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A B S T R A C T   

Background: Davilla elliptica A. St.-Hil, also known as “lixeirinha or sambaibinha” is a shrub belonging to the 
Dilleniaceae family that occurs naturally in the Brazilian savannah (Cerrado). Research studies have shown 
evidence of its gastroprotective effect, as well as its benefits as an anti-nociceptive, anti-inflammatory, and 
antioxidant. However, there are no studies testing the potential effects of D. elliptica on treating metabolic 
parameters and obesity. 
Purpose: The aim of the present study was to investigate D. elliptica effects on hepatic steatosis induced by a high- 
fat/high-sugar diet. 
Methods: Animal experimentation was performed using male Swiss mice divided into four groups: ST (standard 
control), HLHS (obese control), HLHS+EAF (ethyl-acetate fraction), and HLHS+PL (leaf powder). The groups 
were treated for four weeks with 0.26 mg/kg/body weight. 
Results: The main findings of the present study showed that D. elliptica reduced hepatic lipid deposition, body 
weight, triglycerides, and total cholesterol levels. Gene expression analysis showed that GPX4 and PPARγ mRNA 
were significantly suppressed in HLHS + EAF mice livers. 
Conclusion: The present study contributes to elucidating the D. elliptica metabolic role in decreasing GPX4 and 
PPARγ expression in the HLHS group.   

Introduction 

Obesity is defined by excessive fat storage and frequently correlated 
with an imbalance between energy intake and energy expenditure 
(Faria et al., 2012). The excessive adipose cells produce triglyceride 
deregulation, which is commonly associated with 
lipodystrophy-inducing fat-liver deposition (Bray et al., 2017; Kachur 
et al., 2017). The prevalence of non-alcoholic fatty liver diseases 

(NAFLD) /steatosis is directly allied with obesity existing in 50% to 90% 
of overweight individuals, varying between obesity degrees: present in 
65% of those with grade I-II obesity (BMI = 30–39.9 kg / m2) and in 85% 
of those with grade III obesity (BMI = 40–59 kg / m2) (Divella et al., 
2019; Piche et al., 2020). 

NAFLD development is linked with imbalances in the fatty acid up
take and de novo synthesis augmenting lipid oxidation and secretion. 
The excessive circulating triglycerides are deposited in hepatocyte 
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cytoplasm (Birkenfeld and Shulman, 2014; Musso et al., 2009; Vascon
cellos et al., 2016). Liver steatosis occurs in conditions of increased 
lipogenesis, mitochondrial ß-oxidation, or the decreased ability of the 
liver to export lipids with high oxidative stress levels, which can induce 
steatohepatitis (Lee et al., 2010; Polyzos et al., 2019). 

Recent studies have shown that endemic species of the Brazilian 
savanna (Cerrado) may exert positive effects on obesity treatment 
(Guimaraesa et al., 2021; Ribeiro et al., 2021). Davilla elliptica (Dille
niaceae) A. St.-Hil, also popularly known as “lixeirinha”, “sambaibinha”, 
“muricizinho”, “cipó-caboclo” or “cipó-de-carijó” (Rodrigues et al., 
2002; Rodrigues and Carvalho, 2001; Soares et al., 2005), is a native 
species of the Brazilian savanna occurring in the Pandeiros river basin 
and presenting shrub habits and branched sub-bushes (Jácome et al., 
2010). This plant presents in its chemical composition a wide diversity 
of secondary metabolic substances such as flavonoids, saponins, ste
roids, tannins, coumarins, and triterpenoids. These bioactive com
pounds have anti-inflammatory, antioxidant, antitumoral, 
anti-nociceptive, anti-microbial, anti-mutagenic, and gastroprotective 
activities (Carlos et al., 2005; Sousa et al., 2020a). However, there is a 
lack of studies showing D. elliptica molecular mechanisms and meta
bolic effects. Therefore, the aim of the present study is to investigate the 
D. elliptica effects on treating hepatic steatosis and metabolic parame
ters on high-fat-fed mice. 

Materials and methods 

Plant material and extract preparation 

Davilla elliptica St.-Hil leaves were harvested during winter from 
July to August of 2018 in the municipality of Bonito de Minas – Minas 
Gerais state, Brazil (15◦13′31.37 "S and 44◦55′1.52′′ W). Harvesting was 
previously authorized by license number 66,693–1 (SISBIO/ IBAMA) 
and registered under Protocol No. 00000.024121/0120-18 at SisGen 
(National System for Management of Genetic Heritage and Traditional 
Knowledge Associated). Herbarium specimens of D. elliptica may be 
found in the Herbarium of the State University of Montes Claros, under 
registry No. 6773. The scientific name and botanical description were 
validated by the following website: www.theplantlist.org. 

After harvesting, D. elliptica leaves were washed thoroughly in 
water, dried at 38 ◦C (±2) in a drying stove with air circulation (New 
Ethics), pulverized in a Willey-type mill, and kept under refrigeration 
(5 ◦C). The leaves were prepared according to Rotta and collaborators 
(Rotta et al., 2008). The plant material that was pulverized was condi
tioned in the proportion of 10 mL of absolute ethanol for each gram of 
plant powder. The mixture was stored for one week, and then it was 
filtered and placed in a drying stove at 35 ± 2 ◦C. After drying the sol
vent, the samples were stored in the refrigerator at 10 ◦C. For the frac
tionation of the flavonoid extract, the samples obtained in the previous 
procedure were resuspended in a mixture of ethanol, composed as fol
lows: water (7:3), in the ratio of 3 g of extract to 250 mL of 70% ethanol. 
At the first wash of the mixture, 200 mL of hexane PA were added three 
times. A volume of 200 mL ethyl acetate was added three times to the 
first wash residue. Partitions containing the compounds of interest 
ethyl-acetate fraction (EAF) were brought to a greenhouse and kept 
under air circulation at 38 ◦C until the solvents dried (Andreo and Jorge, 
2006). The percent yield was calculated using the following formula:% 
yield = weight of the extract obtained/weight of powdered sample 
multiplied by 100 (Bhat et al., 2016). 

Qualitative phytochemical characterization 

Qualitative tests were performed using dry leaves to detect the 
presence of tannins, flavonoids, saponins, alkaloids, and terpenes. 
Tannins were evaluated by a reaction with 2% ferric chloride and a 
reaction with neutral lead acetate, flavonoids by the Shinoda reagent, 
saponins by the persistent foam test, and alkaloids by a reaction with 

reagents by Mayer, Bouchadart, Bertrand, and Dragendorf and a reac
tion with 2% ferric chloride. Finally, a test with sodium hydroxide was 
used for the detection of phenolic compounds (Royo et al., 2015) 

Animals 

The experiment was conducted with 24 Swiss (Mus musculus) male 
mice (six weeks old) obtained from the State Federal University of Minas 
Gerais. The mice were randomly divided into four groups (n = 6 per 
treatment) after an adjustment period of seven days. The animals were 
housed in cages exposed to 12 h light-dark cycles (lights from 12 a.m. to 
12 p.m.) at 25.0 ± 2.0 ◦C. The Ethics Committee on Animal Experi
mentation and Welfare of the State University of Montes Claros, Brazil 
(process No. 164/2018) approved this study. The experiments followed 
the ARRIVE guidelines. 

Diets and experimental design 

The sample size consisted of the number of animals needed to ach
ieve statistical significance, that is, p<0.05 between treatment groups. 
This number was based on data described in the literature, and 
considering population variability (for example, standard deviation) 
around 20% and alpha (type I error) and beta (type II error) values of 5% 
and 80% respectively. Therefore, the sample used was the “n” sample to 
reach statistical significance of p<0.05 with a coefficient of variation 
(CV) of 20% n = 6 animals per group (Damy et al., 2010; Scheibe, 2008). 

As there is individual variation even in inbred strains of mice, it is 
important to collect baseline data on the mice before experimenting. We 
excluded the male mice with body weights below 15 g or over 25 g at six 
weeks of age. Mice that looked ill or had pelage diseases were also 
excluded from the study (Wang and Liao, 2012). 

The obesity induction was carried out for three months. Diets con
sisted of a standard (ST) diet (Purina - Labina ®) composed of 50.3% 
carbohydrates, 41.9% protein, and 7.8% lipids, representing a total of 
2.18 kcal per 1 g of diet and a high-lard/high-sugar diet (HLHS) diet 
composed of 36.59% carbohydrates, 12.88% protein, and 50.53% lipids, 
presenting a total of 5.1 kcal per 1 g of diet (Guimaraes et al., 2020). All 
components of the high-fat diet were purchased from Rhoster LTDA (São 
Paulo, Brazil). The experimental design was carried out as follows: ST 
diet + vehicle; HLHS diet + vehicle; HLHS + EAF 0, 26 mg kg/ body 
weight (Azevedo Ade et al., 2015); and HLHS diet + powder of D. 
elliptica leaves (PL) 0, 26 mg kg/body weight. The animals were treated 
daily over four weeks with food and water offered ad libitum. Food 
intake was measured twice a week throughout the treatment to ensure 
food efficiency (food intake/body weight). The energy intake was 
calculated through analysis of grams ingested multiplied by the Kcal/g 
value of the respective diets – 5.1 Kcal/g for the high-lard/high-sugar 
diet (HLHS) and 2.18 Kcal/g for the standard diet (ST). Adiposity was 
calculated as the sum of white adipose tissues: mesenteric, epididymal, 
retroperitoneal, and subcutaneous. At the end of the experiment, the 
animals were fasted overnight (12 h) and euthanized by decapitation. 
Samples were collected, weighed, and stored immediately in liquid ni
trogen at - 80 ◦C for further analysis. 

Histological analysis 

Liver samples were fixed in formaldehyde solution (10%), embedded 
in paraffin, and sectioned at 5 µm. Slides were stained with hematoxylin 
and eosin (HE), and images were photographed using an Olympus 
FSX100® microscope (Tokyo, Japan) under the 20 × optical magnifi
cation. For each slide, images from the three most affected fields (x20 
objective lenses) were considered. Biopsies analyses were classified ac
cording to Hübscher (2006) depending on fat accumulation (Hubscher, 
2006). 
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Hepatic lipid content determination 

Lipids were extracted from 200 mg of liver tissues using a 
chloroform-methanol extraction protocol (Bligh and Dyer, 1959) with 
slight modifications. Briefly, the liver tissue (200 mg) was homogenized 
with 200 µl chloroform and 400 µl of methanol and vortexed. Chloro
form (400 µl) and ultrapure water (400 µl) were added and vortexed 
again. The homogenate was centrifuged at 1000 rpm for 5 min. The 
lower phase (chloroform) was collected and used for lipid measure
ments. Triglycerides and total cholesterol levels were quantified ac
cording to the manufacturer’s instructions (Labtest Diagnóstica, Brazil) 
and analyzed on a spectrophotometer (490 nm, Biotek Instruments, 
USA). 

Gene expression analysis 

Total RNA was isolated from liver tissues using TRIzol reagent 
(Invitrogen Corp. ®, San Diego, California, USA) and treated with 
DNAse (Promega ®). Reverse transcription was carried out with M-MLV 
(Promega ®) using random hexamer primers. The expression level of the 
target genes Glutathione Peroxidase 4 (GPX4), Glutathione Peroxidase 1 
(GPX1), Peroxisome proliferator-activated receptor y (PPARy), was 
determined by quantitative real -time reverse transcriptase PCR (qRT- 
PCR) using SYBR Green reagent® (Applied Biosystems®) on 384-well 
QuantStudio 6 flex equipment (Applied Biosystems®). Gene expres
sion was normalized to the endogenous glyceraldehyde 3- phosphate 
dehydrogenase (GAPDH) and the relative expression was estimated 
using the 2∆∆CT method (Livak and Schmittgen, 2001) (Table 1). 

Statistical analyzes 

All data were analyzed by Graph Pad Prism software (version 5.0®, 
San Diego, USA) and subjected to specific tests with 95% reliability 
(p<0.05). Data were expressed as the mean ± SEM. The statistical sig
nificance of differences in mean values between the groups of mice was 
assessed by two-way ANOVA, with Tukey’s post-test for multiple 
comparisons. 

Results 

Phytochemical screening of D. elliptica leaves revealed an abundance of 
hydrolyzable tannins, as well as alkaloid and flavonoid compounds 

The extract yield was measured and presented as a percent value in 
hydroalcoholic extract. The yield was 28.94%. A low amount of extract 
yield was obtained for ethyl acetate fraction (2.243%). In the present 
investigation, the phytochemical analysis of D. elliptica leaves revealed 
the presence of important phytochemicals, including flavonoids, alka
loids, phenolics, saponins, and tannins (Table 2). 

Energy intake, food intake and body weight 

Energy intake was similar between treatments subjected to the same 
type of diet, with statistical differences between the ST control group 
and the obese group HLHS (p <0.001). The HLHS + PL group showed a 
reduction in energy consumption (Kcal) compared to the HLHS control 
(p < 0.01). The statistical analysis reported a decrease in Kcal 

consumption between the treatment groups HLHS + EAF and HLHS + PL 
(p <0.01), suggesting that the presence of polyphenols in the ethyl ac
etate fraction was responsible for this effect. In addition, food intake was 
comparable only between the control ST and the HLHS groups (p 
<0.001), suggesting that the energy intake was not a major cause of 
decreased adiposity, as reported in the treatment group HLHS + EAF. No 
statistical differences were observed in the liver weights of the animals 
(Table 3). 

The adiposity was higher in the HLHS compared to ST group (p 
<0.001), as expected. In addition, a decrease in adiposity was found in 
obese mice treated with an EAF fraction of D. elliptica compared to the 
HLHS control group (p<0.01). Statistical differences were also observed 
between treatment groups HLHS + EAF and HLHS + PL (p<0.01) 
(Fig. 1A). Body weight significantly decreased in the HLHS + EAF and 
HLHS + PL groups when compared to the HLHS control group (p 
<0.001). There were also differences between treatment groups HLHS 
+ EAF and HLHS + PL (p <0.001) (Fig. 1B). 

Hepatic tissue morphologic analysis 

The hepatic fat deposition was measured by histopathological anal
ysis using hematoxylin and eosin (H&E). Accordingly, HLHS treatment 
for three months induced hepatocyte diameter increases with large lipid 
droplets diffusely present, phenomena notably attenuated by adminis
trations of fraction and leaf of D. elliptica. Statistical differences were 
observed between groups based on hepatocyte diameter, with a signif
icant decrease in steatotic area between obese groups treated with 
fraction (201.7 ± 78.06 µm) and leaf powder (335.3 ± 154.0 µm) 
compared to the obese control group (1629 ± 230.4 µm) as well as a 

Table 1 
. Primers sequences used for Real -time PCR analysis.  

Gene NCBI code Forward Reverse 

GAPDH NM_008084 AAGAAGGTGGTGAAGCAGGCATC CGAAGGTGGAAGAGTGGGAGTTG 
GPX1 NM_008160 TGCAATCAGTTCGGACACCAGGAG AGCCTTCTCACCATTCACTTCGC 
GPX4 NM_008162 TGTGTGCATCCCGCGATGATTG CCTTGGCTGAGAATTCGTGCATGG 
PPARy NM_011146 AGGAAAGACAACGGACAAATCACC ATTCGGATGGCCACCTCTTTGC  

Table 2 
. Phytochemical screening of leaves of Davilla elliptica.  

Class Test Observation Leaf 

Tannins Ferric chloride Blue color +++

Copper acetate Precipitate +++

Neutral lead acetate Precipitate ++

Flavonoids Iron chloride Blue color ++

Sodium hydroxide Yellow color +

Saponins Persistent foam Persistent foam ++

Alkaloids Mayer Precipitate ++

Bouchadart Precipitate +

Bertrand Precipitate +++

Dragendorff Precipitate ++

Phenolic compounds Iron chloride Green color +

Sodium hydroxide Brownish color ++

Table 3 
. Energy intake, food intake, body weight, and selected organs mass.  

Groups ST HLHS HLHS +EAF HLHS +PL 

Energy 
Intake 

0.3090 ±
0.008 

0.381 ±
0.015 

0.3750 ±
0.012 

0.320 ±
0.009 

Food Intake 0.143 ± 0.004 0.070 ±
0.003 

0.075 ± 0.003 0.065 ±
0.002 

Liver 0.043 ± 0.002 0.040 ±
0.003 

0.041 ± 0.001 0.037 ±
0.002 

Data are mean ± SEM (standard error). Number of mice: N (6) of groups. Ab
breviations: ST, standard; HLHS, High- lard/ High-sugar; HLHS +EAF, fraction 
of ethyl acetate; HLHS +PL, leaf pulverized. 
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reduction in lipid droplets in the livers of ST animals compared to HLHS 
(p<0.001) (Fig. 2A-B). 

Tissue dosage of triglycerides and cholesterol 

High-fat diets cause the accumulation of lipids in the hepatocyte 
cytosol. This change was confirmed by a hepatic tissue dosage of tri
glycerides and cholesterol. In mice fed with HLHS, EAF fraction and PL 
of D. elliptica treatments reduced the content of triglycerides and 
cholesterol compared to the control group. A significant reduction was 
observed of hepatic triglyceride levels in the HLHS + EAF (270. 90 ±
24.35 mg/g) (p < 0.001) and HLHS + PL (334.80 ± 32.05 mg/g) (p <
0.01) treatment groups compared to the HLHS group (489.00 ± 16.13 
mg/g). There was a significant decrease in cholesterol showing a sta
tistical association with HLHS + EAF (220.30 ± 29.74 mg/g) (p < 0.05) 
compared to HLHS (297. 30 ± 12.39 mg/g) and with HLHS + PL 
(335.80 ± 6.583 mg/g) compared to HLHS + EAF (220.30 ± 29.74 mg/ 
g) (p < 0.01) (Fig. 3A-B). 

Effects of D. elliptica on expressions of PPARγ and GPX4 signaling 
pathway-related genes in mRNA expression 

Previous research demonstrated that the PPARγ signaling pathway is 
related to lipid metabolism. An analysis of mRNA expression showed 
significantly lower levels of expression of PPARγ/ GAPDH in group 

HLHS verses HLHS + EAF (0.4875± 0.1358 AU) (p < 0.01) and in group 
HLHS verses HLHS + PL (0.8186± 0.2063 AU) (p < 0.01). In addition, 
we observed that GPx4 / GAPDH decreased in groups HLHS verses 
HLHS + EAF (0.6518 ± 0.0757 AU) (p < 0.05) and HLHS verses HLHS +
PL (0.4943± 0.0767 AU) (p < 0.01) while no statistical difference was 
observed for the expression of GPx1 between the groups (Fig. 4A-C). 

Discussion 

The present study demonstrates for the first time the anti-obesogenic 
effects of D. elliptica and its ability to improve metabolically associated 
disorders. The main results showed a reduced adiposity followed by 
improved dyslipidemia (diminished cholesterol and triglycerides) and 
reduced hepatic lipid deposition (hepatic steatosis) after leaf powder or 
extract administration. 

Previously published studies described the D. elliptica chromato
graphic profile under certified chromatograph standards technics or 
even using magnetic resonance. The presence of compounds such as 
epicatechin, gallic acid, kaempferol, quercetin derivatives, myricetin 
derivatives, and routine were corroborated (Kushima et al., 2009; 
Rodrigues et al., 2008). Many other less concentrated bioactive sub
stances are also present in the crude extract, producing synergisms that 
may provide several benefits through combination. The Cerrado (Bra
zilian savanna) plants have being described as potentially effective for 
treating obesity; recently, Freitas et al. demonstrated that Acosmium 

Fig. 1. Adiposity (A) and Body weight (B). Effects of oral administration of D. elliptica in mice fed standard or high-fat diet. Values shown are mean ± SEM (n = 06). 
Significant differences, using one-way ANOVA and Tukey’s post-test, are indicated by asterisks * (p < 0.05); ** (p < 0.01); *** (p < 0.001). 

Fig. 2. Hematoxylin and eosin (HE). Staining in mice-fed standard diet (ST), High- lard/ High-sugar (HLHS), HLHS plus ethyl acetate fraction (HLHS + EA), HLHS 
plus pulverized leaves (HLHS + PL). Scale bar, 100 μm. Values shown are mean ± SEM (n = 06). Significant differences, using one-way ANOVA and Tukey’s post-test, 
are indicated by asterisks * (p < 0.05); ** (p < 0.01); *** (p < 0.001). 
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dasycarpum bark improved lipid profile, weight loss, and adiposity in 
animals with diet-induced obesity (Freitas et al., 2021). 

The main compounds found in D. elliptica were flavonoids, myr
icetin, and quercetin as isolated from the leaves (Bisoet al., 2010; 
Rinaldo et al., 2006). These compounds were previously described as 
able to reduce the body weight of obese animals without altering food 
intake (Chang et al., 2012). The myricetin-3-O-β-D-galactopyranoside 
presence significantly reduced adiposity in mice fed a high-fat diet 
without differences reported in food consumption (Kim et al., 2017). 
Another well-described compound isolated from D. elliptica is gallic 
acid, which is able to reduce body weight and decrease adiposity in 
animals fed high-fat diets (Paraisoet al., 2019; Sousa et al., 2020b). 

Xia et al. confirmed that myricetin significantly reduces high-fat diet- 
induced liver lipid accumulation by normalizing circulating tri
glycerides and cholesterol. Taken together, these results suggest that 
myricetin plays a positive role in hepatic steatosis (Xia et al., 2016). In 
the same context, animals treated with quercetin have shown decreases 
in plasma triglycerides and cholesterol levels with reduced body weight 
along with decreased liver lipid accumulation (Marcolin et al., 2013; 
Tan et al., 2021). The present study found similar results for both leaf 
powder and extract. 

Corroborating these findings, Bonacorsi et al. detected an antioxi
dant effect (above 80%) of the methanol extract of D. elliptica (Bona
corsi et al., 2013). Interestingly, corroborating our results, the gene 
expression of glutathione peroxidases (GPXs) was decreased in the 
mouse livers after D. elliptica fraction treatment. GPXs enzymes are 
responsible for neutralizing simple and complex lipid hydroperoxides, 

and GPX4 is described as neutralizing cholesterol hydroperoxides 
(Maiorino et al., 1991). Studies have shown that GPX4 variants result in 
decreased content and catalytic activity associated with obesity 
(Ruperez et al., 2014), cardiovascular disease (Crosley et al., 2013; 
Polonikov et al., 2012), and inflammation (Du et al., 2012). In the same 
context, PPARγ is considered a transcription factor of lipid metabolism 
(Sekulic-Jablanovic et al., 2017). In addition to regulating metabolism 
in hepatocytes, PPARγ is an inducer of free fatty acid (FFA) synthesis 
(Skat-Rordam et al., 2019). We also observed a reduced hepatic 
expression of PPARγ after plant fractions administration. 

According to our knowledge, this is the first study investigating the 
effects of leaf powder and polyphenol fraction of the hydroalcoholic 
extract of D. elliptica in obese mice. Nevertheless, our study has some 
limitations. First, we do not have detailed scientific composition data for 
the plant. Despite previous studies already having made descriptions, it 
is always relevant to corroborate anterior findings. Second, the number 
of animals used in this research was reduced, although it was still 
enough to show statistical differences between groups. According to the 
principle of the “Three Rs” of Russel and Burch (Russell and Burch, 
1959), the number of animals used in each experiment should be 
reduced to a minimum consistent with the achievement of the study’s 
scientific objectives in order to avoid unnecessary pain and suffering to 
the animals. Third, the analysis of the chromatographic profile of the 
species under study was not performed by HPLC or UCPL. However, a 
previous study described the chromatographic profile of the Davilla 
elliptica species (Kushima et al., 2009; Rodrigues et al., 2008). We un
derstand that there may exist some variation in the amounts of 

Fig. 3. Hepatic Lipid Content Determination. Effects of oral administration of D. elliptica in triglycerides and total cholesterol in mice fed standard or high-fat diet. 
Values shown are mean ± SEM (n = 06). Significant differences, using one-way ANOVA and Tukey’s post-test, are indicated by asterisks * (p < 0.05); ** (p < 0.01); 
*** (p < 0.001). 

Fig. 4. Gene expression. 4-week D. elliptica effects on PPARy, GPX1 and GPX4 expression in the liver tissue of high fat fed mice. (A) PPARy. (B) GPX1. (C) GPX4.  
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compounds due to region and seasonality, however, the presence of the 
main compounds (such as myricetin and quercetin) will be maintained. 

Conclusion 

In conclusion, the present results show that obese mice orally treated 
with D. elliptica leaf powder and polyphenol hydroalcoholic fraction 
show improved adiposity, reduced circulating lipids, and hepatic stea
tosis. These effects were associated with altered PPARγ and GPX4 gene 
expressions. These results point to a potential use of D. elliptica in the 
treatment of obesity and associated comorbidities; however, more 
studies are necessary to elucidate the main pathways and mechanisms 
by which this plant modulates the metabolism. 
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