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Resumo

Há atualmente diversas aplicações de simulações computacionais em estudos de sistemas
dinâmicos espaço-temporais, incluindo, por exemplo, em modelos epidemiológicos. Dentre
as estratégias capazes de reproduzir e predizer o futuro dos estados e comportamentos
dinâmicos, os autômatos celulares (em inglês, cellular automata - CAs) são frequentemente
aplicados na modelagem espaço-temporal. O conceito central de um típicoe bem definido
modelo CAs é o desenvolvimento de um conjunto de regras locais que descrevem os
estados futuros das células considerando as células vizinhas. O processo de construção
deste conjunto exige conhecimento técnico e anos de pesquisa científica. Técnicas baseadas
em aprendizado de máquina podem ser aplicadas para automatizá-lo, embora sejam
necessários algoritmos de otimização de hiperparâmetros. Nesse contexto, este trabalho
apresenta uma abordagem orientada a dados para definição de conjuntos de regras de
transição de CA, baseada exclusivamente em dados históricos de um determinado fenômeno
espaço-temporal. As regras locais do autômato são aprendidas e representadas usando o
método Multivariado Fuzzy Time Series (MFTS). O modelo MFTS é então integrado à
simulação do CA, funcionando de forma semelhante a um conjunto tradicional de regras.
A metodologia proposta foi testada em dois casos de estudo: Espalhamento Espacial da
Doença de Chagas e Dinâmica da Mudança do Uso e Cobertura do Solo em Delhi, na
Índia. Em ambos conjuntos de dados, verificou-se grande potencial no uso do modelo FTS
como estratégia de transição de estados em CA.

Palavras-chave: Fuzzy Times Series, Cellular Automata, Modelagem espaço-temporal, Uso
e Cobertura de Territórios, Modelagem dinâmica.



Abstract

There have been several applications of computer simulations in studies of spatio-temporal
dynamic systems, including epidemiological models. Among the strategies capable of
reproducing and predicting future states and behaviors over time, Cellular Automata
(CAs) are often applied in geospatial environmental modeling. The core concept of a typical
and well-defined CAs model is the development of local rules set that describe the future
cell states considering the neighboring cells. The process of building this set demands
technical knowledge and years of scientific research. Machine learning-based techniques can
be applied in order to automate it, although hyper-parameter optimization algorithms are
required. Therefore, this work presents a data-driven approach for CA transitional rules set
definition, based exclusively on historical data of a given spatio-temporal phenomenon. The
local rules of the automaton are learned and represented using a Multivariate Fuzzy Time
Series (MVFTS) method. The MVFTS model is then integrated into the CA simulation,
working similarly to a traditional set of CA rules. The proposed methodology was tested
using two study cases: Spatial Spread of Chagas Disease and Land Cover/Use Change in
Delhi, India. In both sets of data, there was great potential for using the FTS model as a
state transition strategy in CA.

Keywords: Fuzzy Times Series, Cellular Automata, Spatio-temporal modeling, Land Cover
Land Usage, Dynamics modeling.
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Chapter 1

Introduction

Computer simulations have been widely used to reproduce dynamical systems, in
order to analyze, evaluate and predict real-world spatio-temporal scenarios Parker et al.
[2003]. The knowledge extracted from those models can be used as a tool in the decision-
making process, especially when planning effective and efficient public policies Turner Ii
et al. [1995]. Global environmental challenges, such as deforestation, rapid population
growth, pandemics, and global warming are examples of those complex spatio-temporal
systems.

Building a modeling strategy for a spatio-temporal dynamical system demands
identifying relevant human and natural factors, that affect the behavior in space and
reproduce future spatial events. In wildfires, for instance, wind speed, type of forest,
distance to water, and urban area might be relevant aspects to simulate the propagation
of the fire over time under a region Zheng et al. [2017]. The complexity of a model is
associated with the number of interactions and correlations the system variables may have
Song [1999]. By changing those variables and factors it is also possible to measure and
analyze public policy and its influence and social and economic impacts over a period of
time under specific conditions Carneiro [2006]. For example, in compartmental models
in epidemiology, simulations are made in order to evaluate the impacts of exposure and
propagation of the disease, considering infection rates and an initial state. Those models
are known as Susceptible-Infected-Recovered (SIR) Hethcote [2000], and can be used
as tools to study lockdown and interventions, as recently seen during the Coronavirus
Disease-2019 (COVID-19) pandemic research, in many regions of the world Talukder [2020],
Din and Algehyne [2021], Brugnano et al. [2021].

Capturing spatial interactions and their dynamical patterns, involves dealing with
multiple variables and parameters, as already mentioned. In this sense, it is relevant to note
that the advances in data storage capacity along with the improvement of processing and
analysis techniques play a crucial role in this field. In terms of Land Use/Cover Change
(LUCC) simulations, as Diniz [2021] describes, spatio-temporal data can be obtained
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from Geographic Information System (GIS), satellite or unmanned aerial vehicle spatial
images, on-site sensors measurements, and social-economics information. Thus, LUCC
modeling requires techniques capable to deal with different types of data, as recent Machine
learning-based approaches Wang et al. [2022]. An accurate knowledge extraction process
has the potential to assist in the categorization and forecasting of different events.

In the past decades, as reviewed in Ghosh et al. [2017], cellular automata (CAs)
and Markov chain models represent two outstanding methods in geographic and spatial
applications. A cellular automaton (CA) can be defined as a mathematical abstraction of
a dynamical system in a discrete world. It consists of a regular lattice of machines and a
finite set of discrete states which can change over time conditioned by a set of local rules or
transitional rules. Each cell in the CA lattice is updated locally leading to complex global
behaviors Toffoli and Margolus [1987]. In other words, the CA computational model allows
the simulation of complex macroscopic dynamical systems based on local interactions,
this being one of the key reasons to be chosen in many spatio-temporal applications
and more specifically in LUCC models. The CAs strategy aims to be an alternative to
differential equations, which usually is a highly time-consuming path Chopard and Droz
[1998]. CA-based models are found in a large variety of study areas, such as deforestation
process Carneiro [2006], urban sprawl Aburas et al. [2016] and spread of diseases such as
the pandemic of COVID-19 Schimit [2021], Lima and Balbi [2022], Chagas Slimi et al.
[2009] and Dengue fever Áurea Tonetti Massahud [2011]. Furthermore, CAs are flexible and
often integrated into systems, composing hybrid and multi-agent system models Parker
et al. [2003]. Fuzzy theory by Zadeh [1965] was firstly integrated by Cattaneo et al. [1997]
defining fuzzy states, instead of a finite Boolean configuration, in the transitional function
obtaining complex dynamics of the shifting rules. Since then, many researchers have been
using the strategy, for example in epidemiological models Costa et al. [2013] or in studies
of neighboring cell interaction Basu and Basu [2008].

A central concept of a typical and well-defined CA model is building a proper set
of transition rules which describes the future cell states considering the neighboring cells
Kari [2005]. Defining this set of rules may require expert and technical knowledge and
years of scientific research which is time-consuming and it has a significant effort. Methods
have been proposed in order to overcome this issue by using Artificial Neural Networks
(ANN) and Data-mining techniques. Although the integration CA-ANNs strategy has
shown effective at simulating non-linear relations among features, it consists of a Black-box
method, it often demands hyper-parameters optimization, such as neurons configurations
in input, hidden and output layers, and it has faced issues dealing with time series images,
extremely common in LUCC modeling Wang et al. [2022], Qiang and Lam [2015]. The See5
system Data-mining tool was proposed by Li and Yeh [2004] to automatically generate
transition rules. It consists of a decision-tree learning algorithm, based on the optimization
of a gain function, able to deal with GIS data. The Overall accuracy obtained was on
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average 75%, and no fuzzy relations were covered in the study case.

As mentioned, data storage systems together with recent remote sensing technology
allow the composition of a large amount of time series information (Big Data) used as
input in data-driven models. More specifically, spatio-temporal forecasting represents a
class of methods in which nearby areas affect local changes over time Severiano et al.
[2021]. Traditional statistics are available for probabilistic and interval forecasting, as
instance Auto-Regressive Integrated Moving Average (ARIMA) Wabomba [2016], Bayesian
Structural Time Series (BSTS), k-Nearest Neighbors (k-NN), among others. Nevertheless,
Machine learning and soft computing methods offer golden tools to deal with spatial image
analysis challenges, using for example neural networks Pijanowski et al. [2002], Gharaibeh
et al. [2020].

In this context, the fuzzy time series (FTS) technique, primarily elaborated by
Song and Chissom [1993], builds a forecasting model based on a fuzzy representation of
conventional time series data. It is a data-driven method that allows high interpretability,
since it uses fuzzy rules given by IF-THEN statements, and flexibility, working on multiple
data types. FTS methods can consider monovariate or multivariate scenarios and weighted
or weightless systems. Selecting the appropriate feature is essential to build a well-defined
FTS model. Since its conceptualization, many improvements can be found, such as Trend
WFTS Cheng et al. [2006], Improved WFTS Ismail and Efendi [2011], Exponentially WFTS
Suhartono et al. [2011] and Probabilistic WFTS de Lima Silva et al. [2020]. In Severiano
et al. [2021], it was developed the Evolving Multivariate FTS (e-MVFTS) method which
associates spatio-temporal data with the FTS model in forecasting renewable energy,
although it was not applied to a cellular automaton representation. FTS applications were
employed in a myriad of studies such as seasonal time series Song [1999], stock index prices
Huarng and Yu [2005], electric load Efendi et al. [2015] and others Bose and Mali [2019].

Considering the exposed scenarios, a strategy is proposed to incorporate FTS
methods to learn dynamical patterns and generate the transitional rules of a given cellular
automaton, fully based on a historical dataset. Since it consists of a supervised learning
algorithm, it is divided into training and forecasting procedures. Essentially, a training
dataset is used to build the FTS model, and then it is applied to a cellular automaton
simulation, given a condition at time (t), predicting CA lattice scenario at (t+ 1). The
current study represents one of the first attempts in the literature to integrate fuzzy time
series and cellular automata (CA-FTS) techniques. As proof of concept, two study cases
were used for validation: an epidemiological model for Chagas disease spread and urban
sprawl LUCC model in Delhi, India. Evaluation metrics were used to compare the test data
and the output obtained from the CA-FTS model and it has shown high accuracy rates
for both cases, representing a great potential of the proposed methodology in CA-based
models.
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1.1 Objectives

The main goal of this work is to present a new approach for building a set of
transitional cellular automaton rules based on fuzzy time series methods. As exposed, local
rules definition in CA is not a trivial task, and, in this sense, the CA-FTS model is an
alternative to automatically define it from the historical data of a phenomenon, avoiding
the usage of formulation-tailored rules and calibrating specific parameters. Specific goals
can be described as:

• Study different approaches for cellular automaton modeling and hybrids methods
with Machine Learning techniques;

• Present and develop an alternative computational model strategy to incorporate a
FTS model, based on historical spatio-temporal data, to automatically determine
the transitional rules component in a deterministic cellular automaton simulation;

• Present the mathematical foundation of FTS methods which allows its integration
with CAs models;

• Apply the proposed methodology into study cases in order to demonstrate its
applicability and evaluate the selected evaluation metrics;

• Discuss the implications and analyze the output obtained from the CA-FTS models’
application and possible variations of its construction;

1.2 Dissertation Outline

The current work is organized as follows:

• Chapter 2 presents a theory overview of cellular automaton, fuzzy times series
methods, and related work detailed;

• Chapter 3 introduces the methodology used in order to achieve the specified goals.
The mathematical support of the CA-FTS integration is demonstrated and discussed;

• Chapter 4 described the details and the universe of both datasets used to validate
the proposed method;

• Chapter 5 presents the results and the evaluation metrics obtained from the com-
parison of test data and CA-FTS model output. Lastly, a discussion wraps up the
implications.

• Chapter 6 describes the main conclusions and a brief discussion about future work
paths are analyzed.
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Chapter 2

Theory Overview

2.1 Cellular automata

The computational model concept of cellular automaton (CA) was first initiated
by John Von Neumann, in 1947 Neumann and Burks [1966]. Neumann’s initial motivation
was to model the biological system and its ability to self-reproduce and self-repair and
apply similar properties to electronic circuits Chopard and Droz [1998]. The exhaustive
work dealing with mathematical formalism in continuous time and space was solved
following the suggestions of Stanislaw Ulam, adopting a discrete system composed of
interconnected finite-state lattice machines. In the proposal, each machine has a state that
can be changed according to the states of neighboring machines Kari [2005]. Thus, an
evolutionary system was developed, capable of replicating such states from a configuration
of an initial machine’s states and a set of rules for determining neighborhood states, in
discrete time and space. The importance of Neumann’s work relies on the idea
of a discrete and finite automaton model capable of building global complex
behaviors based on simple local rules set.

After the conceptualization, a variety of spatio-temporal problems were simulated
through cellular automata (CAs) models in order to understand the dynamics and the global
behavior of phenomena. In Conway [1970] was proposed a conventional two-dimensional
CA system method, known as the Game of Life, where the set of cells’ states was composed
of two possible elements: alive and dead. The system was based on very simple rules that
lead to a complex dynamical behavior over time Gardner [1970]. In the 1980s, Stephen
Wolfram studied one-dimensional CA rules and defined the concept of an elementary
cellular automaton, the simplest temporal evolution model capable to generate a complex
system Wolfram [1984]. His contribution was relevant once it proved that CAs models are
essential objects to consider for statistical mechanics studies.

CA-based modeling is considered an alternative to dealing with differential equa-
tions when simulating and studying dynamical systems, given its simplicity and inter-
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pretability Santé et al. [2010]. Furthermore, this class of models is very flexible, as it can
easily adapt to different types of real-world scenarios. In terms of the model configuration,
it has an open structure, allowing being used coupled with other methods Clarke et al.
[1997] Aburas et al. [2016]. These characteristics are relevant in terms of LUCC studies
because it usually requires integration with Geographical Information Systems (GIS)
type of data with different levels of spatial resolution. Although broadly used, one of the
challenges in LUCC CA-based modeling is the lack of not incorporating social-economic
and non-geospatial factors Sang et al. [2011] Deep and Saklani [2014].

In the following sections, the cellular automaton method is defined, and its different
types of structure and neighborhood configuration are presented. Then the transitional set
of rules is detailed with an illustration of a classic application of epidemiological models.
And finally the concept of boundary condition in CA computational simulation.

2.1.1 Definition

A cellular automaton is a modeling framework of dynamical processes, or a
mathematical abstraction of the real world in a discrete universe – time, space, and states.
It consists of a structure of spatially grouped cells, known as a lattice of cells, which evolve
from state to time. Cell states evolution is conditioned by a set of transition rules, without
a central processing unit. The cell future state at the time (t+1) is a function of the
previous states of the surrounded cells and its own at time (t) Chopard and Droz [1998],
Oliveira et al. [2001]. As described in Kari [2005], CA definition can be specified as:

1. A d-dimensional rectangular grid of squared cells, or lattice of cells, addressed by Zd.
Commonly cases are one-, two- and three-dimensional grids;

2. A finite state set S, mapping c : Zd → S at a given time specifying the state of all
cells. The set SZd defines all the possible configurations and is also known as C;

3. The discrete time step t defines an updating cycle of all the cells in the lattice,
accordingly to the states of the neighboring cells, the central cell, and a local rule.
In terms of real-world applications, for example, t can be considered a day, a month,
three months, a year, and so forth.

4. Neighborhood vector N definition, where N = (x⃗1, x⃗2, ..., x⃗n), for n distinct elements
of Zd. The neighbors of a cell at location x⃗ ∈ Zd are the cells at location x⃗+ x⃗i for
i = 1, 2, ..., n;

5. A function f : Sn → S, where n is the size of the neighborhood. The state at time
t, yc = f(y′1, y

′
2, ..., y

′
n), is the state of a cell c whose the n neighbors were at states

y′1, y
′
2, ..., y

′
n at time (t− 1). This transitional or update rule determines the global

dynamics of the CA.
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2.1.2 Structure and Neighborhood

The CA cells can be simulated considering different types of shapes. The group of
interconnected cells defines a lattice of a CA system. In terms of dimension, CA can vary
accordingly to the model of interest. Initially most of the work considered one-dimensional
(1D) and two-dimensional (2D) CAs, but they can also have three-dimensional (3D)
structures. Figure 1 presents possible configurations applicable to CA-based models.

Figure 1 – Different configurations of a CA

As mentioned in the definition, the future state of a cell is predicted by the current
cell state and its vicinity states. These nearby cells are called the neighborhood and they
can be modeled in a variety of sizes and ways. The size of a neighborhood, also known
as the radius (r ∈ N), is the distance from the central cell, and it is proportional to the
complexity of the model, in other words, the larger is the radius the higher is the CA
complexity Chopard and Droz [1998]. For a 2D CA, the most traditional ones, considering
radius 1, are Von Neumann, in which the four cells to the north, south, east, and west of
the target cell are considered neighbors, and Moore which considers all cells around the
target one. Another well-known and defined neighborhood is known as Margolus, Toffoli
and Margolus [1987]. The neighborhood is divided into blocks of four cells and the blocks
alternate at each time step, covering a larger space outside the traditional boundary. This
approach allows a reduction of rule complexity in relation to simply increasing the radius.
Figure 2 shows the arrangement of the aforementioned neighborhoods, where P (x, y) is an
element of a matrix of discrete cells Ghosh et al. [2017].
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Figure 2 – Three different neighborhood configurations: Von Neumann, Moore, and Mar-
golus.

In contrast to the standard neighborhood, it is worth mentioning that there are
several other types of neighborhood dispositions since it is a configuration that can be
adjusted according to the system to be modeled Kari [2005]. For example, in Schimit [2021],
the authors propose specific neighborhood dynamical simulations for CA SIR models,
where, at the beginning of each time step, individuals make C connections to neighbors
inside a Moore radius r.

2.1.3 Transition rules

The future cell’s states are locally determined based on its actual state, the states
of the neighbors, and a set of transitional rules. This is the key to the simulation of dynamic
events. Initially, transitional rules of CA models have one single possible state output, i.e.
they were deterministic (Deterministic Cellular Automata - DCA) Ghosh et al. [2017]. In
order to model the vagueness and uncertainties of the real-world scenarios, a probability
was associated with the local rules. In Probabilistic Cellular Automata (PCA) the updating
rule is driven by external probabilities. In general, real-world phenomena are probabilistic
and their values and distribution are defined for each phenomenon, some examples of
applications are in modeling epidemiological systems such as hepatitis B infections Xiao
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et al. [2006], Chagas and dengue disease spreading Slimi et al. [2009] Pereira and Schimit
[2018], traffic flow modeling Nagel and Schreckenberg [1992] and LUCC models Ghosh
et al. [2017].

The difference between DCA and PCA can be illustrated by a classic epidemio-
logical CA model SIR (Susceptible-Infected-Removed). Considering DCA, the transitional
rules would give a single output state out of the three, in other words, based on the
neighbors’ states, the algorithm would simply search for the compatible rule and set the
result. For a PCA, the state output would have a probability of occurrence, for instance,
the more infected cells around the central cell, the higher the chances of the central being
a future infected, but not strictly 100% Fu and Milne [2003].

2.1.4 Boundary conditions

The CA lattice of cells is essentially finite, once the model usually simulates a
limited area of a phenomenon or event of interest. Obviously, the cells in the border
have no neighbor cells available like the others. In this way, it requires defining special
conditions in the boundary cells. One of the strategies for those cells is setting a particular
set of rules, that considers the specifications of the boundaries. Another solution relies
on extending the neighborhood in virtual cells in different ways. Figure 3 presents four
typically used boundary behaviors that one can adopt, for illustration purposes using a 1D
CA configuration. Virtual cells are represented with non-continuous lines and the lattice
cells with continuous ones Chopard and Droz [1998].

The so-called periodic, or cyclic, considers that the borders are connected forming
a torus-like topology. A fixed boundary forms a one-state ring cell that doesn’t change
over time. A reflecting boundary takes the state from the neighbor cell and into the virtual
cell. The adiabatic way simply consists in duplicating the value of the boundary cell for
the virtual one Kari [2005].

Figure 3 – Different types of boundary conditions for a CA modeling
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2.2 Fuzzy Times Series

2.2.1 Time Series Concept

A collection of an orderly sequence of variable values is defined as Time Series.
This special type of data requires appropriate techniques once the observations cannot
be analyzed individually or randomly but considering the historical temporal dependence
Wayne A. Woodward [2022]. Many types of phenomena and processes can be expressed as
Time Series data, some examples are the collection of the temperature value at a particular
location along the days, electricity consumption along the seasons, and solar irradiance over
the hours. In this context, Time Series Forecasting (TSF) can be considered a significant
tool in order to study and analyze those types of scenarios.

The forecasting method can be defined as a procedure for computing predict
behaviors from present and past values. TSF models integrate pattern recognition tech-
niques to create a system able to conjecture future scenarios based on past data and
other external variables. Forecasting applications include observations of seasonality of
electroencephalogram examination patterns Forney [2011], Chowdary et al. [2022], social
media sentiment analysis Ibrahim and Wang [2019], deforestation prediction Dominguez
et al. [2022], disease spread analysis Chyon et al. [2022].

As Chatfield [2000] describes, in general, there are three types of forecasting
methods:

1. Judgemental forecasts based on specialist knowledge and human cognition. It is
a subjective method since it requires human perspective, insights, and updated
information about the scenario to be forecasted. In general, it is an option when
there’s a lack of historical data O’Connor et al. [1993];

2. Univariate methods where the scenario depends only on the historical data of one
variable. Frequently augmented by a function of time such as a linear trend Moosa
[2000];

3. Multivariate methods where forecasts of a given variable are based on observations
of one or more additional time series variables. Multivariate forecasts may depend
on a multivariate model involving more than one equation if the variables are jointly
dependent.

A single forecast model can associate more than just one approach. For example,
judgmental models are frequently involved in forecasting once technical knowledge is used
to build or adjust the models and it can potentially improve the evaluation metrics such
as accuracy Chatfield [2000].
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2.2.2 Fuzzy Time Series Concept

Fuzzy Time Series (FTS) is a forecasting method, first proposed by Song and
Chissom [1993]. The central principle is based on building a time series forecasting model
through fuzzy set-based representation, in other words, instead of a conventional time
series set, FTS represents a time series as fuzzy sets. As first defined in Zadeh [1965], a
fuzzy set is a collection of objects, each of which has a continuum of membership grades.
Membership functions assign a grade of membership ranging from zero to one to each
object in such a set. Traditional concepts such as inclusion, union, intersection, complement,
relation, convexity, etc., are extended to such sets.

FTS models are easy to implement and it allows high interpretability and flexibility,
affording a variety of data types. It is a data-driven and non-parametric approach once it
requires only a historical dataset and a non-fixed set of parameters that can vary accordingly
to the model decisions. FTS models have been used in many areas of application, such as
seasonal time series Song [1999], stock index prices Huarng and Yu [2005], electric load
Efendi et al. [2015], and others Bose and Mali [2019].

As presented in Song and Chissom [1993], Fuzzy Time Series is defined as: Let
Y (t), t ∈ Z, a conventional time series in a subset of R1. The universe of discourse is
divided as U = [min(Y ),max(Y )] and the fuzzy sets Ai, i ∈ Z defined over the U intervals
with corresponding membership functions fAi

. Thus, considering F (t) a collection of fAi

extracted from original Y (t), then can be defined as FTS on Y (t).

FTS modelsM belong to a class of supervised learning method, once it requires a
set of training and test data in order to build the model. Thus, the development is divided
into two major processes: the Training procedure, whereM is refined, and the Forecasting
procedure, which computes the future values of the time series.

Model Training Procedure

1. Pre-processing: Considered as an optional step, the training time series
dataset Y (t) can be pre-processed and some transformations can be applied. Frequently
used transformations are Box-Cox, Differential, and Normalization, among others. Usually,
the main goal is noise reduction, the universe of discourse range contraction, detrending,
etc. In order to exemplify the next steps, consider the time series shown in Figure 4,
presenting an original dataset and one possible pre-processing application:

2. Universe of Discourse Partitioning: The Universe of Discourse U, as
described in the definition, is the closed interval with the minimum and maximum value of
the time series Y (t) as limit points. This interval is divided into k fuzzy sets Ai. Figure 5
presents a possible partition, considering triangular membership functions:

Where Ã = {A0, A1, A2.., A9} is the set of fuzzy linguistics variables. And the
membership functions mfAi

: R → [0, 1]. As a traditional fuzzy system, membership
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Figure 4 – Example of a Time Serie, on top the original data and below a transformation
applied.

Figure 5 – Example of a Universe of Discourse Partitioning with ten fuzzy sets: from A0
to A9.

functions can be modeled in a variety of ways, the most common cases are Triangular,
Sigmoid, Trapezoidal, and Gaussian de Lima e Silva [2019].

3. Time Series Fuzzification: In this step, the main idea is converting the crisp
values of the conventional time series Y (t) into the fuzzy representation composing a
fuzzified time series F (t), based on the previous step configuration. In other words, each
value in F (t) corresponds to a fuzzy set Ai that was taken from Y (t). Figure 6 shows the
evolution of the fuzzy set considering the partitioning in Figure 5 for the Time Series
presented in Figure 4.

4. Temporal Patterns Extraction: Given a fuzzified time series F (t), the
Fuzzy Logic Relationship (FLR) set can be extracted accordingly to the number of past
observations chosen for the model, defining the FTS order. For the first-order FTS model,
the FLR establishes a fuzzy relationship (R) between F (t) and F (t− 1):
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Figure 6 – Fuzzified Time Serie

F (t) = F (t− 1) ◦R(t− 1, t) (2.1)

Or, equivalently:

F (t− 1)→ F (t) (2.2)

Where F (t) and F (t − 1) are the current and the first past observations. In
general, an order-p FLR, determines the future observation based not only on the first
past observation but the p lasts and is denoted by:

F (t− 1), F (t− 2), ..., F (t− p)→ F (t) (2.3)

FTS modelsM with p ≥ 2 are known as High Order FTS. Equation (2.3) shows
that the weight of each F (t − p) for obtaining the fuzzy forecast at time t, i.e. F (t), is
equal to one. Additionally, it can also be represented by fuzzy sets: Ai → Aj, where Ai

represents the left-hand side (LHS) or precedents and Aj the right-hand side (RHS) or
the consequent of the FLR.

LHS → RHS (2.4)

The precedents are then grouped with their respective possible consequent, com-
posing a set of Fuzzy Logical Relationship Group (FLRG). In order to illustrate how FLRG
is composed, consider the following chronological occurrence of a fuzzified first-order time
series, shown in Equation 2.5 below:
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A1 → A1,

A1 → A2,

A2 → A2,

A2 → A1,

A1 → A3

(2.5)

Grouping equals LHS, the FLRG is established as:

A1 → A1, A2, A3

A2 → A1, A2

(2.6)

Note that, even though the FLR A1 → A1 has more than one occurrence, under
the FLRG perspective for a conventional FTS model, it has the same relevance as FLR that
happens a single time. The interpretation of Equation 2.6 may be described as looking into
the first past observation F (t− 1) = A1 of a variable from its historical dataset, composing
the LHS1 set, the possible next time-step observation is the set RHS1 = {A1, A2, A3}. A
rule-based description is also possible:

IF “A1” THEN “A1 or A2 or A3 ”

Forecasting Procedure

Once modelM is trained, the forecasting method is used in the test dataset with
the purpose to validate it based on selected evaluation metrics. TheM-input is the value
from the original time series Y (t) and the output is the future value Y (t+ 1).

1. Input: Similar to the Time Series Fuzzification process from the training
procedure. For each set of input values from the original time series Y , a fuzzy set is
associated with it from F . The fuzzy set chosen is the one with the maximum image of
the membership function for the element in the domain set, Y (t):

F (t) = Aj | µAj
(Y (t)) = max{µA1(Y (t)), ..., µAj

(Y (t))} (2.7)

2. Inference: The fuzzified precedents values are now searched in the set of
FLRG rules fromM. A well-trained model is capable to hold a set of rules that describes
the behavior of the time series studied scenario and provides a fuzzified consequent output.

3. Output: The output value is taken from the defuzzification concept of fuzzy
logic. The fuzzified information obtained from the FLRG output F (t+1) is now converted
int to a crisp numeric value Ỹ (t+ 1).
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4. Evaluation: The forecasting procedure creates a set of predicted values Ỹ ,
that can be compared with the test-dataset through model metrics. This quantitative
perspective shows the capacity of the model to simulate and predict the scenario.

2.2.3 Multivariate FTS

In terms of the number of input variables, a FTS model may vary accordingly to
the studied scenario. Monovariate FTS has a single variable of interest and Multivariate
FTS are models with more than just one. In general, the variables are divided into two
types: endogenous, those influenced by other variables and associated with the target
output variable, and the exogenous variable which works as extra and relevant information
that helps to build the model. For a multivariate FTS model with dimensionality d and
order p, is expressed by:

(F1(t− p), F2(t− p), . . . , Fd(t− p)),

...

(F1(t− 2), F2(t− 2), . . . , Fd(t− 2)),

(F1(t− 1), F2(t− 1), . . . , Fd(t− 1))→ F1(t), F2(t), ..., Fd(t)

(2.8)

Most of the real-world scenarios deal with multivariate models instead of mono-
variate, and the quantity can vary in terms of relation to the dynamical system. For
example, in deforestation forecasting, the amplitude, the wind speed, the weather, and
other parameters are pertinent in order to predict forest cover in future states Dominguez
et al. [2022]. In this sense, an approach for spatio-temporal modeling was presented in
Severiano et al. [2021], named Evolving Multivariate FTS (e-MVFTS), with an adaptation
mechanism capable to deal with data distribution changes.

2.2.4 Weighted FTS

When extracting the Temporal Patterns from the fuzzified Time Series and creating
the set of FLRG, some relevant information may be lost such as the frequency of a given
rule and chronological order, as already mentioned and shown in Equation 2.6. The same
rule may happen multiple times, in a given scenario, and it will have the same importance
as a rule that happens just a few. Moreover, a pattern that happened in an older period
has the same relevance as a recent pattern, losing the component of time, in a time-based
model.

In this sense, Yu [2005] proposed the FTS method which considers the temporal
pattern and the amount of time it appears in the fuzzified series using weights, known
as the Weighted Fuzzy Time Series model (WFTS). For the Weighted Fuzzy Logical
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Relationship Group (WFLRG) a weight matrix is included on FLRGs, giving greater
importance to recent data in the forecast Silva et al. [2020].

In WFRLG, a fuzzy set repetition is considered as part of the grouping. Therefore,
from the FLRG example shown in Equation 2.6, considering as WFLRG it becomes:

A1 → A1, A2, A1, A3 (2.9)

The defuzzification processes take into account the midpoints of the WFLRG
fuzzy sets. In general, considering a forecast of F (t) = Aj1, Aj2, ..., Ajk, the matrix of
midpoints can be written:

M(t) = [mj1,mj2, ...,mjk] (2.10)

Different values of weights are now applied into the forecast Aj1, Aj2, ..., Ajk,
satisfying the same condition as standard FTS models:

k∑
h=1

w′
h = 1 (2.11)

In this sense, the weight matrix is obtained following:

W (t) = [w′
1, w

′
2, ..., w

′
k] =

[
w1∑k
h=1wh

,
w2∑k
h=1wh

, ...,
wk∑k
h=1wh

]
(2.12)

where wh is the weight for the Ajk. A suggested weights value described in Yu
[2005], is setting the most recent forecast with the highest value and decreasing it until
the older one. Equation 2.12 becomes:

W (t) =

[
1∑k
h=1 h

,
2∑k
h=1 h

, ...,
k∑k
h=1 h

]
(2.13)

Thus, using the standardized W (t) the final forecast value Y(t+1) is equal to the
product of the defuzzified matrix and the transpose of the weight matrix Yu [2005]:

Y (t+ 1) = M(t)×W (t)T (2.14)

where M(t) is the defuzzified matrix forecast of F (t) and × is the matrix product
operator.

Since WFTS technique was presented, some improvements were developed, such as
Trend WFTS Cheng et al. [2006], Improved WFTS Ismail and Efendi [2011], Exponentially
WFTS Che Ngoc et al. [2018] and and Probabilistic WFTS de Lima Silva et al. [2020].
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2.3 Related work

Cellular automata (CA) models have been broadly applied in spatio-temporal
systems. Its simplicity, flexibility, and ability to incorporate the spatial and temporal
dimensions of the dynamical scenarios are some of the strengths of these models and it
allows the simulation of many types of real-world urban processes Santé et al. [2010].
As described in Aburas et al. [2016], the CA modeling strategy is a valuable technique
in urban growth simulation and forecasting and shows that the integration with other
techniques is a strategy to overcome some limitations. Although the flexibility is positive
once it allows a widespread application, is a point of attention when trying to define a
general CA model, remaining strictly to the specific situation. Other limitations involve the
high dependency of programmers and researchers in order to build the model in the whole
process: from transitional rules conceptualization to simulation’s algorithms writing and
the problem of being too simple and excluding from the model aspects as socio-economic
factors Santé et al. [2010],Kari [2005].

In CA modeling, there can be found in several scientific fields and applications, such
as ecological models of succession in vegetation Balzter et al. [1998], deforestation and fire
propagation Zheng et al. [2017], Czerniak et al. [2018], urban growth Liu and Phinn [2003a],
Mantelas et al. [2012], crowd evacuation Li et al. [2019], fluid dynamics simulation and
physical systems Chopard and Droz [1998], Chopard et al. [2002], urban traffic simulation
Tavares [2010], scattering study epidemics Melotti [2009], Áurea Tonetti Massahud [2011].

As mentioned in Chapter 1, the definition of a set of transitional rules may need
extensive studies in order to achieve a good model able to simulate the real-world scenario.
In this sense, transition rules based on artificial intelligence have been developed as an
alternative to finding complex functions. Some examples are Support Vector Machines
(SVM) Yang et al. [2008], least squares SVM Feng et al. [2016], Decision tree Li and Yeh
[2004], Artificial Neural Networks (CA-ANNs) Yeh and Li [2003], Qiang and Lam [2015],
k-NN algorithm Li and Liu [2006] usages, most of them associated with optimization
algorithm and low interpretable methods. The CA-ANN integration strategy is able to
build a CA simulation with good evaluation metrics, but with lower interpretability, since
it is a Black-box approach and parameters must be set and optimized, such as the number
of neurons in input, hidden, and output layers. Further, it has encountered problems
dealing with time series images, for instance, which are extremely common in LUCC
applications Wang et al. [2022]. In Li and Yeh [2004], a decision tree (See5 system) was
used to generate the CA transitional rules, obtaining an overall accuracy of 75%. The
strategy needs to deal with the optimization of the gain function and the vagueness of
real-world scenarios was not considered with the Fuzzy Logic scheme.

As cited above, some techniques are combined with CA methodology, either to
achieve better forecasting results by increasing evaluation metric results or searching for
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better model parameters via optimization or calibration algorithms. In this sense, Cattaneo
et al. [1997] first proposed a Fuzzy logic integration into CA models, known by as Fuzzy
Cellular Automata (FCA). The strategy allows greater flexibility in the consideration
of factors in the transition rules of states and modeling real-world scenarios’ vagueness.
Some usage examples are: a fuzzy-constrained CA model used to simulate forest insect
infestations Bone et al. [2006], and logistic trends of urban development process study Liu
and Phinn [2003b].

Fuzzy methods are often applied in order to simulate states gradient, where states
are based on fuzzification of sharp and hard values by means of membership functions
mfAi

: R→ [0, 1]. A fuzzy-neighborhood method was proposed by Małecki [2017], where
instead of using traditional CA neighborhood configuration, a function is used to evaluate
the influence of the neighboring cells, modeling it as fuzzy sets Ghosh et al. [2017]. Although
it can be found in the literature a variety of approaches that incorporate Fuzzy logic into
CA models, none of them has used Fuzzy Time Series methodology as a forecast model.
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Chapter 3

Methodology

At a high level, the proposed method is essentially based on the development of a
multivariate FTS forecasting model originating from a historical dataset of a geospatial
dynamical event. Then, the model is used in a cellular automaton simulation, working
equivalently as classical local rules set. In that way, for each cell in a traditional CA
lattice, the FTS model is applied to compose the complete future CA grid scenario. In this
chapter, the methodological approach is detailed and divided into two stages: Training
and Forecasting procedures.

In terms of programming language, simulations were conducted using Python.
Besides its outstanding code readability and high accessibility, Python is powerful in
artificial intelligence (AI) and machine learning applications due to the variety of libraries
and frameworks, such as NumPy, Keras, TensorFlow, and Seaborn, very useful to develop
AI algorithms Raschka [2015]. In addition to the mentioned libraries and another reason to
select the chosen language, the FTS models were built with Fuzzy Time Series for Python
(pyFTS) library de Lima e Silva [2018].

3.1 Training procedure

The starting point is considering a collection of time series historical spatio-
temporal data Y , extracted from observations, sensors output, images, satellite-based
maps, and so forth. In images and maps data-type, the CA lattice (Ld) is represented by
the grid of pixels, i. e., a single cell is a pixel in an image and the pixel color intensity
composes the state set S, for instance. A group of sequential images is a historical CA
grids dataset. In other types of observations, those CA concepts need to be reflected in
the spatial dynamics time series data. In computing, this is classically done by considering
a set of sequential matrices.

The training procedure is defined as the scheme to obtain the multivariate FTS
model to be implanted in the CA simulation. As emphasized, each sample of the collection



Chapter 3. Methodology 35

Y is a frame over the unit of time, representing the geospatial states of the phenomena,
i.e. the collection groups the data of each time unit. The training steps are described:

1) Data preprocessing: Depending on the study case, methods such as noise
reduction, standardization, and normalization may be necessary. A classic data transfor-
mation is known as differentiation which changes the original universe of discourse U

for a smaller and stationary space de Lima e Silva [2019]. Mathematically it is defined
as ∆y(t) = y(t − 1) − y(t). PyFTS library offers different types of pre and pos data
transformation processing: Differential, Scale, Box-Cox, and Adaptive-Expectation.

2) Variables definition: The system variables are determined, as well as the
variable of interest, and the values of their states are stored following the time-ordered
data collection. Each variable represents the historical state pattern over the unit of time.
The system variables rely on the CA neighborhood chosen for the model and the exogenous
variables. For instance, considering Moore’s neighborhood the variables would be all the
cells surrounding the center cell. The exogenous variables are all the additional classes
of information that directly or indirectly impact the dynamical behavior of the studied
scenario. In deforestation simulations, for example, the weather, humidity, forest type,
distance to water (river, lakes, sea, etc), and distance to the urban areas and roads, may
be considered exogenous variables due to the potential of relevance to understanding the
deforestation dynamics of an area.

3) Dataset split: As discussed in chapter 2, FTS methods are data-driven
supervised models and it requires a training and testing dataset to build and validate the
forecasting model. In that way, the prepared dataset is divided into those two databases.
In AI applications, the division proportion (train:test) is bound to the complexity of the
problem and the learning algorithm but usually 7 : 3 or 6 : 4.

4) pyFTS Model Build: The following sub-steps define the hyper-parameters
selection for the FTS model such as Order and Lags, Partitioning type, Number of fuzzy
sets per variable, Weighted vs Weightless methods, and Membership function.

4.1) Universe of Discourse Partitioning: The pyFTS library offers different
types of partitioning in order to build the membership functions. For both of the cases
analyzed in this work was Grid Partitioning which divides the universe into n overlapping
equal-length intervals with triangular membership functions. Furthermore, all the variables
have the same partitioning and number of fuzzy sets. This configuration is adjustable and
several combinations can be tested in order to achieve better prediction results. Figure
7 represents an example of the variable North using this type of partitioning for 4 fuzzy
sets: A1, A2, A3, and A4.

4.2) Data Fuzzification: The process by which numeric values are converted
into fuzzy linguistic variables. The crisp value from the time series Y (t) is now represented
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by the maximum membership value fuzzy set: F (t) = argmaxAi
µAi

(Y (t)), since the fuzzy
sets are overlapped. The order and lag indexes are selected.

4.3) MVFTS Model training: In chapter 2.2, the Eq. (2.8) was presented
for a generic case of a multivariate FTS forecast model. Converting it to consider a CA
perspective, the equation becomes:

(FNV (t− p), FEV (t− p)),

...

(FNV (t− 2), FEV (t− 2)),

(FNV (t− 1), FEV (t− 1))→ FC(t)

(3.1)

Where p is the FTS model order, FNV (t−p) consist of the Neighborhood Variables
(NV) and FEV (t− p) the Endogenous Variables (EV) of the CA-FTS system. The key idea
considers the variables extracted from the CA lattice space and the additional relevant
variable information. Thus, the temporal patterns and rules LHS → RHS are created.
As example, considering Von Neumann’s neighborhood, FNV (t− p) is written by:

−−−−−−−→
FNV (t− k) = [FN(t− k), FS(t− k), FW (t− k), FE(t− k), FC(t− k)] (3.2)

Where N, S, W, E, C are North, South, West, East, and Center respectively for
∀k = 1, 2, ..., p. As a result of those steps, it is expected an MVFTS forecasting model,
based on a set of historical spatial dynamical information, able to predict future state cells
in CAs simulations.

Figure 7 – CA North Variable representation considering 4 fuzzy sets for a UoD = [0, 10]
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3.2 Forecast procedure

The forecasting concept consists in incorporating the pyFTS model, trained from
historical information, into a CA simulation. The algorithm, shown and detailed in 1,
works by scanning the CA cells at time (t) and building it at time (t+ 1), equivalently as
the traditional state transition rules in CAs simulations. The fixed CA border considered,
i. e., all the cells in the first or last column and in the first or last row, in a CA Grid, is set
to a constant state and is not considered as a center cell, since there is no neighborhood.
Finally, the predicted CA lattice is stored to be evaluated using selected metrics.

Algorithm 1 CA-FTS Forecasting
1: function CASimulation(CAGrid, ExogenousData, pyFTSmodel)
2: while there’re still cells on the CAGrid do
3: currentCell← CAGrid
4: if currentCell is not at border then
5: neighborhood← CAGrid
6: futureCell← pyFTSmodel(currentCell, ExogenousData, neighborhood)
7: predictedCAGrid← futureCell

8: return predictedCAGrid

Figure 8 shows the summary of the steps through a diagram, with the training
and forecasting procedure blocks.

3.3 Evaluation Metrics

The evaluation metrics can be selected accordingly to the studied scenario. In this
work, two options are suggested and used for two study cases. The first one is derived from
a common measure of the quality of the model fit in AI systems and regression analyses,
the Root Mean Square Error (RMSE), presented in Eq. (3.3).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.3)

where n is the length of the test dataset, yi is reference observation ∀i = 1, 2, 3, ..., n

and ŷi the predicted value resulted from the pyFTS model. Larger values of RSME indicate
a considerable difference between both observations. Therefore, a good model would
produce lower values of the metric, RSME → 0. The RMSE value is measured on the
same scale and units as the original observations yi, thus, normalization is performed on it
in order to compare the model fits of different scales and ranges, for instance. The so-called
Normalized RMSE is calculated as:
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Figure 8 – Illustration of the proposed method steps.

nRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

A
(3.4)

considering A as the amplitude range of the data, considering both observed and
predicted values. Another classic metric employed is known as Mean Absolute Error (MAE)
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and is obtained by the sum of absolute errors divided by the size of the sample:

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.5)

In terms of maps and images, the metrics are obtained from a cross-comparison
between the predicted map produced, as opposed to a spatial reference. This reference
can be extracted, for instance, from satellite imagery, on-site measurements using sensors,
and social and aerial pictures from drones. In this context, the error matrix or transition
matrix is a tool that allows calculating accuracy metrics for classification accuracy Diniz
[2021]. Figure 9 presents the fundamental idea of the Transition Matrix.

Figure 9 – Generic Transition Matrix for cross-comparison metric

Source: Diniz [2021]

Classes A, B C, and D are features of a map. The columns represent the reference
perspective and the rows are the predicted or classified map produced from the model. The
green color, located in the main diagonal, represents the accurate classified information or
the true positives (True A - TA, True B - TB, True C - TC, and True D - TD). The False
Positives (FP), in the top-right of the matrix, present the improperly classified “A” to an
expected value of “not-A”. FN stands for false negatives and refers to the omission of the
classifier, i. e., a class classified as “non-A”, is labeled to “A” by the model. There are four
main metrics derived from a Transition Matrix: Producer’s Accuracy and User’s Accuracy:

1. Producer’s Accuracy: the sample fractions of pixels of each class correctly assigned
to their classes by the classifiers.

PA =
Vn∑
r n

(3.6)
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2. User’s Accuracy: These are the estimates of the mapping pixel fractions, for each
class, correctly classified.

UA =
Vn∑
c n

(3.7)

where V is the amount of correctly classified pixels for class n and
∑

n the total
amount of pixels.

Figure 10 presents a better visualization for both metrics using a Reference Map,
extracted for example from satellite-based data, and a Predicted Map from an output of a
simulation modeling. From a Producer’s perspective, the Reference map is put in front of
the Predicted Map and the pixels are compared, for the User’s perspective the opposite is
applied.

Figure 10 – Representation for Producer and User’s Accuracy’s.
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3.4 Supporting tools

Map images and their formats were handled using the QGIS platform. Created by
Gary Sherman in 2009, QGIS is a free-and-open-source (FOSS) application for geographical
information system (GIS) data. It is possible to visualize, edit, analyze data, and compose
maps. Hence, the studied classes in the predicted and actual maps, as raster layers format,
were artificially colored by the software.
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Chapter 4

Dataset Description

This chapter presents the background of the two datasets used to validate the
Cellular Automata Fuzzy Time Series (CA-FTS) methodology. The datasets are spatio-
temporal scenarios that primarily applied a typical CA model to simulate the states
change dynamics. The first one is an epidemiological model for Chagas disease spreading
simulation, from Slimi et al. [2009] and the second is a land use and cover change study
in Delhi, India Tripathy and Kumar [2019]. The following sections intend to present the
model and the methodology used by the authors and highlight the complexity when
building transitional CA rules. It is relevant to mention and emphasize that the proposed
methodology suits for any historical data from spatio-temporal models. In this work, it
was used two CA-based models in order to obtain the original dataset and validate it
through the selected evaluation metrics.

4.1 Spatial Spread of Chagas Disease

Popular in Latin American countries, Chagas disease, or American trypanosomiasis,
is an infection caused by the protozoan parasite Trypanosoma cruzi (T. cruzi). It was
first identified in 1909 by the Brazilian physician Carlos Chagas, and it remains a public
health and social issue, especially in neglected areas but also in non-endemic areas Chagas
[1909], Suárez et al. [2022]. Accordingly to the World Health Organization (WHO), the
estimated number of infected people is about 6-7 million worldwide. The infection may
cause cardiomyopathy, arrhythmia, and megaviscera in up to 30% of chronically infected
people, and around 10% develop digestive or neurological problems Pérez-Molina and
Molina [2018]. Treatments and drugs have been improved since its discovery and an early
diagnosis can cure Chagas disease nowadays but no effective vaccine was developed until
now. Thus, the prevention strategy remains in identified early infection, chemotherapy
and vector control Bivona et al. [2020].

In general, T. cruzi parasites are transmitted by contact with the excretion of
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an infected blood-sucking vector, the triatomine bug. As mentioned, one known effective
prevention practice is the control of the vector agent and, as Slimi et al. [2009] pointed out,
efforts have been made in order to properly understand the dynamics of vectors populations
in order to align strategies and develop an appropriate mitigation plan Bartsch et al. [2017]
Inaba and Sekine [2004]. In this sense, Slimi et al. [2009] presented a probabilistic cellular
automaton model able to simulate the annual demography and dispersal of the vector
during infection and non-infection periods in the Yucatan peninsula region, in Mexico. It
is a spatio-temporal computational simulation of the population dynamics of the Chagas
disease over time in a limited discrete space, that allows the study and understanding
of the behavior of the bugs. The relevance and necessity of the study rely on the low
efficiency of insecticides in some specific regions, where the occurrence of infected bugs is
strongly bonded with seasonal immigration from forest to village, not in domiciled places,
causing, for instance, re-infested dwellings Slimi et al. [2009].

The study gathers relevant information and real data from previous research to
determine and calculate a set of parameters, variables, and probabilities used to build
a classic CA-based model. It was considered a two-dimensional square lattice of cells
L of size M ×M . Each cell is composed of the number of larvae (ny) and adult vector
insets (na). The simulation considered a maximum limit of 5 for each stage of the bug
life (namax = nymax = 5). The set of states S is based on the quantity of larvae and
adults S = {0, 1, ..., namax} × {0, 1, ..., nymax}. A cell state is represented by the vector
[ny, na] with the possibility of having characteristics of a garden (G) and house (H) habitat,
although in the simulation was considered all the cells in H-habitat. The transition rules
were built according to a typical CA, that is, bringing together specific knowledge and
characteristics of the region. As described in the article, these rules were divided into
Demography and Dispersion processes.

1. Demography: defines the number of individuals per cell and it is composed of the
phases reproduction, survival, and development.

a) Reproduction: the adults reproduces with probability pr, generating F = 1

larvae. The number of larvae generated per cell is described as a random
variable following a binomial distribution B(F.na, pr). The state of the cell after
reproduction is:

St+1 = [ny + nry, na] (4.1)

b) Survival: corresponding to the amount larvae and adults survived at each time-
step. It is also given by a binomial distribution B(n∗, p∗). The probabilities are
psy and psa for larvae and adults respectively. The final state after the survival
phase is:

St+1 = [nry + nsy, nsa] (4.2)
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c) Development: the processes of larvae becoming adult insects. Each larva has
the probability pd to develop and the binomial distribution takes the survival
larvae B(nsy, pd). After the development, the final states are:

St+1 = [nsy + nry − nda, nsa + nda] (4.3)

2. Dispersion: Defines the movement of the adult vectors over the cells in the lattice.
A fixed boundary condition is considered and it relates to the migration of the insects
from the forest to the village. During the infestation, the period is set to Nf = 1 bug
and none during non-infestation. The probability or dispersal coefficient associated
with the movement from the boundary forest to the village is:

Df =
Qf

4M
(4.4)

where Qf = 50 insects/day and M the lattice dimension.

The migration happens only in the infestation period (from April to June, or 90
days). Concerning the movement through the village cells in the lattice, each adult
cells have the same probability to enter or leave the cell, given by:

p =
D

(2r − 1)2 − 1
(4.5)

where D is the dispersal coefficient in the village, and r is the infestation radius (a
higher value of r means more neighboring cells around the central one). In other words,
for every time step, adults can leave the cell and move to a random neighboring cell
with probability p from eq. (4.5), resulting a total reduction of nout adults. Similarly,
each adult can enter the cell from any neighboring cell with the same probability and
the number of adults that arrives is nin. The state of the cell after the Dispersion
process is given by:

St+1 = [ny, na − nout + nin] (4.6)

4.1.1 CA Set-up

As part of the implementation of a typical CA-based model, a set of parameters
needs to be defined in order to achieve a model able to simulate the spatio-temporal
behavior of the phenomena. In Slimi et al. [2009], the parameters were estimated based
on real measurements of Chagas disease vector dynamics. In general, as mentioned in
Chapter 2, this step usually takes time and effort, once involving for example, in loco data
collection, years of research, and technical knowledge.

The estimation of survival and fecundity rates were investigated in houses from the
Yucatan peninsula over the years 2000 and 2001. The developmental rate was calculated
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by the mean time of development from egg to adult simulated on laboratory colonies of
the bug from Yucatan. It was assumed that the survival, development, and fecundity are
constant through time and the probabilities values for the time step were:

psy = 0.90272518

psa = 0.9828095

pr = 0.004111

pd = 0.004158

(4.7)

The inside dispersion probability, presented in eq 4.5, the values of the coefficient
D and infestation radius r are conditioned on the time of the year. During the infestation
period, D = 0.9 and r = 3 and non-infestation D = 0.1 and r = 1. Let I be a subset of
time-step t values in infestation period, in terms of probability p one can take:

p = 0.5 if t ∈ I

p = 0.4 if t /∈ I
(4.8)

Based on previous studies it was estimated that the range of values for the
number of bugs that migrates from the forest to the village through the CA boundary
is 10 ≤ Qf ≤ 150 bugs/day and a plausible one used in the model was Qf = 50. The
simulation was made considering a square CA lattice of cells sized 30× 30, representing
an area about 1km × 1km, i.e., each cell has 33 × 33m2. The neighborhood considered
was Moore neighborhood, shown in Figure 2 and the time-step t considered was one day, i.
e., each new CA lattice composed from day t to t+ 1 represents one day of a year.

It is relevant to emphasize that to achieve those specific transitional rules, technical
knowledge was necessary to accurately reproduce the disease’s spatio-temporal dynamics,
with an elevated number of parameters. In this sense, Fraga et al. [2021] reproduced
the Chagas disease CA model to propose a new strategy for adjusting transitional rules
parameters by Genetic Algorithm (GA) with less error and better performance in the
searching GA task.

4.1.2 Analysis

The model analysis used as the target variable the total sum of larvae (Ny) and
adult individuals (Na) in the village. The eq.(4.9) represents the sum in the lattice of cells
L.

N (t)
y =

∑
c∈L

n(t)
y (c) and N (t)

a =
∑
c∈L

n(t)
a (c) (4.9)



Chapter 4. Dataset Description 46

Where c is a cell, n(t)
y (c) is the number of larvae and n

(t)
a (c) is the number of

adults in c at the time step t. As described in the transition rules, after the demography
process, the total number of adults individuals in a cell can be calculated with survived
adults, the one developed from larva to adult and the total number of larvae in a cell is
composed of that survived and haven’t developed into adults and the news larvae from
the reproduction of adults. These are represented with the equations:

N (t+1)
y = psy(1− pd)N

t
y + prN

(t)
a (4.10)

N (t+1)
a = pdpsyN

t
y + psaN

(t)
a (4.11)

After the dispersion process, the total number of larvae in the cell remains the
same, once only adults are able to move from forest to village. The total number of adults
is updated considering the amount of newly migrated adults (Qf ) during the infestation
period and the adults that leave the lattice (Qout) and defines the boundary condition.
When the infestation period is over, Qf = 0, i.e., no bugs enter the village, and the vector
population tends to reduce.

N (t+1)
a = pdpsyN

t
y + psaN

(t)
a +Qf −Qout (4.12)

The mentioned analysis showed in eq. (4.9) was also used for the CA-FTS simula-
tion to compare both of the results. As mentioned, the main intention of the proposed
methodology is to build a model based on historical data, the analysis remains with the
original strategy.

4.1.3 CA Simulation

Slimi et al. [2009] presented a visual representation of the spatial spread of the bugs
over time, which helps to understand the behavior of the vector spread during infestation
and non-infestation periods. Figure 11 shows the simulation, using C language, extracted
from the original work. A shade of gray was used to represent the states associated with
the number of adult individuals per cell: white means no adults, gray is when there is
one adult, and black more the one adult. It is possible to see that during the infestation
period, from day 0 to day 90, the boundary condition is fixed into Nf = 1 adult (gray color
cells) and in the non-infestation is fixed to Nf = 0, from day 91 to 270 (white color cells).
Furthermore, it can be noted that in the 90th day, the vector reached most of the village.

In terms of the model analysis described in the previous section, a graph was
proposed to see the cyclic behavior over time. Figure 12 shows the simulation for 3700

days and the seasonal variations with a pick during the infestation period, where the total
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Figure 11 – CA Simulation during infestation and non-infestation periods

Source: Slimi et al. [2009]

sum of the bugs in the village is estimated at around 400, and during the non-infestation
period, the amount reaches the zero. Both of those analyses were made by CA-FTS and it
is presented in the next chapter.

Figure 12 – Evolution of the population of Adults and Larvae over time

Source: Slimi et al. [2009]

It is relevant to mention that the present work doesn’t intend to deeply analyze
the model developed in Slimi et al. [2009] in terms of Chagas disease spread dynamics
itself, but demonstrates that it is possible to build an FTS model which can be used as
transitional rules in a CA simulation to predict future cell states.
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4.2 LUCC in Delhi, India

Urban sprawl modeling is a class of land use/cover change (LUCC) studies and
has been widely applied to simulate and forecast future configurations on metropolises and
urban centers Verburg et al. [2008]. It is often used as a tool to understand patterns and
develop effective spatial policies Tripathy and Kumar [2019]. The process of building a
model capable of reproducing spatial growth and decline of real-world urban areas is not a
trivial task due to its complexity and several constraints inbred within the system Ghosh
et al. [2017]. The relevance of this type of simulation, as mentioned in Chakraborty et al.
[2022], is associated with the natural and human systems impacts of rapid, unplanned,
and inefficient urban growth in different parts of the world. It has consequences in the
natural environment, such as loss of biodiversity, and air or water quality which directly
affect society, at local and global levels.

There are many different approaches and methods available in recent literature
which propose paths to deal with various levels of complexity and build an urban growth
model. One of the most used strategies, as exposed in Hassan and Elhassan [2020],
are CA-based models. CAs models are often combined with other techniques, such as
Markov Chain and Logistic regression, to identify specificities and achieve better results
in simulating spatio-temporal LUCC dynamical scenarios. In this context, Tripathy and
Kumar [2019] brings light to rapid urban growth in India causing socio-economic problems
and large-scale impacts on ecosystems. Hence, it was developed a study case in Delhi, the
capital of India which integrates geospatial techniques and CA modeling, using Geographic
Information System (GIS) monitoring, to infer the urbanization process. The study gathers
multi-temporal satellite imagery, Census of India data, and topographical sheets that
helped to form thematic layers used as input variables to the CA system. In order to
achieve the goal, it is executed a CA model calibration method to build the model and
principal component analysis (PCA) technique to calculate the spatial variation analysis.
It was considered four LUCC classes: Built-up, Vegetation, Water, and Others.

The capital of India, the city of Delhi, covers around 1483 km2 of land and it is
located in Northern India. Figure 13 presents the map of the study area. Delhi’s population
is projected to be over 19 million by 2021 Census [2011]. The population density of Delhi
has increased from 9340 persons per km2 in 2001 to 11320 per km2 in 2011, the largest in
India.

Available in the official USGS website1, images of the LANDSAT satellite for the
years 1989, 1994, 1999, 2004, 2009, and 2014 were extracted, composing a set of Land
use/land cover maps. Note that a 5-year interval was taken into account between the
annual map-based data gathered from the platform since the difference in the selected scale
1 https://earthexplorer.usgs.gov/
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Figure 13 – Satellite-based image of the study area - Delhi, India

Source: Tripathy and Kumar [2019]

is more pronounced (and in terms of simulation, defines the CA time step). The maps were
prepared as thematic layers, using the K-means classifier, in order to expose four classes
of interest in the study. (I) Built-up areas are defined as man-made structures, such as
residential and commercial areas, any type of buildings in urban and non-urban regions.
It is characterized by high and moderate population density. (II) Vegetation gathers
all green areas within the urban area and its surroundings, including agricultural land,
parks, plantations, protected forests, and agriculture. (III) Water, as the name suggests,
means all the surface waters, such as lakes, reservoirs, ponds, and rivers. The remaining
area is classified as (IV) Others and composes every space except the three already
mentioned classes. Examples of regions classified as Others could be undeveloped/fallow
land, agricultural fallows, sandy areas, rocks, etc. Figure 14 presents the maps, with the
four target variables highlighted by the colors: in red, the Built-up, in green, the vegetation,
in blue for Water, and the others with light brown.

It was considered five supporting factors, also prepared as thematic layers, that
directly impact the urbanization process: Population Density, Road network - Proximity
to roads, Central Business District (CBD), Slope Map, and Restricted areas. Figure 15
shows the maps processed as thematic layers for the factors. The Population Density
maps were based on the Census of India population data from the years 1991, 2001, and
2011. For 2019 and 2024, a projection was considered by the United Nations Population
Projection 2030 Nations [2015]. The density maps were computed for different zones of
Delhi, by vector layers. The slope map was based on Cartosat - I Digital Elevation Model
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Figure 14 – Maps for the years 1989, 1994, 1999, 2004, 2009, 2014

Source: Tripathy and Kumar [2019]

(DEM) acquired from BHUVAN and classified into three degrees (s < 3, 3 < s < 5, s > 5).
The proximity to major roads map was generated by the major road network information
from the topography sheet and classified at 500 m intervals up to 5 km, and 1000 m
intervals beyond it. The Proximity to CBD was similarly defined, taking 5 km intervals in
10 levels. Lastly, the Restricted areas acquire from Delhi Development Authority Tripathy
and Kumar [2019].

4.2.1 CA Set-up

Firstly, for the simulation proposed, all of the maps’ raster layers were set to
30× 30 meters-sized cells, composing an equivalent geometry of the participating layers.
It was considered the Moore neighborhood, defining a 3x3 size kernel:

At
i,j =

a
t
i−1,j−1 ati−1,j ati−1,j+1

ati,j−1 ati,j ati,j+1

ati+1,j−1 ati+1,j ati+1,j+1

 (4.13)

Where i, j specifies a single cell in a d× d sized CA lattice simulation. In terms of
raster layers maps, ati,j represents a pixel in the image (∀ i, j = 1, 2, .., d) and its value
determine a cell state at times (t). Raster layers must have the same size, once the current
pixel (t) associates with the exact piece of land in the future state (t+ 1).

As the CA definition states, the transition rules set (Ø) establish the relationship
between the current cell state with the future one. The study Tripathy and Kumar [2019]
considered a CA time-step to 5 years, for example for a given current year t1, the future is
(t1 +5) years. To define Ø, let T be the set of threshold values for the affecting parameters
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Figure 15 – Exogenous variables (a) Proximity to major roads, (b) proximity to Central
Business District (CBD), (c) Cartosar-I DEM-based slope map, (d) Restricted
areas

Source: Tripathy and Kumar [2019]

and B the set of built-up count values in the kernel associated with every set of T. Ø was
defined as functions ϕ of a set of conditional statements with threshold values:

ϕ = f(T,B) (4.14)

T = {TR, TC , TP , TS}
B = {BR, BC , BP , BS}

(4.15)

where TR, TC , TP and TS are the threshold for proximity to roads, distance from
CBD, population density, and slope value respectively. Similarly, BR, BC , BP , and BS

are the corresponding number of built-up pixels in the test kernel for every element that
belongs to T. The rules and specifications followed three main principles:

1. The classes for constructed land and bodies of water were spared from being elimi-
nated, i. e. they remain constant.
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2. A pixel can only be modified if, in the restricted areas layer map, it falls under the
non-restricted category.

3. The Vegetation and Others classes may change into built-up land based on threshold
values (T) and nearby built-up pixel counts (B).

Besides the definition of the transitional rules, the model was calibrated to find
the best threshold values. The strategy consisted in taking the data from a year and
simulating the future of the nearest year, e.g. the map for 1989 (t) was used to simulate
the map for 1994 (t+ 1) and so on. Simulating the LUCC of time (t+ 1) using the LUCC
of time (t) and the parameters of the supporting factors, the model was able to determine
the best-set threshold values, by trial and error, that reflect the best possible results.

The difference between two images is calculated at each time step using the
principal component analysis (PCA) technique, which works by spatially subtracting the
built-up pixels of time (t+ 1) from the corresponding pixels of time (t).

4.2.2 CA Simulation and Discussion

The main idea behind the proposed methodology of Tripathy and Kumar [2019]
starts with the set of Delhi maps acquire from satellite, used to observe the real changes in
land use/land cover and urban growth patterns, between the years 1989 and 2014. Then,
the calibration of the CA model was used to adjust the parameters in order to build the
forecast model. Finally, the urban growth model is used to predict the dynamical behavior
and compare it to the original maps through validation of simulated LUCC. Furthermore,
the model was also used to predict the 4-classed maps for the years 2019 and 2024.

Figure 16 presents the satellite imagery in the first row, followed by the processed
LUCC considering the four classes of interest, and in the last row, the results from the
simulation. It is notable the similarities between the actual and simulated LUCC maps,
indicate the ability of the model to catch the changes in the classes over time. Regarding
the evaluation metrics, the principal component analysis (PCA) technique was applied
indicating similarity classification in the average of 80% and the overall accuracy was
95.62% of the confusion matrix Tripathy and Kumar [2019].
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Figure 16 – LANDSAT satellite images (a to e), satellite-based LUCC maps (f to j) and
simulated LUCC map (k to o) of Delhi for the year 1994 (a, f, k), 1999 (b, g,
l), 2004 (c, h, m), 2009 (d, i, n) and 2014 (e, j, o).

Source: Tripathy and Kumar [2019]
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Chapter 5

Computer Experiments

In this chapter, the computer experiments of the proposed method are presented.
For both of the study cases, the evaluation metrics are calculated and a discussion on
the potential of the CA-FTS methodology is exposed. The Chagas disease CA model was
reproduced in order to get the historical dataset and the Delhi datasets are available online
in Amit Kumar [2019]. The cellular automaton based on fuzzy times series (CA-FTS)
strategy is applied for both study cases.

5.1 Spatial Spread of Chagas Disease CA-FTS

Initially, the Chagas CA model was reproduced, considering the traditional rules
described in the previous chapter, and simulated over 1730 days resulting in a set of
historical data. A single day corresponds to a 2-dimensional matrix, representing the CA
lattice, where each element is a CA cell composed of a number of adult vector individuals
and larvae [ny, na] within it. Figure 17 illustrates through a simplified 7× 7 CA Chagas
Lattice with the number of individuals for each cell for a given random day N . The
reproduction considered the same lattice size as the original work, a 30× 30 grid where
each cell represents 1km× 1km in the real world. The total set of time series data is a
collection of 1730 matrices containing the daily information of the total number of adults
and larvae Na(t) and Ny(t) from eq. (4.9). It is relevant to emphasize that this set is the
only input data to build the proposed CA-FTS model, in other words, starting from the
historical time series data, the CA-FTS model is automatically generated and used as
transition rules to reconstruct the original data.

Once the dataset is built, the following steps consist of developing the proposed
model. The variables of interest are defined accordingly with the chosen neighborhood
and other possible exogenous variables. For the Chagas disease study case, there was no
additional variable to the system besides the neighborhood and the central cell information.
For each time-step, a day in the village, the grid was traversed in order to extract the
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Figure 17 – Example of the simplified CA Lattice for a day

variables of interest from the model. A table was created where each row refers to the
configuration of states at an instant (t) that conditioned the state of the central cell at
(t+ 1).

As discussed in Chapter 2, the FTS method is a supervised learning algorithm,
thus the total dataset reproduced was split into train and test. The data from 2 years
simulation, from day 0 to day 730, was separated for the training and the other part to
test, from day 731 to 1730 days. The training data is used to build the FTS model from
the pyFTS library, based on historical data of the variables of the constructed table. The
Weighted-MVFTS method was selected due to its propriety of identity and gives more
importance to the most frequent rules, instead of some that rarely happen during the
dynamical state changes.

Finally, the model was applied to the CA simulation. The test dataset was used
and for each time (t) in each cell of the lattice, the WMVFTS model determines the
state of the cell at (t+ 1). In other words, at this point, the method proposed works as a
standard CA simulation, using as transitional rules the WMVFTS model built from the
historical data of the phenomenon. All of the CAs lattices, or matrices, were stored to
compare the results with the original dataset, extracting the evaluation metrics and the
representation analysis. In terms of parameters used to evaluate the model, it was analyzed
Moore’s and Von Neumann’s neighborhood, with radius 1, as the model’s variables. For
both situations, the WMFTS model was run with 5, 10, 20, and 30 fuzzy sets.

5.1.1 Results and CA-FTS Model Analysis

The graphs in Figures 18, 19, 20, 21 illustrates the simulation results. Green
colored lines represent the test data for adults (AA), in blue the forecasting results using
the CA-FTS model for adults (PA), in orange the test data for larvae (AL), and in
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red the predicted values for larvae (PL). In other words, the continuous lines are the
model-predicted values and the dashed lines are the actual values from the test dataset.

Figure 18 – Simulation results considering Moore Neighborhood (top) and Von Neumann
(bottom) with 5 fuzzy sets.

(a) Moore

(b) Von Neumann
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Figure 19 – Simulation results considering Moore Neighborhood (top) and Von Neumann
(bottom) with 10 fuzzy sets.

(a) Moore

(b) Von Neumann
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Figure 20 – Simulation results considering Moore Neighborhood (top) and Von Neumann
(bottom) with 20 fuzzy sets.

(a) Moore

(b) Von Neumann
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Figure 21 – Simulation results considering Moore Neighborhood (top) and Von Neumann
(bottom) with 30 fuzzy sets.

(a) Moore

(b) Von Neumann
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The metrics were obtained by comparing the original test data with the results
from the CA-FTS model simulation. Tables 1 and 2 present the respective values of nRMSE
and MAE according to the FTS model order and the number of fuzzy sets used, for adults
and larvae respectively. The results were around 12% for nRSME and reached a Mean
Absolute Error (MAE) ranging from 179, 11 to 8, 96. The best configuration obtained was
with the FTS model using the Von Neumann neighborhood with 30 fuzzy sets, for adults
and the Moore neighborhood with 30 fuzzy sets for larvae.

The simulation results, as observed in Figures 18, 19, 20, 21, demonstrate the
model’s capacity to capture and predict the expected pattern of the Chaga’s infestation
along the days, based exclusively on a set of phenomenon historical data. The graphs
obtained are very similar to the original work, shown in Figure 12, where the peak, during
the infestation period hits from 400 to 500 for adult individuals. According to the evaluation
metrics, higher fuzzy set values resulted in better results for both configurations. This
alternative strategy for CA modeling and simulation has a meager computational cost,
around two minutes to build the model, and 1 hour to go over the prediction. Most of the
processing time relies on the CA simulation itself. Furthermore, the functions used are
available in the pyFTS library therefore the construction of the model is simple and easy
to manipulate.

Table 1 – Evaluation metrics for Adults

Neighborhood N° of Fuzzy Sets nRSME MAE
5 42,41% 179,11
10 12,93% 53,07
20 12,69% 52,14

Von
Neumann

30 11,71% 48,13
5 44,83% 189,94
10 13,01% 48,81
20 12,79% 48,06Moore

30 11,81% 44,71

Table 2 – Evaluation metrics for Larvae

Neighborhood N° of Fuzzy Sets nRSME MAE
5 38,73% 12,91
10 38,51% 12,80
20 31,59% 9,88

Von
Neumann

30 29,50% 8,97
5 38,04% 12,98
10 37,79% 12,88
20 30,53% 9,94Moore

30 28,31% 8,96

Following the same strategy as the original work Slimi et al. [2009], the repre-
sentation of the dynamical spread of the vectors over the lattice is also applied. It was
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Figure 22 – CA-FTS Simulation for Chagas disease spread at six stages of Infestation (I)
and Non-Infestation (NI) periods: (a) 5th day - I (b) 40th day - I (c) 90th day
- I (d) 115th day - NI (e) 150th day -NI (f) 180th day - NI (g) 366th day - NI
(h) 401th day - I (i) 430th day - I

(a) 5th day (b) 40th day (c) 90th day

(d) 115th day (e) 150th day (f) 180th day

(g) 366th day (h) 401th day (i) 430th day

considered the best configuration obtained: using Von Neumann neighborhood with 30
fuzzy sets . The results is shown in Figure 22, extracting six stages of the infestation. The
color gradient represents the amount of the adults individuals within a cell: the closer to
red, the more vectors, i. e., the light yellow color represents no adults in the cell.

As described earlier in this section, the starting point of the test dataset is the
beginning of the third year (731th day), as reference to the total dataset reproduced. In this
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way, the first CA lattice image in Figure 22, represents the 5th day of vectors infestation in
the third year and it is possible to see that the bugs are concentrated in the boarder of the
area, once the migration was started. The next image shows the peak of the infestation, in
the 90th day. The vectors are now totally scattered in the lattice and in some areas with a
high number of vectors. The infestation period ends and in both of following images,180th

day and 270th day, is notable the reduction of the bugs over the grid. The results obtained
is very closed to what was presented in the original CA work, shown in the previous
chapter in Figure 11. The infestation and non-infestation Chagas disease behaviors were
captured by the model.

As seen in the applied evaluation metrics, increasing the number of fuzzy sets
resulted in the best FTS model. In terms of metrics, it can be noticed that using Von
Neumann’s neighborhood seems a better option, once the number of variables in the model
is reduced compared to Moore’s neighborhood.

5.2 LUCC in Delhi, India CA-FTS

The complete processed data used in the study Tripathy and Kumar [2019] is
available for download in Amit Kumar [2019]. As described in the previous chapter, the
dataset consists of raster layers, shared as Geo-TIFF files, a public domain metadata
embedded within an image format file mainly used for geo-referencing information. As
detailed in chapter 3, in order to properly deal with these geography TIFF files, visualize
the maps and artificially paint the layers, the QGIS platform was used. The raster layers
collectively provide relevant information about land cover and land use changes over time
in urban sprawl, which form the set of input variables for the CA-FTS proposed system,
similar to the original work. Therefore, the variables used to build the model are:

1. Actual data from 1989, 1994, 1999, 2004, and 2014 based on imagery satellite, with
four classes: Build-up, Water, Vegetation, and Others;

2. CBD distance map with seven levels of distance;

3. Population density maps for years 1991, 2001, 2011, and projections for 2019 and
2024 with nine levels of density;

4. Road Distance map with sixteen levels of distance;

5. Slope map with three degrees;

6. DDA Restricted Area map.

The input variables described are recalled in Figure 23. Those maps were already
presented in Figure 14 and 15 in the previous chapter when explaining the original work
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Figure 23 – Image-based input variables for the CA-FTS model development

(a) Land Cover Data 1989 (b) CBD Dist (c) Pop. Density 2001

(e) Road distance (f) Slope (g) Restricted area

approach. It is relevant to note that in Figure 23 (a) only the first year’s land cover map
is presented, although the other years mentioned were also used.

The pyFTS library offers a variety of data transformations used for data pre or
post-processing. In this sense, the Differential transformation was used in the variables’
data since they had different classes of representation. In order to illustrate it, in the
population density map, the color symbology has a range that goes from 7.500 to 11.000,
i. e., the colors in this map represent a value of thousands of units. On the other hand, for
the slope map, the color symbology represents degrees 1, 2, and 3 units. Therefore, data
pre-processing was necessary in order to equalize the data used for training and testing
the model.

The main strategy for image-based input variables considers the grid of pixels
of the image as the CA lattice. A single pixel represents a CA cell and its states are
represented by the respective pixel’s color - and as explained earlier, each color in the
map characterizes a class of information. The images must have the same size in order to
guarantee that the pixels in different maps and instants match at the exact location. Each
of the maps, representing the variables shown in Figure 23, have 1386× 820 pixels. Then,
the proposed methodology is applied, similarly to the previous epidemiological model.

Building the FTS model starts by considering the training dataset, composed of
the CA rules extracted from the images. The rules were formed based on Von Neumann’s
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neighborhood from the land cover (LC) map and the exogenous variables (EV). Let F (t−1)

be the fuzzified observation at time (t− 1) and FC(t) the center cell fuzzified observation
at time (t), the Eq (3.1), for an order 1 model, can be rewritten as:

FLC(t− 1), FEV (t− 1)→ FC(t) (5.1)

where,

FLC(t− 1) = [FN(t− 1), FS(t− 1), FW (t− 1), FE(t− 1), FC(t− 1))] (5.2)

FEV (t− 1) = [FCBD(t− 1), FPD(t− 1), FRD(t− 1), FSP (t− 1), FRA(t− 1)] (5.3)

Considering North (N), South (S), West (W), East (E), Center (C), Central
Business District (CBD), Population density (PD), Road distance (RD), Slope (SP) and
Restricted area (RA). In other words, for every cell in the image, the rule is formed by
extracting the neighborhood cell’s state, the central cell state, and the additional exogenous
variables for the central cell. Once the extracting process finishes for the training year
image, the complete training data is ready for use by the pyFTS model.

Due to the irregular pixel distribution of the four interest features, the study
case utilized the Multivariate FTS (MVFTS) rather than the Weighted version. Figure 24
presents the percentage of the features per year of the land cover maps. It can be noted
that the River represents only around 0.50% of the pixels, thus, the weighted method
would inappropriately act in favor of the other features.

Although using pyFTS library to build a model is not, in general, a high-cost
processing task, a workaround was necessary to overcome memory limitations, running the
algorithm in a simple personal computer machine (PC) - Intel Core i5 CPU 1.60GHz/2.11
GHz, RAM 8GB. It consists in dividing the image into four quadrants and building four
MVFTS models for each. Since fewer data is processed, the processing cost is lower in
comparison to creating a single model for the whole image and causing memory problems.
The four models follow the same methodology to be constructed, the only change is the
pixel information within each space. They together embody the model for LUCC CA-FTS
forecasting simulation. Figure 25 exemplifies the described strategy.

As mentioned in the earlier section, the training approach for Delhi CA-FTS
simulation considers only one land cover map from the first year available (1989), along
with the exogenous variables, to extract the rules. Due to a large number of pixels, it was
possible to compose a diverse set of rules using only one data map. The process of fitting
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Figure 24 – Pixels distribution per feature for years 1999, 2004, 2009, 2014, 2019, and
2024.

Figure 25 – Four quadrants division and its associated models

the model takes around two minutes and as a result, a completely trained forecast model
is produced. At this point, the model is able to be applied in the CA simulation to predict
future cell states. The year 1989 was used to train the model (extracting the pixel patterns
along the image), then the following years composes the test dataset and used to validate
it, providing an unbiased evaluation. Thus, firstly the model is executed for each pixel
from the 1989 image map (t), forming the predicted 1999 map (t+ 1). This procedure is
continually made for the following years.

The model was analyzed following two configurations related to the data transfor-
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mation applied in the pre-processed phase: the first one it was used BoxCox and the second
the Differential, both available in the pyFTS library. In this way, the QGIS platform was
also used to deal with the files and obtain the visualization and calculate the evaluation
metrics. The system variables were analyzed considering 6 fuzzy sets.

5.2.1 Results and CA-FTS Model Analysis

The first results considered BoxCox transformation in all the variables and it is
presented in Figure 26 for the years 1999 and 2004, on the left is the Actual satellite-based
map and on the right is the obtained CA-FTS forecasting output. Pos-processed and
artificially colored in QGIS, the red color represents the Built-up feature, in green the
Vegetation, in light blue the Water, and in light yellow the Others. A primarily visual
analysis indicates the idea that the model could capture the principal characteristics of
Delhi land in both years based on the previous year’s information. The most notable error
apparently was over the vegetation and built-up feature. Even the Water flag corresponding
to 0, 5% of the pixels in the Actual image was preserved in the model output predicted
map, located in East Delhi. In South West Delhi, which represents a region with a lower
concentration of man-made features, both maps are very close, suggesting there is less
error when dealing with places with this specificity. Figure 27 exhibits the actual and
predicted results for the following years: 2009, 2014, 2019, and 2024.

The evaluation metrics described in chapter 3 for map-based input were calculated
in a way to quantify the differences between the expected image (actual data) and the
image obtained by the CA-FTS model (predicted data). The Producer’s Accuracy (PA)
and User’s Accuracy (UA) for each year and feature were represented using a heat map
from the well-known Python library for data visualization Seaborn. Figure 28 displays both
metrics results (a) for PA and (b) for UA. First, considering the producer’s perspective, it
is possible to observe that the Overall accuracy was an average of 80% for all the analyzed
years, i. e., 80% of the pixels were correctly classified when comparing the expected results
in the land cover map and the results obtained in the predicted one. The River feature,
the one with very few pixels, had lower right classified rates, and Built-up, Vegetation,
and Others had similar rate values. The User’s perspective put the predicted map in front
to compare with the land cover map backward, in order to check if the classified pixel
matches the reference. Although there were missed pixels noted in PA’s heat map, in River,
all of the predicted pixels were indeed River in the reference. A point of attention was in
2014 when in User’s perspective map had a lower accuracy when compared with others.
Vegetation also represented a different behavior for years 2019 and 2024, most of them
were right classified (UA) but the model missed around 40% of the expected in reference.
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Figure 26 – Actual satellite-based data LUCC maps and its respectively CA-FTS forecast-
ing result of Delhi for the years 1999 and 2004 with BoxCox Transformation

(a) Actual 1999 (b) Predicted 1999

(e) Actual 2004 (f) Predicted 2004
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Figure 27 – Actual satellite-based data LUCC maps and its respectively CA-FTS forecasting result of Delhi for the years 2009, 2014, 2019
and 2024 with BoxCox Transformation

(a) Actual 2009 (b) Predicted 2009 (c) Actual 2014 (d) Predicted 2014

(e) Actual 2019 (f) Predicted 2019 (g) Actual 2024 (h) Predicted 2024
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Figure 28 – Accuracy percentages with 6 fuzzy sets with BoxCox Transformation

(a) Producer’s Accuracy

(b) User’s Accuracy

The next testing configuration analyzed considered was using Differential Trans-
formation into the dataset as preprocessing. It is notable the similarity between the actual
and the predicted map, as presented in Figure 29 for the years 1999 and 2004. In the
South West and West Delhi the predicted map it is possible to see some errors around
the Built-up class. The green class is hard to visualize the differences, being necessary a
quantitative notion although suggesting a good fit. The Water, as already obtained in the
last configuration, could be captured even having a low percentage of pixels classified in
comparison with the three others. The following years - 2009, 2014, 2019, and 2024 - are
presented lastly in Figure 30. Overall, the growth pattern behavior was reproduced based
on the first-year configuration and additional information to predict a future behavior
(t+ 1) given a grid composition at time (t).

The same, previously used, evaluation metrics methodology was calculated for the
new set-up configuration and exhibited in Figure 31. Considering the producer perspective,
around 80% of the Built-up pixels (red) in the Reference map matches with the Predicted
map. This means that, overall, 20% of the pixels were wrongly classified as a different class
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Figure 29 – Actual satellite-based data LUCC maps and its respectively CA-FTS forecast-
ing result of Delhi for the years 1999 and 2004 with Differential Transformation

(a) Actual 1999 (b) Predicted 1999

(e) Actual 2004 (f) Predicted 2004

than Built-up, the expected one. The River feature for years 2009 and 2014 had a lower
accuracy percentage, indicating that something relevant may have happened in those years
that wasn’t taken into account in the system variables and the model fit. Following the
same line of thought, all of the pixels (100%) for Vegetation and Others are paired when
comparing the reference map for the analyzed years, i. e., whenever the reference map
was expecting Vegetation and Others, the predicted map output the respective class. It
demands to evaluate the other perspective’s accuracy to validate the percentage of pixels
classified as both classes in the Predicted map but wasn’t expecting them in Reference
one.

The UA heat map offers the option of obtaining the evaluation metrics from the
angle of the Predicted Map. The first notable result is that the 100% of the Build-up
classes in the Predicted map are indeed Build-up in the Reference map. For Vegetation
and Others, an average of 90% was obtained. The 20% error in the Build-up feature in PA
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heat map was in. The lack in the years 2009 and 2014 was also identified in the UA map,
reinforcing the thought of a missing relevant factor that wasn’t considered by the model.

It is notable that the second CA-FTS model configuration had better metrics
considering both approaches: qualitatively, through the map images, and quantitatively,
with the PA and UA metrics in the heat map presented. It is relevant to mention that the
model overfitting was avoided using only the first year as train data to build the MVFTS
model and then applied it in the simulation for the following years.

In practice, the simulation execution indicated that the greater the number of
cells in the CA lattice, the greater the time cost, once the pyFTS models need to go over
each of the cells individually. In terms of image, for instance, the CA lattice can have
thousands of cells (pixels). In terms of CAs simulations, this fact is expected and one of
the biggest gains of using pyFTS methods is the lower time costing, taking from five to
ten minutes to build the model with the earlier mentioned computer configuration.
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Figure 30 – Actual satellite-based data LUCC maps and its respective CA-FTS forecasting result of Delhi for the years 2009, 2014, 2019
and 2024 with Differential Transformation

(a) Actual 2009 (b) Predicted 2009 (c) Actual 2014 (d) Predicted 2014

(e) Actual 2019 (f) Predicted 2019 (g) Actual 2024 (h) Predicted 2024
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Figure 31 – Accuracy percentages with Differential Transformation

(a) Producer Accuracy

(b) User Accuracy

5.3 Discussion

The complexity in a multivariate model can be associated with the number of
variables considered, once it increases the rule combinations Song [1999]. In this sense, it
is notable that using pyFTS, using a basic personal computer configuration, represents
a better option rather than using a metaheuristic search algorithm or genetic algorithm
to calibrate a CA model. The proposed method, for both study cases, takes less than
ten minutes to build the model, using the pyFTS library, and a fitness calculation of
an optimization process can take hours, often used in a classic CA model for tuning
the parameters transitional rules. Moreover, the proposed method can be used to model
natural phenomena without the aid of advanced and complex studies, once the data-driven
model is fully developed.

The strategy to overcome memory limitations, allocating four FTS models for
each quadrant of an image, described in the Delhi case, demonstrated an interesting
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aspect when using the pyFTS library. In others scenarios, one can choose different pyFTS
methods for each region of an image, fitting a better model into the dataset peculiarities.
The flexibility of the FTS framework is positive once it allows adaptation of the model
parameters, meeting the problem specifications, in order to select good metrics results.

Although the CA-FTS model could extract information from historical images
and build future scenarios, improvements need to be refined in order to consider different
shapes on spatial distribution. In Delhi’s case, using only one year as the training dataset,
the model’s rules contained the patterns of pixels for just a one time step. Improvements
are necessary in order to consider other relevant information concerning climate change
impacts, social economics dynamics, and others data to have a better spatio-temporal
dynamic simulation. In both study cases, the obtained overall accuracy was greater than
the Data-mining strategy, presented in Li and Yeh [2004], which had an average overall
accuracy of 75%, in contrast to the around 95% using CA-FTS methodology.

The main advantage of CA-FTS methodology is the possibility of building the CA
transitional rules without the need to infer and specify the rules for each study case, as
traditionally CA simulations require. The rules are extracted from the data and variables
that can be collected in several ways, as briefly discussed in Chapter 1. CA-FTS offers high
accuracy and it can be used for spatio-temporal phenomena in which not much technical
information is known, and once the data is available, the model can be constructed and
the rules can be visualized and audited.
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Chapter 6

Conclusions

Modeling real-world dynamical behavior is not a simple task and several (old and
recent) strategies have been developed to simulate, classify and predict different types of
scenarios. In the past, a set of differential equations were necessary to be calculated and
defined in order to obtain a certain level of knowledge of a dynamical process. It is notable
that the evolution of sciences and technologies opened new doors to overcome barriers and
computers are important tools to support these types of simulations.

Cellular automata models are broadly used to simulate real-world dynamical
systems. Its intrinsic discrete nature allows the reproduction of complex behaviors based
on a set of simple rules, which can be complicated to be determined, requiring years
of research, parameters calibration of optimization functions, or usage of Black-box AI
algorithms. In this context, this work aimed to present a procedure to facilitate CA-based
simulations, replacing the traditional set of transitional rules with a data-driven approach
through fuzzy time series, named CA-FTS. FTS is a supervised algorithm forecasting
framework and its flexibility is observed in a myriad of studies, as discussed in Chapter
2, and the integration with the CA perspective was conceptually proved in this work. In
other words, CA-FTS can induce transition rules for a cellular automaton, reproducing the
spatio-temporal dynamics extracted from the original dataset. Furthermore, the discovered
rules are interpretable and can help understand the problem’s underlying dynamics.

The detailed mathematical background that supports the CA-FTS method was
presented and applied to two different study cases, an epidemiological model for Chagas
disease spread and LUCC in Delhi, India. The model was constructed using the training
dataset and validated with the test dataset. The obtained results indicated the potential of
the CA-FTS modeling in the spatio-temporal dynamical simulation domain. Improvements
to consider shapes, sizes, and rotation, for instance, are necessary to obtain a more
accurate dynamic simulation, close to real-world scenarios. In terms of metrics, in the
Chagas disease spread simulation, the normalized-RSME, and MAE had an average of
12% error. In LUCC Delhi studies, an overall accuracy of 90% was obtained, opposing the
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75% in the Data-mining strategy proposed by Li and Yeh [2004], representing a significant
improvement.

6.1 Future work

As a future project, probabilistic cellular automata can be developed in order
to capture non-deterministic phenomena. Although it would include a parameter in the
CA-FTS process, it can potentially improve certain types of real-world systems. The
proposed methodology can also be evaluated in different types of datasets and processes.
Since the current work is an initial work development, as a proof of concept, future work
would involve the model comparison with traditional time series forecasting methods such
as ARIMA, ARMA, SARIMA, and Holt-Winters, for instance.

In terms of application, there are numerous complex phenomena that can be
applied and investigate CA-FTS abilities. Ultimately, the implementation of the CA-FTS
approach in the pyFTS library will allow the method to be made accessible to the broader
community.

6.2 Related Publications

In addition to the present work, a preliminary publication was generated focusing
on the Chagas disease implementation:

ASTORE, L. M.; GUIMARÃES F. G. A.; JUNIOR, C. A. S. “Automatic Rule
Generation for Cellular Automata using Fuzzy Times Series Methods” – 11th Brazilian
Conference on Intelligent Systems (BRACIS) , 2022.
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