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Abstract
Aim: Human-driven impacts constantly threat amphibians, even in largely protected 
regions such as the Amazon. The Brazilian Amazon is home to a great diversity of 
amphibians, several of them currently threatened with extinction. We investigated 
how climate change, deforestation and establishment of hydroelectric dams could 
affect the geographic distribution of Amazonian amphibians by 2030 and 
midcentury.
Location: The Brazilian Amazon.
Methods: We overlapped the geographic distribution of 255 species with the loca-
tion of hydroelectric dams, models of deforestation and climate change scenarios for 
the future.
Results: We found that nearly 67% of all species and 54% of species with high degree 
of endemism within the Legal Brazilian Amazon would lose habitats due to the hydro-
electric overlapping. In addition, deforestation is also a potential threat to amphibi-
ans, but had a smaller impact compared to the likely changes in climate. The largest 
potential range loss would be caused by the likely increase in temperature. We found 
that five amphibian families would have at least half of the species with over 50% of 
potential distribution range within the Legal Brazilian Amazon limits threatened by 
climate change between 2030 and 2050.
Main conclusions: Amphibians in the Amazon are highly vulnerable to climate change, 
which may cause, directly or indirectly, deleterious biological changes for the group. 
Under modelled scenarios, the Brazilian Government needs to plan for the develop-
ment of the Amazon prioritizing landscape changes of low environmental impact and 
economic development to ensure that such changes do not cause major impacts on 
amphibian species while reducing the emission of greenhouse gases.
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1  | INTRODUC TION

The world’s tropical biodiversity remains strongly threatened di-
rectly or indirectly by human impacts (Newbold et al., 2014). Land 
use and climate changes along with infrastructure development (e.g., 
establishment of hydroelectric dams) are major threats to tropical 
biodiversity (Finer & Jenkins, 2012; Khaliq, Hof, Prinzinger, Bohning-
Gaese, & Pfenninger, 2014; Newbold et al., 2014). Among critical 
impacts are changes in the structure of ecological assemblages 
(Echeverría-Londoño et al., 2016; Newbold et al., 2016) and in na-
tive vegetation structure (Aleman, Blarquez, & Staver, 2016), which 
cause loss of biodiversity and ecosystem functions. Considering the 
synergistic effects of land use and climate change, it is essential to 
understand their potential impacts on biodiversity (Brodie, 2016) 
and to enable the development of management strategies and con-
servation policies that safeguard Earth’s natural heritage (Titeux 
et al., 2016).

The Brazilian Amazon currently faces several threats to its con-
servation. It is the richest rain forest on Earth, and among all its 
biodiversity, amphibians are one of the vertebrate groups most sen-
sitive to environmental changes (Nori et al., 2015; Wells, 2010). The 
establishment of hydroelectric dams has been listed as a threat to 
amphibian populations in the Amazon (IUCN, 2016), and over the 
next years, a set of new hydroelectric are planned to be built in the 
region (Castello & Macedo, 2016; Finer & Jenkins, 2012). These new 
hydroelectric may potentially cause social and environmental im-
pacts (Fearnside, 2016; Prado et al., 2016), such as fragmentation 
and habitat loss, disruption of populations and local extinctions. In 
Brazil, the construction of hydroelectric plants has already caused 
population declines and local extinctions of amphibians (Brandão 
& Araújo, 2008; Lima et al., 2015; Moraes, Pavan, Barros, & Ribas, 
2016) in addition to threatening important, but not well-known evo-
lutionary systems of amphibians such as hybrid zones (Simoes, Lima, 
& Farias, 2012). The establishment of new hydroelectric plants also 
has indirect impacts such as deforestation caused by the construc-
tion itself, the reservoirs and migration of workers, which are also 
critical to the survival of amphibians (Finer & Jenkins, 2012).

Satellite monitoring data shown that deforestation have in-
creased in the Amazon over the last five years (Fearnside, 2015a). 
Deforestation and habitat fragmentation can limit dispersion of 
amphibian species causing a decrease in gene flow and, as a con-
sequence, loss of genetic diversity (Cushman, 2006; Dixo, Metzger, 
Morgante, & Zamudio, 2009). Land use changes have also serious 
impacts on amphibians, especially when forest areas are converted 
to crops, changing environmental quality, and species richness and 
abundance of amphibians (Schmutzer, Gray, Burton, & Miller, 2008). 
Further, land use is an important biogeographic driver to determine 
the spatial distribution and evolution of amphibian species. Thus, 
land use change it is a threat, which can jeopardize the conservation 
of entire lineages of the group (Brum et al., 2013).

Hydroelectric dams building and land use change also contrib-
ute to climate warming (Fearnside, 2015b; Lejeune, Davin, Guillod, 
& Seneviratne, 2015). All over the world, temperature increases 

have been related to reduction in species survival, changes in the 
reproductive characteristics of amphibians and the advance of infec-
tious diseases (Pounds et al., 2006; Reading, 2007; Ron, Duellman, 
Coloma, & Bustamante, 2003). Despite all these threats, no amphib-
ian extinction has been recorded in the Amazon until now, although 
an increasing number of studies highlighted the high vulnerability of 
amphibians to climate change in the Brazilian Atlantic Forest (Lemes 
& Loyola, 2013; Lemes, Melo, & Loyola, 2014; Loyola, Lemes, Brum, 
Provete, & Duarte, 2014) and in the Amazon.

Here, we quantified how the expansion of hydropower, forest 
loss and climate change affect the distribution of Amazonian am-
phibians. By considering different threats to amphibians, we also 
assessed the direct and indirect effects of these changes and inform 
decision-making for the conservation of this imperilled group.

2  | METHODS

2.1 | Species’ data

Data on amphibian distribution were obtained at the International 
Union for the Conservation Nature website (IUCN version 2015.4; 
Red List Spatial Data, www.iucnredlist.org). We only selected spe-
cies that had any portion of their distribution inside the Brazilian 
Legal Amazon limits, corresponding to a total of 255 species (see 
Appendix S1). To evaluate species with different degrees of en-
demism in the Amazon extent, we presented data based on (1) 
all species and (2) species with >80% of the distribution ranges 
within the Brazilian Legal Amazon (see Appendix S1). For Anurans, 
we only included species that were also reported for the Amazon 
biome (Toledo & Batista, 2012). These extent of occurrence maps 
are usually used in an initial approach in areas with high biodiver-
sity levels and low information of presence and absence of species 
(Lemes, Faleiro, Tessarolo, & Loyola, 2011), which is the case of the 
Brazilian Amazon. Furthermore, these data are a good representa-
tion of the distribution of amphibian species and have a good accu-
racy in large-scale analyses (Ficetola et al., 2014). These range maps 
have also been extensively used in conservation and applied studies 
as they were generated and/or validated by experts in each taxo-
nomic group (Lemes & Loyola, 2013; Loyola et al., 2014; Nori et al., 
2015; Sales, Neves, De Marco, & Loyola, 2017). However, we need 
to interpret results obtained from range maps carefully, as they have 
inherent commission and omission errors in species distributions, 
especially in tropical areas of South America (Ficetola et al., 2014; 
Sales et al., 2017).

2.2 | Hydroelectric data

We obtained information on the location points of 3,176 hydroelec-
tric plants for the Brazilian territory at the National Electric Energy 
Agency of Brazil website (ANEEL; Georeferenced Information 
System of the Electric Sector, 2016, sigel.aneel.gov.br). From these 
total, 474 were large hydroelectric plants (LHP, >30 MW) and 2,702 
were small hydroelectric plants (SHP, >1 MW <30 MW). We only 
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included in the analysis three categories of hydroelectric: (1) planned, 
(2) under construction and (3) in operation within the Legal Brazilian 
Amazon corresponding to a total of 520 hydroelectric plants (131 
LHP and 389 SHP) (Figure 1a).

2.3 | Land use data

We obtained current (2012) and projected (2030 and 2050) land 
use maps at 500 m of resolution from Soares-Filho et al. (2016). 
This dataset was derived from a suite of models and a wide geo-
graphic dataset information (e.g., maps of suitable land for mecha-
nized agricultural expansion and data of land titling and information 
of priority conservation and exploration areas, see maps.csr.ufmg.
br) to model scenarios of land use and land use change (for more 
details, see Soares-Filho et al. [2016]). To use these maps, we con-
sidered only the forested areas as potential habitat; deforested 

areas such as urban or grazing zones were not considered in the 
analysis.

2.4 | Climatic data

We obtained data on mean annual temperature for current (1950–
2000) from the WorldClim database (version 1.4; www.worldclim.
org) and for projections for the future (2030 and 2050) from the 
Consortium of International Agricultural Research Centre’s website 
(CGIAR; ccafs-climate.org).

The current mean annual temperature is the result of the in-
terpolation of global monthly climate data (for further details, see 
Hijmans, Cameron, Parra, Jones, and Jarvis [2005]). To create the 
interpolation, Hijmans et al. (2005) used data from 24,542 weather 
stations around the world. The WorldClim data resolution for this 
study was 5 min. Data on future climate projections were derived 

F IGURE  1  (a–e) Location of the 
study area. (a) Legal Brazilian Amazon 
geographic limits and hydroelectric points 
(black and white circles represent small 
(SHP) and large (LHP) hydroelectric plants, 
respectively); (b,c) deforestation scenarios 
for the Amazon according to Soares-
Filho et al. (2016), for 2030 and 2050, 
respectively; (d,e) difference in the mean 
annual temperature between the present 
and climatic scenarios for 2030 and 2050, 
respectively [Colour figure can be viewed 
at wileyonlinelibrary.com]
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from three alternative models (GISS, MIROC and MRI) for 2030 
and 2050 at a spatial resolution of 5 min of latitude/longitude 
based on a high-emission greenhouse gases scenario proposed by 
Intergovernmental Panel on Climate Change (IPCC) (Representative 
Concentration Pathway; RCP 8.5). According to this scenario, 
emissions of greenhouse gas continue to rise throughout the 21st 
century. Although global circulation models (GCMs) can show low 
accuracy for fairly populated regions, we ran analysis using three of 
the most accurate GCM that showed low uncertainties based on low 
standard deviations (Figure S1).

2.5 | Species’ vulnerability analysis

To evaluate the threats of hydroelectric plants, we overlapped the 
location points to each species’ ranges and calculated the number 
and density of hydroelectric dams within each species’ range in the 
Legal Brazilian Amazon limits. To assess the species vulnerability to 
land use changes, we identified the current forest cover within each 
species’ range (within the Legal Amazon extent) according to land 
use model for the current period (Soares-Filho et al., 2016). We con-
sidered as species ranges only cells containing areas of forest cover. 
For each species’ range cell, we identified the forest cover change in 
future for each period (2030 and 2050) and considered vulnerable 
cells that might be deforested in future. In order to assess amphibian 
vulnerability to climate change, we computed for the entire species’ 
range (not only species range within the Amazon extent) the maxi-
mum value of temperature at which species is currently exposed. As 
data on species’ physiological limits are scarce, the maximum values 
of temperature could represent a good proxy to species tolerances 
(Foden et al., 2013).

For each cell overlapping amphibian species range, we first 
calculated an average future temperature based on three climate 
models for each period (2030 and 2050). We only computed future 
temperatures within cells of species range if any part was covered 
by forest land use. We considered that species would potentially 
be exposed to climate change in those cells where future climate 
temperature exceeds the maximum current temperature at which a 
species is already exposed (for a similar approach, see Ribeiro, Sales, 
De Marco, and Loyola [2016]).

Finally, we overlapped the climatic exposition and the forest loss 
maps to identify areas where species may potentially be exposed to 
both threats simultaneously. As we only assessed the proportion of 
the area affected by threats inside the limits of the Legal Brazilian 
Amazon, we resized the values to be relative of the entire species’ 
distribution range. All analyses and figures were performed and built 
in ArcGis10.4 (ESRI, 2015) and R version 3.3.1 (R Core Team, 2016) 
using the raster package (Hijmans, 2016).

3  | RESULTS

The 255 species studied correspond to 19 families of Amazonian 
amphibians, and 13% of species has unknown status or is classified 

into some category of threat (IUCN, 2016). From this total 63 species 
from 13 families presented high degree of endemism in the Amazon 
extent, with >80% of their distributions within the Brazilian Legal 
Amazon. For the entire Brazilian Amazon, 520 hydroelectric plants 
are predicted, and most of these constructions are planned to be 
built near the Arch of Deforestation, on the east and south regions 
of the Amazon (Figure 1a).

From the total of 255 species of Amazonian amphibians and 
63 with >80% of their distribution range within the Brazilian Legal 
Amazon, 170 species (67%) and 34 (54%) overlapped their distribu-
tions with hydroelectric plants, respectively (Table 1). Among the 
families with species with higher degree of endemism that would 
be less threatened are Bufonidae (1 sp.), Eleutherodactylidae (1 sp.), 
Pipidae (1 sp.), Siphonopidae (1 sp.) and Typhlonectidae (1 sp.). On 
the other hand, Dendrobatidae (4 spp.), Leptodactylidae (5 spp.) and 
Microhylidae (5 spp.) would have more than 50% of their highly en-
demic species within the Legal Amazon limits threatened by hydro-
electric plants (Table 1). The family Hylidae should be the one with 
higher density of hydroelectric plants in relation to the distribution 
range of species with high degree of endemism within the Legal 
Brazilian Amazon (Table 1).

Overall, Bufonidae, Hylidae, Leptodactylidae, Microhylidae 
and Siphonopidae are the families that should be most threatened 
with the construction of hydroelectric plants (Figure 2). Species of 
those families might be already suffering loss of area due to the con-
struction and operation of at least 162 hydroelectric power plants 
(Appendix S1). If all the planned hydroelectric plants were built, there 
would be 520 constructions overlapping those families’ territories.

The species Hypsiboas leucocheilus and Pristimantis variabilis from 
the Hylidae and Craugastoridae families, respectively, showed the 
higher densities of hydroelectric plants, considering their small dis-
tribution ranges within the Legal Brazilian Amazon (Appendix S1).

According to land use change models, between 2030 and 
2050, 200 species will likely to lose area due to deforestation. 
Among those species, Oreobates heterodactylus and Elachistocleis 
carvalhoi, both with higher degree of endemism, will potentially 
lose over 10% of their distribution areas within the Legal Brazilian 
Amazon (Appendix S1). From all amphibian species, 37 with higher 
endemism in the Legal Amazon would reduce their distributions’ 
range due to land use change in 2030 and 2050 (Table 2). Even 
though deforestation is a local change, it is possible that the po-
tential loss of amphibians’ range will increase due to this threat 
(Figure 3).

The greatest potential loss of distribution area was caused by cli-
mate change (Figure 3; Appendix S1). We found that five amphibian 
families would have at least half of their species with over 50% of 
distribution area potentially threatened by the climatic changes be-
tween 2030 and 2050 (Appendix S1). The amphibian species would 
have on average 19.1% and 29.9% of area within the Legal Brazilian 
Amazon limits potentially exposed to increasing temperatures in 
2030 and 2050, respectively. Considering only species with high en-
demism in the Amazon extent, 55 (87.3%) would lose area due to in-
creases in temperature in 2050 (Appendix S1). The mid-west portion 
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of the Brazilian Legal Amazon presents an area that is more prone to 
impacts by climatic exposure and land use combined with concen-
tration of distribution of amphibian species with higher degree of 
endemism in the Legal Brazilian Amazon (Figure 4a,b).

4  | DISCUSSION

Our study evaluated the threats caused by environmental 
and landscape changes over Brazilian Amazonian amphibians 

TABLE  1 Total number of (1) all amphibian species and (2) species with high degree of endemism (>80% of distribution range with the 
Amazon extent) affected by hydroelectric plants in the Legal Brazilian Amazon for each family of amphibians. Mean density (range) of 
hydroelectric plants reported by 10,000 km2

Family

All species Species with high degree of endemism in the Amazon

No. Species/ 
hydroelectric

Mean hydroelectric  
density (range)

No. Species/ 
hydroelectric

Mean hydroelectric density 
(range)

Allophrynidae 1/1 0.55 0/0 0

Aromobatidae 15/8 0.81 (0.22–1.90) 11/5 0.92 (0.22–1.90)

Bufonidae 21/11 1.78 (0.07–7.43) 5/1 0.35

Caeciliidae 2/2 0.25 (0.12–0.39) 0/0 0

Centrolenidae 2/0 0 0/0 0

Craugastoridae 28/11 61.72 (0.10–673.44) 4/2 0.41 (0.24–0.57)

Dendrobatidae 19/12 1.48 (0.16–9.94) 6/4 0.40 (0.16–0.64)

Eleutherodactylidae 2/2 0.55 (0.45–0.64) 1/1 0.45

Hemiphractidae 2/0 0 0/0 0

Hylidae 85/60 668.61 (0.03–40,000.00) 17/8 5,000.48 (0.22–40,000.00)

Leptodactylidae 49/40 3.93 (0.02–18.26) 7/5 1.63 (0.48–5.37)

Microhylidae 15/12 1.42 (0.03–6.85) 6/5 0.46 (0.03–0.81)

Odontophrynidae 1/0 0 1/0 0

Pipidae 3/3 0.50 (0.32–0.78) 1/1 0.32

Plethodontidae 2/1 0.09 1/0 0

Ranidae 1/1 0.75 0/0 0

Rhinatrematidae 1/1 2.49 0/0 0

Siphonopidae 3/3 3.10 (0.81–6.85) 1/1 0.81

Typhlonectidae 3/2 0.46 (0.33–0.58) 2/1 0.58

F IGURE  2  (a,b) Overlap of planned (grey) and under construction and in operation (red) hydroelectric plants over the distribution of 
amphibian families with (a) all species and (b) species with >80% of their distribution range within the Legal Brazilian Amazon. The number of 
amphibian species per family is shown in parentheses [Colour figure can be viewed at wileyonlinelibrary.com]
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throughout the next three decades. We showed the potential syn-
ergistic threat of the hydroelectric plants implementation, the loss 
of forest cover and temperature rise on the diversity of Amazonian 
amphibians. The installation of hydroelectric plants and land use 
changes generates the release of greenhouse gases, contributing 
to global temperature changes. The complex simultaneous action 
of several factors, environmental and anthropic, should be con-
sidered as an important driver for the conservation of amphibians 
(Sodhi et al., 2008; Whitfield et al., 2007). We considered Brazilian 
Government planning to use the potential of the Amazon basin 
to increase energy production by 60% until 2030 (MME, 2007) 
and the growth in hydroelectric numbers in the Brazilian Amazon 
(Castello & Macedo, 2016). Further, the potential loss of species 
is certainly underrated because of the low taxonomic knowledge 
and patterns of intraspecific diversity in tropical regions (Diniz, 
Loyola, Raia, Mooers, & Bini, 2013; Fouquet et al., 2007; Simoes 
et al., 2014).

The increase in the number of hydroelectric plants in the Brazilian 
Legal Amazon also brings an indirect concern, the increase in de-
forestation. The establishment of new hydroelectric plants has the 
potential to increase the deforestation rates due to the formation of 
the reservoir and construction of new roads and transmission lines 
(Fearnside, 2008; Finer & Jenkins, 2012). These interventions are 

well documented as important factors in the deforestation of trop-
ical forests (Chen, Powers, de Carvalho, & Mora, 2015; Laurance, 
Goosem, & Laurance, 2009). We showed that, despite localized, de-
forestation advances over the distribution area of amphibians, hav-
ing agriculture and livestock as the main drivers, which have been 
observed previously (Almeida et al., 2016). The conversion of forests 
to pastures is an important factor and influences the number and di-
versity of amphibians (Bernarde & Macedo, 2008; da Silva, Candeira, 
& Rossa-Feres, 2012) because it has an effect over the availability 
of food and reproductive sites, and it can cause microclimatic alter-
ations as well as a decrease in the dispersion, that limit the survival 
of some amphibian species. Land use change and the long-term de-
forestation create an extinction debt on native species which could 
increase species losses in the Amazon (Rosa, Smith, Wearn, Purves, 
& Ewers, 2016).

Our work also highlights that, among the species with the 
highest degree of endemism in the Amazon region, the H. leu-
cocheilus is the most threatened by the construction of hydro-
electric plants. However, this result should be interpreted with 
caution, as this species was previously within the genus Hyla 
and has only been moved to the resurrected genus Hypsiboas re-
cently (Faivovich et al., 2005); thus, there is little information on 
its extent of occurrence (Caramaschi, 2004). Among all species 

TABLE  2 Total number of amphibian species and species with high degree of endemism (>80% of distribution range with the Amazon 
extent) affected by future threats in the Amazon (deforestation and climate change) for each family of amphibians

Family
Number of 
all species

Number of species affected by

Number of species  
with high degree of 
endemism

Number of species affected by

Land use 
change 
2030/2050

Climate 
change 
2030/2050

Land use 
change 
2030/2050

Climate 
change 
2030/2050

Allophrynidae 1 1/1 1/1 0 0 0

Aromobatidae 15 7/9 14/14 11 4/6 10/10

Bufonidae 21 10/12 18/19 5 1/2 3/4

Caeciliidae 2 2/2 2/2 0 0 0

Centrolenidae 2 0/0 2/2 0 0 0

Craugastoridae 28 3/4 27/28 4 3/3 4/4

Dendrobatidae 19 9/9 18/18 6 3/3 5/5

Eleutherodactylidae 2 1/1 2/2 1 1/1 1/1

Hemiphractidae 2 0/0 2/2 0 0 0

Hylidae 85 48/55 79/81 17 6/6 13/13

Leptodactylidae 49 33/35 48/49 7 6/6 7/7

Microhylidae 15 10/12 15/15 6 5/6 6/6

Odontophrynidae 1 0/0 1/1 1 0/0 1/1

Pipidae 3 3/3 3/3 1 1/1 1/1

Plethodontidae 2 2/2 2/2 1 1/1 1/1

Ranidae 1 1/1 1/1 0 0 0

Rhinatrematidae 1 0/0 0/1 0 0 0

Siphonopidae 3 3/3 3/3 1 1/1 1/1

Typhlonectidae 3 2/2 2/2 2 1/1 1/1

Total 255 135/157 240/246 63 33/37 54/55
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studied, P. variabilis is the second with highest density of hydro-
electric plants within its distribution inside the Legal Brazilian 
Amazon. To protect amphibian species, the Brazilian Government 
needs to evaluate new alternatives for the generation of energy 
in the Amazon, besides expanding the efforts to reduce defor-
estation in the region.

We found that the exposure to temperature rise represents the 
greatest threat to the distribution area of Amazonian amphibians, 
because it happens at a scale higher than deforestation or the ef-
fects of the hydroelectric plants. Studies characterize the Amazon 
as an area of high vulnerability to climatic changes for amphibians 
(Foden et al., 2013) and other groups (Ribeiro et al., 2016), especially 
because of the great diversity of species that occur in this biome. It is 
important to consider the direct and indirect effects of temperature 
rise in various aspects of the amphibians’ lives (Carey & Alexander, 
2003). Studies observed that global warming can harm amphibians’ 
physiology, causing an increase in the susceptibility to infections 
(Raffel, Rohr, Kiesecker, & Hudson, 2006), as well as higher mortality 
rate and decrease in fertility (Reading, 2007). Taking into account 
the limits of physiological tolerance of the species, especially the 
temperature, is a key point for the conservation of species in the 
current scenario of climate changes (Seebacher & Franklin, 2012). 
Considering the possibility of extreme thermal events occurring in 
future, the low thermal tolerance (Gutierrez-Pesquera et al., 2016) 
and limited dispersion capacity of amphibians (Sinsch, 1991), stud-
ies focusing on the conservation of these groups should become 
priority.

However, as we calculated climate change exposition based on 
the number of the cells within the distribution range where climate 
temperature exceeds the maximum current temperature of the 
species’ distribution, we are not considering that species can track 

appropriate conditions in space and shift their distributions (Bellard, 
Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012). Also, predic-
tions of gains in amphibian species as a result of potential climate 
change shifts in species distributions were already documented 
(Blaustein et al., 2010).

It is important to highlight that we are only evaluating species 
that have distributional ranges within the limits of the Legal Brazilian 
Amazon. For example, the Ranidae and Rhinatrematidae families, 
both with one species in our study area, will have a low potential cli-
matic threat in 2030; however, by 2050, more than 80% of the fam-
ily range of Rhinatrematidae may have its area affected by climate 
change. Even with this potential threat, these particular species of 
these families are not listed in any status of threat and have no major 
threats highlighted by the IUCN (Gaucher, MacCulloch, Wilkinson, 
& Wake, 2004; La Marca, Azevedo-Ramos, Coloma, Ron, & Hardy, 
2010).

All these changes in landscape should be part of the planning 
of the region, aiming to avoid large losses in the local biodiversity 
and to reduce the release of greenhouse gases and consequently 
the temperature rise. Global warming is a large-scale threat, es-
pecially in the Amazon, and that is why Brazil must retake lead-
ership (Loyola, 2014) when it comes to environmental issues. 
Diversification of energy sources should be a key factor in en-
suring that Brazil can expand its energetic production (Corrêa da 
Silva, de Marchi Neto, & Silva Seifert, 2016; Herreras Martínez 
et al., 2015) without contributing to forest loss and climate warm-
ing. Such expansion should prioritize renewable sources of energy, 
such as solar or wind; review investments in large hydroelectric 
plants; and manage measures that can reduce the impact of large 
constructions and reduce deforestation rates and climatic changes 
in the region.

F IGURE  3  (a,b) Future threats for 
amphibians in the Brazilian Amazon. Chart 
bar showing for each amphibian family 
the mean percentage of the distribution 
range within the Legal Brazilian Amazon 
that would be affected by climate change, 
deforestation and both threats combined. 
(a) All species and (b) species with >80% 
of their distribution range within the 
Legal Brazilian Amazon, in 2030 and 
2050 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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