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ABSTRACT 

 

Styrene (ST) is one of the most important monomers produced by the 

chemical industry, used as a feedstock in a variety of polymer products. Direct 

dehydrogenation of ethylbenzene (EB) to styrene is the most usual alternative for 

commercial production, a process in which the reactor is considered the most 

critical equipment. Therefore, efforts are directed towards enhancing its 

efficiency, in which simulation and numerical optimization are relevant routes. In 

this work, steady-state adiabatic axial-flow and radial-flow catalyst 

dehydrogenation reactors were simulated based on an intrinsic realistic 

heterogeneous kinetic model, which would adequately encompass the complex 

influence of the decision variables in the system. Once the results were validated, 

two routes for optimizing performance were explored: gradient-based 

optimization and multi-objective evolutionary algorithms. In the first approach, 

axial and radial-flow designs were compared and the impact of operating 

temperatures, catalyst loading, and pressure on reactor performance was 

investigated. In the second approach, the analysis was extended to the impact of 

steam-to-ethylbenzene feed ratio, which is a relevant heat consumer in the 

process, and the number of catalyst beds, besides an additional analysis of the 

decision variables aforementioned. Several optimal scenarios were obtained, 

which can be used in an integrated process analysis to define suitable operational 

conditions according to the specific context of industrial units. Furthermore, the 

contribution of the current study includes making the DE algorithms, orthogonal 

collocation, and reactor simulation implemented code available in public code 

repositories and Python packages. 

Keywords: Multi-objective optimization; Evolutionary algorithms; Differential 

Evolution; Styrene; Reaction engineering. 

  



 

RESUMO 

 

O estireno (ST) é um dos monômeros mais importantes produzidos pela indústria 

química, utilizado como matéria-prima em uma variedade de polímeros. A 

desidrogenação direta do etilbenzeno (EB) em estireno é a alternativa mais usual 

para a produção comercial, processo no qual o reator é considerado o 

equipamento mais crítico. Portanto, os esforços são direcionados para aumentar 

sua eficiência, na qual a simulação e a otimização numérica desempenham um 

papel importante. Neste trabalho, reatores adiabáticos de desidrogenação 

catalítica de fluxo axial e radial em estado estacionário foram simulados com 

base em um modelo cinético heterogêneo intrínseco realista, que abrange 

adequadamente a complexa influência de variáveis de decisão do sistema. Uma 

vez validados os resultados, dois caminhos para otimizar o desempenho foram 

explorados: otimização convexa utilizando algoritmos baseados em gradiente e 

algoritmos evolucionários multiobjetivo. Na primeira abordagem, os projetos de 

fluxo axial e radial foram comparados e o impacto das temperaturas de operação, 

carga do catalisador e pressão no desempenho do reator foi investigado. Na 

segunda abordagem, a análise foi estendida para o impacto da razão de 

alimentação entre vapor e etilbenzeno, que é um consumidor de calor relevante 

no processo, como também para o número de leitos de catalisadores, além de 

uma análise adicional das variáveis de decisão já mencionadas. Foram obtidos 

diversos cenários ótimos, que podem ser utilizados em uma análise integrada de 

processos para definir condições operacionais adequadas de acordo com o 

contexto específico das unidades industriais. Além disso, a contribuição do 

presente estudo inclui disponibilizar os algoritmos de otimização implementados, 

o código de colocação ortogonal e de simulação de reatores em repositórios 

públicos de código e pacotes Python. 

Palavras-chave: Otimização multi-objetivo; Algoritmos evolucionários; Evolução 

diferencial; Estireno; Cálculo de reatores. 
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1. INTRODUCTION 

 

Styrene (ST) is one of the most important monomers produced by the 

chemical industry today (Chevron Phillips Chemical, 2021). It is used as a 

feedstock in a variety of polymer products: thermoplastics, elastomers, 

dispersions, and thermoset plastics (James & Castor, 2011). Its annual 

production is over 30 million tonnes per year (Business Wire, 2021) and a steady 

increase is expected in the next years, mainly in the part of the world knowing 

rapid development, such as China and Southern Asia (Dimian, et al., 2019). 

The industry is capital-intensive and characterized by economies of scale. 

Industrial units with a capacity of over 600,000 tonnes of ST per year have been 

reported (Focus on Surfactants, 2020; ENI-Versalis, s.d.). This reinforces the 

impact of economic returns by process improvements, as in the present 

competitive styrene market even small differences in raw materials and utility 

consumption can heavily influence profit (ENI-Versalis, s.d.). 

Direct dehydrogenation of ethylbenzene (EB) to styrene accounts for 85% 

of commercial production. The reaction is carried out in the vapor phase with 

steam over a catalyst consisting primarily of iron oxide. The reaction is 

endothermic and can be accomplished either adiabatically or isothermally. Both 

methods are used in practice (James & Castor, 2011). The reactor is considered 

the most critical equipment of the process (Yee, et al., 2003), thus efforts are 

directed to enhance its efficiency. 

One relevant strategy for process improvement is developing new catalyst 

technology, which is the focus of several studies (Wang, et al., 2021; Fedotov, et 

al., 2021; Sancheti & Yadav, 2021). Other strategies involve reactor modeling, 

simulation, and optimization (Sundaram, et al., 1991; Yee, et al., 2003; Babu, et 

al., 2005; Tarafder, et al., 2005; Gujarathi & Babu, 2010). Improvements in 

reactor selectivity and conversion are particularly desirable not only for direct 

economic returns but for environmental, social, and governance strategies as 

well, through minimizing natural resource consumption, as the manufacture of 

styrene via ethylbenzene consumes more than 50% of the commercial benzene 

in the world (Chen, 2006). 

Maximizing styrene conversion and selectivity are conflicting objectives, 

as increasing conversion increases the production of by-products, lowering 
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selectivity. They can be combined in a multi-objective optimization (MOO) 

problem. Such problems can be solved using different approaches, that are 

usually distinguished between two broad categories (Rangaiah, et al., 2020). The 

first includes strategies that transform the main problem into single-objective 

subproblems solved by established single-objective algorithms. Two common 

techniques following this approach are the weighted sum and ε-constraint 

techniques. Alternatively, some strategies solve the conflicting objectives 

simultaneously. Techniques following this approach are metaheuristics (or 

stochastic algorithms) that are mostly population-based and include evolutionary 

algorithms (Rangaiah, et al., 2020).  

Evolutionary algorithms (EAs) can overcome some of the disadvantages 

of gradient-based optimization techniques, such as convergence dependence on 

to initial solution and getting stuck at suboptimal points (Deb, 2004). However, 

non-gradient-based evolutionary methods used to solve MOO problems can lead 

to large numbers of objective function evaluations (Rangaiah, et al., 2020), which 

can be computationally expensive. Although stochastic methods are time-

consuming, they have become popular due to their applicability to any type of 

optimization problem, reliability in locating the global optimum, relative simplicity 

of algorithms, and easy adaptability for MOO (Rangaiah & Sharma, 2017). 

Some of the most popular multi-objective evolutionary algorithms 

(MOEAs) are NSGA-II (Deb, et al., 2002), SPEA2 (Zitzler, et al., 2001), MOEA/D 

(Zhang & Li, 2007), and GDE3 (Kukkonen & Lampinen, 2005). Differential 

evolution (DE) (Storn & Price, 1997) was originally designed for scalar objective 

optimization. Nevertheless, because of the simple implementation and efficient 

problem-solving quality of DE, it is used to solve several multi-objective 

optimization problems (Ayaz, et al., 2020). Multi-objective differential evolution 

algorithms are sometimes referred to as MODE, denoting either a collection of or 

specific algorithms (Babu & Anbarasu, 2005; Xue, et al., 2003; Babu, et al., 2005), 

although implementations are usually different. Besides GDE3, some examples 

are PDE (Abbass, et al., 2001), DEMO (Robič & Filipič, 2005), GAMODE (Cheng, 

et al., 2016), NSDE (Iorio & Li, 2004), and I-MODE (Sharma & Rangaiah, 2013). 

Relevant studies have explored applications of MOEAs to chemical 

engineering processes (Fierens, et al., 2015; Bakhshi Ani, et al., 2015; Reddy, et 

al., 2017; Chaudhari & Garg, 2019; Li, et al., 2020), of which some have been 
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directed toward the styrene reactor, each with a specific focus. Yee et al. (2003) 

are among the first authors to propose formulating the optimization of styrene 

reactors as a multi-objective problem. Their study used the first version of NSGA 

(Srinivas & Deb, 1994) and considered production, yield (conversion), and 

selectivity as objectives. Their results motivated the study proposed by Tarafder 

et al. (2005), in which other processes of the manufacturing line were included in 

the decision-making, and the improved algorithm NSGA-II (Deb, et al., 2002) was 

adopted. Babu et al. (2005) are among the first to apply an algorithm based on 

DE (MODE) to this problem, which has presented promising results compared to 

the genetic algorithm (GA) reproduction operator. Later, Gujarathi & Babu (2010) 

compared the performances of pseudo-adiabatic and steam-injected operations 

using MODE. Recently, Chaudhari et al. (2022) demonstrated the advantages of 

NSGA-III (Deb & Jain, 2014; Jain & Deb, 2014) over NSGA-II (Deb, et al., 2002) 

when handling more than two objectives in the same problem. However, all these 

studies have adopted the reaction model and reactor design proposed by Sheel 

& Crowe (1969), which considers catalyst technology, kinetic parameters, and 

industrial practice of the late 1960s and early 1970s, although significant 

advances have occurred in these areas, which gives a margin for revisiting the 

problem. 
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2. OBJECTIVES 

 

2.1. GENERAL OBJECTIVE 

 

The objective of the current study was to reproduce realistic styrene 

reactor simulations based on fundamental equations from literature and 

investigate the impact of process design aspects and operating conditions on 

reactor performance. 

 

 

2.2. SPECIFIC OBJECTIVES 

 

- Apply phenomena-based equations to simulate reactors of distinct 

configurations to compare the performances of reactors with distinct flow-

patterns and design aspects. 

- Apply gradient-based and evolutionary algorithms to optimize reactors in 

different scenarios and investigate the impact of relevant decision-making 

aspects on reactor performance. 

- Implement and make available reproducible code for future numerical 

simulation and optimization. 
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3. LITERATURE REVIEW 

 

3.1. INDUSTRIAL PROCESS 

 

Styrene is commercially produced by the dehydrogenation of 

ethylbenzene over an iron oxide catalyst in the presence of steam. Steam is used 

to supply heat for this endothermic reaction and to lower the reactants' partial 

pressure. In addition, it protects the catalyst from coking and is applied to in situ 

regeneration of activity (Dimian & Bildea, 2019). Increasing the process steam 

that feeds the reactor helps to increase the conversion of styrene and decrease 

the production of undesirable byproducts. However, it increases the cost of 

supplying the process steam, and it increases the cost of fuel needed in the 

furnace to heat the steam and EB to the desired reactor inlet temperature 

(Luyben, 2011). Moreover, the choice of the steam-to-ethylbenzene ratio must 

consider its impact on the lifetime of the catalyst (Lee & Froment, 2008). 

According to Chen (2006), reduced downtime and increased production due to 

an extended catalyst lifetime are more important than savings in catalyst cost. 

Exergy analysis indicated that the saturated steam is responsible for the largest 

exergy losses which amount to 60% of the total (Ali & Hadj-Kali, 2018). Coke 

formation is related to catalyst deactivation by site coverage and pore blocking 

(Lee, 2005). Its mechanisms are precisely described by Devoldere & Froment 

(1999). 

The dehydrogenation reaction can be accomplished either adiabatically or 

isothermally. Both methods are used in practice, although over 75% of all 

operating styrene plants carry out the dehydrogenation reaction adiabatically 

(James & Castor, 2011). In principle, isothermal dehydrogenation has the 

advantage of avoiding a very high temperature at the reactor inlet and maintaining 

a sufficiently high temperature at the reactor outlet. In practice, these advantages 

are negated by formidable heat-transfer problems (Chen, 2006). 

The reactors usually contain large adiabatic beds of catalyst. Vapor flow 

is either downward (axial flow, Figure 1A) or radial outflow (Figure 1B). The gas 

flow, represented for both configurations in Figure 1, might be insightful to 

understanding the mathematical model presented in the following sections. Beds 

may be staged, with intermediate heaters or intermediate addition of hot gases 
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to supply the heat of reaction (McKetta Jr, 1993). Most adiabatic reactors are 

radial reactors (Rase, 2000). They are used for ethylbenzene dehydrogenation 

because their smaller pressure drops allow the reactors to operate at a lower 

pressure than axial-flow (Li, 2007). Since the volumetric flow increases as the 

reaction proceeds due to the increase in moles, the flow is directed from the 

inside of the annular bed radially outward (Rase, 2000). 

Commercial plants typically have two or three catalyst beds in series, each 

contained in individual vessels, with external or internal interstage reheaters (Li, 

2007). Önal, et al. (1990) studied three axial-flow adiabatic reactors in series with 

steam injection before each. Lee & Froment (2008) simulated a series of three 

catalytic beds with both axial-flow and radial-flow, the same configurations 

analyzed by the current study. 

 

 

Figure 1 – Simplified cross-sectional schematic representation of gas flow in axial-flow (A) and 
radial-flow (B) catalytic beds. 

 

 

The reactors are run at the lowest pressure that is safe and practicable. 

Some units operate under vacuum, while others operate at low positive pressure 

(James & Castor, 2011). Earlier dehydrogenation reactors were designed for 

operation above atmospheric pressure, at about 138 kPa (20 psia), so that a 

compressor would not be required to remove hydrogen from the condensed 
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reactor effluent. Since the 1970s, vacuum design has become standard because 

the benefits of high conversion and selectivity achievable and low dilution steam 

required at low pressure outweigh the cost of the compressor (Chen, 2006). 

Pressures of 41 kPa (6 psia) or lower at the reactor outlet have been designed 

(Chen, 2006). Nevertheless, in the current study, it was used 0.5 bar as the outlet 

pressure limit, following values reported by Rase (2000) for most recent reactors. 

Feed temperatures are up to 640°C (Lee, 2005; James & Castor, 2011). 

Although higher temperatures achieved with steam addition favor the equilibrium 

conversion to styrene, side reactions become significant at higher reactor 

temperatures. The resulting high flow rates can lead to large pressure drops 

across tubular flow reactors (Snyder & Subramaniam, 1994). 

 

 

3.2. KINETIC MODELING 

 

The development of kinetic models is essential to be able to simulate 

different operational conditions proposing conceptual analysis and process 

improvements. Several models have been proposed over the years with different 

complexity levels and are suitable for distinct catalyst technology. Some models 

consider intraparticle diffusion and component gradients, while others do not. 

These approaches are usually distinguished into heterogeneous and 

pseudohomogeneous respectively. 

Some examples of relevant pseudohomogeneous models are those 

proposed by Carra and Forni (1965), Sheel & Crowe (1969), and Sheppard, et 

al. (1986). In contrast to the pseudohomogeneous approach, Elnashaie et al. 

(1993) developed a rigorous heterogeneous reaction model based on the dusty 

gas model using effective reaction rates derived from pseudohomogeneous 

models. This approach was later applied by Abdalla, et al. (1994) comparing the 

performances of different catalysts. 

Lee (2005) proposed the intrinsic heterogeneous model accounting for 

both catalytic and thermal reactions over a modern industrial catalyst, which was 

applied in the present study. The heterogeneous kinetic models have the 

advantage of being valid for variable catalyst pellet diameter, although they are 

more computationally expensive than pseudohomogeneous models. Lee (2005) 
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suggests that an intrinsic kinetic model would allow predicting reactor 

performance precisely beyond the operating range of the production unit. These 

results were also published by Lee & Froment (2008). 

The kinetic model parameters adopted (Lee, 2005; Lee & Froment, 2008) 

were obtained for a high-performance catalyst (Dimian & Bildea, 2019). The 

results obtained using these parameters agree with values reported in industrial 

practice of conversion in the range between 60 to 75% and the selectivity of 85 

to 95% (Rase, 2000). It corresponds to substantially superior performance and 

more recent technology than considered previously in optimization studies (Babu, 

et al., 2005; Yee, et al., 2003; Tarafder, et al., 2005; Gujarathi & Babu, 2010; 

Chaudhari, et al., 2022), which refer back to either the parameters of the model 

proposed by Sheel & Crowe (1969) or the derived parameters for the 

corresponding heterogeneous model proposed by Abdalla et al. (1994). Using 

values referring to those kinetic models, relatively poor selectivity has been 

reported, limiting the optimal conversion to 50 to 60% (Dimian & Bildea, 2019). 

 Four reactions are considered in this model: the main reaction of 

ethylbenzene (EB) dehydrogenation into styrene (ST) also producing H2, and 

three side reactions producing benzene (BZ), ethylene (C2H4), toluene (TO), and 

methane (CH4). A reaction scheme is presented in Figure 2. 

 

 

Figure 2 – Reaction scheme proposed by Lee (2005) used in this study. 
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𝐸𝐵
𝑘1
↔ 𝑆𝑇 + 𝐻2 

(R1) 

 

𝐸𝐵
𝑘2
→ 𝐵𝑍 + 𝐶2𝐻4 

(R2) 

  

𝐸𝐵 + 𝐻2
𝑘3
→ 𝑇𝑂 + 𝐶𝐻4 

(R3) 

  

𝑆𝑇 + 2𝐻2
𝑘4
→ 𝑇𝑂 + 𝐶𝐻4 

(R4) 

 

The thermal reactions occur in the zones without catalyst or in the void 

fraction of the catalyst bed itself (Lee & Froment, 2008). They are presented in 

Equations 1-3 and expressed in terms of kmol/(m³·h) of EB consumed. The 

equilibrium coefficient Keq is presented in Equation 4. The same equilibrium 

coefficient is considered for both thermal and catalytic reactions. Catalytic 

reaction rates are presented in Equations 5-8 and are expressed in terms of 

kmol/(kgcat·h) of EB consumed, except for Equation 8 which is in terms of 

kmol/(kgcat·h) of ST consumed. The Gibbs energy change of reaction ∆G0 at 

temperature T was calculated based on values of heat capacity coefficients, 

standard heat of formation and standard Gibbs energy of formation of the 

components presented by Reid, et al. (1987). The kinetic and adsorption 

coefficients follow the Arrhenius equation with parameters presented in Table 1. 

 

𝑟𝑡1 = 𝑘𝑡1 (𝑃𝐸𝐵 −
𝑃𝑆𝑇𝑃𝐻2
𝐾𝑒𝑞

)   (1) 

 

𝑟𝑡2 = 𝑘𝑡2𝑃𝐸𝐵 (2) 

 

𝑟𝑡3 = 𝑘𝑡3𝑃𝐸𝐵 (3) 

 

𝐾𝑒𝑞 = 𝑒𝑥𝑝 (
−∆𝐺0

𝑅𝑇
) (4) 
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𝑟𝑐1 =

𝑘𝑐1𝐾𝐸𝐵 (𝑃𝐸𝐵 −
𝑃𝑆𝑇𝑃𝐻2
𝐾𝑒𝑞

)

(1 + 𝐾𝐸𝐵𝑃𝐸𝐵 + 𝐾𝑆𝑇𝑃𝑆𝑇 + 𝐾𝐻2𝑃𝐻2)
2 

(5) 

 

𝑟𝑐2 =
𝑘𝑐2𝐾𝐸𝐵𝑃𝐸𝐵

(1 + 𝐾𝐸𝐵𝑃𝐸𝐵 + 𝐾𝑆𝑇𝑃𝑆𝑇 + 𝐾𝐻2𝑃𝐻2)
2 (6) 

 

𝑟𝑐3 =
𝑘𝑐3𝐾𝐸𝐵𝑃𝐸𝐵𝐾𝐻2𝑃𝐻2

(1 + 𝐾𝐸𝐵𝑃𝐸𝐵 + 𝐾𝑆𝑇𝑃𝑆𝑇 + 𝐾𝐻2𝑃𝐻2)
2 (7) 

 

𝑟𝑐4 =
𝑘𝑐4𝐾𝑆𝑇𝑃𝑆𝑇𝐾𝐻2𝑃𝐻2

(1 + 𝐾𝐸𝐵𝑃𝐸𝐵 + 𝐾𝑆𝑇𝑃𝑆𝑇 + 𝐾𝐻2𝑃𝐻2)
2 (8) 

 

In Equations 1-8, Pj is the partial pressure of component j in bar, kti is the 

kinetic coefficient of thermal reaction i in kmol/(m³·bar·h), kci is the kinetic 

coefficient of catalytic reaction i in kmol/(kgcat·h), Kj is the adsorption coefficient 

of component j in bar-1. The partial pressures consider ideal gas conditions by the 

following equation: 𝑃𝑗 =
𝐹𝑗

𝐹𝑡
𝑃, in which Fj is the molar flow of component j and Ft 

the total molar flow in kmol/h. 
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Table 1 – Kinetic parameters for reactions and adsorption (Lee & Froment, 2008). 

Thermal Reactions 

Coefficient A [kmol/(m³ h bar)] Ea [kJ/mol] 

kt1 2.2215 x 1016 272.23 

kt2 2.4217 x 1020 352.79 

kt3 3.8224 x 1017 313.06 

Catalytic Reactions 

Coefficient A [kmol/(kgcat·h)] Ea [kJ/mol] 

kc1 4.594 x 109 175.38 

kc2 1.060 x 1015 296.29 

kc3 1.246 x 1026 474.76 

kc4 8.024 x 1010 213.78 

Adsorption 

Coefficient A [bar-1] ΔHa,j [kJ/mol] 

KEB 1.014 x 10-5 -102.22 

KST 2.678 x 10-5 -104.56 

KH2 4.519 x 10-7 -117.95 

 

 

3.3. CONTINUITY, ENERGY, AND MOMENTUM 

 

The continuity, energy, and momentum equations were defined 

considering the system operating at steady-state. 

The continuity equations for each component follow the basic format 

presented by Equation 9. 

 

𝑑𝐹𝑗

𝑑𝑊
= 
휀𝑏
𝜌𝑏
∑𝑟𝑡𝑖𝑗
𝑖

+∑𝜂𝑖𝑟𝑐𝑖𝑗
𝑖

 (9) 

 

In which, W is the catalyst mass in kg, rtij is the rate of generation of 

component j in thermal equation i in kmol/(m³·h), rcij is the rate of generation of 

component j in catalytic equation i in kmol/(kgcat·h), ηi is the effectiveness factor 

of the catalytic reaction i, ρb is the bulk density of the catalytic bed in kg/m³, εb is 

the bulk void fraction of the catalytic bed. 

For each component, are expressed by Equations 10-15. 
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𝑑𝐹𝐸𝐵
𝑑𝑊

= 
휀𝑏
𝜌𝑏
(−𝑟𝑡1 − 𝑟𝑡2 − 𝑟𝑡3) + (−𝜂1𝑟𝑐1 − 𝜂2𝑟𝑐2 − 𝜂3𝑟𝑐3) (10) 

 

𝑑𝐹𝑆𝑇
𝑑𝑊

= 
휀𝑏
𝜌𝑏
(𝑟𝑡1) + (𝜂1𝑟𝑐1 − 𝜂4𝑟𝑐4) (11) 

 

𝑑𝐹𝐻2
𝑑𝑊

= 
휀𝑏
𝜌𝑏
(𝑟𝑡1 − 𝑟𝑡3) + (𝜂1𝑟𝑐1 − 𝜂3𝑟𝑐3 − 2𝜂4𝑟𝑐4) (12) 

 

𝑑𝐹𝐵𝑍
𝑑𝑊

=
𝑑𝐹𝐶2𝐻4
𝑑𝑊

=
휀𝑏
𝜌𝑏
𝑟𝑡2 + 𝜂2𝑟𝑐2 (13) 

 

𝑑𝐹𝑇𝑂
𝑑𝑊

=
𝑑𝐹𝐶𝐻4
𝑑𝑊

=
휀𝑏
𝜌𝑏
𝑟𝑡3 + (𝜂3𝑟𝑐3 + 𝜂4𝑟𝑐4) (14) 

 

𝑑𝐹𝐻2𝑂
𝑑𝑊

= 0 (15) 

 

The energy balance is expressed by Equation 16. 

 

𝑑𝑇

𝑑𝑊
= 
∑−𝛥𝐻𝑟𝑖 ( 

휀𝑏
𝜌𝑏
𝑟𝑡𝑖 + 𝜂𝑖𝑟𝑐𝑖)

∑𝐶𝑝𝑗𝐹𝑗
 

(16) 

 

In which Cpi is the specific heat of component j in kJ/(kmol·K) and ΔHri is 

the heat of reaction of the reaction i in kJ/kmol. ΔHri was assumed to be a function 

of temperature only, considering ideal gases (Sandler, 1999). Values of Cpi and 

ΔHri were based calculated at each temperature based on Reid, et al. (1987). 

The momentum equation expresses the pressure drop in bar/kgcat and was 

calculated by Ergun (1952) relationship, which is expressed by Equation 17 as 

structured by Fogler (1999). 

 

𝑑𝑃

𝑑𝑊
= −10−5

1

𝐴𝑐𝜌𝑏

𝐺

𝜌𝑔𝑎𝑠𝑑𝑝

(1 − 휀𝑏)

휀𝑏3
(
𝑏(1 − 휀𝑏)𝜇

𝑑𝑝
+ 𝑎𝐺) (17) 
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In which Ac is the cross-sectional area of the bed in m², ρgas is the gas 

density in kg/m³, dp is the equivalent pellet diameter in m, G is the superficial 

mass flow in kg/(m²·s), and μ is the gas viscosity in kg/(m·s). The viscosity was 

calculated as described in Appendix A with values obtained from Reid et al. 

(1987). 

The main difference between the axial-flow and radial-flow designs is 

expressed in Equation 17, as Ac is constant in the axial-flow design, while it is a 

function of W in the radial-flow design, as Ac = 2πr and W = πzρb(r2- r0
2), in which 

z represents the bed length, r represents the catalyst bed radial coordinate and 

r0 the inner bed radius. The notation in which r is the catalyst bed radial coordinate 

is an exception throughout this paper, as it is used to denote different key 

variables in other occurrences. Hicks (1970) suggests using values of a and b as 

respectively 1.75 and 150 for Re/(1- εb) < 500, and 1.24 and 368 for 1000 < Re/(1- 

εb) < 5000. As under the operational conditions presented in this study, Re/(1- εb) 

was below 500 for the radial-flow reactor and slightly above 500 for the axial-flow, 

the values of a and b used were respectively 1.75 and 150 for both reactor 

models. 

 

 

3.4. INTRAPARTICLE DIFFUSION 

 

Models to describe heterogeneous kinetics considering intraparticle 

diffusion are extensively described in the literature (Elnashaie & Elshishini, 1993; 

Fogler, 1999; Froment & Bischoff, 1979). The generic model for the current study 

can be described by Equation 18. 

 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑃𝑠,𝑗

𝑑𝑟
) = −

𝑅𝑔𝑇

𝐷𝑒,𝑗
𝑟𝑗 (18) 

 

With boundary conditions given by Equations 19 and 20 
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𝑃𝑠,𝑗 = 𝑃𝑗 at  𝑟 = 𝑟𝑠 (19) 

 

𝑑𝑃𝑠,𝑗

𝑑𝑟
 at  𝑟 = 0 (20) 

 

In which, Ps,j is the partial pressure of component j inside the catalyst, Pj 

is the partial pressure of component j in bulk condition, r is the pellet radial 

coordinate, rs the value of the radius on the pellet surface in m, Rg is the ideal 

gases constant (8.314 x 10²) in m³·bar/(kmol·K), De,j is the effective diffusion 

coefficient of the component j in m²/h, and rj is the rate of generation of the 

component j in kmol/(m³·h). The effective diffusion coefficients were calculated 

using weighted binary molecular diffusivities and a tortuosity value of 3, as 

described in Appendix B. 

This model is based on the following assumptions (Lee, 2005): 

1. Interparticle diffusion resistance is negligible. 

2. The catalyst pellet is isothermal. 

3. Diffusion of a species in a pellet obeys Fick’s first law and the 

effective diffusivities are invariant inside the particle. 

4. The total pressure in the catalyst is uniform. 

5. Steady-state condition holds. 

The set of equations for each reacting component is presented by 

Equations 21-23. 

 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑃𝐸𝐵
𝑑𝑟

) =
𝑅𝑇

𝐷𝑒,𝐸𝐵
[휀𝑠(𝑟𝑡1 + 𝑟𝑡2 + 𝑟𝑡3) + 𝜌𝑠(𝑟𝑐1 + 𝑟𝑐2 + 𝑟𝑐3)] (21) 

 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑃𝑆𝑇
𝑑𝑟
) = −

𝑅𝑇

𝐷𝑒,𝑆𝑇
[휀𝑠𝑟𝑡1 + 𝜌𝑠(𝑟𝑐1 − 𝑟𝑐4)] (22) 

 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑃𝐻2
𝑑𝑟
) = −

𝑅𝑇

𝐷𝑒,𝐻2
[휀𝑠(𝑟𝑡1 − 𝑟𝑡3) + 𝜌𝑠(𝑟𝑐1 − 𝑟𝑐3 − 2𝑟𝑐4)] (23) 

 

In which, εs is the void fraction inside the catalyst, and ρs the catalyst 

density in kg/m³. 
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The effectiveness factor of each reaction i is then calculated by Equation 

24. 

 

𝜂𝑖 =
∫ [𝜌𝑠𝑟𝑐𝑖(𝑃𝑠,𝑗, 𝑇) + 휀𝑠𝑟𝑡𝑖(𝑃𝑠,𝑗, 𝑇)]𝑑𝑉
𝑉

0

[𝜌𝑠𝑟𝑐𝑖(𝑃𝑠,𝑗 , 𝑇) + 휀𝑠𝑟𝑡𝑖(𝑃𝑠,𝑗 , 𝑇)]𝑉
 (24) 

 

In which, the thermal reactions rti as the catalytic reactions rci are a function 

of the partial pressures of the component inside the catalyst and temperature. 

This set of intraparticle diffusion equations as well as the effectiveness 

factor were solved by orthogonal collocation. For the baseline problem, it was as 

performed by Lee & Froment (2008) with 6 internal collocation points, whereas in 

optimization routines, it was implemented with 3 internal collocation points. 

 

 

3.5. ORTHOGONAL COLLOCATION 

 

3.5.1. Theory 

 

The methods for the solution of boundary value problems using orthogonal 

collocation were originally proposed by Villadsen & Stewart (1967) in which they 

distinguish three classes of methods: Interior collocation, Boundary collocation, 

and Mixed. The first method has been reported as more versatile as it can be 

used for non-linear differential equations and is the one applied in the current 

study for obtaining the effectiveness factors of heterogeneous reactions. 

In problems such as diffusion or reaction in a cylindrical or spherical 

catalyst, or reaction in a packed bed reactor, the solution is symmetric about the 

center of the pellet or packed bed Finlayson (1973). For a symmetrical second-

order boundary-value problem in one independent variable, x, in the region x2 < 

1, consider an unknown function y(x) which satisfies the linear or non-linear 

differential equation L over the volume V described by Equation 25 and boundary 

conditions by Equations 26 and 27. 
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𝐿(𝑉)(𝑦) = 0 for  𝑥2 < 1 (25) 

 

𝑦 = 𝑦(1)   at  𝑥 = 1 (26) 

 

𝑑𝑦

𝑑𝑥
= 0 at  𝑥 = 0 (27) 

 

A suitable function that satisfies the boundary conditions is presented in 

equation 28. 

 

𝑦(𝑛) = 𝑦(1) + (1 − 𝑥2)∑𝑎𝑖
(𝑛)
𝑃𝑖(𝑥

2)

𝑛−1

𝑖=0

 (28) 

 

In which, the 𝑃𝑖(𝑥
2) are polynomials of degree i in x2, yet to be specified 

and 𝑎𝑖
(𝑛)

 are undetermined constants. Once 𝑦(𝑛) has been adjusted to satisfy 

Equation 25 at n collocation points, the residual function 𝐿(𝑉)(𝑦) either vanishes 

everywhere or contains a polynomial factor of which zeros are in the collocation 

points. 

These polynomials 𝑃𝑖(𝑥
2) are defined by the gaussian hypergeometric 

function in x2, described by Equation 29, and the collocation points x1, …, xn are 

defined in the zeros of the polynomials 𝑃𝑛(𝑥
2), in which n corresponds to the 

number of collocation points. The parameter a is characteristic of the shape of 

the problem, being 1 for slabs, 2 for cylinders, and 3 for spheres. 

 

𝑃𝑖(𝑥
2) = 𝐹1(−𝑖, 𝑖 +

𝑎
2⁄ + 1, 𝑎 2⁄ )2

  (29) 

 

Villadsen & Stewart (1967) present two alternatives to solving the 

problems. In the first approach, the polynomials are inserted into the set of 

differential equations and solved for the unknown coefficients 𝑎𝑖
(𝑛)

. In the second 

approach, an equivalent problem is formulated based on the unknown ordinates 

𝑦(𝑛)(𝑥𝑖). The latter was adopted in the current study. These sets of equations are 

formulated using gradient and Laplacian operators for the function 𝑦(𝑛)(𝑥) 

described by Equations 30 and 31. Methods for obtaining matrices A and B are 
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described in detail in Villadsen & Stewart (1967) with examples for different 

geometries and numbers of collocation points. 

 

𝑑𝑦(𝑛)

𝑑𝑥
|
𝑥=𝑥𝑖

=∑𝐴𝑖,𝑗  𝑦
(𝑛)

𝑛+1

𝑗=1

(𝑥𝑗) (30) 

 

𝑥1−𝑎
𝑑

𝑑𝑥
(𝑥𝑎−1

𝑑𝑦(𝑛)

𝑑𝑥
)|
𝑥=𝑥𝑖

= ∑𝐵𝑖,𝑗 𝑦
(𝑛)

𝑛+1

𝑗=1

(𝑥𝑗) (31) 

 

The implementations of orthogonal collocation have been readily available 

to researchers and practitioners in a Python module (Leite, 2022b). 

 

 

3.5.2. Application 

 

Equations 18 were reformulated to dimensionless coordinates in the radial 

pellet dimensions, so that 0 < x < 1. Using the same notation as (Lee, 2005) this 

can be formulated as 𝜉 = 𝑟/𝑟𝑠 leading to Equation 32. 

 

1

𝜉2
𝑑

𝑑𝜉
(𝜉2

𝑑𝑃𝑠,𝑗

𝑑𝜉
) = −

𝑟𝑠
2𝑅𝑔𝑇

𝐷𝑒,𝑗
𝑟𝑗 (32) 

 

And, combining to Equation 31, it is formulated a set of n nonlinear 

equations for each component. Considering three k reactant species, 3n 

equations. Notice that rs is being used to denote the pellet radius while rk to 

denote the rate of generation of component k in dimensionless coordinate ξ. 

 

∑𝐵𝑖,𝑗 𝑃𝑠,𝑘
(𝑛)

𝑛+1

𝑗=1

(𝜉𝑗) = −
𝑟𝑠
2𝑅𝑔𝑇

𝐷𝑒,𝑘
𝑟𝑘|

𝜉=𝜉𝑗

 ∀ 𝑘 ∈ 𝐸𝐵, 𝑆𝑇, 𝐻2 (33) 
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3.6. OPTIMIZATION 

 

3.6.1. General problem formulation 

 

Mathematically speaking, optimization is the minimization or maximization 

of a function subject to constraints on its variables (Nocedal & Wright, 2006). 

Luenberger & Ye (2008) divide optimization problems into two major categories: 

linear programming, and nonlinear programming. These categories are 

distinguished by the presence or not of nonlinear functions in either the objective 

function or constraints and lead to very distinct solution methods. A general 

constrained problem formulation can be stated as in Equation 34. 

 

minimize 𝑓(𝒙) 

(34) subject to 
ℎ𝑖(𝒙) = 0,    𝑖 ∈ {1, 2, … ,𝑀}

𝑔𝑗(𝒙) ≤ 0,     𝑗 ∈ {1, 2, … , 𝑅}
 

 𝒙  ∈  𝛺 

 

In which, 𝒙 is a vector of decision variables of size N (also denoted 

optimization variables), f is the objective function, h and g are functional equality 

and inequality constraints respectively. Boundaries for each component of 𝒙 

might be explicit in the formulation when stating that 𝒙 ∈ Ω, in which Ω is a set 

that defines limits for decision variables. 

Throughout this work, due to the nature of the chemical engineering 

reaction design of the styrene reactor problem, nonlinear programming will be 

focused on. Two general paradigms of solutions will be discussed to such 

problems: Gradient-based algorithms, and Evolutionary algorithms. The first will 

be presented from a perspective of convex single-objective optimization with 

corresponding mechanisms for extending them to multi-objective problems. The 

second will be presented for general real-valued optimization problems. 
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3.6.2. Gradient-based algorithms 

 

Gradient-based (or descent) algorithms are characterized by an iterative 

process in which one starts at an initial point; determines, according to a fixed 

rule, a direction of movement; and then moves in that direction to a (relative) 

minimum of the objective function on that line. At the new point, a new direction 

is determined, and the process is repeated (Luenberger & Ye, 2008). 

There are two fundamental strategies for performing these iterations: line 

search, and trust region. In a sense, the line search and trust-region approaches 

differ in the order in which they choose the direction and distance of the move to 

the next iterate. Line search starts by fixing the direction and then identifying an 

appropriate distance. In trust region, we first choose a maximum distance, the 

trust-region radius, and then seek a direction and step that attain the best 

improvement possible subject to this distance constraint. If this step proves to be 

unsatisfactory, we reduce the distance measure and try again (Nocedal & Wright, 

2006). In this study, line search methods will be addressed, of which several 

aspects and strategies will be described throughout this chapter. 

In the line search strategy, the algorithm chooses a direction 𝒑𝑘 and 

searches along this direction from the current iterate 𝒙𝑘 for a new iterate with a 

lower function value. 

 

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒑𝑘 (35) 

 

The distance to move along 𝒑𝑘 can be found by approximately solving the 

following one-dimensional minimization problem to find a step length α. 

 

𝜙(𝛼) = 𝑓(𝒙𝑘 + 𝛼𝒑𝑘) (36) 

 

The methods for defining the step length α differ from unconstrained to 

constrained problems, therefore those will be addressed in the corresponding 

sub-sections. 
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3.6.2.1. Unconstrained Problems 

 

Luenberger & Ye (2008) suggest that the first question that arises in the 

study of the minimization problem is whether a solution exists. The main result 

that can be used to address this issue is the theorem of Weierstras, which states 

that if the objective function is continuous and compact, a solution exists. 

Although recognizing this as a valuable result throughout the reasoning of 

nonlinear programming they present a primary concern with characterizing 

solution points and devising effective methods for finding them. And this is 

performed by defining optimality conditions. 

The first and second-order necessary conditions for optimality are 

summarized as the following (Nocedal & Wright, 2006): 

1) If x* is a local minimizer and f is continuously differentiable in an open 

neighborhood of x*, then ∇𝑓(𝒙) = 0. 

2) If the Hessian matrix of the objective f with respect to x, ∇2𝑓(𝒙), exists 

and is continuous in an open neighborhood of x*, then ∇2𝑓(𝒙) is 

positive semidefinite. 

The so-called sufficient conditions for optimality are analogous, however 

stating that ∇2𝑓(𝒙) is positive definite rather than positive semidefinite. A 

representation of a convex unconstrained problem and its respective true 

optimum is presented in Figure 3. 
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Figure 3 – Graphical representation of a quadratic function and its respective known true 
optimum. 

 

 

With these definitions in mind, considering the iterative process of descent 

algorithms, two questions arise: 

1) How to define the search directions. 

2) How the define the step length in the best search direction. 

Although line search methods first define the search direction and then 

define the step length, presenting these strategies in reverse order can be useful. 

Therefore, suppose there is a known best search direction at the current iteration 

𝒑𝑘. 

In computing the step length α from equation 36, there is a tradeoff 

between precision and computational cost. Although it is desirable to obtain the 

best solution in the search direction, it can lead to a large number of function 

evaluations, which is usually undesirable, as these functions might be complex 

and computationally expensive. Therefore the most common strategy to define α 

is iteratively, by bracketing and interpolating, until some convergence conditions 

are satisfied. 
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The Wolfe conditions are probably the most common in unconstrained 

problems line search. They state that the value of the objective function must be 

smaller than a function of the original point (controlled by the parameter c1) and 

so must be the curvature of the objective function (controlled by the parameter 

c2). The suggestion of Nocedal & Wright (2006) is to use 1e-4 for c1, and define 

c2 as equal to 0.9 for Newton and Quasi-Newton methods, while 0.1 for Conjugate 

Directions and Steepest Descent. They are summarized by Equations 37 and 38, 

and visually represented by Figure 4, in which red points represent rejected step 

sizes and the green point an adequate step size. 

 

𝜙(𝛼) ≤ 𝜙(0) + 𝑐1𝛼𝜙
′(0) (37) 

 

|𝜙′(𝛼)| ≤ −𝑐2𝜙
′(0) (38) 

 

 

Figure 4 – Graphical representation of step size definition based on the Wolfe conditions. 

 

 

Regarding the definition of the search direction, the steepest descent 

direction −∇𝑓(𝒙𝑘) is the most obvious choice for search direction for a line search 
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method. It is intuitive; among all the directions we could move from xk it is the one 

along which f decreases most rapidly. However, it can be excruciatingly slow on 

difficult problems. (Nocedal & Wright, 2006). 

Two broad categories of more efficient strategies to define the search 

directions compared to simply using the steepest descent are conjugate 

directions and quasi-newton methods (Nocedal & Wright, 2006). Throughout this 

work, only the latter will be discussed, as it is closely related to the constrained 

optimization algorithm applied to the styrene reactor problem. 

The idea behind Newton’s method is that the function f being minimized is 

approximated locally by a quadratic function, and this approximate function is 

minimized exactly. Thus, near xk we can approximate f by the truncated Taylor 

series (Luenberger & Ye, 2008), leading to Equation 39. 

 

𝑓(𝒙) ≃ 𝑓(𝒙𝑘) + ∇𝑓(𝒙𝑘)(𝒙 − 𝒙𝑘) +
1

2
(𝒙 − 𝒙𝑘)

𝑻∇𝟐𝑓(𝒙𝑘)(𝒙 − 𝒙𝑘) (39) 

 

Therefore, the search direction p, in the iteration of index k, is defined by 

Equation 40. 

 

𝒑𝑘 = −∇
2𝑓(𝒙)−1∇𝑓(𝒙𝑘) (40) 

 

Which, in the case of quadratic functions, leads to the exact optimizer of 

the objective function f. 

Quasi-Newton methods provide an attractive alternative to Newton’s 

method in that they do not require computation of the Hessian and yet still attain 

a superlinear rate of convergence. In place of the true Hessian, they use an 

approximation Bk, which is updated after each step to take account of the 

additional knowledge gained during the step. The updates make use of the fact 

that changes in the gradient provide information about the second derivative of 

the objective along the search direction (Nocedal & Wright, 2006). 

The most common strategies for Hessian updates are BFGS and SR1, 

summarized by Equations 42 and 43, in which 𝒚𝑘 = ∇𝑓(𝒙𝑘+1) − ∇𝑓(𝒙𝑘) and 𝒔𝑘 =

𝒙𝑘+1 − 𝒙𝑘. 
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𝒑𝑘 = −𝐵𝑘
−1∇𝑓(𝒙𝑘) (41) 

 

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝒔𝑘𝒔𝑘

𝑇𝐵𝑘

𝒔𝑘
𝑇𝐵𝑘𝒔𝑘

+
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

 (42) 

 

𝐵𝑘+1 = 𝐵𝑘 +
(𝒚𝑘 − 𝐵𝑘𝒔𝑘)(𝒚𝑘 − 𝐵𝑘𝒔𝑘)

𝑇

(𝒚𝑘 − 𝐵𝑘𝒔𝑘)𝑇𝒔𝑘
 (43) 

 

 

3.6.2.2. Constrained Problems 

 

When dealing with constrained problems, a fundamental concept is the 

definition of an active constraint. An inequality constraint is said to be active at a 

feasible point x if it is equal to zero and inactive if greater than zero. By 

convention, we refer to any equality constraint as active at any feasible point 

(Luenberger & Ye, 2008). 

Once defined what is an active constraint, one must notice that, 

considering an original search space E(n), the feasible search space is defined by 

a hypersurface of dimension n-m, in which m corresponds to the number of active 

constraints. This leads to a first-order condition analogous to the unconstrained 

equivalent. The gradient of the objective function projected in the tangent 

hyperplane of the feasible search space must be equal to zero in a local optimum. 

Therefore, in the local minimum, f(x*) is a linear combination of the 

gradients of active constraints, which leads to the introduction of Lagrange 

multipliers, and so, the Lagrangian function. 

 

ℒ(𝒙, 𝝀, 𝝁) = 𝑓(𝒙) + 𝝀𝑻𝒉(𝒙) + 𝝁𝑻𝒈(𝒙) (44) 

 

In which, λ and μ are vectors of the corresponding Lagrange multipliers of 

equality and inequality constraints. In this formulation, inequalities are stated as 

𝒈(𝒙) ≤ 0, which leads to the condition of their corresponding Lagrange multipliers 

𝝁 ≤ 0. Therefore, the condition of complementary slackness is achieved for 

inactive inequality constraints by setting 𝝁 = 0, whereas for active constraints 

𝒈(𝒙) = 0. 
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And the analogous First-order and Second-order optimality necessary 

conditions for convex constrained optimization are: 

1) ∇𝓛(x*, λ, μ) with respect to x must be equal to zero with the 

complementary slackness condition respected. 

2) ∇²𝓛(x*, λ, μ) with respect to x must be positive semidefinite. 

Nocedal & Wright (2006)  classify algorithms for convex constrained 

optimization into penalty functions and augmented Lagrangian, sequential 

quadratic programming, and interior-point methods. Throughout this study, the 

algorithms of the second category were applied. 

Sequential quadratic programming (SQP) is a collection of efficient 

constrained optimization algorithms with many similarities to the unconstrained 

Newton and Quasi-newton methods. These algorithms can be classified as 

primal-dual methods (Luenberger & Ye, 2008) as the search is performed in both 

primal space (decision variables) and dual space (Lagrange multipliers) 

simultaneously. A detailed review of SQP can be found at Boggs & Tolle (1996), 

in which, besides the line search approach, interior point methods are described. 

In SQP algorithms, the main problem is approximated by a quadratic 

problem subproblem at each iteration, and the search direction is defined to be 

the solution to the subproblem defined by Equation 45 with minimization defined 

in terms of the search direction 𝒑𝑘. 

 

minimize 
1

2
∇𝒙𝒙

2ℒ(𝒙𝑘, 𝝀𝑘 , 𝝁𝑘)𝒑𝑘 + ∇𝑓(𝒙𝑘)
𝑇𝒑𝑘 

(45) 

subject to 
∇𝒉(𝒙𝑘)

𝑇𝒑𝑘 + 𝒉(𝒙𝑘) = 0

∇𝒈(𝒙𝑘)
𝑇𝒑𝑘 + 𝒈(𝒙𝑘) ≤ 0

 

 

With these definitions stated, the search directions at each iteration can 

be represented by Equation 46, in which besides equality constraints, we have 

included active inequality constraints at an iteration k. Notice Luenberger & Ye 

(2008) when defining this equation do not distinguish equality from active 

inequality constraints, which, considering the definitions aforementioned of an 

active constraint, leads to the same formulation. 
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[

𝒑𝑥,𝑘
𝒑𝜆,𝑘
𝒑𝜇,𝑘

] = [
∇𝒙𝒙

2ℒ(𝒙𝑘 , 𝝀𝑘 , 𝝁𝑘) ∇𝒉(𝒙𝑘)
𝑇 ∇𝒈(𝒙𝑘)

𝑇

∇𝒉(𝒙𝑘) 0 0

∇𝒈(𝒙𝑘) 0 0

]

−1

[

∇𝒙ℒ(𝒙𝑘, 𝝀𝑘 , 𝝁𝑘)

𝒉(𝒙𝑘)

𝒈(𝒙𝑘)
] (46) 

 

As in unconstrained problems, a line search strategy can be used, in which 

the values of both the primal and dual variables at the next iteration are defined 

by multiplying the search directions by a constant α, that satisfies some line 

search conditions. These can be stated as 𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒑𝑥,𝑘; 𝝀𝑘+1 = 𝝀𝑘 +

𝛼𝑘𝒑𝜆,𝑘; and 𝝁𝑘+1 = 𝝁𝑘 + 𝛼𝑘𝒑𝜇,𝑘. 

Rather than using Wolfe conditions in the line search, SQP algorithms use 

merit functions, in which only some degree of descent in the merit function value 

is necessary. Some examples of merit functions are presented by Nocedal & 

Wright (2006). 

Notice the Hessian of the Lagrangian function with respect to x, as in 

unconstrained problems, might be approximated by Bk, which is updated after 

each step. In the updates, rather than using the difference between gradients of 

the objective function, the differences between the gradients of the Lagrangian 

function with respect to x are used, such that 𝒚𝑘 = ∇𝒙ℒ(𝒙𝑘+1, 𝝀𝑘+1, 𝝁𝑘+1) −

∇𝒙ℒ(𝒙𝑘, 𝝀𝑘 , 𝝁𝑘). 

SQP algorithms are based on active set strategies, therefore, general 

concepts of these strategies will be presented. The idea underlying active set 

methods is to partition inequality constraints into two groups: those that are to be 

treated as active and those that are to be treated as inactive. The constraints 

treated as inactive are essentially ignored. 

At each step of the algorithm, a set of constraints termed the working set 

is to be treated as the active set. The working set is chosen to be a subset of the 

constraints that are actually active at the current point, and hence the current 

point is feasible for the working set. The algorithm then proceeds to move on the 

surface defined by the working set of constraints to an improved point. At this 

new point, the working set may be changed. Overall, then, an active set method 

consists of the following components: (1) determination of a current working set 
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that is a subset of the current active constraints, and (2) movement on the surface 

defined by the working set to an improved point (Luenberger & Ye, 2008). 

Strategies for updating the working sets for SQP algorithms are presented 

in detail by Nocedal & Wright (2006). The expression blocking constraints is used 

by the authors to define constraints that potentially would be violated if a step sk 

was taken in the primal space. This is performed by linear approximations of the 

currently inactive constraints in a given iteration. Blocking constraints are then 

recursively included in the active set if identified by the linear approximations. 

Conversely, based on the updates on the values of the Lagrange multipliers, 

some constraints should be removed from the active set to preserve the 

complementary slackness. 

In the optimization of the styrene reactor, an SQP algorithm denoted 

Sequential Least Squares Programming (SLSQP) was applied. This algorithm 

was proposed by Kraft (1988) and follows the main ideas of SQP presented 

throughout this section with a primal-dual strategy, based on an active set, using 

merit functions in the line search, and damped BFGS Hessian approximations. 

When defining the search directions (equation 46) Kraft (1988) uses a least-

squares method, the reason why the algorithm is denoted SLSQP rather than just 

SQP. 
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3.6.2.3. Applications to multi-objective problems 

 

As described earlier, broadly speaking, there are two approaches to 

solving MOO problems. One approach is to transform the MOO problem into one 

or a series of single-objective problems (or sub-problems), and then solve the 

resulting problems by an established technique for single-objective. Two common 

techniques following this approach are weighted sum and ε-constraint. The 

second approach is the modification of single-objective techniques to solve 

problems with multiple objectives. It is referred to as the multi-objective approach. 

Techniques following this approach are metaheuristics (or stochastic algorithms) 

that are mostly population-based and include evolutionary algorithms (Rangaiah, 

et al., 2020). 

The weighted-sum technique was applied to the styrene reactor problem 

in the current study when solving the optimization problem using convex methods 

due to comparable scales of the two objectives, conversion (yield) and selectivity. 

This strategy has been applied by other authors in chemical engineering 

problems such as Costa, et al. (2003) and Campos, et al (2018). 

 

 

3.6.3. Evolutionary algorithms 

 

3.6.3.1. Overview 

 

Just as in nature, Evolutionary Operators operate on an evolutionary 

algorithm population attempting to generate solutions with higher and higher 

fitness. The three major operators associated with these algorithms are mutation, 

recombination (crossover), and selection (Coello, et al., 2007). 

Throughout this study, variants of the algorithm GDE3 (Kukkonen & 

Lampinen, 2005) were used, therefore this literature review section will be 

focused on its operators. A comparison to the popular algorithm NSGA-II (Deb, 

et al., 2002) is presented in Appendix C. As previously mentioned, the variants of 

DE algorithms implemented are publicly available in a Python package (Leite, 

2022a). 
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3.6.3.2. Initialization 

 

The algorithms start initializing a population based on a user-specified 

number of individuals N and the boundaries of each decision variable. Each 

individual corresponds to a vector of optimization variables and several strategies 

can be adopted in this part. A usual strategy for this stage is to randomly sample 

points within the bounds of the problem. However, to improve the distribution of 

elements, Latin Hypercube Sampling was adopted as the initialization strategy, 

using pymoo’s (Blank & Deb, 2020) implementation. To avoid initialization bias 

when comparing algorithms, the same predefined random generation seeds were 

used. 

 

 

3.6.3.3. Differential Evolution 

 

Differential Evolution was originally designed for single-objective 

optimization aiming to fulfill the following purposes (Storn & Price, 1997): 

1. Ability to handle non-differentiable, nonlinear, and multimodal cost 

functions. 

2. Parallelizability to cope with computationally intensive cost 

functions. 

3. Ease of use: few control variables to steer the minimization. These 

variables should also be robust and easy to choose. 

4. Good convergence properties: consistent convergence to the 

global minimum in consecutive independent trials. 

In DE algorithms, at each generation, N new individuals – denoted 

offspring – are generated by performing parents’ selection, mutation, and 

crossover. The general mechanism of DE is summarized in Figure 5. 
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Figure 5 – General mechanism of Differential Evolution algorithm. 

 

 

Different variants are proposed in the literature for DE operations, usually 

denoted DE/x/y/z, in which x corresponds to the mutation parent selection 

scheme, y to the number of difference vectors, and z to the crossover strategy. 

Using a MODE implementation inspired by NSGA-II, Babu & Anbarasu (2005) 

compared the performances of three usual variants: DE/rand/1/bin, 

DE/rand/1/exp, and DE/current-to-rand/1/bin in benchmark test problems. They 

observed that the first strategy performed better in both the Pareto set and 

diversity. 

The creation of a new mutant vector vi in the DE/rand/1 scheme is 

described by Equation 47 (Storn & Price, 1997), in which F is a scale parameter, 

usually denoted mutation parameter or scale factor, and xr1, xr2, and xr3 are 

vectors randomly selected from the current parent population mutually different 

and different from xi. 

 

𝒗𝑖 = 𝒙𝑟1 + 𝐹(𝒙𝑟2 − 𝒙𝑟3) (47) 

 

There are a few variants of equation 47. In our implementations, diversely 

from the original GDE3 (Kukkonen & Lampinen, 2005), F can be either a scalar 

or randomized within a range user-specified using uniform distribution dither. 

Jitter was additionally implemented with random uniform distribution, which adds 

rotation to difference vectors. In this study, it was used a deviation parameter γ = 

10-4 to add a small rotation, although still emphasizing preferred search 

directions. If a mutant vector is outside the problem boundaries, our algorithm 



47 
 

 

restores it using the bounce-back strategy. Setting parameter values equal to the 

bounds they violate should be avoided because it lowers the diversity of the 

difference vector population (Price, et al., 2005). If the component j of a mutant 

vector violates its boundaries xj,l or xj,u, the bounce-back strategy replaces it with 

a value between the base vector xj,r1 and the bound being violated, according to 

Equation 48. 

 

𝑣𝑗,𝑖 = {

𝑥𝑗,𝑟1 + 𝑟𝑎𝑛𝑑(0, 1)(𝑥𝑗,𝑟1 − 𝑥𝑗,𝑙), if     𝑣𝑗,𝑖 < 𝑥𝑗,𝑙

𝑥𝑗,𝑟1 + 𝑟𝑎𝑛𝑑(0, 1)(𝑥𝑗,𝑢 − 𝑥𝑗,𝑟1), if     𝑣𝑗,𝑖 > 𝑥𝑗,𝑢
𝑣𝑗,𝑖, otherwise

 (48) 

 

The mutation in single-objective DE is itself a self-adjusting phenomenon 

because the difference vectors are relatively large for the initial random 

population and, analogous to a noise term, progressively decay as the population 

gradually converges towards a single solution (Price, et al., 2005). Parameter F 

controls the speed and robustness of the search, i.e., a lower value for F 

increases the convergence rate but it also increases the risk of getting stuck into 

a local optimum (Kukkonen, 2007). In general, (survival) selection tends to reduce 

the diversity of a population, whereas mutation increases it. To avoid premature 

convergence, it is crucial that F be of sufficient magnitude to counteract this 

selection pressure (Price, et al., 2005). In the case of multi-objective optimization 

and conflicting objectives, lower control parameter values (e.g., 0.2) for CR and 

F can be used than in single-objective optimization because conflicting objectives 

already maintain diversity and restrain the search speed (Kukkonen, 2007). 

Uniform distribution dither in the range (0, 1] was successfully adopted by other 

authors in multi-objective variants of differential evolution (Babu, et al., 2005; 

Trivedi & Ramteke, 2021). For instance, when the emphasis on exploration is 

needed, such as in problems with discontinuous decision spaces, using higher 

limits can be useful. Conversely, to emphasize exploitation, using lower values 

for limits can improve results. 

The amount of information inherited from either the corresponding parent 

xi (target vector) or the mutant vector vi is governed by a crossover parameter 

CR ∈ [0, 1]. In the classic binomial crossover scheme (Equation 49), random 

numbers in the range of [0, 1] are generated for each optimization variable of 
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index j for each trial vector ui. If the random number is smaller than CR, the 

optimization variable of index j of a new trial vector ui is inherited from the mutant 

vector vi, else it is from the corresponding parent xi. An additional rule is used to 

ensure that each time at least one variable is inherited from the mutant vector, 

thus avoiding duplicates in the reproduction. 

 

𝑢𝑗,𝑖 = {
𝑣𝑗,𝑖, if    𝑟𝑎𝑛𝑑(0, 1)𝑗,𝑖 < 𝐶𝑅    or    𝑗 = 𝑗𝑟𝑎𝑛𝑑
𝑥𝑗,𝑖, otherwise

 (49) 

 

Price et al. (2005) analyzed several aspects of CR choice. Usually, 

objective functions that perform well with low values are decomposable - can be 

written as a sum of one-dimensional functions, while those that require values 

close to one are not. Choices of CR close to one are thus associated with the 

rotational invariance required for the algorithm and are dependent on the 

objective functions. Zaharie (2009) made a detailed study on the impact of 

crossover operators in DE. Her experiments illustrate the fact that the difference 

between binomial and exponential crossover variants is mainly due to different 

distributions of the number of mutated components. Furthermore, the behavior of 

exponential crossover variants was found to be more sensitive to the problem 

size than the behavior of variants based on the binomial crossover. 

Some authors have adopted strategies that reinforce elitism when 

producing mutant vectors. Xue et al. (2003) proposed a DE selection and 

mutation variant that, in analogy to the single objective DE/best/1/bin, reinforces 

the selection characteristics of non-dominated individuals in the mutant vectors 

by a linear combination. In their implementation, if a target vector xi is originally 

dominated, it is modified by linear combination with a randomly selected vector 

among non-dominated solutions. This strategy can be compared to the Following 

Heroes operation, incorporated in multi-objective DE by Trivedi & Ramteke 

(2021). 

In contrast to selection schemes reinforcing elitism, Fan & Yan (2018) 

implemented an algorithm with an external archive population to reduce the loss 

of information. In their implementation, xr2 is selected from individuals of an 

external archive created from randomly selected individuals of the previous 

iteration. This allows xr2 to be chosen from dominated solutions, even though all 
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solutions of the main population in a generation might be non-dominated. 

Ensemble strategies have also been proposed in the literature and reported 

promising results in the context of single-objective DE in balancing exploration vs 

exploitation aspects of different selection strategies for mutation operators (Yi, et 

al., 2022). 

In this study, besides the usual random parent selection (DE/rand), a 

strategy that reinforces elitism with simple operations and no additional control 

parameter proposed by Zhang et al. (2021) was evaluated on the reactor 

problem. Each solution in the current population has a rank assigned by non-

dominated sorting (see section 3.6.3.5). Three parents of mutually exclusive 

indexes xr1, xr2, and xr3 are randomly selected for each mutation vector created. 

Then, positions are exchanged according to their ranks so that the best solution 

of the three (lowest rank) is assigned to xr1, and the worst (highest rank) is 

assigned to xr3. This strategy was denoted as ranked in the current study and in 

pymoode (Leite, 2022a) to distinguish it from the usual random (rand) selection. 

When using high CR values there is a greater probability of trial vectors inheriting 

attributes from the corresponding mutant vectors. Therefore, in those situations, 

the ranked strategy can be especially useful. This advantage is considerably 

reduced when using low CR values, as most of the attributes of the trial vectors 

are inherited from the corresponding parents. 

In single-objective DE, to decide if a trial vector ui should become a 

member of the next generation, it is compared to the corresponding target vector 

xi using a greedy criterion (Storn & Price, 1997). This one-to-one comparison 

might be inadequate in multi-objective problems and is usually replaced by other 

survival strategies. 

Survival strategies in multi-objective differential evolution can be classified 

into three categories (Cheng, et al., 2016). The first type preserves the rigorous 

one-to-one (survival) selection scheme proposed by single-objective DE. In 

methods of the second type, the parent population is first combined with the 

offspring then the united population is truncated into the original size. It is 

sometimes denoted (μ + λ), in which μ is the number of members in the parent 

population and λ, the number of members in the offspring (Deb, 2001). The third 

type is a mix of the above two schemes. The one-to-one selection is first 

performed if two competed solutions are comparable; otherwise, the two 
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solutions enter the population for later sorting at the end of the iteration using a 

united population selection procedure. 

In GDE3, the hybrid type is used, which can be useful for avoiding 

premature convergence when associated with low CR values. According to 

Cheng et al. (2016), it performs better than the two other schemes. The (μ + λ) is 

adopted in NSDE (Iorio & Li, 2004), whereas the one-to-one selection is 

preserved in PDE (Abbass, et al., 2001). 

 

 

3.6.3.4. Constrained-Domination 

 

The concepts of sorting and survival are based on the concept of 

domination, and, in the context of constrained problems, the concept of 

constrained domination. 

According to Deb (2001), one solution x1 dominates another x2 if: 

1. x1 is no worse than x2 in all objectives. 

2. x1 is strictly better than x2 in at least one of the objectives. 

And the constrained-domination rule for MOO problems proposed by Deb 

et al. (2002), when comparing two solutions, x1 is said to constrained-dominate 

x2 if any of the following conditions is true: 

1. Solution x1 is feasible and x2 is not. 

2. Solutions x1 and x2 are both infeasible, but solution x1 has a smaller 

overall constraint violation. 

3. Solutions are feasible and solution x1 dominates solution x2. 
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3.6.3.5. Sorting 

 

Sorting concepts apply to the initial population in a fitness assignment 

stage and the combined parent and offspring population in the survival stage of 

each generation. The Rank and Crowding survival strategy of NSGA-II aims to 

assign fitness to population members based on non-dominance sorting and 

preserving diversity (Deb, et al., 2002). The same operator is originally adopted 

in GDE3 (Kukkonen & Lampinen, 2005) when truncating the population size. 

Each solution is assigned a fitness (rank) according to non-domination 

criteria, considering objective functions and constraints. Ranks are sorted in 

ascending order from the best to the worst solutions. This occurs in a process 

denoted Non-dominated sorting (Deb, et al., 2002). Once the reproduction 

operators increase population size at each generation, algorithms that use a fixed 

number of individuals need some operation for truncating the population into its 

original size. In the Rank and Crowding survival of NSGA-II, ranks are the first 

criterion for selecting individuals that proceed into the next generation. When 

exceeding the population size, individuals with the same rank are sorted using a 

crowding distance metric based on their distance to their neighbors in the 

objective space. This process is precisely described by Deb et al. (2002). 

Kukkonen & Deb (2006a) verified that the original truncating strategy of 

NSGA-II can reduce the diversity of solutions in some situations. To address this 

issue, they proposed an algorithm that first calculates crowding distances for the 

members of a non-dominated set. Then, instead of selecting n members having 

the largest values, members having the smallest values are removed one by one, 

updating the crowding distances for the remaining members of the set after each 

removal. 

Other strategies for preserving diversity have proven more successful in 

guiding the survival stage for problems with more than two objectives. Kukkonen 

& Deb (2006b) proposed a version of GDE3 that uses a crowding metric based 

on the Euclidean distances to the M nearest neighbors (M-NN). Strategies based 

on rank and reference directions (Deb & Jain, 2014; Jain & Deb, 2014) have also 

been successful in three-objective optimization. Reddy & Dulikravich (2019) 

proposed an algorithm that combines differential evolution mating operations to 

reference direction-based survival, denoted NSDE-R. It was also implemented 
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and compared to GDE3 with the M-NN survival strategy. In NSDE-R, the Das 

Dennis reference directions were used with 18 partitions. 

 

 

3.6.3.6. Implementation 

 

In this study, GDE3 was implemented as an independent algorithm using 

pymoo’s basic structure. During this study, the pymoo version was 0.5.0. Our 

implementations are publicly available in the Python package pymoode (Leite, 

2022a). 

The following steps can summarize GDE3: 

1. Initialize a population of size N. 

2. Apply non-dominated sorting to assign fitness to the population. 

3. While the termination criteria are not met: 

3.1. Generate offspring individuals: 

3.1.1.Select vectors xr1, xr2, and xr3 from the parent population. 

3.1.2.Create mutation vectors vi by DE operations. 

3.1.3.Generate offspring individuals ui by performing binomial crossover 

between mutation and target vectors vi and xi. 

3.1.4.Perform a one-to-one comparison before truncating. 

3.2. Truncate the population into the original size based on sorting criteria 

(dominance and crowding metric). 
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4. METHODS 

 

4.1. REACTOR MODELING 

 

In the reactor simulations, it was adopted the set of fundamental equations 

described in detail in sections 3.2 to 3.5. The four reactions from section 3.2 were 

used to formulate continuity equations of an ODE system. Additionally, as 

described in section 3.3, the fundamental equations present in the literature were 

used to describe energy balance, pressure drop, and intraparticle diffusion. The 

complete heterogeneous solution is computationally expensive, although more 

precise from a fundamental perspective compared to its corresponding 

pseudohomogeneous variant. Therefore, when comparing MOEAs in Appendix 

C it was adopted a pseudohomogeneous simplification (Dimian & Bildea, 2019; 

Lee, 2005), which in our current implementation takes about the one-sixteenth 

time of the complete model. A simplified representation of the modeling elements 

for a single catalyst bed is presented in Figure 6. All inlet values for the first 

catalyst bed in a reactor are user-specified. Whereas for the others in sequence, 

the inlet values of pressure and molar flow rates are defined using the outlet 

values from previous beds, except for the inlet temperature, which is user-

specified. The complete simulation program is available in a public code 

repository (Leite, 2022c). 

 



54 
 

 

 

Figure 6 – Simplified representation of the modeling elements for a single catalyst bed. 

 

 

4.2. BASELINE REACTOR DESIGN 

 

The baseline reactors considered in this study were adiabatic reactors with 

three catalyst beds, and intermediate heating but no intermediate injection of 

steam or any other component. Dimensions and inlet operational conditions were 

defined using the same values as Lee & Froment (2008) for simulations at original 

conditions. They are presented in Table 2, Table 3, and Table 4. When 

performing optimization, possibilities of changing the number of catalyst beds, 

dimensions, and inlet operational conditions were explored. These changes are 

explained in detail in section 4.3. 
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Table 2 – Reactor dimensions and inlet operational conditions. 

 Value 

 Axial-flow Radial-flow 

Parameter Bed 1 Bed 2 Bed 3 Bed 1 Bed 2 Bed 3 

W [kg] 72950 82020 78330 72950 82020 78330 

Inner radius [m] 3.5 3.5 3.5 1.5 1.5 1.5 

Length [m] 1.33 1.50 1.43 7 7 7 

Inlet T [K] 886 898.2 897.6 886 898.2 897.6 

Inlet P [bar] 1.35*   1.25   

Inlet FH2O/FEB 11   11   

Inlet Ft [kmol/h] 8496.37   8496.37   

*The original pressure used by Lee & Froment (2008) was 1.25 bar, but it was redefined to 
1.35 bar to result in outlet pressure of approximately 0.5 bar. 

 

 

Table 3 – Individual components’ inlet molar flow rates. 

Component Inlet molar flow rate [kmol/h] 

EB 707.0 

ST 7.104 

BZ 0.293 

TO 4.968 

H2O 7777 

 

 

Table 4 – Properties of catalyst beds. 

Property Symbol Unit Value 

Bed bulk density ρb kg/m³ 1422 

Catalyst solid density ρs kg/m³ 2500 

Bed bulk void fraction εb  0.4312 

Catalyst solid void fraction εs  0.4 

Equivalent pellet diameter dp m 0.055 

Tortuosity factor τ  3 

 

 

Substantial differences occur when comparing the reactor specifications 

adopted in the current study and previous literature (Babu & Anbarasu, 2005; 

Yee, et al., 2003; Gujarathi & Babu, 2010; Tarafder, et al., 2005; Chaudhari, et 

al., 2022). Some of the most relevant points are listed below. 
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- Vacuum operation versus positive pressure (baseline absolute inlet 

pressure of 2.4 bar). 

- Radial-flow versus axial-flow design. 

- Intermediate heating versus intermediate steam injection. 

- The number of catalyst beds. 

- Total ethylbenzene molar feed rate. 

Vacuum operation and radial-flow design are usual in industrial practice 

(Chen, 2006). Both are related to considerably superior performance due to the 

benefits of operating at lower pressures (Leite, et al., 2021). The decision-making 

processes related to steam-to-ethylbenzene feed ratios in reactors with 

intermediate heating or intermediate steam injection are considerably different. 

In the first situation, inlet temperatures of each stage are not direct consequences 

of steam injection, whereas this occurs in intermediate steam injected operation. 

Therefore, both reactor designs are considerably different from a modeling 

perspective. Both two and three individual catalyst beds are usual in industrial 

design (Li, 2007; ENI-Versalis, s.d.), although they also lead to distinct reactor 

models. As the reactor design previously adopted by previous studies focused on 

MOEAs was considerably different, limitations in ethylbenzene feed rates are 

evident, as previous studies considered a base total ethylbenzene feed rate of 

36.87 kmol/h versus 707 kmol/h adopted. 

 

 

4.3. OPTIMIZATION PROBLEM 

 

In the dehydrogenation reactor, obtaining maximum ST conversion (yield) 

denoted XST, and selectivity denoted SST is desirable. These are conflicting 

objectives as increasing conversion increases the production of byproducts, 

lowering selectivity. Therefore, it can be structured as a multi-objective 

optimization problem with the objective functions described by Equations 50 and 

51. In this study, both objectives were implemented as minimization problems of 

their negative values to follow a conventional optimization problem formulation. 

 

𝑋𝑆𝑇 = 
𝐹𝑜𝑢𝑡,𝑆𝑇 − 𝐹𝑖𝑛,𝑆𝑇

𝐹𝑖𝑛,𝐸𝐵
 (50) 
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𝑆𝑆𝑇 = 
𝑋𝑆𝑇

𝐹𝑖𝑛,𝐸𝐵 − 𝐹𝑜𝑢𝑡,𝐸𝐵
 (51) 

 

In which, Fout,j is the outlet molar flow rate of component j in kmol/h and 

Fin,j is the inlet molar flow rate of component j in kmol/h. 

In multiobjective optimization problems, the conflicting objective functions 

can be combined by a weighted sum technique, as described by Rangaiah, et al. 

(2020) and performed by Costa, et al. (2003) and by Campos, et al. (2018). When 

comparing axial to radial flow reactor design, this approach was adopted and the 

two objective functions were combined in single objective subproblems with the 

objective function fws, described by Equation 52, to either select relevant solutions 

by weighted sum criteria (for multi-objective algorithms), or to define SOO 

subproblems. 

 

𝑓𝑤𝑠 = −[𝑤1𝑆𝑆𝑇 + (1 − 𝑤1)𝑋𝑆𝑇] (52) 

 

In which, w1 assumes values from 0 to 1, producing an efficient frontier 

with different weights for the conflicting objective functions. 

The best scenario for each industrial unit must consider its unique 

capability of performing other processes, the cost of raw materials, and utility 

consumption. However, these scenarios are somehow encompassed by the 

Pareto optimal solutions in terms of single-pass conversion and selectivity for 

reactor operation. Section 5 will present relevant qualitative aspects of the 

plantwide decision processes. Working at lower conversion and higher selectivity 

levels implies less fresh ethylbenzene consumption per unit of styrene produced, 

whereas higher separation and recycling costs. This strategy has been 

considered adequate in the economic analysis performed by Luyben (2011). In 

contrast, in a different context (Sundaram, et al., 1991), the optimized economic 

returns of an existing plant were obtained for higher single-pass conversion. 

Catalyst deactivation is a complex phenomenon as it occurs by several 

mechanisms concurrently. In most cases, catalyst aging is caused by carbon 

deposition on the catalyst, chemical decomposition of the active ingredient in the 

catalyst, and mechanical disintegration of catalyst particles (Chen, 2006). 
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Temperature and partial pressure gradients have been reported to influence 

potassium migration leading to deactivation (Meima & Menon, 2001). These 

gradients are expected to be more pronounced when operating at high single-

pass conversion as the reaction rates are necessarily increased, which influences 

transport phenomena inside the catalyst. 

In future work, other objectives might be incorporated into the problem if 

plantwide operations are considered (furnaces, heat exchangers, decanter, and 

distillation columns). For instance, a multi-objective optimization problem could 

consider plantwide utility consumption, atmospheric emissions, capital costs, and 

other economic aspects. In the reactor, as an isolated unity, energy requirements 

are primarily due to process steam generation and recycling unreacted 

ethylbenzene. The author suggests referring to Dimian & Bildea (2019) and 

Luyben (2011) for examples of plantwide integrated studies. 

The optimization variables considered were the inlet pressure on the first 

catalyst bed Pin [bar], inlet temperature Ti [K], and catalyst loading Wi [kg] of each 

bed of index i. It is important to remark that, in the optimization process, as the 

bed bulk density was set with a constant value, bed dimensions were changed 

as a consequence of changes in catalyst loading. In radial-flow beds, bed length 

and inner radius were preserved, while changes in catalyst loading had an impact 

on the outer radius. And in the axial-flow beds, the cross-sectional radius was 

preserved, while changes in catalyst loading led to changes in bed length. 

From a modeling and optimization perspective, a greater cross-sectional 

area would result in a lower pressure drop. Considering our problem is limited by 

the outlet pressure, the best reactor performance would (mathematically) occur, 

for a given catalyst loading, with the maximum values for inner radius, when 

considering axial-flow design, and both inner radius and length, when considering 

radial-flow, as the reactor would operate with the lowest overall pressure. 

However, reactor design should consider other aspects to limit these values, such 

as the flow distribution. Li (2007) presents alternatives for scaling up and some 

associated issues. To adopt a conservative approach, it was decided to preserve 

the original values of the dimensions related to the cross-sectional area, whereas 

allowing the dimensions related to bed depth to change according to catalyst 

loading. This approach is similar to the one adopted in the simulations performed 

by Lee & Froment (2008). 
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Limits for pressure were defined to avoid infeasible solutions, in which 

starting from low initial pressures, the pressure drop leads to negative absolute 

pressures. As the pressure drop changes according to catalyst bed type, the 

lower bounds for inlet pressure able to prevent infeasible solutions were set with 

different values for either radial-flow or axial-flow reactors. In experiments varying 

inlet steam-to-ethylbenzene ratios, boundaries for inlet pressure were selected 

after numerical simulations using different ranges for each steam ratio. The 

selected values would produce feasible solutions but near the operational limit, 

considering the outlet pressure constraint (Equation 53) and the limits of other 

decision variables. The strategy was based on the minimum and maximum 

pressure drop occurring with the minimum and maximum catalyst loading and 

temperature for a given steam ratio. Therefore, the choice of inlet pressure 

boundaries would foster convergence when sampling the initial population but 

would not create active boundaries in the final solutions. 

The boundaries for catalyst loading were defined to preserve dimensions 

in a range close to the original values reported by Lee & Froment (2008), thus 

avoiding inconsistent scaling up. The upper bounds for temperatures were 

defined based on process limitations and lower bounds to ensure algorithm 

convergence. 

When using gradient-based algorithms, the choice of initial estimation for 

decision variables plays a major role. The convergence using different 

combinations of values was tested in pseudo-homogeneous reactors using 

effectiveness factors η = 1, and then a set of values that had converged properly 

was retained. The same initial guesses were used at all points of the Pareto 

fronts. 

The boundaries and initial guesses for the optimization variables are 

presented in Table 5. 
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Table 5 – Boundaries and initial guesses for optimization variables. 

Variable Lower bound Upper bound Initial guess 

W1 [kg x 103](2) 72.5 85.0 73.0 

W2 [kg x 103] 72.5 85.0 73.0 

W3 [kg x 103] 72.5 85.0 73.0 

T1 [K](2) 800.00 913.15 900.00 

T2 [K] 820.00 913.15 910.00 

T3 [K] 840.00 913.15 913.15 

Pin [bar] axial-flow 1.20 2.50 1.40 

Pin [bar] radial-flow(3) 0.60 2.00(1) 1.10 

(1) The upper boundary was readjusted to 0.8 when using evolutionary algorithms. 
(2) Removed in the two-bed reactor configuration. 
(3) Narrower ranges were adjusted when changing steam-to-ethylbenzene ratios or the number 
of catalyst beds. 

 

 

As there is pressure drop along catalyst beds, and there is an industry 

limitation as to the lowest practicable pressure, constraints for outlet pressure 

must be considered. It was adopted 0.5 bar as the outlet pressure limit, following 

values reported by Rase (2000), although reactors operating at lower pressures 

(41 kPa) have been reported (Chen, 2006). 

 

0.5 ≤ 𝑃𝑜𝑢𝑡 (53) 

 

In which Pout corresponds to pressure at the outlet of the reactor in bar. 

When comparing axial to radial flow design, it was preserved the inlet 

steam-to-ethylbenzene ratio used by Lee & Froment (2008) once verified that, if 

included as an additional decision variable, it would necessarily converge to its 

upper boundaries for any different weights for conversion and selectivity. 

However, it is a significant heat consumer in the reactor, and its impact on 

conversion and selectivity must be considered in industrial decision-making. It 

was addressed in the experiments using evolutionary algorithms (which 

considered only radial-flow reactors) by two different approaches. 

1. The steam-to-ethylbenzene molar feed ratio (S-EB) was set at 

distinct discrete levels: 7, 9, 11, 13, and 15. For each, the Pareto 

optimal solutions in terms of conversion and selectivity were found. 
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2. S-EB was included as both an additional decision variable and 

objective, which turns the problem into a three-objective problem. 

This approach has the advantage of lesser computational cost and 

continuous values for the steam ratio in the Pareto optimal 

solutions. In contrast, it reduces selective pressure for maximizing 

conversion and selectivity. 

Furthermore, in experiments comparing reactor design, it was verified that 

the lower boundaries of this problem might produce solutions in a region of too 

low conversion (Leite, et al., 2021), therefore undesirable from an industrial 

perspective. To address this issue, in experiments with evolutionary algorithms, 

it was included an additional constraint to create a lower limit for single-pass 

conversion of 50%. By including this constraint, the feasible space was reduced 

removing a region undesirable from an industrial perspective due to the small 

single-pass conversion. Considering the constraint handling strategy adopted, 

this would reinforce exploiting the region of the most interest as the solutions with 

both the outlet pressure greater than 0.5 and conversion greater than 50% would 

be preferred over solutions with any of these conditions violated. 

 

0.5 ≤ 𝑋𝑆𝑇 (54) 
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4.4. NUMERICAL ROUTINES 

 

The system of differential equations of each bed instance was solved using 

an Explicit Runge-Kutta method of order 5 with errors based on order 4, from the 

solve_ivp function of scipy.integrate module. The system of nonlinear equations 

for the orthogonal collocation points was solved using both the Levenberg-

Marquardt and Powell’s hybrid algorithms from the root function of scipy.optimize 

module. The first was used at the entrance of the reactor where good initial 

estimations for solutions were not available and convergence was difficult. The 

latter was used for other points, in which the solutions from previous points were 

good initial estimations and convergence was adequate and fast. The 

optimization for the nonlinearly constrained single-objective subproblems was 

solved using the ‘SLSQP’ algorithm from the minimize function of scipy.optimize 

module. The scipy version used in this study was 1.7 (Jones, et al., 2001-). 

Orthogonal collocation was implemented by the author throughout a 

published article (Leite, et al., 2021) using Python 3 basic language. The 

implementation was later made available to users in a public repository denoted 

collocation (Leite, 2022b). 

As aforementioned, the evolutionary algorithms were implemented by 

combining basic structures from pymoo (Blank & Deb, 2020) with novel structures 

implemented by the author and made publicly available in the code repository 

and Python package pymoode (Leite, 2022a). 

 

 

4.5. EVOLUTIONARY ALGORITHM EXPERIMENTS 

 

The experiments presented in this dissertation's main body focus on 

applying GDE3 to the styrene reactor problem and the fundamental analysis of 

the results. Additional experiments to define control parameters and a 

comparison to the peer algorithm NSGA-II (Deb, et al., 2002) are provided in 

Appendix C. 

In short, GDE3 had its best performance using a high crossover parameter 

of 0.9 (for binomial crossover), which increases the rotational invariance of the 

algorithm. This attribute is beneficial in this problem due to the interdependence 
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of decision variables in the objective functions. The same characteristic of the 

problem is probably associated with the superior performance of the DE 

reproduction operators compared to NSGA-II. Moreover, a simple method for 

exploiting Pareto dominance in GDE3 parent selection improved its convergence 

speed without reducing population diversity. 

Considering these results, the choices for hyperparameters in the main 

experiments were the following: 

- F: [0.0, 1.0] 

- CR: 0.9 

- DE/rand/1/bin 

- Jitter deviation parameter γ: 10-4 

For all two-objective problems, the modified pruning removal strategy in 

survival by Kukkonen & Deb (2006a) was adopted, whereas, for the three-

objective problem, GDE3 was modified by the M-NN survival strategy (Kukkonen 

& Deb, 2006b). 

Single-run experiments were performed, considering the computational 

costs of the complete heterogeneous model adopted. A population size of 100 

was used in individual two-objective experiments with different steam-to-

ethylbenzene molar feed ratios, and optimization was terminated within 100 

generations. The number of generations was selected after numerical 

experiments using the pseudohomogeneous model. It is possible to verify in 

Appendix C that it provides adequate convergence. It was chosen a population 

of 200 and 150 generations for the three-objective problem. 

Future work might incorporate surrogate models to reduce the 

computational cost associated with objective function evaluations. This strategy 

has been applied to chemical processes by other authors who verified a reduction 

from 2 to 5 in the number of simulations (Beck, et al., 2015). Performance metrics 

to define search termination and taboo list to avoid re-visits have been successful 

in chemical engineering problems (Sharma & Rangaiah, 2013) and can reduce 

the number of function evaluations. 

 

 



64 
 

 

5. RESULTS AND DISCUSSION 

 

5.1. BASELINE SIMULATION PROBLEM 

 

5.1.1. Energy balance validation 

 

To verify the numerical solution consistency, the outlet values obtained 

using the same dimensions and operating conditions as Lee & Froment (2008) 

were compared to those reported in their study. However, the values obtained 

were significantly different in terms of outlet temperature and ST selectivity. Then, 

to verify the consistency of the results obtained in this study and of those obtained 

by Lee & Froment (2008), the energy balance was checked at the inlet and outlet 

of the first catalyst bed using each of the results. The energy balance for adiabatic 

operation at steady-state can be expressed by Equation 55. 

 

�̇�𝑔𝑒𝑛 =∑𝐹𝑜𝑢𝑡,𝑗∆𝐻𝑜𝑢𝑡,𝑓𝑗
𝑗

−∑𝐹𝑖𝑛,𝑗∆𝐻𝑖𝑛,𝑓𝑗 = 0

𝑗

 (55) 

 

In which, �̇�𝑔𝑒𝑛 is the energy generation rate in kJ/h, ΔHout,fj is the heat of 

formation of component j in the outlet in kJ/kmol, and ΔHin,fj is the heat of 

formation of component j in the inlet in kJ/kmol. The values of heat of formation 

ΔHfj of component j at temperature T were calculated based on Reid, et al. (1987). 

The term �̇�𝑔𝑒𝑛 conceptually is equal to zero, as the system operates at steady-

state, and any differences are a consequence of mathematical and/or numerical 

errors. 

Lee & Froment (2008) simulated axial-flow and radial flow reactors using 

a feed pressure of 1.25 bar, dimensions, and other inlet values presented in Table 

2. The same was performed in the current to verify numerical solutions' 

consistency. Results for the first bed of each reactor are presented in Table 6. 
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Table 6 – Comparative results to verify the consistency of the energy balance. 

Lee & Froment (2008) 

 XEB % SST % SBZ % STO % Tout �̇�𝑔𝑒𝑛 [kJ/h] 

Axial-flow 36.89 98.49 1.00 0.51 811.36 -6.91 x 106 

Radial-flow 36.59 98.43 1.01 0.56 812.04 -6.85 x 106 

Current study 

 XEB % SST % SBZ % STO % Tout �̇�𝑔𝑒𝑛 [kJ/h] 

Axial-flow 35.84 95.93 1.12 2.95 827.65 -2.62 x 103 

Radial-flow 35.85 95.97 1.11 2.92 827.60 -2.59 x 103 

 

 

The values of �̇�𝑔𝑒𝑛 were compared to the heat of reaction of the main 

reaction to verify their magnitude. The heat of reaction of the main reaction 

corresponds to 1.2486 x 105 kJ/kmol of EB consumed at 900K and to 1.2464 at 

x 105 kJ/kmol of EB consumed at 850K. Using conversion, selectivity, and outlet 

temperature reported by Lee & Froment (2008), the values of �̇�𝑔𝑒𝑛 correspond to 

the enthalpy change of more than 50 kmol/h of EB converted into ST, which is 

more than 19% of the total amount converted in the first bed, respectively 257 

kmol/h and 255 kmol/h in the axial-flow and radial-flow reactors. In contrast, the 

values of �̇�𝑔𝑒𝑛 obtained in this study correspond to approximately 0.01% of the 

total amount of EB converted into ST in the first bed of each reactor. Thus, in 

terms of energy balance consistency, the solutions presented in the current study 

can be considered reliable, while perhaps those obtained by Lee & Froment 

(2008) converged to imprecise results. 

Although the reactor simulations presented by Lee & Froment (2008) show 

inconsistency concerning the energy balance, the parameter estimation 

performed in their study proved to be consistent once the plots of components’ 

profiles under experimental conditions match reproductions performed during the 

current study using the estimated parameters. 
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5.1.2. Simulation results 

 

The reactors at sub-optimal operating conditions were simulated with 

dimensions, and inlet values presented in Table 2. The inlet pressure of the axial-

flow reactor was defined as 1.35 bar instead of 1.25 bar, to result in an outlet 

pressure close to 0.5 bar. Reactors were evaluated in terms of cumulative 

conversion of EB, ST, BZ, and TO; outlet temperature Tout; and outlet pressure 

Pout. The cumulative conversion of each component j is noted as Xj. The results 

obtained are presented in Table 7 and Figure 7. 

 

Table 7 – Results obtained for different reactor configurations at sub-optimal conditions. 

 Reactor 

 Axial-flow Radial-flow 

 Bed 1 Bed 2 Bed 3 Bed 1 Bed 2 Bed 3 

XEB % 35.8 66.6 84.9 35.8 65.6 83.2 

XST % 34.4 59.8 71.4 34.4 58.4 66.4 

XBZ % 0.40 1.02 1.61 0.40 1.03 1.75 

XTO % 1.06 5.76 11.9 1.05 6.18 15.0 

SST % 95.9 89.8 84.1 96.0 89.0 79.8 

Pout [bar] 1.162 0.887 0.481 1.225 1.196 1.166 

Tout [K] 827.6 858.5 858.5 827.6 861.3 861.3 
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Figure 7 – Results obtained for axial-flow and radial-flow multibed reactors at sub-optimal 
operating conditions in terms of (a) EB and ST molar flow rates (b) temperature profiles (c) 

pressure drop. 

 

 

In terms of ST conversion and selectivity, the axial-flow reactor led to the 

best results, as, with the corresponding inlet pressures, a substantial part of the 

process occurs at lower pressures than using the radial-flow configuration. As 
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observed by Dimian & Bildea (2019) operating at “the lowest workable pressure” 

significantly increases equilibrium conversion, and the lowest workable pressure 

limit is defined by outlet pressure. Although performing better in the initial 

scenario, the inlet pressure of the axial-flow reactor had already been set close 

to the minimum value to obtain an outlet pressure of 0.5 bar, so there was no 

possibility to gain either ST selectivity or conversion on the axial-flow reactor by 

lowering the feed pressure, while this was feasible to the radial-flow reactor. 

When analyzing component profiles in Figure 7 (a) and temperature 

profiles in Figure 7 (b) it is possible to infer that, under the sub-optimal conditions, 

most of the main reaction took place at the initial part of each bed, and also that 

the EB consumption occurred mostly in the first bed. As noticed by Dimian & 

Bildea (2019), the reaction zone with lower reaction rates may provide a catalyst 

reserve for ensuring flexibility in operation, which is important for working with 

different feed rates and preventing negative impacts due to catalyst deactivation. 

However, under these conditions, a small part of the main reaction occurred in 

the third bed, where the lower pressures favor equilibrium conversion and 

selectivity. Thus, optimization of the operating conditions can be crucial to define 

changes in inlet temperatures that can reduce reaction rates in the first bed while 

an increase in the second and third beds, with gains in conversion and selectivity. 

In Figure 7 (b), one can observe that the temperature in the radial-flow 

reactor increased along the 3rd bed. This was a consequence of exothermic 

reactions prevailing over endothermic ones. Thus, as ST is produced by an 

endothermic reaction, it is possible to infer that side reactions were prevailing 

over the main reaction, therefore ST selectivity was compromised. However, as 

the pressure drop was considerably low, the radial-flow reactor could operate at 

lower feed pressures, which would enhance ST selectivity. 
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5.2. OPTIMIZATION 

 

5.2.1. Gradient-based optimization and design comparison 

 

The Pareto front for each reactor was obtained preserving ρb, εb, ρs, εs, 

inner radius, and molar feed ratios from Table 2, also preserving bed length in 

case of the radial-flow configuration. Eleven points were obtained for each reactor 

using weights equally spaced ranging from 0.0 to 1.0. They are presented in 

Figure 8, except for points with conversion below 55%, which were removed for 

better visualization. The optimal parameters with respective weights, XST, and SST 

are presented in Table 8 for the axial-flow reactor, and Table 9 for the radial-flow 

reactor. The optimal results compared to the sub-optimal are presented in Table 

10. 

The number of internal collocation points used to solve the intraparticle 

diffusion problem when performing the optimization was set as 3 instead of 6, as 

used when simulating the multi-bed reactor at predefined conditions. This choice 

was a consequence of the necessity of long times to perform the optimization, 

because of long times to evaluate the objective function, which with 3 internal 

collocation points were about 7 seconds per evaluation, while with 6 internal 

collocation points were greater than 15 seconds per evaluation (by the time of 

experiments). The difference between the effectiveness factor values was less 

than 0.5% and between XST values was less than 10-4 though. 
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Figure 8 – Pareto front for each reactor configuration with the objective functions of maximizing 

Styrene conversion and selectivity. 

 

 

Table 8 – Styrene selectivity and conversion, weights for objective functions, and respective 
optimal parameters for the axial-flow reactor in the Pareto front. 

     Tin, K W, kg x 103 

w1 w2 SST, % XST, % Pin, bar T1 T2 T3 W1
 W2 W3 

0 1 82.3 73.1 1.324 876.1 910.8 913.1 74.1 72.5 72.5 

0.1 0.9 83.2 73.0 1.319 871.2 907.6 913.2 73.0 72.5 72.5 

0.2 0.8 84.2 72.8 1.316 866.4 903.0 913.2 72.9 72.5 72.5 

0.3 0.7 85.3 72.5 1.315 861.4 897.1 913.1 74.1 72.5 72.5 

0.4 0.6 86.5 71.8 1.309 854.3 890.7 913.2 72.9 72.5 72.5 

0.5 0.5 87.9 70.7 1.303 846.2 881.8 913.2 72.9 72.5 72.5 

0.6 0.4 89.5 68.7 1.298 835.5 869.9 913.2 73.0 72.6 72.5 

0.7 0.3 91.3 65.3 1.289 820.9 853.5 912.2 73.2 72.6 72.5 

0.8 0.2 94.2 56.5 1.276 808.4 837.5 892.3 72.8 72.5 72.5 

0.9 0.1 97.3 38.0 1.259 800.0 820.0 843.0 72.5 72.5 72.5 

1 0 97.4 37.2 1.258 800.0 820.0 840.0 72.5 72.5 72.5 
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Table 9 – Styrene selectivity and conversion, weights for objective functions, and respective 
optimal parameters for the radial-flow reactor in the Pareto front. 

     T, K W, kg x 103 

w1 w2 SST, % XST, % Pin, bar T1 T2 T3 W1
 W2 W3 

0 1 84.8 77.0 0.669 886.4 913.1 913.2 74.5 72.5 72.5 

0.1 0.9 85.4 76.9 0.668 881.1 911.4 913.2 73.0 72.7 72.5 

0.2 0.8 86.2 76.8 0.667 874.5 908.3 913.1 73.0 72.7 72.5 

0.3 0.7 87.0 76.5 0.666 870.2 902.2 913.1 73.2 72.5 72.5 

0.4 0.6 87.9 76.0 0.666 863.8 896.1 913.1 74.0 72.5 72.5 

0.5 0.5 89.0 75.1 0.664 855.7 888.2 913.1 73.3 72.7 72.5 

0.6 0.4 90.3 73.4 0.663 856.5 869.3 913.1 72.9 72.7 72.5 

0.7 0.3 91.8 70.7 0.660 839.4 856.6 913.1 72.8 72.6 72.5 

0.8 0.2 94.1 63.6 0.658 818.7 847.4 896.0 75.8 72.5 72.5 

0.9 0.1 97.6 40.7 0.650 800.0 820.0 840.0 72.5 72.5 72.5 

1 0 97.6 40.7 0.650 800.0 820.0 840.0 72.5 72.5 72.5 

 

 



72 
 

 

Table 10 – Selectivity and conversion for reactors operating at optimal conditions compared to 
sub-optimal conditions. 

  Axial-flow Radial-flow 

w1 w2 ΔSST, % ΔXST, % ΔSST, % ΔXST, % 

0 1 -1.86 1.68 5.00 10.58 

0.1 0.9 -0.92 1.63 5.59 10.54 

0.2 0.8 0.08 1.45 6.37 10.41 

0.3 0.7 1.18 1.08 7.23 10.11 

0.4 0.6 2.42 0.41 8.14 9.62 

0.5 0.5 3.81 -0.74 9.23 8.72 

0.6 0.4 5.37 -2.66 10.52 7.06 

0.7 0.3 7.18 -6.10 11.97 4.34 

0.8 0.2 10.04 -14.93 14.27 -2.82 

0.9 0.1 13.21 -33.40 17.83 -25.71 

1 0 13.30 -34.24 17.83 -25.71 
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Figure 9 – Results at optimal operating conditions using SST and XST weights of respectively 0.7 
and 0.3 for axial-flow and radial-flow multibed reactors in terms of (a) EB and ST molar flow 

rates (b) temperature profiles (c) pressure drop. 
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By the smooth shape of the Pareto front (Figure 8) it is possible to infer 

that optimization proceeded well. Previously testing initial guesses and variable 

boundaries at the pseudo-homogenous reactor was essential to avoid infeasible 

solutions and local minima. The boundaries defined for inlet pressure performed 

well in preventing the infeasible solutions but were not active in any of the Pareto 

solutions (Table 8 and Table 9). This way, these boundaries have worked only 

as a numerical resource for performing the optimization, and not as limitations to 

the simulated process. 

Comparing the process at optimal operating conditions to itself at sub-

optimal, it was possible to verify a great improvement in terms of both SST and 

XST in most points for the radial-flow reactor, while, for the axial-flow reactor, 

results from weighing selectivity with values lower than 0.2 or greater than 0.4 

were worst in terms of either SST or XST. This was expected because the pressure, 

which is an important driver to gain selectivity, had an expressive margin to be 

reduced at the radial-flow reactor, whereas it had been set at its lower limit for 

the axial-flow reactor at sub-optimal conditions. 

Comparing the two optimized reactor configurations, differently from 

results obtained at sub-optimal operating conditions, as most of the reactions in 

the radial-flow reactor occur at lower pressures than in the axial-flow reactor, it 

produced better results in terms of both SST and XST, what is evident in Figure 8 

and Figure 9. Therefore, the radial-flow reactor has proved to be a better 

alternative than the axial-flow for industrial manufacturing. 

For both the axial-flow and radial-flow reactors, reducing XST weights in 

the range from 1.0 to 0.7 resulted in a significant improvement in SST compared 

to the magnitude of loss in XST conversion. After the weight of 0.5 for XST, further 

reductions led to more significant losses in XST and to smaller improvements in 

SST. 

Considering the results of the Pareto front (Figure 8, Table 8, and Table 

9), weighing SST and XST with respectively 0.3 and 0.7 is an adequate solution. In 

this point, the values SST and XST were respectively 85.3% and 72.5% for the 

axial-flow reactor and 87.0% and 76.5% for the radial-flow reactor, corresponding 

to increments in SST and XST of respectively 1.18% and 1.08% for the axial-flow 

reactor and 7.23% and 10.11% for the radial-flow reactor when compared to sub-

optimal dimensions and operational conditions. 
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Profiles of FEB, FST, T, and P for this solution are presented in Figure 9. It 

is possible to observe, comparing it to Figure 7, that the amount of styrene 

produced in the second and third beds is greater in the optimized conditions 

compared to the sub-optimal conditions. It has a positive impact on both XST and 

SST and can be related to changes in the inlet temperature scheme. Under 

optimized conditions, the inlet temperature of each catalyst bed is greater than 

that of previous beds, except when upper optimization boundaries were active 

and they assume the same value. The values of temperatures T2 and T3 from the 

first line of Table 9 are both 913.15K although their values differ in the table due 

to rounding errors. The optimized inlet temperature scheme can be explained as 

a strategy for reactions to take place in the second and third beds, in which lower 

operating pressures lead to gains in selectivity and conversion. Besides, by 

analyzing the temperature profiles it is possible to notice that endothermic 

reactions prevail over exothermic all over the reactors, as the temperature profile 

is decrescent at each bed. 

In Table 8 and Table 9, it is possible to notice that, as the weights for SST 

versus XST increase, there is a tendency of operating at lower pressures and 

lower temperatures. The former is directly related to selectivity, as observed by 

Lee & Froment (2008). The latter results in lower XST, thus lower FST, so increases 

the rate of the direct reaction of the equilibrium between EB and ST avoiding the 

side reaction which consumes ST and H2 to produce TO and CH4. It is remarkable 

that although higher temperatures might increase the rate of the main reaction 

and the equilibrium conversion, for a problem with such boundaries and 

constraints as defined in this study, the optimal XST does not occur with the inlet 

temperature at its upper boundary at the first two catalyst beds for the axial-flow 

reactor and the first catalyst bed for the radial-flow reactor. This might be also 

attributed to the significant gain in selectivity as the pressure decreases along the 

reactors, which makes it favorable that most of the reactions occur at the last 

beds. 

One can observe that catalyst loading in the first bed was greater than in 

the second and third beds for both reactors (Table 8 and Table 9), except when 

all lower bounds were active (SST weights of 0.9 and 1.0). Conversely, catalyst 

loading in the last bed was smaller than in both the other beds (except when other 

lower bounds were active). However, it is hard to trace patterns for changes in 
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W1 and W2 as a consequence of changes in SST and XST weights. Probably 

gradients of the weighted objective functions with respect to these variables were 

negligible in the neighborhood of the solutions. Therefore, it is expected that this 

design aspect would have its impact on reactor performance better explained by 

non-gradient-based algorithms. Moreover, in the optimal front, total catalyst 

loading was less than in suboptimal conditions. This has contributed to lower 

pressure drop, enabling the reactors to operate with lower inlet pressures. 

For the axial-flow reactor, with the constraints defined in this study, when 

using 0.9 as the weight for SST most of the boundaries of the variables were 

active, and when using 1.0 all boundaries were active, except the inlet pressure, 

although the outlet pressure constraint was active. Thus, results were quite 

similar in these points. Differently, for the radial-flow reactor, when using 0.9 as 

the weight for SST all the boundaries were active, except the inlet pressure, so 

there was no margin for gain in selectivity, the reason why results in this point are 

the same as when using 1.0 as the weight for SST. 

 

 

5.2.2. Evolutionary algorithm experiments 

 

5.2.2.1. Two objective problems 

 

The corresponding values of objectives and decision variables for the 

solutions obtained using the complete heterogeneous model are provided in 

Supplementary Material of the published article (Leite, et al., 2023) rather than in 

the main body of this dissertation due to the extension of the results. The Pareto 

fronts obtained for the three-bed configuration using discrete values for steam-

to-ethylbenzene molar feed ratios (S-EB) are presented in Figure 10. 

The solutions are well distributed on the Pareto fronts, although one might 

notice that the region of high conversion seems to contain a relatively lower 

density of solutions. The distribution of solutions suggests that for a given S-EB, 

increments in conversion to its maximum feasible limit might be undesirable from 

an engineering perspective because it necessarily leads to significant losses in 

selectivity. Furthermore, the high conversion region is more sensitive to changes 

in decision variables. Overestimating the necessary heat supplied to operate in 
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maximum single-pass conversion leads to losses in both conversion and 

selectivity, which is evidently undesirable. 

 

 

Figure 10 – Pareto fronts obtained for discrete levels of steam-to-ethylbenzene ratio in three-
bed reactor configuration. 

 

 

For an optimized reactor working with a single-pass conversion of 70%, 

which is usual in industrial practice (ENI-Versalis, s.d.), a reduction from the base 

case of an S-EB of 11 to 9 would imply a loss of approximately 1.3% in selectivity, 

and further reduction to 7 would lead to an additional loss of 2.2% (total of 3.5%). 

Conversely, increments from 11 to 13 and 13 to 15 lead to 0.9% and 0.5% 

improvements. The benefits of operating with higher S-EB are significantly less 

pronounced when operating at lower single-pass conversion. For instance, 

increasing the ratio from 11 to 13 and 13 to 15 at a 50% single-pass conversion 

led to increments of 0.3% and 0.2% in selectivity. Besides the direct benefits in 

selectivity when using higher S-EB, in the high conversion region (≥ 70%), it can 

be beneficial for preventing coke deposition and catalyst deactivation, as this 

region is operated at higher temperatures. 
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The molar flow rates, temperature, and pressure profiles for solutions of 

70% single-pass conversion for the three-bed reactor are presented in Figure 11. 

It is possible to notice that, as the S-EB increases, the emphasis on the reaction 

in the last two catalyst beds becomes more significant. Using the highest steam 

ratio evaluated, only 20% of total styrene conversion occurred in the first reaction 

bed. Even with the base S-EB (11), only 26% of total styrene conversion occurred 

in the first reaction bed. This can be justified as, by lowering the reactants' partial 

pressures, steam favors the direct main reaction to the extent that the heat 

supplied in the last two catalyst beds is enough to perform the 70% conversion. 

 

 

Figure 11 – Molar flow rates, temperature, and pressure profiles for solutions near 70% of 
single-pass conversion for the three-bed reactor using different steam-to-ethylbenzene feed 

ratios. 

 

 

The top-level Parallel coordinates visualizations for the three-bed reactor 

(top) and two-bed reactor (bottom) are presented in Figure 12. When producing 

these figures, the decision variables were normalized using their boundaries from 

Table 5. However, to be comparable in the normalized scale, all temperatures 

were scaled between 800.00 and 913.15. The objectives were scaled considering 



79 
 

 

the minima and maxima from the combined populations obtained for each reactor 

configuration. Their original values are preserved for comparison in Figure 13. 

. 

 

 

Figure 12 – Parallel coordinates visualization for two-objective problems of three-bed (top) and 
two-bed reactor (bottom) design. The color scale was defined based on the values of 

conversion. 

 

 

When analyzing the Pareto fronts obtained for a two-bed reactor 

configuration (Figure 13), it is evident that using two catalyst beds leads to 

limitations in attainable single-pass conversion compared to the three-bed 

design. In solutions near the maximum attainable conversion, both catalyst beds' 

upper boundaries for inlet temperatures are active, as observed in Figure 12. 

Diversely, when the three-bed design is adopted, the first catalyst bed never 

operates at its temperature upper bound. Thus, the choice for operating inlet 

temperatures must consider other design aspects and decision variables, even 

when maximum single-pass conversion is desired. The distribution of the heat 

supplied to the endothermic reaction should emphasize regions of the reactor 

operated with the lowest pressure if the design allows. It leads to a distribution in 



80 
 

 

which the inlet temperature of each catalyst bed is greater than or equal to 

previous beds (Figure 12), which agrees with our previous results. 

In both reactor configurations, the catalyst loading of the first bed is usually 

biased towards higher values, although this behavior is even emphasized in the 

two-bed design. Conversely, the catalyst loading of the following beds is biased 

towards lower values. Notice that for most solutions, the catalyst loading of the 

last reactor bed is close to its lower bound. The maximum attainable single-pass 

conversion in the two-bed reactor is an exception, in which the catalyst loadings 

of both reactors are close to their upper bounds. In this situation, increments in 

the reactor residence time would still increase its single-pass conversion. 

Moreover, although random distribution prevails to some extent concerning the 

catalyst loading of the intermediate bed in the three-bed configuration, especially 

for high single-pass conversion, some bias towards lower values is observed. 

Although the impact of the catalyst loading of initial beds in reactor 

selectivity and conversion might be relatively small compared to other decision 

variables, considering the sparsity in the solutions distribution, it might lead to 

other benefits. In industrial practice, a surplus in catalyst loading might be helpful 

to ensure flexibility in operation and reduce operational temperatures, which has 

the advantage of preventing catalyst deactivation and coke deposition, besides 

slightly reducing heating costs. 

In a two-bed design, for S-EB greater than or equal to 11 (Figure 13), the 

benefits in reactor selectivity provided by an additional catalyst bed are relatively 

small, considering a single-pass conversion of up to 70%. It endorses the analysis 

of molar flow rates and temperature profiles in Figure 11, as the operating 

temperatures of the first reactor bed, for achieving a 70% single-pass conversion, 

are considerably higher with S-EB lesser than or equal to 9, which favors side 

reactions. Therefore, the benefits of the third catalyst bed in conversion and 

selectivity are more significant when working with S-EB lesser than or equal to 9 

or when greater single-pass conversion is desired, such as 75%. In the latter, the 

third bed is not only desirable but necessary considering the EB molar feed rate 

and residence time adopted. Working with relatively low steam ratios can be 

especially useful when fuel and furnace costs are relatively high and when heat 

recovery efficiency in the industrial unit is low. Environmental aspects can also 

motivate a reduction in fuel consumption in the furnaces. A higher conversion is 
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especially desired when the plant performance and capacity are limited by 

separation and recycling units or the reactor's original dimensions. Considering 

market fluctuations and limitations in other related processes, the flexibility 

assured by an additional catalyst bed might be important to providing stable 

economic returns. 

Previous studies have already demonstrated that the energy cost for 

running highly endothermic reactions may be significantly higher than process 

equipment cost in terms of annualized costs (Dimian & Bildea, 2019). The third 

catalyst bed should incur additional energy demand due to interstage re-heating, 

which should be balanced against its benefits in conversion and selectivity, 

therefore, fresh ethylbenzene and recycling costs. Moreover, it leads to additional 

equipment and catalyst costs. When fresh ethylbenzene costs prevail, selectivity 

should be emphasized, as long as separation and recycling units provide the 

necessary capacity. In this context, a two-bed reactor operating with an 

intermediate-low (11-9) steam ratio is likely preferred. 
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Figure 13 – Pareto fronts obtained for discrete levels of steam-to-ethylbenzene ratio in two-bed 

reactor configuration (in colors) compared to three-bed configuration (in light grey). 

 

 

To illustrate the impact of diffusional phenomena on the kinetic model, 

Figure 14 presents the effectiveness factors of the four reactions along reactor 

length. Operational conditions and dimensions were defined considering the 

optimized three-bed reactor operating with S-EB of 11 and 70% of conversion. 

Notice that, in the inlet section of each catalyst bed, due to interstage (re)heating, 

the surface reaction rates should be considerably high. Therefore, considering 

the impact of reaction rates in the intraparticle transport equation (presented in 

Appendix A), the effectiveness factors of reactions consuming EB are at their 

lowest levels. Conversely, the fourth reaction presents a different pattern, as it 

consumes ST and H2. In this reaction, as the molar fractions of ST and H2 are 

greater inside than outside the porous pellets, the effectiveness factors are 

greater than one. When ST and H2 molar fractions are significantly small at the 
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entrance of the reactor, the effectiveness factor of this reaction tends to assume 

remarkably high values. As for the fourth reaction, the effectiveness factor of the 

third reaction starts with very high values because the molar fraction of one of its 

reactants (H2) is considerably low in the reactor inlet. 

When operating the reactor beds with inlet temperatures in ascending 

order, the partial pressure gradients of components are less pronounced than if 

the operating temperatures had been in descending order or even. It occurs 

because the reactants' partial pressures are higher close to the reactor inlet, 

leading to higher reaction rates at the pellets' surface, increasing composition 

gradients. Although probably in a minimal magnitude, the catalyst deactivation 

might be reduced for a given single pass conversion if operating the reactors at 

the optimized inlet temperature scheme based on conversion and selectivity. 

 

 

Figure 14 – Profiles of effectiveness factors along optimized three-bed reactor operating with 
70% single-pass conversion and a steam-to-ethylbenzene feed ratio of 11. 

 

 

5.2.2.2. Three objective problems 

 

The two-dimensional perspective of the Pareto front obtained for the three-

objective problem using GDE3 is presented in Figure 15. The three-dimensional 

perspectives for solutions obtained by GDE3 and NSDE-R are presented in 

Figure 16 and Figure 17. The M-NN crowding metric has effectively produced 

well-distributed solutions in the objective space, with no bias towards preferred 

reference directions. This strategy can be advantageous when the natural 

distribution of elements in the front differs from the usual reference directions of 
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multi and many-objective problems. The maximum level of the third objective 

(minimizing S-EB) does not correspond to a single best solution in the other two 

objectives but a set of non-dominated solutions. Therefore, using the M-NN 

survival, the distribution of elements in the front is more homogeneous on 

different levels of S-EB than using reference directions. 

 

 

Figure 15 – Two-dimensional perspective of the Pareto optimal solutions obtained by GDE3 in 
the three-objective problem. 
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Figure 16 – Three-dimensional perspective of the Pareto optimal solutions obtained by GDE3 in 
the three-objective problem. 

 

 

 

Figure 17 – Three-dimensional perspective of the Pareto optimal solutions obtained by NSDE-
R in the three-objective problem. 
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Figure 18 – Parallel coordinates visualization for the three-objective problem. 

 

 

The Parallel coordinates visualization for the results obtained using GDE3-

MNN is presented in Figure 18. The same normalization for the two-objective 

problem was performed. Although some general behavior is preserved, 

differences in results are evident when compared to Figure 12. As expected, the 

inlet temperatures are greater for solutions with more emphasis on conversion 

than selectivity. However, random factors in the heat distribution are considerably 

more pronounced when evaluated from the three-objective perspective. As 

previously observed, the heat supplied should emphasize reactor regions 

operated with the lowest pressure. Although most solutions still preserve the inlet 

temperatures in ascending order from the first to the last catalyst bed, in 41 of the 

200, the temperature of a subsequent bed was greater than the previous one. 

The author and his colleague could not trace any pattern to justify this behavior 

based on fundamental aspects considering either catalyst loading or steam ratio. 

Therefore, it is likely that the reduced selective pressure due to the greater 

sparsity in objective space has produced solutions that could still be improved in 

all objectives simultaneously. The greater sparsity of solutions is noticeable when 

comparing Figure 15 to Figure 10, considering the distances between one 

solution and its closest neighbors considering selectivity and conversion. This 

adversity is expected to be reduced if the population size is increased, which 

would, conversely, increase computational costs. 

Concerning the catalyst loading of each reactor bed, the preferred values 

previously observed in the two-objective results are no longer observed for 

neither the first nor the second beds. In the third, some bias towards lower values 

is preserved, although the occurrence of solutions with higher values is 
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remarkable. As a general pattern, there is a negative correlation between the 

catalyst loading of the first and the second beds. Therefore, the algorithm has 

converged to solutions that, to some extent, preserve optimal residence times. 

In this sense, when pursuing a deep conceptual analysis of the impact of 

decision variables on reactor performance, the two-objective approach might be 

a better choice, although a more sophisticated three-objective strategy can be 

adopted. It is essential to formulate the problem and choose the corresponding 

algorithm according to the purpose of the investigation, which, in the current 

study, was better addressed by a more straightforward strategy. The three-

objective approach still has the advantage of producing continuous results over 

S-EB that can be further used in integrated decision-making processes. 

Different regions in the decision space were explored, diversely from the 

previous results obtained using exact methods, because of the stochastic nature 

of the algorithms herein adopted. In industrial practice, the flexibility of choosing 

between different scenarios of comparable performance might prevail over the 

precision of exact methods. 
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6. CONCLUSIONS 

 

Styrene is one of the most used industrial monomers as it is a major 

component of many polymer-based products. Modeling, simulating, and 

optimizing styrene reactor design and operation is critical to improving plant 

performance and economic returns. The objectives of the current work consisted 

of simulating and optimizing styrene reactor design and operation exploiting 

particular aspects of different optimization strategies. The simulations performed 

were consistent and the programming structure has proved versatile to simulate 

different scenarios. 

Under baseline conditions, previously adopted in the literature, the axial-

flow reactor produced better results than radial-flow, but the former had a lower 

margin of improvement after optimization, due to the outlet pressure already 

being set at the minimum possible. Comparing the two optimized reactor 

configurations, as most of the reactions in the radial-flow reactor occurred at 

lower pressures than in the axial-flow reactor, it produced better results in terms 

of both SST and XST. Therefore, considering the same limitation for outlet 

pressure, the radial-flow reactor has proved to be a better alternative than axial-

flow for industrial manufacturing. Improvements because of optimization in the 

radial-flow reactor were more significant than in the axial-flow, because of the 

great impact of reducing the operating pressure. Gains were observed in both 

reactors due to optimized inlet temperature schemes, that favor reactions to take 

place in the final catalyst beds, in which pressures are lower than in initial beds. 

Under optimized conditions, the inlet temperature of each catalyst bed is greater 

than that of previous beds, except when optimization upper boundaries were 

active. 

The steam-to-ethylbenzene molar feed ratio, a relevant heat consumer in 

the process, had its impact on conversion and selectivity investigated using two-

objective and three-objective evolutionary approaches. The benefits of high 

steam ratios in the reactor selectivity are more relevant when operating at 

relatively high single-pass conversion (70%), in which improvements in selectivity 

are more emphasized than in low conversion operation. A high conversion is 

especially desired when the plant performance and capacity are limited by 

separation and recycling units or the reactor's original dimensions. A three-bed 
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reactor configuration is beneficial for operating at high single-pass conversion 

and low steam-to-ethylbenzene feed ratios (≤ 9), besides ensuring flexibility to 

absorb market fluctuations and limitations in related processes. 

A bias towards adopting relatively higher catalyst loading in the first reactor 

bed was observed in both two- and three-bed reactor designs. Although its impact 

on selectivity and conversion might be small, it leads to other benefits, such as 

preventing catalyst deactivation, reducing heating costs, and assuring more 

flexibility in operation. Furthermore, this study reinforces the importance of low 

pressure to reactor performance. Because of pressure drop, the inlet temperature 

of each catalyst bed should be greater than previous ones, except when limited 

by upper bounds, as a mechanism to favor reactions to occur in regions with 

lower pressures. 

An additional contribution of the current work is the reproducibility of 

results as python packages for orthogonal collocation (Leite, 2022b), differential 

evolution (Leite, 2022a), and styrene reactor model (Leite, 2022c) are publicly 

available. 

 

 



90 
 

 

7. DATA AVAILABILITY 

 

The code implemented throughout this study is available in three public 

repositories listed below: 

- pymoode: https://github.com/mooscaliaproject/pymoode 

- collocation: https://github.com/bruscalia/collocation 

- styrene: https://github.com/bruscalia/styrene 

Any of these can be incorporated into a Python 3 environment by the 

following command line: 

pip install -e git+<URL>#egg=<NAME_OF_PACKAGE> 

Also, the user might clone the git repository or download its code on a zip 

file and then run setup.py install. 

The package pymoode is also available on PyPi and can be directly 

installed: 

pip install pymoode 

Complete tutorials are available in each repository. 
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APPENDIX A 

 

The viscosity of the gas mixture μ was calculated by using the method of 

Wilke, described by Equations A1 and A2 (Reid, et al., 1987). 

 

𝜇 =∑
𝑦𝑖𝜇𝑖

∑ 𝑦𝑗𝜙𝑖𝑗𝑗
𝑖

 (A1) 

 

𝜙𝑖𝑗 =
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𝜇𝑖
𝜇𝑗⁄ )

1
2⁄
(
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1
4⁄

]

2

[8 (1 +
𝑀𝑚𝑖

𝑀𝑚𝑗
⁄ )]

1
2⁄

 (A2) 

 

In which yi is the molar fraction of component i in the gas mixture, μi its 

viscosity, and Mmi its molar weight. 

For EB, ST, CH4, BZ, TO and C2H4 μ was obtained by the corresponding-

states method by Thodos described by Equations A3 and A4 (Lee, 2005). 

 

𝜇𝜉 = 4.610𝑇𝑅
0.618 − 2.04𝑒−0.449𝑇𝑅 + 1.94𝑒−4.058𝑇𝑅 + 0.1 (A3) 

 

𝜉 = 𝑇𝑐
1
6⁄ 𝑀𝑚

−1
2⁄ 𝑃𝑐

−2
3⁄  (A4) 

 

 

In which, μ is in µP, TR is the reduced temperature, Tc is the critical 

temperature in K, Pc is the critical pressure in bar, and ξ is the reduced inverse 

viscosity in µP-1. 

For H2 and H2O, μ in µP was obtained by Chapman-Enskog Equation A5 

A5 (Reid, et al., 1987). 

 

𝜇 = 26.69
√𝑀𝑚𝑇

𝜎2𝛺𝑣
 (A5) 
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For H2, Ωv corresponded to Ωv (Lennard-Jones) (Equation A6), while for 

H2O it corresponded to Ωv (Stockmayer) (Equation A7). 

 

𝛺𝑣 =
𝐴

𝑇∗𝐵
+ 𝐶𝑒−𝐷𝑇

∗
+ 𝐸𝑒−𝐹𝑇

∗
 (A6) 

 

𝛺𝑣(𝑆𝑡𝑜𝑐𝑘𝑚𝑎𝑦𝑒𝑟)  = 𝛺𝑣(𝐿𝑒𝑛𝑛𝑎𝑟𝑑 − 𝐽𝑜𝑛𝑒𝑠)  +  0.2
𝛿2
𝑇∗⁄  (A7) 

 

Where T* = (k/ε)·T, A = 1.16145, B = 0.14874, C = 0.52487, D = 0.77320, 

E = 2.16178, F = 2.43787. For H2O δ = 1. 

Values of Mm, Tc, Pc, σ, and ε/k were obtained from Reid, et al. (1987). 
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APPENDIX B 

 

The molecular diffusion coefficient for each component j in the 

multicomponent gas mixture, Djm, was obtained by Equation B1 (Fairbanks & 

Wilke, 1950). 

 

𝐷𝑗𝑚 =
1 − 𝑦𝑗

∑
𝑦𝑘
𝐷𝑗𝑘𝑘≠𝑗

 (B1) 

 

In which Djk is the binary molecular diffusion coefficient for component j in 

component k. 

The binary molecular diffusion coefficients Djk in m²/s were obtained using 

Equation B2 (Fuller, et al., 1966). 

 

𝐷𝑗𝑘 =
10−9𝑇1.75

𝑃 [(∑𝜈)
𝑗

1
3⁄ + (∑𝜈)𝑘

1
3⁄ ]
2 (

1

𝑀𝑚𝑗
+

1

𝑀𝑚𝑘
)

1
2⁄

 (B2) 

 

And the effective diffusion of each component j was obtained by Equation 

B3 (Froment & Bischoff, 1979). 

 

𝐷𝑒,𝑗 =
휀𝑠
𝜏
𝐷𝑗𝑘 (B3) 

 

In which τ is the tortuosity factor of the catalyst particle. 
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APPENDIX C 

 

In the main body of this dissertation, industrial styrene reactors were 

optimized using the multi-objective algorithm Generalized Differential Evolution 3 

(GDE3) to maximize their conversion and selectivity. The discussion was directed 

towards the fundamental analysis of the results from a chemical engineering 

perspective, although several optimization aspects of the problem have been 

investigated. This section will present experiments to evaluate control parameters 

and compare algorithms to provide a complementary analysis for our main text. 

The impact of DE control parameters on GDE3 performance was 

investigated, and it had its performance compared to the peer algorithm NSGA-

II. The comparison between GDE3 and NSGA-II in the two-objective reactor 

problem aims to evaluate how the DE and GA reproduction operators perform in 

this problem, considering the two algorithms implemented share the same 

initialization and survival operators besides the same termination criterion. 

Although in a previous study Chaudhari et al. (2022) compared the performances 

of NSGA-III to NSGA-II in a variation of the styrene problem, the problem 

considered in their study had three objectives, and the main difference between 

the two algorithms considered was in the survival strategy, which differs 

substantially from the comparison of the current study. Notice that the pruning 

method of NSGA-II provides good diversity in the case of two objectives, but 

when the number of objectives is more than two, the obtained diversity declines 

drastically (Kukkonen & Deb, 2006b). 

When comparing the performances of different algorithms and 

hyperparameter values in a specific problem, one is limited to the extent of 

possible inferences regarding general aspects. To general inference, one should 

perform several experiments on benchmark test problems, which is beyond the 

scope of the current paper. However, considering future studies on this process 

and its similarity in modeling aspects with other chemical processes, comparing 

algorithms and hyperparameters can provide relevant insight to researchers and 

practitioners. Emphasis on other catalytic processes and plug-flow reactor design 

from the related chemical processes. 

NSGA-II was implemented using the Python pymoo library (Blank & Deb, 

2020), and GDE3 was implemented as an independent algorithm using pymoo’s 
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basic structure. During this study, the pymoo version was 0.5.0. The 

implementation of GDE is available in the Python package pymoode (Leite, 

2022a). 

The optimization problem considered maximizing selectivity and 

conversion of a three-bed reactor with a fixed S-EB of 11. The impacts of 

crossover and elitism in parent selection were studied for GDE3, and its 

performance was compared to NSGA-II. The F parameter was defined in the 

range [0, 1] in all experiments, randomized by uniform distribution dither. The 

modified parent selection based on nondominated sorting ranks (Zhang, et al., 

2021) was compared to pure DE/rand. It was denoted DE/ranked as distinguished 

from conventional DE/rand and marked by the RMO (Ranked Mutation Operator) 

suffix when presenting results. For all two-objective problems, the modified 

removal strategy in survival by Kukkonen & Deb (2006a) was adopted. When 

implementing NSGA-II, it was used simulated binary crossover with η = 15 and 

polynomial mutation with probability = 1/N and η = 20. 

A population size of 70 was adopted as it presented adequate 

convergence in preliminary experiments, and optimization was terminated within 

100 generations. The number of generations was determined to be sufficiently 

large so that, when comparing algorithms, initial higher convergence rates would 

not possibly hide some difficulty in reaching a true Pareto front and spreading 

solutions over it in late generations. Experiments were run with 30 different 

random initialization seeds, a number selected as sufficient to analyze a possible 

random bias and not too large to be prohibitive due to the computational cost 

inherent to the problem. The algorithms were compared by the following 

metrics/criteria: 

1. Hypervolume: This metric evaluates the closeness of solutions to an 

unknown true front and diversity in a combined sense. It calculates the 

volume (in the objective space) covered by members of a set. It is 

defined as the union of hypercubes obtained using a reference point 

and each solution as diagonal corners (Deb, 2001). 

2. Convergence speed: It was evaluated by graphical analysis of the 

hypervolume versus the number of generations. 



103 
 

 

3. Set Coverage: This metric is denoted as C(A, B). It calculates the 

proportion of solutions in B, which are weakly dominated by solutions 

of A (Deb, 2001), and is defined in the range of [0, 1]. 

Since there is no analytical solution to the two-objective styrene problem, 

the definition and sampling of elements in the True front might be biased and 

imprecise. In such a scenario, the usual IGD and GD metrics for evaluating 

performance cannot be applied. Alternatively, the hypervolume metric can be 

calculated for a set of solutions if properly defining a reference point, even though 

the true front is unknown. A general guideline for the reference point specification 

is to use a slightly worse point than the nadir point so that the reference point is 

dominated by all Pareto optimal solutions (i.e., so that all Pareto optimal solutions 

in a solution set have positive hypervolume contributions) (Ishibuchi, et al., 2018). 

This hypervolume metric is not free from arbitrary scaling of objectives. Therefore, 

as suggested by Deb (2001) it was evaluated using normalized objective function 

values. 

When calculating the hypervolumes for comparing different choices of CR 

and different algorithms, the solutions obtained for each choice or algorithm in 

each independent run were combined and ranked using non-dominated sorting. 

In each comparison, the reference point for hypervolume calculations was the 

nadir point of the combined Pareto-optimal solutions added 10-6. Moreover, the 

nadir and ideal points of the combined Pareto-optimal solutions were used for 

normalizing both objectives in hypervolume calculations. 

In the two-objective problem, both objective functions are nonseparable 

due to the complex phenomena involved and the interdependence of decision 

variables in reactor output. Therefore, algorithms with more rotational invariance 

were expected to present superior performance. It can be done using high CR 

values in DE algorithms, which fosters mutation and, therefore, preferred search 

directions. Experiments run with different values for the CR parameter are 

presented in Figure C1. The choice of 0.9 for the CR value presented superior 

performance with statistical significance. Therefore, it was our choice in 

subsequent experiments on this paper. When comparing performance by 

completion using CR values of 0.9 and 0.7, the Wilcoxon test returned a p-value 

of 0.04. 
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Figure C1 – Distributions of final hypervolume on several independent runs for each value of 
CR. 

 

 

In the initial generations, as the distribution of elements in the decision 

space is randomized, the preferred search directions of the problem are not yet 

evidenced in the decision space. Therefore, the advantages of DE do not yet 

occur. However, as the solutions converge to the Pareto front, the relative 

positions of individuals guide DE mutation; thus, GDE3 outperforms NSGA-II, as 

observed in Figure C2. This superior performance is preserved until algorithm 

completion as the hypervolumes obtained by GDE3 are significantly greater than 

those obtained by NSGA-II The Wilcoxon test when comparing GDE3 (DE/rand) 

to NSGA-II returned a p-value of 4 x 10-6. The comparison is presented in Figure 

C3. 

In this problem, the convergence speed might be improved by adopting 

the elitism in parent selection proposed by Zhang et al. (2021), herein marked by 

the RMO suffix. Although improving convergence speed in initial generations, the 

proposed elitism has not worsened global performance, as it produced similar 

results to the usual DE/rand by completion. When comparing hypervolumes 

obtained using GDE3 with DE/rand to DE/ranked (GDE3-RMO) mutation 

operators, the Wilcoxon test returned a p-value of 0.3. 
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Figure C2 – Median of hypervolume versus the number of generations for each algorithm. 

 

 

 

Figure C3 – Distributions of final hypervolume on several independent runs for each algorithm. 

 

 

The average set coverage pairwise metrics are presented in Table C1. It 

is possible to notice that an expressive proportion of solutions obtained using 

NSGA-II are dominated by both the GDE3 variants. Conversely, the proportion of 

GDE3 solutions dominated by NSGA-II is significantly smaller. It reinforces the 

superior performance of the DE operator over genetic algorithm reproduction 
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operators (simulated binary crossover and polynomial mutation) for this problem. 

Nevertheless, applying NSGA-II to this or a similar problem can also produce 

valuable results for decision-making and fundamental analysis. 

 

Table C1 – Average set coverage pairwise in the styrene reactor problem. 

Algorithms  Average Set Coverage 

A B C(A, B) C(B, A) 

NSGA-II GDE3 0.083 0.206 

NSGA-II GDE3-RMO 0.078 0.226 

GDE3 GDE3-RMO 0.110 0.127 

 

 

The spacing metric (Deb, 2001) has been evaluated for all three algorithms 

and produced statistically similar results, likely to be a consequence of using the 

same survival strategy. The comparison between GDE3 and GDE3-RMO is 

useful for reinforcing that elitism in parent selection did not worsen the diversity 

of solutions by completion. The Wilcoxon test for comparing the spacing metrics 

obtained by each DE variant returned a p-value of 0.6. However, to adopt a 

conservative approach and preserve the diversity of solutions for a deep 

conceptual analysis of the problem, it was decided to use GDE3 with the usual 

DE/rand strategy in the heterogeneous reactor model. 

 

 

 

 

 

 

 


