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Resumo
Investigamos neste trabalho a relação entre instabilidade orbital e decoerência no espaço-
tempo de Sitter (dS). Consideramos um modelo quadrático simples proposto por Bran-
denberger, Laflamme and Mijić de dois campos escalares interagentes em um background
dS. Ele admite uma separação modo-a-modo, sendo cada modo um par de osciladores
harmônicos não-autônomos acoplados. Demonstramos que o expoente de Lyapunov maxi-
mal de cada modo é igual à taxa assintótica de produção de entropia de von Neumann de
cada oscilador, assumindo o vácuo como estado inicial. Isto nos permite estabelecer uma
divergência logarítmica da entropia modulada pela taxa de inflação do espaço-tempo e
calcular a relação no regime super-Hubble entre a geração de entropia de um oscilador e a
taxa exponencial de separação orbital do sistema. A conexão entre instabilidade orbital
e a decoerência do estado de um oscilador também é examinada do ponto de vista da
nonclassical depth, uma quantidade relacionada à existência para ele de uma representação
de espaço-de-fase interpretável como uma distribuição estocástica clássica. Provamos que
o comportamento desta medida no regime super-Hubble é determinada pelo balanço entre
o squeezing de 1-modo e a entropia. Neste regime, a entropia de um dado modo e a taxa
exponencial de separação orbital do sistema aumentam significativamente ao se passar
de acoplamentos fracos para o limite de acoplamento forte. Se este aumento for grande
o suficiente para que a entropia de um oscilador cresça mais rápido que o squeezing, por
exemplo no limite de acoplamento forte para frequências não muito elevadas, então o ruído
de qualquer quadratura do estado assintótico será maior que o ruído de vácuo. Os resulta-
dos obtidos sugerem a possibilidade de que processos interagentes não-lineares simples
possuindo correspondentes clássicos instáveis (no sentido de Lyapunov) ou caóticos podem
gerar contribuições significativas para a classicalização de campos escalares cosmológicos
em um estágio de expansão de Sitter do espaço-tempo.

Palavras-chave: Campos em espaços-tempo curvos. Decoerência. Classicalização de
estados quânticos.



Abstract
We investigate the relationship between orbital instability and decoherence in de Sitter
(dS) spacetime. We consider a simple quadratic toy model proposed by Brandenberger,
Laflamme and Mijić of two interacting scalar fields in a dS background. It admits a
modewise separation, with each mode consisting of a pair of nonautonomous coupled
harmonic oscillators. We show that the (classical) maximal Lyapunov exponent of every
mode equals the asymptotic rate of (quantum) von Neumann entropy production of each
oscillator, assuming an initial vacuum. This allows us to establish a logarithmic divergence
of the entropy modulated by the spacetime inflation rate, and to calculate the late times
superhorizon relationship between entropy generation of an oscillator and the system’s
exponential orbit separation rate. The connection between orbital instability and the deco-
herence of an oscillator’s state is also examined from the point of view of the nonclassical
depth, a quantity that is related to the existence of a phase-space representation for it
interpretable as a classical stochastic distribution. We prove that its superhorizon behavior
is determined by the balance between single-mode squeezing and entropy. In this regime,
the entropy of a mode and the system’s exponential orbit separation rate increase signifi-
cantly as one moves from the weak- to the strong-coupling limit. If this increase is large
enough for the entropy of an oscillator to grow more rapidly than squeezing, for example in
the strong-coupling limit for not too high frequencies, the noise of every quadrature of the
asymptotic state will be larger than the vacuum noise (zero nonclassical depth). The results
suggest the possibility that simple, nonlinear interacting physical processes with unstable
or chaotic classical counterparts may provide an important contribution to the effectiveness
of the classicalization of cosmological scalar fields during a dS stage of spacetime expansion.

Keywords: Quantum fields in curved spacetimes. Decoherence. Classicalization of quantum
states.
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1 Preliminaries

1.1 Introduction and Overview
The first studies of classicalization of primordial density fluctuations used quantum

optics tools in the theory of cosmological perturbations. Such fluctuations were shown to
unitarily evolve from an initial vacuum into a highly squeezed vacuum state in a purely de
Sitter stage of spacetime expansion. In the time-asymptotic limit, where the squeezing is
large, quantum expectation values calculated from the evolved state were found to become
indistinguishable from classical averages calculated from a stochastic distribution [1, 2].
However, the evolution of isolated fluctuations is isoentropic. In order to evaluate the
entropy of primordial fluctuations and describe their classicalization at quantum-state level,
one needs to consider environment-induced decoherence, an irreversible process in which
the system of interest loses quantum coherences and increases its von Neumann entropy.
Because gravity has infinite range and couples to all sources of energy, interactions with
some sort of environment are unavoidable. Therefore, environmentally induced decoherence
that will certainly play a crucial role in the classicalization of primordial density fluctuations
must be taken into account.

The entropy increase in usual models [3–5] occurs because of dynamically generated
entanglement correlations between the system and the environment, which is assumed to
consist of infinite degrees of freedom. The large environment is unaccessible in its entirety,
and tracing it out leads to entropy generation at system level. On the other hand, it has
been shown that in Minkowski spacetimes the coupling to a small environment (consisting
of one or few degrees of freedom), in the presence of classical dynamical instabilities, can
result in much stronger decoherence effects [7–9]. It has been found that for such interacting
systems, displaying classical Lyapunov instability, von Neumann entropy generation rates
at observed system level either coincide or are favored by the positive maximal Lyapunov
exponents. This type of behavior is conjectured [6, 7] to hold up to a certain level of
generality, but still not much is known beyond specific examples.

In the present work, we investigate such an example in the context of the quantum-
to-classical transition of a massless scalar field state over de Sitter (dS) spacetime. We
will consider for this purpose a simple, solvable model proposed in [10] of two interacting
massless scalar fields coupled through a bilinear derivative interaction potential. One of the
fields is taken to represent the system of interest, which can be thought as any massless
real scalar field producing density fluctuations during a dS stage of inflationary spacetime
expansion1. The other field represents an unobservable environment. The action for the
1 For definitiveness, the reader may consider inflaton fluctuations in a first-order approximation, neglecting
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model is quadratic and in reciprocal space it reduces to a modewise interaction between the
system of interest and the unobservable field – that is, to a collection of pairs of interacting
harmonic oscillators. Thus, for each mode of the system, the environment consists of
a single degree of freedom. When considered over Minkowski spacetime the composite
system’s classical dynamics for such an action is of course stable, with a phase-space flow
consisting of bounded periodic orbits. However, over dS spacetime the system becomes
nonautonomous and unstable, with a positive maximal Lyapunov exponent µ that we
will calculate to be equal to the background spacetime inflation rate (i.e., exponential
expansion rate) given by the Hubble parameter H.

Assuming an initial vacuum state for a composite system mode, we will evaluate
the asymptotic growth rate µS of its entanglement of formation (EoF) – that is, the von
Neumann entropy of an observed system mode. We find that µ = µS, allowing us to
calculate a logarithmic divergence for the EoF modulated by the inflation rate and to
demonstrate the superhorizon relationship between the entropy generation at system level
and the classical exponential orbit separation rate, after entanglement fluctuations cease.

We also examine the relationship between orbital instability and decoherence from
the point of view of the nonclassical depth. This is a measure of the system’s state
decoherence that is also sensitive to its squeezing properties and focuses on the emergence
of a phase-space representation for it interpretable as a classical probability distribution,
which is a very important aspect of decoherence to take into account in cosmological
contexts. We will show how orbital instability influences the nonclassical depth, and
thus the effectiveness of the classicalization of the system in this sense. Although the
maximal Lyapunov exponent/asymptotic entropy rate is independent of model details and
is given here only by the spacetime inflation rate, the actual instantaneous exponential
orbit separation rate for a given mode increases monotonically as function of the coupling
strength. We shall find that it is proportional to the entropy for late times, in such a way
that entropy values will get larger when we shift from the weak to the strong coupling
extremes. On the other hand, because Gaussianity is preserved here in the course of
evolution, the nonclassical depth of a system mode’s state after horizon crossing will be
given by the asymptotic balance between single-mode squeezing and von Neumann entropy.
This indicates that orbital instability will influence the nonclassical depth asymptotics.
We will quantify this influence, by evaluating the response of the nonclassical depth when
we change between the weak- and strong-coupling regimes. We will prove that although
in the weak-coupling regime every mode will evolve into a highly quadrature squeezed
state as expected, in the strong-coupling limit all modes of the observed field evolve into a
state with noise larger than the vacuum noise in every phase-space direction (zero non-
classical depth) except for the very high-frequency sector. As we will discuss, these results

backreaction effects (on the spacetime metric).
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suggest the possibility that simple, nonlinear interacting physical processes with unstable
or chaotic classical dynamical counterparts may provide an important contribution to
the effectiveness of the classicalization of cosmological scalar fields during a dS stage of
spacetime expansion.

This dissertation is organized as follows. First, in section 1.2 ahead, we will introduce
the model, present its solution in the Heisenberg representation and calculate its classical
maximal Lyapunov exponent. The Heisenberg picture solution makes it very easy to write
the time evolution of the composite system’s Robertson-Schrödinger covariance matrix.
We continue by presenting some background material on how to compute the quantities
relevant to our analysis of decoherence in terms of the covariance matrix in chapter 2. Our
results will be presented in chapter 3 and will be finally discussed in chapter 4.

1.2 The BLM Model
The model we consider here was first proposed and used in investigations of

decoherence of cosmological perturbations by Brandenberger, Laflamme and Mijić in [10],
and for this reason we call it the BLM model. It describes a bipartite system of two
coupled massless fields, the system of interest ϕ and the unobservable field ψ, over a curved
spacetime with metric gµν . The action of the BLM model reads (natural units will be used
throughout the text)

S =
∫
d4x

√
g

1
2 [∂µϕ∂µϕ+ ∂µψ∂

µψ + 2λ∂µϕ∂µψ] , (1.1)

where g = − det(gµν) and λ is the dimensionless coupling parameter normalized such that
λ ̸= 0, |λ| < 1. The cases λ = ±1 are excluded because when λ = ±1 , (1.1) reduces to
the action of a single isolated field ϕ̃± = ϕ± ψ.

The weak- and strong-coupling limits are given by λ → 0 and |λ| → 1 respectively.
Over the dS background, the metric is ds2 = a2(η)(−dη2 + dx⃗2) , a(η) = −(Hη)−1, where
η is the conformal time η(t) =

∫ t

∞

ds

a(s) . In this case we have g = a4 and a(t) = eHt, where

the Hubble parameter H ≡ 1
a
da
dt

is a constant.

Since the action is quadratic, the system is exactly solvable. In order to write its
exact solution in the Heisenberg picture, we begin by expanding the fields in terms of
their Fourier components, ϕ = ∑

k⃗ ϕk⃗(η)eik⃗·x⃗ and ψ = ∑
k⃗ ψk⃗(η)eik⃗·x⃗, in a large box of fixed

comoving volume. Let Πϕ,⃗k(η) and Πψ,⃗k(η) be the momenta conjugate to the Fourier field
components. The Hamiltonian of the BLM model then reads H = ∑

k⃗Hk⃗, where

Hk⃗ = 1
2a2(1 − λ2)

(
Π2
ϕ,⃗k

+ Π2
ψ,⃗k

− 2λΠϕ,⃗kΠψ,⃗k

)
+ a2k2

2
(
ϕ2
k⃗

+ ψ2
k⃗

+ 2λϕk⃗ψk⃗
)
. (1.2)



Chapter 1. Preliminaries 14

For simplicity, we have assumed that our comoving length units are such that the box
volume in the Fourier expansion reduces to unity.

Let us define new field modes which diagonalize the Hamiltonian Hk⃗(η), using the
symplectic transformation (the subindex k⃗ was dropped to simplify the notation)ϕ−

ϕ+

 = 1√
2

1 −1
1 1

ϕ
ψ

 ,
π−

π+

 = 1√
2

1 −1
1 1

Πϕ

Πψ

 .
In terms of these new fields, the Hamiltonian (1.2) reads Hk⃗ = H+ +H−, where

H± = π2
±

2a2(η)(1 ± λ) + a2(η)k2(1 ± λ)
2 ϕ2

±. (1.3)

We can readily solve the equations of motion for these field modes:

dϕ̂±

dη
= 1
iℏ

[ϕ̂±, Ĥ±] = 1
a2(1 ± λ) π̂±,

dπ̂±

dη
= 1
iℏ

[π̂±, Ĥ±] = −a2(1 ± λ)k2ϕ̂±. (1.4)

The general solution of the resulting second-order equation for these fields,

d

dη

(
a2du

dη

)
+ a2k2u = 0 , (1.5)

is a linear combination of Hankel functions, u and u∗, with

u(η) = 1√
2
Hη

k1/2 e
ikη

(
1 + 1

kη

)
. (1.6)

After some algebra, it can be shown thatϕ±(η)
π±(η)

 =
 x(η) y(η)

1±λ

(1 ± λ)z(η) w(η)

ϕ±(η0)
π±(η0)

 , (1.7)

is the solution of the equations of motion (1.4). The functions x(η), y(η), z(η), and w(η)
are given by

x(η) = −i(u∗
ηv0 − uηv

∗
0) = kη cos k(η − η0) − sin k(η − η0)

kη0
,

y(η) = i(u∗
ηu0 − uηu

∗
0) = −H2

k3

(
k(η − η0) cos k(η − η0) −

− (1 + k2η0η) sin k(η − η0)
)
,

z(η) = −i(v∗
ηv0 − vηv

∗
0) = − k

H2η0η
sin k(η − η0),

w(η) = i(v∗
ηu0 − vηu

∗
0) = kη0 cos k(η − η0) + sin k(η − η0)

kη
,

where v(η) ≡ a2u′
η and the prime here stands for differentiation with respect to conformal

time.
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To obtain dynamically generated correlations between the system and auxiliary
(unobservable) field parties at a given instant η ≥ η0, starting from a factorized initial
condition ρ̂T (η0) = ρϕ(η0) ⊗ ρψ(η0), we have to express the nondiagonal fields at time η in
terms of these diagonalized field coordinates at time η0. The relation, in matrix form, is

ϕη

Πη
ϕ

ψη

Πη
ψ

 =


x y

1−λ2 0 λy
1−λ2

z w −λz 0
0 λy

1−λ2 x y
1−λ2

−λz 0 z w


︸ ︷︷ ︸

=M(η,η0)


ϕ0

Π0
ϕ

ψ0

Π0
ψ

 . (1.8)

This equation can also be rewritten in a more compact form as

X(η) = M(η, η0)X(η0), (1.9)

where we have defined the vector

X(η) = (ϕ(η),Πϕ(η), ψ(η),Πψ(η))T . (1.10)

The creation and annihilation operators for the reduced system and unobservable
field are defined as

a1k⃗(η) = 1√
2

(
ϕk⃗(η) + iΠϕk⃗(η)

)
=
(
a†

1k⃗(η)
)†
, (1.11)

a2k⃗(η) = 1√
2

(
ψk⃗(η) + iΠψk⃗(η)

)
=
(
a†

2k⃗(η)
)†
, (1.12)

with the usual boson commutation relations [ajk⃗, a
†
j′k⃗′ ] = δj,j′δk⃗,⃗k′ , j, j′ = 1, 2, being satisfied

at any time η ≥ η0. Notice that (1.8) is the description of the quantum dynamics for
a given mode in the Fock Space Fk⃗,η0

determined by the reference vacua |0ϕ
k⃗
⟩ and |0ψ

k⃗
⟩

annihilated respectively by a1k⃗(η0) and a2k⃗(η0) at time η0.

Observe that the matrix relation (1.8) also describes the classical phase-space flow
associated to the dynamics of a mode under the BLM model. That is, one just has to
consider (ϕ0Π0

ϕψ
0Π0

ψ)T as an initial condition in phase-space and (ϕηΠη
ϕψ

ηΠη
ψ)T as the

time-evolved generalized coordinates. The time evolution of the distance between two
neighboring points, d(η) = ∥X1(η) − X2(η)∥ = ∥δX(η)∥ =

√
δXT (η)δX(η), gives the

maximal Lyapunov exponent

µ = lim
η→0−

lim
d(η0)→0

− H

2 ln(−Hη) ln d2(η)
d2(η0)

.

Here, X(η) is the vector defined in Eq. (1.10). Taking into account that r(η) evolves accord-
ing to Eq. (1.8), we see that the square of the distance varies as d2(η) = δXT (η0)NδX(η0).
The matrix N = MT (η, η0)M(η, η0) is a 4 × 4 matrix of the form

N =
A B
B A

 ,
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where A and B are 2 × 2 symmetric matrices. The characteristic polynomial of N is
the product of two quadratic polynomials; hence, the eigenvalues of N can be explicitly
calculated. If we denote by µi, i = ±, the roots with the largest real parts, the maximal
Lyapunov exponent reads

µ = lim
η→0−

max
i=±

− H

2 ln(−Hη) ln ℜ(µi(η, η0)),

where ℜ(µi(η, η0)) stands for the real part of the eigenvalue µi, i = ±. Making an expansion
around η = 0, we obtain

µ± = H4η2
0(kη0 cos kη0 + sin kη0)2 + k4(1 ± λ)2 sin2 kη0

H4k2η2
0 η

2

= C

η2 , C > 0.

Finally, we find that the maximal Lyapunov exponent coincides with the Hubble parameter
H giving the background spacetime inflation rate (i.e., exponential expansion rate),

µ = lim
η→0−

−H(lnC − 2 ln(−η))
2 ln(−Hη) = H. (1.13)
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2 Quantifying Decoherence

For the sake of completeness and to establish a notation for the sequence, we
continue by briefly describing the quantities we will use to measure the decoherence
process of the observed system. As mentioned in Chapter 1, we restrict our attention in
this work to evaluate the time evolution of these quantities for an initial vacuum. It is a
mode-wise factorized state of the form ρ(η0) = ∏

k⃗ ρϕk⃗(η0)⊗ρψk⃗(η0), where the labels ϕ and
ψ refer to the corresponding subsystem and where ρϕk⃗(η0) = |0ϕ

k⃗
⟩ ⟨0ϕ

k⃗
|, ρψk⃗(η0) = |0ψ

k⃗
⟩ ⟨0ψ

k⃗
| .

The initial state we refer to when we speak of a global vacuum initial condition for a given
mode is |0ϕ

k⃗
⟩ ⟨0ϕ

k⃗
| ⊗ |0ψ

k⃗
⟩ ⟨0ψ

k⃗
|. In the BLM model different modes do not interact; therefore,

we can focus on a fixed k⃗. Unless it is absolutely necessary, we will omit from now on
references to mode labels.

Even for an initial vacuum, it is a very difficult task to calculate the time evolution
of information-theoretic quantities for an arbitrary interacting bipartite system. In the
present case, however, our quadratic Hamiltonian will preserve the Gaussian character of
the initial global vacuum in the course of evolution: the full composite system quantum
state will be a generic two-mode squeezed vacuum at every instant. And for Gaussian
states, these quantities can be written directly in terms of the Robertson-Schrödinger
covariance matrix (CM), whose evolution can be easily found for the BLM model in terms
of the Heisenberg picture solution to dynamics.

Having this in mind, the present chapter consists of two parts. First, we will explain
in section 2.1 how to write down the evolution of the CM under the BLM model and how
it can be used to evaluate the dynamics of the Gaussian state parameters characterizing
the reduced system’s (single-mode squeezed thermal) state. This will be followed by a
discussion in section 2.2 on the interpretation and calculation in the Gaussian state setting
of the specific decoherence measures that we use: the von Neumann entropy generation at
reduced system level, and the non-classical depth.

2.1 The Robertson-Schrödinger Covariance Matrix and the Reduced
Density Operator
Let us first recall that the CM is the real symmetric matrix Σ given in terms of

second-order correlation functions for the fields and their respective momenta as

Σij = tr
(1

2 {Xi, Xj} ρ
)

− tr (Xiρ) tr (Xjρ) , (2.1)
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where ρ denotes the full (two-mode) state and the Xi are entries of the 4-dimensional
vector XT = (ϕ,Πϕ, ψ,Πψ) = (X1, X2, X3, X4). Notice that the elements of this vector
satisfy the canonical commutation relations [Xi, Xj] = iΛ̃ij, where

Λ̃ = diag
 0 1

−1 0


1

,

 0 1
−1 0


2

 . (2.2)

Its evolution can be calculated from our Heisenberg picture solution of the model, which
gives us the dynamics of the second-order correlation functions in (2.1) in a form such that
the CM at time η can be written as a linear transformation of Σ at the earlier time η0:

σij(η) =
∑
mn

fmnij (η, η0)σmn(η0). (2.3)

Expressions for the relevant fmnij (η, η0) are given in Appendix A.

Employing Williamson’s theorem [11], we can diagonalize the CM 2.1 by a linear
symplectic transformation S such that Σ = SΣthS

T , where Σth = diag (ν1, ν1, ν2, ν2) . In
the previous canonical form Σth is the CM of the thermal state ρth(ν1) ⊗ ρth(ν2), where

ρ̂th(νi) = 1
1 + νi

exp
(

ln
(

νi
νi + 1

)
â†â

)
(2.4)

and where νi is the number of thermal excitations of the state. In the limit νi → 0, the
thermal state ρ̂th(νi) becomes the vacuum.

One interesting consequence of Williamson’s Theorem is the definition of new
coordinates, given by X ′ = SX, which correspond to the so-called natural orbitals. The
Stone-von Neumann theorem [12,13] implies that these natural orbitals are related to the
old coordinates by a unitary transformation X ′ = U †XU, which can also be interpreted
as a transformation of the thermal matrix ρth such that the two-mode state ρ is given by
ρ = UρthU

†. It was demonstrated in [14] that this unitary operator U can be parametrized
at any fixed instant as

U = D(α)Û(z, ζ,ω,Ω), (2.5)

where the displacement operator D(α) take care of non-vanishing first moments and
corresponds to the product

D(α) =
∏
i

D(αi) =
∏
i

exp
(
αia

†
i − α∗ai

)
, i = 1, 2, (2.6)

and where Û corresponds to the exponentiation of a quadratic Hamiltonian stripped of
the linear terms (which are absorbed by the displacement operators). The collective labels

z = (z1, z2), ζ,ω = (ω1, ω2),Ω
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in Û come from the following standard form for this operator, which was also established
in [14]:

Û(z, ζ,ω,Ω) = S1(z1)S2(z2)S12(ζ)R1(ω1)R2(ω2)R12(Ω), (2.7)

where the unitary transformations (i = 1, 2)

Si(zi) = e− 1
2 zia

†
ia

†
i + 1

2 z
∗
i aiai , (2.8a)

S12(ζ) = e−ζa†
1a

†
2+ζ∗a1a2 , (2.8b)

Ri(ωi) = e−iωia
†
iai , (2.8c)

R12(Ω) = eΩa1a
†
2−Ω∗a†

1a2 . (2.8d)

describe the squeezing of one (Si(zi)) and two modes (S12(ζ)), the harmonic evolution of
one mode (Ri(ωi)) and rotation of two modes (R12(Ω)). It is important to have in mind
that the decomposition in 2.5 refers to a fixed instant, in such a way that the parameters
above depend on (conformal) time.

With the representation ρ = UρthU
† for the composite system state available, we

can calculate the CM Σ at a given instant in terms of the Gaussian state parameters
νi and z, ζ,ω,Ω. Then, by inversion of the resulting expressions and by making use of
2.3, we can obtain the evolution of the Gaussian state ρ in a simple way in terms of the
Heisenberg picture evolution of the CM. As we shall see in a minute, the dynamics of the
information-theoretic quantities we are interested admit simple formulas in terms of these
Gaussian state parameters.

However, since we are interested here only in the reduced system state obtained by
tracing out the second (environmental, ψ) mode, it won’t be necessary to perform such a
calculation for the full system’s state ρ and the full CM Σ. We can focus our attention
exclusively on the reduced system state, which we shall denote from now on by ρϕ. This
state is of course represented by a general single-mode Gaussian density operator. But
since the first and second moments of Gaussian states decouple, we can assume here that
one always has α = 0, in such a way that ρϕ will be at any instant a single-mode squeezed
thermal state (STS):

ρ̂ϕ = S(Z)ρ̂th(ν)S†(Z). (2.9)

In the previous decomposition, we have used essentially the same notations as above, but
we omitted for simplicity the index 1 indicating that we are dealing with operators and
parameters for the first party ϕ. The only difference is that the single-mode squeezing
parameter for ρϕ is denoted for the sake of clarity by Z = |Z|eiθ.

Now, if we split the full CM Σ in blocks as
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Σ =
 A C

CT B

 , (2.10)

where A, B, and C are 2 × 2 matrices, then the submatrix A corresponds to the CM of
the STS ρϕ. To calculate it, we first notice that for the thermal density operator on the
right-hand side of 2.9 the average values of squared creation and squared annihilation
operators are zero, and thus we have

tr
(
ââ†ρ̂th(ν)

)
= ⟨ââ†⟩ν = ⟨â†â⟩ν + 1 = ν + 1 (2.11)

(the index 1 in annihilation/creation operators for ϕ were suppressed). Next, the average
value of a function of creation and annihilation operators in the STS ρϕ is

⟨f(â, â†)⟩ρϕ
= tr

(
f(â, â†)S(Z)ρ̂νS†(Z)

)
= tr

(
S†(Z)f(â, â†)S(Z)ρ̂ν

)
= tr

(
f(S†(Z)âS(Z),S†(Z)â†S(Z))ρ̂ν

)
= tr

(
f(ã, ã†)ρ̂th(ν)

)
, (2.12)

where the operator ã is calculated as

ã = S†(Z)âS(Z) = cosh(|Z|)a− Z

|Z|
sinh(|Z|)a†. (2.13)

Finally, having obtained the transformed quadratures ϕ̃ and Π̃ϕ, given by ϕ̃

Π̃ϕ

 = M

 ϕ

Πϕ

 (2.14)

for

M =
cosh |Z| − cos θ sinh |Z| − sin θ sinh |Z|

− sin θ sinh |Z| cosh |Z| + cos θ sinh |Z|

 ,
and eiθ = Z/|Z|, we can then readily obtain the covariance matrix for ρϕ as desired:

A =
(
ν + 1

2

)
× (2.15)cosh 2|Z| − cos θ sinh 2|Z| − sin θ sinh 2|Z|

− sin θ sinh 2|Z| cosh 2|Z| + cos θ sinh 2|Z|


with matrix elements A11 = tr(ϕ̃ϕ̃ρ̂th(ν)), etc.

It is now straightforward to invert these expressions and write the Gaussian state
parameters for ρϕ in terms of the CM. First, observe that DA =det A =

(
ν + 1

2

)2
, whence

ν =
√
DA − 1

2 . Moreover, TA = trA = A11 + A22 = 2
√
DA cosh(2|Z|). Thus,
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|Z| = 1
2 log

 TA
2
√
DA

+
√

T 2
A

4DA

− 1
 . (2.16)

Finally, since

2A12

TA
= − sin θ tanh(2|Z|) = − sin θ

√
T 2

A

4DA
− 1

TA

2
√
DA

,

we obtain

θ = −arcsin
 2A12√

T 2
A − 4DA

 . (2.17)

2.2 Entropy and the Non-Classical Depth
It is possible to show [14, 15] that the von Neumann entropy of a single-mode

squeezed thermal state such as ρϕ, say S(ρϕ), is given in the present notations as the
following function of the determinant DA of A: S(ρϕ) = F (

√
DA), where

F (x) =
(
x+ 1

2

)
ln
(
x+ 1

2

)
−
(
x− 1

2

)
ln
(
x− 1

2

)
.

Since the full system evolves unitarily and we assume an initial global vacuum, the
full quantum state ρ will be always pure in the course of evolution. It follows that the
von Neumann entropy of the system or the auxiliary field is a direct measure of the
quantum entanglement between the parties. More precisely, it coincides with the so-called
Entanglement of Formation (EoF), defined by EoF(ρ) = S(trψρ). This explains how the
reduced system’s state von Neumann entropy can be considered here as a quantifier of
the decoherence process: the generation of entropy at reduced system level is in direct
correspondence to a developing degree of quantum entanglement between the parties,
which in the present case is the only type of quantum mechanical correlation they can share.
In this way, a process of entropy generation for the observed party is to be interpreted here
as signaling an increasing amount of information loss (about the composite system) upon
tracing out the environment degree-of-freedom, which is characteristic of environment-
induced decoherence in open quantum systems. As we will establish in the next chapter,
the entropy for an initial global vacuum will always (that is, irrespective of model details)
enter a logarithmic divergence regime not long after a characteristic dynamical time set
by the instant of horizon-crossing for the initial comoving length scale considered.

It is convenient to notice in the context of the discussion in the previous section
that the average number of excitations ν for ρϕ is related to S(ρϕ) = EoF(ρ) by the
formula

S = F (ν + 1
2),
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where F is the same function above [16]. So, the von Neumann entropy of the reduced
system state is also given in terms of CM-related quantities.

Concerning the non-classicality degree of the observed system, there are several
quantifiers available besides the entropy focusing on different aspects of the decoherence
process. We will also evaluate here a quantifier that is sensible to the squeezing properties
of the observed system and focuses on the emergence of a phase-space representation for it
interpretable as a classical probability distribution, which is a very important aspect of the
quantum-to-classical transition in cosmological contexts. This is in agreement, for example,
with the approach taken in [5]. More precisely, the idea is to consider that the reduced
system is classical when it admits a positive, regular Glauber-Sudarshan P -representation1

for its state. In this case, it is known [19] that the state’s second order quantum coherence
function g(2) will be ≥ 1, which for a single-mode state is a drastic restriction for detectable
quantum effects to show up in its excitation statistics2. Taking this into account, a proper
quantifier of the effectiveness of the decoherence process must measure how distant the
system state is from having a positive and regular P -function.

There is a non-classicality measure which performs exactly this task. It is the
non-classical depth, introduced independently by C.T. Lee [21,22] and N. Lütkenhaus et
al. [23]. Since its use and interpretation as a decoherence measure is not as widespread as
the reduced party’s von Neumann entropy, the remainder of this chapter will be dedicated
to a quick review on this topic.

The first step in order to understand how the non-classical depth is defined (see
subsection 2.2.2) and how it measures decoherence (see subsection 2.2.3 ahead) is to
have a clear picture of the Fourier transformation properties of the Glauber-Sudarshan
representation of a quantum state. For this reason, we shall begin in the next subsection
with a refresher on the Glauber-Sudarshan P-function.

2.2.1 The Glauber-Sudarshan Representation of a Quantum State

Following the notation introduced in chapter 1, we consider the Fock space F1,⃗k,η0

constructed by cyclic operation of the creation operator a†
1k⃗(η0) at time η0 on the reference

vacuum state annihilated by the corresponding annihilation operator a1k⃗(η0). Since η0 and
k⃗ will be fixed and since we will be working here with quantum states of the observed
party ϕ, we will drop the indexes 1, k⃗, η0 from now on.
1 Here, regular means no more singular than a Dirac delta, which describes the P -function for a coherent

state [17,18].
2 To obtain second-order correlation effects one has to consider multi-mode field states, which would

show up in a non-trivial interacting theory. This type of effect was investigated in the context of the
statistics of inflaton quanta in [20].
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Consider the coherent state

α = D(α) |0⟩ = exp
(
αa† − α∗a

)
|0⟩ .

Since we have the resolution of identity

1̂ =
∫
C
d2 α |α⟩ ⟨α|

available (from now on, we will omit the suffix C when integration over the whole complex
plane is subtended), any density operator ρ̂ can be written as

ρ̂ = 1
π2

∫
d2α

∫
d2β ρ(α, β) |α⟩ ⟨β| , (2.18)

where ρ(α, β) = ⟨α| ρ̂ |β⟩. If f̂ is an operator,
〈
f̂
〉

= Tr[ρ̂f̂ ] reads as

〈
f̂
〉

= 1
π2

∫
d2α

∫
d2β ρ(α, β)f(β, α) , (2.19)

where f(α, β) = ⟨α| f̂ |β⟩.

A natural question would be if (a) there exists a function P (α) associated to the
state ρ̂; and (b) there exists to each normally ordered operator function F (a†, a) of a†, a a
function F (α∗, α) (with possibly a non-zero antiholomorphic part), such that

〈
F̂
〉

=
∫
d2α P (α)F (α, α∗) . (2.20)

It happens that under certain conditions (see the discussion ahead) the answer is positive,
in which case the complex-variable function P (α) is called the Glauber-Sudarshan
phase-space representation (or distribution), or sometimes simply the P -function,
for the state ρ̂. The term “phase-space” refers of course to the 2-space spanned by Re(α)
and Im(α), that is, the two-dimensional complex plane. When specification of a possible
non-trivial antiholomorphic part in P (α) is desired, one usually writes P (α∗, α).

Formally, it is common to write

ρ̂ =
∫
d2α P (α′) |α′⟩ ⟨α′| , (2.21)

meaning that the matrix element between |α⟩ and |β⟩ for ρ̂ is given in terms of P by

⟨α| ρ̂ |β⟩ =
∫
d2w P (w) ⟨α |w⟩ ⟨w | β⟩ . (2.22)

Using the coherent-state overlap formulas
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⟨α |w⟩ = exp
(1

2(α∗w − αw∗)
)

exp
(

−1
2 |α− w|2

)
⟨w | β⟩ = exp

(1
2(w∗β − wβ∗)

)
exp

(
−1

2 |w − β|2
)
,

equation (2.22) reads

ρ(α, β) =
∫
d2w exp

(
−1

2[|α− w|2 + |w − β|2]
)

exp
(1

2[w∗(β − α) − w(β − α)∗]
)
P (w) .

(2.23)

At least on a formal level, the P-function is expected to be normalized to unit
whenever it is well-defined, because

∫
d2α P (α) =

∫
d2α P (α) ⟨α |α⟩ =

∫
d2α P (α)

+∞∑
0

⟨α |n⟩ ⟨n |α⟩

= Tr
[∫

d2α P (α) |α⟩ ⟨α|
]

= Tr(ρ̂) = 1 .

Although this property certainly must hold for a phase-space distribution such as our P (α)
to be interpretable as a classical stochastic distribution in phase-space, the P-function
assumes negative values in general. It follows that it must be considered as a quasi-
probability distribution, in the same sense in which this designation is applied to the
well-known Wigner quasi-probability distribution for example. Notice that the normally
ordered expectation value of any regular enough operator function F̂ (a†, a) will in fact
reduce to

〈
: F̂ (a†, a) :

〉
= Tr

[
ρ̂ : F̂ (a†, a) :

]
=
∫
d2α P (α)F (α∗, α) . (2.24)

The immediate question to be addressed at this point is how P (α) is calculated for
a given quantum state. In order to explain how this is done, we will first recollect a few
facts on the complex-variable Fourier transform of Cahill and Glauber [17,18]. Given a
complex-variable function g(u∗, u), its Cahill-Glauber transform is defined by

f(α∗, α) = 1
π2

∫
d2u g(u∗, u)eu∗α−uα∗

. (2.25)

It is not difficult to see that

f(α∗, α) = F
[
g(u∗, u)e2i tan(θe(u,α))

]
(α) ,
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where F [h(u∗, u)](α∗, α) denotes the standard two-dimensional Fourier transform of h(u∗, u)
and θe(u, α) is the Euclidean angle between u and α in the complex plane. As a consequence,
we see that (2.25) differs from the standard Fourier transform by a c-number factor. It
also follows that (2.25) will be well-defined for a given complex-valued function g(u∗, u)
as long it also has a well-defined standard two-dimensional Fourier transform. The usual
conditions that guarantee the existence of the Fourier transform may then be applied to
(2.25) as well: the integral in (2.25) converges if (i) |g(u∗, u)| is integrable, (ii) g(u∗, u) has
a finite number of discontinuities, and (iii) g(u∗, u) has bounded variation.

For the same reason, the Cahill-Glauber transform is also applicable to distributions
and tempered distributions. The relevant examples for our purposes will be the Dirac delta
in the complex domain and its derivatives, which are defined for test functions φ(u∗, u) in
Schwartz space by the linear functionals

⟨δ, φ⟩ ≡
∫
d2u δ(u∗, u)φ(u∗, u) = φ(0, 0) (2.26)

and

〈
δ(k,l), φ

〉
≡ (−1)k+l

〈
δ, φ(k,l)

〉
(2.27)

respectively. The superscript (k, l) in (2.27) indicates k-th order differentiation with respect
to u∗ and l-th order differentiation with respect to u. For a generic distribution F (u∗, u),
the Cahill-Glauber transform is defined through Parseval’s identity; specifically, given the
distribution F (u∗, u) acting on test functions by

⟨F, φ⟩ ≡
∫
d2u F (u∗, u)φ(u∗, u) , (2.28)

we define its Fourier transform as the distribution F̃ (z∗, z) given by

〈
F̃ , φ

〉
≡ ⟨F, φ̃⟩ , (2.29)

where φ̃(z∗, z) is the Cahill-Glauber transform of the complex-valued function φ as defined
above.

The process of inverse Fourier transformation in the sense of Cahill and Glauber is,
just as for the standard Fourier transform, completely symmetrical. That is, if g(u∗, u)
has a Fourier transform f(α∗, α) in the sense (2.25), then

g(u∗, u) =
∫
d2α f(α∗, α)eα∗u−αu∗

. (2.30)
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In particular, by noticing that the Fourier transform of the delta function as defined above
is δ̃(z∗, z) = 1

π2 , we see that we the following usual representation of the delta function
will hold:

δ(u∗, u) = 1
π2

∫
d2z ez

∗u−zu∗
. (2.31)

One also writes

δ(α− α′) = 1
π2

∫
d2u eu

∗(α−α′)−u(α−α′)∗
. (2.32)

The Fourier transforms of derivatives of the delta function are established as follows.
By definition, we have

〈
δ̃(k,l), φ

〉
≡
〈
δ(k,l), φ̃

〉
= (−1)k+l

〈
δ, φ̃(k,l)

〉
(2.33)

= (−1)k+lφ̃(k,l)(0, 0)

and

φ̃(k,l)(z∗, z) ≡ 1
π2

∂k+l

∂z∗ k∂zl

∫
d2u eu

∗z−uz∗
φ(u∗, u) (2.34)

= 1
π2

∫
d2u (−uk)u∗ l exp (u∗z − uz∗)φ(u∗, u) .

Combining these two equations leads to

〈
δ̃(k,l), φ

〉
= (−1)k+l

π2

∫
d2u (−u)ku∗ lφ(u∗, u) , (2.35)

which employing the representation

〈
δ̃(k,l), φ

〉
≡
∫
d2u δ̃(k,l)(u∗, u)φ(u∗, u) (2.36)

gives

δ̃(k,l)(u∗, u) = 1
π2 (−u)ku∗ l , ∀k, l = 0, 1, 2, · · · . (2.37)

Now, having the previous facts on the complex-variable Fourier transform of Cahill
and Glauber (2.25) in mind, we can go back to the question of how one evaluates the P-
function for a given quantum state. The following method, put forward by Mehta (see [24,25]
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and the references therein), is standard: start by noticing that ρ(−u, u) ≡ ⟨−u| ρ̂ |u⟩ can
be written after algebraic manipulation as

ρ(−u, u) = e−|u|2
∫
d2α P (α)e−|α|2eα

∗u−αu∗
,

and conclude by taking the Fourier transform that the P-function is

P (α) = e|α|2

π2

∫
C
d2u

[
e|u|2ρ(−u, u)

]
exp (u∗α− uα∗) . (2.38)

This is a very simple and practical way to evaluate the P-function. As examples of use of
formula (2.38), let us calculate the P-function for two notorious states. The results will be
used in the sequence. First, consider the coherent state ρ̂ = |β⟩ ⟨β|. In this case,

ρ(−u, u) = e−|β|2e−|u|2e−|α|2e−u∗β+uβ∗
,

from which (2.38) gives

P (α) = e|α|2e−|β|2
{∫

d2u eu
∗(α−β)−u(α−β)∗

}
.

Absorbing c-number factors, the result is

P (α) = δ(α− β) . (2.39)

The coherent states are often quoted (at least in the context of harmonic oscillators)
as the most classical-like quantum states. At the extreme opposite, consider now the number
state ρ̂ = |n⟩ ⟨n|, |n⟩ = (a†)n |0⟩, a quantum state par excellence. In this case one has

ρ(−u, u) = e−|u|2 (−u∗u)n
n! ,

from which (2.38) gives

P (α) = e|α|2

n!

{
∂2n

∂αn∂α∗n

( 1
π2

∫
d2u eu

∗α−uα∗
)}

.

In terms of derivatives of the delta function, the result is

P (α∗, α) = e|α|2

n! δ
(n,n)(α∗, α) . (2.40)

Several other examples of P-function calculations can be found in [26–28]. For very
detailed evaluations of P-functions for the classes of Gaussian states discussed in this work
(single-mode squeezed thermal and generic two-mode Gaussian states), see [29].
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2.2.2 The Cahill R-function and the Non-Classical Depth

Another very important relation for the P-function involving Fourier transformation
is that it is the inverse Fourier transform of the normally ordered characteristic function
[30,31]:

P (α) = 1
π2

∫
d2α eαβ

∗−α∗βΦ(β) .

Remember that the normally ordered characteristic function is defined as

Φ(β) = Tr
[
ρ̂eβa

†
e−β∗a

]
= ⟨: D(β) :⟩ .

The term “normally ordered” stems from the fact that normal ordering is applied above to
the displacement operator. The usual characteristic function corresponds to the standard,
Weyl-ordered displacement operator D(β):

ΦW (β) = Tr
[
ρ̂
(
eβa

†−β∗a
)]

= ⟨D(β)⟩ .

It completely characterizes the density operator ρ̂, as it is the generating function for
its statistical moments. The representation of the P-function as a integral transform of
characteristic functions is therefore very important conceptually, from the point of view of
probability theory. If the inverse Fourier transform of the standard characteristic function
was taken instead of the normally ordered one, it is not difficult to show that the resulting
phase-space function would be the Wigner quasi-probability distribution [24].

As we have mentioned above, the P -function is a very powerful computational
tool when the target is calculating averages of normally-ordered operator functions of
annihilation and creation operators. For anti-normally ordered operator functions of a, a†,
another phase-space distribution function is more convenient: the Husimi Q-function.
It is defined as the inverse Fourier transform of the anti-normally ordered characteristic
function:

ΦQ(β) = Tr
[
ρ̂e−β∗aeβa

†] = ⟨‡D(β)‡⟩ .

It can be explicitly calculated to be equal to

Q(α) = 1
π2 ⟨α| ρ̂ |α⟩ ,

in such a way that Q(α) is essentially given by the corresponding diagonal matrix element
of the density operator. As a result, it is immediate that Q(α) is normalized to unit
and that it is always positive and bounded. The Husimi Q-function exhibits then all the
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characteristics that are expected from an actual probability distribution (as opposed to a
quasi-probability distribution) in phase-space.

It is possible to show [24] that the P-function and Q-function are related by the
following equation:

Q(α∗, α) = 1
π2

∫
d2u e−|α−u|2P (u∗, u) . (2.41)

As noticed by Lee [22], the reason why theQ-function behave better than the P -function can
then be readily understood: it is because Q(z) is the result of a convolution transformation
(the convolution kernel being given by 1

π
exp(−|z − u|2)) applied to P (u). As it is known

from the classical theory of integral transforms and transfer functions, the convolution
operation can be seen as a moving average, which has the effect of producing a smoother
output function. The integral transform in equation (2.41) is a convolution transformation
with a Gaussian-like mask which increases the regularity of the output function.

In [17,18], Cahill and Glauber used (2.41) as the starting point for the definition of a
continuous 1-parameter family of phase-space distributions. Following a slight modification
by Lee [21], what is done is to introduce a non-negative real parameter τ into (2.41) to
define a general phase-space distribution as

R(α∗, α, τ) = 1
πτ

∫
d2u exp

(
− 1
τ
|α− u|2

)
P (u∗, u) (2.42a)

R(α∗, α, 0) = P (α∗, α) (2.42b)

The function R(z∗, z, τ) is called the Cahill R-function. The Q-function is the R-function
corresponding to τ = 1. For τ = 0, equation (2.42a) breaks down. In this case it is defined
by hand that the corresponding R-function is the original P -function, in order to ensure
that the one-parameter family {R(z∗, z, τ)}τ≥0 is indeed continuous.

Of course, equation (2.42a) can also be seen as a convolution transformation,
generalizing (2.41). The generalized convolution mask 1

πτ
exp(− 1

τ
|z − u|2) is broader for

larger τ , in such a way that the resulting smoothing effect on the output function is
enhanced for increasing τ . It was then a fundamental observation by Lee [21] that this
suggests using the parameter τ as a measure of how non-classical quantum states are. This
is the idea behind the non-classical depth.

The definition of the non-classical depth goes as follows. First, if a given value
of τ is large enough so that the R-function corresponding to the P-function of a given
quantum state becomes acceptable as a classical phase-space distribution – that is, it is a
positive-definite ordinary function and normalizable – then we say that τ completes the
smoothing operation (relative to the convolution transformation (2.42a)) for the considered
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state. Let Ω(ρ̂) denote the set of all τ that will complete the smoothing operation of the
P -function for ρ̂. This set is obviously bounded from below, and the non-classical depth
of ρ̂ is defined by

τm(ρ̂) ≡ inf
τ∈Ω(ρ̂)

τ . (2.43)

From this definition, we have τm = 0 for an arbitrary coherent state |β⟩. This is
compatible with the result we have seen that the P-function for such a state is a delta
function. This is desirable, since the quantum coherent state is considered to be at the
borderline of classicality. On the other hand, τ = 1 will give R ≡ Q, which is always
acceptable as a classical phase-space distribution function for a given quantum state.
This establishes an upper bound for τm, and we have 0 ≤ τm ≤ 1 for any quantum state.
Using formula (2.40) for the P-function of a number state, a considerably more involved
calculation (see for example [21, 22]) will show that τm(|n⟩ ⟨n|) = 1 for every n. So, the
non-classical depth gives a pure, number state as being as non-classical as possible.

It follows from the convolution theorem that the Fourier transform of the R-function
is given by

R̃(u∗, u, τ) = e−τ |u|2P̃ (u∗, u) ,

where P̃ denotes the Fourier transform of the P-function. If R(z∗, z, τ) is a non-negative
ordinary function, by noticing that uz∗ − u∗z = 2iIm(uz∗) we can write

|R̃(u∗, u, τ)| ≤ 1
π2

∫
d2z |euz∗−u∗z|R(z∗, z, τ)

= 1
π2

∫
d2z R(z∗, z, τ) = R̃(0, 0, τ) = 1 .

This is a necessary condition for the R-function to be an ordinary distribution function.
The Fourier transform of the R-function is frequently used to establish τm.

Another useful technique in this direction is to employ the Husimi Q-function,
which is sometimes more amenable to direct calculation. It can be written as a convolution
transform of the R-function as

Q(z∗, z) = 1
π(1 − τ)

∫
d2u exp

(
−|z − u|2

1 − τ

)
R(u∗, u, τ) ,

from which it follows that the Fourier transform of the R-function can be written as

R̃(u∗, u, τ) = e(1−τ)|u|2Q̃(u∗, u) ,
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where Q̃ is the Fourier transform of the Q-function.

2.2.3 Effectiveness of Decoherence

Although a process of von Neumann entropy production at system level indicates
decoherence as explained above, this is not the full story. The traditional set-up to
investigate environment-induced decoherence in open quantum systems also consists of
starting with an initial reduced system state displaying quantum mechanical features
(such as, for instance, a superposition state) and establishing the existence of a dynamical
time-scale after which its Wigner phase-space representation becomes positive – and thus
is interpretable as a classical stochastic distribution in phase-space. Of course, this will
only make sense when the Wigner function for the initial system state considered assumes
negative values, which is in turn recognized as corresponding to the quantum-mechanical
character of the state. For such an initial system state, the entropy generation due to
the establishment of correlations with the environment is considered to result in effective
decoherence (that is, in the full elimination of quantum mechanical features) only if this
so-called positivity threshold exists. This is the line of reasoning that leads, for example,
to the use of the volume of the negative part of the system state’s Wigner function (that is,
the phase-space volume of the region where the Wigner function assumes negative values)
as a decoherence measure [32], with an effective classicalization process meaning that this
quantity evolves to zero.

Clearly, this approach won’t work whenever the initial reduced state considered is
Gaussian, being even worst in the case of quadratic evolutions. This is the case for the
BLM model and the initial vacuum state for ρϕ that we consider. However, the problem can
be avoided by using the non-classical depth. From what we saw in the previous discussion,
computing the non-classical depth of the reduced system state ρϕ will give us a well-defined
mathematical quantifier of how distant this quantum state is from admitting a phase-space
representation interpretable as a classical probability distribution. This statement must be
taken with a grain of salt, because the very definition of the non-classical depth shows
that it is circumscribed to the so-called s-parametrized family of phase-space distributions
– that is, to the family of phase-space distributions realized by the Cahill R-function3.
Nevertheless, using the non-classical depth is already more general than looking solely at
the Wigner function (which, by the way, does belong to the s-parametrized distribution
family) and its positivity, since it takes into account a broader range of possible phase-space
functions.

The calculation of the non-classical depth for ρϕ will be addressed in the next sub-
section, where the statement that it takes into account its squeezing properties, in addition
3 Although we used τ in equation 2.42a as the parameter whose variation covers the 1-parameter family

of phase-space distributions described by the R-function, the standard convention is to dub these
anyway as the s-parametrized family of phase-space distributions.



Chapter 2. Quantifying Decoherence 32

to thermalization, will be justified. Before that, let us mention another interpretation of
the non-classical depth that provides further clarification of its meaning as a quantifier
of decoherence. According to Lee [21], the non-classical depth of a quantum state can
also be seen as quantifying the robustness of its non-classical features with respect to
quantum-mechanical superpositions. More precisely: it is equal to the minimum average
number of excitations in a single-mode thermal state that are necessary to destroy all
the non-classical effects present, by taking a quantum superposition. So, it measures the
robustness of a state’s non-classical features with respect to the addition of thermal noise.

The reason is the following. Given two states with P-functions P1(z) and P2(z),
it was shown by Glauber in [26] that the P-function P (z) of their quantum-mechanical
superposition is given by the convolution product of P1 and P2,

P (z) = 1
π2

∫
d2u P1(z − u)P2(u) .

Now, the P-function for a single-mode thermal state ρ̂th whose mean number of
excitations is ⟨nth⟩ is given by [29]:

Pth(z) = 1
⟨nth⟩

exp
(

− |z|2

⟨nth⟩

)
.

So, if we consider the superposition of ρ̂th with an arbitrary ρ̂, we see that the P-function
of this quantum state with thermal noise will be given by

P (z) = 1
⟨nth⟩

1
π2

∫
d2u exp

(
−|z − u|2

⟨nth⟩

)
P (u) . (2.44)

From (2.41), notice that this is identical to the Q-function when ⟨nth⟩ = 1. This is
interpreted as saying that noise with one thermal-like excitation is always enough to
destroy whatever non-classical effects the state ρ̂ might have.

Next, the R-function for the superposition state in (2.44) can be calculated to
be [21]

R(z∗, z, τ) = 1
τ + ⟨nth⟩

1
π2

∫
d2u exp

(
− |z − u|2

τ + ⟨nth⟩

)
P (u) , (2.45)

in such a way that the non-classical depth of the state ρ̂ with and without the addition of
thermal noise are related by

τ th
m = τm − ⟨nth⟩ .

This means that the non-classical depth of a quantum state with thermal noise decreases
by an amount exactly equal to the average number of excitations present. This is then the
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reason for the physical meaning of the non-classical depth according to Lee mentioned
above: the non-classical depth of a quantum state is equal to the minimum average number
of excitations in a single-mode thermal state that are necessary to eliminate non-classical
effects, by taking a quantum superposition.

2.2.4 The Non-Classical Depth of a STS and the Generalized Squeeze Variance

For a STS, the non-classical depth can be easily evaluated in terms of the CM. If
ϵ< denotes the smallest eigenvalue of the CM – called the generalized squeeze variance
(GSV) for the corresponding state – then it can be shown [22] that its non-classical depth
is

τm = max
(1 − 2ϵ<

2 , 0
)
. (2.46)

For the present purposes, this formula reduces the evaluation of the non-classical depth of
the observed system state ρϕ in the course of evolution to keeping track of the GSV.

There is a simple expression for the GSV of a STS such as ρϕ. In the previous
notations, it is given by the dispersion [32]

ϵ< =
(
ν + 1

2

)
e−2|Z| , (2.47)

where |Z| is the single-mode squeezing strength. This formula, albeit simple, will be
important in our analysis in the next chapter of the effectiveness of the decoherence
process for ρϕ. It shows that it is the relative ratio between the quantities ν + 1

2 and
e−2|Z|, related respectively to entropy/thermalization and single-mode squeezing, which
determines the non-classical depth. We must be able then to write it in terms of the CM.
This is done by remembering that |Z| is given by (see 2.16)

|Z| = 1
2 log

 TA
2
√
DA

+
√

T 2
A

4DA

− 1
 ,

which taking that

ν =
√
DA + 1

2 .

into account gives

ϵ< = 2DA

TA +
√
T 2
A − 4DA

=
√
DA

VA
, (2.48)
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where as before TA = trA, DA = det A, and where we define VA through 2
√
DAVA =

TA +
√
T 2
A − 4DA. The formula also shows that in our context the limiting values of the

non-classical depth have the following interpretation: a value of τm close to the limit 1
2

means that the STS ρϕ is a highly-quadrature squeezed state, while τm = 0 means that
its noise is larger than the vacuum noise in every phase-space direction and no squeezed
generalized quadrature exists.

For further details on the aspects of Gaussian information theory discussed in this
section, we refer the reader to [32–36].



35

3 Results

We are now in position to present our results. We begin by the study of the entropy
production at system level, followed by the analysis of the nonclassical depth/GSV.

3.1 Von Neumann Entropy Generation
As we discussed in the previous chapter, for a global vacuum initial condition the

von Neumann entropy S(ρϕ) of the reduced system state (or, equivalently, the EoF of
the full system state) accounts for both its degree of mixing and the amount of bipartite
entanglement. We have seen that it is given by the determinant DA of the CM A for ρϕ.
The calculation of A(η) for an initial vacuum is relatively easy because, at time η0, the
only nonzero elements of the two-mode CM are those of the diagonal, all equal to 1/2.
The determinant of the CM at time η is given by

Dvacua(η) = 1 + d2(η)λ2 + d4(η)λ4 + x2(η)z2(η)λ6

4(1 − λ2)2 , (3.1)

where d2(η) = x2z2 − 2x2w2 + 2xyzw + 2y2z2 + y2w2 and d4(η) = x2w2 + y2z2 − 2x2z2. It
is worth noticing that the entropy of entanglement increases monotonically with DA in
the interval DA ∈ [1/4,∞). By performing an asymptotic expansion for η → 0−, we find
DA ≈ A(η0;λ; k;H)η−2, where A(η0;λ; k;H) > 0 is a function only of η0, λ, k and H.

We define the asymptotic entropy generation rate as

µS = lim
η→0−

− H

ln(−Hη)S(η).

Taking into account the previous discussion we find µS = H. In fact, for large values of
DA and S(ρϕ), the approximations

S(ρϕ) ≈ 1 + ln
(√

DA + 1
2

)
≈ 1

2 lnDA

are good and we can write

µS = lim
η→0−

− H

2 ln(−Hη) lnDA(η).

Taking into account the asymptotic expansion for DA this gives us µS = H = µ, as claimed.
Thus, the maximal Lyapunov exponent and the asymptotic entropy generation rate at
reduced system level are equal.
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From this equality, we see that for late times in the superhorizon regime the von
Neumann entropy of the reduced system state relates to the maximal Lyapunov exponent
as

S(ρϕ; η) ≈ − µ

H
ln(−Hη) . (3.2)

As the µ here is also equal to H, this establishes a logarithmic divergence for the late time
entropy modulated by the Hubble parameter, S(ρϕ; η) ≈ − ln(−Hη). An exception for
this behavior will be found only if k = 0, because A(η0;λ; k;H) vanishes in this case and
we get

DA(k → 0+) =
λ2
(
H4 (η3 − η3

0)2 − 18
)

+ 9λ4 + 9
36 (λ2 − 1)2 . (3.3)

But of course, this limit is not physical.

We thus see that although the general dynamical behavior of the EoF is modulated
by the absolute value of the wavevector for earlier times, it diverges logarithmically for
late times (η → 0−) for any k ̸= 0, in a way that is completely frequency independent (also
of any other model detail) and is modulated only by the spacetime inflation rate. Its early
time behavior is markedly different for small and large values of k. In the former case, the
EoF remains small and corresponds to the determinant DA given by (3.3); in the latter case,
entanglement oscillates with an amplitude which grows with k. Entanglement oscillations,
which are characteristic of the subhorizon regime kη > 1, cease in the superhorizon regime
kη ≪ 1, when the EoF diverges asymptotically.

The result in equation (3.2) also shows that the late time entropy relates to the
actual instantaneous exponential orbit separation rate Γ(η) by

S(ρϕ; η) ≈ 1
2Γ(η), (3.4)

with Γ(η) = ln ℜ(maxi=± µi(η, η0)) in the notation of section 1.2. This, on the other hand,
displays dependence on the model details, and for a given mode it is larger for stronger
couplings. In fact, a numerical study, summarized in figure 1, shows that it increases
monotonically as a function of λ ∈ (0, 1). The dependence in k only changes its early
time oscillatory behavior. As a consequence of this relation, we see that the superhorizon
regime values of the von Neumann entropy of the system mode will then be favored by the
stronger orbital instability when we shift from the weak- to the strong-coupling extremes.
A numerical study of the EoF showed that this is indeed the case: the EoF of course
vanishes in the limit of no interaction, λ = 0, and the numerical investigation summarized
in figure 2 demonstrated that it also increases with an increasing coupling constant in the
interval λ ∈ (0, 1).



Chapter 3. Results 37

Figure 1 – Instantaneous orbit separation rate Γ(η) for an initial vacuum. We scale con-
formal time into units such that the Hubble parameter is H = 1 and choose
initial time η0 = −1. Here, k = 30. The dot-dashed black line corresponds to
λ = 0.1, the solid red line to λ = 0.3, the dashed blue line to λ = 0.5, and the
solid green line to λ = 0.999.

3.2 Effectiveness of Decoherence
Let us examine the decoherence process from the point of view of the nonclassical

depth. In the previous chapter, we saw that the GSV ϵ< determines the nonclassical depth
and is given by the ratio of

√
DA to e2|Z|, which measure thermalization (entropy) and

squeezing of the system. As ϵ< ranges from 0 to 1
2 the nonclassical depth varies from its

maximum Gaussian state value of 1
2 to its minimum, 0; for ϵ< larger than 1

2 the nonclassical
depth is zero. We also saw in equation (3.4) that the values of the entropy (and thus
of

√
DA) increase in the superhorizon regime when the orbital instability measured by

Γ(η) gains in importance, as we shift from the weak- to the strong-coupling limit. This
indicates that orbital instability will influence the nonclassical depth asymptotics. We
will quantify this influence, by evaluating the response of the nonclassical depth when we
change between the weak- and strong-coupling regimes.

From equation (2.48), we have to analyze the late time behavior of
√
DA and VA.

Their asymptotic expansions can be calculated to be of the form
√
DA(η → 0) = − 1

η
P+O(1)

and VA(η → 0) = − 1
η
Q + O(1), where the coefficients P and Q are functions of λ, k,H.

We see then that the balance between these quantities is going to be determined by P,Q.
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Figure 2 – Entanglement of formation (EoF) as a function of the η for an initial vacuum.
We scale conformal time into units such that the Hubble parameter is H = 1
and choose initial time η0 = −1. Entanglement oscillations are seen for initial
states in the subhorizon regime (k = 20, the dot-dashed purple line corresponds
to λ = 9

10 , the dashed blue line to λ = 1
10), but not for initial states in the

superhorizon regime (k = 1
10 , the solid black line corresponds to λ = 1

10 ,
the dotted red line to λ = 9

10). The Entanglement of Formation diverges
asymptotically in all cases.

The detailed form of these coefficients is very cumbersome and we will omit the
details. For simplicity, we will assume henceforth that conformal time has been scaled
into units such that the Hubble parameter is H = 1 and choose initial time η0 = −1,
corresponding to the standard cosmic time instant t = 0. The resulting asymptotic
expansion for ϵ< =

√
DA(η)
VA(η) (eq. (2.48)) is

ϵ<(η → 0) = λ2

2k6(1 − λ2)2
G1 +G2

G
, (3.5)

where

G1 = G× (k cos k − sin k)2, (3.6)

G2 = 1
2k

4 sin2(k)[(1 − λ2)2k4 sin2(k)

+ (1 + λ2)(k cos k − sin k)2] . (3.7)

and

G = 1
2
[
(1 + λ2)k4 sin2(k) + (k cos k − sin k)2

]
. (3.8)
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With this formula available, let us begin by examining the conditions for asymptotic
quadrature squeezing. From eq. (3.5), the condition ϵ<(η → 0) < 1

2 reduces to a constraint
on λ and k,

λ2

(1 − λ2)2 < k6 G

G1 +G2
. (3.9)

In the weak-coupling regime λ → 0, the right-hand side of eq. (3.9) has a positive finite
limit which never exceeds 9

10 . Since the left-hand side tends to zero as λ → 0, it follows that
(3.9) will be satisfied for every k as long as λ is small enough. Furthermore, it is not difficult
to see from the expressions for G, G1, and G2 that the right-hand side of (3.9) diverges
with increasing k, so that taking initial length scales on the particle horizon, k = 1, or
deeper, k > 1, will lead to a larger asymptotic quadrature squeezing. Thus, the typical
output reduced system state in the weak-coupling limit is a highly quadrature-squeezed
state. This is consistent with what is expected, for example, for isolated massless inflaton
fluctuations [2].

On the other hand, the condition for absence of quadrature squeezing (zero non-
classical depth) is ϵ< ≥ 1

2 , which leads to

λ2

(1 − λ2)2 ≥ k6 G

G1 +G2
. (3.10)

Since the left-hand side of (3.10) diverges as λ → 1, this inequality can hold in the strong-
coupling limit as long as we place a restriction in k. In fact, the limit of k6G/(G1 +G2) as
λ → 1 is a positive function of k which diverges when k is equal to one of the roots of
the equation k cos(k) = sin(k) and when k → ∞. Nonetheless, experimenting numerically
with the coupling parameter shows that taking λ close enough to 1 guarantees (3.10) to
hold up to considerably large values of k. Thus, the asymptotic reduced system state ρϕ,∞
here is qualitatively very different from the weak-coupling case. As we already observed,
taking the |λ| → 1 limit increases the instantaneous exponential orbit separation rate
of the model, reflecting in larger entropy values. In fact, remember that we showed that
although the EoF presents a logarithmic divergence for nonzero coupling, its growth
increases as λ varies from λ ≈ 0 to λ ≈ 1. The numerical analysis, summarized in figure 3
(see the next page), shows that for |λ| → 1 this orbit separation rate will become strong
enough to render the asymptotic state ρϕ,∞ quadrature-squeezing free except for very
small subhorizon length scales. In conclusion, we see that in the strong-coupling cases
when τm(ρϕ,∞) = 0, decoherence is sufficiently effective to make the noise for the output
state exceed the vacuum noise in all phase-space directions. This should be compared with
the results described in [5].
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Figure 3 – GSV Asymptotics. The coupling is λ = 0.999999. (a) Top: the solid black line
corresponds to k = 1000, with associated initial length scale being 0.1% of the
Hubble radius and ϵ<(η → 0) > 10. The solid red line corresponds to k = 500,
the dotted blue line to k = 350, and the dot-dashed green line to k = 350. (b)
Bottom: for initial length scales of order ≈ 1%H, ϵ<(η → 0) is huge, ≈ 106.
The dot-dashed green line corresponds to k = 35, the dotted blue line to k = 40
and the solid red line to k = 50. The solid black line is practically the Hubble
radius, k = 1.5; in this case ϵ<(η → 0) ≈ 1011.
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4 Discussion

We examined in this work the relation between Lyapunov exponents and decoher-
ence in de Sitter spacetime with spatially flat simultaneity hypersurfaces. We considered a
quadratic example model, the BLM model, which reduces modewise to a model of nonau-
tonomous coupled harmonic oscillators. Assuming an initial vacuum, we demonstrated
that there is a relationship here between classical orbital instability as measured by the
maximal Lyapunov exponent µ and the von Neumann entropy generation rate for the
reduced subsystem, µS. We found that these are equal, leading to a relation between the
entropy and the exponential orbit separation in the late times superhorizon regime of the
form

S(ρϕ; η) ≈ − µ

H
ln(−Hη) .

Thus, the von Neumann entropy presents in this regime a logarithmic divergence
modulated by the background spacetime inflation rate given by the Hubble parameter
H and proportional to the maximal Lyapunov exponent. In the present case, the above
relation reduces to a logarithmic divergence of S(ρϕ) depending only on H. But if such a
relationship between entropy and µ holds in greater generality, then other simple interacting
processes for the system presenting nonlinearities or other more complicated unstable
classical counterparts can lead to greater entropy generation rates. We believe that the
example here is then instructive in the sense that it gives an idea of how we can expect
the linear relationship between entropy and the maximal Lyapunov exponent of Zurek-Paz
type in Minkowski spacetime [6] to be altered in de Sitter spacetime.

The results above consider the exponential orbit separation rate only in the limit
and are seen to be independent of the model parameters. But when we consider the actual
instantaneous orbit separation rate, we see that it is favored for any given mode by stronger
couplings. Thus, we can actually illustrate the effect of stronger orbital instability in the
decoherence process of the system even within the present model. We have seen that the
late times von Neumann entropy is proportional to the late times instantaneous orbit
separation rate. So, is the corresponding entropy generation enough to result in classicality?
In this direction, we have also analyzed the superhorizon behavior of the nonclassical depth,
which measures the emergence of a phase-space representation of the system oscillator
quantum state corresponding to a stochastic distribution. In the present case, it depends
upon a competition between the effect of single-mode squeezing and thermalization, as in
equation (2.47). This indicates that an influence on the nonclassical depth asymptotics
will be present when the orbital instability measured by Γ(η) gains in importance, as we
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shift from the weak- to the strong-coupling limit. We verified this in quantitative terms,
by evaluating the response of the nonclassical depth when we change between the weak-
and strong-coupling regimes. We showed that in the strong-coupling limit all modes of
the observed field evolve into a state with noise larger than the vacuum noise in every
phase-space direction (zero nonclassical depth) except for the very high-frequency sector,
corresponding to very large k.

This analysis offers then more supporting evidence that increasing the classical orbit
instability will increase the effectiveness of classicalization. It suggests that if cosmological
perturbations participate in simple but realistic physical processes during a dS stage of
expansion, the nonlinear interactions involved could lead to a very significant contribution
to their quantum-to-classical transition. These nonlinearities can lead to very complicated
dynamics, and increase the rate in which the system explores its phase-space. From what
we have learned, this can have a sensitive impact on thermalization at observed system
level and make quantum correlation effects very difficult to show up on the statistics of the
classicalized output state (this has been the subject of several studies in the Minkowski
case; see [8]). It is remarkable from an information-theoretic point of view that this can
already be seen for a system of coupled harmonic oscillators over expanding spacetimes.

This type of contribution to entanglement entropy generation for cosmological
fields has also been discussed, in the different context of isolated self-interacting scalar
field perturbations, in [37]. The issue of the quantum-to-classical transition of cosmological
perturbations is indeed a very subtle one. If quantum-mechanical features in the correlation
structure of fields are to survive a period of inflationary spacetime expansion and help
us understand through the cosmic microwave background sky the early history of the
Universe, it is determinant that we understand in a clear way the underlying decoherence
mechanisms.
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APPENDIX A – Covariance Matrix Dynamics

We collect here the expressions of the functions fmn
k⃗ij

(η, η0) in (2.3). They have
been obtained by using the Heisenberg picture solution for the BLM model expressed
in equation (1.8), section 1.2. The expressions are (we drop the index k⃗ and the time
argument):

f 11
11 = x2 f 12

11 = 2 xy
1−λ2 f 14

11 = 2 λxy
1−λ2

f 22
11 =

(
y

1−λ2

)2
f 24

11 = 2 λy2

(1−λ2)2 f 44
11 =

(
λy

1−λ2

)2

f 11
12 = xz f 22

12 = yw
1−λ2 f 34

12 = − λ2yz
1−λ2

f 12
12 = xw + yz

1−λ2 f 13
12 = −λxz f 23

12 = − λyz
1−λ2

f 14
12 = λyz

1−λ2 f 24
12 = λyw

1−λ2

f 11
22 = z2 f 22

22 = w2 f 33
22 = λ2z2

f 12
22 = 2zw f 13

22 = −2λz2 f 23
22 = −2λzw

f 12
13 = λxy

1−λ2 f 13
13 = x2 f 14

13 = xy
1−λ2

f 22
13 = λy2

(1−λ2)2 f 23
13 = xy

1−λ2 f 24
13 =

(
y

1−λ2

)2
+
(

λy
1−λ2

)2

f 34
13 = λxy

1−λ2 f 44
13 = λy2

(1−λ2)2

f 11
14 = −λxz f 13

14 = xz f 14
14 = xw − λ2yz

1−λ2

f 12
14 = − λyz

1−λ2 f 23
14 = yz

1−λ2 f 24
14 = yw

1−λ2

f 34
14 = λyz

1−λ2 f 44
14 = λyw

1−λ2

f 12
23 = λyz

1−λ2 f 13
23 = xz f 14

23 = yz
1−λ2

f 22
23 = yw

1−λ2 f 23
23 = xw − λ2yz

1−λ2 f 24
23 = yw

1−λ2

f 33
23 = −λxz f 34

23 = − λyz
1−λ2

f 11
24 = −λz2 f 13

24 = z2 + λ2z2 f 14
24 = zw

f 12
24 = −λzw f 23

24 = zw f 24
24 = w2

f 33
24 = −λz2 f 34

24 = −λzw
f 22

33 =
(

λy
1−λ2

)2
f 23

33 = 2 λxy
1−λ2 f 24

33 = 2 λy2

(1−λ2)2

f 33
33 = x2 f 34

33 = xy
1−λ2 f 44

33 =
(

y
1−λ2

)2

f 12
34 = − λ2yz

1−λ2 f 23
34 = λyz

1−λ2 f 24
34 = λyw

1−λ2

f 13
34 = −λxz f 33

34 = xz f 34
34 = xw + yz

1−λ2

f 14
34 = − λyz

1−λ2 f 44
34 = yw

1−λ2

f 11
44 = λ2z2 f 13

44 = −2λz2 f 14
44 = −2λzw

f 33
44 = z2 f 34

44 = 2zw f 44
44 = w2

We observe that fmn21 = fmn12 , fmn43 = fmn34 , fmn31 = fmn13 , fmn32 = fmn14 , fmn41 = fmn23 , fmn42 = fmn24 .
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Otherwise, functions fmnij not appearing above are null.
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