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Resumo

Desenvolver modelos preditivos é uma tarefa complexa, pois envolve a incerteza e o compor-
tamento estocástico de variáveis. Especificamente no que diz respeito às commodities, prever
com precisão seus preços futuros permite minimizar riscos e estabelecer mecanismos de suporte
à decisão mais confiáveis. A discussão sobre este assunto é extensa, e a atenção acadêmica
está sendo dada à construção de modelos não paramétricos para serem aplicados aos mercados
de energia. Estes modelos apresentaram resultados preditivos promissores, o que justifica esta
pesquisa. Diante do exposto, formula-se o seguinte questionamento: Como é possível prever
com precisão os preços de energia no mercado spot brasileiro? A presente tese fornece uma
revisão sistemática da literatura sobre os principais métodos de previsão aplicados ao setor de
energia. No presente estudo, foi possível identificar lacunas de pesquisa e, assim, propor novos
modelos preditivos. Esta tese apresenta modelos preditivos baseados na ideia de análogos. Os
análogos consistem no processo de escanear uma série temporal e então, identificar padrões
(os chamados "matchs") semelhantes às últimas observações disponíveis. Além disso, a recente
teoria hierárquica de previsão de séries temporais foi incorporada, uma vez que muitos bancos
de dados de energia têm padrões de dependência bem definidos entre si.

Palavras-Chave: análise exploratória de dados, aprendizado de máquina, big data, ciência
de dados, estatística aplicada, métodos quantitativos, preço da eletricidade, previsão, revisão
sistemática da literatura, séries temporais.



Abstract

Developing predictive models is a complex task since it deals with the uncertainty and the
stochastic behavior of variables. Specifically concerning commodities, accurately predicting their
future prices allows for risk minimization and establishment of more reliable decision support
mechanisms. Discussion of this issue is extensive, and academic attention is being paid to the
construction of nonparametric models to be applied to energy markets. They have presented
promising predictive results, which justifies this research. Given the above, the following question
is formulated: How is it possible to predict energy prices accurately in the Brazilian spot market?
The present thesis provides a systematic literature review of the main forecasting methods applied
to the energy sector. In the present study, it was possible to identify research gaps and, thus,
propose new predictive models. The present thesis presents predictive models based on the idea of
analogs. Analogs consist of scanning a time series and identifying patterns (so-called "matches")
that are similar to the last available observations. Additionally, the recent hierarchical time
series prediction theory has been incorporated, since many energy databases have well-defined
dependency patterns.

Keywords: applied statistics, big data, data science, exploratory data analysis, electricity price,
forecasting, machine learning, quantitative methods, systematic literature review, time series.
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1 Introduction

1.1 Context, and problem of the research

Energy planning policies arouse the interest of regulatory agencies, local governments
and the business sector. However, reconciling the interests of all the agents involved is not a
simple task (Bhattacharyya, 2019) since, for the management to be fulfilled, it is necessary to
achieve simultaneous success in: energy supply, attracting investments, the fiscal balance of
the government, and tariff modicity (Rao, 2004). Additionally, investing in renewable energies
in the present portends reducing the use of fossil fuels in the future, thus generating a positive
externality for society (Tjørring & Gausset, 2015). Therefore, the promotion of energy policies
favors regional development and, consequently, an improved standard of living for individuals
(Xu et al., 2019).

Due to the complexity of this issue, and the number of variables involved, public policies
for energy trading occupy a prominent place in the energy industry since such policies should
provide security in the investment environment (Pablo-Romero, Pozo-Barajas, & Yñiguez, 2017).
Thus, a safe marketing regime is one that accurately signals the price of electricity to agents,
allowing them adequately to remunerate the efficiency, reliability and flexibility of the energy
generating sources (Wan, Lin, Wang, Song, & Dong, 2016).

In this context, the Brazilian government defined the attributions of the Electric Energy
Trading Chamber (CCEE) with Decree No. 5,177/2004 (Brazil, 2004). One of the CCEE ′s main
responsibilities is to account for the amount of electricity sold in the National Interconnected
System (SIN), as well as to promote settlement for the operational values of the purchase
and sale of electricity in the Short-Term Market (MCP) (Aneel, 2013). The same Decree also
establishes that the valuation of the amounts settled in the MCP be used for the Settlement Price
of Differences (PLD). This price is calculated weekly by the CCEE, considering sub-regional
energy markets and load levels to be marketed (Ebert & Sperandio, 2018).

The basis for calculating the PLD is the Marginal Operating Cost (CMO), derived
from the mathematical methods (Newave and Decomp) used by the National Electric System
Operator (ONS) to define the system operation schedule. It should be noted that this arrangement
is delimited by a minimum price and a maximum price, established annually by the National
Electric Energy Agency (ANEEL) (Aneel, 2013).

Despite its relevance to the free energy market, the Brazilian PLD is undergoing refor-
mulations. Accordingly, the Ministry of Mines and Energy (MME) has developed a plan for
the modernization of the electrical system with Ordinance No.300/2019 (Brazil, 2019). The
proposals include improvements to the existing computational models for the operation of the
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national electricity system and adoption of a new method (based on hourly prices) for pricing
electricity in the Brazilian spot market. The hourly PLD is evolving, and will come into effect
completely in 2021. The goal is to bring the price of energy closer to that of the National Electric
System (Capeletti, 2019).

The purpose of these methodological arrangements is to stimulate energy pricing in a
context of demand response programs (Jordehi, 2019; Kalavani, Mohammadi-Ivatloo, & Zare,
2019); i.e., to assign value to energy according to the moment of production, with higher prices at
times of higher demand or lower generation, for example. This should lead to efficiency gains for
the electrical system, in the long term. At the same time, the changes in the PLD will bring the
Brazilian trading system closer to international systems that already adopt hourly prices. These
systems include: (i) The Nordic Electicity Market - Nord Pool (Haugom, Molnár, & Tysdahl,
2020); (ii) The Italian Electricity Market - Mercati Energetici Manager (GME) (Ilea, Bovo, et
al., 2017); and, (iii) The Iberic Electricity Market – Iberian Electricity Market (MIBEL) (Pastor,
Da Silva, Esteves, & Pestana, 2018), among others. The objectives of the present thesis are
presented below.

1.2 Objectives

To develop a new statistical-computational model that allows an accurate prediction of
electricity prices in the spot market, considering the new price structure in Brazil. The specific
objectives of the present study are:

• To analyze the state-of-the-art methodology in the field of the electricity spot market.

• To propose an alternative method for finding similar patterns in time series.

• To test dynamic time scan accuracy against the M4 competition dataset

• To investigate the Brazilian electricity spot market.

• To present a new forecasting methodology applied to the Brazilian hourly prices of
electricity

• To present a hierarchical model for forecasting power generation.

1.3 Methodological path, structure, and contributions of the

thesis

This project was developed within the scope of the Academic Doctorate for Innovation
Program (DAI), which is a National Council for Scientific and Technological Development
(CNPq) initiative that aims to strengthen research, entrepreneurship and innovation in Scientific



Chapter 1. Introduction 21

and Technological Institutions (ICTs), through the involvement of PhD students in projects
of interest to the business sector, through partnerships with companies (CNPq Public Call Nº
23/2018). The company participating in this program is: Companhia Energética Integrada (CEI),
with headquarters in Belo Horizonte/Minas Gerais, was founded in 2004, with the objective of
investing in the segment of electric energy generation through the exploitation of renewable
sources (Cei, 2023).

In 2006, the Company purchased its first generation asset, CGH Caquende, installed on
Rio Macaúbas, a river in the municipality of Bonfim/MG. Between 2006 and 2012, confirming
its vocation for purchasing mature assets, CEI started operating 8 other hydropower plants, both
CGH (Central Geradora Hidrelétrica – micro hydropower plant – producing up to 1 MW) and
PCH (Pequena Central Hidrelétrica – small hydropower plant – producing from 1 to 30 MW),
located in the regions of Rio Casca/MG and south of the state of Minas Gerais. Subsequently, in
2015, CEI, consolidating its position in the electric energy generation market, entered into one
of the largest operations in the electric energy industry in Minas Gerais, purchasing 6 PCHs in
the Rio Doce basin, in the region of Ouro Preto/MG and Mariana/MG (Companhia Energética
Integrada, 2021).

Currently, CEI operates 16 hydropower plants in the state of Minas Gerais, with a total
of 42.82MW of installed power. All of the plants are fully automated and remotely operated
by BEI – Brasil Energia Inteligente, a company from CEIťs economic group, specialized in
providing O&M services for hydropower plants. CEI , in addition to generating electric energy,
develops greenfield projects in the segments of photovoltaic and hydropower generation. In its
quest to open up new frontiers in the Brazilian electric energy sector, CEI founded ATMO

Comercializadora de Energia Elétrica, a company strategically located in São Paulo, in order to
handle the sales of electric energy and provide consultancy and advisory services in this field
(Companhia Energética Integrada, 2021).

This research presents two innovative points. The first refers to the methodological terms
since it will address the construction of new predictive models for electricity prices. Due to the
new arrangement of the Brazilian electricity sector, with the recent disclosure of hourly energy
prices, this thesis innovates in empirical terms, as it will present an unprecedented forecasting
model for the new structure of electricity prices in Brazil (Brasil, 2004b). The introduced models
were designed to deal with a high number of observations, which will be relevant in the current
Brazilian hourly pricing system.

From a practical point of view, this research will generate internal and external impacts to
the institution. As an internal impact, the aim is to improve transparency in the decision-making
process of energy purchase and sale operators in the future market. As an external impact, it
is intended to foster the local development of the University’s intellectual capital, encouraging
partnerships with the productive sector. Finally, a practical result that will be attempted is the
creation of a computational tool. From the academic point of view, the expected result is the
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development of a theoretical and methodological framework on how to analyze the decision-
making context of energy purchase and sale operators in the future market.

1.4 Structure of the thesis and chapter contents

The present thesis is designed as a set of independent essays, each presented in a separate
chapter (Figure 1). The studies presented in the essays are complementary, because they address
the topic of energy commercialization from different perspectives. The essays are presented
in chronological order, to give a clearer reading and understanding of the topic. The general
purpose of each chapter is explained, in detail, in the following paragraphs.

Figure 1 – Thesis structure.

Source: Research results.

Chapter 3 presents a systematic review of the literature, providing information about the
main authors, countries, and researchers that address the theme of electricity price forecasting.
From this review, it was possible to verify the research gaps to be filled by the present thesis.

Chapter 4 addresses the issue of searching for similar patterns and presents a fast
algorithm search for long-time series. The search for similarity profiles in time series, especially
when based on Pearson’s correlation coefficient, connects with the research presented in Chapter
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5, which addresses a new methodological tool to be applied to the problem of electricity price
forecasting, namely, dynamic time scan forecasting.

Chapter 6 presents a forecasting model for energy prices in the Brazilian spot market,
based on weekly prices. It is a preliminary model, based on the search for similar patterns in
a time series. Due to the reformulation of the electricity commercialization system in Brazil,
Chapter 7 is an update of the previous Chapter, now taking into account prices published on an
hourly scale.

Chapter 8 addresses the issue of hierarchical time series and presents a predictive model
based on aggregation and disaggregation factors of forecasts. This is a complementary study,
which due to methodological limitations, was not deepened.
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2 Preliminary results and publications

The preliminary publications of this research are presented below, as established in the
schedule of the CNPq Public Call. At the end of this project, publication certificates are presented
in the attachment section (Table 1).

Table 1 – Products generated by this thesis - Article Journals

Chapter JCR Journal Title

3 - Revista de Administração,
Contabilidade e Economia da
Fundace (USP)

Electricity Price Forecasting: a sys-
tematic review of publications based
on text mining procedures.

4 2.847 Journal of Renewable and Sus-
tainable Energy

Similarity Search in Electricity
Prices: an Ultra-fast Method for
Finding Analogs.

5 0.967 IEEE Latin America Transac-
tions

Dynamic Time Scan Forecasting: A
Benchmark with M4 Competition
Data

6 - E3S Web of Conferences Electricity price forecasting on elec-
tricity spot market: a case study
based on the Brazilian Difference
Settlement Price

7 - - -

8 3.252 Energies Forecasting Hierarchical Time Se-
ries in Power Generation

* 2.021 Proceedings of the Institution
of Mechanical Engineers Part
O-Journal of Risk and Relia-
bility

Condition-based maintenance in hy-
droelectric plants: A systematic lit-
erature review.

* 3.847 Sensors A Data-Driven Framework for
Small Hydroelectric Plant Prognosis
Using Tsfresh and Machine Learn-
ing Survival Models.

Source: Research results. Paper * consists of a publication directly related to this thesis.
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Next, the other products generated by this thesis are presented, namely, articles in
congresses, books, and awards.

• Chapter 3 was originally featured in the "Encontro de Gestão e Negócios" (EGEN - 2021)
at the Federal University of Uberlândia and won the prize for best article in the area of
"Production and Logistics". Due to the award, he obtained the fast-track of the Journal
RACEF (USP).

• The first version of Chapter 5 was approved and presented at the traditional International
Symposium on Forecasting (ISF), in the year 2020.

• Chapter 7 was presented at the 3rd International Conference on Renewable Energy (ICREN
- Italy). This article was approved in the congress fast-track and was published in the journal
shown in Table 1.

• Chapter 8 is in the submission process.

• The initial version of Chapter 9 was presented at the LII Brazilian Symposium on Oper-
ational Research (SBPO) in 2020. This article was later submitted to the Special Issue
"Energy Economics and Policy in Developed Countries" in book format by the MDPI
group, becoming a chapter.

During the course of my Doctorate, other indirect research was carried out by me,
resulting in multidisciplinary publications. To find additional information about it, please verify
the Annexes of this thesis.
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Systematic literature review and theory
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3 Electricity Price Forecasting: a system-
atic review of publications based on
text mining procedures

Abstract

Developing forecasting models is a difficult task. Particularly concerning electricity prices,
accurately predicting their forthcoming values makes it possible to minimize planning risks. This
fact becomes even more relevant in the current geopolitical scenario, represented by the war
between Russia and Ukraine. Given the above, this paper presents a systematic review of the
literature on electricity price forecasting (EPF) models. It presents a methodology that does a
robust search of the literature, obtaining the most relevant papers (n = 554) that addressed this
theme. Following that search, we: (i) constructed an attribute matrix of the publications, and
(ii) presented a descriptive analysis based on bibliographic data, and network relationships. The
sample period comprises the years 1991 to 2019, with an annual growth rate equal to 23.13%
and an annual publication rate of 19 papers. Despite the increase in the number of studies on
electricity price forecasting, the predominance of papers is produced in only a few countries. This
fact reinforces the need to encourage research and development projects related to the energy
market. It was also found that research collaboration networks are still weak, highlighting the
need for new partnerships between countries, and research institutions. Thus, stimulating global
energy security, as well as encouraging cooperation and technology transfer between countries,
becomes relevant.

Keywords: Electricity price forecasting. Day-ahead market. Systematic Literature Review.
Bibliometrix.

3.1 Introduction

Commodity prices, in general, exhibit stochastic behavior, meaning that future prices
are uncertain and difficult to predict (R. V. Gomes, 2015). The renewable energy market is
no different. Due to this complexity, understanding the dynamics of future energy prices in
both the short- and long-term markets is of academic, business, and social relevance (Primc
& Slabe-Erker, 2020). This fact becomes even more relevant in the current scenario of global
energy insecurity, derived from factors such as the war between Russia and Ukraine (Steffen
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& Patt, 2022) and the repeated interventions of the Organization of the Petroleum Exporting
Countries (OPEC) in oil prices over the last few decades (Zuhaira, Li, & Mohammed, 2022).

Successful electricity price forecasting models are based on different techniques such
as: (i) classic time series procedures like the autoregressive moving average, autoregressive
integrated moving average, generalized autoregressive conditional heteroscedastic, among others
(H. Liu & Shi, 2013; Mišnić, Pejović, Jovović, Rogić, & Ðurišić, 2022); (ii) pre-processing
techniques like spectrum analysis, wavelets, and Fourier analysis (Miranian, Abdollahzade,
& Hassani, 2013; Iwabuchi et al., 2022); and, (iii) machine learning approaches like neural
networks, fuzzy systems, and support vector machines (Bui, Tuan, Klempe, Pradhan, & Revhaug,
2016). Additionally, an alternative class of hybrid models (J. Zhang, Tan, & Wei, 2020) aims to
combine machine learning (W. Yang, Sun, Hao, & Wang, 2022) representations with different
methods. Instances of these methods are focused time-delay neural networks (Y. Chen et al.,
2019), neural networks with fuzzy inputs (H. Liu, Tian, Liang, & Li, 2015), finite-impulse
response neural networks (Pir, Shah, & Asger, 2017), local feedback dynamic fuzzy neural
networks (Nagaraja, Devaraju, Kumar, & Madichetty, 2016), type recurrent fuzzy networks
(Jain, Seera, Lim, & Balasubramaniam, 2014; Li, Woo, & Cox, 2021), and neuro-fuzzy inference
systems (Moreno & Santos Coelho, 2018), among others.

Due to the economic relevance of the energy market, and the growing interest in renew-
able sources, the recent development of predictive techniques has attracted the attention of the
electricity community (Soeiro & Dias, 2020). This is important because it allows analysis of
the behavioral pattern of the prices, as well as comprehension of the evolution of the predictive
models used. Thus, a forecasting community has emerged worldwide. To investigate how expert
collaboration could be enhanced, it is essential to answer some questions, namely:

• what are the leading countries, authors, and theoretical approaches related to electricity
price forecasting?

• what are the gaps in the literature that should be explored, given what has been published
so far?

Some papers have begun to address this issue (Weron, 2014; Antonopoulos et al., 2020).
The present study approaches the problem using text mining tools such as the Bag-of-words
model for language processing and attributes matrices. Benefits include simplifying the represen-
tation of substantial textual information. This method has been used in recent literature reviews
on innovation (N. J. Van Eck & Waltman, 2017), medicine (Nafade et al., 2018), physics (van
Raan, 2017), among others. Based on this framework, we conducted a robust systematic review
focusing on the main statistical methods used to predict electricity prices. We also evaluated how
the leading agents in this community articulate among themselves.
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The present study contributes to the electricity price forecasting literature. The first
contribution is methodological, presenting a method for selecting the core publications in the
area. It is innovative in that we selected papers from different scientific bases and developed an
automatic way to remove duplicates and establish a unified metadata base. Hence, it is possible
to establish the flow of knowledge. The second contribution is identifying the most prominent
authors, countries, and publications through objective criteria, highlighting the leading research
groups.

Finally, our main findings may assist researchers in better understanding the main
forecasting techniques and the most important upcoming research topics, arising from this
issue. In practical terms, this research will serve as a guide for those interested in the subject,
including researchers, policymakers, companies, and other interested parties, showing the leading
publications in the area.

The present paper is structured in four sections, as follows. Section 2 explains the
methodology and scope of the systematic review. Section 3 presents the papers considered for
this review and discusses their main features. Section 4 presents the main findings of the present
study, and potential pathways for future studies to explore models, for predicting electricity
prices.

3.2 Materials and Methods

3.2.1 Population, sample, and data collection

An extensive survey of publications, indexed in both the Web of Science (WoS) and the
Scopus databases, was conducted. Papers related to electricity price forecasting were evaluated.
Table 2 shows the list of descriptors used in this research. This research utilized boolean operators.
It was used as conjunctions to combine or exclude keywords in a search: "AND" and "OR". We
selected journal publications because they had already gone through a peer-reviewed process.

It is noteworthy that WoS and Scopus are the academic citation databases most used to
define a study (Weron, 2014). Data extraction from Scopus and WoS (2020-08-30) considered
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement
(Moher, Liberati, Tetzlaff, Altman, & Group, 2009) (Figure 2).

Following the merging of the Scopus (n = 528) and Web of Science (n = 357) metadata,
the duplicates (n = 331) were removed. This resulted in a population encompassing all publi-
cations in English between 1991 and 2019 (n = 554) for the present study. The choice of the
research scenario is justified as follows: the first scientific paper on this subject was published in
1991; and 2019 is the year of the most recent publication having complete information available.
To filter bibliographic records, we searched for papers that included some of the descriptors
presented in Table 2 in their titles, abstracts or keywords.
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Table 2 – List of descriptors used in the present study.

Database Descriptors

WoS ((TS=((("forecasting electricity" OR "predicting electricity") AND
("electricity spot" OR "electricity day-ahead" OR "electricity
price") ) OR (("price forecasting" OR "price prediction" OR "fore-
casting price" OR "predicting price" OR "forecasting spikes" OR
"forecasting VAR") AND ("electricity spot price" OR "electricity
price" OR "electricity market" OR "day-ahead market" OR "power
market"))))).

Scopus ((TITLE-ABS-KEY((("forecasting electricity" OR "predicting
electricity") AND ("electricity spot" OR "electricity day-ahead"
OR "electricity price")) OR (("price forecasting" OR "price pre-
diction" OR "forecasting price" OR "predicting price" OR "fore-
casting spikes" OR "forecasting VAR") AND ("electricity spot
price" OR "electricity price" OR "electricity market" OR "day-
ahead market" OR "power market"))))) AND ( LIMIT-TO ( DOC-
TYPE,"ar")))

Source: Research results.

Figure 2 – Flowchart outlining the protocol adopted in this systematic review based on the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
Four-Phase Flow Diagram.

Source: Research results.
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3.2.2 Data treatment and analysis

After compiling the data, we created a list of publications according to the following
attributes: authors and affiliations, paper titles, abstracts, keywords, and the complete references
for the analyzed registers. We divided the investigation into sub-stages: first, a descriptive analysis
of a bibliographic data frame.

In this sub-stage, we analyzed the annual publication of predictive methods used for
electricity price forecasting in the most relevant sources (journals), as well as the most productive
countries based on corresponding authors. We also described seminal papers according to the
total number of citations, and the most relevant sources utilized in each of them.

Next, we presented the scientific publications on electricity price forecasting as network
matrices. These networks displayed meaningful properties of the underlying research, and the
influence of bibliometric units, such as scholars, and journals (Waltman & Van Eck, 2012; Aria
& Cuccurullo, 2017).

3.2.3 Software and Hardware

The systematic review of the literature presented in the present study was developed
using both the R (v.3.5.2) software and the Bibliometrix R − package proposed by (Aria &
Cuccurullo, 2017), available at http://www.bibliometrix.org. This package utilizes
a machine learning framework with data reduction techniques for dealing with substantial
textual information, classified here as a classic “Bag of words” problem. To construct the
temporal evolution of keywords, and network relationships, we used the free bibliometric
software, V OSviewer, proposed by (N. Van Eck & Waltman, 2010), available at http://www
.vosviewer.com/. Hardware specifications of the system used to perform the procedures are
CPU Intel Core i5-7200U, 2.70 GHz, 16 GB RAM installed, and the Windows 10 operating
system.

3.3 Results and Discussion

The papers used for the present study were published between 1991 and 2019. It is
noteworthy that the 554 publications analyzed were written by 1115 different authors and
published in 206 journals. The publications analyzed comprised 15099 bibliographic references.
It was also observed that the 554 publications of the present study used 1416 distinct keywords.

Figure 3 (2a) shows that approximately 32% of the bibliographic citations were from
2001 to 2005, indicating that this was the period during which the main work in this area was
carried out. Figure 3 (2b) shows an exponential growth in the number of papers published on
EPF , indicating its academic relevance. Figure 3 (2c) shows a concentration of papers having a
maximum of 5 citations. Figure 3 (2d) shows empirical evidence of Lotka’s Law, which describes

http://www.bibliometrix.org
http://www.vosviewer.com/
http://www.vosviewer.com/
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the frequency of publication by authors in any given field (Lotka, 1926). The importance of
professors Nima Amjady and Rafal Weron is highlighted, each with 14 papers on EPF. With 122
publications (22%), China was the country with the greatest number of papers Figure 3 (2e).
With 45 papers (8%), IEEE Transactions on Power Systems (impact factor equal to 6.62 in 2019)
was the most productive source (Figure 3 (2f)).

Figure 3 – Dashboard on Electricity Price Forecasting research publications.

Source: Research results. Note: In the appendix section complete graphs exploring other information from the
analyzed sample are presented (Figures 32,33,34,35).

The publication with the highest number of citations was Mohsenian-Rad & Leon-Garcia
(2010). The most recent work was Gellert et al. (2019) (Table 3).

Following the descriptive analyses of these publications, the investigation of the keywords
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Table 3 – Highlights of Electricity Price Forecasting publications.

Year Citations Title Contribution

Pioneers (1991) 90 ESTIA: A real-time
consumer control
scheme for space
conditioning usage
under spot electricity
pricing

Utilizes a decision modeling ap-
proach developed for prescribing
consumer response to varying elec-
tricity price. The case of space con-
ditioning usage is analyzed in de-
tail and a real-time control scheme
is proposed.

Most
cited

(2010) 1288 Optimal residential
load control with
price prediction in
real-time electricity
pricing environments

Proposes an optimal and auto-
matic residential energy consump-
tion scheduling framework which
attempts to achieve a trade-off be-
tween minimizing the electricity
payment and minimizing the wait-
ing time for the operation of each
appliance in household, in the pres-
ence of a real-time pricing tar-
iff combined with inclining block
rates.

Most
Recent

(2019) 11 A study on forecast-
ing electricity produc-
tion and consumption
in smart cities and fac-
tories

A method for forecasting energy
demand and production is pro-
posed. Predictions contribute to
balancing and smoothing the elec-
tricity intake from the power grid.
Experimental evaluation is per-
formed on data recorded in a real
energy-management system.

Source: Research results.

used was undertaken. Table 4 shows the number of times that each of the 50 main keywords was
used. As expected, the most used keywords were derivations of the expression electricity price
forecasting. Regarding the predictive models used, the expression artificial neural networks (and
its derivations) was present in at least 76 papers in the sample.

In addition, models based on the wavelet transform were cited in at least 25 different
documents. This is supported by the fact that many energy trading markets operate on hourly
frequency basis; therefore, the EPF forecasts have time series with many observations (Y. Zhang,
Li, & Li, 2018; Chang, Zhang, & Chen, 2019). Thus, with a lower number of occurrences, there
is a greater diversity of techniques used, with emphasis on the classic models of time series, such
as those of the Arima class (Bandyopadhayay, Roy, & Ghosh, 2013).

Also, as Table 4 shows, several methodologies were used, such as those based on: support
vector machine (Yuan, 2013; Ma, Zhong, Xie, Xia, & Kang, 2018; Zahid et al., 2019), prob-
abilistic forecasting (Uniejewski, Marcjasz, & Weron, 2019), fuzzy logic (Pousinho, Mendes,
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& Catalão, 2012), particle swarm optimization (Hannah Jessie Rani & Aruldoss Albert Vic-
toire, 2019), lasso (Steinert & Ziel, 2019), and hybrid models (de Marcos, Bello, & Reneses,
2019), among others. Thus, it is highlighted that EPF is a research segment that uses different
forecasting methods, and the development of research to investigate new models is relevant.

Table 4 – Most relevant words – Author’s keywords.

Rank Terms Freq. Rank Terms Freq.

1 electricity price fore-
casting

112 26 market clearing price 9

2 price forecasting 86 27 short-term forecasting 9
3 electricity market 67 28 deregulation 8
4 forecasting 59 29 electricity price forecast 8
5 electricity price 33 30 prediction intervals 8
6 artificial neural net-

works
28 31 ann 7

7 neural networks 28 32 artificial intelligence 7
8 electricity markets 26 33 bidding strategy 7
9 neural network 26 34 electricity price predic-

tion
7

10 wavelet transform 25 35 genetic algorithm 7
11 electricity prices 21 36 price spikes 7
12 artificial neural network 20 37 smart grid 7
13 price forecast 19 38 correlation analysis 6
14 time series analysis 15 39 demand response 6
15 day-ahead market 13 40 differential evolution 6
16 power market 13 41 electricity 6
17 support vector machine 13 42 forecast combination 6
18 arima 12 43 hybrid model 6
19 feature selection 12 44 lasso 6
20 probabilistic forecasting 12 45 load forecasting 6
21 particle swarm opti-

mization
11 46 locational marginal

price
6

22 data mining 10 47 particle swarm opti-
mization (pso)

6

23 fuzzy logic 10 48 power markets 6
24 time series 10 49 prediction 6
25 electricity spot price 9 50 price prediction 6

Source: Research results. Note: Freq. it is equal to "frequency".

The results of Table 4 can be visualized in Figure 4 which shows the wordcloud for the
main keywords used. Since the number of occurrences of keywords varies widely for the sample
analyzed, the square root of the number of occurrences was taken to improve the visualization of
Figure 4. Thus, the wordcloud considered the 100 words with the highest number of occurrences
in the sample studies.

Figure 4 shows additional details of predictive models. The relevance of models based
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Figure 4 – Wordcloud containing the top 100 keywords used in the sample.

Source: Research results.

on spot prices, such as the day-ahead-market, is highlighted. These models use a wide range
of techniques, among which the following stand out: ann (Windler, Busse, & Rieck, 2019),
armax (J.-L. Zhang, Zhang, Li, Tan, & Ji, 2019), big data (W. Wang, Chen, Yan, & Geng, 2019),
bootstrap (Tahmasebifar, Sheikh-El-Eslami, & Kheirollahi, 2017), calibration window (Hubicka,
Marcjasz, & Weron, 2018), classification (Shrivastava, Panigrahi, & Lim, 2016), clustering
analysis (Jin, Pok, Paik, & Ryu, 2015), correlation analysis (Peng, Liu, & Xiang, 2013), data
mining (Ghayekhloo, Azimi, Ghofrani, Menhaj, & Shekari, 2019), garch (L. Zhang, Wu, Ma, &
Wang, 2019), and genetic algorithm (Alamaniotis, Bargiotas, Bourbakis, & Tsoukalas, 2015),
among others.

Figures 5 and 6 show the evolution of research published over the years, based on the
number of citations for each paper. Although the sample analyzed dates from 1991, it is only
after 2002 that it is possible to build a boxplot. Publications located beyond the upper limit of
the interquartile distance are highlighted. Due to their academic impact, they can be considered
references in EPF .

Equally as important as the descriptive analyses of publications on EPF , are the investi-
gations by the existing EPF collaboration networks. Figure 7 shows the research relationships
between the main research institutions that have published on the topic. This network was
designed based on information from each of the published papers and the respective teaching
and research institutions of the co-authors. The font size for each institution varies, depending
on the number of papers published by the institution. The lines that connect the institutions are a
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Figure 5 – Boxplot of the number of citations per paper over the years (part a).

Source: Research results.

Figure 6 – Boxplot of the number of citations per paper over the years (part b).

Source: Research results.

visual representation of the strength of the relationship between two institutions, where thicker
lines denote stronger relationships. The network shows the top 20 organizations that published
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on EPF.

Figure 7 – Collaboration networks between research institutions

Source: Research results.

As shown in Figure 7, the institutions are separated by color, according to the proximity
of their relationships. However, most of the papers on EPF are published in the single country
publication format since, as this is a strategic and local issue, collaborations between institutions
are still incipient. The main cluster, green, is formed by four Portuguese educational institutions
(Technical University of Lisbon; Instituto Superior de Engenharia de Lisboa; University of Veira
Interior and University of Lisbon) and one Chinese institution (North Chine Electric Power
University). Complementary to Figure 7, Figure 8 presents a similar analysis. However, it focuses
on the partnership networks between the main authors.

It is reinforced that the degree of collaboration between authors is limited. In most cases,
it is restricted to collaboration among authors of the same nation.



Chapter 3. Electricity Price Forecasting: a systematic review of publications based on text mining procedures 38

Figure 8 – Collaboration networks between researchers

Source: Research results.

3.4 Conclusions

Forecasting electricity prices attracts the attention of different agents, since it is a central
issue for good planning in the energy production chain. Due to its importance, the growth rate of
publications on EPF , in the main journals around the world, is approximately 23% per year.
The present study investigated 554 publications on this topic, published between 1991 and 2019,
that were indexed simultaneously in the Scopus and Web of Science databases. The present paper
used the PRISMA research protocol, which provides a high degree of reliability in the face of
the analyses carried out. In addition, data science procedures, such as text mining, were used to
describe the main attributes of the bibliographic information collected.

It is noteworthy that the present paper empirically verified the validity of some bib-
liometric laws, namely, Lotka’s Law and Bradford’s Law. That is, it provides evidence of a
predominance of a few authors (Nima Amjady, Rafal Weron) who publish more, as well as
a small set of journals (IEEE Transactions on Power Systems, Energies) that focus scientific
production, on the topic. It was found that the years from 2001 to 2005 form the period during
which the greatest volume of citations was concentrated.

The present paper also analyzed the main keywords and quantitative methods used in
studies on EPF . It was found that, despite the great recurrence of studies based on artificial
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neural networks, and wavelet transform, there is also a wide range of research being developed
based on classic statistical approaches, regression models, hybrid methods, and recent machine
learning procedures, for example. Finally, despite the increasing number of recent studies,
the predominance of papers is still being produced in only a few countries. This inequality
highlights both the importance of international cooperation to close the gap, and the need for
more connected research clusters. Future development of predictive models depends heavily
on the collection, and availability of reliable databases, which is a notable research obstacle in
developing countries.



Part II

Empirical applications
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4 Similarity Search in Electricity Prices:
an Ultra-fast Method for Finding
Analogs

Abstract

Accurately predicting electricity prices allows us to minimize risks and establish more reliable de-
cision support mechanisms. In particular, the theory of analogs has gained increasing prominence
in this area. The analog approach is constructed from the similarity measurement, using fast
search methods in time series. The present paper introduces a rapid method for finding analogs.
Specifically, we intend to: (i) simplify the leading algorithms for similarity searching, and (ii)
present a case study with data from electricity prices in the Nordic market (there were not enough
observations available in Brazil at the time of writing this chapter). To do so, Pearson’s distance
correlation coefficient was rewritten in simplified notation. This new metric was implemented
in the main similarity search algorithms, namely: BruteForce, JustInT ime, and Mueen’s
Algorithm for Similarity Search (MASS). Next, the results were compared to the Euclidean
distance approach. Pearson’s correlation, as an instrument for detecting similarity patterns in
time series, has shown promising results. The present study provides innovation in that Pearson’s
distance correlation notation could reduce the computational time of similarity profiles by an
average of 17.5%. It is noteworthy that computational time was reduced in both short and long
time series. For future research, we suggest testing the impact of other distance measurements,
e.g., Cosine correlation distance and Manhattan distances.

Keywords: Analog. Ensemble forecasting. Similarity search. Electricity prices.

4.1 Introduction

The construction of predictive models is gaining prominence in the literature (Geisser,
2017), since economic agents deal with uncertainty and aim to achieve the best results using avail-
able resources (Choi, 1993). Therefore, developing models with acceptable accuracy presents
a meaningful challenge to researchers. George Box stated, "All models are wrong, but some
are useful" (G. Box, 1976). In other words, prediction is a technique that deals with risk, and
there will always be a fundamental error associated with it. The best model is the one that most
adequately represents the phenomenon of interest.
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In relation to the object of our study, electricity prices, there are several forecasting
applications: (i) classical time series models like the autoregressive moving average, autoregres-
sive integrated moving average, generalized autoregressive conditional heteroscedastic, among
others (H. Liu & Shi, 2013); (ii) pre-processing techniques like spectrum analysis, wavelets
and Fourier analysis (Miranian et al., 2013); and, (iii) machine learning approaches such as
neural networks, fuzzy systems and support vector machine (Bui et al., 2016). Additionally, an
alternative class known as hybrid models aims to combine machine learning representations with
different methods. Instances of these methods are focused time-delay neural networks (Y. Chen
et al., 2019), neural networks with fuzzy inputs (H. Liu et al., 2015), finite-impulse response
neural networks (Pir et al., 2017), local feedback dynamic fuzzy neural networks (Nagaraja et al.,
2016), type recurrent fuzzy networks (Jain et al., 2014), neuro-fuzzy inference systems (Moreno
& Santos Coelho, 2018), among others.

The energy market is known for being an industry with high-frequency data (Madadi,
Nazari-Heris, Mohammadi-Ivatloo, & Tohidi, 2018), for several reasons. First, sensor usage is
widespread in energy (Jaradat, Jarrah, Bousselham, Jararweh, & Al-Ayyoub, 2015). Second,
high-frequency data can better represent specific weather conditions, enabling the improvement
of energy modeling (Aigner, Miksch, Müller, Schumann, & Tominski, 2007). Examples are
diverse, such as: (i) solar radiation, which can be collected in minutes (Assuncao, Escobedo, &
Oliveira, 2003); and, (ii) air humidity, atmospheric pressure, temperature and wind speed, which
can also be measured in minutes (Longman et al., 2018).

In particular, the pricing of electricity also has significant volumes of information, in
most cases, arranged on an hourly scale (Voronin & Partanen, 2014). Although the literature on
this question is extensive, there is academic interest in the construction of nonparametric models
applied to electricity prices, as they have presented promising predictive results. In general, these
models are designed to deal with long-time series and are chiefly based on analog ensemble
(AnEn) searches (D. Yang & Alessandrini, 2019; D. Yang, Kleissl, Gueymard, Pedro, & Coimbra,
2018) and scan-clustering methodologies (Costa, Ruiz-Cárdenas, Mineti, & Prates, 2021).

Due to both the complexity and the high volume of information, finding patterns in time
series is a data science challenge. Given that, similarity analysis has been studied since the 1960s
(Lorenz, 1969. In addition to the complexity of creating highly accurate models, significant
volumes of information lead to developing algorithms with low computational time. As a result,
the literature reflects efforts in mathematical and computational solutions to this problem (Mueen
et al., 2017; J. Yang, Astitha, Delle Monache, & Alessandrini, 2018).

In general, similarity and analog studies are based on searches of similarity patterns
between the latest available observations and the old observations through a scanning process on
data (Gensler, Sick, & Pankraz, 2016). This methodology is widely used in climatology studies,
where an AnEn is developed by first matching up the actual prediction from a numerical weather
prediction (NWP) model with similar past projections (Eckel & Delle Monache, 2016).
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As an example, some research in this area deserves special mention. Yang et al. (2018)
presented a dual NWP model approach, boy jointing the AnEn and the bias-corrected analog
ensemble (BCAnEn) procedure and demonstrated that by combining different NWP models, it is
possible to improve the storm wind speed prediction. Another critical study was carried out by
Yang (D. Yang, 2019), which pointed out that using the kd-tree in AnEn, it could be possible to
save computational time when necessary to test different model adjustments. Still, in this context,
research on the forecast of solar irradiation is frequent, and (J. Yang et al., 2018) presented a
substantive review of this area’s main procedures.

Although relevant, previous work on the similarity search is mainly aimed at climato-
logical research. This article innovates, as it addresses this methodology in the energy commer-
cialization sector. Also, it is highlighted that previous analog forecasting studies are based on
Euclidean distance as a metric of similarity (Mueen et al., 2017; D. Yang, 2019). McDermott &
Wikle (2016) show that this procedure may present trouble. Since searches of analogs rely on
embedding vectors being spatially similar over time, it is not certain that Euclidean distance ever
leads to first-rate analogs, particularly for the spatiotemporal state processes. Pearson distance
has mathematical similarities to the Euclidean approach (Immink & Weber, 2015), and could be
a simplified way of rewriting its notation.

A research gap still needs to be addressed: finding alternative measures for the similarity
pattern to reduce the computation time of analog searches. The research question is formulated:
how it is possible to rewrite the classical analog ensemble models, based on the Euclidian
distance profile, into simplified Pearson distance notation to obtain computational gains in the
main analog algorithms? Therefore, our goal is to simplify the notation of the analog procedure
to achieve the same distance profile with less computational time. The present paper contributes
to the debate about electricity since it introduces a new predictive instrument based on the analog
procedure, using the Nord Pool prices of electricity as a case study.

This paper is structured as follows: Section 1 outlines the objectives of this paper. Section
2 presents the materials and methods employed in preparing this paper. Section 3 presents
the results obtained. Finally, section 4 discusses the implications of this research as well as
possibilities for future research.

4.2 Materials and Methods

The algorithms used in this paper are: (i) BruteForce, (ii) JustInT ime, and (iii)
MASS. Usually, the Euclidean formula is presented in the literature on analogs to calculate
the distance between length-m query (Xi) and each length-m subsequence (Yi) in a given time
series (Radack & Badler, 1989; D. Yang & Alessandrini, 2019; Zhu, Imamura, Nikovski, &
Keogh, 2019). Generally, this approach calculates Euclidean distance d=(Y, X), based on the
normalized values of Y ∗

i and X∗
i , as d =

√
(Y ∗

i − X∗
i )2. If we perform z-score normalization
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on each object, the Euclidean Distance behaves similarly to the Pearson correlation coefficient
(Höppner & Klawonn, 2009). Finally, the use of the Pearson correlation can produce simplified
mathematical expressions, as shown in Equation (5.1).

4.2.1 Similarity profile computation based on the Pearson correlation

distance

The Pearson coefficient, ρ, measures the degree of correlation and the direction of
this correlation, positive or negative, between two random variables. The Pearson correlation
coefficient is defined as follows (Pearson, 1895):

ρxy =
∑m

i=1(Xi − µX).(Yi − µY )√∑m
i=1(Xi − µX)2.

∑m
i=1(Yi − µY )2

(4.1)

Equation (5.1) represents a single-pass algorithm for calculating the Pearson correlation.
However, depending on the amount of data, it can demand considerable computational time.
Using a little algebra, we can rearrange Equation (5.1) as follows, obtaining the Pearson product-
moment correlation coefficient (Kelley, 1925):

ρxy =
1
m

m∑
i=1

Xi − µX

σX

 Yi − µY

σY

 (4.2)

where σX =
√∑m

i=1(Xi − µX)2/m and σY =
√∑m

i=1(Yi − µY )2/m.

Note that Equation (5.2) presents a simplified way for calculating the correlation between
two sets, which reduces the computational time. It is noteworthy that this approach will be tested
in the calculation algorithm called BruteForce. Finally, Equation (5.2) can be written in the
abbreviated notation, illustrated below:

ρx∗y∗ =
1
m

m∑
i=1

(X∗
i .Y ∗

i ) (4.3)

where X∗
i = (Xi − µX)/σX and Y ∗

i = (Yi − µY )/σY .

The BruteForce algorithm was based on the Pearson formulation product-moment
correlation coefficient. Figure 9 details the steps of this procedure, which consists of calculating
the normalized values of the last observations (query) and the rest of the data.

An essential principle of a given similarity measure should be the invariance, under
some specific conditions, e.g., data manipulation without changing the scale (Strehl, Ghosh, &
Mooney, 2000). Thus, we highlight that the Pearson correlation coefficient is invariant to scaling
(Orang & Shiri, 2012). This means that, when multiplying all elements by a non-zero constant,
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Figure 9 – BruteForce algorithm
Figure 1. Brute Force algorithm 

1:  procedure BruteForce(data, query) 
2:     n ← len(data) 
3:     m ← len(query) 
4:     l ← n – m + 1 
5:     CP[1: l] ← 0 
6:     Q ← zNorm(query) 
7:     for i = 1: l do 
8:         CP[i] ← sum(zNorm(data[i :i + m – 1] * Q)) / m 
9:     end for 
10:   return CP 
11: end procedure 

Source: adapted by authors from: Yang & Alessandrini (2019). 

the correlation remains the same. The same is valid when adding any constant to all the elements.
This is a fundamental property, since the main goal of correlation is not to verify if two vectors
are similar in absolute terms, but if they vary in the same direction:

ρXY = ρX∗Y ∗ = ρ(X∗Y ) = ρ(XY ∗) (4.4)

According to D. Yang and Alessandrini (2019), a valid research strategy is to measure
the degree of association between one normalized variable and one without normalization. This
procedure assists in simplifying notations and will be utilized in the JustInT ime algorithm.
However, the main difference from the BruteForce procedure is that JustInT ime only nor-
malizes the latest information (query), leaving the rest of the series without any transformation
(Figure 10).

Figure 10 – JustInTime algorithm
Figure 2. JustInTime algorithm 

1:  procedure JustInTime(data, query) 
2:     n ← len(data) 
3:     m ← len(query) 
4:     l ← n – m + 1 
5:     CP[1: l] ← 0 
6:     Q ← zNorm(query) 
7:     𝜎⃗ ← mvstd(data) 
8:     for i = 1: l do 
9:         CP[i] ← sum(data[i :i + m – 1] * Q)) / (m * 𝜎⃗[i]) 
10:   end for 
11:   return CP 
12: end procedure 

Source: adapted by authors from: Yang & Alessandrini (2019). 

Considering the correlation between X∗
i and Yi, where X∗

i ≈ N(0, 1), Equation (5.2)
can be rewritten as:

ρX∗Y =
1
m

m∑
i=1

X∗
i .Yi

σY

 −
1
m

m∑
i=1

X∗
i .µY

σY

 (4.5)
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since
1
m

∑m
i=1

X∗
i .µY

σY

 =
m.Ȳ

m.σY

∑m
i=1

X∗
i

m

 =
m2.µY .µX∗

i

m.σY

= 0, then:

ρX∗Y =
1
m

m∑
i=1

X∗
i .Yi

σY

 (4.6)

Additionally, adopting the correlation coefficient as a distance metric has other advan-
tages. For example, it is possible to develop a regression model relating query Xi to the last
observations Yi. Assuming that the joint distribution of Xi and Yi is the bivariate normal distribu-
tion, that µY and σ2

Y are the mean and variance of Y , that µX and σ2
X are the mean and variance

of X , and that ρ is the correlation coefficient between Y and X (Montgomery, Peck, & Vining,
2012). The conditional distribution of Y for a given value of X = x is:

fY |x(Y ) =
1√

2πσY |x
exp

 − 1
2

y − (β0 + β1x)
σY |x

2 (4.7)

where

β0 = µY − µXρ
σY

σX

(4.8)

and

β1 =
σY

σX

ρ (4.9)

and the variance of the conditional distribution of Y given X = x is

σ2
Y |x = σ2

Y (1 − ρ2) (4.10)

For additional details on computational procedures, see the Attachment section.

4.2.2 Similarity profile computation based on Euclidean distance

Equation (5.11) presents the mathematical formulation of the Euclidean distance between
the elements of two vectors. Note that the formula below illustrates the case where the two vectors
have previously been normalized. This is the formulation used in the BruteForce method.

d(X, Y ) =

√√√√√ m∑
i=1

Xi − µX

σX

−
Yi − µY

σY

2

=
√√√√ m∑

i=1
(X∗

i − Y ∗
i )2 (4.11)

where X∗
i = (Xi − µX/σX) and Y ∗

i = (Yi − µY /σY ).
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The JustInT ime method can be considered a rewrite of Equation (5.11), above. How-
ever, it takes one normalized variable and one without normalization. Equation (5.12) uses some
algebra steps to demonstrate how to determine the adjusted equation for Euclidean distance.

Assuming the normalization of variable X (query), we can simplify Equation (5.12):

d(X, Y ) =

√√√√√2
m −

∑m
i=1 XiYi

σY

 (4.13)

Equation (5.14) uses some algebra to demonstrate the existence of a relationship between
Pearson’s correlation coefficient and the Euclidean distance formula. Thus, since the correlation
coefficient values vary between minus one and one, the smaller the distance between the vectors,
the greater the force (correlation) between them:

ρX∗Y = 1 −
d(X, Y )2

2m
(4.14)

The Euclidean distance incorporates the Pearson correlation function. Thus, the present
paper will search for similarity patterns considering the Pearson coefficient, since this approach
will return similar results but with lower computational costs. To illustrate this advantage, these
results will be compared with those obtained using the Euclidean distance method.

According to D. Yang and Alessandrini (2019), there are alternative ways to calculate
the correlation between a pair of vectors using of convolution procedure. Suppose A is the set
of six data points, A = A1, A2, A3, A4, A5, A6, and F represents 4 forecasts to be matched,
F = F1, F2, F3, F4. The full convolution between these two vectors is given by:

(A) ⊗ (F ) =



A1F1

A1F3 + A2F4

A1F2 + A2F3 + A3F4

A1F1 + A2F2 + A3F3 + A4F4

A2F1 + A3F2 + A4F3 + A5F4

A3F1 + A4F2 + A5F3 + A6F4

A4F1 + A5F2 + A6F3

A5F1 + A6F2

A6F1

0
0



(4.15)
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Thus, the convolution formulation for the correlation coefficient is presented by Equation
(5.16).

ρX∗Y =
(X∗) ⊗ (Y )

m.σY

(4.16)

Finally, we present the MASS algorithm proposed by Mueen et al. (2017) (Figure 11).
This procedure uses the concept of “Convolution”, i.e., a mathematical method between two sets
that produces a third one, expressing how the shape of one is modified by the other. Convolution
refers to both the resulting function and the computing of it (Burrus & Parks, 1985).

Figure 11 – Mueen’s algorithm for similarity search (modified)
Figure 3. Mueen’s algorithm for similarity search (modified)  

1:  procedure Mass(data, query) 
2:     n ← len(data) 
3:     m ← len(query) 
4:     Q ← zNorm(query) 
5:     𝜎⃗ ← mvstd(data) 
6:     Q ← rev(Q) 
7:     dots ← conv(data, Q) 
8:     CP ← dots[m:n] / (m * 𝜎⃗) 
9:    return CP 
10: end procedure 

Source: adapted by authors from: Mueen et al. (2017). 

The next section presents the dataset used, refers to the Nordic electricity market in the
short term (Nord Pool), and outlines the simulation procedures employed.

4.2.3 Dataset and simulation procedures

The data used in the present study were obtained from the Nord Pool, the leading power
market in Europe (Janke et al., 2020). The dataset includes the hourly average electricity price
for seven different countries, segregated into market areas (Pool, 2020).

The period of data analysis ranges from January 1st, 2014, 00 : 00, to September 2nd,
2019 00 : 00, totaling 49, 709 registers for each time series. There were six missing data points,
from hour 02 : 00 to 03 : 00, at the end of March of each year. Missing data were computed
using the average price of the preceding and subsequent hours. The time series utilized, including
the number of time series per country and their acronyms, are presented in Table 8.

From each of the time series, 30 samples of size n equal to 720, 2, 400, 7, 200, 12, 000
and 24, 000 are randomly drawn. These values are associated with time series lengths of 30, 100,
300, 500 and 1000 days. The values of m adopted for this simulation were, 6, 9, 24 and 48 hours.

Figure 12 shows the flowchart with the detailed simulation process used to compare
the similarity search algorithms based on Pearson’s correlation and those based on normalized
distance. The validation of the analysis is obtained by comparing the computational times
calculated for the different methods in carrying out the same task, building the similarity profile.
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Table 5 – Nord pool energy submarkets analyzed

Time series Acronyms # Time Series
System reference SYS 1
Sweden SE1, SE2, SE3, SE4 4
Finland FI 1
Denmark DK1, DK2 2
Norway Oslo, Krsand, Bergen, Molde, Trhein, Tromso 6
Estonia EE 1
Latvia LV 1
Lithuania LT 1

Source: Research results.

As the similarity profile is deterministic, the accuracy is the same as long as the model reaches
its objective.

Figure 12 – Flowfchart with the detailed process of simulation and analysis of similarity search
algorithms

Source: Research results.

Routines were implemented using the R 3.6.0 programming language, adapting al-
gorithms from (Mueen et al., 2017) and (D. Yang & Alessandrini, 2019). The R package
RollingWindow was used to calculate the standard deviation of the data, considering fixed-
width subsets of observations, called windows. This package is available from the GitHub

repository at: https://github.com/andrewuhl/RollingWindow.

The computer used to execute the algorithms and to calculate the correlation and distance
profiles had: CPU Intel Core i5-4570 3.20 GHz, 16 GB of RAM and operating system
Windows 10x64. Computational time was calculated from the system’s time delta before and
after each execution of the methods.

https://github.com/andrewuhl/RollingWindow
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4.3 Results and discussion

Each of the search algorithms (BruteForce, JustInTime, and MASS) were properly
calculated using both Pearson correlation metrics and Euclidian distance formulation. To make
the simulation more robust, results were obtained considering different samples, namely 2400
and 24000 observations. The search criteria used variable windows for data regarding the last
observations (query) of sizes equal to 6, 9, 24 and 48 hours.

Table 9 presents the results of the 100 simulations performed, considering the sample
formed from the last 2400 observations. The best methods, in terms of computational time, are
highlighted in bold. The standard deviation of the simulations is shown in parentheses. Note that
the Pearson’s distance-based similarity search methods, especially JustInT ime and MASS,
respectively, had shorter computational times.

Table 6 – Sample data length of 2,400 (100 days) [hours]. The query length m varies from 3 to
48 [hours]. Each scenario is repeated 100 times, the mean computational times (in ms)
are shown in the table.

Avg. time (ms)
Correlation similarity profile Euclidean distance profile

m BruteForce JustInTime MASS BruteForce JustInTime MASS
m = 6 37.488 (7.582) 1.658 (4.232) 0.423 (2.138) 38.348 (7.587) 1.920 (4.487) 0.450 (2.230)
m = 9 38.401 (7.526) 1.704 (4.228) 0.445 (2.198) 38.218 (7.266) 2.022 (4.442) 0.533 (2.470)
m = 24 39.293 (7.647) 1.780 (4.138) 6.642 (6.740) 39.437 (7.635) 2.198 (4.603) 6.726 (6.704)
m = 48 39.869 (7.548) 2.136 (4.684) 6.765 (6.781) 40.220 (7.695) 2.387 (4.802) 7.141 (6.861)

Source: Research results.

There is a notable difference between the performance of the BruteForce algorithm and
the others. Computational time is about 20 times greater than the JustInT ime model, and 10 to
100 times greater than the MASS model. The computational time of MASS especially draws
attention, as it reaches optimal values when m is equal to 6 and 9. Then, it presents computational
times up to 4 times less than the JustInT ime model.

However, when m is greater than 24, the computational time tends to be 3 times greater
than the time calculated using JustInT ime. This greater time variation found for the MASS

model is intrinsic to the nature of the MASS, which computational time is mainly affected by
the convolution procedure. In many cases, this is an advantage over the JustInT ime algorithm.
In other cases, however, the former is more efficient. It is up to the user of the algorithm to assess
which model best suits their specific situation and data types.

Here, a similar analysis is presented (Table 10). However, the sample universe was
substantially increased (n = 24,000 hours). Again, the Pearson correlation-based models stood
out concerning computational time, with the JustInT ime algorithm as the most promising
method for computing long time series (the most abundant sample universe).

By increasing the sample size of the available period by ten times, we obtained propor-
tional increases in computational times for almost all models. The standard deviation increase,
however, was limited to twice its original value. Thus, the computational advantage of models
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Table 7 – Sample data length of 24,000 (1,000 days) [hours]. The query length m varies from 6
to 48 [hours]. Each scenario is repeated 100 times, the mean computational times (in
ms) are shown in the table.

Avg. time (ms)
Correlation similarity profile Euclidean distance profile

m BruteForce JustInTime MASS BruteForce JustInTime MASS
m =6 377.402 (12.924) 15.678 (4.842) 136.023 (8.606) 379.560 (14.351) 19.249 (6.436) 135.817 (8.815)
m =9 381.169 (15.298) 16.321 (5.009) 84.343 (8.274) 384.333 (19.447) 20.051 (6.644) 84.518 (7.871)
m =24 394.380 (14.623) 18.377 (5.699) 1087.231 (29.833) 396.693 (14.785) 22.121 (7.312) 1086.358 (28.683)
m =48 406.765 (14.676) 20.495 (6.714) 10.859 (6.644) 408.716 (14.300) 24.404 (7.587) 11.140 (6.748)

Source: Research results.

based on the correlation similarity profile becomes more evident.

The JustInT ime algorithm, using the similarity profile, showed a 17.5% reduction in
computational time. With the BruteForce and MASS algorithms, the gains were more discrete
due to the greater variability of computational times. Again, the computational time of the
MASS algorithm showed high sensitivity to the parameter m, assuming values 0.5 to 60 times
the average time value of the JustInT ime algorithm.

Finally, conclusions of the present paper are presented, emphasizing the time saving of
the proposed formulation as well as suggesting potential studies to be developed in the future.

4.4 Conclusions

The electricity energy market is known for having high-frequency data. The examples
are numerous, as the large-scale use of sensors across a wide range of processes provides a robust
set of data. Thus, as the amount of information stored continuously increases over time, the
search for statistical solutions that model this data is remarkable. Regarding predictive models,
the range of approaches is broad. In particular, the literature has highlighted the relevance of
predictive methods based on similarity or analogous searches. These methods scan a time series
and, from the most recent observations, define moments where there is a high degree of affinity.

The main work on the methodology of analogs ensamble (AnEn) has made use of the
Euclidean distance function. Our methodology revealed a high degree of similarity between the
Euclidean formulation and Pearson’s method. Thus, the present study is innovative in that, by
rewriting Pearson’s correlation equation, it was able to obtain the same results as the traditional
approach but using less computational time. Therefore, the results of the present study are
expected to provide a fast and robust tool for finding patterns in long time series, contributing to
different actors in the energy planning sector.

The present study contributes to the energy planning processes of different agents, given
that understanding price patterns has singular importance for minimizing risks and supporting
reliable production planning. Good forecasts for future energy pricing can support operational
arrangements, e.g., when the energy price is high, it may be more valuable for an industry to
delay part of its production temporarily, trade the surplus electricity, and carry out preventive
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maintenance on machines and accessories.

There are no disadvantages in applying Pearson’s correlation in the search for analogs, as
the correlation profile is a mathematical simplification of the normalized distance: the temporal
analog with the shortest normalized distance is also the one with the most significant correlation
with the search. The proposition is valid for the other windows: the analog with the second
shortest distance has the second-largest correlation, and so on. The same is not observed; however,
for the search algorithms: the JustInT ime algorithm presented the lowest computational times
in most excerpts of the series; however, the MASS algorithm obtained the best efficiency in
others.

Future research should test the effect of different probability distributions on the data
standardization process. A study of other measurement functions, such as distance from Manhat-
tan, is recommended. Finally, yet no less importantly, we suggest the analysis of the impact of
using different coefficient approaches such as entropy, Kendall, and Spearman.
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5 Dynamic Time Scan Forecasting: A
Benchmark With M4 Competition Data

Abstract

Univariate forecasting methods are fundamental for many different application areas. M −
competitions provide important benchmarks for scientists, researchers, statisticians, and engi-
neers in the field, for evaluating and guiding the development of new forecasting techniques. In
this paper, the Dynamic Time Scan Forecasting (DTSF), a new univariate forecasting method
based on scan statistics, is presented. DTSF scans an entire time series, identifies past patterns
which are similar to the last available observations and forecasts based on the median of the
subsequent observations of the most similar windows in past. In order to evaluate the perfor-
mance of this method, a comparison with other statistical forecasting methods, applied in the
M4 competition, is provided. In the hourly time domain, an average sMAPE of 12.9% was
achieved using the method with the default parameters, while the baseline competition the simple
average of the forecasts of Holt, Damped, and Theta methods was 22.1%. The method proved to
be competitive in longer time series, with high repeatability.

Keywords: Univariate methods. M4 competition. Benchmarking. Dynamic time scan fore-
casting.

5.1 Introduction

The development of predictive models is widely debated in the literature (Hill, Marquez,
O’Connor, & Remus, 1994; Pai & Lin, 2005; Dudek, 2016; Shanmugam, 2006), since it assists
the control of associated uncertainty intrinsic to random variables. Given the above, there are
several categories of predictive models based on this physical knowledge (such as spectral
analysis (Tchrakian, Basu, & O’Mahony, 2011)) of intensive machine learning and statistical
approaches (Voyant et al., 2017). Forecasting models associated with a single random variable
as a function of time support univariate forecasting, which is a very important area given its
application in various sectors such as (Hassani & Silva, 2018; Cai, Chen, Hong, & Jiang, 2017;
Bernardini & Cubadda, 2015), business (Khan Jaffur, Sookia, Nunkoo Gonpot, & Seetanah,
2017; Y. Zhang, Zhong, Geng, & Jiang, 2017; Tularam & Saeed, 2016), energy (Girish, Tiwari,
et al., 2016; Rana, Koprinska, & Agelidis, 2016; Raviv, Bouwman, & Van Dijk, 2015), among
others. In this context, it is fundamentally valuable to develop meticulous criteria for selecting
the models (Billah, Hyndman, & Koehler, 2005).
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The M − competition (Makridakis, Spiliotis, & Assimakopoulos, 2018; Makridakis
& Hibon, 2000; Makridakis et al., 1993; Makridakis & Hibon, 1979) is the most important
forecasting competition in academia, in which researchers from all around the world test their
methods on real-life, anonymous time series from distinct areas of industry. The 4th edition took
place in 2018 (Makridakis et al., 2018), and 17 methods based on combinations of statistical-
and machine-learning or hybrids were tested on 100, 000-time series. Outputs from these events
are registered in review articles, pointing out the directions of development and refinement of
the most promising forecasting techniques (Flores et al., 2019).The 5th edition took place in
2020, and focused on a retail sales application with 42, 850 unit sales hierarchical series, with
the objective to produce the most accurate point forecast as well as the most accurate estimation
of the uncertainty of these forecasts (Makridakis, Spiliotis, & Assimakopoulos, 2021). The
6th competition focused on predicting the overall market returns of individual stocks (The M6

financial forecasting competition, n.d.).

Whereas most well-known forecasting methods are based on identifying intrinsic compo-
nents of the time series, such as level, trend, or seasonality, a particular group of methods based
on similarity searches have been arousing interest in the areas of meteorology and renewable
energy (D. Yang & Alessandrini, 2019; Hoeltgebaum, Dias, & Costa, 2021). These methods
consist of identifying past weather patterns ("analogs") that closely resemble the current state.
These methods are capable of handling lengthy historical time series in order to produce accurate
and interpretive forecasts.

Among these methods DTSF consists of a new and simple analog-based forecasting
technique (Costa et al., 2021). It generates forecasts based on similar patterns, those with the
highest R2 scores, calculated from the last available window.

The accuracy of analog-based methods is scarcely reported in areas other than energy
prediction and is mostly limited to wind and solar energy forecasting applications (Gontijo,
Costa, & de Santis, 2020, 2021), which begs the question: "are analog-search-based models
competitive compared to classical statistical prediction methods?". Additionally, no research was
found that compared analog search methods and statistical methods.

To fill this gap, the current paper describes the DTSF forecasting method and discloses
its performance on the M4 competition time series. We compare DTSF with eight classical
statistical methods (Naive, Seasonal Naive, Simple Exponential Smoothing, Holt, Damped,
Theta, AutoRegressive Integrated Moving Average (ARIMA), and ExponenTial Smoothing state
space model (ETS)) and a combination of the outcomes of 3 individual methods (Holt, Damped,
and Theta), which compose the baseline of the M4 competition. The M4 benchmark dataset
was selected for this research because: (1) it consists of a reliable and curated benchmark base,
adopted by other researchers and practitioners for developing and testing forecasting methods;
(2) it has a significant number of series: 100,000 time series, with different frequencies (hourly,
daily, monthly, weekly, quarterly, yearly); (3) it has been mostly predominated by statistical
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methods of forecasting; (4) and it is composed of univariate and independent series.

The major contributions of the present paper can be summarized as follows:

• the study applies a new method to M4 competition for benchmark purposes;

• the method is compared with nine classical statistical methods and a combination of the
outcomes of three individual methods, which compose the baseline of the competition;

• in addition to applying the method, along with its default parameters, an exhaustive search
with hold-out validation is adopted for model selection.

The major conclusions are:

• in the hourly time domain, an average error of 12.9% was obtained using the method with
the default parameters, while the competition baseline was 22.1%;

• through the automatic selection of parameters, we boosted the accuracy of the method by
12.31% compared to the method application without parameters selection;

• the method proved to be competitive, both in terms of accuracy and computational cost,
over long time series and with high repeatability.

The present paper is organized into 5 sections. Following this Introduction, Section 2
provides a review of the proposed forecasting method. Section 3 provides a background of the
datasets and methods applied in this study. Section 4 presents the results and discussions obtained
from the application of the methods. Finally, Section 5 concludes the present paper and includes
some recommendations for future studies.

5.2 Materials and methods

5.2.1 M4 competition dataset

The data used in the current study comes from the M4 competition dataset (Makridakis
et al., 2018). It is composed of 100,000 time series, taken from different domains such as
Economics, Finance, Demographics, and Industry, among others. The time series show different
periods: yearly, quarterly, monthly, weekly, daily, or hourly.

Table 8 summarizes the information about the competition’s dataset. Domain refers to the
time period from which the data have been extracted, ranging from hourly to yearly. The number
of Series shows how many time series are available, in total. The dataset is mostly composed of
a collection of time series from yearly, quarterly or monthly domains - 95, 000 time series. The
minimum length is the shorter time series in the given domain: the more aggregated the domain,
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like yearly, the more difficult it is to retrieve data. For example, hourly time series are longer,
having at least 700 available observation points. Horizon refers to how many steps are being
predicted in the future and are being used for metric computation. Seasonality represents the
expected recurrence of an event in a given time domain.

Table 8 – Summary of M4 competition dataset, including time-frequency, minimum length of
time series, and forecast horizon of each time series.

Domain Number of series Min. length Horizon Seasonality
Yearly 23,000 13 6 1
Quarterly 24,000 16 8 4
Monthly 48,000 42 18 12
Weekly 359 80 13 52
Daily 4,227 93 14 7
Hourly 414 700 48 24

Source: Research results.

The dataset provides a public and reliable source for comparing statistical, machine
learning, or hybrid methods on univariate time series forecasting (Bontempi, 2020). It is interna-
tionally recognized by researchers and data scientists as the most important competition in this
area (Fildes & Makridakis, 1995).

5.2.2 Dynamic time scan forecasting

DTSF is a forecasting method based on scan statistics (Glaz & Balakrishnan, 2012)
and was originally developed to address the problem of wind forecasting for Brazilian power
generation plants. It consists of scanning a time series and identifying past patterns (called
"analogs") similar to the last observations available of the time series (called "query") (Costa et
al., 2021).

Let yt be a time series of length N , t = 1, ..., N . Firstly, let vector y[w] be defined as the
last w observations of the series:

y[w] = [yN−w+1, ..., yN ]. (5.1)

The goal of DTSF is to identify analogs in the time series which are greatly correlated
with vector y[w]. Hence, the set of candidate vectors can be defined by:

x[w]
t = [yt−w+1, ..., yt−w] (5.2)

where t = 1, ..., N − 2 · w. The upper limit of the time sequence (N − 2 · w) guarantees that
vector x[w]

t does not overlap with vector y[w]. Fig. 13 presents the DTSF procedure. Given the
last w observed values, which comprises vector y[w], a rolling window with the same size (xw

t ) is
used for scanning previous values of the series.
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Lastly, DTSF provides a k − steps ahead forecast of the time series, yN+1, ..., yN+k. To
produce this outcome, the DTSF scans the series to find the closest analogs x[w]

t . The subsequent
values of the time series are used as the forecast values:

yN+i = fx[w]
t

(yt−w+i) (5.3)

where fx[w]
t

is a function which correlates the elements of vector x[w]
t and the elements of vector

y[w].

Figure 13 – Illustration of the DTSF time series scan procedure.

Source: (Costa et al., 2021), adapted by the authors.

According to that, a first constraint can be set on k : 1 ≤ k ≤ w. This constraint
guarantees that if the most correlated time series window comprises the most recent values, prior
to vector y[w], then the forecast values are a function of vector y[w],

yN+i = fx[w]
N−2w

(yN−w+i). (5.4)

As stated in Equations before, forecast values depend on the window length w and the
function fx[w]

t
(.). A intuitive proposal for function fx[w]

t
(.) is a linear scaling of the elements of

vector x[w]
t , i.e., a linear model. This occurs due to the fact that previous values are likely similar

to the last observations, except for a scale and/or offset shift. So, the method searches for values
that may be similar to the last values, after applying a similarity function (Costa et al., 2021).

By taking a linear function as the similarity function, the parameters of the model
can be estimated to minimize the sum of squares between the elements of vector y[w] and the
linear equation: β

[t]
0 + β

[t]
1 × x[w]

t . Moreover, the similarity statistic can be assumed as the linear
regression coefficient of determination R2 (Costa et al., 2021; Montgomery et al., 2012):
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R2 = 1 −
∑

j

(
y[w]

j − ŷ[w]
j

)2

∑
j

(
y[w]

j − ȳ[w]
j

)2 (5.5)

where y[w]
j is the j-th value of vector y[w] and ŷ[w]

j is the j-th predicted value using the estimated
linear function. Finally, the method calculates a similarity profile based on the R2 score resulting
from the comparison of the query with previous windows. The analogs with higher R2 scores are
considered closer analogs. Predictions of future steps are calculated from a predefined number
of analogs using aggregation functions, such as median (Costa et al., 2021).

Fig. 14 illustrates the forecasting procedure, using time scanning in a given hourly time
series, adopting a window with a length equal to 48 hours, a linear similarity function (degree
equal to 1), and the three analogs. Windows 1, 2, and 3 are the ones most similar to the last
window of available data. The forecast is given by the median (but other statistics can be used
such as the mean) of the subsequential observations of the analogs.

Figure 14 – Example of DTSF application to forecasting a time series. The three colored lines
represent the top three analogs correlated to the queried period. The dashed lines are
the subsequent observations of the analogs. The forecast is given by the median of
the adjusted forecast from the subsequent observations of the top analogs.
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Source: Research results.

The DTSF model requires three parameters to be selected by the user: the length of the
query window, the similarity function specification, and the number of analogs to be considered.
The original implementation of DTSF is available on the R package, DTScanF . In the present
study, the original implementation is the extent to which the aggregation function applied to
analogs can be either the median or the mean, according to the user or the model selection
procedure.

As a data-driven method, DTSF usually performs better on time series with large num-
bers of observations and it can also be extended to search the patterns of secondary series related
to the prediction. The main disadvantage of the method is the computational cost of scanning the



Chapter 5. Dynamic Time Scan Forecasting: A Benchmark With M4 Competition Data 59

entire time series and calculating the similarity profile. However, more efficient methods, such as
the Maureen’s Algorithm of Similarity Search (MASS) which applies convolution, have been
applied for speeding up this task (Gontijo, Costa, & de Santis, 2020). To keep it feasible, the
linear similarity functions commonly adopted are from the first to the third-degree polynomials.

5.2.3 Statistical forecasting methods

A univariate forecasting method is a procedure for estimating a point. The forecast
is based on past and present values of a given time series (Chatfield, 2000). This method is
generally applied when there is a large number of series to forecast, or when multivariate methods
require forecasts for each explanatory variable. Given the advantage of simplicity and high usage,
univariate forecasting methods are employed in most of the forecast applications in areas such as
business, energy, and finance. The following methods are selected from the latest M4 competition
benchmark (Makridakis et al., 2018), and a simple explanation is given for each one, as follows:

1. Naive: the simplest, yet still powerful forecasting method; assumes that the next steps to
be predicted are equal to the last available observation (Makridakis & Hibon, 1979).

2. Seasonal Naive (sNaive): the same concept as Naive, with the adaptation that the time
series is deseasonalized; method adjusted and forecast later, re-adjusted with the seasonal
component (Makridakis & Hibon, 1979).

3. Naive2: each time series uses the forecast of either Naive or sNaive, based on their score
on the validation set.

4. Simple Exponential Smoothing (SES): classic statistical method which applies an exponen-
tially weighted average (R. Hyndman, Koehler, Ord, & Snyder, 2008).

5. Holt: exponential smoothing with level and linear trend components (R. Hyndman et al.,
2008).

6. Damped: exponential smoothing with dampened parameters for flattening trends, after a
given period (Gardner & McKenzie, 2011).

7. Theta: method based on a coefficient of curvature of the time-series, applied to the second
difference of the data (Assimakopoulos & Nikolopoulos, 2000).

8. Combined (Comb): the simple average of the forecasts of the previous three models: Holt,
Damped and Theta.

9. ARIMA: general forecast method estimated from the autoregressive, moving average and
integration components from the time series analysis (G. E. Box & Pierce, 1970).

10. ETS: automatic forecasting based on an extended range of exponential smoothing methods
(R. J. Hyndman, Koehler, Snyder, & Grose, 2002).
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Table 9 – Parameters range adopted for DTSF .

Parameters Range
Polynomial degree 1
Analogs 10
Window size 48
Aggregation function Median

Source: Research results.

11. DTSF: the proposed method, adopting the defined default parameters, which are: (i)
polynomial function degree equal to 1, (ii) analogs equal to 10, (iii) window size equal to
length of forecast horizon, and (iv) median as aggregation function (Costa et al., 2021).

Table 9 presents the range adopted for the parameters of the proposed method. The
polynomial degree is the degree of the function used for approximation, analogs are the number
of analogs to be used to estimate the forecast, window size defines the length of the scan window,
and aggregation function is the one that transforms the projection of the analogs into the final
forecast.

5.2.4 Model selection procedure

The split of the data into training sets and test sets split is predefined and given by the
competition organizers. The data come from different files for each of the time series domains.
The test set has a fixed horizon for all the time series, and it is used only for computing the final
scores. The evaluation metrics adopted are the same ones that are applied in the M4 Competition,
and are those most used in literature (Al-Alawi & Islam, 1996; Azadeh, Ghaderi, & Sohrabkhani,
2008): the Symmetric Mean Absolute Percentage Error (sMAPE), Mean Absolute Scaled Error
(MASE) and Overall Weighted Average (OWA). The formula for calculating the metrics is given:

sMAPE = 1
h

h∑
t=1

2|Yt − Ŷt|
|Yt| + |Ŷt|

(5.6)

MASE = 1
h

(n − m) ∑h
t=1 |Yt − Ŷt|∑n

t=m+1 |Yt − Yt−m|
(5.7)

OWA = sMAPEk/sMAPEbase + MASEk/MASEbase

2 (5.8)

where Yt is the post sample value of the time series at point t, Ŷt is the estimated forecast, h is
the forecasting horizon, m is the frequency of the data, k is a given regressor, and base is the
sNaive estimator.

A hold-out cross-validation scheme is adopted to evaluate and select the best parameters
for the methods, in which the last k observations are kept as the validation set, k being equal to
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the forecast horizon. All possible parameter combinations are enumerated within the defined
ranges, and the methods are tuned using an exhaustive grid search procedure with sMAPE as
the scorer.

5.2.5 Software and hardware

Routines were implemented using the R 3.6.0 programming language with the official
benchmarks and evaluation script of M4 Competition, available at the GitHub repository
(https://github.com/M4Competition/M4-methods). The Forecast 8.7 package is
used for the SES, Holt, Damped, ARIMA, and ETS methods. DTSF comes from the
official implementation of the method in R and C++, available from the public repository
(https://rdrr.io/github/leandromineti/DTScanF/). All data and scripts are
available from the authors upon request.

Computer specifications used to execute the algorithms and calculate the forecasts are
as follows: CPU 8-core Intel Core i9 2.3 GHz, 16 GB of RAM , and macOS 12.5 operating
system. Once the predictions are calculated, the error arrays are next calculated and saved as
RDS files, allowing analysis of the results. Fitting time is computed from the time delta of the
system, before and after each execution of the methods.

5.3 Results and discussion

Table 10 presents the average sMAPE achieved by each of the statistical methods and
by the proposed method, computed for each of the time domains. The Theta method achieved the
best scores for the yearly and monthly frequencies (14.603 and 13.003), which composed more
than 70% of the total of the series, thus contributing to this particular method outperforming the
other methods in the overall average (12.312). In the individual domains, Comb achieved the
lowest error for both the daily (10.197) and the quarterly (10.197) domains, while the ARIMA

method scored the lowest error on the weekly frequency (8.593).

The average error of all methods is the lowest for daily frequency (close to 3.00), and
there seems to exist a trend toward increasing as the time domain becomes broader: the weekly
average error is around 9, the monthly is around 13, and so on. The exception is for the hourly
frequency, in which most of the statistical methods scored errors from 13.912 to 43.003.

DTSF exhibited fewer errors in comparisson with those benchmark models (12.927).
This makes the DTSF method interesting for studying applications in which competitive
estimators are sought.

Table 11 presents the evaluation of the methods using OWA. This metric is understood
as showing how one method is more accurate when compared to Naive2. If OWA is lower
than 1 the method is more adequate than Naive2. Otherwise, Naive2 provides better forecasting

https://github.com/M4Competition/M4-methods
https://rdrr.io/github/leandromineti/DTScanF/
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Table 10 – The performance of DTSF compared to M4 benchmark statistical methods –
sMAPE metric.

sMAPE

Yearly Quarterly Monthly Weekly Daily Hourly Average
Method (23k) (24k) (48k) (359) (4,227) (414) (100k)
Naive 16.342 11.610 15.255 9.161 3.405 43.003 14.207
sNaive 16.342 12.521 15.994 9.161 3.405 13.912 14.660
Naive2 16.342 11.012 14.429 9.161 3.405 18.383 13.565
SES 16.398 10.600 13.620 9.012 3.405 18.094 13.089
Holt 16.535 10.955 14.833 9.706 3.070 29.474 13.839
Damped 15.162 10.243 13.475 8.867 3.063 19.277 12.655
Theta 14.603 10.312 13.003 9.094 3.053 18.138 12.312
Comb 14.874 10.197 13.436 8.947 2.985 22.114 12.567
ARIMA 15.150 10.408 13.486 8.593 3.185 14.081 12.679
ETS 15.356 10.291 13.525 8.727 3.046 17.307 12.725
DTSF 16.816 11.006 13.823 8.983 3.313 12.927 13.370

Source: Research results.

Table 11 – The performance of DTSF compared to M4 benchmark statistical methods – OWA
metric.

OWA

Yearly Quarterly Monthly Weekly Daily Hourly Average
Method (23k) (24k) (48k) (359) (4,227) (414) (100k)
Naive 1.000 1.066 1.095 1.000 1.000 3.593 1.072
sNaive 1.000 1.153 1.147 1.000 1.000 0.628 1.106
Naive2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SES 1.003 0.970 0.951 0.975 1.000 0.990 0.970
Holt 0.956 0.935 0.989 0.964 0.997 2.760 0.976
Damped 0.888 0.893 0.924 0.916 0.996 1.140 0.912
Theta 0.872 0.917 0.907 0.971 0.999 1.006 0.906
Comb 0.868 0.891 0.920 0.926 0.979 1.559 0.906
ARIMA 0.891 0.898 0.904 0.927 1.041 0.950 0.906
ETS 0.903 0.890 0.914 0.931 0.996 1.824 0.913
DTSF 1.002 0.961 0.950 0.914 1.092 0.552 0.969

Source: Research results.

performance. The DTSF scores for the hourly series imply a meaningful increase in accuracy
over the Naive method (0.552). Moreover, when applying fine-tuning, the gain increases to nearly
50%. For all other domains, the only ones in which the method performed worse than Naive2
were the yearly and the daily, both of which have in common the longer term forecast period and
the lowest seasonality traits in common.

The outcome of the experiment can be explained by the intrinsic design of the DTSF

method, which was originally conceived to deal with very long time series with recurrent patterns,
such as its original application to 30 − min frequency wind speed forecasting. Comparing results
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to Table 8, which presents the seasonality, length, and forecast horizon of each time domain, it
is shown that the DTSF accuracy is greater when the number of available data points is also
greater.

Fig. 15 displays the average sMAPE for each one of the 414 hourly time series available
in the competition database, listed in ascending order according to the calculated error of the
DTSF method. The methods Naive, sNaive and SES methods were holdouts of the graphical
representation. The y-axis is presented using the base-10 logarithmic scale in order to facilitate
visual analysis.

Figure 15 – Forecasting methods average sMAPE for each of the 414 hourly time series,
ordered by the accuracy of the DTSF method. The proposed method obtained fewer
errors for most of the time series in this particular domain of application.
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Source: Research results.

In the first 170 time series with the lowest sMAPE – one-third of the total available –
the method proposed in the present article achieved errors close to 10−2, while most of the others
obtained errors between 100.5 and 102. This shows the enormous predictive power in this specific
type of series, and the great gain in accuracy that explains the best performance of this method,
on average. Analyzing the sets between the 170th and 300th time series with the smallest error,
there is less distinction between all the methods which, in general, presented errors very close to
each other. Other methods have shown a lower errors than DTSF along all time series, specially
the methods ARIMA and ETS. In the set between 300th and 414th, DTSF again marginally
outperformed the other benchmark methods in most of the series.

Table 12 presents the average sMAPE detailed by the forecast horizon, grouped by
6-hour periods. DTSF obtained lower errors, for all horizons than the other compared methods.
Furthermore, the average error is 12.9%, and the highest errors were obtained during the periods
between the hours from 19 to 30.

To provide better visualization of error evolution over time, Fig. 16 presents the mean
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Table 12 – Average sMAPE obtained in the 414 hourly time series

by the predicted steps, grouped in 6-hour periods.
Steps

Methods 1-6 7-12 13-18 19-24 25-30 33-36 37-42 43-48 1-48
Naive2 16.3 20.1 18.8 15.7 18.2 20.7 19.3 18.0 18.4
Naive2 16.3 20.1 18.8 15.7 18.2 20.7 19.3 18.0 18.1
Holt 15.7 23.0 27.1 27.5 29.9 34.9 37.9 39.8 29.5
Damped 15.5 20.3 20.5 17.5 18.1 21.2 21.2 19.9 19.3
Theta 16.1 19.9 18.5 15.3 17.8 20.5 19.2 17.8 18.1
Comb 15.6 20.6 21.8 19.7 20.8 24.9 26.7 26.8 22.1
ARIMA 14.2 11.4 11.2 15.8 15.4 13.9 13.4 17.0 14.1
ETS 13.6 16.5 16.4 16.6 16.5 19.0 18.9 17.4 17.3
DTSF 12.6 10.7 10.2 15.0 14.8 11.6 11.6 11.6 12.9

Source: Research results.

errors per step of each method (excluding the three from the previous figure), for all hourly
time series. An increase in error over time, according to the phenomenon of error propagation,
is expected. This is better observed in the Holt method, in which error varied from 10% at the
first step to 40% at the last step. Moreover, in such a visual representation, the Theta model is
perceived to have been more accurate, on average, than the DTSF model for the 1st and 24th

hours.

Figure 16 – Average sMAPE (obtained in the 414 hourly time series

by all the methods for each step of the prediction, up to 48 hours – forecast horizon).
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Most statistical methods presented a pattern of very similar curves, with the exception of
the DTSF method. In DTSF , the errors presented a different pattern, alternating peaks, and
valleys with the patterns of the other statistical methods. In general, DTSF appeared to remain
more stable throughout the period, experiencing less of the error propagation effect and not
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exceeding the limit of 20%. These are more examples that explain the better performance of the
DTSF method, compared to the benchmark, in the hourly domain.

Table 13 shows the time necessary to fit the methods for all of the 100, 000 time series.
The methods sNaïve and Comb have been omitted as these two are a combination/selection
of individual methods. Total fitting time is given in seconds, while the average time per series
is given in microseconds. The Ratio Naive column compares the average time of a particular
method compared to the execution time of the Naïve method.

Table 13 – Total and average times necessary for fitting the methods.

Methods Total fit-
ting time
(s)

Average
time per
series (ms)

Ratio to
naive

Naïve 0.458 1.106 1.00
sNaïve 0.656 1.584 1.43
SES 2.219 5.360 4.85
Holt 5.947 14.365 12.99
Damped 12.789 30.892 27.94
Theta 2.964 7.159 6.47
ARIMA 18437.598 44535.261 40278.22
ETS 1838.638 4441.155 4016.63
DTSF 6.241 15.074 13.63

Source: Research results.

DTSF was the method that consumed the most computational time, almost 9 times
more than Naive. It is worth mentioning that the default parameters for DTSF adopt 10 analogs
to estimate the forecast. Also, part of the method is executed in the C compiled language, and
part of it is executed in R.

5.4 Conclusions

The current paper presents the results of applying the dynamic time scan forecasting
method with the M4 − competition data and compares it with statistical methods used as
baselines in the same competition. The results point to a significant gain in accuracy in hourly
time domain problems, compared to the reference, which justifies adopting this method for
problems of this particular nature.

Since the method was developed for problems with long time series and high repeatability,
DTSF has been proved competitive. In the present experiment, the DTSF method reduced the
sMAPE by 12.13%.

Furthermore, the dissemination of this method may be interesting for other researchers
who wish to extend it to existing methods, either by combining it with other techniques or by
adapting its operation to other applications.
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Future research should extend the method to multivariate forecasting problems and hierar-
chical time series and should assess its performance in other applications with this characteristic
(the M5 competition, for instance). Also, some extensions of the method itself are foreseen, in
order to improve its accuracy on time series for which its performance was less satisfactory than
the performance of other statistical methods, for example, adopting k-fold instead of hold-out
cross-validation for model selection (Bergmeir, Hyndman, & Koo, 2018).
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6 Applications of dynamic time scan fore-
casting on electricity spot market: a
case study based on the Brazilian Dif-
ference Settlement Price

Abstract

Developing predictive models is a complex task since it deals with the uncertainty and the
stochastic behavior of variables. Specifically concerning commodities, accurately predicting
their future prices allows us to minimize risks and establish more reliable decision support
mechanisms. Although the discussion on this question is extensive, there is academic attention
being paid to the construction of nonparametric models applied to energy markets, as they
have presented promising predictive results, that justifies the present study. Given the above,
the following question is formulated: what is the accuracy of Dynamic Time Scan Forecasting
(DTSF) regarding energy prices in the Brazilian spot market? This paper applies DTSF to the
short-term electricity market prices, in Brazil, from 2006 to 2019. DTSF consists of scanning a
time series and then identifying past patterns (so-called "matches"), similar to the last available
observations. We predict Brazilian electricity spot prices, according the most similar matches,
using aggregation functions, such as median. Recent research on the electricity spot market is
increasing, indicating research significance. Our predictive approach exhibited greater accuracy
than seminal statistical models. Our approach was designed for a high frequency series. Its
predictive performance remained robust when other models presented both high predictive errors
(spring), as well as when those models are highly accurate (winter). For future research, we
recommend a more finely-tune study on DTSF parameters.

Keywords: Electricity Price; Spot Market; Scan Methods; Dynamic Time Scan.

6.1 Introduction

The construction of predictive models arouses interest in the literature (Hamm & Borison,
2006; Kuhn et al., 2008; Bui et al., 2016; Geisser, 2017), since economic agents deal with
uncertainty in multiple spheres and aim to achieve the best level of results from the available
resources (Choi, 1993). Therefore, developing models with acceptable accuracy and adequate
rigor presents a meaningful challenge to researchers. The Professor George Box synthesized this
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scheme: "All models are wrong, but some are useful" (G. Box, 1976). In other words, prediction
is a technique that deals with risk, and there will always be a fundamental error associated with
it. The best model is the one that adequately represents the phenomenon of interest.

In relation to the object of our study, electricity prices, there are several forecasting appli-
cations: (i) classical time series models like the autoregressive moving average, autoregressive
integrated moving average, generalized autoregressive conditional heteroscedastic, among others
(Pappas et al., 2008; H. Liu & Shi, 2013); (ii) pre-processing techniques, e.g., spectrum analysis,
wavelets and Fourier analysis (Simonsen, 2003; Miranian et al., 2013); and, (iii) machine learning
approaches such as neural networks, fuzzy systems and support vector machine (X. Chen et
al., 2012; Bui et al., 2016). Additionally, an alternative class known as hybrid models aims to
combine machine learning representations with deferent methods. Instances of these methods
are focused time-delay neural networks (Y. Chen et al., 2019), neural networks with fuzzy inputs
(H. Liu et al., 2015), finite-impulse response neural networks (Pir et al., 2017), local feedback
dynamic fuzzy neural networks (Nagaraja et al., 2016), type recurrent fuzzy networks (Jain et al.,
2014), neuro-fuzzy inference systems (Moreno & Santos Coelho, 2018), among others.

Although the literature on this question is extensive, there is academic interest in the con-
struction of nonparametric models applied to energy markets, as they have presented promising
predictive results. In general, these models are designed to deal with long-time series and are
chiefly based on analog search (D. Yang & Alessandrini, 2019; D. Yang, Wu, & Kleissl, 2019)
and scan-clustering methodologies (Simmhan & Noor, 2013; Costa et al., 2021).

According to this framework, understanding price behavior takes singular importance
(Rostamnia & Rashid, 2019) since it allows the minimization of risk and uncertainty (Khosravi,
Nahavandi, Creighton, & Naghavizadeh, 2012; Heck, Smith, & Hittinger, 2016) and thereby to
provide reliable production plans (Milligan et al., 2016; Schuh, Prote, Sauermann, & Franzkoch,
2019) and to establish a fine electricity market design (Woo & Zarnikau, 2019). In this scenario,
it is noteworthy that in Brazil, for instance, the National System Operator defines the spot price
of electricity weekly (Resende, Soares, & Ferreira, 2018). Predicting future values can help to
establish enterprise decisions and behaviors. For example, if a firm expects that the energy price
will scarcely increase, it could provisionally suspend part of its production and sell the surplus
electricity in the spot market later at a higher price (Ioakimidis, Oliveira, & Genikomsakis, 2014;
Tian, Xiao, Wang, & Ding, 2015). Also, the value of mapping the main conceptual theories used
in the literature regarding the electricity spot market is noteworthy, as those theories evolve and
become more robust over time (Weron, 2007, 2014).

The present paper contributes to the debate about the electricity spot market in two
ways: (i) it illustrates how big data tools can produce relevant information about the electricity
market; and, (ii) it illustrates, as a case study, a new forecasting approach to the analyzed
market. Accordingly, we aim to review the literature on the electricity spot market, through the
employment of big data tools, presenting the main research trends in the electricity spot market;
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also, to introduce a new, predictive instrument based on dynamic time scan, using the Brazilian
difference settlement price as a case study.

The paper is organized as follows. Section 2 presents the methodology, the data retrieval,
and the dynamic time scan forecasting procedure. Section 3 illustrates an application of our
forecasting approach, applied to the Brazilian electricity market, as a case study. Finally, section
4 highlights some patterns observed in the literature review and the potential use of dynamic
time scan forecasting for future studies focusing on the energy spot market.

6.2 Materials and Methods

This section first presents the data and the procedures used to carry out a review of
literature. Second, it introduces a promising statistical model based on dynamic time scan
forecasting. To illustrate the accuracy of the model, and to present its applicability, the Brazilian
"difference settlement price" dataset was used as a case study.

6.3 A review of the literature on the Electricity Spot Market

We conducted an exhaustive survey of publications regarding papers on the electricity
spot market. It is noteworthy that Web of Science (WoS), along with Scopus, are the most
commonly used academic citation databases for delineating fields of study. WoS, formerly
known as the ISI, Web of Knowledge database, was used as the most complete and traditional
bank of scientific publications in the world (Strozzi, Colicchia, Creazza, & Noè, 2017; Analytics,
2017). We limited our search to papers published in English. Moreover, we considered only the
WoS database, since the WoS and Scopus databases may not differ significantly (Weron, 2014).
In addition, we chose to analyze only the core publication journals, which are usually indexed in
both databases.

Data extraction from the WoS platform (2019 − 05 − 06) took into account publications
that responded to the search expression "electricity spot market*", as shown in Figure 17. The
use of the “*” character in the search expression helps to capture words in both the singular and
in the plural, making search results more complete.

The research universe encompasses publications from the years 1992 to 2018 (n = 173).
1992 is the year of the first scientific publication on the subject indexed in WoS. 2018 is the last
year for which complete information is available. The sample for this project (1992to2018, n =
97) is henceforth called “primary publications”. To filter these primary publications, we scanned
for any of the descriptors shown in Figure 17 in the titles, abstracts, author’s keywords, or in the
Plus keywords.

Criteria for including a paper in the sample were based on these indicators: (i) CiteScore
(measures average citations received per document published in the serial); (ii) SCImago Journal
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Figure 17 – Methodological procedure to obtain the analyzed sample.

Source: Research results. Note: CiteScore, SNIP and SJR metrics calculated using data from 30 April 2018.

Rank (SJR) (measures weighted citations received by the serial. Citation weighting depends
on subject field and prestige, SJR of the citing serial); and, (iii) Source Normalized Impact per
Paper (SNIP) (measures actual citations received relative to citations expected for the serial’s
subject field), all of them for the year of 2018. According to that the present study considered
only (i) American Economic Review; (ii) Applied Energy; (iii) Econometrica; (iv) Economic
Journal; (v) Energy; (vi) Energy Conversion and Management; (vii) Energy Economics, (viii)
Energy Policy; (ix) Environmental Science & Technology; (x) European Journal of Operational
Research; (xi) IEEE Transactions on Power Systems; (xii) IEEE transactions on Smart Grid;
(xiii) International Journal of Electrical Power and Energy Systems; (xiv) International Journal
of Forecasting; (xv) Journal of Banking and Finance; Journal of Economic Perspectives; (xvi)
Journal of Political Economy; (xvii) Journal of the European Economic Association; (xviii)
Mathematical Programming; (xix) Operations Research; (xx) Proceedings of the IEEE; (xi)
Production and Operations Management; (xii) Renewable Energy; (xiii) Review of Financial
Studies and (xiv) Solar Energy.

After selecting journals, we conducted a descriptive analysis of our bibliographic data
frame. To do this, we used the Bibliometrix R package developed by (Aria & Cuccurullo, 2017)
to analyze the annual publication of electricity spot markets in the most relevant journals, as well
as the most productive countries of corresponding authors and seminal works. Next, we developed
a dictionary that aggregates similar words. For example, we considered “electricity prices”
and “electricity pricing”, or “electricity spot market” and “electricity trading”, as equivalent
expressions. Finally, we constructed a WordCloud using the VOSviewer software (N. Van Eck
& Waltman, 2010), that filters the hot and cold areas of interest for the theme according to the
co-citation keywords, showing in detail how they interact with each other.
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6.3.1 Data retrieval

The present study is based on the Brazilian difference settlement price (PLD). The
PLD is determined weekly, considering three load levels for each sub-market. The submarkets
are defined by the National Operator of the System, and consider the following geographical
divisions: North, Northeast, Southeast/Center-West and South.

The PLD is determined ex-ante (considering expected availability and load information),
based on weeks counted from Saturday to Friday. The prices must sell out all the energy, not just
the contracted energy, among the agents (Chamber of Electric Energy Commercialization, 2019).
The analyzed sample consists of weekly PLD data (R$/MWh) collected by the Chamber of
Electric Energy Commercialization, from January 2006 to May 2019 (n = 701weeks). We
utilized the twelve available series, divided into the four Brazilian sub-markets: North, Northeast,
Southeast/Midwest and South (called, respectively, N, NE, SE and S); and three load levels of
energy: Heavy, Average, and Light (called, respectively, P, M and L). According to this, we have:
LN ; LNE; LS; LSE; MN ; MNE; MS; MSE; PN ; PNE; PS and PSE .

6.3.2 Dynamic time scan forecasting methodology and benchmark com-

parison

Dynamic time scan forecasting (DTSF) is an R − package based on scan statistics
(J. Chen & Glaz, 2012). It was originally formulated to deal with wind forecasting and power
generation by industrial plants (Costa et al., 2021). It consists of scanning a time series and then
identifying past patterns (so called "matches") similar to the last available observations. Future
values are predicted from the most similar matches using aggregation functions, such as median.
Mathematical formulation and the results of original applications can be found in (Costa et al.,
2021).

Here, we present an innovative use of DTSF based on the electricity spot market. To
present the method, we utilize a predictive window equal to four weeks, the number of matches
as the ten best-correlated ones and, finally, a polynomial function of order one (Figure 18). In this
way, it is possible to find patterns between last available data and the old information, without
any statistical test (green highlights). This procedure is based only on high similarity statistics
(R2). The most similar patterns, called “median value of matches,” allow us to predict the PLD

with the highest level of accuracy.

To illustrate the DTSF , we compare it to the classical statistical methods utilized in
the “Makridakis Competitions” (also known as the M Competitions or M-Competitions). These
competitions are a series of open disputes organized by the Professor Spyros Makridakis to
evaluate and compare the accuracy of different forecasting methods (Makridakis & Hibon, 2000;
R. J. Hyndman, 2020). Table 14 provides our benchmark comparison.

The test set has a fixed horizon for all of the time series, and it is used only to compute
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Figure 18 – Time series of the PLD (PSE) and ten best matches found using DTSF .

Source: Research results.

Table 14 – DTSF , benchmarks, and standards for comparison of the M4 Competition.

Model Initials Description

Statistical benchmarks Naïve A random walk model;,future values will be
the same as that of the last known observation

Naïve2 Forecasts are equal to the last known obser-
vation of the same period.

Mean The forecasts of all future values are equal to
the average (or “mean”) of the historical data.

Arima An automatic selection of possible ARIMA
models is performed and the best one is cho-
sen using appropriate election criteria.

ETS Automatically provides the best exponential
smoothing model, indicated through informa-
tion criteria.

Source: (Makridakis, Spiliotis, & Assimakopoulos, 2020), adapted by the authors.

the final scores. We utilized M4 competition accuracy metrics, based on the Overall Weighted
Average (OWA) of two accuracy measures: The Mean Absolute Scaled Error (MASE) and the
Symmetric Mean Absolute Percentage Error (sMAPE), since they are among those most found
in the literature (Al-Alawi & Islam, 1996; Azadeh et al., 2008).

6.4 Results and Discussion

6.4.1 Academic research on electricity spot market

Research on electricity spot markets began with (R. J. Green & Newbery, 1992), who
analyzed the competition in the British market and demonstrated the Nash equilibrium in supply
schedules, implying a high markup on marginal costs and substantial deadweight losses. However,
there was a notable gap of seven years until the next three papers were published (De Vany &
Walls, 1999; Wolfram, 1999; R. Green, 1999) The first research (De Vany & Walls, 1999) studied
transmission efficiency in the Western US. The second and the third studies (Wolfram, 1999;
R. Green, 1999) focused on measuring duopoly power in the British electricity spot market and
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the reform of electricity trading in England and Wales, respectively.

In the period between 1992 and 2018, 215 authors published in leading selected journals
(n = 25) indexed in WoS, totaling (n = 97) publications. Here, we have additional information
for our sample: (i) Author’s Keywords (included in records of papers by the authors) (n = 299);
(ii) Keywords Plus (index terms automatically generated by WoS, considering the titles of cited
papers) (n = 253); (iii) all keywords (n = 432) (the sum of Author’s Keywords and Keywords
Plus, excluding duplicates); and, (iv) Average citations per documents (n = 45.54). During
the survey period, the mean annual growth of publications was 8.33% (from 1 paper in 1992
to 8 papers in 2018). Additionally, an average of 4.62±2.78 papers was published per year,
demonstrating academic relevance.

Seminal works on the energy spot market are concentrated, according to Bradford’s
Law (Bradford, 1934), in a few journals, namely: Energy Economics (n = 20), Energy Policy
(n = 19) and IEEE Transactions on Power Systems (n = 14). This growth has aroused the
interest of several researchers and favors the emergence of some questions, namely: (i) which
theoretical approaches have shown the best results in describing electricity spot market? (ii) what
are the potential gaps in the literature that future works should address?

The leading countries in publications are the USA (n = 31), followed by Germany
(n = 23) and Spain (n = 21). Together, they account for 41.44% of the world’s research on
the electricity spot markets. On the other hand, the countries with the highest total number
of citations are, respectively, the USA (n = 1127), Spain (1042) and the United Kingdom
(n = 993). Last, but not least, Ireland (n = 101), the United Kingdom (n = 90.27) and Spain
(n = 86.83) are the three countries with the highest average number of citations per paper, which
is a good indicator of the degree of academic relevance.

The principal references, cited in the 97 publications, are, respectively: (i) (R. J. Green
& Newbery, 1992). Richard Green is Professor of Sustainable Energy Business at the Imperial
College London; David Newbery is a professor at the University of Cambridge; (ii) (Klemperer,
2002). Paul Klemperer is an economist and Professor of Economics at Oxford University; and,
(iii) (Arroyo & Conejo, 2000). José M. Arroyo is Professor at the Universidad de Castilla-La
Mancha; Antonio J. Conejo is Professor at Ohio State University.

It is possible to create maps based on bibliographic information and then explore, for
instance, the degree of appearance of a particular keyword and its temporal evolution. This type
of analysis allows us to verify the hot and cold areas of interest in the scientific debate on the
electricity spot market (Figure 19). Our purpose is to take out the frequency of papers with
certain keywords. We set our “breakpoint” (n = 2) as the minimum number of occurrences
considering all the keywords (n = 432). As it is possible to see, below, 37 keywords (nodes)
meet that threshold. The diameter of the circle is proportional to the number of occurrences of,
and the lines show the number of links between, these keywords. In recent research, some topics
have gained prominence: (i) non-parametric models; (ii) impact analysis; (iii) merit order effect;
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(iv) virtual power plant; and, (v) electric vehicles.

Figure 19 highlights a defined trajectory of research over time. The first published
research (in purple) emphasized economic aspects such as the supply of energy, as well as
technical elements (capacity and transmission, e.g.) concerning spot energy markets. Following
this, there was a growing importance of studies on electricity generation and pricing (in blue),
studies on contract theory, energy storage, and technologies (in green). Finally, the areas of the
most current interest are those linked to non-parametric models, impact analysis, merit order
effect, virtual power plant, and electric vehicles.

Figure 19 – Temporal WordCloud for the 50 most repeated keywords (all) in the analyzed
sample.

Source: Research results.

Let us look at the non-parametric node. This node has been used in papers after 2016,
which indicates a possible trend for further research. Studies that have used the keyword "non-
parametric models” have also used other keywords, namely: (i) behavior strategies, (ii) com-
plementarity, (iii) electricity pricing, (iv) impact analysis, (v) market structure, (vi) penetration,
(vii) power generation, (viii) renewable energy, (ix) spot market, and (x) transmission. Thus,
our paper relates to current research trends on electricity and innovates by proposing the first
application of the nonparametric model (DTSF) for forecasting energy prices in the spot market.

The main articles that addressed nonparametric models applied to energy focused on:
(i) assessing the influence of high penetration of wind power on the market-splitting behavior
between West and East Denmark, using logit and non-parametric models (Figueiredo, da Silva,
& Cerqueira, 2016); and, (ii) expressing the probability response for market-splitting of day-
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ahead spot electricity prices as a function of the explanatory variables representing the main
technologies in the generation mix, including wind, hydro, thermal and nuclear power, together
with the available transfer capacity and electricity demand (Figueiredo, da Silva, & Cerqueira,
2015).

6.4.2 Statistical analysis of difference settlement price time series (PLD)

In order to test the hypothesis of equality of PLD prices, among groups 1 to 12:
PSE, MSE, LSE, PS, MS, LS, PNE, MNE, LNE, PN , MN , LN : µ0 = µ1 = µ2 = µ0 = ... = µ12,
we performed an Analysis of Variance (ANOVA) (Figure 20). The initial objective is to identify
the existence of at least one difference among the prices in the PLD groups. As the P − value

for the F statistic is significant, there is evidence that at least one difference among the average
prices would be significant.

Figure 20 – Analysis of Variance (ANOVA): response of PLD prices for the analyzed groups.

Source: Research results.

To check whether the results obtained in the ANOV A are satisfactory, it is recommended
that the following conditions be tested: (i) are the standard deviations of groups constant over
time? (ii) is the response distribution normal for each group? To test for homoscedasticity, we
performed the Bartlett Test (Bartlett, 1937), and obtained a P-value equal to 0.448. To detect
normality, we performed the Shapiro test (Shapiro & Wilk, 1965), which gave a P − value

of 0.501. The non-normality of these results corroborates findings previously reported in the
literature (R. V. Gomes, 2015). Furthermore, since the DTSF is based on a non-parametric
model, our goal was not to perform statistical inference analysis.

From this evidence, it is interesting to identify where the differences among the means
of the analyzed groups lie. In particular, the process of comparing means examines them two
by two, using the Multiple Comparisons method proposed by Tukey (Tukey, 1949) (Figure 21).
In general, most of the series have equal mean values. This reinforces the thesis that the PLD

behavior is stable concerning the charge amount and the associated geographic region.

In general, the main differences are centered in the north of Brazil. This is reasonable,
since this region is not fully connected to the national electricity system and, thus, has specific
characteristics (Böckler & Pereira, 2019).
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Figure 21 – Tukey’s Honestly Significant Difference (HSD) test.

Source: Research results.

6.4.3 Case study: applying DTSF to the heavy southeast energy sub-

market

According to the statistical evidence presented in section before, there is robust indication
of a similar pattern among the mean values for the twelve analyzed time series. Thus, we assume
that the DTSF approach will generate similar forecastings for each group. Given that, our case
study is based only on the PLD in the southeast of Brazil, and considers the heavy load level of
energy. This choice is justified because the southeast is the wealthiest region of the country and
concentrates nearly 55% of the country’s gross development product (E. S. d. Santos, Juchem, &
Maduro, 2017). Lastly, we kept the heavy load level as it relates to industrial energy demand
(Munhoz, 2017).

As expressed in the Material and Methods, the new predictive DTSF model is faced to
the eight “seminal statistical models” (classified here as the benchmark models), frequently used
in the technical literature on forecasting competitions, such as the classical one M4 Competition
(Makridakis & Hibon, 2000; R. J. Hyndman, 2020).

There is no evidence of seasonal influence in the time series analyzed, since the variations
of the Naïve method resulted in equivalent predictive metrics (Figure 22). We also observed that
the benchmark models presented similar results. On the other hand, according to the OWA, the
DTSF method presented better performance than the Naïve (baseline) model. DTSF presents
an efficient resolution for the Brazilian PLD prediction in the southeast region, considering the
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heavy load level of energy. Figure 22 graphically illustrates the fit of the models according to the
sMAPE and MASE statistics.

Figure 22 – Comparison between the DTSF and the analyzed forecasting models (benchmark).

Source: Research results.

Nevertheless, DTSF should be examined in more detail. In Figure 17 we presented the
time series utilized and, according to that time series, the discontinuous nature of the observations
over the weeks is evident. This occurs for different reasons, ranging from political influence on
the energy pricing process (Guimarães & Piefer, 2017) to theoretical limitations in defining the
difference settlement price in Brazil (R. V. Gomes, 2015).

To strengthen our predictive study, we divided the time series according to the seasons
(spring, summer, autumn, and winter). Following this division, the predictive potential of the
models was re-examined (Figure ??amemm03). In general, the best performances were, respec-
tively: (i) spring (DTSF); (ii) summer (Naïve and Damped); (iii) autumn (Naïve) and (iv) winter
(Damped).

It is noteworthy that our results are generally consistent. DTSF , based on the scanning
method, exhibited predictive worsening due to the time series cutoff. Nevertheless, even with
the cutoff, it was more statistically accurate in the spring and winter forecasts. Although all
models have high predictive errors (spring), DTSF produces better results. The same goes for
the inverse situation: whenever models are highly accurate (winter), DTSF is among the best
predictors. Finally, due to the high discontinuity pattern of the analyzed series, the Naïve model
presented good overall performance.
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Figure 23 – Comparison between the DTSF and the analyzed forecasting models (benchmark).

Source: Research results.

Our results, although early, shed light on some future research possibilities such as de-
tailed examination of DTSF performance in other global markets, such as in the Nordic countries.
These countries have a sturdy energy pricing system, "Nord Pool" (Botterud, Kristiansen, &
Ilic, 2010), that use hourly pricing information for electricity. Thus, the available information
exceeds 50, 000 observations for each market, (country) which allows it to produce a bright body
of investigation. Last, but not least, we suggest the examination of different DTSF parameters
through a grid search inquiry. Also, we recommend testing the precision of models by cutting
time series into hundreds of subsamples and then verifying the predictive power of DTSF under
different circumstances.
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6.5 Conclusions

Analysis of the electricity spot market is complicated, involving the relationship between
forecasting models and uncertainty, distinctly regarding the stochastic behavior of variables. The
National System Operator regulates the Brazilian spot price of electric energy, which weekly
discloses a new electric energy price to minimize the operating cost of the whole system. The
present paper is aimed at the policymakers, offering a big data analysis of the scientific research
of electricity. It also proposes a new forecasting approach, based on Scan-clustering modeling of
the buying and selling of energy in future markets.

Although still nascent, research on the electricity spot market is increasing. As proof of
this, the annual growth of publications during the survey period (1992 to 2018) corresponds to
8.33%, with an average of 4.62 ± 2.78 papers published per year. This indicates the growing
significance of this research. There may be several reasons for this, including the development of
technologies or the growing interest in intelligent and automated networks by agents. Given the
above, we noted that recent research shown a particular interest in some specific study domains,
such as non-parametric models.

We present the first application of DTSF based on the electricity spot market, and apply
our results to the eight “seminal statistical models” regularly used in forecasting competitions.
In general, the eight benchmark models presented similar results. However, DTSF exhibited
the best performance, as measured by all accuracy metrics. Subsequently, we examined the
accuracy of the DTSF against timeframes in the observations, taking into account the seasons.
DTSF was designed for series with high frequency and its predictive performance remained
high when all other models had high predictive errors (spring). Even when other models were
highly accurate (winter), DTSF remained among the best ones. There were other cases, however,
in which we observed the DTSF performance to falter.

For future research, we recommend fine-tuning the study of DTSF parameters, as well
as testing the accuracy of the models by randomly splitting time series into subsamples. Further,
we recommend the development of case studies that will take the pricing of the electricity spot
market in different regions, such as the Nordic and Iberian countries that dispose of massively
available, high frequency data, into consideration.

Finally, the present research contributes to the energy planning processes of different
players, given that understanding of the price patterns has singular importance in minimizing
risks and supporting reliable production planning. Good forecasts for future energy pricing can
support operational arrangements, e.g., when the energy price is high, it may be more valuable
for an industry temporarily to delay part of its production, trade the surplus electricity, and carry
out preventive maintenance on machines and accessories.
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7 Application of a data-driven DTSF

and benchmark models for the pre-
diction of electricity prices in Brazil: a
time-series case

Abstract

The global energy market has developed significantly in recent years, proof of this is the creation
and promotion of smart grids and technical advances in energy commercialization and trans-
mission. Specifically in the Brazilian context, with the recent modernization of the electricity
sector, energy trading prices, previously published on a weekly frequency, are now available
on an hourly domain. In this context, the definition and forecasting of prices become an in-
creasingly important factor for the economic and financial viability of energy projects. In this
scenario of changes in the local regulatory framework, there is a lack of publications based
on the new hourly prices in Brazil. This paper presents, in a pioneering way, the Dynamic
Time Scan Forecasting (DTSF) method for forecasting hourly energy prices in Brazil. This
method searches for similarity patterns in time series and, in previous investigations, showed
competitive advantages concerning established forecasting methods. This research aims to test
the accuracy of the DTSF method against classical statistical models and machine learning.
We used the short-term prices of electricity in Brazil, made available by the Electric Energy
Commercialization Chamber (CCEE).

Keywords: Electricity price forecasting. Statistical models. Machine learning. Time series.
Dynamic time scan forecasting. Benchmark models. M4 competition. Hourly prices.

7.1 Introduction

Energy planning policies arouse the interest of regulatory agencies, local governments,
and the business sector. However, reconciling the interests of all the agents involved is not a
simple task (Bhattacharyya, 2019) since, for the management to be fulfilled, it is necessary to
achieve simultaneous success in energy supply, attracting investments, the fiscal balance of the
government, and tariff modicity (Da Silva, Costa, Ahn, & Lopes, 2019). Additionally, investing
in renewable energies in the present portends reducing the use of fossil fuels in the future, thus
generating a positive externality for society (Tjørring & Gausset, 2015). Therefore, the promotion
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of energy policies favors regional development and, consequently, an improved standard of living
for individuals (Xu et al., 2019).

Due to the complexity of this issue, and the number of variables involved, public policies
for energy trading occupy a prominent place in the energy industry since such policies should pro-
vide security in the investment environment (Lammers & Hoppe, 2018). Thus, a safe marketing
regime is one that accurately signals the price of electricity to agents, allowing them adequately
to remunerate the efficiency, reliability and flexibility of the energy generating sources (Hussain
et al., 2018; Wan et al., 2016).

In this context, the Brazilian government defined the attributions of the Electric Energy
Trading Chamber (CCEE) with Decree No. 5,177/2004 (Brazil, 2004). One of the CCEE ′s

main responsibilities is to account for the amount of electricity sold in the National Intercon-
nected System (SIN), as well as to promote settlement for the operational values of the purchase
and sale of electricity in the Short-Term Market (MCP) (R. Gomes & Poltronieri, 2018). The
same Decree also establishes that the valuation of the amounts settled in the MCP be used
for the Settlement Price of Differences (PLD). This price is calculated weekly by the CCEE,
considering sub-regional energy markets and load levels to be marketed (Ebert & Sperandio,
2018).

The basis for calculating the PLD is the Marginal Operating Cost (CMO), derived
from the mathematical methods (Newave and Decomp) used by the National Electric System
Operator (ONS) to define the system operation schedule. It should be noted that this arrangement
is delimited by a minimum price and a maximum price, established annually by the National
Electric Energy Agency (ANEEL) (Maceira, Melo, & Zimmermann, 2016).

Despite its relevance to the free energy market, the Brazilian PLD is undergoing refor-
mulations. Accordingly, the Ministry of Mines and Energy (MME) has developed a plan for
the modernization of the electrical system with Ordinance No.300/2019. The proposals include
improvements to the existing computational models for the operation of the national electricity
system and adoption of a new method (based on hourly prices) for pricing electricity in the
Brazilian spot market. The hourly PLD is evolving and will come into effect completely in 2021.
The goal is to bring the price of energy closer to that of the National Electric System (Abreu, de
Souza, & Ribeiro, 2020; Marchetti & Rego, 2022; Munhoz, 2021).

The purpose of these methodological arrangements is to stimulate energy pricing in a
context of demand response programs (Kalavani et al., 2019; Jordehi, 2019); i.e., to assign value
to energy according to the moment of production, with higher prices at times of higher demand
or lower generation, for example. This should lead to efficiency gains for the electrical system, in
the long term. At the same time, the changes in the PLD will bring the Brazilian trading system
closer to international systems that already adopt hourly prices. These systems include: (i) The
Nordic Electicity Market - Nord Pool (Haugom et al., 2020); (ii) The Italian Electricity Market -
Mercati Energetici Manager (GME) (Ilea et al., 2017); and (iii) The Iberic Electricity Market –
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Iberian Electricity Market (MIBEL) (Mota et al., 2021), among others.

In this context, one of the most relevant tasks for the proper functioning of energy plan-
ning systems is Developing forecasting models, which is a difficult task. Particularly concerning
electricity prices, accurately predicting their forthcoming values makes it possible to minimize
planning risks. This fact becomes even more relevant in the current scenario of global energy
insecurity, derived from factors such as the war between Russia and Ukraine (Steffen & Patt,
2022) and the repeated interventions of the Organization of the Petroleum Exporting Countries
(OPEC) in oil prices over the last few decades (Lin, Omoju, & Okonkwo, 2015; Harris, Bitonti,
Fleisher, & Binderkrantz, 2022). Given the above, this scenario reinforces the need to encourage
research and development projects related to the energy market.

According to that the objectives of the present paper are to compare statistical-computational
models and machine learning approaches that allows an accurate prediction of electricity prices
in the spot market, considering the new price structure in Brazil.

We organized the present paper into four sections. Following this Introduction, Section 2
brings the material and methods utilized, focusing on datasets, the formulation of dynamic time
scan forecasting, benchmark models, and evaluation metrics. Section 3 provides the results and
discussions obtained from the proposed methodologies. Finally, Section 4 concludes the paper
and includes limitations and recommendations for future research.

7.2 Materials and Methods

7.2.1 Dataset

The data used in the current paper comes from the Brazilian Chamber of Electric En-ergy
Commercialization, available on https://www.ccee.org.br/web/guest/precos/
painel-precos. It consists of the short-term elec-tricity prices in Brazil, called "difference
settlement price" (PLD). The PLD is determined in hourly frequency, considering four sub-
market and three load levels. The submarkets are defined by the National Operator of the System
(ONS) and consider the geographical divisions: North, Northeast, South and Southeast/Center-
West (Gontijo et al., 2021; T. Santos, Diniz, Saboia, Cabral, & Cerqueira, 2020).

The PLD is ex−ante based, considering expected availability and load information. The
PLD must sell out all the energy, not just the contracted energy, among the agents (R. J. Hyndman
& Khandakar, 2008). The analyzed sample consists of hourly PLD data (R$/MWh) collected
by the CCEE, from 01 January 2019 to 31 December 2021, since they are the first and last year,
respectively, with complete information available (n = 26305 hours). According to Gontijo, Costa
e De Santis (2021) the PLD pattern is stable concerning the load charge and the geographical
regions. Thus, this paper used the PLD in the Southeast/Center-West of Brazil, since this region
is responsible for the leading share of the Brazilian gross domestic product (E. S. d. Santos et al.,

https://www.ccee.org.br/web/guest/precos/painel-precos
https://www.ccee.org.br/web/guest/precos/painel-precos
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2017). Additionally, we fixed our analysis on the heavy load level of energy because it relates to
the industrial demand (Munhoz, 2017).

7.2.2 Dynamic Time Scan Forecasting

Dynamic Time Scan Forecasting (DTSF) is a forecasting procedure based on scan
statistics (Kulldorff, 1999; Abolhassani & Prates, 2021), initially developed to handle wind
forecasting for Brazilian power generation plants (Costa et al., 2021). It consists of scanning a
time series and identifying past patterns ("analogs") like the last available observations at a given
time ("query") (Gontijo et al., 2021).

According to (Costa et al., 2021), the DTSF method scans a times series utilizing a
specified window size. Let yt be a time series of length N , t = 1, ..., N . Firstly, let vector y[w] be
defined as the last w observations of the series:

y[w] = [yN−w+1, ..., yN ]. (7.1)

As described, DTSF seeks to strongly identify subsets of the time series correlated with
the vector y[w]. This occurs by running a scanning window with the same size of vector y[w] to
scan subsets of the previous values in the time series. The set of candidate subsets are:

x[w]
t = [yt−w+1, ..., yt−w] (7.2)

where t = 1, ..., N − 2 · w. The upper limit of the time sequence (N − 2 · w) guarantees that
vector x[w]

t does not overlap with vector y[w]. Given the last w observed values, which comprises
vector y[w], a rolling window with the same size (xw

t ) is used for scanning previous values of the
series.

Lastly, DTSF provides a k − steps ahead forecast of the time series, yN+1, ..., yN+k. To
produce this outcome, the DTSF scans the series to find the closest analogs x[w]

t . The subsequent
values of the time series are used as the forecast values:

yN+i = fx[w]
t

(yt−w+i) (7.3)

where fx[w]
t

is a function which correlates the elements of vector x[w]
t and the elements of vector

y[w].

According to that, a first constraint can be set on k : 1 ≤ k ≤ w. This constraint
guarantees that if the most correlated time series window comprises the most recent values, prior
to vector y[w], then the forecast values are a function of vector y[w],

yN+i = fx[w]
N−2w

(yN−w+i). (7.4)



Chapter 7. Application of a data-driven DTSF and benchmark models for the prediction of electricity prices in
Brazil: a time-series case 84

As stated before, forecast values depend on the window length w and the function fx[w]
t

(.).

A intuitive proposal for function fx[w]
t

(.) is a linear scaling of the elements of vector x[w]
t , i.e.,

a linear model. This occurs due to the fact that previous values are likely similar to the last
observations, except for a scale and/or offset shift. So, the method searches for values that may
be similar to the last values, after applying a similarity function (Costa et al., 2021).

By taking a linear function as the similarity function, the parameters of the model
can be estimated to minimize the sum of squares between the elements of vector y[w] and the
linear equation: β

[t]
0 + β

[t]
1 × x[w]

t . Moreover, the similarity statistic can be assumed as the linear
regression coefficient of determination R2 (Costa et al., 2021; ?, ?):

R2 = 1 −
∑

j

(
y[w]

j − ŷ[w]
j

)2

∑
j

(
y[w]

j − ȳ[w]
j

)2 (7.5)

where y[w]
j is the j-th value of vector y[w] and ŷ[w]

j is the j-th predicted value using the estimated
linear function. Finally, the method calculates a similarity profile based on the R2 score resulting
from the comparison of the query with previous windows. The analogs with higher R2 scores are
considered closer analogs. Predictions of future steps are calculated from a predefined number
of analogs using aggregation functions, such as median (Costa et al., 2021).

7.2.3 Benchmark Models

A univariate predicting approach is a procedure for estimating a point forecast. The
forecasts are based on past and present values of a given time series (Pal & Prakash, 2017; Bisht
& Ram, 2021). Given the benefit of simplicity and high usage, the literature applies univariate
forecasting methods in several problems in different areas, such as energy and finance. A 24 −
hour predictive window was used in this paper. We selected the following benchmark methods
from the classical statistical and machine learning literature, such as the M − competition

(Makridakis et al., 2018), and a description is provided for each one, as follows:

1. ARIMA: Auto tuning model, with contains the “auto.arima” function in R, a variation
of the Hyndman-Khandakar algorithm (S. Wang, 2006; R. J. Hyndman & Khandakar,
2008), which combines unit root tests, minimisation of the Akaike or Bayesian information
criterion and maximum likelihood estimation to obtain an ARIMA model.

2. DTSF : the proposed method, adopting the defined default parameters, which are: (i)
polynomial function degree equal to 1, (ii) analogs equal to 10, (iii) window size equal to
length of forecast horizon, 24, and (iv) median as aggregation function (Costa et al., 2021).

3. ETS: Automatic forecasting procedure based on a range of exponential smoothing meth-
ods. Available through the ets function in R. The ETS model deals with trend and
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seasonality in datasets and other prior assumptions about the time series (Hand, 2009;
R. Hyndman et al., 2008; R. J. Hyndman et al., 2002).

4. Naïve: the straightforward, yet a still robust predictive procedure. It assumes that the
k − step ahead forecasts to be predicted are equal to the last given observation. Accessible
through the naive function in (Makridakis & Hibon, 1979).

5. TBATS: It consists in an exponential smoothing procedure, that incorporates Box − Cox

transformation, an ARMA model for residuals, and the trigonometric seasonal component.
The trigonometric seasonality term can potentially reduce model parameters when high
seasonality frequencies is applicable. Available through the tbats function in R (Livera,
Hyndman, & Snyder, 2011).

6. Theta: a procedure based on a coefficient of curvature of the time series, applied to
the second difference in the data. Achievable through the Theta.classic function in R

(Assimakopoulos & Nikolopoulos, 2000).

7. XGBoost: It applies to time series the Extreme Gradient Boosting procedure (Friedman,
2001). The basic idea of xgboost deals with extrapolation into a new range of variables not
in the training set. In order treat the the non-stationarity of the series, the first difference in
electricity prices was taken. To deal with the seasonality in data we constructed a set of
pairs of Fourier transform variables and take them as regressors ones. Disposable through
the xgbar function in R (Khuhawar, Siddiqui, Arain, Siddiqui, & Qureshi, 2021).

7.2.4 Forecast Evaluation

A 24 − hour predictive window was used in this paper. The split of the data into training
sets and test sets split considered the definition of 10 random test days, considering 24 hours
of prices for the whole series, totaling 240 test points. The choice of the number of test points
considered evidence from the literature in other forecasting studies (Rayas-Sánchez, Aguilar-
Torrentera, & Jasso-Urzúa, 2010; Koziel & Bandler, 2008). The testing points, are, respectively:
(i) 2021−03−17; (ii) 2021−05−08; (iii) 2021−05−31; (iv) 2021−06−13; (v) 2021−07−26;
(vi) 2021 − 08 − 04; (vii) 2021 − 08 − 26; (viii) 2021 − 10 − 08; (ix) 2021 − 12 − 07 e (x)
2021 − 12 − 21.

The forecast evaluation metrics assumed are the same adopted in the M − Competition

and are those most used in the literature (Islam & Al-Alawi, 1996; Azadeh et al., 2008): Mean
Absolute Scaled Error (MASE), Overall Weighted Average (OWA), and the Symmetric Mean
Absolute Percentage Error (sMAPE). The equation for calculating these metrics is given:

sMAPE = 1
h

h∑
t=1

2|Yt − Ŷt|
|Yt| + |Ŷt|

(7.6)
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MASE = 1
h

(n − m) ∑h
t=1 |Yt − Ŷt|∑n

t=m+1 |Yt − Yt−m|
(7.7)

OWA = sMAPEk/sMAPEbase + MASEk/MASEbase

2 (7.8)

where Yt represents the post − sample value of the time series at point t, Ŷt is the
estimated forecast, h is the forecasting horizon, m is the frequency of the data, k is a given
regressor, and the base is the sNaïve estimator.

7.2.5 Hardware and Software

All routines utilized in this paper were executed using the R 4.1.2 programming language
(R Core Team, 2021). The Forecast package (version 8.17.0) was used for the es-timations of
ARIMA, ETS, Naïve, and TBATS models (https://cran.r-project.org/web/
packages/forecast/index.html). DTSF and its original implementation in R and
C + +, is available from the repository (https://rdrr.io/github/leandromineti/
DTScanF/). Theta model, the top performing benchmark of the M4 forecast competition
is disposable at the official repository (https://github.com/Mcompetitions/M4
-methods). Finally, the fitting of the XGBoost model was achieved by the forecastxgb

package (https://github.com/ellisp/forecastxgb-r-package). Hardware specifications adopted to
perform the forecasting are CPU Intel Core i3 − 6100U .

7.3 Exploratory data analysis (EDA)

The PLD hourly time series is volatile, due to different factors: (i) this is a new arrange-
ment pricing system in Brazil, and energy trading is not yet a complete free trade environment
(Marchetti & Rego, 2022; T. Santos et al., 2020); (ii) the recent water crises in Brazil have
caused price instability (Hunt, Stilpen, & de Freitas, 2018); (iii) other factors may explain price
volatility, such as the uncertainties arising from the coronavirus crisis (Zhong, Tan, He, Xie, &
Kang, 2020) and the war between Russia and Ukraine (Johannesson & Clowes, 2022) and (iv)
finally, political instability in Brazil and Latin America may have an influence on production and
energy consumption, and consequently prices (Chevalier, 2009) (Figure 24).

According to Figure 24 (bottom), the PLD time series, through the Autocorrelation
function (ACF) and the scatterplot between the current observation and their respective lags,
show strong evidence of the need for a modeling that considers autoregressive vec-tors. One way
to model such behavior is to adopt family models, which can also verify the degree of stationarity
of the base and the need not to differentiate the data. Given this behavior, we selected the auto
Arima model as one of the benchmark models.

https://cran.r-project.org/web/packages/forecast/index.html
https://cran.r-project.org/web/packages/forecast/index.html
https://rdrr.io/github/leandromineti/DTScanF/
https://rdrr.io/github/leandromineti/DTScanF/
https://github.com/Mcompetitions/M4-methods
https://github.com/Mcompetitions/M4-methods
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Figure 24 – Time series display of PLD (R$/MWh), considering ACF and lag correlation.

Source: Research results.

According to Figure 25, the Brazilian PLD exhibited an annual and monthly variation.
The effect of the daily variation is relatively smaller than the previous ones. The presence of this
seasonal pattern justifies the choice of the automatic adjustment ETS model. ETS selects the
best fit, including the main classes of models with the trend, and seasonality, such as Simple
Exponential Smoothing, Holt model, Holt − Winter, SeasonalNaïve, and all their respective
extensions.

The next subsection presents the results obtained with the predictive models. The
estimates were carried out based on previously established performance metrics, namely:
sMAPE(%), MASE and OWA.

7.3.1 Forecasting results

As expressed in the material and methods the new predictive model DTSF was con-
fronted with six methods: Arima; Ets; Naïve; Tbats; Theta and XGBoost. According to the
sMAPE(%) indicator the DTSF exhibited the best predictive performance. The predictions
made by the Arima, DTSF and XGBoost model showed similar values. It is also noteworthy
that the Ets, Tbats and Theta showed greater predictive variability compared to the other
procedures. The sMAPE(%) variations concerning the 24 − steps ahead show that the models
present varied performances depending on the horizon. The DTSF remains com-petitive in
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Figure 25 – Boxplot of annual, monthly, and daily PLD (R/MWh)variations.

Source: Research results.

all analyzed steps ahead. There is also a slight convergence of predictions from the 12th step
onward (Figure 26).

Figure 26 – sMAPE(%) – Comparison between the DTSF and the benchmark models.

Source: Research results.

Complementarily, Figure 27 below illustrates the performance of the selected models
regarding the MASE measure. The results are like the previous ones, showing, through another
evaluation metric, the predictive power of the DTSF compared to the benchmark models.
Again, there is no one optimal model for all the predictive steps ahead; this fact suggests that a
decision-making system on electricity prices must consider switching models; that is, for certain
hours of the day, there are models that stand out over others. Figure 36 and 37, inserted in the
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Appendix of this thesis, present the numerical values for each predictive model, concerning the
24 predictive steps ahead, for the sMAPE(%) and MASE measurements, respectively.

Figure 27 – MASE - Comparison between the DTSF and the benchmark models.

Source: Research results.

According to (Makridakis et al., 2020) there are several approaches disposable in the
literature for evaluating the performance of benchmarking methods (Kim & Kim, 2016; R. J. Hyn-
dman & Koehler, 2006). In the historic of M − Competitions, many of the accuracy indicators
were used without any justifica-tion concerning advantages and disadvantages of each one (Paul
& Richard, 1999). This way, we decided to take another accuracy measure, one of the most popu-
lar in the forecasting literature, called Overall Weighted Average (OWA). We believe this would
reinforce us to obtain higher level of reliability. Thus, the best predictive model based on OWA

will be evaluated considering the two previously calculated measures, namely: sMAPE(%) and
MASE. According to the OWA, the DTSF showed the best predictive potential, followed by
the XGBoost model (Table 15).

Table 15 – Comparison between the DTSF and the analyzed forecasting models.

Model MASE sMAPE(%) OWA

Arima 0.803 4.080 1.000
DTSF 0.712 3.448 0.866
Ets 0.950 6.848 1.431
Naïve 0.846 4.231 1.045
Tbats 1.063 6.882 1.505
Theta 1.273 5.979 1.526
XGBoost 0.769 3.588 0.918

Source: Research results.

Despite its positive points, it is relevant to investigate the DTSF model in a more
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in-depth analysis. Future research should analyze PLD time series according to the sea-sons
(spring, summer, autumn, and winter). This procedure could help us to validate the model fitting
through other perspectives.

7.4 Conclusions

Analysis of the electricity spot market deals with a complicated task since it deals with
the relationship betwixt forecasting models and uncertainty. This theme becomes even more
relevant in the current context of global energy insecurity, highlighted by the war between
Russia and Ukraine and the instability in oil prices, resulting from interventionist actions by the
Organization of Petroleum Exporting Countries (OPEC).

According to that, this paper aims to contribute to the policymakers, proposing a new
forecasting approach, based on Scan clustering modeling for buying and selling electricity in the
Brazilian market. This study is justified because the energy trading system in Brazil is undergoing
reformulations. The hourly PLD is a new pricing model for the short-term market. It will replace
the current methodology called ’level week’ to another one with daily price updates.

We noted that recent research had shown a particular concern for some study domains as
the non-parametric and hybrid approaches. This paper presents the first application of the DTSF
method based on the spot market for electricity. We compared the forecasts generated in this
paper with the main benchmarking models regularly used in the M − Competition.

This research has limitations, namely: (i) the database is relatively new and has irreg-
ularities; (ii) the absence of similar studies carried out in Brazil makes it difficult to compare
this result with other local papers. Future research should explore other predictive horizons,
considering the short, medium, and long term.
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8 Forecasting Hierarchical Time Series
in Power Generation

Abstract

Academic attention is being paid to the study of hierarchical time series. Especially, in the
electrical sector, there are several applications in which information can be organized into a
hierarchical structure. The present study analyzed hourly power generation in Brazil (2018-2020),
grouped according to each of the electrical subsystems and their respective sources of generating
energy. The objective was to calculate the accuracy of the main measures of aggregating and
disaggregating the forecasts of the ARIMA and ETS models. Specifically, the following hi-
erarchical approaches were analyzed: (i) Bottom − Up (BU), (ii) Top − down (TD), and (iii)
Optimal Reconciliation. The Optimal Reconciliation models showed the best mean performance,
considering the primary predictive windows. It was also found that energy forecasts in the South
subsystem presented greater inaccuracy, compared to the others, which signals the need for
individualized models for this subsystem.

Keywords: Power generation. Electrical subsystems. Time series.

8.1 Introduction

The advent of Industry 4.0 revolutionized factories worldwide, since it allowed the
connectivity between measuring machines and the automation of companies, distributing the
capacity to collect massive volumes of data (Medojevic, Medic, Marjanovic, Lalic, & Majstorovic,
2019). In high-level data analysis, forecasting models allow the extraction of behavior patterns,
as well as the prediction of future scenarios for the collected data set (Alcácer & Cruz-Machado,
2019).

There are several forecasting applications relevant to power generation, the object of
the present study, including: (i) classical time series models (H. Chen, Wan, Li, & Wang,
2013), (ii) pre-processing techniques (Malvoni, De Giorgi, & Congedo, 2017), (iii) machine
learning approaches (Sharifzadeh, Sikinioti-Lock, & Shah, 2019), among others. Additionally,
an alternative class known as hierarchical forecasting (Athanasopoulos, Ahmed, & Hyndman,
2009) deals with organized time series that can be aggregated at different levels into groups
based on geography, sources of energy, or other, specific features.

Despite this being a recent topic, there is already research that has addressed the appli-
cation of hierarchical forecasting models in the energy sector. Some examples of applications
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are: electrical grids (Almeida, Ribeiro, & Gama, 2016), forecasting models for air pollution
(Kosiorowski, Mielczarek, Rydlewski, et al., 2017), solar power generation (Panamtash & Zhou,
2018), energy transport (Abouarghoub, Nomikos, & Petropoulos, 2018), among others.

The papers identified above have calibrated the forecasts using only the Bottom − Up,
Top − down, and OLS assumptions (R. J. Hyndman, Ahmed, Athanasopoulos, & Shang, 2011).
Thus, the following research question is formulated: how is it possible to make hierarchical
predictions using advanced linear regression models with regularization? We can obtain more
reliable forecasts if we rewrite the hierarchical problem in terms of finding a set of unbiased,
minimum variance measures of projected values across the whole array of data. It is possible
to minimize the sum of variances of the reconciled estimate errors under the property of unbi-
asedness, using the procedure called MinT (minimum trace) reconciliation (Wickramasuriya,
Athanasopoulos, & Hyndman, 2019).

The present paper presents a case study using a power generation data set from Brazil
(2018-2020) organized by electrical subsystems and different generating sources. Specifically,
the main approaches used to aggregate and disaggregate predictions made for grouped time
series are examined, namely: (i) Bottom−Up, (ii) Top−Down and (iii) Optimal reconciliation
models (OLS, WLS and MinT). The predictive models ARIMA and ETS were used to test the
performance of these reconciliation methods.

The remainder of the present paper is organized as follows. Section 2 defines the study
methodology, describing the data set, hierarchical procedures and forecasting models employed.
Section 3 presents the results and discussions of the techniques, in addition to the limitations of
this paper. Finally, Section 4 presents the conclusions and guidelines for future work.

8.2 Materials and Methods

The secondary data used in this study correspond to the amounts of power generated by
each of the Brazilian electrical subsystems (North, Northeast, Southeast/Midwest, and South).
We separated these data according to the source of energy (Wind, Hydroelectric, Thermal, Solar,
and Nuclear). Data were obtained from the National Electric System Operator (Operator, 2020),
due to their reliability. The observations of hourly power generation (GWh) were made during
the period from January 2018 to January 2020, making a total of 17521 hours.

Based on R. J. Hyndman et al. (2011), we present a schematic representation of the
Brazilian energy generation system, comprising a three-level hierarchical structure (Figure 28).
Level 0 represents the total energy generated in Brazil (completely aggregated series). Level 1
denotes each of Brazil’s electrical subsystems (first level of disaggregation). The last level, Level
2, represents each of the energy generating sources (Level k). According to this framework, it is
possible to identify the most disaggregated time series (in this case k = 2).



Chapter 8. Forecasting Hierarchical Time Series in Power Generation 94

Figure 28 – Hierarchical aggregation structure for the energy generation in Brazil.

Source: Research results.

Table 16 shows the amounts of power generation in Brazil (GWh), according to gener-
ating sources and electrical subsystems. There is a predominance of hydroelectric generation
(73%), making the Brazilian electrical matrix one of the cleanest in the world. At the same time,
the Southeast/Midwest subsystem accounts for more than half (56%) of all energy generated in
the country.

Table 16 – Amounts of power generation in Brazil (GWh).

Subsystem Source Wind Hydro Thermal Solar Nuclear Total
(GWh)

%

North (A) 2688 125182 31489 0 0 159359 14.3%
Northeast (B) 85377 37705 36699 4626 0 164407 14.7%
Southeast/Midwest (C) 0 518714 73555 2437 31805 626511 56.1%
South (D) 11326 135914 19472 0 0 166712 14.9%
Total (GWh/Source) 99391 817516 161215 7063 31805 1116989 100%

% 8.9% 73.2% 14.4% 0.6% 2.8% 100% -
Source: Research results.

Routines were implemented using the R programming language (R Core Team, 2021).
The R−package HTS was used to calculate the bottom−up, top−down, optimal combination
reconciliation and trace minimization reconciliation. HTS is available at: https://cran.r
-project.org/web/packages/hts/index.html. Although HTS includes functions
for creating, plotting and forecasting hierarchical time series, it has some limitations. Those
limitations include the fact that it has only three built − in forecasting options: ARIMA, ETS,

https://cran.r-project.org/web/packages/hts/index.html
https://cran.r-project.org/web/packages/hts/index.html
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and random walks (R. J. Hyndman et al., 2011). This paper will use the ARIMA and the ETS

models since they have automatic adjustment and allow consideration of factors such as the trend
and seasonality of the data set. The computer used to execute the algorithms had CPU Intel
Core i5 − 7200 2.70 GHz, RAM of 16 GB, and operating system Windows 10x64. In the next
subsection, we present the hierarchical reconciliation models used in the present paper, as well
as the forecasting models.

8.2.1 The Bottom − Up (BU) Approach

The BU procedure requires first providing forecasts for every series at the bottom−level,
and then summing these to generate forecasts for all the levels of the hierarchical structure (Orcutt,
Watts, & Edwards, 1968). In its simplicity, this approach neglects the relations between time
series and works, mainly unsuccessfully, on highly disaggregated data. These data tend to have a
low signal-to-noise ratio (Wickramasuriya et al., 2019). According to the hierarchy (Figure 28),
we first make h − step ahead forecasts for all the bottom-level time series (n = 14):

ŷAA,t, ŷAB,t, ŷAC,t, ŷBA,t, ŷBB,t, ŷBC,t, ŷBD,t, ŷCA,t, ŷCB,t, ŷCC,t, ŷCD,t, ŷDA,t, ŷDB,t, ŷDC,t. (8.1)

Summing these, we obtain h − step ahead forecasts for the rest of the series:

ỹt = ŷAA,t + ŷAB,t + ŷAC,t + ŷBA,t + ŷBB,t + ŷBC,t + ŷBD,t + ŷCA,t + ŷCB,t

+ŷCC,t + ŷCD,t + ŷDA,t + ŷDB,t + ŷDC,t.

ỹA,t = ŷAA,t + ŷAB,t + ŷAC,t

ỹB,t = ŷBA,t + ŷBB,t + ŷBC,t + ŷBD,t.

ỹC,t = ŷCA,t + ŷCB,t + ŷCC,t + ŷCD,t.

ỹD,t = ŷDA,t + ŷDB,t + ŷDC,t.

(8.2)

According to R. J. Hyndman et al. (2011), it is possible to arrange the equations expressed
in (9.2) into an algebra notation. Below is a complete notation for this problem:
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

ỹt

ỹA,t

ỹB,t

ỹC,t

ỹD,t

ỹAA,t

ỹAB,t

ỹAC,t

ỹBA,t

ỹBB,t

ỹBC,t

ỹBD,t

ỹCA,t

ỹCB,t

ỹCC,t

ỹCD,t

ỹDA,t

ỹDB,t

ỹDC,t



=



1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1



×



ŷAA,t

ŷAB,t

ŷAC,t

ŷBA,t

ŷBB,t

ŷBC,t

ŷBD,t

ŷCA,t

ŷCB,t

ŷCC,t

ŷCD,t

ŷDA,t

ŷDB,t

ŷDC,t



(8.3)

Alternatively, the notation presented in (9.3) can be reformulated in a compact way by
applying the summing matrix. Thus, the bottom − up approach can be represented as:

ỹt = Sb̂t (8.4)

where ỹt is an n − dimensional vector of h − step ahead forecasts for the total energy, S is the
summing matrix, and b̂t is an m − dimensional vector of h − step ahead forecasts for each of
the sources of energy at bottom− level. An advantage of this procedure is that we are forecasting
at the bottom-level of a hierarchy. Consequently, no information is missed due to aggregation
(R. J. Hyndman & Khandakar, 2008).

8.2.2 The Top − Down (TD) Approach

Top − down methods operate with strictly hierarchical aggregation structures, not
with grouped structures. They involve first making forecasts for the Total level yt, and next
disaggregating these down the hierarchy (R. J. Hyndman & Khandakar, 2008). Let p1, . . . , pm

be a set of disaggregation proportions that deliver the forecasts of the Total series, which are to
be distributed in order to obtain forecasts for all series at the bottom-level of the structure. To
illustrate, concerning our hierarchy by applying proportions to Figure 28, we get p1, . . . , p14:



Chapter 8. Forecasting Hierarchical Time Series in Power Generation 97

ỹAA,t = p1ŷt, ỹAB,t = p2ŷt, ỹAC,t = p3ŷt.

ỹBA,t = p4ŷt, ỹBB,t = p5ŷt, ỹBC,t = p6ŷt, ỹBD,t = p7ŷt.

ỹCA,t = p8ŷt, ỹCB,t = p9ŷt, ỹCC,t = p10ŷt, ỹCD,t = p11ŷt.

ỹDA,t = p12ŷt, ỹDB,t = p13ŷt, ỹDC,t = p14ŷt.

(8.5)

This can be rewritten using matrix notation. If we stack the set of proportions in an
m-dimensional vector p = (p1, . . . , pm)′, we have the bottom-level h − step ahead predictions.
Overall, for a given set of proportions, top − down approaches can be written as:

b̃t = pj ŷt

ỹt = Spj ŷt.
(8.6)

The main TD models stipulate disaggregation proportions according to the historical
proportions of the data. Among the main models of this approach, we highlight the following
three: (i) top − down Gross–Sohl method A (TDGSA), (ii) top − down Gross–Sohl method F
(TDGSF), and (iii) Top − down forecast proportions (TDFP) (Table 2). Additional details and
demonstrations of Table 17 can be obtained from (Gross & Sohl, 1990) and (Athanasopoulos et
al., 2009).

Table 17 – TD disaggregation proportions according to the historical proportions of the data.

TD Gross-Sohl:A/TDGSA TD Gross-Sohl:F/TDGSF TD:TDFP

pj = 1
T

∑T
t=1

yj,t

yt
pj = ∑T

t=1
yj,t

T
/

∑T
t=1

yt

T
pj = ∏K−1

l=0
ŷ

(l)
j,h

Ŝ
(l+1)
j,t

for j = 1, . . . , m. Each pro-
portion pj reflects the average
of the historical proportions of
the bottom-level series yj,t , t
over the period t = 1, . . . , T
relative to the total aggregate
yt

for j = 1, . . . , m. Each
proportion pj takes the av-
erage historical value of the
bottom − level series yj,t re-
lated to the average value of
the total aggregate yt.

where j = 1, . . . , m, ŷ
(l)
j,h is

the h − step ahead forecast
and Ŝ

(l)
j,t is the sum of the

h − step ahead forecasts be-
low the node that is l levels
above node j.

Source: Research results.

8.2.3 The Optimal Reconciliation Approaches

The optimal reconciliation approach proposed by R. J. Hyndman et al. (2011) consists
of an ordinary least squares problem based on the calculation of independent projections for
all hierarchical levels, then applying a regression model to optimize the combination of these
forecasts. According to Oliveira and Ramos (2019), we can write the base prediction as:

ŷt+h|t = Sβt+h|t + εh, (8.7)
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where βt+h|t represents the unknown conditional mean of the most disaggregated series, and εh

is the error with mean of zero and covariance matrix
∑

h. If
∑

h were known, the estimator of
βt+h|t would lead to the following weighted least squares, producing reconciled forecasts, as
follows:

ỹt+h|t = Sβ̂t+h|t = S(S ′
−1∑
h

S)−1S−1
−1∑
h

ŷt+h|t = SP ŷt+h|t, (8.8)

where P = (S ′ ∑−1
h S)−1S−1 ∑−1

h S. If the base forecasts ŷt+h|t are unbiased, then the reconciled
forecasts ỹt+h|t will be unbiased, provided that SPS = S (R. J. Hyndman et al., 2011). This
condition is valid for this reconciliation procedure for the bottom − up, although not for the
top − down, methods. Consequently, the top − down approaches will never give unbiased
reconciled forecasts, even if the base forecasts are unbiased. Additionally, Wickramasuriya et al.
(2019) proved that, in general,

∑
h is not known and not identifiable. The covariance matrix of

the h − step ahead reconciled forecast errors is given by the following expression:

V ar(yt+h−ỹt+h|t) = SPWhP ′S ′, (8.9)

for any P such that SPS = S, then Wh = V ar(yt+h−ỹt+h|t) = E(êt+h|tê
′
t+h|t) is the covariance

matrix of the corresponding h − step ahead base forecast errors. The purpose is to get the matrix
P that minimizes the error variances of the reconciled forecasts which are on the diagonal of
the covariance matrix V ar(yt+h−ỹt+h|t). Finally, Wickramasuriya et al. (2019) demonstrated that
the optimal reconciliation matrix P that minimizes the trace of SPWhP ′S ′, such that SPS = S,
and the optimal reconciled forecasts, respectively, are given by:

P = (S ′W −1
h S)−1S ′W −1

h

ỹt+h|t = S(S ′W −1
h S)−1S ′W −1

h ŷt+h|t
(8.10)

which is introduced as the MinT (minimum trace) estimator. The next step consists of estimating
Wh, a matrix of order n. Wickramasuriya, Athanasopoulos and Hyndman (2019) proposed the
following procedures (Table 18) to obtain the matrix:

8.2.4 ARIMA and ETS Formulation

ARIMA is one of the most-widely-used time series approaches for forecasting power
generation (D. Yang et al., 2018). Although studies have shown that ETS outperforms ARIMA

(Panigrahi & Behera, 2017), it is recommended to keep ARIMA as a reference model during the
forecasting process. Moreover, several statistical software packages, like R, provide automatic
model identification and parameter estimation skills for both ARIMA and ETS (R. J. Hyndman
& Khandakar, 2008). Professor Hyndman (R. J. Hyndman et al., 2011) developed the HTS

package initially based on these predictive models. The present paper aims to test different
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Table 18 – Hierarchical forecasting for electricity generation based on the ARIMA procedure.

Procedure Description

OLS Wh = khI ,∀h where kh > 0. This is the most simplifying premise,
and collapses the MinT estimator to the OLS estimator, proposed
by Hyndman et al. (2011). This is optimal when the base forecast
errors are uncorrelated and equivariant. Wh = khdiag(Ŵ1), ∀h
where kw > 0 and: Ŵ = 1

T

∑T
t=1 êt(1)êt(1)′

WLSv is the unbiased sample covariance estimator of the in-sample one-
step-ahead base forecast errors. In this case, we can describe MinT
as a WLS estimator applying variance scaling (Wickramasuriya
et al., 2019).

WLSs Wh = khΛ, ∀h where kh and Λ = diag(S1) with 1 being a
unit column vector of dimension n. We assume that each of the
bottom−level base forecast errors has a variance kh and is uncorre-
lated between nodes. Consequently, every element of the diagonal
Λ matrix receives the number of forecast error variances contribut-
ing to that aggregation level (Wickramasuriya et al., 2019). This
estimator depends only on the grouping structure of the hierarchy.

MinT (Sample) Wh = kW Ŵ1, ∀h where kh > 0, the unrestricted sample covari-
ance estimator for h = 1 (Wickramasuriya et al., 2019). In the
results section, we denote this as MinT (Sample).

MinT (Shrink) Wh = kw
ˆW ∗
1,D; ∀h; kn > 0; W ∗

1,D = λD ˆW ∗
1,D + (1 − λD)Ŵ1,

is a shrinkage estimator with diagonal target, ˆW1,D, which is a
diagonal matrix comprising the diagonal entries of Ŵ1, and ΛD

is the shrinkage intensity parameter. Thus, off-diagonal elements
of Ŵ1 are shrunk toward zero and diagonal elements (variances)
remain unchanged (Wickramasuriya et al., 2019).

Source: adapted by authors from (Wickramasuriya et al., 2019).

approaches to optimal forecast reconciliation and, to do so, only the ARIMA and ETS models
will be used. It is recommended that future studies extend these forecasting procedures using
different predictive models, such as machine learning ones.

ARIMA was proposed by (G. Box, 1976). It is a linear forecasting method for dealing
with stationary time series. In the initial step, a time series is built stationary by differencing d
times along with some nonlinear transformations, such as logging (Panigrahi & Behera, 2017).
The consequential data are recognized as a linear function of past p data values and q errors, i.e.,
modeled as an autoregressive moving average (ARMA) model:

yt = ϕ1yt−1 + ϕ2yt−2 + ... + +ϕpyt−p + Θ1εt−1 + Θ2εt−2 + ... + Θqεq−1 (8.11)
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where yt denotes real value at time t, εt describes the error sequence: it is supposed to be white
noise and Gaussian distributed (0, σ2). ϕi for (i = 1, 2, ..., p) are autoregressive (AR) coefficients
and Θj for (j = 1, 2, . . . , q) are moving average (MA) coefficients. p and q are integers referred
to as model orders. The time series model is denoted as ARIMA(p, d, q) (G. Box, 1976; Dong,
Yang, Reindl, & Walsh, 2013).

The group of exponential smoothing methods utilizes the principle of weighted averages
of past information for making forecasts (Panigrahi & Behera, 2017). Since its formulation
in 1950, a variety of exponential smoothing methods have been developed. All exponential
smoothing methods were initially classified by Pegels (1969), which has been continued by
(Gardner Jr, 1985; R. J. Hyndman et al., 2002; Taylor, 2003). ETS stands for error, trend,
and seasonality elements. As pointed by Panigrahi and Behera (2017), the usual representation
for these patterns involves a state vector xt = (lt, bt, st, st−1, ..., st−m+1)

′ , and the state space
equations (R. J. Hyndman et al., 2002) have the resulting structure:

yt = w(xt−1) + r(xt−1)εt

xt = f(xt−1) + g(xt−1)εt

(8.12)

where εt denotes a Gaussian white noise (0, σ2) and µt = w(xt−1). The model with additive
error has rt(xt−1) = 1, so yt = µt + εt . The model with multiplicative errors has rt(xt−1) = µt,
so yt = µt(1 + εt). Consequently, εt = (yt − µt)/µt is a relative error for the multiplicative
model and any value of rt(xt−1) will lead to the identical point forecast for yt (Panigrahi &
Behera, 2017; R. J. Hyndman et al., 2002).

8.2.5 Evaluating Forecast Accuracy

According to Almeida et al. (2016), there are several accuracy metrics, such as mean
absolute percentage error (MAPE), mean absolute error (MAE), mean absolute scaled error
(MASE), or root-mean-square error (RMSE), to evaluate the performance of point prediction
methods, defined as follows:

MAPE = 1
T

T∑
t=1

∣∣∣yt − ŷt

yt

∣∣∣. (8.13)

MAE = 1
T

T∑
t=1

|yt − ŷt|. (8.14)

MASE = MAE

MAEinsample,naïve

(8.15)

RMSE =

√√√√ 1
T

T∑
t=1

(yt − ŷt)2 (8.16)
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where yt is the amount of power generation at time t, ŷt is the fitted value for power generation,
and MAE(insample, naive) is the MAE generated by a naïve forecast.

Specifically, in studies of hierarchical time series, the MAPE indicator appears the most
frequently in the literature (Z. Liu, Yan, Yang, & Hauskrecht, 2015; Weiss, 2018; Hong, Xie, &
Black, 2019). MAPE was also the selected metric for the present paper (Figures 29 and 30).
Complementarily, MAE, MASE, and RMSE were estimated, and the results can be found in
the appendix. The values of the MAPE, MAE, MASE and RMSE statistics were obtained
using a weighted average, with proportions from Table 16.

8.3 Results and Discussion

Figure 29, below, shows the predictive result obtained, using the ARIMA model, con-
sidering a predictive window of nine hours (h = 1, . . . , 9). Note that the model was estimated,
taking the main hierarchical adjustment approaches into account, for the following levels: (i)
total power generation in Brazil (Level 0), (ii) total energy generation by electrical subsystem
(Level 1), and (iii) total energy generation by the energy generating source (Level 2). For Level
1, four forecasts (one for each electrical subsystem) were estimated. For Level 2, 14 forecasts
(one for each energy source) were estimated.

Therefore, we estimated 1539 predictive models satisfying the following proportions:
(i) 81 models for Level 0, (ii) 324 models for Level 1, and (iii) 1134 models for Level 2. The
MAPE calculation for Levels 1 and 2 was based on a weighted average of the predictive errors.
The weighting factors used are shown in Table 16.

The performance of each predictive model, divided by the forecast horizon, is illustrated
by a color scale. The green colors indicate the most accurate forecasts, while the red colors
symbolize less accurate forecasts. The best forecasts, for each of the predictive horizons, are
highlighted in bold. The last column of Table 1 presents the average performance for each
forecast horizon (h) for each hierarchical approach.

As pointed by Wickramasuriya et al. (2019), the MinT procedure has a useful feature:
it systematizes results into a unique analytical solution that incorporates information about the
correlation structure of the entire dataset. Additionally, the minimum trace reconciliation, with
or without regularization, presented the best results of all linear reconciliation methods, such
as OLS and WLS, with variations. Moreover, the MinT (Sample) approach returns the most
accurate, coherent forecasts for all levels considering just the first forecast horizons. However,
as the predictive window grows, the BU method becomes more accurate. Furthermore, the
performance of the BU model increases as the time series disaggregate.

As expected, the results obtained using the top-down technique did not present good
predictive results, since it is intended to generate forecasts for level 0, with worse accuracy for
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the other levels. Both BU and TD present disadvantages: they do not take the correlation among
the series at each level into account.

The other accuracy metrics presented in the appendix (MAE, MAE, and RMSE) reinforce
the results found. In general, the performance of the optimal reconciliation models, by trace
minimization, provides more uniform estimates and better predictive potential for the first hours
of the predictive horizon (Figures 40 and 41).
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Figure 29 – Hierarchical forecasting for electricity generation based on the ARIMA procedure
(MAPE). Note: The performance was indicated into a color scale, where green
means better values for calculated accuracy, and red means worse accuracy. The
intermediate values are colored yellow.

Source: Research results.

In addition to the ARIMA predictive model, Figure 30 presents the same forecasting
procedures. However, they are based on the ETS automatic adjustment model. The objective
is to show the influence of different forecasting methods for each hierarchical reconciliation
model. In general, the error percentage produced by the ETS model was slightly higher than
that produced by the ARIMA model. Figure 30 also shows the influence of trace minimization
procedures (MinT) on the improvement of predictive performance. In particular, the MinT
models have good predictive performance, even with the increase of the forecast horizon hours.
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Figure 30 – Hierarchical forecasting for electricity generation based on the ETS procedure.
Note: The performance was indicated into a color scale, where green means better
values for calculated accuracy, and red means worse accuracy. The intermediate
values are colored yellow.

Source: Research results.

The average performance of the trace minimization (MinT) models shows stability,
considering all hierarchical levels. As shown in Figure 29, the ETS-based predictive model
shares some similarities with the ARIMA model. The BU technique is better for the most
disaggregated levels, whereas the TD technique stands out only at the more aggregated levels.
Note that the trace minimization procedures show significant gains over the classic linear models,
namely OLS, and WLS.

Figures 29 and 30 present some limitations. In general, it is not possible to test the
predictive influence of each of the subsystems within the established forecast horizon. To show
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this problem, Figure 31 presents a predictive comparison (MAPE) for each of the Brazilian
electrical subsystems, considering the nine-hour predictive horizon. On the left is the technique
with the best aggregation/disaggregation performance (BU) for the ARIMA model. On the right
is the technique with the best average performance (MinT) for the ETS automatic selection
model.

Figure 31 thus shows a negative influence of the "south" electrical subsystem in the
global measures of accuracy, especially from a predictive horizon of three hours onward. This
system should be analyzed more thoroughly to identify energy sources located in the “south”
subsystem that contributed most to the predictive instability of this system. Simultaneously, the
use of individualized predictive models for this “south” system can be a good strategy, since
unique climatic conditions exist in southern Brazil.

Figure 31 – Hierarchical forecasting for power generation: electrical subsystem versus forecast
horizon.

Source: Research results.

Figures 38 and 39 (Appendix) present the accuracy measure of the ARIMA and ETS

models in detail, considering energy sources versus electrical subsystems. These results reinforce
those in Figure 31, indicating instability in the southern subsystem, especially wind energy data.

Finally, some limitations of the present paper are recognized here. First, predictive
models are based on past information evaluable, so the presented results cannot be extrapolated
for different contexts and other time periods. Additionally, it is necessary to incorporate other
predictive models to make the results more robust. In future research, it is recommended that
models which integrate high-frequency data, e.g., the Wavelet approach, be adopted.

8.4 Conclusions

Analysis of the energy market is complicated. It involves the relationship between
forecasting models and uncertainty, distinctly regarding the stochastic behavior of variables. The
present paper is aimed at policymakers, offering a forecasting tool that deals with grouped time
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series. It also proposes a new forecasting approach, based on hierarchical modeling of the energy
generation in Brazil.

The present paper introduces the use of trace minimization procedures (MinT) to ag-
gregate and disaggregate forecasts based on the ARIMA and ETS models. MinT models
performed better than the classic linear approaches, such as OLS and WLS. The MinT models
also have high reliability for short predictive horizons. It is noteworthy that both hierarchical
procedures and forecasting methods influence the predictive values of power generation in Brazil.

Therefore, the use of other predictive models, such as those based on analogs, machine
learning, and other hybrid techniques, for example, is recommended. For future research, fine-
tuning forecasts of the “south” electrical subsystem, as well as testing the accuracy of the
hierarchal methods by using new forecasting approaches, is also recommended.

Finally, the present study contributes to the energy planning processes of different agents,
given that understanding energy generation patterns is singularly important for minimizing risks
and supporting reliable production planning. Good forecasts for future energy generation can
support operational arrangements since energy supply and demand impact on spot market sales
prices.
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9 Conclusions

In this thesis, we present seven works developed and published in the central theme of the
research: electricity price forecasting. The works are interconnected and presented sequentially
to their development. We found that changes in the energy trading system in Brazil, especially the
adoption of hourly prices, fostered the need to build new predictive models. This way, this thesis
innovated by bringing the theme of analogs and the dynamic time scan forecasting methodology
to electricity price forecasting systems.

Here we highlight relevant conclusions from each chapter.

In a pioneering way, chapter three presents a systematic literature review on electricity
price forecasting (EPF). This chapter applied research standards derived from the medical field,
such as the PRISMA methodology, and used a system developed in R to unify Scopus and Web
of Science metadata, automatically removing their duplicates. This chapter showed that research
on EPF has grown substantially and that hybrid models have stood out for this purpose. The
methodology developed in this chapter served as the basis for Chapter 4.

Still on the literature review, in chapter four, we verified the exponential increase of
publications on applications of predictive maintenance techniques in the hydroelectric sector. The
application of machine learning models has been widely advocated by researchers in the reported
case studies. In particular, deep learning techniques, given their efficiency in developing models
of high accuracy and generalization capacity, indicate a huge opportunity for advancement in
this kind of predictive system. With the development of cloud platforms and their respective
computational power, these algorithms can deal with gigantic databases, such as those found
in the monitoring health of machines context. These recent advances, in harmony with new
machine understanding techniques, indicate a future in which the interaction between specialists
and intelligent systems will be closer and more dynamic.

In chapter five, we discuss the theme of searching for similarities in time series. According
to our methodology, we reduced the search time of the similarity profile of the analogs by up
to 17.5%. This result was relevant due to guaranteeing the competitiveness of the method with
other approaches, such as the univariate ones.

In chapter six, we compare the accuracy of the DTSF method with nine classic statis-
tical methods and with the baseline of the M4 competition. The DTSF method proved to be
competitive, especially in long time series and with high repeatability as hourly frequencies.

In chapters seven and eight, the DTSF methodology was used for the first time in EPF
applications, considering price data with weekly and hourly frequency, respectively. The results
were promising and indicated that the DTSF could be a relevant methodology for energy planning.
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The DTSF forecasts were confronted with those obtained from classic statistics and machine
learning models and indicated that there are ideal models for seasons of the year and times of the
day.

Finally, in Chapter nine, an experimental study was conducted. We used the hierarchical
time series (HTS) methodology to deal with power generation in Brazil. Despite being a promis-
ing forecasting tool, the prediction calibration of those methodologies did not perform well in
the M5 competition. This way, the investigations started in chapter 9 were not deepened.
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APPENDIX A – Complementary results

A.1 Chapter 3

Figure 32 – Annual scientific production.
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Figure 33 – Average article citations per year.
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Figure 34 – Sources dynamics.
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Figure 35 – Sources dynamics.
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A.2 Chapter 8

Figure 36 – sMAPE(%) by step - comparison between the DTSF and the benchmark models.

Source: Research results.
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Figure 37 – MASE by step - comparison between the DTSF and the benchmark models.

Source: Research results.
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A.3 Chapter 9

Figure 38 – Hierarchical forecasting for power generation: electrical subsystem versus generating
source (ARIMA).

Source: Research results.
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Figure 39 – Hierarchical forecasting for power generation: electrical subsystem versus generating
source (ETS).

Source: Research results.
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Figure 40 – Hierarchical forecasting for electricity generation based on the ARIMA procedure
(RMSE, MAE, MASE) Note: The performance was indicated into a color scale,
where green means better values for calculated accuracy, and red means worse
accuracy. The intermediate values are colored yellow.

Source: Research results.
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Figure 41 – Hierarchical forecasting for electricity generation based on the ETS procedure
(RMSE, MAE, MASE). Note: The performance was indicated into a color scale,
where green means better values for calculated accuracy, and red means worse
accuracy. The intermediate values are colored yellow.

Source: Research results.
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