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Resumo

Divulgação de dados estat́ısticos é um processo presente na sociedade há bastante tempo,

entretanto, a preocupação com privacidade é relativamente recente. O interesse em pro-

teger dados individuais aumentou consideravelmente depois da elaboração de regulações

sobre proteção de dados ao redor do mundo, como a General Data Protection Regulation

(GDPR) na União Européia e a Lei Geral de Proteção de Dados (LGPD) no Brasil.

O esforço na comunidade cient́ıfica para criar métodos de mitigação de risco à

privacidade e para entender o compromisso entre privacidade e utilidade compõe uma

grande área de pesquisa. Contudo, modelos matemáticos que buscam explicar formal-

mente este compromisso são, em alguma situações, incompreendidos pelos curadores de

dados, i.e., entidades que coletam dados de uma população e adotam uma certa poĺıtica

para publicá-los podem não compreender quais os riscos e benef́ıcios de tal poĺıtica. Neste

sentido, modelos e soluções que garantem que todas as partes envolvidas tenham ciência

dos riscos e benef́ıcios de cada poĺıtica adotada se mostram importantes para que tomadas

de decisões sejam realizadas de modo bem informado.

Como primeira contribuição deste trabalho, nós propomos um modelo que cap-

tura a vulnerabilidade de publicar-se uma amostra de uma população, em particular, a

vulnerabilidade sob um ataque de inferência de atributo. Além disso descrevemos a util-

idade de se publicar uma amostra para analistas de dados que têm como objetivo inferir

a distribuição dos valores de um atributo em uma população.

O modelo foi desenvolvido utilizando o arcabouço Quantitative Information Flow

(QIF) que fornece um aparato matemático para modelar formalmente sistemas como

canais de informação. Nós desenvolvemos o modelo com o objetivo de ser facilmente

explicável para não especialistas e para ser utilizado por curadores de dados quando es-

tiverem tomando decisões sobre como publicar os seus dados. Como segunda contribuição,

nós provemos fórmulas fechadas para vulnerabilidades à priori e à posteriori para ataques

de inferência de atributo e para perda de utilidade à priori. As fórmulas fechadas são úteis

para quantificar vulnerabilidades e perdas de utilidade em grandes amostras e populações.

Palavras-chave: Divulgação estat́ıstica. Amostragem. Privacidade. Fluxo de In-

formação Quantitativo.



Abstract

Statistical disclosure is a process that has been present in society for a long time, however

the concern about privacy is relatively recent. The interest in protecting individual data

increased considerably especially after the elaboration of regulations about data protec-

tion around the world, such as the General Data Protection Regulation (GDPR) in the

European Union and the Lei Geral de Proteção de Dados (LGPD) in Brazil.

The effort in the scientific community to develop methods for the mitigation of

privacy risks and to understand the trade-off between privacy and utility compose a large

research area. However, mathematical models that explain formally this trade-off are, in

some situations, misunderstood by data curators, i.e., entities that collect data from a

population and adopt a certain policy to publish them can not understand what are the

risks and benefits of that policy. In this sense, models and solutions that ensure that all

parties involved are aware of the risks and benefits of each policy adopted are important

for well informed decision-making.

As a first contribution of this work we propose a model that captures the vulner-

ability of publishing a sample from a population, in particular, the vulnerability of an

attribute inference attack. We also describe the utility of the sample for data analysts

who aim to infer the distribution of the values of an attribute in a population.

The model was developed using the framework of Quantitative Information Flow

(QIF) that provides a mathematical apparatus to formally model systems as informational

channels. We developed the model with the goal of being easily understandable by non

experts and to be used by data curators when making decisions about how to publish

their data. As a second contribution we provide closed formulas for prior and posterior

vulnerabilities of attribute inference attack and for prior utility loss. The closed formulas

are useful when quantifying vulnerabilities and utility losses in large datasets/samples.

Keywords: Statistical disclosure. Sampling. Privacy. Quantitative Information Flow.
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Chapter 1

Introduction

Statistical disclosure is a procedure that has been present in society for a long time.

Practices such as publication of demographic census by governments and the release of

datasets by institutions and private companies become more common since the increment

of computational power in the last decades.

The concern about privacy in public data releases increased considerably especially

after the elaboration of Regulation 2016/679 of the European Union [16], known as GDPR

- General Data Protection Regulation. These regulations have as object of analysis data

of any type, from information that individuals put on social networks to censuses pub-

lications by governmental institutions. Since the creation of these regulations, works on

statistical disclosure control gained more space in the scientific community.

There are several reasons, from both public and private entities, for publicly dis-

closing data about a group of individuals, i.e., there is a utility associated to each data

release. For example, consider a hospital that has a database with information about

its patients. In order to provide adequate treatment, doctors need sensitive information

about the patient such as illnesses they have, personal life habits and others. These data

are private patient information, and there is a relationship of trust between the doctor

and the patient. On the other hand, many scientific researches in the health field depend

on this data. Hospitals can contribute to the development of this kind of research by mak-

ing their databases publicly available, but doing so without compromising the patients’

privacy is a non-trivial challenge.

From the public part, consider as an example a government collecting data from its

population in order to publish a census. Government policy makers can use the popula-

tion’s data to guide the creation of public policies. The knowledge about the population’s

living conditions is very important for the government when distributing resources. An

illustration of this scenario is an institution in Brazil called Instituto Nacional de Estu-

dos e Pesquisas Educacionais Ańısio Teixeira (Inep) 1 that is responsible for publishing

Brazil’s educational census. The institution collects various information from brazilian

students from basic to higher education in order to support the formulation of educa-

tional policies at different levels of government, thus contributing to the economic and

1https://www.gov.br/inep/pt-br

https://www.gov.br/inep/pt-br
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social development of the country [20].

Although the census is considered very important by brazilian policy makers and

researches at universities, a recent work published in 2021 [24] showed that Inep used

to release microdata until 2019 leaks a lot of information about brazilian citizens. The

technique used by the institution was de-identification, that consists in deleting all direct

identifiers of participants (such as the Social Security Number and names) and release

all other individual information. The authors exposed serious privacy breaches that were

unacceptable according to LGPD.

When providing data to institutions, individuals expect their privacy to be guar-

anteed. In particular, there is the concern about attribute inference attack, i.e., when

an individual is afraid of someone (an adversary) inferring information about him (in

this case inferring an attribute value). Although there is a considerable effort in soci-

ety to create efficient and robust mechanisms that can offer security to data, there are

still vulnerabilities that are not efficiently contained. Traditionally, privacy is protected

by encryption, access control and anonymization techniques. However, encryption and

access control do not guarantee the privacy of sensitive information that can be inferred

from public information, for instance, the inference of confidential information from public

databases.

In the literature of statistical disclosure control, it is well known that there exists a

trade-off between privacy and utility [11, 13, 17, 19]. In other words, providing some utility

to data analysts when publishing data in general produces an inevitable loss of privacy.

Within the challenges of researches in this area there are the trade-off characterization

(e.g., studies that quantify the loss of privacy per unit of utility) and the development of

methods to control data disclosure that guarantee acceptable levels of privacy and utility.

The cutting edge method used nowadays to guarantee privacy in statistical dis-

closures is differential privacy, first introduced by Dwork in 2006 [14]. Recent works

[7, 8, 6, 5] that have improved privacy level in mechanisms that satisfies the properties of

differential privacy are very important for the research area, however, a result that uses

the technical language as, e.g., “We propose a differentially private mechanism M1 that

uses a higher ε (which implies a lower perturbation in data thus keeping a higher utility)

than mechanism M2 keeping the same privacy level.” usually is not understandable by

non experts in society and in institutions that publicly publish data. Explaining what

some mathematical definitions and theorems represent in practical terms in the real world

is a difficult task.

In this work we propose a model that is easily understandable by non experts and

provide quantitative answers for some questions about privacy and utility in statistical

disclosure. In particular, the model covers the process of publishing a sample from a

population (i.e., a subset of records from the original dataset) that contains a single

binary sensitive attribute. With the model we will be able to answer questions such as
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“What is the expected probability of an adversary guessing correctly the attribute value

of a single target when she observes a sample from the population?” regarding privacy

concerns and “When a data analyst observes a sample and tries to guess the distribution

of a binary attribute in the population, how far her guess will be from the real distribution

in expected values?” regarding data utility.

The framework of Quantitative Information Flow (QIF) [3], a set of information–

and decision-theoretic principles to reason about the flow of sensitive information through

a system, provides a vast set of tools, definitions and properties that allows us to model

scenarios of statistical disclosures that can be explainable to the society in general. Some

recent works [4, 24, 21] have already used QIF to model some scenarios of statistical

disclosures to quantify and explain, in easy terms, the vulnerabilities involved in those

data publications.

1.1 Contributions

The contributions of this thesis are summarized as follows:

• We formally model attribute inference attack in sample publications of a single

binary attribute using the framework of QIF. The attack covers an adversary that

has a single target and wants to infer his attribute value. We consider 3 adversaries

with different prior knowledge (i.e., what is known before an attack is performed)

about the presence of the target in the sample release:

(i) The adversary knows the target is in the sample,

(ii) The adversary knows the target is outside the sample,

(iii) The target’s presence in the sample is not known by the adversary.

• We formally model utility in sample publications of a single binary attribute using

the framework of QIF. The model describes a data analyst that tries to infer the

attribute values distribution in the population.

• In order to capture a wider set of possible scenarios, we provide the analyses for

both privacy and utility for two distinct group of adversaries who have different

knowledge about how the data is generated, which we call Gf and Gd. In Gf we

model the adversary’s prior knowledge as a uniform distribution on all possible

attribute values distribution in the population In Gd we model the adversary’s prior

knowledge as a uniform distribution on all possible population datasets. These two
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groups provide a wider view about the final information leakage when the prior

knowledge about the population is different.

• We provide closed formulas for prior and posterior vulnerabilities of attribute infer-

ence attack and for prior utility loss. The closed formulas are useful when quantify-

ing vulnerabilities and utility losses in large datasets/samples. Although we do not

present a closed formula for posterior utility loss of adversaries in Gf and for prior

and posterior utility loss for adversaries in Gd, we provide an equations that can be

computed in at most O(n3) and also an analysis about the behavior of those losses

as the sample or population size increase.

1.2 Thesis outline

This thesis is organized as following. In Chapter 2 we present some related work

in the research area on privacy and data disclosure and we present the basic definitions

and theorems of the framework of QIF.

In Chapter 3 we present our model that uses the framework of QIF as basis to

formally describe the scenario of a sample publication of a single binary attribute and the

adversaries involved with privacy and utility.

In Chapter 4 we present lemmas and theorems related to the models described

in Chapter 3, some of them providing closed formulas for privacy vulnerabilities and

utility losses. In the end of this chapter we discuss the results about prior and posterior

vulnerabilities/utility losses and compare their trade-off.

The last chapter concludes this thesis by making a review about the main contri-

butions, the limitations and also discuss future work.
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Chapter 2

Background

In this chapter we review the most important aspects about the research field on data

disclosure control and the framework of QIF. We start by discussing important works

about privacy and data disclosure control in Section 2.1. In the last section we detail the

framework of QIF and present the main definitions that allowed us to build the models

in Chapter 3 and derive the results about vulnerabilities and utility showed in Chapter 4.

2.1 Review on data disclosure control

The research area on data disclosure control started to be relevant in society

decades ago. The concerns involving privacy of participants in a data release lead Tore

Dalenius, in a work published in the 70’s [9], to described a privacy goal for statistical

databases:

“Access to a statistical database should not enable one to learn anything about an

individual that could not be learned without access to the database.”

As pointed out by Dwork in [13], different from cryptography, where we try to hide infor-

mation from an adversary, statistical databases are published to be accessed by adversaries

(some of them legitimate such as researches and data analysts), and indeed their purpose

is to change beliefs about individuals. Because of that, she concluded that Dalenius’s goal

is not achievable in this scenario.

There are numerous cases in the history of breach of privacy caused by publicly

data releases. A famous one is a work published by Sweeney in 2000 about the United

States population [29]. She conducted experiments in the 1990 United States Census

summary data and she found out that, using only basic information about individuals

– more specifically, 5-digit ZIP, gender and date of birth – it was possible to uniquely

identify 87% of the U.S. population. In other words, an adversary who knew the values
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of these 3 attributes of a person that was a participant in that census, would have 87%

of chance of finding exactly which record in the dataset corresponded to that person.

Another famous case is the work published by Narayanan and Shmatikov in 2008

[23]. The company Netflix promoted a competition, the Netflix Prize, that would award

$1-million for the best improvement of their recommendation system for movies. They

publicly released a dataset containing about 100 million of movie ratings from about

480,000 Netflix subscribers. The authors, crossing this dataset with another dataset from

the Internet Movie Database (IMDB), successfully identified the Netflix records of known

users, uncovering some sensitive information including their apparent political preferences.

These two cases illustrate that, only removing direct identifiable attributes (e.g.,

complete name and Social Security Number) about participants in a dataset and releasing

all other information without any other treatment, can cause serious privacy breaches.

In order to clarify the understanding of privacy risks, some researches published works

with the goal of formalizing and categorizing them. Matthews et. al. in [22] present a

literature review for privacy assessment where they highlight three privacy risks that are

addressed by many works in the field:

(i) re-identification risk (also called record linkage), where an adversary tries to link a

record from the database to its owner;

(ii) attribute inference risk (also called attribute linkage or attribute disclosure), where

an adversary tries to guess the attribute value of a target;

(iii) membership risk (also called population disclosure), where an adversary tries to

guess whether a person is present in the statistical publication or not.

In this work we focus our attention on attribute inference risk. We believe that inferring

attribute values about individuals is the most important privacy concern present in data

releases. Although more studies are needed to better understand the relationship between

re-identification, membership and attribute inference risks, we give in the next paragraphs

some motives that lead us to choose attribute inference as the object of study of this work.

Let us first take a look at membership inference risk. In general, when there is

a concern about membership in a dataset, there is an implicit information associated to

the presence or absence of a person in the dataset. For example, a hospital can publish

a dataset containing information about patients that have a certain type of cancer. If an

adversary found out that someone is in the dataset, she will automatically knows that the

person has that type of cancer. The information “Bob is in the dataset”, by itself, does

not cause harm to Bob if someone learns it about him. What Bob is concerned about is

what the adversary can infer about him after learning he is in the dataset. Thus the real

concern is about the person having cancer or not, and not the presence or absence of that

person in the database.
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In the case of re-identification risk, we can make a similar reasoning. We can model

precisely the risk of “An adversary linking a record from the dataset to an individual”.

Again, the information “Bob is the record number 42”, by itself, is not dangerous. The

concern about this risk is that, after linking the record number 42 to Bob, the adversary

may be able to look at all columns (each one representing an attribute) and infer exactly

these attribute values about Bob.

Briefly, we are inclined to say that the real concern of individuals, when providing

their data to a curator, is the risk of someone inferring their attribute values. As one

goal of this work is to provide a model that is easily explainable to the society, we have

decided to study attribute inference risk that is exactly the privacy concern of individuals

in the real world.

Methods for preventing information leakage from third parties, e.g., cryptography,

compose a large study area and there are many solutions available. The concerns about

this scenario consider that a closed group of people (or entities) should have access to the

data while external access must be blocked. However in public datasets the data must be

available for everyone due to its purposes. We present below a list of different approaches

that seems to be promising but actually have vulnerabilities:

• Cryptography data does not work: As discussed before, the data must be available

for everyone (because its a public data) due to its purpose. Cryptography is effec-

tive against secret information that should not be revealed, but it is ineffective in

statistical disclosures.

• Data deidentification does not work: The act of removing obvious identifiers such as

the name and the Social Security Number does not protect the information leakage.

Using auxiliar information (i.e., non-sensitive values such as date of birth and ZIP

code) it is possible to infer sensitive information [11, 13].

• Block queries to the dataset that return few records does not work: Suppose queries

in the form “Which records satisfy property P?” and a mechanism that blocks all

queries that would return a set containing less than 10 records. The adversary can

infer whether the target T satisfy property P doing the following: First she asks

how many people in the dataset satisfy P , obtaining a result x. Second, she asks

how many people in the dataset with a name different from T satisfy P , obtaining y

as the result. Now the adversary calculates x− y and can infer whether T satisfies

P .

• Allow only predefined types of queries does not work: Imagine that a list of all allowed

queries was created, intending to block queries related to sensitive information.

However, it is possible to demonstrate that in query languages – such as SQL – does

not exist an algorithm capable to check if two queries are the same or not.



2.2. Quantitative Information Flow 22

• Save the query history does not work: Imagine that all the history is saved and

used to check wheter every new query has a cross relation to the past ones. This

approach fails for the same reasons from the last item.

Several works in the literature such as [30, 12, 17, 18, 19] put efforts in creating solutions

to mitigate privacy risks. In the last decade and a half a method called differential privacy,

first proposed by Dwork in [14], have been consolidated as the most refined method for

guaranteeing privacy in statistical disclosures. Its popularity is largely due to its ability

to significantly mitigate privacy breaches more effectively.

The research area in differential privacy is extremely active with new results and

algorithms being proposed all the time. There are already companies applying differential

privacy on their data publishing such as Google [15], Apple [25, 1] and Microsoft [10].

From governments, we have the United States Census Bureau (USCB) using differential

privacy as the disclosure avoidance system in the US 2020 Decenal Census [2].

The usage of statistical disclosure control techniques and the interpretation of

their guarantees, sometimes, are not totally clear for the final user, i.e., the entities (data

owners) that will implement those methods in their data publications. Matthews et. al.

pointed out in [22]:

“While many methods of preserving privacy have been proposed, there are not, as

of yet, any formal guidelines for many data releasing institutions to follow when

releasing data to the public.”

The lack of formal guidelines for institutions to publish their data is one of the main

motivations for the work presented in this thesis. One of the contributions rely in models

that are proposed to be explainable and that provide numerical values that are easily

understandable and may allow data owners to take decisions about how to publish their

data.

2.2 Quantitative Information Flow

Quantitative Information Flow (QIF) is a framework used to model how informa-

tion flows in a system. Computer systems can be seen as black boxes that take some

input and yield some output. One concern about this process is how much information is

leaking from inputs to outputs, and QIF allows us to quantify this amount of leakage. In

the following sections we describe how to model systems, inputs, outputs and information

leakage.
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2.2.1 Secrets

In QIF framework we call secrets the set of values we are interested to protect

against an “adversary”. Secrets can be a user’s password, someone’s age, political prefer-

ences, religion or any other relevant information. An adversary is an entity (e.g., a person

or a company) which we are concerned about learning the value of a secret.

For instance, imagine that our system is a password checker C of a bank. Its

task is to receive a password – a four digit number – as input and output a value in

Y = {yes, no} depending on the password being correct or not for a given user. In this

scenario the secret can be defined as the user’s password. The set of all possible secrets

is then X = {0000, . . . , 9999}.
Suppose we are modeling the password checker behavior for Jennifer’s password,

which is, say, 3482. Let us denote by C3482 the password checker behavior when the

user’s password is 3482. In order to check Jennifer’s password, C3482 will output yes if it

receives x= 3482 as input or output no if it receives any other number.

We are interested in measuring how much leakage the password checker yields

when it outputs some y ∈Y and how the system modifies the adversary’s knowledge

about Jennifer’s password. But how can we describe the adversary knowledge about the

secret? One way of doing that is using probability distributions. We call DX the set of all

possible probability distributions on X . A probability distribution δ ∈DX assigns, for all

x∈X , a probability δx the adversary attributes to x being the real secret. For example, if

the adversary does not know anything about Jennifer’s password, her knowledge is going

to be a uniform distribution on X , that is, δ0000 = . . . = δ9999 = 10−4.

Definition 2.2.1 (Secrets and prior). Given a finite set of secrets X we assume that

the adversary’s prior knowledge about the set is a probability distribution π ∈DX that

specifies a probability πx for all x∈X .

The closer to the uniform distribution the adversary knowledge is, the less is the

“secrecy” about the secret. On the other hand, if the adversary’s knowledge is a point

distribution,1 she is 100% sure about what is the secret’s value. Table 2.1 shows examples

of two different prior knowledges. We introduce next the concept of g-vulnerability.

1We say that a probability distribution is a point distribution when Pr[xi]=1 for some i and ∀j ̸= i :
Pr[xj ]=0.
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x πx

0000 10−4

0001 10−4

0002 10−4

...
...

9999 10−4

(a) The prior distribution π models an ad-
versary that has no ideia about the pass-
word’s value.

x π′
x

0000 1/2

0001 1/2

0002 0
...

...

9999 0

(b) The prior distribution π′ models an ad-
versary that is sure the password is either
0000 or 0001, and equally likely.

Table 2.1: Different prior knowledges about the passwords that represent (a) an adversary
with high uncertainty and (b) an adversary with low uncertainty.

2.2.2 g-vulnerability

We have already seen that the adversary has a prior knowledge about the secret –

a probability distribution π ∈DX . One possible view about what the adversary actually

does with this knowledge is saying that she takes “actions” in order to get a “reward”.

In the password checker example (the system C3482 that checks whether the input cor-

responds to Jennifer’s password), suppose the adversary is someone that wants to steal

Jennifer’s money. The adversary’s action could be a guess for the password (i.e., a four

digit number) and the adversary’s reward could be (i) 100 000 dollars if the guess is correct

(meaning that she can get all the money in the account) or; (ii) 0 dollars if the guess is

incorrect (meaning that she gets nothing). In QIF this kind of reasoning can be modeled

as a gain function.

Definition 2.2.2 (Gain function). Given a finite nonempty set of possible secrets X
and a nonempty set of possible actions W, a gain function is a function g:W×X→R.

Formally, we can assume the adversary is going to take an action w from a set

of actions W , and each action will give her a reward for each secret. The value g(w, x)

can be interpreted as “what the adversary gains when she takes an action w and the real

value of the secret is x”. Once the adversary’s prior knowledge π about the set of secrets

X and a gain function g are defined, we are ready to examine the secret secrecy, or its

“vulnerability”.

Considering the adversary is rational and will take the action that maximizes her

gain, the prior vulnerability Vg(π) will be the maximization of the expected gain of the

adversary, and it is formalized next.
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Definition 2.2.3 (g-vulnerability). Given a distribution π ∈DX and a gain function

g:W×X→R, the g-vulnerability of π is defined as

Vg(π) := max
w∈W

∑
x∈X

πx g(w, x) .

Consider again the password checker example with Jennifer’s bank password and the

adversary that wants to steal her money. Let’s define the gain function g as

g(w, x) =

$100 000 , if w = x

$0 , otherwise.

Looking at the prior distributions π and π′ from Table 2.1 and Definition 2.2.3 of prior

vulnerability, we conclude that

• Vg(π) = 10−4 × $100 000 = $10.

• Vg(π
′) = 1/2 × $100 000 = $50 000.

The adversary with high uncertainty (π) has a lower expected gain (only $10), and the

adversary with low uncertainty (π′) has a higher expected gain ($50 000).

Bayes vulnerability is another example of measure that is very useful to deal with

a basic security concern: the probability of an adversary guessing correctly the real value

of the secret in one try. This measure is described by the gain function gid, defined by

the identity matrix, i.e., gid(w, x)=1 if w=x and gid(w, x)=0 if w ̸=x.

Definition 2.2.4 (Bayes vulnerability). Given a finite set of secrets X and a prior

distribution π ∈DX , the Bayes vulnerability of π is defined as

V1(π) := max
x∈X

πx .

In Bayes vulnerability the adversary is guessing what’s the secret value, so the set of

actions W = X and she gains 1 when her guess correct or 0 otherwise.

From the adversary’s point of view, g-vulnerability is a maximization of gain, and

it measures the threat to secrets. A complementary approach is to describe an adversary

that take actions and, instead of measuring her gains, we measure her “losses”. In this

way we define next ℓ-uncertainty, that uses a loss function ℓ to measure the adversary’s

uncertainty about the secrets.
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Definition 2.2.5 (Loss function). Given a prior distribution π ∈DX and a loss

function ℓ : W ×X → R, the ℓ-uncertainty of π is

Uℓ(π) := min
w∈W

∑
x∈X

πx ℓ(w, x) .

In the next section we are going to introduce channels, objects that model systems

that receive inputs and output observables. We will make the connection between se-

crets, adversaries and prior knowledge in order to reason about the adversary’s posterior

knowledge (i.e., after she observed a channel’s output).

2.2.3 Channels

In QIF a system is modeled as an information-theoretic channel, i.e., a probabilistic

function from inputs to outputs. We say that a channel C :X →DY is a channel that maps

secrets x∈X to probability distributions on outputs y ∈Y . It is possible to represent C

as a matrix with |X | rows and |Y| such that Cx,y = Pr[y|x], i.e., the probability of the

system outputs y given that the real value of the secret is x. Consequently, each row of

C is going to be a probability distribution over Y .

Definition 2.2.6 (Channel). Given a finite set of secrets X and a finite set of outputs

Y, a channel C :X →DY is a mapping from secrets to probability distributions on

Y. The channel can be represented by a matrix such that each entry Cx,y =Pr[y |x]
means “the probability of the output being y given that the secret is x”.

Recall the example of a password checker and also our character Jennifer whose password

is 3482. We can define a channel C3482 that describes the behavior of our password checker

C3482. It would be defined in the following way:

C3482
x,y =

1, if (x=3482 and y=yes) or (x ̸=3482 and y=no)

0, otherwise .

Note that we can define other channels Ck for any four digit password k ̸= 3482 in a

similar way.

Now we are ready to describe the effect of a channel on adversary’s knowledge. We

are interested in analyzing how information about the secret changes when our channel



2.2. Quantitative Information Flow 27

outputs some value. We assume she knows how the system works, i.e., all entries of

matrix C. After observing the output y, the adversary will update her knowledge (a

probability distribution over X ) about the secret using Bayesian reasoning, i.e., the prior

distribution on X becomes a posterior distribution δy = Pr[X |Y = y]. After this update

the adversary will have a posterior knowledge about the secret.

We also consider that our adversary is rational, so given her posterior knowledge

about the secret and a gain function, she will choose the guess that maximizes her expected

gain (or minimizes her expected loss if there is a loss function instead of a gain function).

To calculate the posterior distribution Pr[X |Y = y], we first calculate the joint

distribution Pr[x, y] for all pairs (x, y). Fixing a prior distribution π and given that πx is

the probability a priori of x being the secret, the joint distribution can be defined as

Pr[x, y] = πxCx,y . (2.1)

We can organize the joint distribution in a matrix J with |X | rows and |Y| columns

such that Jx,y = Pr[x, y]. Now we need to calculate Pr[y]. If we look at J’s columns,

it is possible to calculate the marginal distribution on columns, and that is exactly a

distribution on Y . Formally, we have that

Pr[y] =
∑
x∈X

Jx,y .

It is important to note that for each output y ∈Y we get a new posterior probability

distribution over the set of secrets X . Each channel output is a possible “world”, and

each possible world is a probability distribution on X . We call the possible worlds the

inner distributions. Each possible world has a probability to occur, and we call the

distribution on the possible worlds as the outer distribution. Therefore the adversary’s

posterior knowledge is going to be a distributions on distributions on X (i.e., D(DX )),

also called a hyper-distribution [π▷C].

Definition 2.2.7 (Hyper-distribution). Given a set of secrets X , a prior distribution

π :DX and a channel C :X →DY, a hyper-distribution [π▷C] is a distribution on

distributions on X , i.e., [π▷C] ∈ D(DX ). We call the inner distributions of [π▷C]

the set of all possible “worlds” (posterior distributions δ ∈DX ), and we call the outer

distribution of [π▷C] the distribution on inners themselves.

Let us illustrate these definitions with an example. Let π = (1/2, 1/3, 1/6) be the

prior distribution on the set of secrets X = {x1, x2, x3} and let the matrix in Table 2.2a

be the representation of a channel C with the set of possible outputs Y = {y1, y2, y3, y4}.
Using Eq. (2.1) we can build the joint matrix J in Table 2.2b. As discussed above, the
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C y1 y2 y3 y4
x1

1/4 1/4 1/4 1/4
x2

1/2 1/2 0 0
x3 0 2/3 0 1/3

(a) Channel matrix where
Cx,y = Pr[y |x].

J y1 y2 y3 y4
x1

1/8 1/8 1/8 1/8
x2

1/6 1/6 0 0
x3 0 1/9 0 1/18

(b) Joint matrix where
Jx,y = Pr[x, y].

[π▷C] 7/24 29/72 1/8 13/72
x1

3/7 9/29 1 9/13
x2

4/7 12/29 0 0
x3 0 8/29 0 4/13

(c) Hyper-distribution.

Table 2.2: For a set of secrets X = {x1, x2, x3}, a prior distribution π = (1/2, 1/3, 1/6)
and a channel matrix C, the three tables represent the process of building a hyper-
distribution [π▷C]. Each column in the hyper-distribution represents an adversary’s
posterior knowledge about the secret (the inner distributions), and the first row (with
values (7/24,29/72,1/8,13/72)) is the outer distribution on all possible posterior knowledge.

adversary’s posterior knowledge is a hyper-distribution [π▷C], and we can write both

outer and inner distributions in a single matrix as showed in Table 2.2c.

For instance, the column (3/7, 4/7, 0) is a inner distribution and it will occur with

a probability 7/24. The fourth column of Table 2.2c says that there is an observable that

happens with probability 1/8 and gives the information to the adversary that x1 is the

secret’s value.

Definition 2.2.8 (Posterior vulnerability). Given a set of secrets X , a prior dis-

tribution π ∈DX , a gain function g and a channel C, the posterior vulnerability

Vg[π▷C] that represents the expected gain of the adversary after observing the output

of channel C is defined as

Vg[π ▷ C] :=
∑
y ∈Y

max
w∈W

∑
(p,t)∈X

πx Cx,y g(w, (p, t))

=
∑
y ∈Y

Pr[y]Vg(δ
y) ,

where Vg(δ
y) is the posterior vulnerability given that the adversary observed the output

y. The posterior distribution δy ∈DX (i.e., Pr[X |Y = y]) represents the adversary’s

posterior knowledge about the set of secrets when she observes the output y.

The matrix in Table 2.2c represents all the adversary’s posterior knowledge, and

the equation in Definiton 2.2.8 says that, given the adversary observed an output y, she

will take the action w that maximizes her gain, and therefore the posterior vulnerability

will be the average over all possible outputs.
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Definition 2.2.9 (Posterior Bayes vulnerability). Given a finite set of secrets X , a

prior distribution π ∈DX and a channel C :X ×Y→R, where Y = X , the posterior

Bayes vulnerability is defined as

V1[π ▷ C] :=
∑
y ∈Y

max
x∈X

Jx,y ,

where J is the joint distribution from Eq. 2.1.

Recall that Bayes represents an adversary that is trying to guess the real value of

the secret in one try. The equation presented in Definition 2.2.9 was derived from the

equation in Definition 2.2.8, and its proof is available in Chapter 5.3 of [3].

In the next section we are going to discuss more about additive and multiplicative

leakage, two comparisons between posterior and prior vulnerabilities that allows us to

compare quantitatively systems that are leaking more or less information.

2.2.4 g-leakage

The posterior vulnerability in itself is already a good measure for system’s secrecy.

However, if the adversary’s knowledge about the secret was very high before he observing

the channel’s output (i.e., the prior vulnerability Vg(π)), then his posterior vulnerability

will also be high2. Looking only to posterior vulnerability, ignoring the prior, can lead to

a misinterpretation of the vulnerability value.

In this way we introduce the definition of additive and multiplicative leakage, the

absolute and relative difference between the posterior and prior vulnerabilities, respec-

tively.

Definition 2.2.10 (Additive and Multiplicative g-leakage). Given a prior distribu-

tion π ∈DX , a gain function g:W×X→R and a channel C :X ×Y→R, the additive
leakage L+

g (π,C) is defined as

L+
g (π,C) := Vg[π ▷ C]− Vg(π) ,

2It happens due to Monotonicity axiom which states that the adversary cannot have her knowledge
about the secret (in expected value) decreased after observing the channel. In plain English, “information
can’t hurt”. Formally this axiom states that Vg[π▷C] ≥ Vg(π), for all π, C and gain function g. The
proof can be found in Chapter 11 of [3].
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and the multiplicative leakage L×
g (π,C) is defined as

L×
g (π,C) :=

Vg[π ▷ C]

Vg(π)
.

The usage of one measure or the other depends on the scenario, but in any case, looking

at both brings us a more complete analysis about information leakage.
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Chapter 3

Model for privacy and utility

analyses

In this chapter we formalize adversary models for both analysis on privacy and utility.

In the next section we present a detailed description of the general scenario captured by

the models proposed in this work. In Section 3.2 we describe and define two groups of

adversaries that we make two distinct assumptions about their prior knowledge about the

set of secrets. Section 3.3 shows the adversary model that deals with privacy concerns on

sample publications and Section 3.4 presents the adversary model for a data analyst who

will be used to reason about the data publication’s utility.

3.1 General scenario

Consider a scenario with a population of n ≥ 1 individuals and a binary sensitive

attribute with possible value in V = {a, b}. Imagine there is a curator who collects and

builds a dataset containing the attribute values of all n people from the population. Then,

from the generated dataset, the curator selects a sample and publishes its histogram, i.e.,

the distribution on values a and b. Being more specific about this process, we are going

to consider that a sample of size 1≤m≤n will be randomly selected from the population

(i.e., any set ofm individuals is equally probable to be selected). A diagram of this process

is shown in Figure 3.1.

As we are restricting to binary attributes, we can say that the publication is just

an integer 0≤ y≤m that represents the number of people in the sample with value a,

and consequently, m − y will be the number of people in the sample with value b. We

assume the adversary has access only to the sample’s histogram and the number of people

in the population n, i.e., she does not know anything about the values in the population

dataset.

Publishing a sample’s histogram may allow data analysts to make inferences about
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Figure 3.1: Pipeline of sample publication. The curator collects data from a population of
n people and arrange them in random positions in an array p. Then the first m values of
p are selected to be the sample, and finally the curator publishes the sample’s histogram.

Font: Elaborated by the author.

the population, but at the same time, each individual does not desire that some adversary,

using the released data, become able to infer his exact (or approximate) attribute value.

Therefore, statistical disclosures has the challenge of providing a high level of utility to

data analysts and protecting participants privacy. As discussed in Section 2.1 there are

several evidences in the literature that publishing data with very high levels of both

privacy and utility is not achievable. Our results showed in Chapter 4 corroborates this

claim.

After stated the general scenario studied in this thesis, in the next section we start

reasoning about the adversary’s assumptions about the population and then we formalize

the models based in QIF framework that permit our analyses about privacy and utility

in Chapter 4.

3.2 Assumptions about adversaries’ prior knowledge

In this section we present two ways of modeling the adversary’s prior knowledge

about the scenario described in the previous section. A system designer, when modeling

its security, usually wants to protect the system against the highest number of possible

adversaries, or, in the perfect scenario, against all of them. However, such claim is very

hard to be done or sometimes not even doable. Differential privacy (the considered state-

of-art in privacy protection, as mentioned in Section 2.1) for example, states a protection

against a called “strong adversary”, someone that knows the value of everyone in the
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dataset but the target’s value. In this work we focus in two group of weaker adversaries

who have no information about the participants’ values.

Consider an arbitrary situation where there is a set of elements R where only one

element r∈R can be the true value in the real world. Say there is an adversary trying to

find what is the true r. In the field of statistics, the adversary’s thinking can be modeled

as a probability distribution on R, where each Pr[r] corresponds to the probability the

adversary gives to r being the true value. One way of representing a lack of knowledge

about R, i.e., an adversary that does not know anything about any r, is saying that the

probability distribution on R is the uniform one 1.

One relevant purpose of publishing a sample’s histogram is to allow the consumers

of this data to infer the distribution of attribute values in the population. Considering

the case of a binary attribute studied in this work and following the reasoning in the last

paragraph, we assume that the group of adversaries Gf is composed by the adversaries that

assume that every possible distribution on {a, b} in the population is equally probable,

i.e., all possible frequencies of value a in the population has the same probability to occur.

Formally, as the population size is n, each distribution on {a, b} can be represented

by an integer 0 ≤ k ≤ n where k is the number of individuals with value a and n−k is

the number of individuals with value b. Therefore the uniform distribution implies in

Pr[k] = 1/(n+1) for all k. From this uniform distribution we derive the distribution on

population datasets. In Table 3.1a we show an example for a population with 3 individuals.

The models for privacy and utility analyses related to Gf are formally defined in Sections

3.3.1 and 3.4.1, respectively.

Another possible assumption that can be done about the adversary’s prior knowl-

edge is about the distribution on population datasets. We then introduce the group of

adversaries Gd that is composed by the adversaries that does not know anything about

how the dataset was generated. The lack of knowledge in this situation is represented

by a uniform distribution on all possible population datasets 2. An example is shown in

Table 3.1b. The formal definitions for privacy and utility analyses for Gd are presented in

Sections 3.3.2 and 3.4.2, respectively.

We introduce now, using elements from QIF framework, formal mathematical def-

initions for privacy and utility analyses for the general scenario described in Section 3.1

and the groups of adversaries described in this section.

1One motivation for that comes from information theory and the maximum entropy associated to the
uniform distribution.

2Note that this adversary can also be viewed as someone who assumes that each individual in
the dataset is a random variable X with possible outcomes in {a, b} and with probability distribu-
tion Pr[X=a] = Pr[X=b] = 1/2. In this case a dataset would be a set of independent and identically
distributed random variables X.
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Population
dataset p

Frequency
of a

Probability of
frequency

Pr[p]

aaa 3 1/4 1/4

aab

2 1/4

1/12

aba 1/12

baa 1/12

abb

1 1/4

1/12

bab 1/12

bba 1/12

bbb 0 1/4 1/4

(a) Group of adversaries Gf that assumes a uniform
distribution on all possible frequencies of value a in
the population.

Population
dataset p

Pr[p]

aaa 1/8

aab 1/8

aba 1/8

baa 1/8

abb 1/8

bab 1/8

bba 1/8

bbb 1/8

(b) Group of adversaries Gd that as-
sumes a uniform distribution on all
possible datasets.

Table 3.1: Example of prior knowledge of adversaries in Gf and Gd for a scenario with n=3
individuals in the population. Each value pi of a population dataset array p represents the
attribute value of a participant. Table 3.1a shows the group of adversaries that assumes a
uniform distribution on possible frequencies and Table 3.1b shows the group of adversaries
that assumes a uniform distribution on datasets.

3.3 Adversary model for privacy analysis

In the scenario described in Figure 3.1 suppose there is an adversary who is inter-

ested in inferring the attribute value of a single person from the population, that we will

call the target. A population dataset can be represented as a binary string of size n where

each position is an individual’s attribute value. The set of all possible datasets is then the

set of all possible binary strings of size n. The adversary’s knowledge about the scenario

includes the population dataset and the position of his target in this dataset (because she

wants to infer the target’s attribute value). Using g-vulnerability framework detailed in

Section 2.2.2, we now define elements from QIF theory to model the entire scenario, from

possible secrets, datasets and adversary behavior.

Definition 3.3.1 (Set of secrets X ). Let n ≥ 1 be the population size and con-

sider a binary attribute with domain V = {a, b}. The set of secrets X of all possible

populations and target’s index is defined as

X = {(p, t) | p∈Vn ∧ 1 ≤ t ≤ n}, (3.1)

where Vn is the set of possible binary arrays of size n and a secret (p, t) is a pair
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where p is the population array and t is the target’s index in p. We denote by pi the

attribute value of the i-th person.

Example 3.1 (Running example – set of secrets X ). Consider a scenario in which there

is a population with n=2 individuals. We have that V2= {aa, ab, ba, bb} is the set of all

possible populations. The adversary’s target can be either the first or the second individual

in the population array, thus the set of secrets is

X = {(aa, 1), (aa, 2), (ab, 1), (ab, 2), (ba, 1), (ba, 2), (bb, 1), (bb, 2)} .

The secret (ab, 2), for example, represents the scenario where the population dataset is

p= ab and the adversary’s target is the second person in ab.

In Section 3.2 we described two group of adversaries that make different assump-

tions about probability distribution on the set of all possible populations. For privacy

analysis, as each secret is composed by both the population dataset and the target’s in-

dex, we then need to define what is the adversary’s knowledge about the target’s index.

Following the scheme in Figure 3.1, the target can be included or not in the published

sample depending on its index value being greater or smaller or equal to m.

In order to capture all possible scenarios, we define three different adversaries with

all the three possible knowledge about the target’s presence in the published sample:

• Adversary Ain: She knows the target is in the sample;

• Adversary Aout: She knows the target is outside the sample;

• Adversary Ank: The target’s presence in the sample is not known.

Although the adversary Ank probably represents the most common case that could be

found in a real scenario, the others also represent realistic situations. For instance, imagine

there is an institution doing an election poll in a country. They select a sample from the

population and ask everyone whether they are going to vote in candidate A or B. Every

employee from the institution that has access to the raw collected data knows who from

the population is in the sample and who is not, and these employees have the prior

knowledge of Ain and Aout, respectively.

We are now ready to define the adversary’s prior knowledge.
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3.3.1 Group of adversaries Gf

In this section we present the definitions related adversaries in Gf , described in

Section 3.2 and exemplified in Table 3.1a. Summarizing the adversary’s prior knowledge,

we have that:

• She knows that the population and sample sizes are n and m respectively,

• She assumes a uniform distribution on all possible frequencies of value a in the

population,

• For Ain, she knows the target is in the sample, for Aout, she knows the target is

outside the sample and for Ank, the target’s presence in the sample is not known.

We then define the prior distributions πin, πout, πnk ∈ DX to formally model the prior

knowledge of Adversaries Ain, Aoutand Ank, respectively.

Definition 3.3.2 (Prior distributions for adversaries in Gf ). Let X be the set of

secrets. The adversary knows that the population and sample’s size are n and 1 ≤
m ≤ n, respectively. She also assumes a uniform distribution on frequencies of

value a in the population, as well as a uniform on datasets within a frequency (see

Section 3.2 and Table 3.1a). We then define the prior distributions πin, πout, πnk for

three different adversaries with distinct information about the target’s presence in the

sample:

(i) Adversary Ain that knows the target is in the sample:

πin
(p,t) =


1

m(n+ 1)

(
n

na(p)

) , if 1 ≤ t ≤ m

0 , otherwise.

(3.2)

(ii) Adversary Aout that knows the target is outside the sample:

πout
(p,t) =


1

(n−m)(n+ 1)

(
n

na(p)

) , if m < t ≤ n

0 , otherwise.

(3.3)
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(iii) Adversary Ank whose information about the presence of the target in the sample

is not known:

πnk
(p,t) =

1

n(n+ 1)

(
n

na(p)

) , (3.4)

where na(p) is the number of a’s in array p.

Figure 3.2 shows a scenario of a population with 2 individuals and how priors πin, πout

and πnk would be defined.

Example 3.2 (Running example – prior distributions πin, πout and πnk). Consider the

same scenario of Example 3.1 of a population with n=2 individuals, and also suppose the

sample size is m=1. Figure 3.2 resumes this example.

For adversary Ain, as she knows the target is in the sample, she gives probability

zero to all secrets (p, t)∈{(aa, 2), (ab, 2), (ba, 2), (bb, 2)}. And for the other secrets, she

assumes a uniform on frequencies and a uniform on datasets within a frequency. So

πin
(aa,1) =

1/3 because the probability Pr[na(p)=2] = 1/3 (i.e., the probability of the number

of a’s in the population being 2) and there is only one dataset with 2 a’s. On the other

hand, πin
(ab,1) =

1/6 because Pr[na(p)=1] = 1/3 and there are 2 datasets with 1 a (ab and

ba), so the probability 1/3 is distributed between these two datasets resulting in a probability

1/6 for each one.

In the case of adversary Aout, as she knows the target is outside the sample, she

gives probability zero to all secrets (p, t)∈{(aa, 1), (ab, 1), (ba, 1), (bb, 1)}. Thus, using

the same reasoning we have used for Ain, πout
(aa,2) =

1/3 and πout
(ab,2) =

1/6.

Finally, adversary Ank does not know anything about the target’s presence in the

sample, then the target’s index can be both 1 or 2. Then, we have that πnk
(aa,1) = πnk

(aa,2) =
1/6

because Pr[na(p)=2] = 1/3 and there are 2 options for the target’s index. Also, πnk
(ab,1) =

πnk
(ab,2) = πnk

(ba,1) = πnk
(ba,2) =

1/12 because Pr[na(p)=1] = 1/3 and there are 2 datasets with 2

a’s and, for each one, 2 options for the target’s index.

3.3.2 Group of adversaries Gd

In this section we present the prior knowledge formal definition for the group of

adversaries Gd that assumes a uniform distribution on datasets, as detailed in Section 3.2
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Figure 3.2: Example of prior distributions πin, πout and πnk for a population of size n=2
and a sample of size m=1. The secret (ab, 1), for instance, represents a population with
2 individuals where the first has value a, the second has value b and the adversary’s target
position in the population array is 1.

Font: Elaborated by the author.

and exemplified in Table 3.1b. The prior knowledge for this group of adversaries is

composed by:

• The population and sample sizes n and m respectively,

• The assumption of a uniform distribution on all possible datasets,

• The information that the target is in the sample for adversary Ain, that the target is

outside the sample for adversaryAout and no information about the target’s presence

in the sample for adversary Ank.

We then define the prior distributions π̂in, π̂out, π̂nk ∈ DX to formally model the prior

knowledge of Adversaries Ain, Aoutand Ank, respectively.

Definition 3.3.3 (Prior distributions for adversaries in Gd). Let X be the set of

secrets. The adversary knows that the population and sample’s size are n and 1 ≤
m ≤ n, respectively. She also assumes that every dataset is equally probable to be the

real population. We then define the prior distributions π̂in, π̂out, π̂nk for three different

adversaries with distinct information about the target’s presence in the sample:

(i) Adversary Ain that knows the target is in the sample:

π̂in
(p,t) =

 1
m2n

, if 1 ≤ t ≤ m

0 , otherwise.
(3.5)
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(ii) Adversary Aout that knows the target is outside the sample:

π̂out
(p,t) =


1

(n−m)2n
, if m < t ≤ n

0 , otherwise.
(3.6)

(iii) Adversary Ank whose information about the presence of the target in the sample

is not known:

π̂nk
(p,t) =

1

n2n
. (3.7)

Example 3.3 (Running example – prior distributions π̂in, π̂out and π̂nk). Consider the

scenario of Example 3.1 where n=2 and m=1. Figure 3.3 resumes this example.

For adversary Ain, she knows the target is in the sample, then she gives probability

zero to all (p, t)∈{(aa, 2), (ab, 2), (ba, 2), (bb, 2)}. And for all other secrets (p, t) such

that t = 1, Pr[(p, t)] = 1/4.

Adversary Aout is the opposite of Ain, i.e., Pr[(p, t)] = 1/4 for all (p, t) such that

t = 2 and probability zero for all secrets (p, t) such that t = 1, because she knows the target

is outside the sample.

The third adversary Ank that does not know anything about the target’s pres-

ence in the sample, we have just a uniform probability distribution on all secrets, i.e.,

Pr[(p, t)] = 1
n2n

for all (p, t).

Figure 3.3: Example of prior distributions π̂in, π̂out and π̂nk for a population of size n=2
and a sample of size m=1. The secret (ab, 1), for instance, represents a population with
2 individuals where the first has value a, the second has value b and the adversary’s target
position in the population array is 1.

Font: Elaborated by the author.
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In the next section we define precisely the adversary actions as a gain function and

provide a formal definition of a channel that represents the process of a sample release.

3.3.3 Adversary’s actions and system channel

Once we have modeled the adversary’s prior knowledge, we can now reason about the

actions she is allowed to take (or the attack she is allowed to execute), and the concerns

about information leakage present in the sample’s publication. As exposed in the begin-

ning of this chapter, the adversary studied in this work executes an attribute inference

attack. She has a predefined single target from the population.

The adversary can guess that the target’s value is either a or b, and we say that

she wins 1 if she guesses correctly and 0 otherwise. Using g-vulnerability framework the

gain function g formally defined next models this attack.

Definition 3.3.4 (Gain function g - Attribute Inference Attack). Let X be the set

of secrets. The adversary wants to infer the target’s attribute value, so the set of

possible guesses is W = {a, b}. The gain function g :W×X →{0, 1} is defined as

g(w, (p, t)) =

1 , if pt = w

0 , otherwise,
(3.8)

where the condition pt = w means the target’s attribute value is equal to the adver-

sary’s guess w.

Example 3.4 (Running example – gain function g). Backing to Example 3.1 and following

Definition 3.3.4, the gain function g that represents the adversary’s actions and their

corresponding gains are represented in Table 3.2.

Example 3.5 (Running example – Prior vulnerability). Considering the same scenario

of Example 3.1 with n=2 and supposing that m=1 and adversaries from Gf , we can

calculate the adversary’s expected probability of guessing correctly the target’s attribute

value as following.
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g(w, (p, t)) (aa, 1) (aa, 2) (ab, 1) (ab, 2) (ba, 1) (ba, 2) (bb, 1) (bb, 2)

a 1 1 1 0 0 1 0 0
b 0 0 0 1 1 0 1 1

Table 3.2: Gain function g from Example 3.1 that represents the adversary’s gains when
she guesses a or b for his target’s attribute value. Remember that the second element of
a secret (p, t) corresponds to the target’s index, so for instance, g(a, (aa, 1)) = 1 because
the adversary is guessing that his target has the value a and, as the target is in the first
position of the dataset aa, her guess was correct.

• For adversary Ain:

Vg(π
in) = max

w∈W

∑
(p,t)∈X

πin
(p,t) · g(w, (p, t))

= max


∑

(p,t)∈X :
p1=a,
t=1

1

m(n+ 1)
(

n
na(p)

) , ∑
(p,t)∈X :
p1=b,
t=1

1

m(n+ 1)
(

n
na(p)

)


=
1

3
·max


1(
2
2

)︸︷︷︸
(p,t)=(aa,1)

+
1(
2
1

)︸︷︷︸
(p,t)=(ab,1)

,
1(
2
0

)︸︷︷︸
(p,t)=(bb,1)

+
1(
2
1

)︸︷︷︸
(p,t)=(ba,1)


=

1

3
· 3
2

=
1

2
.

• For adversary Aout:

Vg(π
out) = max

w∈W

∑
(p,t)∈X

πout
(p,t) · g(w, (p, t))

= max


∑

(p,t)∈X :
p1=a,
t=2

1

(n−m)(n+ 1)
(

n
na(p)

) , ∑
(p,t)∈X :
p1=b,
t=2

1

(n−m)(n+ 1)
(

n
na(p)

)


=
1

3
·max


1(
2
2

)︸︷︷︸
(p,t)=(aa,2)

+
1(
2
1

)︸︷︷︸
(p,t)=(ab,2)

,
1(
2
0

)︸︷︷︸
(p,t)=(bb,2)

+
1(
2
1

)︸︷︷︸
(p,t)=(ba,2)


=

1

3
· 3
2

=
1

2
.
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• For adversary Ank:

Vg(π
nk) = max

w∈W

∑
(p,t)∈X

πnk
(p,t) · g(w, (p, t))

= max


∑

(p,t)∈X :
p1=a

1

n(n+ 1)
(

n
na(p)

) , ∑
(p,t)∈X :
p1=b

1

n(n+ 1)
(

n
na(p)

)


=
1

6
·max

{
2 · 1(

2
2

)︸ ︷︷ ︸
(p,t)∈{(aa,1),(aa,2)}

+ 2 · 1(
2
1

)︸ ︷︷ ︸
(p,t)∈{(ab,1),(ab,2)}

,

2 · 1(
2
0

)︸ ︷︷ ︸
(p,t)∈{(bb,1),(bb,2)}

+ 2 · 1(
2
1

)︸ ︷︷ ︸
(p,t)∈{(ba,1),(ba,2)}

}

=
1

6
· 3

=
1

2
.

The prior vulnerabilities in the three cases showed in Example 3.5 corresponds to the

probability of the adversary guessing correctly the target’s attribute value before observ-

ing anything (e.g., the sample’s histogram), so she takes “a shot in the dark”, and the

probability of success is 1/2.

In QIF the process of publishing a sample’s histogram can be modeled as a channel

S that maps a set of possible population arrays to a set of possible samples. We formally

define this channel next.

Definition 3.3.5 (Channel S). Given a set of secrets X we can model a sample

publication as a channel S :X →DY that is a mapping from secrets to distributions

on the the set of possible outputs Y (i.e., the set of all possible histograms of m

people). Assuming that the order of people in the population array does not matter

(i.e., any order is equally probable), we can fix the sample to be always the first m

people in the population p, i.e., the sample will be just p1...m. Formally,

S(p,t),y =

1 , if na(p1...m) = y

0 , otherwise,
(3.9)

where y ∈Y represents a histogram of a sample of size m where y people have the

value a and m − y have the value b. The number of a’s in the first m people of

population p is na(p1...m). The entry S(p,t),y can be understood as the probability of

the published histogram being y when the population is p, i.e., Pr[y|(p, t)].



3.3. Adversary model for privacy analysis 43

Example 3.6 (Running example – Channel S). Following Example 3.1 where n=2 and

m=1 the channel matrix S that represents the sample publication in this scenario would

be as in Table 3.3.´

S(p,t),y 0 1

(aa,1) 0 1
(aa,2) 0 1
(ab,1) 0 1
(ab,2) 0 1
(ba,1) 1 0
(ba,2) 1 0
(bb,1) 1 0
(bb,2) 1 0

Table 3.3: Channel matrix S for n=2 and m=1. For instance, we have that S(aa,1),0 = 0
because the sample is just p1, and as the first person in secret (aa, 1) has an a, the
sample’s histogram will be “1”, thus Pr[y=0 | (p, t)=(aa, 1)] = 0. And oppositely,
S(aa,1),1=Pr[y=1 | (p, t)=(aa, 1)]= 1.

Example 3.7 (Running example – Posterior vulnerability). Following Example 3.1 where

n=2 and supposing that m=1, adversaries from Gf , a gain function g for attribute

inference attack and channel S, we can calculate the posterior vulnerability as following.

• For adversary Ain:

Vg[π
in ▷ S] =

∑
y ∈Y

max
w∈W

∑
(p,t)∈X

πin
(p,t) S(p,t),y g(w, (p, t))

=
1∑

y=0

max


∑

(p,t)∈X :
t=1,
p1=a,

na(p1)=y

1

m(n+ 1)
(

n
na(p)

) , ∑
(p,t)∈X :

t=1,
p1=b,

na(p1)=y

1

m(n+ 1)
(

n
na(p)

)


=
1

3
·max

0,
1(
2
0

)︸︷︷︸
(p,t)=(bb,1)

+
1(
2
1

)︸︷︷︸
(p,t)=(ba,1)

︸ ︷︷ ︸
y=0

+
1

3
·max


1(
2
2

)︸︷︷︸
(p,t)=(aa,1)

+
1(
2
1

)︸︷︷︸
(p,t)=(ab,1)

, 0

︸ ︷︷ ︸
y=1

= 1 .
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• For adversary Aout:

Vg[π
out ▷ S] =

∑
y ∈Y

max
w∈W

∑
(p,t)∈X

πout
(p,t) S(p,t),y g(w, (p, t))

=
1∑

y=0

max


∑

(p,t)∈X :
t=2,
p2=a,

na(p1)=y

1

(n−m)(n+ 1)
(

n
na(p)

) , ∑
(p,t)∈X :

t=2,
p2=b,

na(p1)=y

1

(n−m)(n+ 1)
(

n
na(p)

)


=
1

3
·max


1(
2
1

)︸︷︷︸
(p,t)=(ba,2)

,
1(
2
0

)︸︷︷︸
(p,t)=(bb,2)

︸ ︷︷ ︸
y=0

+
1

3
·max


1(
2
2

)︸︷︷︸
(p,t)=(aa,2)

,
1(
2
1

)︸︷︷︸
(p,t)=(ab,2)

︸ ︷︷ ︸
y=1

=
2

3
.

• For adversary Ank:

Vg[π
nk ▷ S] =

∑
y ∈Y

max
w∈W

∑
(p,t)∈X

πnk
(p,t) S(p,t),y g(w, (p, t))

=
1∑

y=0

max


∑

(p,t)∈X :
pt=a,

na(p1)=y

1

n(n+ 1)
(

n
na(p)

) , ∑
(p,t)∈X :
pt=b,

na(p1)=y

1

n(n+ 1)
(

n
na(p)

)


=
1

6
·max


1(
2
1

)︸︷︷︸
(p,t)=(ba,2)

,
1(
2
1

)︸︷︷︸
(p,t)=(ba,1)

+
1(
2
0

)︸︷︷︸
(p,t)=(bb,1)

+
1(
2
0

)︸︷︷︸
(p,t)=(bb,2)

︸ ︷︷ ︸
y=0

+

1

6
·max


1(
2
2

)︸︷︷︸
(p,t)=(aa,1)

+
1(
2
2

)︸︷︷︸
(p,t)=(aa,2)

+
1(
2
1

)︸︷︷︸
(p,t)=(ab,1)

,
1(
2
1

)︸︷︷︸
(p,t)=(ab,2)

︸ ︷︷ ︸
y=1

=
5

6
.

The operational interpretation of posterior vulnerability in this case can be described as

“The expected probability of the adversary guessing correctly the target’s attribute value

after she observed the sample’s histogram”. The posterior vulnerability in Example 3.7
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for adversary Ain comes from the fact that the sample contains only 1 person, and as

adversaries Ain knows the target is in the sample, then the probability of she guessing

the target’s value correctly is 1.

In the case of adversary Aout, when she observes y=0, the possible secrets are in

{(ba, 2), (bb, 2)}, and as Pr[p = bb] = 1/3 > Pr[p = ba] = 1/6 and she knows the target

is outside the sample, her best guess is b, and her probability of success is then 1/3. The

same reasoning can be applied when y=1. Thus, the final probability of success will be

Pr[p2 = b | p = bb] + Pr[p2 = a | p = aa] = 1/3 + 1/3 = 2/3.

Finally, for adversary Ank, the posterior vulnerability 5/6 is the average of the

posteriors of adversaries Ain and Aout weighted by the probability of the target being

in the sample (which is m/n, as each participant’s index in the population array is ran-

domly selected, as pointed in Section 3.1) or not. Indeed we prove this equivalence in

Theorem 4.1.3 (iii).

In the next section we present definitions that allow us to make analyses about

the sample’s publication utility by modeling an adversary that is trying to infer the

distribution on attribute values in the population.

3.4 Adversary model for utility analysis

The analysis of privacy in sample publications only exists because there is some

data about a population being publicly released, and we can name the purpose of this

publication as its utility. In this work we are focusing in the sample publication of

a population, in particular, a single binary attribute. One direct utility this kind of

publication may have is to make data analysts able to answer the question “What is the

frequency of value a in the population?”. In this section we provide formal definitions for

the scenario of utility analysis in sample publications, what includes definitions about the

data analyst adversary Aut.

Recall that a secret (p, t), as per Definition 3.3.1, is a pair where p is the population

array and t is the target’s index. For adversariesAin, Aout andAnk described in Section 3.3

(that discuss privacy concerns) we considered they all have a single target and they want

to infer their target’s value. On the other hand, thinking about utility, an adversary

Aut that represents a data analyst trying to infer the distribution of the attribute in the

population does not have an individual as a target. In this way we define the set of secrets

X ut that takes into account only the set of all possible populations.
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Definition 3.4.1 (Set of secrets X ut). Let n≥1 be the population size and consider a

binary attribute of interest with values in {a, b}. The set of secrets X ut of all possible

populations is defined as

X ut = {a, b}n, (3.10)

where a secret p∈X ut is a binary array of size n, and pi is the attribute value of the

i-th person in the array.

Example 3.8 (Running example – Set of secrets X ut). Consider a scenario in which

there is a population with n=2 individuals and a binary attribute of interest with possible

value in {a, b}. The set of secrets X ut that is the set of all possible populations is

X ut = {aa, ab, ba, bb} .

In the next two sections we define formally the adversary’s prior knowledge for the two

groups of adversaries that make different assumptions about the population dataset (Sec-

tion 3.2).

3.4.1 Group of adversaries Gf

Similar to the prior distributions defined for the three adversaries in privacy anal-

ysis, here we assume the adversary knows the population and sample’s sizes are n and m,

respectively, and the assumption about the uniform distribution on possible frequencies

of value a in the population. Therefore the prior distribution πut that represents the prior

knowledge of the data analyst adversary Aut is defined as following.

Definition 3.4.2 (Prior distribution πut). Given the set of secrets X ut, the prior

knowledge of the adversary that represents a data analyst trying to infer the frequency

of value a in the population is the prior distribution πut, defined as

πut
p =

1

(n+ 1)

(
n

na(p)

) . (3.11)
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Example 3.9 (Running example – Prior distribution πut). Following Example 3.8 where

the population size is n=2, the prior distribution πut would assume the following proba-

bilities:

πut
aa = πut

bb = 1/3,

πut
ab = πut

ba = 1/6.

The probabilities showed in Example 3.9 comes directly from the adversary’s assumption

about the uniform distribution on possible frequencies. See Figure 3.2 fore more details.

3.4.2 Group of adversaries Gd

Considering the assumption about adversaries in Gd, in order to make an analysis

about utility in a sample publication, we define the data analyst’s prior distribution π̂ut

as following.

Definition 3.4.3 (Prior distribution π̂ut). Given the set of secrets X ut, the prior

distribution π̂ut that represents the data analyst adversary that assumes a uniform

distribution on datasets is defined as follows. For all p∈X ut:

π̂ut
p :=

1

2n
.

In the next section we define precisely the adversary guesses about the distribution

on attribute values in the population and we propose a loss function for measuring the

adversary’s success. Also, as we are using a new set of secrets X ut (defined in Section 3.4)

for utility analysis, we also define a new channel Sut for representing the sample release

in this case.

3.4.3 Adversary’s actions and system channel

We define the success of Aut looking at her uncertainty about the proportion of a’s in

the population. More specifically, we calculate how far her guess about the frequency of
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a’s in the population is from the real frequency. Formally, we define the following loss

function ℓ.

Definition 3.4.4 (Loss function ℓ – Utility). Let X ut be the set of secrets and

W = {0/n, 1/n, . . . , n/n} be the set of actions where w∈W represents the adversary

guessing that w per cent of the population has the value a. The loss function

ℓ :W×X ut→ [0, 1] that indicates the distance between the adversary’s guess and the

real frequency in the population is

ℓ(w, p) =

∣∣∣∣w − na(p)

n

∣∣∣∣ . (3.12)

Looking at Equation (3.12) it is possible to see that the further the adversary’s

guess is from the real frequency, the more the adversary “losses”. Thus when the adver-

sary’s guess is the exact real frequency in the population, the loss will be 0. The loss will

be 1 when she guesses that nobody in the population has a’s, and actually everyone has,

or the opposite, when she guesses that everyone has a’s and actually everyone has b’s.

Example 3.10 (Running example – Loss function ℓ). Recall Example 3.8 where the

population size is n=2. The adversary Aut can guess that there are 0, 1 or 2 people

in the population with value a. Thus the loss function for this scenario is defined as in

Table 3.4.

ℓ(w, p) aa ab ba bb

0/2 1 1/2 1/2 0
1/2 1/2 0 0 1/2
2/2 0 1/2 1/2 1

Table 3.4: Loss function ℓ from Example 3.10 that represents the adversary’s error when
guessing the frequency of value a in the population.

For scenarios related to privacy concerns (adversaries Ain, Aoutand Ank), as dis-

cussed in Section 3.3.3, the sample publication can be modeled as a channel S (Defi-

nition 3.3.5). In a similar way, for the data analyst adversary Aut that we have just

introduced in the beginning of this chapter, in order to adapt the definitions for the

new set of secrets X ut, we define a new channel Sut that maps population datasets to

distributions on sample histograms.
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Definition 3.4.5 (Channel Sut). Given the set of secrets X ut, a sample publication

can be modeled as a channel Sut :X ut→DY is the set of possible outputs (i.e., the

set of all possible histograms of m people). Assuming that the order of people in the

population array does not matter (i.e., any order is equally probable), we can fix the

sample to be always the first m people in the population p, i.e., the sample will be

just p1...m. Formally,

Sut
p,y =

1 , if na(p1...m) = y

0 , otherwise,
(3.13)

where y ∈Y represents a histogram of a sample of size m where y people have the

value a and m − y have the value b, and na(p1...m) is the number of a’s in the first

m people of population x. The entry Sut
p,y can be understood as the probability of the

published histogram being y when the population is p, i.e., Pr[y|p].

Example 3.11 (Running example – Channel Sut). Recall the scenario of Example 3.8

where n=2 and consider that the sample size is m=1. The channel Sut that represents

the sample publication will be as in Table 3.5.

Sut
p,y 0 1

aa 0 1
aa 0 1
ab 0 1
ab 0 1
ba 1 0
ba 1 0
bb 1 0
bb 1 0

Table 3.5: Channel matrix Sut for n=2 and m=1. For instance, we have that Sut
aa,0 = 0

because the sample is just p1, and as the first person in secret aa has an a, the sample’s his-
togram will be “1”, thus Pr[y=0 | p=aa] = 0. And oppositely, Sut

aa,1=Pr[y=1 | p=aa] = 1.

Besides the models provided in this chapter for adversaries related to privacy and utility

concerns, we present in the next chapter contributions on equations for prior and pos-

terior vulnerabilities for those scenarios. In particular, we provide closed formulas for

most vulnerability equations. Those formulas are relevant and necessary specially in sce-

narios with large datasets and/or samples in which the calculation of vulnerabilities are

computationally prohibitive by the fact that the number of secrets is exponential on the

population and sample’s sizes (see Sections 3.3 and 3.4 for more details).
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Chapter 4

Vulnerabilities and uncertainties of

publishing a sample

In this chapter we present the contributions related to prior and posterior vulnerabilities

and utility losses for the models described in the last chapter. Those contributions include

closed formulas which are very useful when quantifying vulnerabilities and utility losses

in large datasets/samples. All definitions from the framework of QIF used in this chapter

are detailed in Section 2.2.

We first show in Section 4.1 equations that describe the success of attribute infer-

ence attack executed by adversaries Ain, Aout and Ank both before and after observing

the sample release. Next, in Section 4.2, we present equations for the data analyst ad-

versary Aut and in the last section we discuss interpretation of those equations as well as

the insights and conclusions we are able to make using them.

4.1 Attribute inference attack

We divide the presentation of results for attribute inference attack in two sections.

The first, Section 4.1.1, shows formulas for prior vulnerability and the second one, Sec-

tion 4.1.2, formulas for posterior vulnerability. All definitions related to this attack are

described in Section 3.3.

4.1.1 Results on prior vulnerability

We start by showing the results for prior vulnerabilities for adversaries in Gf .

Theorem 4.1.1 states that the prior vulnerability is 1/2 when the prior knowledge is πin,
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πout or πnk. Recall that the operational interpretation of this result can be described as

“The expected probability of the adversary guessing correctly the target’s attribute value

before observing the sample is 1/2”.

Theorem 4.1.1 (Prior vulnerability – adversaries in Gf ). Given the prior distributions

πin, πout and πnk on the set of secrets X , and the gain function g for attribute inference

attack, the prior vulnerability, i.e., the expected probability of adversaries Ain, Aoutand

Ank, respectively, inferring the target’s attribute value, is

Vg(π
in) = Vg(π

out) = Vg(π
nk) = 1/2. (4.1)

Proof.

Adversary Ain and prior distribution πin:

Vg(π
in) = max

w∈W

∑
(p,t)∈X

πin
(p,t) · g(w, (p, t))

Def. of πin and g:

= max
w∈W

∑
(p,t)∈X :
1≤t≤m,
pt=w

1

m(n+ 1)
(

n
na(p)

)

Split cases when w=a and w=b:

=
1

m(n+ 1)
max


∑

(p,t)∈X :
1≤t≤m,
pt=a

(
n

na(p)

)−1

,
∑

(p,t)∈X :
1≤t≤m,
pt=b

(
n

na(p)

)−1


We need to define how many secrets x∈X satisfy the restrictions 1≤t≤m ∧ pt=a (in

the left summation inside the max) and 1≤t≤m ∧ pt=b (in the right summation inside

the max). The number of secrets that satisfy these restrictions is
m∑
t=1

n−1∑
i=0

(
n−1
i

)
. The first

summation on t goes over all possible indexes for the target. Once pt is fixed, the other

n−1 positions in the population array p can be any combination, and i is the number

of a’s in p\pt, i.e., i = na(p1...t−1,t+1,...n). Finally, pt = a implies
(

n
na(p)

)−1
=
(

n
i+1

)−1
, and

pt = b implies
(

n
na(p)

)−1
=
(
n
i

)−1
.

=
1

m(n+ 1)
max

{
m∑
t=1

n−1∑
i=0

(
n− 1

i

)(
n

i+ 1

)−1

,

m∑
t=1

n−1∑
i=0

(
n− 1

i

)(
n

i

)−1
}

(4.2)
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=
1

m(n+ 1)
max

{
m

n−1∑
i=0

i+ 1

n
,m

n−1∑
i=0

n− i

n

}

=
1

n+ 1
max

{
n−1∑
i=0

i+ 1

n
,

n−1∑
i=0

n− i

n

}
(4.3)

=
1

n+ 1
max

{
1

n

(
n−1∑
i=0

i+
n−1∑
i=0

1

)
,
1

n

(
n−1∑
i=0

n−
n−1∑
i=0

i

)}

=
1

n+ 1
max

{
1

n

(
(n− 1)n

2
+ n

)
,
1

n

(
n2 − (n− 1)n

2

)}
=

1

n+ 1
max

{
n− 1

2
+ 1, n− n− 1

2

}
=

1

n+ 1
max

{
n+ 1

2
,
n+ 1

2

}
=

1

n+ 1
· n+ 1

2

=
1

2
.

Adversary Aout and prior distribution πout:

Vg(π
out) = max

w∈W

∑
(p,t)∈X

πout
(p,t) · g(w, (p, t))

Def. of πout and g:

= max
w∈W

∑
(p,t)∈X :
m<t≤n,
pt=w

1

(n−m)(n+ 1)
(

n
na(p)

)

Split cases when w=a and w=b:

=
1

(n−m)(n+ 1)
max


∑

(p,t)∈X :
m<t≤n,
pt=a

(
n

na(p)

)−1

,
∑

(p,t)∈X :
m<t≤n,
pt=b

(
n

na(p)

)−1


Here the reasoning is the same as in Equation (4.2), except that now the target’s index

can be any value between m+1 and n.

=
1

(n−m)(n+ 1)
max

{
n∑

t=m+1

n−1∑
i=0

(
n− 1

i

)(
n

i+ 1

)−1

,

n∑
t=m+1

n−1∑
i=0

(
n− 1

i

)(
n

i

)−1
}
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=
1

(n−m)(n+ 1)
max

{
(n−m)

n−1∑
i=0

i+ 1

n
, (n−m)

n−1∑
i=0

n− i

n

}

=
1

n+ 1
max

{
n−1∑
i=0

i+ 1

n
,

n−1∑
i=0

n− i

n

}
. (4.4)

Equation (4.4) is the same as Equation (4.3) that has already been proven to be 1/2.

Adversary Ank and prior distribution πnk:

Vg(π
nk) = max

w∈W

∑
(p,t)∈X

πnk
(p,t) · g(w, (p, t))

Def. of πnk and g:

= max
w∈W

∑
(p,t)∈X
pt=w

1

n(n+ 1)
(

n
na(p)

)
Split cases when w=a and w=b:

=
1

n(n+ 1)
max


∑

(p,t)∈X
pt=a

(
n

na(p)

)−1

,
∑

(p,t)∈X
pt=b

(
n

na(p)

)−1


Here the reasoning is the same as in Equation (4.2), except that now the target’s index

can be any value between 1 and n.

=
1

n(n+ 1)
max

{
n∑

t=1

n−1∑
i=0

(
n− 1

i

)(
n

i+ 1

)−1

,

n∑
t=1

n−1∑
i=0

(
n− 1

i

)(
n

i

)−1
}

=
1

n(n+ 1)
max

{
n

n−1∑
i=0

i+ 1

n
, n

n−1∑
i=0

n− i

n

}

=
1

n+ 1
max

{
n−1∑
i=0

i+ 1

n
,
n−1∑
i=0

n− i

n

}
. (4.5)

Equation (4.5) is the same as Equation (4.3), that has already been proven to be 1/2.

Thus, we have shown that Vg(π
in) = Vg(π

out) = Vg(π
nk) = 1/2.

Now we analyze the prior vulnerability for adversaries in Gd, whose prior knowl-

edge is formalized by prior distributions π̂in, π̂out and π̂nk. This result is showed in

Theorem 4.1.2.
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Theorem 4.1.2 (Prior vulnerability – adversaries in Gd). Given the prior distributions

π̂in, π̂out and π̂nk on the set of secrets X , and the gain function g for attribute inference

attack, the prior vulnerability, i.e., the expected probability of adversaries Ain, Aout and

Ank, respectively, inferring the target’s attribute value, is

Vg(π̂
in) = Vg(π̂

out) = Vg(π̂
nk) = 1/2. (4.6)

Proof.

Adversary Ain and prior distribution π̂in:

Vg(π̂
in) = max

w∈W

∑
(p,t)∈X

π̂in
(p,t) · g(w, (p, t))

Def. of π̂in and g:

= max
w∈W

∑
(p,t)∈X :
1≤t≤m,
pt=w

1

m2n

Split cases when w=a and w=b:

=
1

m2n
max


∑

(p,t)∈X :
1≤t≤m,
pt=a

1,
∑

(p,t)∈X :
1≤t≤m,
pt=b

1


We need to define how many secrets p∈X ut satisfy the restrictions 1≤t≤m ∧ pt=a (in

the left summation inside the max) and 1≤t≤m ∧ pt=b (in the right summation inside

the max). For both cases the number of secrets is
m∑
t=1

2n−1. The summation goes over all

possible indexes for the adversary’s target and 2n−1 is the number of all combinations of

values people in indexes from 2 to n can assume.

=
1

m2n
max

{
m∑
t=1

2n−1,
m∑
t=1

2n−1

}
(4.7)

=
1

m2n
·m2n−1

=
1

2
.

Adversary Aout and prior distribution π̂out:

Vg(π̂
out) = max

w∈W

∑
(p,t)∈X

π̂out
(p,t) · g(w, (p, t))
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Def. of π̂out and g:

= max
w∈W

∑
(p,t)∈X :
m<t≤n,
pt=w

1

(n−m)2n

Split cases when w=a and w=b:

=
1

(n−m)2n
max


∑

(p,t)∈X :
m<t≤n,
pt=a

1,
∑

(p,t)∈X :
m<t≤n,
pt=b

1


Here the reasoning is the same as in Equation (4.7), except that now the target’s index

can be any value between m+1 and n.

=
1

(n−m)2n
max

{
n∑

t=m+1

2n−1,
n∑

t=m+1

2n−1

}

=
1

(n−m)2n
· (n−m)2n−1

=
1

2
.

Adversary Ank and prior distribution π̂nk:

Vg(π̂
nk) = max

w∈W

∑
(p,t)∈X

π̂nk
(p,t) · g(w, (p, t))

Def. of π̂nk and g:

= max
w∈W

∑
(p,t)∈X :
m<t≤n,
pt=w

1

n2n

Split cases when w=a and w=b:

=
1

n2n
max


∑

(p,t)∈X :
1≤t≤n,
pt=a

1,
∑

(p,t)∈X :
1≤t≤n,
pt=b

1


Here the reasoning is the same as in Equation (4.7), except that now the target’s index

can be any value between 1 and n.

=
1

n2n
max

{
n∑

t=1

2n−1,

n∑
t=1

2n−1

}
=

1

n2n
· n2n−1 =

1

2
.
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Thus we have proved that Vg(π̂
in) = Vg(π̂

out) = Vg(π̂
nk) = 1/2.

In the next section we study what happens with the adversary’s knowledge when

she observes the released sample’s histogram. We analyze how this information update

the adversary’s knowledge, what will be her best guess and her probability of success in

guessing the target’s attribute value.

4.1.2 Results on posterior vulnerability

We now present some lemmas that reduces summations on binomial coefficients

to closed formulas that will be helpful in the proofs for posterior vulnerabilities (Theo-

rems 4.1.3 and 4.1.4). Similar to the last section we start by the posterior vulnerability

for adversaries in Gf . The proofs of all lemmas can be found in Appendix A.

Lemma 4.1.1 (Summation on binomials 1). Let 1≤ y≤m≤n be integers. The following

equivalence remains:

n−m∑
k=0

(
m− 1

y − 1

)(
n−m

k

)(
n

y + k

)−1

=
y(n+ 1)

m(m+ 1)
(4.8)

and analogously:

n−m∑
k=0

(
m− 1

y

)(
n−m

k

)(
n

y + k

)−1

=
(m− y)(n+ 1)

m(m+ 1)
. (4.9)

Lemma 4.1.2 (Ordinary generating function). The following equivalence remains:

∞∑
i=0

(
k + i

k

)
xi =

1

(1− x)k+1
. (4.10)

Proof. The function in the left side of the equality is an Ordinary Generating Function

(OGF) of the sequence 1, k+1,
(
k+2
2

)
,
(
k+3
3

)
, . . .. The equality above can be easily shown

using some operations on OGFs. For more details see Chapter 3 of [27].

Lemma 4.1.3 (Summation on binomials 2). Let 1≤ y≤m≤n be integers. The following

equivalence remains:

n−m−1∑
k=0

(
m

y

)(
n−m− 1

k

)(
n

y + k + 1

)−1

=
(n+ 1)(y + 1)

(m+ 1)(m+ 2)
, (4.11)
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and analogously:

n−m−1∑
k=0

(
m

y

)(
n−m− 1

k

)(
n

y + k

)−1

=
(n+ 1)(m− y + 1)

(m+ 1)(m+ 2)
. (4.12)

Lemma 4.1.4 (Summations on m). Let m ≥ 1. We have that

⌊m/2⌋∑
i=0

m− i+
m∑

i=⌊m/2⌋+1

i =

(
m+ 1

2

)
+

⌊
(m+ 1)2

4

⌋
. (4.13)

Now we show in Lemma 4.1.5 that, when the prior distribution on secrets is πin, πout or

πnk, the probability distribution on outputs (sample histograms) is a uniform distribution.

Lemma 4.1.5 (Marginal on Y for πin, πout and πnk). Given the prior distributions πin,

πout and πnk on the set of secrets X and the channel S, the probability of a sample’s

histogram y ∈Y being the output is

Pr[y] =
1

m+ 1
. (4.14)

Before going through posterior vulnerability, we show in Lemma 4.1.6 the vulnera-

bility of a given output y, i.e., the adversary’s probability of correctly guessing the target’s

output when the published sample histogram is y.

Lemma 4.1.6 (Vulnerability of a specific output y, adversaries in Gf ). Let X be the set of

secrets, πin, πout and πnk be prior distributions on X , g be the gain function for attribute

inference attack and S be the channel. Given that the adversary observed some output y,

the posterior vulnerability given y is

(i)

Vg(δ
in,y) = max

{
y

m
,
m− y

m

}
. (4.15)

(ii)

Vg(δ
out,y) = max

{
y + 1

m+ 2
,
m− y + 1

m+ 2

}
(4.16)

(iii)

Vg(δ
nk,y) =

n+max {ny + 2y −m,nm− (ny + 2y −m)}
n(m+ 2)

(4.17)

where δin,y, δout,y and δnk,y are the inner distributions when y is observed and when πin,

πout and πnk are, respectively, the prior distributions. These vulnerabilities can be un-

derstood as Pr[X |Y = y] with X being the set of secrets and Y begin the set of sample

histograms.

Finally we present in Theorem 4.1.3 closed formulas for posterior vulnerabilities.
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Theorem 4.1.3 (Posterior vulnerability for prior distributions πin, πout and πnk). Given

the prior distributions πin, πout and πnk, the gain function g for attribute inference attack

and the channel S, the corresponding posterior vulnerabilities are

(i) for adversary Ain:

Vg[π
in ▷ S] =

3

4
+

1

4(
⌊
m
2

⌋
+
⌈
m+1
2

⌉
)
, (4.18)

(ii) for adversary Aout:

Vg[π
out ▷ S] =

3

4
− 1

4
(⌊

m+1
2

⌋
+
⌈
m
2

⌉
+ 1
) , (4.19)

(iii) for adversary Ank:

Vg[π
nk ▷ S] =

m

n
· Vg[π

in ▷ S] +
n−m

n
· Vg[π

out ▷ S], (4.20)

where m/n is the prior probability of a person being selected to be part of the sample

and (m−n)/n is the prior probability of a person not being selected to be in the sample.

We first present the proof for Equation (4.18).

Proof.

Vg[π
in ▷ S] =

∑
y∈Y

Pr[y] · Vg(δ
in,y)

Def. of S and by Lemmas 4.1.5 and 4.1.6 (i):

=
m∑
y=0

1

m+ 1
·max

{
y

m
,
m− y

m

}

=
1

m(m+ 1)

m∑
y=0

max{y,m− y}

=
1

m(m+ 1)

⌊m
2 ⌋∑

y=0

m− y +
m∑

⌊m
2 ⌋+1

y


By Lemma 4.1.4:

=
1

m(m+ 1)
·
((

m+ 1

2

)
+

⌊
(m+ 1)2

4

⌋)
=

1

2
+

⌊
(m+ 1)2

4

⌋
· 1

m(m+ 1)
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When m is odd,
⌊
(m+1)2

4

⌋
= (m+1)2

4
, then

=
1

2
+

(m+ 1)2

4
· 1

m(m+ 1)

=
1

2
+

m+ 1

4m

=
3

4
+

1

4m
.

When m is even,
⌊
(m+1)2

4

⌋
= m(m+2)

4
, then

=
1

2
+

m(m+ 2)

4
· 1

m(m+ 1)

=
1

2
+

m+ 2

4(m+ 1)

=
1

2
+

m+ 1

4(m+ 1)
+

1

4(m+ 1)

=
3

4
+

1

4(m+ 1)
.

Rewriting:

Vg[π
in ▷ S] =


3
4 +

1
4m , if m is odd

3
4 +

1
4(m+1) , if m is even.

Unifying for an arbitrary m:

Vg[π
in ▷ S] =

3

4
+

1

4(
⌊
m
2

⌋
+
⌈
m+1
2

⌉
)
.

Now for Equation (4.19).

Proof.

Vg[π
out ▷ S] =

∑
y∈Y

Pr[y] · Vg(δ
out,y)

Def. of S and by Lemmas 4.1.5 and 4.1.6 (ii):

=
m∑
y=0

1

m+ 1
·max

{
y + 1

m+ 2
,
m− y + 1

m+ 2

}

=
1

(m+ 1)(m+ 2)

m∑
y=0

max {y,m− y}+ 1
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=
1

(m+ 1)(m+ 2)

⌊m
2 ⌋∑

y=0

m− y +
m∑

y=⌊m
2 ⌋+1

y +
m∑
y=0

1

By Lemma 4.1.4:

=
1

(m+ 1)(m+ 2)

((
m+ 1

2

)
+

⌊
(m+ 1)2

4

⌋
+ (m+ 1)

)
=

1

(m+ 1)(m+ 2)

(
m(m+ 1)

2
+

⌊
(m+ 1)2

4

⌋
+ (m+ 1)

)

=
m

2(m+ 2)
+

⌊
(m+1)2

4

⌋
(m+ 1)(m+ 2)

+
1

m+ 2

=
1

2
+

⌊
(m+1)2

4

⌋
(m+ 1)(m+ 2)

When m is odd:

=
1

2
+

(m+ 1)2

4(m+ 1)(m+ 2)

=
1

2
+

m+ 1

4(m+ 1)

=
3m+ 5

4(m+ 2)

=
3

4
− 1

4(m+ 2)
.

When m is even:

=
1

2
+

m(m+ 2)

4(m+ 1)(m+ 2)

=
1

2
+

m

4(m+ 1)

=
3m+ 2

4(m+ 1)

=
3

4
− 1

4(m+ 1)
.

Rewriting:

Vg[π
out ▷ S] =


3
4 −

1
4(m+2) , if m is odd

3
4 −

1
4(m+1) , if m is even.
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Unifying for an arbitrary m:

Vg[π
out ▷ S] =

3

4
− 1

4
(⌊

m+1
2

⌋
+
⌈
m
2

⌉
+ 1
) .

And finally for Equation (4.20).

Proof.

Vg[π
unk ▷ S] =

∑
y∈Y

Pr[y] · Vg(δ
unk,y)

Def. of S and by Lemmas 4.1.5 and 4.1.6 (iii):

=
m∑
y=0

1

m+ 1
· n+max {ny + 2y −m,nm− (ny + 2y −m)}

n(m+ 2)

=
1

n(m+ 1)(m+ 2)

m∑
y=0

n+max {ny + 2y −m,n+ nm− ny − 2y +m}

=
1

n(m+ 1)(m+ 2)

(
n(m+ 1) +

m∑
y=0

max {y(n+ 2)−m,n(m− y)− 2y +m}

)

To remove the max, split the summation in two cases. The left part y(n + 2) − m ≥
n(m− y)− 2y +m when m ≥

⌊
m
2

⌋
. Then

=
n(m+ 1)

n(m+ 1)(m+ 2)
+

1

n(m+ 1)(m+ 2)

( ⌊m
2 ⌋∑

y=0

n(m− y)− 2y +m+
n∑

y=⌊m
2 ⌋+1

y(n+ 2)−m

)

=
n(m+ 1)

n(m+ 1)(m+ 2)
+

1

n(m+ 1)(m+ 2)

(
n

⌊m
2 ⌋∑

y=0

(m− y)− 2

⌊m
2 ⌋∑

y=0

y +

⌊m
2 ⌋∑

y=0

m+

(n+ 2)
n∑

y=⌊m
2 ⌋+1

y −
n∑

y=⌊m
2 ⌋+1

m

)



4.1. Attribute inference attack 62

=
n(m+ 1)

n(m+ 1)(m+ 2)
+

1

n(m+ 1)(m+ 2)

(
n(2m−

⌊
m
2

⌋
)(
⌊
m
2

⌋
+ 1)

2
−

2
⌊
m
2

⌋
(
⌊
m
2

⌋
+ 1)

2
+

2m(
⌊
m
2

⌋
+ 1

2
+

(n+ 2)(m+
⌊
m
2

⌋
+ 1)(m−

⌊
m
2

⌋
)

2
−

2m(m−
⌊
m
2

⌋
)

2

)

=
n(m+ 1)

n(m+ 1)(m+ 2)
+

1

2n(m+ 1)(m+ 2)

((⌊m
2

⌋
+ 1
)
·
(
n
(
2m−

⌊m
2

⌋)
− 2

⌊m
2

⌋
+ 2m

)
+
(
m−

⌊m
2

⌋)
·
(
(n+ 2)

(
m+

⌊m
2

⌋
+ 1
)
− 2m

))

=
n(m+ 1)

n(m+ 1)(m+ 2)
+

1

2n(m+ 1)(m+ 2)

((⌊m
2

⌋
+ 1
)
·
(
2nm− n

⌊m
2

⌋
− 2

⌊m
2

⌋
+ 2m

)
+
(
m−

⌊m
2

⌋)
·
(
nm+ n

⌊m
2

⌋
+ n+ 2

⌊m
2

⌋
+ 2
))

=
n(m+ 1)

n(m+ 1)(m+ 2)
+

1

2n(m+ 1)(m+ 2)

(
2nm

⌊m
2

⌋
− 2n

⌊m
2

⌋2
− 4

⌊m
2

⌋2
+ 4m

⌊m
2

⌋
+ 3nm− 2n

⌊m
2

⌋
− 4

⌊m
2

⌋
+ nm2 + 4m

) (4.21)

When m is even,
⌊
m
2

⌋
= m/2, therefore Equation (4.21) becomes

n(m+ 1)

n(m+ 1)(m+ 2)
+

1

2n(m+ 1)(m+ 2)

(
2nm

(m
2

)
− 2n

(m
2

)2
− 4

(m
2

)2
+ 4m

(m
2

)
+ 3nm

− 2n
(m
2

)
− 4

(m
2

)
+ nm2 + 4m

)
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=
n(m+ 1)

n(m+ 1)(m+ 2)
+

1

2n(m+ 1)(m+ 2)

(
nm2 − nm2

2
+m2 + 2nm+ nm2 + 2m

)

=
2n(m+ 1) + 3nm2

2
+m2 + 2nm+ 2m

2n(m+ 1)(m+ 2)

=
3nm2

2
+m2 + 4nm+ 2n+ 2m

2n(m+ 1)(m+ 2)

=
(m+ 2)(3nm+ 2m+ 2n)

4n(m+ 1)(m+ 2)

=
3nm+ 2m+ 2n

4n(m+ 1)

=
m(3m+ 4) + (n−m)(3m+ 2)

4n(m+ 1)

=
m

n
·
(

3m+ 4

4(m+ 1)

)
+

n−m

n
·
(

3m+ 2

4(m+ 1)

)
=

m

n
·
(

3

4(m+ 1)
+

1

4m

)
+

n−m

n
·
(
3

4
− 1

4(m+ 1)

)
=

m

n
· Vg[π

in ▷ S] +
n−m

n
· Vg[π

out ▷ S] .

When m is odd,
⌊
m
2

⌋
= m−1

2
, therefore Equation (4.21) becomes

n(m+ 1)

n(m+ 1)(m+ 2)
+

1

2n(m+ 1)(m+ 2)

(
2nm

(
m− 1

2

)
− 2n

(
m− 1

2

)2

− 4

(
m− 1

2

)2

+ 4m

(
m− 1

2

)
+ 3nm− 2n

(
m− 1

2

)
− 4

(
m− 1

2

)
+ nm2 + 4m

)

=
n(m+ 1)

n(m+ 1)(m+ 2)
+

1

2n(m+ 1)(m+ 2)

(
2nm(m− 1)

2
− 2n(m− 1)2

2
− 4(m− 1)2

4
+

4m(m− 1)

2

+ 3nm− 2n(m− 1)

2
− 4(m− 1)

2
+ nm2 + 4m

)

=
n(m+ 1)

n(m+ 1)(m+ 2)
+

1

2n(m+ 1)(m+ 2)

(
3nm2

2
+ 2nm+m2 +

n

2
+ 2m+ 1

)
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=
4n(m+ 1) + 3nm2 + 4nm+ 2m2 + n+ 4m+ 2

4n(m+ 1)(m+ 2)

=
3nm2 + 2m2 + 8nm+ 5n+ 4m+ 2

4n(m+ 1)(m+ 2)

=
(m+ 1)(3nm+ 2m+ 5n+ 2)

4n(m+ 1)(m+ 2)

=
3nm+ 2m+ 5n+ 2

4n(m+ 2)

=
(3m+ 1)(m+ 2) + 3nm+ 5n− 3m2 − 5m

4n(m+ 2)

=
3m+ 1

4n
+

3nm+ 5n− 3m2 − 5m

4n(m+ 2)

=
m

n
·
(
3m+ 1

4m

)
+

n−m

n
·
(

3m+ 5

4(m+ 2)

)
=

m

n
·
(
3

4
+

1

4m

)
+

n−m

n
·
(
3

4
− 1

4(m+ 2)

)
=

m

n
· Vg[π

in ▷ S] +
n−m

n
· Vg[π

out ▷ S] .

Now we analyze the posterior vulnerabilities for adversaries in Gd. We first present two

lemmas that will be useful in the proof of Theorem 4.1.4. These lemmas present closed

formulas for the marginal distribution on sample histograms (i.e., Pr[y]) and for the

vulnerability of a specific output y (i.e., Pr[X |Y = y]).

Lemma 4.1.7 (Marginal on Y for π̂in, π̂out and π̂nk). Given the set of secrets X , the

prior distributions π̂in, π̂out and π̂nk and channel S, the marginal probability distribution

on Y is

Pr[y] =

(
m

y

)
2−m. (4.22)

Lemma 4.1.8 (Vulnerability of a specific output y). Let X be the set of secrets, π̂in, π̂out

and π̂nk be prior distributions on X , g be the gain function for attribute inference attack

and S be the channel. Given that the adversary observed some output y, the posterior

vulnerability given y is

(i)

Vg(δ̂
in,y) = max

{
y

m
,
m− y

m

}
, (4.23)

(ii)

Vg(δ̂
out,y) =

1

2
, (4.24)
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(iii)

Vg(δ̂
nk,y) =

1

n

(
n−m

2
+ max{y,m− y}

)
. (4.25)

where δ̂in,y, δ̂out,y and δ̂nk,y are the inner distributions when π̂in, π̂out and π̂nk are, respec-

tively, the prior distributions, and when y is observed, i.e., Pr[X |Y = y].

Finally we present in Theorem 4.1.4 closed formulas for posterior vulnerabilities.

Theorem 4.1.4 (Posterior vulnerability for prior distributions π̂in, π̂out and π̂nk). Given

the prior distribution π̂in, the gain function g for attribute inference attack and the chan-

nel S, the posterior vulnerability Vg[π̂
in ▷ S] that represents the expected probability of

Ain guessing correctly the target’s attribute value is

(i) for adversary Ain:

Vg[π̂
in ▷ S] =

1

2
+

1

2m

(
m− 1⌊
m−1
2

⌋) , (4.26)

(ii) for adversary Aout:

Vg[π̂
out ▷ S] = Vg(π̂

out) =
1

2
, (4.27)

(iii) for adversary Ank:

Vg[π̂
nk ▷ S] =

m

n
· Vg[π̂

in ▷ S] +
m− n

n
· Vg[π̂

out ▷ S] . (4.28)

We start by the proof of Equation (4.26).

Proof.

Vg[π̂
in ▷ S] =

∑
y ∈Y

Pr[y] · Vg(δ̂
in,y)

By Lemmas 4.1.7 and 4.1.8 (i):

=
m∑
y=0

(
m

y

)
2−m ·max

{
y

m
,
m− y

m

}

=
1

2m

m∑
y=0

(
m

y

)
max{y,m− y}

m
(4.29)
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by Theorem 19 in [21]:

=
1

2
+

1

2m

(
m− 1⌊
m−1
2

⌋) .

Now for Equation (4.27).

Proof.

Vg[π̂
out ▷ S] =

∑
y ∈Y

Pr[y] · Vg(δ̂
out,y)

By Lemmas 4.1.7 and 4.1.8 (ii):

=
m∑
y=0

(
m

y

)
2−m · 1

2

=
1

2m+1
·

m∑
y=0

(
m

y

)
=

1

2m+1
· 2m

=
1

2
.

And finally for Equation (4.28).

Proof.

Vg[π̂
unk ▷ S] =

∑
y ∈Y

Pr[y] · Vg(δ̂
unk,y)

By Lemmas 4.1.7 and 4.1.8 (iii):

=
m∑
y=0

(
m

y

)
2−m · 1

n

(
n−m

2
+ max{y,m− y}

)

=
1

n2m

m∑
y=0

(
m

y

)(
n−m

2
+ max{y,m− y}

)

Split the summation:

=
1

n2m

[
n−m

2

m∑
y=0

(
m

y

)
+

m∑
y=0

(
m

y

)
max{y,m− y}

]
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Using the same result of Equation (4.29), but with some algebraic manipulation:

=
1

n2m

[
n−m

2
· 2m +m

(
2m−1 +

(
m− 1⌊
m−1
2

⌋))]
=

n−m

2n
+

m

n2m

(
2m−1 +

(
m− 1⌊
m−1
2

⌋))
=

n−m

n
· 1
2
+

m

n

(
1

2
+

1

2m

(
m− 1⌊
m−1
2

⌋))
Change order of summation:

=
m

n

(
1

2
+

1

2m

(
m− 1⌊
m−1
2

⌋))+
n−m

n
· 1
2

=
m

n
· Vg[π̂

in ▷ S] +
n−m

n
· Vg[π̂

out ▷ S] .

In the next section we present the results for the data analyst adversary Aut.

4.2 Data analyst and sample’s utility

We introduce in this section the results related to adversary Aut that represents

a data analyst trying to infer the distribution on the binary attribute in the population.

We start by presenting the prior utility loss whose operational interpretation can be

understood as “The expected error of the adversary trying to infer the frequency of value

a in the population”. After that, in Section 4.1.2, we present results on posterior utility

loss that describes the adversary’s expected error when she is trying to infer the frequency

of value a in the population after observing the sample’s histogram. All definition related

to this adversary are detailed in Section 3.4.

4.2.1 Results on prior utility loss

We start this section by proving four lemmas that will be helpful in the proofs of

prior utility loss. The main results are presented in Theorems 4.2.1 and 4.2.2. The proofs

of all lemmas can be found in Appendix B.

Lemma 4.2.1 (Guessing symmetry when n is even). Let p ≥ 1 and 0 ≤ k ≤ 2p. Let also
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f(k) = k2 − 2kp . (4.30)

We have that

f(k) = f(2p− k).

Lemma 4.2.2 (Guessing symmetry when n is odd). Let p ≥ 1 and 0 ≤ k ≤ 2p + 1. Let

also

f ′(k) = k2 − 2kp− k . (4.31)

We have that

f ′(k) = f ′(2p+ 1− k).

Lemma 4.2.3 (Sum of differences when n is even). Let n ≥ 2 be even. We have that

min
0≤k≤n

n∑
i=0

|k − i| = n(n+ 2)

4
, (4.32)

where the minimum in Equation (4.32) happens when k = n
2 .

Lemma 4.2.4 (Sum of differences when n id odd). Let n ≥ 1 be odd. We have that

min
0≤k≤n

n∑
i=0

|k − i| = (n+ 1)2

4
, (4.33)

where the minimum in Equation (4.33) happens when k = n− 1
2 .

Recall that πut represents the data analyst’s prior knowledge for an adversary in Gf .

Using lemmas showed above we present a closed formula for prior utility loss Uℓ(π
ut) in

Theorem 4.2.1.

Theorem 4.2.1 (Prior utility loss for πut). Given the prior distribution πut and the loss

function ℓ, the prior vulnerability is

Uℓ(π
ut) =

1

4
+

1

4
(⌊

n
2

⌋
+
⌈
n+1
2

⌉) . (4.34)

Proof.

Uℓ(π
ut) = min

w∈W

∑
p∈Xut

πut
p · ℓ(w, p)

= min
w∈W

∑
p∈Xut

∣∣∣w − na(p)
n

∣∣∣
(n+ 1)

(
n

na(p)

)
=

1

n+ 1
min
w∈W

∑
p∈Xut

∣∣∣∣w − na(p)

n

∣∣∣∣ · ( n

na(p)

)−1
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We can group secrets p∈X ut by na(p) ∈ [0, n], and we have that |p : na(p) = i| =
(
n
i

)
.

=
1

n+ 1
min
w∈W

n∑
i=0

∣∣∣∣w − na(p)

n

∣∣∣∣ · (ni
)
·
(
n

i

)−1

=
1

n+ 1
min
w∈W

n∑
i=0

∣∣∣∣w − i

n

∣∣∣∣
=

1

n+ 1
min
0≤k≤n

n∑
i=0

∣∣∣∣kn − i

n

∣∣∣∣
=

1

n(n+ 1)
min
0≤k≤n

n∑
i=0

|k − i| .

For n even and by Lemma 4.2.3:

1

n(n+ 1)
min
0≤k≤n

n∑
i=0

|k − i| = 1

n(n+ 1)
· n(n+ 2)

4

=
n+ 2

4(n+ 1)

=
1

4
+

1

4(n+ 1)
.

For n odd and by Lemma 4.2.4:

1

n(n+ 1)
min
0≤k≤n

n∑
i=0

|k − i| = 1

n(n+ 1)
· (n+ 1)2

4

=
n+ 1

4n

=
1

4
+

1

4n
.

Rewriting:

Uℓ(π
ut) =


1
4 + 1

4(n+ 1)
, when n is even

1
4 + 1

4n , when n is odd.

Unifying for an arbitrary n:

Uℓ(π
ut) =

1

4
+

1

4
(⌊

n
2

⌋
+
⌈
n+1
2

⌉) .

We next present a closed formula for adversaries in Gd. Recall that in the case of adversary

Aut, this prior knowledge is defined by π̂ut.

Theorem 4.2.2 (Prior utility loss for π̂ut). Given the prior distribution π̂ut on the set of

secrets X ut and the loss function ℓ, the prior vulnerability, i.e., the expected probability of

the data analyst adversary inferring the frequency of value a in the population is
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Uℓ(π̂
ut) =

1

n2n
min
0≤k≤n

n∑
i=0

(
n

i

)
|k − i| .

Proof.

Uℓ(π̂
ut) = min

w∈W

∑
p∈Xut

π̂ut
p · ℓ(w, p)

=
1

2n
min
w∈W

∑
p∈Xut

∣∣∣∣w − na(p)

n

∣∣∣∣
Following the definition of W , we can replace min

w∈W
by min

0≤k≤n
and rewrite each action w as

k/n. Also we can group secrets p∈X ut by na(p) ∈ [0, n], and we have that |p : na(p) = i| =(
n
i

)
.

=
1

2n
min
0≤k≤n

n∑
i=0

(
n

i

) ∣∣∣∣kn − i

n

∣∣∣∣
=

1

n2n
min
0≤k≤n

n∑
i=0

(
n

i

)
|k − i| .

In the next section we present results for posterior utility loss.

4.2.2 Results on posterior utility loss

We start this section by proving two lemmas that state the distribution on sample

histograms and the utility loss of a specific output y. After that we present an equation

for posterior utility loss for the data analyst in Gf .

Lemma 4.2.5 (Marginal on Y for πut). Given the prior distribution πut on the set of

secrets X ut and the channel Sut, the probability of a sample’s histogram y ∈Y being the

output is

Pr[y] =
1

m+ 1
. (4.35)

Lemma 4.2.6 (Utility loss for a specific output y). Let πut be a prior distribution on

the set of secrets X ut, g be the gain function for attribute inference attack and Sut be

the channel. Given that the adversary observed some output y, the posterior vulnerability

given y is

Uℓ(δ
y,ut) =

m+ 1

n(n+ 1)
min
0≤k≤n

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

· |k − y − y′| .
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where δy,ut ∈DX ut is the inner distribution when πut is the prior distribution and y is

observed (i.e., Pr[X|Y = y]).

Theorem 4.2.3 (Posterior utility loss for πut). Given the prior distribution πut, the loss

function ℓ and the channel Sut, the posterior vulnerability is

Uℓ[π
ut ▷ Sut] =

1

n(n+ 1)

m∑
y=0

min
0≤k≤n

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

|k − y − y′|. (4.36)

Proof.

Uℓ[π
ut ▷ Sut] =

∑
y ∈Y

Pr[y]Uℓ(δ
y,ut)

By Lemmas 4.2.5 and 4.2.6:

=
1

m+ 1

m∑
y=0

m+ 1

n(n+ 1)
min
0≤k≤n

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

· |k − y − y′|

=
1

n(n+ 1)

m∑
y=0

min
0≤k≤n

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

· |k − y − y′| .

We now present two lemmas for the marginal distribution on outputs and utility

loss given an output y for adversaries in Gd. In the end of this section Theorem 4.2.4

presents an equation for the posterior utility loss.

Lemma 4.2.7 (Marginal on Y for π̂ut). Given the set of secrets X ut, the prior π̂ut, the

loss function ℓ and channel Sut, we have that the marginal distribution on outputs Y is

Pr[y] =

(
m

y

)
2−m . (4.37)

Lemma 4.2.8 (Utility loss for a specific output y). Given the set of secrets X ut, the prior

π̂ut, the loss function ℓ and channel Sut, and given that the adversary observed the output

y, the posterior vulnerability given this observation is

Uℓ(δ̂
y,ut) =

1

n2n−m
min
0≤k≤n

n−m∑
y′=0

(
n−m

y′

)
|k − y − y′| ,

where δ̂y,ut ∈DX ut is the inner distribution when π̂ut is the prior distribution and y is

observed (i.e., Pr[X|Y = y]).
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Theorem 4.2.4 (Posterior utility loss for π̂ut). Given the prior distribution π̂ut on the

set of secrets X ut, the loss function ℓ and the channel Sut, the posterior vulnerability, i.e.,

the expected probability of the data analyst adversary inferring the frequency of value a in

the population after observing the sample’s histogram is

Uℓ[π̂
ut ▷ Sut] =

1

n2n

m∑
y=0

(
m

y

)
min
0≤k≤n

n−m∑
y′=0

(
n−m

y′

)
|k − y − y′| .

Proof.

Uℓ[π̂
ut ▷ Sut] =

∑
y ∈Y

Pr[y]Uℓ(δ̂
y,ut)

By Lemmas 4.2.7 and 4.2.8:

=
m∑
y=0

(
m

y

)
2−m · 2m

n2n
· min
0≤k≤n

n−m∑
y′=0

(
n−m

y′

)
|k − y − y′|

=
1

n2n

m∑
y=0

(
m

y

)
min
0≤k≤n

n−m∑
y′=0

(
n−m

y′

)
|k − y − y′| .

4.3 Discussion of results

In this section we discuss interpretations of equations presented in the last two

sections and show graphs that compare their behavior when we vary the parameters (e.g.,

the population and sample sizes).

Prior vulnerability for adversaries in both Gf and Gd. We start the discussion

looking at the results related to the prior vulnerability of attribute inference attack per-

formed by adversaries Ain, Aout and Ank. Theorems 4.1.1 and 4.1.2 showed that the

prior vulnerability is 1/2 regardless the adversary’s prior knowledge (i.e., regardless the

adversary being in Gf or Gd). Before getting any information other than those described

by πin, πout, πnk, π̂in, π̂out or π̂nk, the adversaries Ain, Aout and Ank will deduce that

Pr[pt= a] = Pr[pt= b] = 1/2, i.e., the probability of their target having value aor bfor

the sensitive attribute is the same. This is a direct consequence of both assumptions of a

uniform distribution on frequency of value a in the population and a uniform distribution

on datasets. As these assumptions induce a uniform prior on {a, b} for the target’s at-
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tribute value, the adversary’s guess could be either a or b, and their expected probability

of success guessing the target’s attribute value will be 1/2.

This result corroborates the intuition that before getting any data about the pop-

ulation from the data curator, the adversary has a very low success rate when trying to

infer the attribute value of a target, or from the point of view of the data curator, releasing

no data causes no damage to privacy.

Privacy for adversaries in Gf . Moving to posterior vulnerability, let us first analyze

the group of adversaries with prior knowledge πin, πout and πnk. Figure 4.1 shows the

behavior of posterior vulnerability for a population with 1 million people when the sample

size m grows.

Figure 4.1: Vulnerabilities and multiplicative leakages forAin, Aout andAnk in Gf , fixing n
and varyingm. In the right side of the y axis we can also see by which factor the adversary
is increasing her chance of guessing correctly the target’s attribute after observing the
sample. For instance, m=1 implies Vg[π

in ▷ S] = 1 because there is only one person in
the sample and the adversary knows that is the target, thus her chance of success will be
doubled, i.e., L×

g (π
in, S) = 2.

Font: Elaborated by the author.

The results showed in Figure 4.1 brings us an important insight about the relia-

bility of participating in a statistical publication. They confirmed a reasonable intuition

that a person that was selected to be in the sample has always a higher probability to

have his attribute value inferred by an adversary than a person that was not selected

to be in the sample. Because of that, a person may be inclined to refuse to answer a

research that would collect his data arguing that if he is outside the sample he will be

more protected against attribute inferences. This analysis corroborates the motivation

for studies involving mitigation methods for privacy in statistical publications.
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Figure 4.2: Posterior vulnerability for Ain, Aout and Ank in Gf , fixing m and varying n.
Note that the x axis starts at n = 102 because the sample size m ≤ n.

Font: Elaborated by the author.

Figure 4.2 shows the behavior of posterior vulnerability when we fix the sample

size and vary the number of people in the population. It is possible to see that the

impact of the population size n in posterior vulnerability is very low when m is fixed. For

adversaries Ain and Aout the impact is nonexistent – indeed Equations (4.18) and (4.19)

in Theorem 4.1.3 depend only on the sample size m. The population size n appears in

posterior vulnerability for adversary Ank, however the value of Vg[π
nk▷S] does not change

more than 1% for n varying from 102 to 106, as showed in Figure 4.2.

Utility for adversaries in Gf . At the time we have written this thesis we were not

able to find a closed formula for posterior utility of adversary Aut. The adversary’s guess

depends on n, m and the number of a’s observed in the sample, however, the best for the

adversary given these three parameters is not clear for us. Although we still have not found

a closed formula for the posterior utility loss, looking at the graph in Figure 4.3 we are

still able to describe the behavior of Uℓ[π
ut▷S], also comparing it with the vulnerabilities

for adversary Ank.

There is a clear trade-off between privacy and utility that can be observed. We see

that, as the sample size m grows, the expected probability of Ank inferring the attribute

value of his target also grows, and on the other hand the data analyst’s expected error

decreases. Besides, the rate that those vulnerabilities/utility losses increase (or decrease

in the case of Aut) are quite similar. The variation in posterior vulnerability/utility loss

for 1 ≤ m ≤ 100 is much higher than the variation for 100 < m ≤ 500, as showed in

Table 4.1.

It is possible to see in the proof of Theorem 4.2.1 that the best guess for the

data analyst adversary for the frequency of value a in the population without observing
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Figure 4.3: Vulnerabilities and utility losses for Ank and Aut in Gf for n = 500 and varying
the sample size m.

Font: Elaborated by the author.

m Vg[π
nk ▷ S] Uℓ[π

ut ▷ S]

1 66.74% 19.55%
100 74.85% 2.79%
500 75.05% 0%

.

Table 4.1: Posterior vulnerability/utility loss for n=106 and for different sample sizes m.

anything is n/2. This becomes from the fact we assumed before that all possible frequencies

are equally probable. Thus, the expected error she will get guessing n/2 is at lest 25%

from above or below, and this error decreases as the population size grows.

Privacy for adversaries in Gd. Now we turn our attention to adversaries in Gd. First

we analyze the behavior of posterior vulnerability and the multiplicative leakage for ad-

versaries Ain, Aout and Ank.

Figure 4.4 shows the posterior vulnerabilities for adversaries in Gd, and we see that

the participant in the sample is the one that suffers more damage to his privacy, i.e., the

adversary has a higher expected probability of guessing correctly his attribute value. This

fact also happens for adversaries in Gf . Following Figures 4.1 and 4.4, it is clear that,

for a fixed n and as m grows, while the posterior vulnerability Vg[π̂
in ▷ S] converges to

1/2, Vg[π
in ▷ S] converges to 3/4, what implies in their multiplicative leakages converging

to 1 and 1.5, respectively. One conclusion about this fact is that, for large samples (i.e.,

for values of m close to n), adversaries Ain, Aout and Ank in Gf has higher expected

probability of success than those in Gd.
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Figure 4.4: Vulnerabilities and multiplicative leakage for Ain, Aout and Ank in Gd, fixing
n and varying m.

Font: Elaborated by the author.

Another interesting fact is that individuals outside the sample has no damage

to their privacy for adversaries in Gd, i.e., Vg[π̂
out ▷ S] = Vg(π̂

out) = 1/2. Suppose that

Aout observed na(p1...m) = y a’s in the sample. Given that Aout knows the target is outside

the sample, she will calculate which attribute value – a or b – is the most probable for

people outside the sample, and she will find that

Pr[na(pm+1...n)= k | y] =
(
n−m
k

)
2n−m

,

for 0≤ k≤n−m. Considering the symmetry of binomials, i.e.,
(
n
k

)
=
(

n
n−k

)
, the probability

Pr[na(pm+1...n)= 0 | y] = Pr[na(pm+1...n)=n−m | y]

Pr[na(pm+1...n)= 1 | y] = Pr[na(pm+1...n)=n−m− 1 | y]
...

Pr[na(pm+1...n)= ⌊(n−m)/2⌋ | y] = Pr[na(pm+1...n)= ⌊(n−m+1)/2⌋ | y] .

Thus the probability of the target’s value Pr[pt= a] = Pr[pt= b] = 1/2, and therefore her

expected guess will be 1/2, regardless her guess for the target’s attribute value.

Utility for adversaries in Gd. We can observe in Figure 4.5 that the shape of the curves

of posterior vulnerability Vg[π̂
nk ▷ S] and posterior utility loss Uℓ[π̂

ut ▷ S] are “mirrored”,

i.e., while Vg[π̂
nk ▷ S] increases as m grows, Uℓ[π̂

ut ▷ S] decreases. It again corroborates

with the well known trade-off between privacy and utility found in the literature.
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Nonetheless, it is possible to see in Figures 4.5 and 4.3 that the distance between

prior and posterior vulnerabilities for adversary Ank is smaller for adversaries in Gd com-

pared to adversaries in Gf . It may indicate that sample publications are more vulnerable

to attribute inference attack from adversaries in Gf than those in Gd.

Figure 4.5: Vulnerabilities and utility losses for Ank and Aut in Gd, fixing n and varying
m.

Font: Elaborated by the author.
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Chapter 5

Conclusions

In this work we have presented a model to analyze attribute inference attack in sample

publications of a single binary attribute, as well as the utility of that publication for data

analysts that are interested to understand the distribution of an attribute in a certain

population. The framework of QIF allowed us formalize the sample release itself and

the bevahior and gains of all adversaries studied. The model enabled us to answer the

following two questions:

(i) “What is the expected probability of an adversary guessing correctly the attribute

value of a single target when she observes a sample from the population?”, and

(ii) “When a data analyst observes a sample and tries to guess the distribution of a

binary attribute in the population, how far her guess will be from the real distribution

in expected values?”.

Question (i) is related to attribute inference attack, and it was answered for adversaries

with three different prior knowledge about the presence of the target in the sample,

formalized as Ain, Aout and Ank, and for two different assumptions about how the data

was generated, formalized as groups Gf and Gd (Sections 3.3.2 and 3.3.1). On the other

hand, question (ii) is related to the utility of a sample release, and it was answered for data

analysts with two different assumptions about how the data was generated, formalized as

groups Gf and Gd (Sections 3.4.2 and 3.4.1).

Besides we have derived closed formulas for prior and posterior vulnerability of at-

tribute inference attack and for prior utility loss of a data analyst in Gf . Those formulas

enable us to evaluate privacy and utility of large sample/datasets, what is computa-

tionally infeasible to do using the original equations that defines the prior and posterior

vulnerabilities and utility losses.

As a future work, this thesis can be considered a start point in the development of

a general model that assess privacy and utility levels of a wider set of data releases such

as microdata, histograms, query answers, etc.

Another expansion of this thesis includes modeling mitigation methods of privacy

breaches (e.g., differential privacy) in order to compare, quantitatively, their efficiency

in protecting privacy and keeping a reasonable utility level in easy terms that can be
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explainable to data curators. The work could be used as a reference by institutions to

motivate the usage of some mitigation methods as well as guiding their process of publicly

releasing data.
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Appendix A

Proofs of Lemmas – Privacy

Here we present the proofs of all lemmas related to privacy analysis in Section 4.1.2.

Lemma 4.1.1 (Summation on binomials 1). Let 1≤ y≤m≤n be integers. The following

equivalence remains:

n−m∑
k=0

(
m− 1

y − 1

)(
n−m

k

)(
n

y + k

)−1

=
y(n+ 1)

m(m+ 1)
(4.8)

and analogously:

n−m∑
k=0

(
m− 1

y

)(
n−m

k

)(
n

y + k

)−1

=
(m− y)(n+ 1)

m(m+ 1)
. (4.9)

Proof. First, for Equation (4.8):

n−m∑
k=0

(
m− 1

y − 1

)(
n−m

k

)(
n

y + k

)−1

=
y(n+ 1)

m(m+ 1)

Note:
(
m
y

)
y
m

=
(
m−1
y−1

)
n−m∑
k=0

(
m

y

)(
n−m

k

)(
n

y + k

)−1

· y

m
=

y(n+ 1)

m(m+ 1)

n−m∑
k=0

(
m

y

)(
n−m

k

)(
n

y + k

)−1

=
n+ 1

m+ 1
(A.1)

Note: n+1
m+1

=
(
n+1
m+1

)(
n
m

)−1
.

n−m∑
k=0

(
m

y

)(
n−m

k

)(
n

y + k

)−1

=

(
n+ 1

m+ 1

)(
n

m

)−1

To factorials.

n−m∑
k=0

(n−m)!

k!(n−m− k)!

m!

y!(m− y)!

(y + k)!(n− y − k)!

n!
=

(
n+ 1

m+ 1

)(
n

m

)−1



84

Isolate
(
n
m

)−1
.(

n

m

)−1 n−m∑
k=0

1

k!(n−m− k)!

1

y!(m− y)!

(y + k)!(n− y − k)!

1
=

(
n+ 1

m+ 1

)(
n

m

)−1

Cancel.

n−m∑
k=0

1

k!(n−m− k)!

1

y!(m− y)!

(y + k)!(n− y − k)!

1
=

(
n+ 1

m+ 1

)
Re-arrange.

n−m∑
k=0

(y + k)!

k!y!

(n− y − k)!

(n−m− k)!(m− y)!
=

(
n+ 1

m+ 1

)
To binomials.

n−m∑
k=0

(
y + k

y

)(
n− (y + k)

m− y

)
=

(
n+ 1

m+ 1

)
Define i = y + k

.

n−m+y∑
i=y

(
i

y

)(
n− i

m− y

)
=

(
n+ 1

m+ 1

)
Expand summation range. Recall

(
n
k

)
= 0 if k > n. For 0 ≤ i < y,

(
i
y

)
= 0 because i < y.

Similarly, for n − m + y < i ≤ n,
(
n−i
m−y

)
= 0 because n − i can at most be m − y − 1,

which is less than m− y.

n∑
i=0

(
i

y

)(
n− i

m− y

)
=

(
n+ 1

m+ 1

)
By Vandermonde Convolution [26]: (

n+ 1

m+ 1

)
=

(
n+ 1

m+ 1

)
And for Equation (4.9):

n−m∑
k=0

(
m− 1

y

)(
n−m

k

)(
n

y + k

)−1

=
(m− y)(n+ 1)

m(m+ 1)

Note:
(
m
y

)
m−y
m

=
(
m−1
y

)
n−m∑
k=0

(
m

y

)(
n−m

k

)(
n

y + k

)−1

· m− y

m
=

(m− y)(n+ 1)

m(m+ 1)

n−m∑
k=0

(
m

y

)(
n−m

k

)(
n

y + k

)−1

=
n+ 1

m+ 1
(A.2)

The equality in Equation (A.2) is the same as the equality in Equation (A.1), which we

have already demonstrated to be true, then we conclude our proof.
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Lemma 4.1.3 (Summation on binomials 2). Let 1≤ y≤m≤n be integers. The following

equivalence remains:

n−m−1∑
k=0

(
m

y

)(
n−m− 1

k

)(
n

y + k + 1

)−1

=
(n+ 1)(y + 1)

(m+ 1)(m+ 2)
, (4.11)

and analogously:

n−m−1∑
k=0

(
m

y

)(
n−m− 1

k

)(
n

y + k

)−1

=
(n+ 1)(m− y + 1)

(m+ 1)(m+ 2)
. (4.12)

Proof. For the equality in Equation (4.11), let’s first reduce it:

n−m−1∑
k=0

(
m

y

)(
n−m− 1

k

)(
n

y + k + 1

)−1

=

(
m

y

) n−m−1∑
k=0

(
(n−m− 1)!

k!(n−m− 1− k)!
·

(y + k + 1)!(n− y − k − 1)!

n!

)

=
(y + 1)m!(n−m− 1)!

n!
·

n−m−1∑
k=0

(
y + 1 + k

y + 1

)(
n− y − k − 1

m− y

)
︸ ︷︷ ︸

A(n−m−1)

(A.3)

We note that A(n−m− 1) can be rewritten as follows:

A(n−m− 1) =
n−m−1∑
k=0

(
y + 1 + k

y + 1

)
︸ ︷︷ ︸

a(k)

(
m− y + n−m− 1− k

m− y

)
︸ ︷︷ ︸

b(n−m−1−k)

(A.4)

We have:

A(ℓ) =
ℓ∑

k=0

a(k)b(ℓ− k) (A.5)

Hence we can see A(ℓ) as a term coefficient in the following Cauchy product (discrete

convolution of two infinite power series):

∞∑
ℓ=0

A(ℓ)xℓ =

(
∞∑
i=0

a(i)xi

)
·

(
∞∑
j=0

b(j)xj

)
(A.6)

Using Lemma 4.1.2:

(i)
∞∑
i=0

a(i)xi =
∞∑
i=0

(
y + 1 + i

y + 1

)
xi =

1

(1− x)y+2
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(ii)
∞∑
j=0

b(i)xj =
∞∑
j=0

(
m− y + j

m− y

)
xj =

1

(1− x)m−y+1

Using the property of generating function, i.e., that the generating function of a product

is the product of the generating functions (Equation (A.6)):

∞∑
ℓ=0

A(ℓ)xℓ =
1

(1− x)y+2
· 1

(1− x)m−y+1

=
1

(1− x)m+3

=
∞∑
ℓ=0

(
m+ 2 + ℓ

m+ 2

)
xℓ . (Lemma 4.1.2)

Hence, considering the ℓ = n−m− 1 power term (Equation (A.4)):

A(ℓ) =

(
m+ 2 + n−m− 1

m+ 2

)
=

(
n+ 1

m+ 2

)
.

Backing to Equation (A.3):

n−m−1∑
k=0

(
m

y

)(
n−m− 1

k

)(
n

y + k + 1

)−1

=
(y + 1)m!(n−m− 1)!

n!
· A(n−m− 1)

=
(y + 1)m!(n−m− 1)!

n!
·
(
n+ 1

m+ 2

)
=

(y + 1)m!(n−m− 1)!

n!
· (n+ 1)!

(m+ 2)!(n−m− 1)!

=
(n+ 1)(y + 1)

(m+ 1)(m+ 2)
.

We can apply the same reasoning to Equation (4.12). For that case the terms of the

Cauchy product are

a′(i) =

(
y + i

i

)
, and

b′(j) =

(
m− y + 1 + j

m− y + 1

)
,

and we use the following generating functions (Lemma 4.1.2):

∞∑
i=0

a′(i)xi =
1

(1− x)y+1
,

∞∑
j=0

b′(j)xj =
1

(1− x)m−y+2
.
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Reducing Equation (4.12), we have:

n−m−1∑
k=0

(
m

y

)(
n−m− 1

k

)(
n

y + k

)−1

=

(
m

y

)
· y!(m− y + 1)!(n−m+ 1)!

n!
·

n−m+1∑
k=0

(
y + k

k

)(
n− y − k

m− y + 1

)
︸ ︷︷ ︸

B(n−m−1)

and

∞∑
ℓ=0

B(ℓ)xℓ =

(
∞∑
i=0

a′(i)xi

)
·

(
∞∑
j=0

b′(j)xj

)

=
1

(1− x)y+1
· 1

(1− x)m−y+2

=
1

(1− x)m+3
.

Hence:

B(n−m− 1) =

(
m+ 2 + n−m− 1

m+ 2

)
=

(
n+ 1

m+ 2

)
Backing to Equation (4.12):

n−m−1∑
k=0

(
m

y

)(
n−m− 1

k

)(
n

y + k

)−1

=

(
m

y

)
· y!(m− y + 1)!(n−m+ 1)!

n!
· B(n−m− 1)

=
m!

y!(m− y)!
· y!(m− y + 1)!(n−m+ 1)!

n!

(
n+ 1

m+ 2

)
=

m!(m− y + 1)(n−m+ 1)!

n!
· (n+ 1)!

(m+ 2)!(n−m− 1)!

=
(n+ 1)(m− y + 1)

(m+ 1)(m+ 2)
.

Lemma 4.1.4 (Summations on m). Let m ≥ 1. We have that

⌊m/2⌋∑
i=0

m− i+
m∑

i=⌊m/2⌋+1

i =

(
m+ 1

2

)
+

⌊
(m+ 1)2

4

⌋
. (4.13)

Proof. Note the right side is the triangular numbers plus quarter-squares, which is listed

in the Online Encyclopedia of Integer Sequences (OEIS) [28] under integer sequence
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A001859.

=

⌊m/2⌋∑
i=0

m− i+
m∑

i=⌊m/2⌋+1

i

=

⌊m/2⌋∑
i=0

m−
⌊m/2⌋∑
i=0

i+
m∑

i=⌊m/2⌋+1

i

=
(⌊m

2

⌋
+ 1
)
m−

⌊m/2⌋∑
i=1

i+

 m∑
i=1

i−
⌊m/2⌋∑
i=1

i


=
(⌊m

2

⌋
+ 1
)
m− ⌊m/2⌋(⌊m/2⌋+ 1)

2
+

(
m(m+ 1)

2
− ⌊m/2⌋(⌊m/2⌋+ 1)

2

)
=
(⌊m

2

⌋
+ 1
)
m+

m(m+ 1)

2
− 2

⌊m/2⌋(⌊m/2⌋+ 1)

2

=
(⌊m

2

⌋
+ 1
)
m+

m(m+ 1)

2
−
⌊m
2

⌋(⌊m
2

⌋
+ 1
)

=
(⌊m

2

⌋
+ 1
)(

m−
⌊m
2

⌋)
+

m(m+ 1)

2

=

⌈
m+ 1

2

⌉⌊
m+ 1

2

⌋
+

m(m+ 1)

2

=

⌊
(m+ 1)2

4

⌋
+

(
m+ 1

2

)
.

Lemma 4.1.5 (Marginal on Y for πin, πout and πnk). Given the prior distributions πin,

πout and πnk on the set of secrets X and the channel S, the probability of a sample’s

histogram y ∈Y being the output is

Pr[y] =
1

m+ 1
. (4.14)

Proof. Let’s use the prior distribution πin to construct the proof.

Pr[y] =
∑

(p,t)∈X

Pr[(p, t)]Pr[y|(p, t)] (A.7)

Def. of πin and S:

=
∑

(p,t)∈X :
1≤t≤m,

na(p1...m)=y

1

m(n+ 1)
(

n
na(p)

)



89

We need to count how many secrets (p, t)∈X satisfy the restrictions 1≤ t≤m and na(p1...m) =

y. In the first m elements of p we have y a’s, so
(
m
y

)
different combinations. The other

n−m people can have any value (a or b), so we say that there are y′ a’s in pm+1...n, such

that y′ goes from 0 to n−m, so
(
n−m
y′

)
different combinations. Finally, na(p1...m) = y and

na(pm+1...n) = y′ implies na(p) = y + y′.

=
1

m(n+ 1)

m∑
t=1

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

By Lemma 4.1.1:

=
1

m(n+ 1)
·

m∑
t=1

n+ 1

m+ 1

=
1

m(n+ 1)
· m(n+ 1)

m+ 1
(A.8)

=
1

m+ 1
.

Note that the proof above is also valid for prior distributions πout and πnk. The only

difference between these three priors are the range of t, that are {1, . . . ,m}, {m+1, . . . , n}
and {1, . . . , n}, for πin, πout and πnk, respectively. The size of these ranges are all canceled

out in Equation (A.8).

Lemma 4.1.6 (Vulnerability of a specific output y, adversaries in Gf ). Let X be the set of

secrets, πin, πout and πnk be prior distributions on X , g be the gain function for attribute

inference attack and S be the channel. Given that the adversary observed some output y,

the posterior vulnerability given y is

(i)

Vg(δ
in,y) = max

{
y

m
,
m− y

m

}
. (4.15)

(ii)

Vg(δ
out,y) = max

{
y + 1

m+ 2
,
m− y + 1

m+ 2

}
(4.16)

(iii)

Vg(δ
nk,y) =

n+max {ny + 2y −m,nm− (ny + 2y −m)}
n(m+ 2)

(4.17)

where δin,y, δout,y and δnk,y are the inner distributions when y is observed and when πin,

πout and πnk are, respectively, the prior distributions. These vulnerabilities can be un-

derstood as Pr[X |Y = y] with X being the set of secrets and Y begin the set of sample

histograms.
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Proof.

(i) Adversary Ain and prior distribution πin:

Vg(δ
in,y) = max

w∈W

∑
(p,t)∈X

Pr[(p, t)|y] · g(w, (p, t))

Bayes’ theorem:

= max
w∈W

∑
(p,t)∈X

Pr[(p, t)]Pr[y|(p, t)]
Pr[y]

· g(w, (p, t))

Def. of πin, S, g and by Lemma 4.1.5:

= max
w∈W

∑
(p,t)∈X :
1≤t≤m,
pt=w

Sx,y · (m+ 1)

m(n+ 1)
(

n
na(p)

)

=
m+ 1

m(n+ 1)
·max
w∈W

∑
(p,t)∈X :
1≤t≤m,
pt=w,

na(p1...m)=y

(
n

na(p)

)−1

Split cases when w=a and w=b:

=
m+ 1

m(n+ 1)
·max


∑

(p,t)∈X :
1≤t≤m,
pt=a,

na(p1...m)=y

(
n

na(p)

)−1

,
∑

(p,t)∈X :
1≤t≤m,
pt=b,

na(p1...m)=y

(
n

na(p)

)−1


(A.9)

We need to count how many secrets (p, t)∈X satisfy the restrictions 1≤t≤m ∧ pt=a∧
na(p1...m)=y in the left summation inside the max and 1≤t≤m ∧ pt=b ∧ na(p1...m)=y

in the right summation inside the max. Each secret x is a tuple (p, t), where p is

the population array and t is the target’s index.

• In the left summation, in the first m elements of p there are y a’s, and as pt=a,

there will be y − 1 a’s in the other m− 1 positions, so we have
(
m−1
y−1

)
possible

combinations.

• In the right summation the reasoning is similar the the left one, except that

now pt = b, so there will be y a’s in the other m−1 positions, so
(
m−1
y

)
possible

combinations.
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For both summations the other n−m people can have any value (a or b), so we say

that there are y′ a’s in pm+1...n, such that y′ goes from 0 to n−m, so
(
n−m
y′

)
different

combinations.. Finally, na(p1...m) = y and na(pm+1...n) = y′ implies na(p) = y + y′.

=
m+ 1

m(n+ 1)
·max

{
m∑
t=1

n−m∑
y′=0

(
m− 1

y − 1

)(
n−m

y′

)(
n

y + y′

)−1

,

m∑
t=1

n−m∑
y′=0

(
m− 1

y

)(
n−m

y′

)(
n

y + y′

)−1
} (A.10)

By Lemma 4.1.1:

=
m+ 1

m(n+ 1)
·max

{
m∑
t=1

y(n+ 1)

m(m+ 1)
,

m∑
t=1

(m− y)(n+ 1)

m(m+ 1)

}

=
1

m
·max

{
m∑
t=1

y

m
,

m∑
t=1

m− y

m

}

=
1

m
·max

{
m · y

m
,m · m− y

m

}
= max

{
y

m
,
m− y

m

}
.

(ii) Adversary Aout and prior distribution πout:

Vg(δ
out,y) = max

w∈W

∑
(p,t)∈X

Pr[(p, t)|y] · g(w, (p, t))

Bayes’ theorem:

= max
w∈W

∑
(p,t)∈X

Pr[(p, t)]Pr[y|(p, t)]
Pr[y]

· g(w, (p, t))

Def. of πout, S, g and by Lemma 4.1.5:

= max
w∈W

∑
(p,t)∈X :

m+1≤t≤n,
pt=w

Sx,y · (m+ 1)

(n−m)(n+ 1)
(

n
na(p)

)

=
m+ 1

(n−m)(n+ 1)
·max
w∈W

∑
(p,t)∈X :

m+1≤t≤n,
pt=w,

na(p1...m)=y

(
n

na(p)

)−1

Split cases when w=a and w=b:

=
m+ 1

(n−m)(n+ 1)
·max


∑

(p,t)∈X :
m+1≤t≤n,

pt=a,
na(p1...m)=y

(
n

na(p)

)−1

,
∑

(p,t)∈X :
m+1≤t≤n,

pt=b,
na(p1...m)=y

(
n

na(p)

)−1


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We need to count how many secrets (p, t)∈X satisfy the restrictions m+1≤t≤n ∧
pt=a∧na(p1...m)=y in the left summation inside the max and m+1≤t≤n ∧ pt=b∧
na(p1...m)=y in the right summation inside the max. Each secret x is a tuple (p, t),

where p is the population array and t is the target’s index. In the first m elements

of p, there are y a’s, so
(
m
y

)
possible combinations. For the other n−m people in

pm+1...n, they can have any value (except by pt), so we say that there are y′ a’s in

pm+1...n except by pt, therefore y′ goes from 0 to n−m−1, then
(
n−m−1

y′

)
possible

combinations. Also:

• In the left summation, as pt = a, na(p) = y + y′ + 1.

• In the left summation, as pt = b, na(p) = y + y′.

=
m+ 1

(n−m)(n+ 1)
·max

{
n∑

t=m+1

n−m−1∑
y′=0

(
m

y

)(
n−m− 1

y′

)(
n

y + y′ + 1

)−1

,

n∑
t=m+1

n−m−1∑
y′=0

(
m

y

)(
n−m− 1

y′

)(
n

y + y′

)−1
}

(A.11)

By Lemma 4.1.3:

=
m+ 1

(n−m)(n+ 1)
·max

{
n∑

t=m+1

(n+ 1)(y + 1)

(m+ 1)(m+ 2)
,

n∑
t=m+1

(n+ 1)(m− y + 1)

(m+ 1)(m+ 2)

}
(A.12)

=
1

n−m
·max

{
(n−m)(y + 1)

m+ 2
,
(n−m)(m− y + 1)

m+ 2

}
= max

{
y + 1

m+ 2
,
m− y + 1

m+ 2

}
.

(iii) Adversary Ank and prior distribution πnk:

Vg(δ
nk,y) = max

w∈W

∑
(p,t)∈X

Pr[(p, t)|y] · g(w, (p, t))

Bayes’ theorem:

= max
w∈W

∑
(p,t)∈X

Pr[(p, t)]Pr[y|(p, t)]
Pr[y]

· g(w, (p, t))
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Def. of πnk, S, g and by Lemma 4.1.5:

= max
w∈W

∑
(p,t)∈X :
pt=w

Sx,y · (m+ 1)

n(n+ 1)
(

n
na(p)

)
=

m+ 1

n(n+ 1)
·max
w∈W

∑
(p,t)∈X :
pt=w

na(p1...m)=y

(
n

na(p)

)−1

Split cases when w=a and w=b:

=
m+ 1

n(n+ 1)
·max


∑

(p,t)∈X :
pt=a

na(p1...m)=y

(
n

na(p)

)−1

,
∑

(p,t)∈X :
pt=b

na(p1...m)=y

(
n

na(p)

)−1


We need to count how many secrets (p, t)∈X satisfy the restrictions pt=a ∧ na(p1...m)=y

in the left summation inside the max and pt=b ∧ na(p1...m)=y in the right summa-

tion inside the max. Each secret x is a tuple (p, t), where p is the population array

and t is the target’s index. We can divide the counting in four cases:

(1) The adversary’s guess is a and 1 ≤ t ≤ m,

(2) The adversary’s guess is a and m+1 ≤ t ≤ n,

(3) The adversary’s guess is b and 1 ≤ t ≤ m, and

(4) The adversary’s guess is b and m+1 ≤ t ≤ n.

For cases (1) and (3) we can use the same reasoning we have used in Equation (A.10),

and for cases (2) and (4) we can use the same reasoning we have used in Equa-

tion (A.11). The sum of summations on the left inside the max represents cases (1)

and (2), and the sum of summations on the right inside the max represents cases

(3) and (4).
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=
m+ 1

n(n+ 1)
·max

{
m∑
t=1

n−m∑
y′=0

(
m− 1

y − 1

)(
n−m

y′

)(
n

y + y′

)−1

+

n∑
t=m+1

n−m−1∑
y′=0

(
m

y

)(
n−m− 1

y′

)(
n

y + y′ + 1

)−1

,

m∑
t=1

n−m∑
y′=0

(
m− 1

y

)(
n−m

y′

)(
n

y + y′

)−1

+

n∑
t=m+1

n−m−1∑
y′=0

(
m

y

)(
n−m− 1

y′

)(
n

y + y′

)−1
}

=
1

n
·max

{
m · y

m
+

(n−m)(y + 1)

m+ 2
,m · m− y

m
+

(n−m)(m− y + 1)

m+ 2

}
=

1

n(m+ 2)
·max

{
y(m+ 2) + (n−m)(y + 1),

(m− y)(m+ 2) + (n−m)(m− y + 1)
}

=
1

n(m+ 2)
·max

{
my + 2y + ny + n−my −m,

m2 + 2m−my − 2y + nm− ny + n−m2 +my −m
}

=
1

n(m+ 2)
·max {n+ ny + 2y −m,n+ nm− (ny + 2y −m)}

=
n+max {ny + 2y −m,nm− (ny + 2y −m)}

n(m+ 2)
.

Lemma 4.1.7 (Marginal on Y for π̂in, π̂out and π̂nk). Given the set of secrets X , the

prior distributions π̂in, π̂out and π̂nk and channel S, the marginal probability distribution

on Y is

Pr[y] =

(
m

y

)
2−m. (4.22)

Proof. Let’s use the prior distribution π̂in to construct the proof.

Pr[y] =
∑

(p,t)∈X

Pr[(p, t)]Pr[y|(p, t)]

=
∑

(p,t)∈X

π̂in · Sx,y

=
∑

(p,t)∈X :
1≤t≤m,

na(x
p
1...m)=y

1

m2n
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We need to count how many secrets (p, t)∈X satisfy the restrictions 1≤t≤m and na(p1...m) = y.

Each secret x is a tuple (p, t), where p is the population array and t is the target’s index.

In the first m elements of p we have y a’s, so
(
m
y

)
different combinations. The other n−m

people can have any value (a or b), so we say that there are y′ a’s in pm+1...n, such that

y′ goes from 0 to n−m, so
(
n−m
y′

)
different combinations.

=
1

m2n

m∑
t=1

n−m∑
y′=0

(
m

y

)(
n−m

y′

)

=
1

m2n
·m
(
m

y

) n−m∑
y′=0

(
n−m

y′

)
=

1

2n
·
(
m

y

)
2n−m (A.13)

=

(
m

y

)
2−m .

Note that the proof above is also valid for prior distributions π̂out and π̂nk. The only

difference between these three priors are the range of t, that are {1, . . . ,m}, {m+1, . . . , n}
and {1, . . . , n}, for π̂in, π̂out and π̂nk, respectively. The size of these ranges are all canceled

out in Equation (A.13).

Lemma 4.1.8 (Vulnerability of a specific output y). Let X be the set of secrets, π̂in, π̂out

and π̂nk be prior distributions on X , g be the gain function for attribute inference attack

and S be the channel. Given that the adversary observed some output y, the posterior

vulnerability given y is

(i)

Vg(δ̂
in,y) = max

{
y

m
,
m− y

m

}
, (4.23)

(ii)

Vg(δ̂
out,y) =

1

2
, (4.24)

(iii)

Vg(δ̂
nk,y) =

1

n

(
n−m

2
+ max{y,m− y}

)
. (4.25)

where δ̂in,y, δ̂out,y and δ̂nk,y are the inner distributions when π̂in, π̂out and π̂nk are, respec-

tively, the prior distributions, and when y is observed, i.e., Pr[X |Y = y].

Proof.

(i) Adversary Ain and prior distribution π̂in:
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Vg(δ̂
in,y) = max

w∈W

∑
(p,t)∈X

Pr[(p, t)|y] · g(w, (p, t))

Bayes’ theorem:

= max
w∈W

∑
(p,t)∈X

Pr[(p, t)]Pr[y|(p, t)]
Pr[y]

· g(w, (p, t))

Def. of π̂in, S, g and by Lemma 4.1.7:

= max
w∈W

∑
(p,t)∈X :
1≤t≤m,
pt=w

2m · S(p,t),y

m2n
(
m
y

)
=

2m

m2n
(
m
y

) · max
w∈W

∑
(p,t)∈X :
1≤t≤m,
pt=w,

na(p1...m)=y

1

Split cases when w=a and w=b:

=
2m

m2n
(
m
y

) ·max


∑

(p,t)∈X :
1≤t≤m,
pt=a,

na(p1...m)=y

1,
∑

(p,t)∈X :
1≤t≤m,
pt=b,

na(p1...m)=y

1


We need to count how many secrets (p, t)∈X satisfy the restrictions 1≤t≤m ∧ pt=a∧
na(p1...m)=y in the left summation inside the max and 1≤t≤m ∧ pt=b ∧ na(p1...m)=y

in the right summation inside the max.

• In the left summation, in the first m elements of p there are y a’s, and as pt=a,

there will be y − 1 a’s in the other m− 1 positions, so we have
(
m−1
y−1

)
possible

combinations.

• In the right summation the reasoning is similar the the left one, except that

now pt = b, so there will be y a’s in the other m−1 positions, so
(
m−1
y

)
possible

combinations.

For both summations the other n−m people can have any value (a or b), so we say

that there are y′ a’s in pm+1...n, such that y′ goes from 0 to n−m, so
(
n−m
y′

)
different

combinations.
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=
2m

m2n
(
m
y

) ·max

{
m∑
t=1

n−m∑
y′=0

(
m− 1

y − 1

)(
n−m

y′

)
,

m∑
t=1

n−m∑
y′=0

(
m− 1

y

)(
n−m

y′

)} (A.14)

=
2m

m2n
(
m
y

) ·max

{
m

(
m− 1

y − 1

) n−m∑
y′=0

(
n−m

y′

)
,

m

(
m− 1

y

) n−m∑
y′=0

(
n−m

y′

)}

=
2m

m2n
(
m
y

) max

{
m

(
m− 1

y − 1

)
2n−m,m

(
m− 1

y

)
2n−m

}
=

1(
m
y

) max

{(
m− 1

y − 1

)
,

(
m− 1

y

)}
=

1(
m
y

) max

{(
m

y

)
· y

m
,

(
m

y

)
· m− y

m

}
= max

{
y

m
,
m− y

m

}
.

(ii) Adversary Aout and prior distribution π̂out:

Vg(δ̂
out,y) = max

w∈W

∑
(p,t)∈X

Pr[(p, t)|y] · g(w, (p, t))

Bayes’ theorem:

= max
w∈W

∑
(p,t)∈X

Pr[(p, t)]Pr[y|(p, t)]
Pr[y]

· g(w, (p, t))

Def. of π̂out, S, g and by Lemma 4.1.7:

= max
w∈W

∑
(p,t)∈X :
m<t≤n,
pt=w

2m · S(p,t),y

(n−m)2n
(
m
y

)
=

2m

(n−m)2n
(
m
y

) · max
w∈W

∑
(p,t)∈X :
m<t≤n,
pt=w,

na(p1...m)=y

1

Split cases when w=a and w=b:

=
2m

(n−m)2n
(
m
y

) ·max


∑

(p,t)∈X :
m<t≤n,
pt=a,

na(p1...m)=y

1,
∑

(p,t)∈X :
m<t≤n,
pt=b,

na(p1...m)=y

1


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We need to count how many secrets (p, t)∈X satisfy the restrictionsm<t≤n∧pt=a∧
na(p1...m)=y in the left summation inside the max andm<t≤n ∧ pt=b∧na(p1...m)=y

in the right summation inside the max. In the first m elements of p, there are y

a’s, so
(
m
y

)
possible combinations. For the other n−m people in pm+1...n, they can

have any value (except by pt), so we say that there are y′ a’s in pm+1...n except by

pt, therefore y′ goes from 0 to n−m−1, then
(
n−m−1

y′

)
possible combinations.

=
2m

(n−m)2n
(
m
y

) ·max

{
n∑

t=m+1

n−m−1∑
y′=0

(
m

y

)(
n−m− 1

y′

)
,

n∑
t=m+1

n−m−1∑
y′=0

(
m

y

)(
n−m− 1

y′

)} (A.15)

=
2m

(n−m)2n
(
m
y

) ·max

{
(n−m)

(
m

y

) n−m−1∑
y′=0

(
n−m− 1

y′

)
,

(n−m)

(
m

y

) n−m−1∑
y′=0

(
n−m− 1

y′

)}

=
1

2n−m
·max{2n−m−1, 2n−m−1}

=
1

2
.

(iii) Adversary Ank and prior distribution π̂nk:

Vg(δ̂
nk,y) = max

w∈W

∑
(p,t)∈X

Pr[(p, t)|y] · g(w, (p, t))

Baye’s theorem:

= max
w∈W

∑
(p,t)∈X

Pr[(p, t)]Pr[y|(p, t)]
Pr[y]

· g(w, (p, t))

Def. of π̂nk, S, g and by Lemma 4.1.7:

= max
w∈W

∑
(p,t)∈X :
pt=w

2m · S(p,t),y

n2n
(
m
y

)
=

2m

n2n
(
m
y

) ·max
w∈W

∑
(p,t)∈X :
pt=w

na(p1...m)=y

1

Split cases when w=a and w=b:

=
2m

n2n
(
m
y

) ·max


∑

(p,t)∈X :
pt=a

na(p1...m)=y

1,
∑

(p,t)∈X :
pt=b

na(p1...m)=y

1


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We need to count how many secrets (p, t)∈X satisfy the restrictions pt=a ∧ na(p1...m)=y

in the left summation inside the max and pt=b ∧ na(p1...m)=y in the right summa-

tion inside the max. We can divide the counting in four cases:

(1) The adversary’s guess is a and 1 ≤ t ≤ m,

(2) The adversary’s guess is a and m < t ≤ n,

(3) The adversary’s guess is b and 1 ≤ t ≤ m, and

(4) The adversary’s guess is b and m < t ≤ n.

For cases (1) and (3) we can use the same reasoning we have used in Equation (A.14),

and for cases (2) and (4) we can use the same reasoning we have used in Equa-

tion (A.15). The sum of summations on the left inside the max represents cases (1)

and (2), and the sum of summations on the right inside the max represents cases

(3) and (4).

=
2m

n2n
(
m
y

) ·max

{
m∑
t=1

n−m∑
y′=0

(
m− 1

y − 1

)(
n−m

y′

)
+

n∑
t=m+1

n−m−1∑
y′=0

(
m

y

)(
n−m− 1

y′

)
,

m∑
t=1

n−m∑
y′=0

(
m− 1

y

)(
n−m

y′

)
+

n∑
t=m+1

n−m−1∑
y′=0

(
m

y

)(
n−m− 1

y′

)}

=
2m

n2n
(
m
y

) ·max

{
m

(
m− 1

y − 1

)
2n−m + (n−m)

(
m

y

)
2n−m−1,

m

(
m− 1

y

)
2n−m + (n−m)

(
m

y

)
2n−m−1

}

=
2m

n2n
(
m
y

) ·max

{
m

(
m

y

)
y

m
· 2n−m + (n−m)

(
m

y

)
2n−m−1,

m

(
m

y

)
m− y

y
· 2n−m + (n−m)

(
m

y

)
2n−m−1

}

=
1

n
·max

{
y +

n−m

2
,m− y +

n−m

2

}
=

1

n

(
n−m

2
+ max{y,m− y}

)
.
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Appendix B

Proofs of Lemmas – Utility

Here we present the proofs of all lemmas related to utility analysis in Section 4.2.

Lemma 4.2.1 (Guessing symmetry when n is even). Let p ≥ 1 and 0 ≤ k ≤ 2p. Let also

f(k) = k2 − 2kp . (4.30)

We have that

f(k) = f(2p− k).

Proof.

f(2p− k) = (2p− k)2 − 2p(2p− k)

= 4p2 − 4kp+ k2 − 4p2 + 2kp

= k2 − 2kp

= f(k) .

Lemma 4.2.2 (Guessing symmetry when n is odd). Let p ≥ 1 and 0 ≤ k ≤ 2p + 1. Let

also

f ′(k) = k2 − 2kp− k . (4.31)

We have that

f ′(k) = f ′(2p+ 1− k).

Proof.

f ′(2p+ 1− k) = (2p+ 1− k)2 − 2p(2p+ 1− k)− (2p+ 1− k)

= 4p2 + 2p− 2kp+ 2p+ 1− k − 2kp− k + k2

− 4p2 − 2p+ 2kp− 2p− 1 + k

= k2 − 2kp− k

= f ′(k) .
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Lemma 4.2.3 (Sum of differences when n is even). Let n ≥ 2 be even. We have that

min
0≤k≤n

n∑
i=0

|k − i| = n(n+ 2)

4
, (4.32)

where the minimum in Equation (4.32) happens when k = n
2 .

Proof.

min
0≤k≤n

n∑
i=0

|k − i| = min
0≤k≤n

(
k∑

i=0

(k − i) +
n∑

i=k+1

(i− k)

)

= min
0≤k≤n

(
k

k∑
i=0

1−
k∑

i=0

i+
n∑

i=k+1

i− k
n∑

i=k+1

1

)

Solving arithmetic progressions:

= min
0≤k≤n

(
k(k + 1)− k(k + 1)

2
+

(k + 1 + n)(n− k)

2
− k(n− k)

)
= min

0≤k≤n

(
k(k + 1)

2
+

kn− k2 + n− k + n2 − kn

2
− 2k(n− k)

2

)
= min

0≤k≤n

(
k2 + k − k2 + n− k + n2 − 2kn+ 2k2

2

)
= min

0≤k≤n

(
n2 + 2k2 + n− 2kn

2

)
Because n is constant:

= min
0≤k≤n

(
k2 − kn

)
+

n(n+ 1)

2
. (B.1)

Rewriting:

min
0≤k≤n

(
k2 − kn

)
+

n(n+ 1)

2
=

n(n+ 2)

4

⇔ min
0≤k≤n

(
k2 − kn

)
= −n2

4
. (B.2)

Looking at Equation (B.2), as n is even, let n = 2p for some p ∈ N. As proposed before,

the minimum will happen when k = n/2 = p. Thus we want to show:

(i) ∀0 ≤ k < p : k2 − 2kp ≥ −p2, and

(ii) ∀p < k ≤ 2p : k2 − 2kp ≥ −p2.

For (i), let us prove by induction on p.

Base case p = 1

∀0 ≤ k < 1 : k2 − 2k ≥ −1.

(k = 0) ⇒ 02 − 2 · 0 = 0 ≥ −1.
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Induction step Assume ∀0 ≤ k < p : k2 − 2kp ≥ −p2. We want to show that

∀0 ≤ k < p+ 1 : k2 − 2k(p+ 1) ≥ −(p+ 1)2.

k2 − 2k(p+ 1) = k2 − 2kp− 2k

≥ −p2 − 2k (by I.H)

≥ −p2 − 2p− 1 (0 ≤ k < p+ 1)

= −(p+ 1)2.

For (ii), and assuming that f(k) = k2 − 2kp, we want to show that

∀p < k ≤ 2p : f(k) ≥ −p2.

We have already proved (i), that states

f(0) ≥ −p2, f(1) ≥ −p2, . . . , f(p− 1) ≥ −p2. (B.3)

Using Lemma 4.2.1, we can rewrite Equation (B.3) as

f(2p) ≥ −p2, f(2p− 1) ≥ −p2, . . . , f(p+ 1) ≥ −p2,

which is the same thing as saying that

∀p < k ≤ 2p : f(k) ≥ −p2,

which was exactly what we wanted to prove. Therefore, proving (i) and (ii), we have

shown that

min
0≤k≤n

(
k2 − kn

)
= −n2

4
,

which implies

min
0≤k≤n

n∑
i=0

|k − i| = n(n+ 2)

4
.

Lemma 4.2.4 (Sum of differences when n id odd). Let n ≥ 1 be odd. We have that

min
0≤k≤n

n∑
i=0

|k − i| = (n+ 1)2

4
, (4.33)

where the minimum in Equation (4.33) happens when k = n− 1
2 .

Proof.

By the same derivation done for Equation (B.1):

min
0≤k≤n

n∑
i=0

|k − i| = min
0≤k≤n

(
k2 − kn

)
+

n(n+ 1)

2
. (B.4)
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Rewriting:

min
0≤k≤n

(
k2 − kn

)
+

n(n+ 1)

2
=

(n+ 1)2

4

⇔ min
0≤k≤n

(
k2 − kn

)
= −(n2 − 1)

4
. (B.5)

Looking at Equation (B.5), as n is odd, let n = 2p + 1 for some p ∈ N. As proposed

before, the minimum will happen when k = n− 1
2 = p. Thus we want to show:

(i) ∀0 ≤ k < p : k2 − k(2p+ 1) ≥ −p(p+1), and

(ii) ∀p < k ≤ 2p+ 1 : k2 − k(2p+ 1) ≥ −p(p+1).

For (i), let us prove by induction on p.

Base case p = 1

∀0 ≤ k < 1 : k2 − 3k ≥ −2.

(k = 0) ⇒ 02 − 3 · 0 = 0 ≥ −2.

Induction step Assume ∀0 ≤ k < p : k2 − k(2p + 1) = k2 − 2kp − k ≥ −p(p+1). We

want to show that ∀0 ≤ k < p+ 1 : k2 − k(2p+ 3) ≥ −p2 − 3p− 2.

k2 − k(2p+ 3) = k2 − 2kp− 3k

≥ −p2 − p− 2k (by I.H)

≥ −p2 − 3p− 1. (0 ≤ k < p+ 1)

For (ii), and assuming that f ′(k) = k2 − 2kp− k, we want to show that

∀p < k ≤ 2p+ 1 : f ′(k) ≥ −p(p+1).

We have already proved (i), that states

f ′(0) ≥ −p(p+1), f ′(1) ≥ −p(p+1), . . . , f ′(p−1) ≥ −p(p+1). (B.6)

Using Lemma 4.2.2, we can rewrite Equation (B.6) as

f ′(2p+1) ≥ −p(p+1), f ′(2p) ≥ −p(p+1), . . . , f ′(p+2) ≥ −p(p+1). (B.7)

Also note that f ′(p+1) = −p(p+1) ≥ −p(p+1). Thus we are saying that

∀p < k ≤ 2p+ 1 : f ′(k) ≥ −p(p+1),
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which was exactly what we wanted to prove. Therefore, proving (i) and (ii), we have

shown that

min
0≤k≤n

(
k2 − kn

)
= −(n2 − 1)

4
,

which implies

min
0≤k≤n

n∑
i=0

|k − i| = (n+ 1)2

4
.

Lemma 4.2.5 (Marginal on Y for πut). Given the prior distribution πut on the set of

secrets X ut and the channel Sut, the probability of a sample’s histogram y ∈Y being the

output is

Pr[y] =
1

m+ 1
. (4.35)

Proof.

Pr[y] =
∑
p∈X

Pr[p]Pr[y|p] (B.8)

=
∑

p∈Xut

Sut
p,y

(n+ 1)
(

n
na(p)

) (Def. of πut and Sut)

=
1

n+ 1

∑
p∈Xut:

na(p1...m)=y

(
n

na(p)

)−1

(Def. of Sut)

We need to count how many secrets p∈X ut satisfy the restriction na(p1...m) = y. In

the first m elements of x we have y a’s, so
(
m
y

)
different combinations. The other n−m

people can have any value (a or b), so we say that there are y′ a’s in pm+1...n, such that

y′ goes from 0 to n−m, thus
(
n−m
y′

)
different combinations. Finally, na(p1...m) = y and

na(pm+1...n) = y′ implies na(p) = y + y′.

=
1

n+ 1

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

By Lemma 4.1.1:

=
1

n+ 1
· n+ 1

m+ 1

=
1

m+ 1
.

Lemma 4.2.6 (Utility loss for a specific output y). Let πut be a prior distribution on

the set of secrets X ut, g be the gain function for attribute inference attack and Sut be
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the channel. Given that the adversary observed some output y, the posterior vulnerability

given y is

Uℓ(δ
y,ut) =

m+ 1

n(n+ 1)
min
0≤k≤n

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

· |k − y − y′| .

where δy,ut ∈DX ut is the inner distribution when πut is the prior distribution and y is

observed (i.e., Pr[X|Y = y]).

Proof.

Uℓ(δ
y,ut) = min

w∈W

∑
p∈Xut

Pr[(p, t)|y] · ℓ(w, p)

Baye’s theorem:

= min
w∈W

∑
p∈Xut

Pr[p]Pr[y|p]
Pr[y]

· ℓ(w, p)

Def. of πut, Sut, ℓ and by Lemma 4.2.5.

= min
w∈W

∑
p∈Xut

(m+ 1)Sut
p,y

(n+ 1)
(

n
na(p)

) · ∣∣∣∣w − na(p)

n

∣∣∣∣
Definition of Sut:

=
m+ 1

n+ 1
min
w∈W

∑
p∈Xut:

na(p1...m)=y

(
n

na(p)

)−1

·
∣∣∣∣w − na(p)

n

∣∣∣∣
We need to count how many secrets p∈X ut satisfy the restriction na(p1...m) = y. In

the first m elements of x we have y a’s, so
(
m
y

)
different combinations. The other n−m

people can have any value (a or b), so we say that there are y′ a’s in pm+1...n, such that

y′ goes from 0 to n−m, thus
(
n−m
y′

)
different combinations. Finally, na(p1...m) = y and

na(pm+1...n) = y′ implies na(p) = y + y′.

=
m+ 1

n+ 1
min
w∈W

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

·
∣∣∣∣w − y + y′

n

∣∣∣∣
The set of actions W = {0/n, . . . , n/n}, but we can rewrite it in terms of an integer 0 ≤
k ≤ n such that W = {k/n | 0 ≤ k ≤ n} and rewrite min

w∈W
in terms of k:

=
m+ 1

n+ 1
min
0≤k≤n

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

·
∣∣∣∣kn − y + y′

n

∣∣∣∣
Because n is constant:

=
m+ 1

n(n+ 1)
min
0≤k≤n

n−m∑
y′=0

(
m

y

)(
n−m

y′

)(
n

y + y′

)−1

· |k − y − y′| .
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Lemma 4.2.7 (Marginal on Y for π̂ut). Given the set of secrets X ut, the prior π̂ut, the

loss function ℓ and channel Sut, we have that the marginal distribution on outputs Y is

Pr[y] =

(
m

y

)
2−m . (4.37)

Proof.

Pr[y] =
∑

p∈Xut

Pr[p]Pr[y|p]

Def. of π̂ut
(p,t) and Sut

: =
1

2n

∑
p∈Xut

Sut
p,y

=
1

2n

∑
p∈Xut:

na(p1...m)=y

1

We need to count how many secrets p∈X ut satisfy the restriction na(p1...m) = y. In the

first m elements of x we have y a’s, so
(
m
y

)
different combinations. The other n−m people

can have any value (a or b), so we say that there are y′ a’s in pm+1...n, such that y′ goes

from 0 to n−m, thus
(
n−m
y′

)
different combinations.

=

(
m
y

)
2n

n−m∑
y′=0

(
n−m

y′

)

=

(
m
y

)
2n−m

2n
=

(
m

y

)
2−m .

Lemma 4.2.8 (Utility loss for a specific output y). Given the set of secrets X ut, the prior

π̂ut, the loss function ℓ and channel Sut, and given that the adversary observed the output

y, the posterior vulnerability given this observation is

Uℓ(δ̂
y,ut) =

1

n2n−m
min
0≤k≤n

n−m∑
y′=0

(
n−m

y′

)
|k − y − y′| ,

where δ̂y,ut ∈DX ut is the inner distribution when π̂ut is the prior distribution and y is

observed (i.e., Pr[X|Y = y]).

Proof.

Uℓ(δ̂
y,ut) = min

w∈W

∑
p∈Xut

Pr[(p, t)|y] · ℓ(w, p)

Bayes’ theorem:

= min
w∈W

∑
p∈Xut

Pr[p]Pr[y|p]
Pr[y]

· ℓ(w, p)
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Definition of π̂ut, Sut, ℓ and by Lemma 4.2.7:

= min
w∈W

∑
p∈Xut

2−n · Sut
p,y(

m
y

)
2−m

·
∣∣∣∣w − na(p)

n

∣∣∣∣
=

2m(
m
y

)
2n

min
w∈W

∑
p∈Xut:

na(p1...m)=y

∣∣∣∣w − na(p)

n

∣∣∣∣
We need to count how many secrets p∈X ut satisfy the restriction na(p1...m) = y. In

the first m elements of x we have y a’s, so
(
m
y

)
different combinations. The other n−m

people can have any value (a or b), so we say that there are y′ a’s in pm+1...n, such that

y′ goes from 0 to n−m, thus
(
n−m
y′

)
different combinations. Finally, na(p1...m) = y and

na(pm+1...n) = y′ implies na(p) = y + y′.

=
2m(
m
y

)
2n

min
w∈W

n−m∑
y′=0

(
m

y

)(
n−m

y′

) ∣∣∣∣w − y + y′

n

∣∣∣∣
Following the definition of W , we can replace min

w∈W
by min

0≤k≤n
and rewrite each action w as

k/n.

=
1

2n−m
· min
0≤k≤n

n−m∑
y′=0

(
n−m

y′

) ∣∣∣∣kn − y + y′

n

∣∣∣∣
=

1

n2n−m
· min
0≤k≤n

n−m∑
y′=0

(
n−m

y′

)
|k − y − y′| .
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