4.3 and 4.4). Both D2D and CoDAGANs were trained

1https://pytorch.org/
2https://github.com/nvlabs/MUNIT
3http://www.patreo.dcc.ufmg.br/
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for 400 epochs, as this was empirically found to be a good stopping point for con-
vergence in these networks in all the settings analyzed in our experiments. Learning
rate was set to 1× 10−4 with L2 normalization by weight decay with value 1× 10−5.
GE is composed of two downsampling layers followed by two residual layers for
both UNIT [Liu et al., 2017] and MUNIT [Huang et al., 2018] based implementa-
tions, as these configurations were observed to simultaneously yield satisfactory
results and have small GPU memory requirements. The first downsampling layer
contains 32 convolutional filters, doubling this number for each subsequent layer. D
was implemented using a LSGAN [Mao et al., 2017] objective with only two layers,
although differently from MUNIT, we do not employ multiscale discriminators due
to GPU memory constraints. Also distinctly from MUNIT and UNIT, we do not
employ the VGG-based [Simonyan and Zisserman, 2014] perceptual loss – further
detailed by Huang et al. [2018] – due to the dissimilarities between the domains
wherein these networks were pretrained and the biomedical images used in our
work, which could lead to negative transfer.

We chose the state-of-the-art Adam solver [Kingma and Ba, 2014] to opti-
mize CoDAGANs, as it mitigates several optimization problems of the traditional
Stochastic Gradient Descent (SGD), which helps to counterweight the inherent dif-
ficulties in training GANs [Salimans et al., 2016].

4.2 D2D Exploratory Experiments

The most well-known datasets for organ segmentation in CXRs are the Japanese So-
ciety of Radiological Technology (JSRT) [Shiraishi et al., 2000]4 and the Montgomery
dataset [Jaeger et al., 2014]5. Exploratory tests on the pairwise D2D approach were
performed only on this dataset pair and aimed primarily to find a good configura-
tion to run D2D on so that it could be extended to perform multi-source DA.

JSRT contains 247 PA chest radiographs, while Montgomery is composed of
138 cases. JSRT has pixel-level labels for lung field segmentation tasks as well as
heart and clavicle ground truths, while Montgomery only contains ground truths
for lungs. Semantic maps from other CXR datasets – as the ones presented in Sec-
tion 4.3 – are fairly recent and were not available at the time for D2D. Therefore
our quantitative experimental procedure only took into account the JSRT and Mont-
gomery datasets, as they were the only ones with pixel-level annotations. Quantita-
tive experiments for the more recent annotations of other datasets, more specifically

4http://db.jsrt.or.jp/eng.php
5https://ceb.nlm.nih.gov/repositories/tuberculosis-chest-x-ray-image-data-sets/

http://db.jsrt.or.jp/eng.php
https://ceb.nlm.nih.gov/repositories/tuberculosis-chest-x-ray-image-data-sets/
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OpenIST, Shenzhen and Chest X-Ray8, using D2D are described in Section 4.3 and
discussed in Section 5.2. Qualitative assessments of heart and clavicle UDAs results
using Pretrained DNNs in JSRT are presented for Montgomery samples, which does
not have ground truths for these tasks.

The exploratory tests for D2D were performed using MUNIT [Huang et al.,
2018]. This architecture was chosen for the first test because it is designed to split
the encoding of content and style information in the images. This allows D2D to
encode images from the unlabeled/semi-labeled dataset B (Montgomery) with the
style of the labeled dataset A (JSRT), while still preserving the content – that is, the
basic shape and texture characteristics – of the original image b ∈ B.

In order to prevent the vanishing gradients problem in GB→A and GA→B, we
chose for MA a segmentation architecture with Skip Connections: a U-Net [Ron-
neberger et al., 2015]. The Pretrained U-Net was fit on a training fold comprised of
60% of the samples in the JSRT dataset using an optimizer with the relatively stan-
dard configuration of Stochastic Gradient Descent (SGD), learning rate of 1e−4 and
momentum 0.9. The other 40% of the JSRT images were used as validation (20%)
and test sets (20%) for the DNN. The Montgomery dataset was also divided in a
60%/20%/20% configuration. The knowledge acquired by the Pretrained U-Net
was then transferred to Montgomery using both Fine-tuning and D2D method.

We noticed that trying to transfer the knowledge in MA since the first training
epoch was detrimental to the convergence of the translation model, probably due
to competing supervised and unsupervised objectives. Therefore, we first trained
the generators and discriminators for 20 epochs and made sure they converged via
visual assessment. Only then we started training the supervised part of the model
coupled with the unsupervised translation method. This strategy also allowed us to
train one single translation model in a completely unsupervised fashion for the first
20 epochs, only then starting the supervised training steps for different tasks using
the same pretrained GA→B, GB→A, DA and DB (see Figure 3.1). Readers should no-
tice that this scheme requires manual confirmation that the image translation con-
verged correctly, which was not always the case. This further reinforced the high
instability of the early D2D experiments.
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4.3 Conditional DA Experiments

4.3.1 Datasets

We tested our methodology in a total of 16 datasets, 8 of them being Chest X-Ray
(CXR) datasets, 6 of them being Mammographic X-Ray (MXR) datasets and 2 of
them being composed of Dental X-Ray (DXR) images. The chosen CXR datasets
are the Japanese Society of Radiological Technology (JSRT) [Shiraishi et al., 2000],
OpenIST6, Shenzhen and Montgomery sets [Jaeger et al., 2014], Chest X-Ray 8 [Wang
et al., 2017]7, PadChest [Bustos et al., 2019]8, NLMCXR [Demner-Fushman et al.,
2015]9 and the Optical Coherence Tomography and Chest X-Ray Images (OCT CXR)
[Kermany et al., 2018]10 dataset. Heart, clavicle and rib label sets for OpenIST were
obtained from the testerv11 repository 11, while Chest X-Ray 8 lung ground truths
were acquired via the XLSor [Tang et al., 2019b] project12. The MXR datasets used in
this work are INbreast [Moreira et al., 2012]13, the Mammographic Image Analysis
Society (MIAS) dataset [Suckling et al., 2015]14, the Digital Database for Screening
Mammography (DDSM) [Heath et al., 2000]15, the Breast Cancer Digital Repository
(BCDR) [Lopez et al., 2012]16, and LAPIMO [Matheus and Schiabel, 2011]17. DDSM
was split into two groups: 1) samples A, and 2) samples B/C; as these groups were
acquired and digitized with different equipments, yielding considerably distinct vi-
sual patterns. A random subset of samples from DDSM B/C and DDSM A were
manually labeled for the task of pectoral muscle segmentation. These samples were
not used during training, but instead for computing objective evaluation metrics
during test and can be downloaded for reproducibility in this project’s webpage.
The only two DXR datasets we used in our experiments are the IvisionLab [Silva
et al., 2018]18 and the Panoramic X-Ray [Abdi et al., 2015]19 datasets.

6https://github.com/pi-null-mezon/OpenIST
7https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/37178474737
8http://bimcv.cipf.es/bimcv-projects/padchest/
9https://openi.nlm.nih.gov/

10https://data.mendeley.com/datasets/rscbjbr9sj/3
11https://www.kaggle.com/viktorivanovio/testerv11
12https://github.com/rsummers11/CADLab/tree/master/Lung_Segmentation_XLSor
13http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_

Database
14https://www.repository.cam.ac.uk/handle/1810/250394
15http://marathon.csee.usf.edu/Mammography/Database.html
16https://bcdr.eu/patient/list#
17http://lapimo.sel.eesc.usp.br/bancoweb/english/
18https://github.com/IvisionLab/deep-dental-image
19https://data.mendeley.com/datasets/hxt48yk462/1
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https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/37178474737
http://bimcv.cipf.es/bimcv-projects/padchest/
https://openi.nlm.nih.gov/
https://data.mendeley.com/datasets/rscbjbr9sj/3
https://www.kaggle.com/viktorivanovio/testerv11
https://github.com/rsummers11/CADLab/tree/master/Lung_Segmentation_XLSor
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
https://www.repository.cam.ac.uk/handle/1810/250394
http://marathon.csee.usf.edu/Mammography/Database.html
https://bcdr.eu/patient/list#
http://lapimo.sel.eesc.usp.br/bancoweb/english/
https://github.com/IvisionLab/deep-dental-image
https://data.mendeley.com/datasets/hxt48yk462/1
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A total of 7 distinct segmentation tasks are compared in our experiments: 1)
Pectoral muscle, 2) Breast region in MXRs; 3) Lungs, 4) Heart, 5) Clavicles in CXRs;
6) Mandible and 7) Teeth in DXRs. The number of training and testing samples from
each domain, dataset and task is available at this project’s webpage.

Datasets were randomly split into training and test sets according to an
80%/20% division when possible. However, some datasets (i.e. Chest X-Ray 8 Wang
et al. [2017]) contain a smaller number of labeled samples than those 20%, which re-
quired a flexibilization of our procedure to the divisions presented in Tables 4.1, 4.2
and 4.3 for CXRs, MXRs and DXRs, respectively.

As CoDAGANs are trained with samples from two datasets at each iteration
and all datasets in this study have different numbers of samples, we performed
random undersampling in larger datasets in order to fit the smaller sample sizes of
other image sets.

4.3.2 Experimental Protocol

Aiming to mimic real-world scenarios wherein the lack of labels is a considerable
problem, we did not keep samples for validation purposes. We evaluate results from
epochs 360, 370, 380, 390 and 400 for computing the mean and standard deviation
values presented in Section 5 in order to consider the statistical variability of the
methods during the Supervision Tuning routine (Section 3.2.2), when training is more
stable.

For quantitative assessment we used the Jaccard (Intersection over Union –
IoU) metric, which is a common choice in segmentation and detection tasks and is
widely used in all tested domains [Rampun et al., 2017; Van Ginneken et al., 2006;
Silva et al., 2018]. Jaccard (J ) for a binary classification task is given by the following
equation:

J =
TP

TP + FN + FP
, (4.1)

where TP, FN and FP refer to True Positives, False Negatives and False Positives,
respectively. Jaccard values range between 0 and 1, however we present these met-
rics as percentages by multiplying them by a factor of 100 in Section 5.

4.3.3 Data Augmentation

Due to the small amount of labeled data in the datasets often found as sources for
DA tasks in biomedical settings, Data Augmentation strategies are oftentimes used
for synthetically enlarging the quantity of information used for supervision in ma-
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Table 4.1. Sample distribution in CXR datasets according to task and labels.

Lungs

Dataset Unlabeled Labeled
train test train test

JSRT – – 197 50
OpenIST – – 260 15
Shenzhen – – 452 114

Montgomery – – 110 28
Chest X-Ray 8 3390 – – 100

PadChest 1590 381 – –
NLMCXR 2204 854 – –
OCT CXR 295 205 – –

Heart

Dataset Unlabeled Labeled
train test train test

JSRT – – 197 50
OpenIST – – 260 15
Shenzhen 452 114 – –

Montgomery 110 28 – –
Chest X-Ray 8 3390 270 – –

PadChest 1590 381 – –
NLMCXR 2204 854 – –
OCT CXR 295 205 – –

Clavicles

Dataset Unlabeled Labeled
train test train test

JSRT – – 197 50
OpenIST – – 260 15
Shenzhen 452 114 – –

Montgomery 110 28 – –
Chest X-Ray 8 3390 270 – –

PadChest 1590 381 – –
NLMCXR 2204 854 – –
OCT CXR 295 205 – –

chine learning algorithms. Most datasets used in our experiments have only a few
hundreds of samples, which is usually too small for training Deep Learning algo-
rithms, therefore we employed some Data Augmentation methods usually used for
images as standard procedures in CoDAGANs. Rotating, random cropping and
color inversions were applied to the samples, according to the training needs of their
respective domains. More details on the Data Augmentation employed in both D2D
and CoDAGANs can be found in this project’s oficial code available at the webpage
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Table 4.2. Sample distribution in MXR datasets according to task and labels.

Pectoral

Dataset Unlabeled Labeled
train test train test

INbreast – – 160 40
MIAS – – 257 65

DDSM B/C 186 – – 52
DDSM A 134 29 – –

BCDR 344 66 – –
LAPIMO 585 85 – –

Breast

Dataset Unlabeled Labeled
train test train test

INbreast – – 160 40
MIAS – – 257 65

DDSM B/C 186 52 – –
DDSM A 134 29 – –

BCDR 344 66 – –
LAPIMO 585 85 – –

Table 4.3. Sample distribution in DXR datasets according to task and labels.

Teeth

Dataset Unlabeled Labeled
train test train test

IvisionLab – – 1340 160
Panoramic X-Ray 89 27 – –

Mandible

Dataset Unlabeled Labeled
train test train test

IvisionLab 1340 160 – –
Panoramic X-Ray – – 89 27

for the CoDAGAN project.

4.3.4 Baselines

Large datasets as ImageNet [Deng et al., 2009] turned Fine-tuning DNNs into a well
known method for Transfer Learning in the Deep Learning literature, as most spe-
cific datasets do not possess the large amount of labeled data required for training
from scratch in classification tasks. Fine-tuning was later adapted for dense labeling
tasks [Long et al., 2015] and is nowadays common procedure in semantic segmen-
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tation tasks in the Computer Vision domain. As explained in Section 2.4, the large
domain shifts between Computer Vision and Biomedical Imaging datasets makes
pretraining on the former data hardly useful to the medical segmentation tasks in
our experiments. Therefore, no external Computer Vision dataset was used for pre-
training of any DNN in this work.

Readers should notice that Fine-tuning still does not work in UDA, as it neces-
sarily requires labeled data. Therefore, we inserted the use of Pretrained DNNs on
the source biomedical sets as baselines both without further training in UDA sce-
narios and as basis for Fine-tuning in SSDA and FSDA scenarios. Still in the field of
classical approaches do Transfer Learning, we add as a baseline to our experimental
procedure training a DNN From Scratch with the smaller amount of labeled data
available for targets datasets in SSDA and FSDA scenarios.

Our main baseline was the D2D previously described in this manuscript, as it
uses a Cycle-Consistent GAN with a similar architecture as CoDAGANs. In order to
improve fairness, the version of D2D used in the Conditional DA experiments has
several improvements to the original one. These include the division between Full
Training and Supervision Tuning (Section 3.2.2), using both UNIT [Liu et al., 2017]
and MUNIT [Huang et al., 2018] as Cycle-Consistent GAN backbones and the same
architecture as its CoDAGANs counterpart.

We explicit that, even though D2D was an earlier iteration of this work that
is used as baseline in the Conditional DA experiments, it can be seen as a stand-in
for most other architectures based on pairwise training, such as CyCADA [Hoffman
et al., 2018], I2IAdapt [Murez et al., 2018] and DCAN [Wu et al., 2018], as they per-
form essentially the same computation graph as our D2D. One should notice that
D2DM is particularly similar to the method proposed by Yang et al. [2019] and XL-
Sor [Tang et al., 2019b], as content-only training was further explored by Yang et al.
[2019]. Similarly, D2DU is conceptually similar to TUNA-Net [Tang et al., 2019a],
Zhang et al. [2018c] and TD-GANs [Zhang et al., 2018b]. Thus, both D2DU and
D2DM in their current version – even with the limitations of pairwise training – can
be considered state-of-the-art I2I DNNs for DA.

Both our method and the previously introduced baselines use the U-Net [Ron-
neberger et al., 2015] architecture as backbone for supervised semantic segmenta-
tion. This was a conscious choice based on early experiments of this work [Oliveira
and dos Santos, 2018; Oliveira et al., 2018] that compared FCNs [Long et al., 2015], U-
Nets [Ronneberger et al., 2015] and SegNets [Badrinarayanan et al., 2017] in similar
setups and found that U-Nets and SegNets achieved the best results while FCNs
generally presented subpar results compared to their Transposed Convolution-
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based peers. We then narrowed the search due to the larger amount of Skip Con-
nections in this architecture, which mitigates the problem of vanishing gradients
by creating backward flow bypasses that help on the training of earlier layers and
previous modules with the supervised loss Lsup.

Many UDA shallow methods [Huang et al., 2007; Pan et al., 2011; Sun et al.,
2011; Gong et al., 2013; Geng et al., 2011] and most deep approaches for classifi-
cation tasks [Ghifary et al., 2014; Long et al., 2016, 2017] rely on variations of the
Maximum Mean Discrepancy (MMD) [Borgwardt et al., 2006] metric to perform
knowledge transfer by matching the statistical moments of a dataset pair. MMD-
based approaches are a kind of Feature Representation Learning, which only takes
into account features space, ignoring label space, thus, it’s fully unsupervised. It
works, therefore, as an unsupervised alternative to Fine-tuning DNNs, as it is possi-
ble to derive a loss function based on this criterion. As there are no MMD methods
specifically designed for dense labeling tasks, we tried to adapt a Radial Basis Func-
tion (RBF) kernel version of MMD [Li et al., 2017] for dense prediction, however
early results showed little-to-no gains compared to training from scratch. Simple
moment-matching might be an excessively simple approach for segmentation tasks,
where neighbor samples often present a large spatial correlation in both pixel and
label space. Hence, MMD metrics are not shown in Section 5 in order to simplify the
presentation of the experiments.

4.4 Synthetic Data Experiments

Apart from the basic DA datasets, baselines and experiments presented previously,
we also conducted experiments using images from the Lung Image Database Con-
sortium and Image Database Resource Initiative (LIDC-IRDI) [Armato III et al.,
2011]20. These experiments use as a source artificially created 2D images from 3D
volumes, which are called Digitally Reconstructed Radiographs (DRRs). The target
CXR datasets used in the experiments from synthetic DRRs are the same ones pre-
sented in Section 4.3.1. These experiments were conducted in order to assess the
validity of H5, which implies a novel use of Conditional DA from data and labels
acquired synthetically.

The experiments for Domain Generalization in rib segmentation are consider-
ably similar to the ones presented by Zhang et al. [2018b] and Candemir et al. [2016].
Distinctly, Zhang et al. [2018b] needs 3D organ segmentation labels – which are con-

20https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
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siderably harder to acquire than 2D ones – in order to transfer the knowledge to 2D
data. Candemir et al. [2016] inspired the flattening operations of AIP and MIP used
in our pipeline, however, they use relatively simple image processing techniques for
rib segmentation, not requiring any DA or Machine Learning to complete their goal.
The method by Candemir et al. [2016] is, therefore, highly dependent on parameter
tuning and unlikely to properly generalize to new data with large domain shifts.

Experiments with synthetic DRR used a distinct set of metrics as the ones pre-
sented in Sections 4.2 and 4.3, as the literature for rib segmentation considerably
differs from other tasks in this manuscript. We also report Jaccard (J ) results, but
include the threshold-independent Receiver Operating Characteristics (ROC) and
Area Under Curve (AUC) metrics. The Dice D metric (also known as F1) is consid-
erably common in the medical image segmentation literature as a whole, so we also
report it in the synthetic data experiments. At last, we also report other threshold-
dependent common metrics for rib segmentation: Accuracy (A), Sensitivity (S) and
Specificity (S̈). D, A, S and S̈ are given by the following equations:

D =
2TP

2TP + FP + FN
, (4.2)

A =
TP + TN

TP + FN + FP + TN
, (4.3)

S =
TP

TP + FN
, (4.4)

S̈ =
TN

TN + FP
. (4.5)

A more complete compilation of results from the synthetic DRR experiments
can be seen in the subproject’s webpage21.

4.5 Experiments Sets and Hypotheses Validation

This chapted explored the experimental setup used throughout Chapter 5 for vali-
datingH1 (Section 5.1);H2,H3 andH4 (Section 5.2); and, at last,H5 (Section 5.3).

21https://sites.google.com/view/virginiafernandes/datasets/lidc-idri-drr

https://sites.google.com/view/virginiafernandes/datasets/lidc-idri-drr


Chapter 5

Results and Discussion

This chapter is divided into three distinct parts, with one for validating each main
contribution in this work. Section 5.1 describes the first tests with D2D for UDA,
SSDA and FSDA compared to traditional baselines as Fine-tuning and From Scratch
training of the networks in the target dataset. These earlier tests were exploratory
in nature and would serve both as a proof of concept that I2I could be used for DAs
in dense labeling tasks – which was still not clear at the time – and to solidify the
knowledge necessary to the more advanced proposed method based on Conditional
DA.

CoDAGANs are the main contribution of this manuscript, being the natural
progression of D2D towards Domain Generalization. The Conditional DA proposed
in CoDAGANs allowed for larger numbers of datasets to be fed to the network at
once, leveraging all the labels available to the method and transferring this knowl-
edge to unlabeled data. Section 5.2 describes the large number of tests performed
with CoDAGANs using D2D and other common baselines from the Deep Transfer
Learning literature.

At last, Section 5.3 presents the Domain Generalization results for rib seg-
mentation using the synthetic data and labels acquired from DRRs computed from
LIDC-IRDI [Armato III et al., 2011].

5.1 Image Translation DA for X-Ray Segmentation

Table 5.1 shows the results obtained by the proposed DA method compared with
Fine-tuning and From Scratch training with the limited labels in the case of SSDA.
Figure 5.1 shows the Confidence Intervals using p ≤ 0.05 for the results in Table 5.1.
The horizontal axis represents the amount of labels kept by the experiment, while
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the vertical axis denote J values achieved in these settings. It is clear that D2D
significantly surpasses the effectiveness of fine-tuning when using between 0% and
20% of the labels from the target training set. When using 50% and 100% of the target
labels, fine-tuning marginally surpassed our method, even though the difference
was not statistically significant.

Table 5.1. Transfer Learning results from JSRT [Shiraishi et al., 2000] to Mont-
gomery [Jaeger et al., 2014] in a Pretrained U-Net with (SSDA) and without
(UDA) fine-tuning. Bold values indicate the best results for each line.

Label % D2D Fine-Tuning From Scratch
0% 88.20 ± 9.80 4.30 ± 4.13 –

1.25% 88.83 ± 9.81 78.94 ± 13.32 54.23 ± 13.37
2.5% 88.25 ± 10.19 83.32 ± 12.32 56.01 ± 13.76
5% 90.79 ± 7.05 83.46 ± 8.60 55.10 ± 14.42

10% 89.18 ± 9.18 83.66 ± 9.69 87.80 ± 6.78
20% 91.26 ± 7.20 88.71 ± 8.73 89.50 ± 7.65
50% 92.15 ± 5.90 93.78 ± 5.42 89.82 ± 4.34
100% 93.18 ± 5.47 94.81 ± 5.15 94.16 ± 4.57

When using no labeled data in the target dataset, it can be seen that J drops
to only 4.30%. This result renders it infeasible to interchange models between CXR
datasets without labeled data in the target dataset using traditional transfer meth-
ods. Our method achieves a Jaccard of 88.20% even without labeled data in the
target set, as it uses all the unlabeled target samples to perform the transfer and the
source labels to ensure visual feature preservation by GS→T and GT→S.

We highlight the difficulties in convergence of D2D, which were mitigated in
the first iterations of this work by splitting 1/4 of the training set into a validation
set in order to use the training epoch with the best generalization, as described in
Section 4.2. This is highly unlikely to be possible in real-world scenarios, wherein
datasets are either fully unlabeled or have only a small number of labeled samples.

5.1.1 Target Dataset Qualitative Assessment

As the Montgomery does not have pixel-level labels for clavicle and heart segmenta-
tion, we performed qualitative tests on our Transfer Learning method for these tasks
using the unsupervised case, that is, without labeled data in the target dataset. One
can see in Figure 5.2 that clavicles and heart regions were accurately recognized. In
most Montgomery images the algorithm correctly identified the clavicles, with only
4 cases of inadequate segmentations in one or both clavicles among the 27 images
tested for this task. One example of misidentification of the clavicle area is shown in
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Figure 5.1. Confidence Intervals for Montgomery [Jaeger et al., 2014] in lung
field segmentation using a model Pretrained U-Net from JSRT [Shiraishi et al.,
2000].

Figure 5.2(d). Most heart segmentations were near perfect, but, as the Montgomery
dataset contains more diverse samples, hearts with abnormal shapes were not fully
identified, as can be see in Figure 5.2(h).

5.2 Conditional DA Experiments

In most scenarios D2D still behaves better than using Pretrained DNNs or Fine-
tuning (in the case of SSDA), however D2D still presented considerable problems
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2. Segmentation results for the Montgomery Set [Jaeger et al., 2014] in
the tasks of (a-d) clavicle and (e-h) heart segmentation from a model pretrained
in JSRT [Shiraishi et al., 2000] and transferred with 0% of labeled data in the
target dataset.

in convergence and could not be trained with more than two data/label sources.
Hence, the following sections compare the segmentation and runtime efficiency of
D2D and CoDAGANs in order to assess the validity of the hypotheses related to
Conditional DA (H2,H3 andH4).

5.2.1 Quantitative Results for MXR Samples

Jaccard average values and standard deviations for MXR tasks are shown in Ta-
bles 5.2 and 5.3 for pectoral muscle and breast region segmentation, respectively.
The first lines in the tables present the label configurations used in the experiments
at each column. Results are shown separately for datasets INbreast (A ), MIAS (B),
DDSM B/C (C ), and DDSM A (D) in Table 5.2 and for datasets INbreast (A ) and
MIAS (B) in Table 5.3. Objective results for datasets BCDR (E ) and LAPIMO (F )
for pectoral muscle and datasets (C )-(F ) in breast region segmentation are not pos-
sible due to the complete lack of labels in these tasks. We reinforce that only two
CoDAGANs (CoDAM using MUNIT [Huang et al., 2018] and CoDAU based on
UNIT [Liu et al., 2017]) were trained for all datasets in each task, as CoDAGANs
allow for multi-source and multi-target DA. Thus, repeated columns indicating the



5.2. CONDITIONAL DA EXPERIMENTS 73

results for CoDAM and CoDAU are simply reporting the results of the same models
for different datasets. All methods beside CoDAM and CoDAU indicate whether
the source or target data used in the training, as they are neither multi-source nor
multi-target, limiting them to pairwise training.

Table 5.2. J results (in %) for pectoral muscle segmentation DA to and/or from
six distinct MXR datasets: INbreast (A ), MIAS (B), DDSM B/C (C ), DDSM
A (D), BCDR (E ) and LAPIMO (F ). This table shows results for CoDAGANs
with backbones based on MUNIT [Huang et al., 2018] (CoDAM) and UNIT [Liu
et al., 2017] (CoDAU), as well as Domain-to-Domain approaches based on these
architectures (D2DM and D2DU), Pretrained U-Nets [Ronneberger et al., 2015]
and U-Nets trained from scratch on the limited target labels.

Experiments E0% E2.5% E5% E10% E50% E100%

% Labels INbreast (A ) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
% Labels MIAS (B) 0.00% 2.50% 5.00% 10.00% 50.00% 100.00%

% Labels DDSM_BC (C ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
% Labels DDSM_A (D) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

% Labels BCDR (E ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
% Labels LAPIMO (F ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(A )

CoDAM 91.95 ± 0.81 92.57 ± 0.31 92.61 ± 0.44 92.00 ± 0.90 90.66 ± 0.53 88.58 ± 1.76
CoDAU 91.18 ± 0.36 90.61 ± 0.89 91.03 ± 1.43 91.23 ± 1.51 90.36 ± 0.98 89.98 ± 0.37

D2DM (A )→(B) 93.27 ± 0.51 92.67 ± 0.64 87.54 ± 10.00 90.58 ± 2.14 84.46 ± 3.36 90.11 ± 1.06
D2DU (A )→(B) 92.27 ± 0.55 83.17 ± 9.27 89.56 ± 2.21 23.82 ± 10.21 81.64 ± 6.22 86.81 ± 2.98
D2DM (A )→(C ) 93.43 ± 0.24 – – – – –
D2DU (A )→(C ) 93.64 ± 0.50 – – – – –
D2DM (A )→(D) 93.72 ± 0.96 – – – – –
D2DU (A )→(D) 88.06 ± 2.30 – – – – –
D2DM (A )→(E ) 93.87 ± 0.71 – – – – –
D2DU (A )→(E ) 92.55 ± 0.57 – – – – –
D2DM (A )→(F ) 92.29 ± 2.06 – – – – –
D2DU (A )→(F ) 91.47 ± 0.55 – – – – –

From Scratch in (A ) 93.25 ± 0.75 – – – – –

(B)

CoDAM 67.61 ± 2.07 69.92 ± 2.42 72.31 ± 0.65 75.66 ± 0.98 78.24 ± 0.23 79.08 ± 0.78
CoDAU 60.01 ± 2.77 61.81 ± 3.26 71.33 ± 1.81 76.67 ± 0.15 78.37 ± 0.54 78.49 ± 1.38

D2DM (A )→(B) 0.00 ± 0.00 0.00 ± 0.00 22.73 ± 17.62 17.72 ± 15.05 35.46 ± 15.24 64.46 ± 5.61
D2DU (A )→(B) 41.06 ± 19.00 36.72 ± 15.07 59.67 ± 3.59 59.63 ± 12.37 62.69 ± 9.92 75.95 ± 2.57

Pretrained (A )→(B) 40.49 72.11 ± 0.16 60.46 ± 3.76 71.89 ± 1.22 75.52 ± 0.34 78.35 ± 1.20
From Scratch in (B) – 58.51 ± 5.44 51.90 ± 1.38 63.32 ± 5.62 77.79 ± 0.44 78.08 ± 0.46

(C )

CoDAM 89.99 ± 0.80 90.73 ± 0.83 91.49 ± 0.36 92.34 ± 0.57 92.80 ± 0.40 92.50 ± 0.48
CoDAU 82.45 ± 4.01 86.21 ± 3.13 89.90 ± 2.10 90.71 ± 0.72 91.21 ± 0.63 92.24 ± 0.65

D2DM (A )→(C ) 0.03 ± 0.01 – – – – –
D2DU (A )→(C ) 0.64 ± 0.90 – – – – –

Pretrained (A )→(C ) 78.22 – – – – –

(D)

CoDAM 49.38 ± 5.21 50.00 ± 4.37 49.20 ± 1.84 54.37 ± 2.21 77.59 ± 0.75 69.76 ± 3.89
CoDAU 23.83 ± 2.15 26.13 ± 2.74 42.93 ± 4.73 35.10 ± 4.81 31.23 ± 3.76 56.46 ± 5.78

D2DM (A )→(D) 0.41 ± 0.27 – – – – –
D2DU (A )→(D) 0.74 ± 0.94 – – – – –

Pretrained (A )→(D) 22.20 – – – – –

Bold values in these tables indicate the best results for the corresponding
dataset indicated in the first column of these tables. As there are four datasets being
evaluated in Table 5.2, there are four bold values for each experiment. Analogously,
Table 5.3 only has two bold values per column because only two datasets are being
objectively evaluated in breast region segmentation. In both tables INbreast was
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Table 5.3. J results (in %) for breast region segmentation DA to and/or from
six distinct MXR datasets: INbreast (A ), MIAS (B), DDSM B/C (C ), DDSM
A (D), BCDR (E ) and LAPIMO (F ). This table shows results for CoDAGANs
with backbones based on MUNIT [Huang et al., 2018] (CoDAM) and UNIT [Liu
et al., 2017] (CoDAU), as well as Domain-to-Domain approaches based on these
architectures (D2DM and D2DU), Pretrained U-Nets [Ronneberger et al., 2015]
and U-Nets trained from scratch on the limited target labels.

Experiments E0% E2.5% E5% E10% E50% E100%

% Labels INbreast (A ) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
% Labels MIAS (B) 0.00% 2.50% 5.00% 10.00% 50.00% 100.00%

% Labels DDSM_BC (C ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
% Labels DDSM_A (D) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

% Labels BCDR (E ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
% Labels LAPIMO (F ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(A )

CoDAM 98.69 ± 0.06 98.48 ± 0.15 98.59 ± 0.09 97.98 ± 0.36 98.27 ± 0.41 98.11 ± 0.20
CoDAU 98.29 ± 0.13 98.12 ± 0.10 98.37 ± 0.15 97.79 ± 0.64 97.89 ± 0.27 98.04 ± 0.18

D2DM (A )→(B) 98.90 ± 0.09 98.93 ± 0.16 98.27 ± 0.45 98.36 ± 0.82 97.36 ± 1.60 85.89 ± 7.74
D2DU (A )→(B) 98.74 ± 0.14 98.26 ± 0.31 98.92 ± 0.19 98.65 ± 0.09 97.80 ± 0.52 95.01 ± 1.51
D2DM (A )→(C ) 99.00 ± 0.08 – – – – –
D2DU (A )→(C ) 98.90 ± 0.09 – – – – –
D2DM (A )→(D) 98.87 ± 0.15 – – – – –
D2DU (A )→(D) 98.83 ± 0.14 – – – – –
D2DM(A )→(E ) 99.02 ± 0.05 – – – – –
D2DU (A )→(E ) 98.90 ± 0.05 – – – – –
D2DM (A )→(F ) 98.11 ± 1.65 – – – – –
D2DU (A )→(F ) 98.69 ± 0.15 – – – – –

From Scratch in (A ) 98.75 ± 0.11 – – – – –

(B)

CoDAM 68.96 ± 1.57 88.13 ± 3.81 91.97 ± 0.68 93.11 ± 2.01 96.53 ± 0.45 97.19 ± 0.10
CoDAU 69.72 ± 0.30 90.12 ± 0.60 91.97 ± 3.61 95.28 ± 0.25 95.86 ± 0.50 97.21 ± 0.15

D2DM (A )→(B) 5.02 ± 0.21 69.26 ± 14.74 5.91 ± 2.64 13.78 ± 8.17 50.20 ± 20.80 58.70 ± 29.26
D2DU (A )→(B) 9.63 ± 2.49 15.72 ± 2.39 66.02 ± 26.18 90.70 ± 1.82 95.93 ± 0.77 80.00 ± 13.50

Pretrained (A )→(B) 75.53 91.94 ± 0.28 93.21 ± 0.35 94.06 ± 1.66 96.64 ± 0.13 97.40 ± 0.08
From Scratch in (B) – 91.38 ± 0.28 93.27 ± 0.25 95.69 ± 0.22 97.10 ± 0.25 97.37 ± 0.15

used as source dataset, providing 100% of its labels in all experiments. MIAS was
used as both source (E0%) and target (E2.5% to E100%) dataset, depending on the la-
bel configuration of the experiment. As DDSM does not possess pixel-level labels,
we created some ground truths only for a small subset of images from this dataset
for the pectoral muscle segmentation task in order to objectively evaluate the UDA.
One should notice that these ground truths were used only on the test procedure,
but not in training, as all cases presented in Tables 5.2 and 5.3 show DDSM with 0%
of labeled data. Thus DDSM is used only as a source dataset in our experiments.
Breast region segmentation analysis on DDSM was only performed qualitatively, as
there are no ground truths for this task.

5.2.1.1 Pectoral Muscle Segmentation in MXR Images

For the completely unlabeled case E0% in pectoral muscle segmentation, CoDAM

and CoDAU achieved J values of 67.61% and 60.01% for the MIAS target dataset,
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while the best baseline achieved 41.06%. SSDA and FSDA experiments (E2.5% to
E100%) regarding the MIAS dataset show that CoDAGANs achieve considerably
better results than all baselines in all but one case. These results evidenced the
higher instability of training pairwise translation architectures compared to con-
ditional training. Across the training procedure, Jaccard values for D2D fluctuated
by several percentage units, yielding standard deviations of one magnitude or more
larger than CoDAGANs.

In the case of pectoral muscle for DDSM B/C (C ), UDA using CoDAM and
CoDAU achieved 89.99% and 82.45%, with the D2D baseline achieving worse than
random results, evidencing its lack of capability to translate between domains (A )
and (C ). The best baseline in this case was simply the use of Pretrained DNNs in
(A ) and testing on (C ), which achieved 78.22%. Segmentation results for DDSM A
(D) were considerably worse for all methods and experiments, as samples from this
subset of images showed an extremely lower contrast compared to the samples of
DDSM B/C. Even in this suboptimal case, CoDAGANs achieved much better results
than the baseline in UDA. Preprocessing using adaptive histogram equalization in
DDSM A (C ) samples might improve results, although more empirical evidence is
required. As there were only few samples labeled from (C ) and (D), only UDA
was possible for these datasets in D2D and pretrained baselines, as all labels were
kept for testing. However, one can easily see that experiments E2.5% to E100% show
better results in (C ) and (D) as the number of labels from (B) increases, achieving
a J of 79.08% with all (B) labels being used in training. This is due to two factors:
1) the larger number of labels achieved with the combination of (A ) and (B); and
2) the more similar visual patterns between (B)→(C ) and (B)→(D). Similarly to
DDSM (C )–(D), MIAS (B) is an older originally analog that was later digitized,
while INbreast (A ) is a Full Field Digital Mammography (FFDM) dataset.

5.2.1.2 Breast Region Segmentation in MXR Images

Breast region segmentation (Table 5.3) proved to be an easier task, with most meth-
ods achieving Jaccard values higher than 90%. Pretrained DNNs and From Scratch
training in SSDA scenarios achieved superior results in breast region segmentation
for all experiments in the target MIAS (B) dataset, followed closely by CoDAGANs.
D2D, however, grossly underperformed in this relatively easy task for all experi-
ments, reiterating this strategy’s instability during training.

The marginally lower performance of CoDAGANs in this task can be at-
tributed to the high transferrability of pretrained models, as can be seen in experi-
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ment E0%, where pretrained models with no Fine-tuning already achieved a J value
of 75.53%. This easier DA task also benefits from the higher capability of U-Nets to
segment details using skip connections between symmetric layers. As CoDAGANs
remove the first layers of U-Net’s Encoder to fit the smaller spatial dimensions of the
isomorphic representation, the last layers of the network do not receive skip connec-
tions from the first layers, allowing for fine object details to be lost. This can be seen
as a compromise between generalization capability and fine segmentation details.

5.2.1.3 MXR Segmentation Confidence Intervals

Figure 5.3 show the J values from Tables 5.2 and 5.3 with confidence intervals for
p ≤ 0.05 using a t-Student distribution.
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Figure 5.3. Confidence Intervals for MXRs according to the values shown in
Tables 5.2 and 5.3. Methods shown in these plots include CoDAGANs (CoDAM
and CoDAU), Domain-To-Domain translation (D2DM and D2DU), pretrained
U-Nets and U-Nets trained from scratch for SSDA and FSDA.
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A first noticeable trait in Figures 5.3(a) and 5.3(e) is that CoDAGANs main-
tained their capability to perform inference on the INbreast source dataset for both
pectoral muscle and breast region experiments when labels from other sources are
added to the procedure. D2D tends to get more unstable when the plots get closer to
FSDA (E100%) due to the incongruities in labeling styles from the different datasets.

Figures 5.3(b), 5.3(c) and 5.3(d) clearly show that CoDAGANs outperforms all
baselines in UDA for the MIAS (B), DDSM B/C (C ) and DDSM A (D) datasets by a
large margin for pectoral muscle segmentation. All of these discrepancies between
CoDAGANs and baselines are statistically significant, showing a clear superiority
of CoDAGANs in UDA scenarios in this task. Another important result is that Fig-
ure 5.3(d) shows a clear increase in the performance of CoDAM on dataset (D) when
more labels from dataset (B) were allowed to be used – that is, in results close to
fully supervised learning with labels from (B). Figure 5.3(f) show the UDA, SSDA
and FSDA results for CoDAGANs and baselines on the target MIAS (B) dataset
in the task of breast region segmentation. CoDAGANs yield considerably higher
results than D2D, even though a Pretrained U-Net surpassed all methods in this
task for UDA. Domain shifts between the MIAS and INbreast datasets are prob-
ably considerably small. Pretrained U-Nets might not be universally better than
CoDAGANs in UDA, though, as it is usually unable to compensate for large do-
main shifts. This trend was shown in Figures 5.3(b), 5.3(c) and 5.3(d) and will be
further reinforced in Section 5.2.2.

5.2.2 Quantitative Results for CXR Samples

CXR results can be seen in Tables 5.4 and 5.5 for lungs, heart and clavicle segmenta-
tions. The JSRT (A ), OpenIST (B), Shenzhen (C ), Montgomery (D) and Chest X-Ray
8 (E ) datasets are objectively evaluated in the lung field segmentation task, as shown
in Table 5.4, while PadChest (F ), NLMCXR (G ) and OCT CXR (H ) do not possess
pixel-level ground truths for quantitative assessment. In heart and clavicle segmen-
tation, apart from the source JSRT (A ) dataset, only OpenIST (B) contains a subset
of 15 labeled samples for these two task. Therefore, we reserved the labeled samples
for testing and trained on the remaining samples for UDA quantitative assessment,
as shown in Table 5.5. Analogously to Section 5.2.1, bold values in Tables 5.4 and 5.5
represent the best overall results in a given label configuration for a specific dataset.
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Table 5.4. J results (in %) for lung field segmentation DA to and/or from eight
distinct CXR datasets: JSRT (A ), OpenIST (B), Shenzhen (C ), Montgomery (D),
Chest X-ray 8 (E ), PadChest (F ), NLMCXR (G ) and OCT CXR (H ). This table
shows results for CoDAGANs with backbones based on MUNIT [Huang et al.,
2018] (CoDAM) and UNIT [Liu et al., 2017] (CoDAU), as well as Domain-to-
Domain approaches based on these architectures (D2DM and D2DU), Pretrained
U-Nets [Ronneberger et al., 2015] and U-Nets trained from scratch on the limited
target labels.

Experiments E0% E2.5% E5% E10% E50% E100%

% Labels JSRT (A ) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
% Labels OpenIST (B) 0.00% 2.50% 5.00% 10.00% 50.00% 100.00%
% Labels Shenzhen (C ) 0.00% 2.50% 5.00% 10.00% 50.00% 100.00%

% Labels Montgomery (D) 0.00% 2.50% 5.00% 10.00% 50.00% 100.00%
% Labels ChestX-Ray8 (E ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

% Labels PadChest (F ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
% Labels NLMCXR (G ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

% Labels OCT CXR (H ) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(A )

CoDAM 95.27 ± 0.07 94.08 ± 0.44 94.41 ± 0.86 94.74 ± 0.12 94.87 ± 0.39 95.31 ± 0.17
CoDAU 95.55 ± 0.07 95.16 ± 0.12 94.77 ± 0.17 94.83 ± 0.08 94.56 ± 0.99 94.97 ± 0.62

D2DM (A )→(B) 96.39 ± 0.06 96.51 ± 0.07 96.54 ± 0.07 96.43 ± 0.03 93.96 ± 4.85 96.34 ± 0.12
D2DU (A )→(B) 96.16 ± 0.35 96.41 ± 0.06 96.43 ± 0.04 96.26 ± 0.17 96.22 ± 0.29 96.20 ± 0.19
D2DM (A )→(C ) 96.45 ± 0.02 96.44 ± 0.05 96.07 ± 0.61 96.43 ± 0.10 96.29 ± 0.07 96.20 ± 0.10
D2DU (A )→(C ) 96.10 ± 0.51 96.34 ± 0.03 96.04 ± 0.35 96.33 ± 0.07 96.23 ± 0.04 96.33 ± 0.06
D2DM (A )→(D) 96.23 ± 0.21 96.22 ± 0.08 96.20 ± 0.09 96.24 ± 0.09 96.16 ± 0.21 95.84 ± 0.70
D2DU (A )→(D) 96.26 ± 0.11 96.21 ± 0.06 96.22 ± 0.13 96.21 ± 0.17 96.22 ± 0.10 96.02 ± 0.13
D2DM (A )→(E ) 96.35 ± 0.19 – – – – –
D2DU (A )→(E ) 96.42 ± 0.09 – – – – –
D2DM (A )→(F ) 96.38 ± 0.15 – – – – –
D2DU (A )→(F ) 96.30 ± 0.09 – – – – –
D2DM (A )→(G ) 96.11 ± 0.65 – – – – –
D2DU (A )→(G ) 96.34 ± 0.09 – – – – –

D2DM (A )→(H ) 96.24 ± 0.56 – – – – –
D2DU (A )→(H ) 95.91 ± 1.02 – – – – –

From Scratch in (A ) 95.70 ± 0.06 – – – – –

(B)

CoDAM 90.67 ± 0.80 92.58 ± 0.59 92.83 ± 1.25 93.41 ± 0.49 93.65 ± 1.07 94.71 ± 0.15
CoDAU 91.03 ± 0.96 92.08 ± 0.37 93.50 ± 0.41 93.32 ± 0.16 94.23 ± 0.41 94.63 ± 0.25

D2DM (A )→(B) 19.67 ± 28.59 92.79 ± 1.68 93.41 ± 0.65 92.15 ± 1.26 93.22 ± 1.79 93.46 ± 1.35
D2DU (A )→(B) 56.82 ± 31.88 70.11 ± 12.05 88.87 ± 5.33 61.40 ± 28.25 93.94 ± 0.82 94.95 ± 0.50

Pretrained (A )→(B) 7.48 83.91 ± 0.17 90.37 ± 0.15 92.47 ± 0.16 94.37 ± 0.17 94.88 ± 0.06
From Scratch in (B) – 85.69 ± 0.33 88.94 ± 0.56 91.70 ± 0.22 94.87 ± 0.10 94.35 ± 0.12

(C )

CoDAM 88.69 ± 0.46 89.88 ± 0.36 90.75 ± 0.49 90.64 ± 0.23 90.99 ± 0.89 91.84 ± 0.09
CoDAU 88.99 ± 0.29 89.74 ± 0.12 89.90 ± 0.61 90.04 ± 0.41 91.35 ± 0.49 91.61 ± 0.49

D2DM (A )→(C ) 70.01 ± 8.67 89.45 ± 0.97 83.46 ± 10.87 91.42 ± 0.57 91.61 ± 0.68 92.03 ± 0.80
D2DU (A )→(C ) 55.40 ± 33.75 82.72 ± 4.42 80.83 ± 11.11 89.02 ± 3.47 91.82 ± 0.31 91.99 ± 0.19

Pretrained (A )→(C ) 17.19 88.68 ± 0.16 90.82 ± 0.07 91.60 ± 0.10 92.17 ± 0.15 92.40 ± 0.03
From Scratch in (C ) – 89.62 ± 0.20 90.74 ± 0.35 91.79 ± 0.08 92.32 ± 0.04 92.25 ± 0.05

(D)

CoDAM 81.88 ± 1.35 87.86 ± 0.88 87.72 ± 1.60 90.48 ± 0.64 93.15 ± 0.44 94.19 ± 0.31
CoDAU 84.58 ± 1.48 87.12 ± 0.59 87.07 ± 0.78 87.75 ± 0.81 92.76 ± 2.27 92.95 ± 1.83

D2DM (A )→(D) 30.20 ± 26.08 82.60 ± 4.05 88.34 ± 2.99 80.48 ± 8.89 93.46 ± 0.81 93.51 ± 0.99
D2DU (A )→(D) 79.44 ± 5.64 64.61 ± 8.95 76.89 ± 1.52 82.33 ± 5.01 94.02 ± 0.27 94.23 ± 0.66

Pretrained (A )→(D) 10.79 81.47 ± 0.05 86.79 ± 0.07 89.60 ± 0.14 94.40 ± 0.07 94.82 ± 0.05
From Scratch in (D) – 76.32 ± 0.27 87.12 ± 0.20 90.91 ± 0.25 94.66 ± 0.09 95.19 ± 0.12

(E )

CoDAM 67.91 ± 5.34 72.98 ± 1.34 74.77 ± 3.71 72.84 ± 2.87 76.41 ± 5.34 82.53 ± 4.61
CoDAU 73.39 ± 1.45 70.82 ± 2.58 67.14 ± 3.12 67.79 ± 6.79 74.36 ± 10.64 71.50 ± 16.42

D2DM (A )→(E ) 75.48 ± 5.07 – – – – –
D2DU (A )→(E ) 75.26 ± 1.20 – – – – –

Pretrained (A )→(E ) 19.50 – – – – –
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Table 5.5. J results (in %) for heart and clavicle segmentation DA to and/or
from eight distinct CXR datasets: JSRT (A ), OpenIST (B), Shenzhen (C ), Mont-
gomery (D), Chest X-ray 8 (E ), PadChest (F ), NLMCXR (G ) and OCT CXR
(H ). This table shows results for CoDAGANs with backbones based on MUNIT
[Huang et al., 2018] (CoDAM) and UNIT [Liu et al., 2017] (CoDAU), as well
as Domain-to-Domain approaches based on these architectures (D2DM and
D2DU), Pretrained U-Nets [Ronneberger et al., 2015] and U-Nets trained from
scratch on the limited target labels.

Experiments E0% (Heart) E0% (Clavicles)
% Labels JSRT (A ) 100.00% 100.00%

% Labels OpenIST (B) 0.00% 0.00%
% Labels Shenzhen (C ) 0.00% 0.00%

% Labels Montgomery (D) 0.00% 0.00%
% Labels ChestX-Ray8 (E ) 0.00% 0.00%

% Labels PadChest (F ) 0.00% 0.00%
% Labels NLMCXR (G ) 0.00% 0.00%

% Labels OCT CXR (H ) 0.00% 0.00%

(A )

CoDAM 89.86 ± 0.29 77.31 ± 0.37
CoDAU 89.89 ± 0.32 76.03 ± 1.06

D2DM (A )→(B) 90.68 ± 0.19 87.76 ± 0.18
D2DU (A )→(B) 90.97 ± 0.10 87.96 ± 0.14
D2DM (A )→(C ) 91.16 ± 0.18 87.20 ± 0.22
D2DU (A )→(C ) 90.70 ± 0.48 87.09 ± 0.61
D2DM (A )→(D) 90.65 ± 0.17 84.78 ± 0.53
D2DU (A )→(D) 90.67 ± 0.23 84.46 ± 1.24
D2DM (A )→(E ) 90.97 ± 0.20 87.38 ± 0.21
D2DU (A )→(E ) 91.11 ± 0.12 87.02 ± 0.63
D2DM (A )→(F ) 89.74 ± 2.32 87.63 ± 0.55
D2DU (A )→(F ) 90.63 ± 0.37 87.39 ± 0.47
D2DM (A )→(G ) 91.15 ± 0.18 87.59 ± 0.06
D2DU (A )→(G ) 90.90 ± 0.10 87.37 ± 0.59

D2DM (A )→(H ) 91.33 ± 0.16 86.46 ± 0.62
D2DU (A )→(H ) 90.22 ± 0.94 84.49 ± 0.64

From Scratch in (A ) 88.91 ± 0.48 76.07 ± 0.41

(B)

CoDAM 64.63 ± 1.28 61.94 ± 1.03
CoDAU 63.71 ± 0.95 57.59 ± 1.26

D2DM (A )→(B) 54.91 ± 2.35 67.11 ± 0.96
D2DU (A )→(B) 64.50 ± 0.84 68.53 ± 0.89

Pretrained (A )→(B) 0.0 ± 0.0 0.24 ± 0.40

5.2.2.1 Lung Segmentation in CXR Images

In the task of lung segmentation in CXRs (Table 5.4), baselines showed consider-
ably poor results for target datasets (B)-(D) in UDA experiments. Following the
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results from Sections 5.2.1.1 and 5.2.1.2, D2D with a small amount of target labels
proved to be highly unstable, yielding worse results and considerably higher stan-
dard deviations, when compared with CoDAGANs. CoDAM and CoDAU achieve
the best UDA results in (B), (C ) and (D), surpassing all baselines by a considerable
margin, yielding J values of 91.03%, 88.99% and 84.58% for these three datasets,
respectively. Pretrained U-Nets yielded worse than random results in these tasks,
which can be expĺained by the high domain shift across (A )→(B), (A )→(C ) and
(A )→(D).

CoDAGANs maintain state-of-the-art results in SSDA experiments with small
amount of labels, surpassing baselines in most datasets for E2.5% and E5%. In E50%

and E100% state-of-the-art results are achieved mainly by From Scratch training in
the target domain due to label abundance. Similarly, D2D methods are only able to
achieve stable results, after E10%. As in MXRs, D2D underperformed in UDA set-
tings compared to CoDAGANs, even though it presented considerably better results
than Pretrained DNNs.

We also show that the source dataset presented little to no deterioration in seg-
mentation quality when segmented by CoDAGANs compared to D2D and From
Scratch training on (A ). D2D from translations (A )→(B) to (A )→(H ) present re-
markably similar results in UDA, SSDA and FSDA, achieving state-of-the-art results
in all cases. It is noticeable that CoDAGANs achieved no superiority in the source
domain, as it aims for generalization and does not focus in fine-grained segmenta-
tion. However, the difference of Jaccard values between CoDAGANs and baseline
methods that only consider a pair of domains or even only the source domain (From
Scratch) remained limited to between 1% and 2%.

5.2.2.2 Heart and Clavicle Segmentation in CXR Images

As shown in Table 5.5, heart and clavicle segmentation proved to be harder tasks
than lung field segmentation. Both tasks only count with the JSRT dataset as fully
labeled, with OpenIST having only 15 images with pixel-level annotations for both
heart and clavicles. We therefore used these samples only for evaluating UDA in
a target dataset, as the small number of samples would not allow for proper SSDA
and FSDA experiments. CoDAM achieved the best results in heart segmentation on
OpenIST with a J value of 64.63%, closely followed by D2DU with 64.50%. Clavicle
segmentation topped on 68.53% for D2D and was the only task that clearly showed
an underperformance of CoDAGANs compared with D2D, achieving only 61.94%.
Both D2D and CoDAGANs greatly surpassed the Pretrained U-Net in both tasks for
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(B), with the pretrained baseline achieving close to 0% in Jaccard.

Table 5.5 also shows the remarkable stability of D2D for the source dataset
(A ), evidencing that performing DA using Image Translation does not compromise
performance in the source domain. CoDAGANs closely followed the performance
of D2D in the source dataset (A ) for heart segmentation, but again showed con-
siderably worse performance in clavicle segmentation. This underperformance of
CoDAGANs in clavicle segmentation for both datasets is probably explained by the
higher imbalance of this task. Clavicles cover a much smaller area in a CXR than
lungs or a heart and, therefore, are more susceptible to low performance in seg-
mentation DNNs that contain fewer skip connections, as the case of the truncated
asymmetrical U-Net configured to receive data from the isomorphic representation
I in CoDAGANs.

5.2.2.3 CXR Segmentation Confidence Intervals

Figure 5.4 shows the confidence intervals for p ≤ 0.05 in lung segmentation
for both the source JSRT dataset (Figure 5.4(a)) and the target image sets (Fig-
ures 5.4(b), 5.4(c), 5.4(d) and 5.4(e)). Figures 5.4(f) and 5.4(g) show the results for
heart and clavicle segmentation in the source (JSRT) and target (OpenIST) datasets,
respectively.

One can see by Figures 5.4(a) and 5.4(f) that segmentation in the source dataset
is preserved even when labels from other datasets are introduced in the training
procedure. Figures 5.4(b), 5.4(c), 5.4(d), 5.4(e) and 5.4(g) show the UDA, SSDA and
FSDA efficiency of CoDAGANs in the fully or partially labeled target datasets, that
is, OpenIST, Shenzhen, Montgomery and Chest X-Ray 8 for lung segmentation and
only OpenIST for heart and clavicles.

Figures 5.4(b) through 5.4(e) and 5.4(g) show the progression of CoDAGAN
and baseline methods in distinct target CXR datasets according to the different la-
bel configurations in our experimental procedure. While most methods converge
to similar efficiencies in scenarios closer to FSDA (E50% and E100%), baselines start
considerably worse than CoDAGANs in most cases when there is scarcity of target
labels (E0% and E2.5%). D2DM and D2DU also yield highly unstable predictions in
scenarios between these two extremities (E5% and E10%), with much larger confi-
dence intervals resulting from larger standard deviations than their counterparts.

Another interesting phenomenon can be seen in Figure 5.4(e), where
CoDAGANs start worse in UDA than both D2DM and D2DU for target samples
from dataset (E ), but CoDAM improves as the experiments get closer to E100%. One
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Figure 5.4. Confidence Intervals for CXRs according to the values shown in
Tables 5.4 and 5.5. Methods shown in these plots include CoDAGANs (CoDAM
and CoDAU), Domain-To-Domain translation (D2DM and D2DU), Pretrained
U-Nets and U-Nets trained from scratch for SSDA and FSDA.
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should notice that in experiments E2.5% through E100% no labels from (E ) are being
used at any time during the training procedure of CoDAGANs, and even still the
objective evaluation for dataset (E ) improves. This serves as yet another evidence
that CoDAGANs are able to acquire semantic information for one dataset (Chest
X-Ray 8) by using labels from others; in this case, JSRT, OpenIST, Montgomery and
Shenzhen.

5.2.3 Qualitative DA Analysis

Figures 5.5, 5.6 and 5.7 show segmentation qualitative results for two tasks of MXR
segmentation, two tasks of DXR segmentation and three tasks of CXR segmenta-
tion, respectively. Figure 5.5(a) presents predictions for pectoral muscle segmenta-
tion E0%, while Figure 5.5(b) shows breast region segmentation on experiment E0%.
Experiment E0% for lung field segmentation can be seen in Figure 5.7(a), while heart
and clavicle segmentation DA experiments (E0%) are shown respectively on Fig-
ures 5.7(b) and 5.7(c). At last, DXR segmentations from UDA experiments can be
seen in Figure 5.6 for both teeth (Figure 5.6(a)) and mandible (Figure 5.6(b)) seg-
mentation. Columns for all figures present the original sample, the ground truth
segmentation for the specific task for this sample when available and predictions
from Pretrained U-Nets, D2D and CoDAGANs for visual comparison.
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Figure 5.5. Qualitative segmentation results in MXR images for two distinct
tasks: E0% pectoral (a) and E0% breast region (b).
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Figure 5.6. Qualitative segmentation results in DXR images for two distinct
tasks: E0% teeth (a) and E0% mandible (b).

Each row in Figures 5.5(a) and 5.5(b) highlights one sample from each one of
the six MXR datasets used in our experiments. One can see in both figures that
D2D underperformed in most cases, failing to predict any pectoral muscle pixel
as positive in multiple samples from target datasets. UDA for breast region seg-
mentation also proved to be a hard task for D2D, as in most samples it segmented
either only the pectoral muscle or background. While in the pectoral muscle seg-
mentation task most methods were able to successfully ignore the labels in the back-
ground of some digitized datasets such as DDSM, MIAS and LAPIMO, these arti-
facts were shown to be harder to compensate for on breast region segmentation,
as all baselines and CoDAGANs wrongly and frequently segmented them as part
of the breast. We observed overwhelmingly better results in our qualitative assess-
ment from CoDAGANs, when compared to all other baselines. CoDAGAN superi-
ority proved to be stable both in easier target datasets such as MIAS or BCDR and in
more difficult ones as DDSM A and LAPIMO, which contain extremely low contrast
and large digitization artifacts, respectively. At last, as the breast boundary contour
is fuzzy and extremely hard to segment even for humans in non-FFDM datasets,
all methods either underrepresent or overrepresent positive breast pixels in these
regions in most samples and datasets.

Figure 5.6(a) shows teeth segmentation predictions for both source (Ivision-
Lab) and target (Panoramic X-ray) datasets, while Figure 5.6(b) presents DXR
mandible segmentations using Panoramic X-ray as source and IvisioLab as target.
DXR results show that Pretrained U-Nets and D2D, as expected from a supervised
setting, yield mostly predictions in the source dataset for both tasks. However, both
methods underperform in the target datasets, missing the segmentation of several
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Figure 5.7. Qualitative segmentation results in CXR images for three distinct
tasks: E0% lungs (a), E0% heart (b) and E0% clavicles (c).
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teeth and mislabeling mandible regions as background. CoDAGANs achieve much
more consistent results in the target datasets, once again evidencing the method’s
capabilities in UDA. However, CoDAGAN predictions were observed to be less ro-
bust for modeling sharp corners in the shapes probably due to the smaller spatial
resolution of representation I when compared to the images themselves, which may
lead to loss of small detail and slightly smoother shape contours. This issue might
be fixed by passing the outputs of the encoder layers in GE to the supervised model
M in order to preserve spatial information, much like a skip connection does.

Figure 5.7(a) shows DA results for lung field segmentation in 4 fully labeled
datasets (JSRT, OpenIST, Shenzhen and Montgomery), 1 partially labeled dataset
(Chest X-Ray 8) and 3 other target unlabeled datasets (PadChest, NLMCXR and
OCT CXR). We reiterate that one single CoDAGAN was trained for all datasets and
made all predictions contained in the last column of Figure 5.7(a). One should no-
tice that the target datasets in this case are considerably harder than the source ones
due to poor image contrast, presence of unforeseen artifacts as pacemakers, rota-
tion and scale differences and a much wider variety of lung sizes, shapes and health
conditions. Yet, the DA procedure using CoDAGANs for lung segmentation was
adequate for the vast majority of images, only presenting errors in distinctly dif-
ficult images. As the source dataset (JSRT) has completely distinct visual patterns
when compared to the target datasets, both Pretrained U-Nets and D2D are not able
to properly compensate for domain shift in these cases, yielding grossly wrong pre-
dictions.

Heart and clavicle segmentation (Figures 5.7(b) and 5.7(c)) are harder tasks
than lung segmentation due to heart boundary fuzziness and a high variability of
clavicle sizes, shapes and positions. In addition, clavicle segmentation is a highly
unbalanced task. Those factors, paired with the fact that the well-behaved sam-
ples from the JSRT dataset are the only source of labels to this task contributed to
higher segmentation error rates mainly in clavicle segmentation. Results for heart
and clavicles are presented for the same 8 datasets as lung segmentation, but only a
small subset of OpenIST contains labels for clavicles and heart. Even with all these
hampers, CoDAGANs still yielded consistent prediction maps for hearts and clav-
icles across all target datasets, while baselines are, again, unable to compensate for
domain shifts.

Figure 5.8 presents a visual assessment of segmentation errors in CXR (Fig-
ure 5.8(a)), DXR (Figure 5.8(b)) and MXR (Figure 5.8(c)) tasks for some samples of
target datasets in UDA scenarios. A full assessment of results and both CoDAGAN
and baseline errors can be seen in this project’s webpage.
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Figure 5.8. Noticeable errors in CoDAGAN UDA results for unlabeled target
datasets in three domains: CXRs (a), DXRs (b) and MXRs (c).

One can see that several lung predictions by CoDAGANs yielded small isles
of false positives in other bony areas of CXRs (Figure 5.8(a)) as well as in the back-
ground of the images due to wrongly compensated domain shifts. While most of
these errors can be corrected by simply filtering for keeping only the larger contigu-
ous areas lung field segmentation and heart segmentation, this would be harder to
implement for clavicles due to their smaller relative sizes in CXR exams. Extremely
low contrast images as the NLMCXR sample presented in the fourth row of Fig-
ure 5.8(a) presented a challenge for CoDAGANs on all CXR tasks, being the most
common source of missed predictions for our method.

We noticed that there were large inter-dataset labeling differences for all CXR
tasks. For instance, several OpenIST heart labels contain larger heart delineations
than JSRT labels, which led to a larger number of false negatives on OpenIST, as
can be seen in the fifth row of Figure 5.8(a). Also, clavicle labels on JSRT delineate
only pixels within lung borders, while OpenIST labels delineate the whole pair of
bones both inside and outside the lung fields. We employed a binary mask between
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clavicles and lungs for each labeled OpenIST sample in order to fix this discrepancy
in labeling characteristics.

Even though both Pretrained U-Nets and D2D yielded worse general results
in DXR tasks, CoDAGANs still missed a considerable number of teeth, failed to sep-
arate the upper and lower dental arches and wrongfully split mandibles, as shown
in Figure 5.8(b). At last, MXR prediction errors can be seen in Figure 5.8(c), mainly
in denser breasts, which hamper the differentiation between pectoral muscle and
breast tissue and due to fuzzy breast-boundary borders. Some of the non-FFDM
datasets also contain digitization artifacts in the background, which were frequently
misclassified as breast pixels. Therefore, there is still a lot of room for improvement
in CoDAGAN’s domain shift compensation capabilities.

Another important qualitative assessment to be performed in CoDAGANs is
to visually assess that the same objects in distinct datasets are represented similarly
in I-space. This is shown in Figure 5.9 for five I activation channels in MXRs (Fig-
ure 5.9(a)), DXRs (Figure 5.9(b)) and CXRs (Figure 5.9(c)).

In Figure 5.9(a), high density tissue patterns and important object contours in
the images from INbreast, MIAS, DDSM BC, DDSM A, BCDR and LAPIMO are en-
coded similarly by CoDAGANs. Breast boundaries are also visually similar across
samples from all MXR datasets, as CoDAGANs are able to infer that these informa-
tion is semantically similar despite the differences in the visual patterns of the im-
ages. Visual patterns that compose the patient’s anatomical structures, such as ribs
and lung contours, in Figure 5.9(c) are visibly similar in the samples from all eight
CXR datasets: JSRT, OpenIST, Shenzhen, Montgomery, Chest X-Ray 8, PadChest,
NLMCXR and OCT CXR. The third radiological domain used in our comparisons
is composed of two different DXRs datasets: IvisionLab and Panoramic X-Ray (Fig-
ure 5.9(b)). It is easy to notice the common patterns encoded by CoDAGANs for
the same semantic areas of the distinct images such as the teeth edges and mandible
contours. One should notice that despite the clear visual distinctions between the
original samples from the different datasets in all domains, the isomorphic repre-
sentations were visually alike across samples from the domains. These results show
that CoDAGANs successfully create a joint representation for high semantic-level
information which encodes analogous visual patterns across datasets in a similar
manner. In other words, different convolutional channels in I activate visual pat-
terns with the same semantic information from the distinct datasets in a similar
manner. This feature of encoding a joint distribution between domains by looking
only to the marginal distributions of the samples is what allows CoDAGANs to per-
form UDA, SSDA and FSDA with high accuracy.
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Figure 5.9. Original images and five different activation channels for samples of
(a) MXRs, (b) DXRs and (c) CXRs. Readers should notice the visual distinctions
between the original input samples and the visually similar encodings generated
by the isomorphic representations of CoDAGANs for the same semantic content
in different parts of the radiographs.



90 CHAPTER 5. RESULTS AND DISCUSSION

5.2.4 Low Dimensionality

In order to view the data distributions of samples from the different datasets in the
I-space of CoDAGAN representations, we reduced the dimensionality of I to a
2D visualization using Principal Component Analysis (PCA) and the t-Distributed
Stochastic Neighbor Embedding (t-SNE) algorithm [Maaten and Hinton, 2008].
First, in order to reduce computational requirements, we reduced the original
524, 288 dimensions of I to a 200-dimensional space using PCA and applied t-SNE
on the remaining components. We also fit a gaussian on the data distributions for
each dataset using the Gaussian Mixture Model (GMM) from sklearn1. The resulting
2D visualizations of the MXR and CXR datasets can be seen in Figure 5.10.

Figures 5.10(a) and 5.10(b) show respectively the original 2D representation of
the I-space from PCA/t-SNE and the GMM fit for the data on the MXR datasets.
Visual analysis of Figure 5.10(b) shows the domain shifts between LAPIMO and the
other MXR datasets. This is due to the fact that LAPIMO samples have a charac-
teristic digitization artifact on one side of all samples, as can be easily seen in Fig-
ures 5.5(a) and 5.5(b). Not coincidentally, these artifacts in LAPIMO samples ham-
pered CoDAGAN abilities to compensate for domain shift and severely hampered
the segmentation quality in all baselines.

A similar pattern can be seen in Figures 5.10(c) and 5.10(d), which show re-
spectively the 2D projections of CXR datasets and the GMM fits for these data. JSRT
samples have the most standardized data among all CXR datasets, containing only
high visual quality samples with fixed posture, high contrasts between anatomi-
cal structures (i.e. lungs, ribs, etc) and no major lung shape-distorting illnesses
(i.e. pneumonia, tuberculosis. etc). Other datasets – such as Chest X-Ray 8, Mont-
gomery and Shenzhen – present more real-world scenarios with a high variety of
lung shapes and sizes and smaller control over patient’s position during the exam,
that is, higher rotation, scale and translations in these images. Thus samples from
the JSRT dataset in Figure 5.10(d) are clustered in a small region in the 2D projection
of I-space, while the other datasets contain more spread samples in this projection.
This result evidences that the use of distinct sources of data should better enforce
satisfactory Domain Generalization for the supervised model M in CoDAGANs.

Another visibly distinct cluster in Figure 5.10(d) is formed of samples pertain-
ing to the OCT CXR set. Samples from this dataset were noticeably harder to seg-
ment due to their smaller contrast range. OCT CXR patients also performed the
exam on a distinct position with their arms pointing upward, contrary to all other

1https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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Figure 5.10. 2D projections of in I-space for MXR in pectoral muscle segmen-
tation (a, b) and CXRs in the lung segmentation task (c, d). The original 2D-
projected samples after PCA/t-SNE (a, c) are shown conjointly with gaussian
fits over the data (b, d) for both domains.

CXR data used in our experiments. These visual features reinforce this dataset’s dis-
tinction from other CXRs in our experiments and explain its homogeneity in the 2D
projections of Figure 5.10(d).

Another use for these 2D projections could be to perform inference from
datasets that were never trained by the algorithm, effectively achieving Domain
Generalization [Zhang et al., 2017] for new samples. This Domain Generalization
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CoDAGAN could find the natural cluster closer to the new data according to a dis-
similarity metric and assign the novel samples to the cluster. This approach could,
therefore, personalize the One-Hot-Encoding so that it better captures the particular
visual patterns of previously unseen data.

5.2.5 Time Comparison

One can see in Figures 5.11 and 5.12 the runtime comparisons for lung segmentation
in CXRs and pectoral muscle segmentation in MXRs. The comparison is made be-
tween CoDAGANs, which are only trained once for all datasets in a certain domain;
and D2Ds, considering all pairs of source and target datasets in an image domain.
These results show that conditional multi-source training is several times faster than
pairwise training for all target datasets.
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Figure 5.11. Per-sample time comparisons between CoDAGANs and D2D ap-
proaches in the segmentation of lungs in CXRs. Runtimes are given in seconds
per sample.

The plot shown in Figures 5.11 and 5.12 specifically focus on the tasks of lung
and pectoral muscle segmentation because they were the ones with the larger num-
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Figure 5.12. Per-sample time comparisons between CoDAGANs and D2D ap-
proaches in the segmentation of pectoral muscle in MXRs. Runtimes are given
in seconds per sample.

ber of labeled samples in the CXR and MXR datasets. Also, the runtime plots for
heart, clavicle and breast region segmentation followed similar trends to the ones
presented in the aforementioned figures.

Per-sample training times on CoDAGAN took between 0.4 and 0.6 seconds,
on average, while D2D ranged between 0.1 and 0.5 seconds. However, for multiple
domains several D2D networks must be trained in order to achieve Domain Gener-
alization from a single source dataset. The yellow and green lines represent the av-
erages of the sums of all D2D (both D2DU and D2DM) trained for a certain domain
departing from one single source dataset A . One can easily notice that CoDAGANs
run between 3 and 4 times faster than the sum of D2Ds in the phase of Supervision
Tuning, and between 4 and 6 times faster during Full Training
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5.3 Unsupervised Segmentation from Synthetic

DRRs

In this section we assess if synthetic data could be leveraged using the CoDAGAN
framework in order to acquire useful information from 3D to 2D data, specifically
for rib segmentation. Section 5.3.1, which presents quantitative results using the
evaluation metrics described in Section 4.4 for the JSRT and OpenIST datasets. We
compare CoDAGANs with both common shallow baselines in the area of rib seg-
mentation [van Ginneken and ter Haar Romeny, 2000; Loog and Ginneken, 2006;
Candemir et al., 2016] and with U-Nets [Ronneberger et al., 2015] pretrained on DRR
data for CXR rib segmentation. Section 5.3.2 discusses qualitative results obtained
in both labeled and unlabeled test datasets.

5.3.1 Rib Segmentation Effectiveness in CXRs

Table 5.6 shows the quantitative results according to the metrics described in Sec-
tion 4.4 of the proposed methodology and common baselines in the literature for the
OpenIST and JSRT datasets – which are the only ones with pixel-map labels avail-
able or computable. Bold cells highlight the method with the best results among all
for their respective datasets and metrics. In the OpenIST dataset, CoDAGANs ob-
tained similar results to simply using the Pretrained DNN for image segmentation
trained in the DRR data, as this dataset presents rather similar visual features as the
DRRs themselves. Pretrained DNNs showed considerably higher results mainly in
Sensitivity, Dice and Jaccard, while Accuracy metrics were rather close in both Pre-
trained DNNs and CoDAGANs for OpenIST. Specificity, however, presented signif-
icantly better results for CoDAGANs, highlighting a larger portion of non-rib pixels
being classified correctly by the method, which is backed up by qualitative analysis
in Section 5.3.2. CoDAGANs also presented better AUC results, implying that this
method yields a better trade-off between False Positives and False Negatives along
the ROC curve, as can also be seen in Figure 5.13(a). Pretrained models present-
ing higher Sensitivity results and lower Specificity results than CoDAGANs implies
that the former method tends to overshoot the prediction of positive pixels, while
the latter has a higher certainty when classifying a pixel as pertaining to a rib.

Even with competitive results in OpenIST, the real advantage of using
CoDAGANs over both shallow [van Ginneken and ter Haar Romeny, 2000; Loog
and Ginneken, 2006; Candemir et al., 2016] and deep [Ronneberger et al., 2015] base-
line methods is seen when comparing the results in the JSRT dataset, as these data



5.3. UNSUPERVISED SEGMENTATION FROM SYNTHETIC DRRS 95

Table 5.6. Quantitative results for rib segmentation in the JSRT and
OpenIST datasets yielded from shallow (Model-based [van Ginneken and ter
Haar Romeny, 2000], Pixel Classification – PC and Iterated Contextual Pixel
Classification – ICPC [Loog and Ginneken, 2006] and Atlas-based [Candemir
et al., 2016]) and deep (Pretrained DNNs) baselines and the proposed pipeline
based on CoDAGANs. This table summarizes all metrics presented in Sec-
tion 4.4, which were chosen according to the literature and/or due to their large
use in segmentation tasks. Blank cells represent metrics that were not reported
in the original works that proposed their respective method and, thus, could not
be used in our comparisons.

Dataset Method Metric
AUC Accuracy Sensitivity Specificity Dice Jaccard

OpenIST Pretrained DNN 0.8487 0.85 ± 0.02 0.57 ± 0.07 0.95 ± 0.02 0.66 ± 0.05 0.49 ± 0.05
CoDAGANs 0.8557 0.84 ± 0.02 0.44 ± 0.08 0.98 ± 0.02 0.58 ± 0.07 0.41 ± 0.07

JSRT

Model-based 0.9105 0.74 ± 0.05 0.71 ± 0.08 0.85 ± 0.03 - -
PC - 0.79 ± 0.05 0.71 ± 0.08 0.85 ± 0.03 - -

ICPC - 0.86 ± 0.06 0.79 ± 0.09 0.92 ± 0.04 - -
Atlas-based - 0.86 ± 0.03 0.75 ± 0.06 0.92 ± 0.02 - -

Pretrained DNN 0.6335 0.69 ± 0.03 0.19 ± 0.03 0.81 ± 0.03 0.19 ± 0.02 0.11 ± 0.02
CoDAGANs 0.9341 0.89 ± 0.02 0.51 ± 0.08 0.98 ± 0.01 0.63 ± 0.08 0.47 ± 0.07

present a much larger domain shift from the original DRRs. These distinct visual
features between samples from the domains are further highlighted in Section 5.3.2.
One can see in Table 5.6 that CoDAGANs are able to compensate much more effi-
ciently for the visual differences in the two data sources than other methods, achiev-
ing state-of-the-art results for AUC, Accuracy, Specificity, Dice and Jaccard methods.
The only metric wherein the literature reports better performance than CoDAGAN
is Sensitivity, as most of the baseline methods tend to overestimate positive pixels,
being more susceptible to present higher FP rates. This relatively higher propensity
of baseline methods to predict larger amounts of False Positive rib pixels is further
evidenced by CoDAGANs’ near-perfect Specificity scores.

Figure 5.13 presents the overlayed ROC curves for OpenIST and JSRT of both
Pretrained DNNs and Conditional DA in the task of rib segmentation. One can see
that in Figure 5.13(a) both curves follow similar paths, with CoDAGANs presenting
a slight edge over Pretrained DNNs for FP rates between 0.3 and 0.8, while Pre-
trained DNNs surpass Conditional DA in the rightmost side of the plot. However,
analogously to the results presented in Table 5.6, CoDAGANs present considerably
larger TP rates for any value of FP rates in JSRT, which is explained by the large
domain shift between this dataset and the source DRRs.
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Figure 5.13. Overlayed ROC curves for both Pretrained DNNs and CoDAGANs
in the OpenIST (a) and JSRT (b) datasets. Pretrained DNNs present similar ROC
curves to CoDAGANs on OpenIST, while the distinction between these method-
ologies in JSRT is much more noticeable due to the larger domain shift between
this dataset and the source DRRs.

5.3.2 Generalization Analysis

The leftmost half of Figure 5.14 shows a small sample of qualitative results in rib
segmentation for the JSRT (Figure 5.14(b)) and OpenIST (Figure 5.14(a)) datasets,
which are the only ones that have pixel-level labels in our experiments. Visual
analysis over the OpenIST samples further reinforce the previously mentioned ten-
dency to overestimate rib pixels of DNNs pretrained in DRR synthetic samples,
while CoDAGANs are more conservative in predicting rib pixel labels. It is also
evident from the overlayed prediction probability map that the pretrained mod-
els have a much sharper decision boundary than CoDAGANs. That is, the deep
baseline method predicts either rib or background pixels with more confidence than
Conditional DA, which also results in rougher segmentation boundaries.

Also consistently with the objective results, the most evident advantage of us-
ing the proposed pipeline for DA is seen when there is a larger shift between the
source and target domains, as can be seen in Figure 5.14(b) wherein segmentation
results for JSRT are shown. One can easily see that the Pretrained U-Net severely
missed the regions in the samples with actual ribs, presenting highly erratic predic-
tions. CoDAGAN, however, are capable of Domain Generalization, being able to
translate the knowledge from the DRR images and noisy labels to JSRT much more
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Figure 5.14. Sample of qualitative results in the datasets with labeled test sets:
OpenIST (a) and JSRT (b). The colormap on the right side indicates the proba-
bilities in the predictions of the two rightmost columns.

effectively, resulting in high quality predictions for the rib semantic maps.
Additionally to the results from the datasets with labeled data, we show a

small sample of CoDAGAN’s predictions from unlabeled data from 5 additional
datasets, as can be seen in Figure 5.14(c). Probability maps predicted by our method-
ology for all samples of these datasets in order to encourage reproducibility can be
found in this project’s webpage.





Chapter 6

Conclusion

This work described a pairwise method (D2D) and a Domain Generalization
(CoDAGAN) method that cover the whole spectrum of UDA, SSDA and FSDA in
dense labeling tasks, with the latter being able to learn from multiple source and
target biomedical datasets. In order to have an answer to hypothesisH1 – presented
in Section 1.2 – we performed exploratory tests on CXR images (Section 5.1) and
an extensive quantitative and qualitative experimental evaluation on several dis-
tinct domains, datasets and tasks (Section 5.2), comparing the proposed methods
with traditional Transfer Learning baselines in the literature. Both methods were
shown to be effective DA methodologies that could learn a single model that per-
forms dense labeling in either a pair (D2D) or several distinct datasets (CoDAGAN),
even when the visual patterns of source and target data were visually distinct.

Another evidence of the generalization capabilities of D2D and CoDAGANs
was the good performance in DA tasks even in highly imbalanced classes, as in
clavicle segmentation, wherein the Region of Interest (RoI) in the images represents
only a tiny portion of the total set of pixels. Many DA algorithms do not perform
well with imbalance, requiring additional measures as random undersampling or
elaborate data augmentation routines, while CoDAGANs are automatically able to
compensate for class imbalance. The main hypothesis H1 – which states that I2I
Translation can be used for visual DA – is found to be, therefore, confirmed.

The pairwise method (D2D) was observed to perform better UDA and SSDA
than both From Scratch training and Fine-tuning. However, D2D variations were
observed to be much more unstable even when using essentially the same set-
tings as their Conditional DA counterparts (CoDAGANs). Thus, D2D was treated
in the more thorough experimental setup of Section 5.2 as a stand-in baseline for
other pairwise Image Translation DA methodologies [Cohen et al., 2018; Tang et al.,

99
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2019b,a; Yang et al., 2019] that work remarkably similar to the proposed pairwise
approach.

It was observed in Sections 5.2.1 and 5.2.2 that CoDAGANs achieve results in
fully unsupervised settings that are comparable to fully supervised DA methods –
such as fine-tuning pretrained DNNs to new data – while the D2D baseline in UDA
presented a higher instability. CoDAGANs yielded significantly better J values
in most experiments where labeled data was scarce in the target datasets, while
fine-tuning and From Scratch training was only able to achieve properly converge
when labeled data from the target domain was abundant (i.e. E50% and above).
These results further reiterate the validity of H1. It is important to highlight that
label scarcity – mainly for dense labeling tasks – is a major problem in real-world
biomedical image tasks. As previously mentioned, Moment Matching losses for
UDAs [Borgwardt et al., 2006; Li et al., 2017] were discarded from the beginning
in our experiments, as they showed little-to-no improvement when compared to
simply using the pretrained U-Net on the target datasets.

The proposed method was able to successfully learn from both labeled and
unlabeled data, making it adaptable to a wide variety of data scarcity scenarios in
SSDA due to its ability to correctly compensate for domain shift, which is evidence
for reinforcing hypothesis H2. We performed thorough evaluations on a myriad of
datasets, domains and tasks, and, in the overwhelming majority of cases, Condi-
tional DA was superior both qualitatively and quantitatively to D2D in the unla-
beled target domains and indistinguishable from D2D in source domains wherein
labeled data was available.

In order to model a real-world data scenario, we specifically chose simpler
“well-behaved” source datasets (JSRT for CXRs and INbreast for MXRs) and more
real ones as targets (i.e. Chest X-Ray8, PadChest, MIAS, DDSM, etc). Even then
Conditional DA was able to transfer knowledge via UDAs from the simpler labeled
dataset to the novel real-world scenarios, evidencing the strategy’s robustness.

Conceptually, as a side effect of using One-Hot-Encoding for conditional train-
ing, CoDAGANs have half as many generators and discriminators as other image
translation DNNs, such as CoGANs [Liu and Tuzel, 2016], CycleGANs [Zhu et al.,
2017a], UNIT [Liu et al., 2017], MUNIT [Huang et al., 2018], DRIT [Lee et al., 2018,
2020] and MSGANs [Mao et al., 2019]. At the same time, also due to conditional
encoding, CoDAGANs are not limited to translations between only two domains at
a time. Empirically, per-sample runtimes were gathered from the executions of D2D
and CoDAGANs and were shown in Section 5.2.5. Conditional DA training with
stochastic dataset sampling is shown to be, on average, between 4 and 5 times faster
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than pairwise training for a multitude of target domains.
Thus, the limitation of pairwise training from D2D affects segmentation per-

formance, as many labels from other data sources end up being ignored; results in
considerably larger runtimes when it is desirable to train models for a multitude of
datasets; accentuate GPU memory requirements, due to the pair of generators used
in D2D; and even requires more disk space, as trained models are often saved in
non-volatile memory. All those pieces of evidence corroborate the validity ofH3, as
the scalability of translation architectures is not bound by the number of domains
when Conditional DA is employed.

As explained in Section 2.4.1, Zhang et al. [2017]; Csurka [2017] closely relate
Domain Generalization with multi-source DA, as adding marginal distributions for
each dataset/domain tends to make the model more robust to novel data. As far
as we are aware, CoDAGANs are the sole Domain Generalization method in the
literature that is able to perform cross-dataset learning in dense labeling tasks.

CoDAGANs were observed to perform satisfactory DA to a myriad of dis-
tinct datasets even when the sole labeled source dataset was considerably simpler
than the target unlabeled datasets, as presented in Sections 5.2.2, 5.2.1 and 5.3. In
experiment E0% for CXR lung, clavicle and heart segmentations, JSRT has images
acquired in a much more controlled environment than all other datasets, while still
performing UDA, SSDA and FSDA reasonably well on these more complex settings,
validatingH4. The low-dimensionality experiments presented in Section 5.2.4 were
also designed specifically in order to question the validity of hypothesis H4. We
conclude from the results presented in Figure 5.10 that “well-behaved” datasets –
such as JSRT or INbreast – tend to be more clustered in a small subspace of the dis-
tributions. Thus, the inclusion of more realistic unsupervised data – such as Chest
X-Ray 8 and DDSM – tends to incorporate a more realistic view of the true data dis-
tribution to the semi-supervised model, as stated in H4. At last, rib segmentation
with noisy labeled data acquired from synthetic DRRs was generalized for multiple
output datasets.

Results of DA acquired from synthetic DRRs and adapted to a myriad of CXR
datasets were presented in Section 5.3 according to the pipeline from Figure 3.5.
Even though there is a considerable visual distinction between the DRR samples
computed from CT-scans via AIP and real CXRs, Conditional DA was able to com-
pensate for this domain shift. This task also was fully unsupervised, as the noisy la-
bels for rib segmentation were obtained via synthetic transformations on volumetric
data instead of manual labeling. These novel results surpassed the previous litera-
ture – as shown in Table 5.6 – and allowed for the segmentation of ribs in datasets
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that do not possess any rib segmentation label. Thus, H5 holds true in the sense
that synthetic radiological data can indeed be leveraged to improve and/or allow
biomedical tasks via the use of Conditional DAs.

Essentially the same pipeline presented in Section 3.3 could be used to enforce
Domain Generalization in the tasks of segmenting other structures in the human
body, such as the spine or pelvic bones in CXRs or even single bones from 2D X-
Rays of arms or legs in order to automatically detect fractures or other abnormal-
ities. Alternatively, CoDAGANs can be applied to convert existing 3D labels from
CT-scan or MRI datasets into 2D, much like the pipeline of Zhang et al. [2018b]. The
advantage of employing CoDAGANs instead of the original method in Zhang et al.
[2018b] would be that the labels could be generalized to multiple target datasets and
even combined with existing organ segmentation labels from CXR data. We also see
this interchangeability of data and labels between CXRs and tomographic samples
as a step toward cross-modality DA in biomedical imaging, which is already rela-
tively common between CT and MRI data.

6.1 Current Limitations and Future Works

The basic architecture of both D2D and CoDAGAN could be adapted to other imag-
ing domains both within biomedical applications and in other areas as Computer
Vision and Remote Sensing. Some of these variations of the proposed pipeline were
tried during the course of this work with little success.

Given the success in the Domain Generalization on 2D data, CoDAGANs were
adapted to volumetric images in order to perform cross-dataset and cross-modality
image translation in CT-scans and MRIs. However, we found two major hampers
in this application, starting with the 3D convolutional kernels, which are still pro-
hibitively more expensive than 2D ones with mid-tier GPUs. 3D convolutions pos-
sess a much larger number of trainable parameters and generate activation and
backpropagation gradient tensors with higher dimensionalities than their 2D coun-
terparts. Thus, for even executing the first exploratory experiments we needed to
set the minibatch size to one single sample per iteration and resize the volumes to
the resolution 64× 64× 64. A second problem in volumetric DA using CoDAGANs
was the lack of both labeled and unlabeled data. The largest labeled datasets we
could find for liver, spleen and lung segmentation in CT images had only a few tens
of labeled samples, while the other unlabeled magnetic resonance and tomography
available either did not align properly with the labeled ones or imaged completely
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distinct parts of the body (i.e. brain MRIs).
CoDAGANs did not properly converge on the previously described setting for

volumetric samples, instead falling on some sort of “modal collapse” by outputting
always the same organ segmentation prediction for all image inputs. These predic-
tions were often a rough delineation in the correct shape, size and location of the
organ that was to be segmented, indicating that the network learned the mode of
the label distribution instead of properly generalizing to new samples.

In addition to these experiments, we tried using conditional encoding to
perform multitask learning on CXRs using CoDAGANs and another One-Hot-
Encoding passed to the supervised model M. These experiments also resulted in
a kind of “mode collapse” in the prediction space, as the network always output the
same basic outline for the organ, completely ignoring the input.

At last, we also tried to adapt CoDAGANs to the segmentation of Remote
Sensing urban scenes and perform cross-dataset DA between the Vaihingen1 and
Potsdam2 datasets. However, in contrast to all scenarios presented in Chapters 4
and 5, these Remote Sensing tasks are multiclass scenarios and the data are in-
herently more multimodal than the medical datasets used in our experiments.
CoDAGANs were not able to converge on this scenario, even though a better hy-
perparameter tuning might prove effective in this conversion.

We believe most of the previously mentioned hurdles can be addressed in fu-
ture works for CoDAGANs with a push in the academy for larger source labeled
datasets and proper tuning of the method to the new settings.

Future experiments encompass testing the DA and Domain Generalization ca-
pabilities of CoDAGANs on volumetric radiological data, such as MRIs and CT-
scans. Cross-modality DAs between magnetic resonance and tomographic data has
been shown to work via D2D approaches [Yang et al., 2019], even though some arti-
facts have been observed on these applications after translation [Cohen et al., 2018].
The addition of multiple-source DA that is able to learn from both healthy and ill
patients could alleviate these artifacts. At the same time, simply by adding novel la-
beled data to the training procedure might mitigate the previously discussed modal
collapse problem on 3D data.

Another major future work would be to test the CoDAGAN framework on
sparse labeling tasks in MXRs and CXRs. This talk would likely be the detection of
diseases such as tuberculosis, pneumonia, pulmonary effusion and even symptoms
of the more recent COVID-19 outbreak.

1http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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As shown in Section 5.2.4, the distributions of well-behaved source data and
real-world target data in I space are still not fully integrated. Perhaps adding a
moment-matching loss term – either via MMDs or adversarial learning – could alle-
viate this problem and better merge the distributions for better Domain Generaliza-
tion.

At last, both meta-learning [Vinyals et al., 2016; Snell et al., 2017; Finn et al.,
2017, 2018] and self-supervision [Dosovitskiy et al., 2014; Noroozi and Favaro, 2016;
Gidaris et al., 2018; Chen et al., 2020; Minderer et al., 2020] have recently been shown
to be highly effective for zero-/one-/few-shot learning by increasing the label effi-
ciency of DNNs. Hence, a natural follow-up to this research could be to integrate
these schemes to CoDAGANs in order to improve the label efficiency in SSDA sce-
narios where labeled data exist, but are scarce (i.e. E2.5% up to E10%).
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