
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

Márcia Luciana da Costa Peixoto

Static Output-Feedback Control Design for Nonlinear Systems - Polytopic Based
Approaches

Belo Horizonte

2023



Márcia Luciana da Costa Peixoto

Static Output-Feedback Control Design for Nonlinear Systems - Polytopic
Based Approaches

A thesis presented to the Graduate Program in Elec-
trical Engineering (PPGEE) of the Federal University
of Minas Gerais (UFMG) in partial fulĄllment of the
requirements to obtain the degree of Doctor in Elec-
trical Engineering.

Supervisor: Prof. Dr. Reinaldo Martínez Palhares

Belo Horizonte

2023



Peixoto, Márcia Luciana da Costa.
P379s                 Static output-feedback control design for nonlinear systems - polytopic   
                     based approaches [recurso eletrônico] / Márcia Luciana da Costa Peixoto. -  
                     2023.
                           1 recurso online (84 f. : il., color.) : pdf.

                          Orientador: Reinaldo Martinez Palhares.
         

                           Tese (doutorado) - Universidade Federal de Minas Gerais,
                      Escola de Engenharia. 

                           Apêndice: f. 84.     

                           Bibliografia: f. 67-82.
                           Exigências do sistema: Adobe Acrobat Reader.

     1. Engenharia elétrica - Teses. 2. Realimentação (Eletrônica) - Teses.  
3. Sistemas não lineares - Teses. 4. Sistemas lineares - Teses. 5. 
Desigualdades matriciais lineares - Teses. I. Palhares, Reinaldo Martinez. 
II. Universidade Federal de Minas Gerais. Escola de Engenharia. III. Título.
                                                                                                       

                                                                                                                   CDU: 621.3(043)
            Ficha catalográfica elaborada pela Bibliotecária Roseli Alves de Oliveira CRB/6 2121

                                               Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG



UNIVERSIDADE FEDERAL DE MINAS GERAIS
ESCOLA DE ENGENHARIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

FOLHA DE APROVAÇÃO

 

"STATIC OUTPUT-FEEDBACK CONTROL DESIGN FOR NONLINEAR SYSTEMS - POLYTOPIC BASED
APPROACHES"

 

MÁRCIA LUCIANA DA COSTA PEIXOTO

 

            Tese de Doutorado subme�da à Banca Examinadora designada pelo Colegiado do Programa de
Pós-Graduação em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais,
como requisito para obtenção do grau de Doutor em Engenharia Elétrica. Aprovada em 14 de fevereiro
de 2023. Por:

 

Prof. Dr. Reinaldo Mar�nez Palhares - DELT / UFMG - Orientador
 

Prof. Dr. Cris�ano Marcos Agulhari - UTFPR
 

Prof. Dr. Fabrício Gonzalez Nogueira - UFC
 

Profa. Dra. Grace Silva Deaecto - UNICAMP
 

Prof. Dr. João Yoshiyuki Ishihara - UNB
 

Profa. Dra. Vilma Alves de Oliveira - USP/SC
 
 

Documento assinado eletronicamente por Reinaldo Mar�nez Palhares, Professor do Magistério
Superior, em 14/02/2023, às 12:40, conforme horário oficial de Brasília, com fundamento no art. 5º
do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Fabrício Gonzalez Nogueira, Usuário Externo, em
15/02/2023, às 10:11, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº
10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Cris�ano Marcos Agulhari, Usuário Externo, em
15/02/2023, às 10:19, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº
10.543, de 13 de novembro de 2020.



Documento assinado eletronicamente por João Yoshiyuki Ishihara, Usuário Externo, em
15/02/2023, às 13:47, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº
10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Grace Silva Deaecto, Usuária Externa, em 16/02/2023, às
09:37, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13
de novembro de 2020.

Documento assinado eletronicamente por Vilma Alves de Oliveira, Usuária Externa, em 17/02/2023,
às 07:11, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de
13 de novembro de 2020.

A auten�cidade deste documento pode ser conferida no site
h�ps://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 2073883 e
o código CRC 13BBFEEE.

Referência: Processo nº 23072.207159/2023-18 SEI nº 2073883



TESE DE DOUTORADO Nº 427

STATIC OUTPUT-FEEDBACK CONTROL DESIGN FOR NONLINEAR

SYSTEMS - POLYTOPIC BASED-APPROACHES

Márcia Luciana da Costa Peixoto

DATA DA DEFESA: 14/02/2023

Powered by TCPDF (www.tcpdf.org)



AGRADECIMENTOS

Eu gostaria de agradecer,

- ao meu orientador Prof. Reinaldo Palhares pelos ensinamentos, pela dedicação,

pela paciência, pelos conselhos proĄssionais e pessoais compartilhados, pelas longas

conversas, pela amizade, pelas dicas de viagens e cafés. O senhor é um exemplo de

professor, pesquisador e pessoa;

- aos Prof. Anh-Tu Nguyen e Prof. Thierry-Marie Guerra pelas colaborações e ideais

compartilhadas.

- aos meus amigos do D!FCOM: Gabriela, Iury, Lucas, Luiz, Murilo, Natália, Paulo,

Pedro, Rafael, Rodrigo, Vinícius e aos demais colegas e professores pelas valiosas

conversas e companhia durante esses anos. Em especial, agradeço ao Iury Bessa,

Pedro Coutinho e Paulo Pessim pela contribuição em parte dos meus trabalhos e

pelos inúmeros conhecimentos compartilhados. Agradeço também ao Prof. Márcio

Braga pela colaboração;

- ao Márcio Lacerda pela amizade, disponibilidade e pela colaboração em parte dos

meus trabalhos;

- à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelo

suporte Ąnanceiro durante o período do doutorado;

- Aos membros da banca examinadora, pelas valiosas sugestões e observações que

certamente contribuíram para a versão Ąnal desta Tese;

- aos meus pais pelo carinho, ensinamentos e por apoiarem os meus sonhos;

- a Deus por sempre guiar meus passos e pela coragem concedida para enfrentar

novos desaĄos.



RESUMO

Nas últimas décadas, sistemas politópicos como os sistemas lineares com parâmetros variantes

no tempo (LPV, do inglês Linear Parameter-Varying) e os modelos fuzzy Takagi-Sugeno (TS)

têm sido amplamente utilizados para representar uma grande classe de modelos não lineares.

Além disso, a teoria de Lyapunov vem sendo utilizada com sucesso para desenvolver condições

eĄcientes para análise de estabilidade e projetar controladores para estes sistemas politópicos,

geralmente expressas por meio de desigualdades de matriciais lineares (LMIs, do inglês Linear

Matrix Inequalities). Entre as estratégias de estabilização para sistemas não lineares, o problema

de projeto de controle por realimentação estática de saída é conhecido por ser de difícil resolução

e tem recebido grande atenção nos últimos anos. No entanto, o controle por realimentação

estática de saída permanece sendo um dos tópicos mais desaĄadores na teoria de controle.

Com base nisso, esta tese aborda dois tópicos principais. i) Novas condições de síntese para o

projeto de controladores via realimentação estática de saída para sistemas não lineares discretos

no tempo representados por sistemas politópicos. ii) Novas condições dependentes do retardo

no tempo para o projeto de controladores por meio de realimentação estática de saída para

sistemas não lineares com retardo variante no tempo também representados por sistemas

politópicos. Uma característica dos métodos propostos, ao contrário da maioria das técnicas

presentes na literatura, é que nenhuma restrição estrutural na matriz de saída é imposta,

ou seja, as abordagens propostas podem lidar com variações nas matrizes da dinâmica, da

entrada e da saída sem recorrer a transformações de similaridade ou procedimentos iterativos.

Ao contrário de outros trabalhos da literatura, outra característica distintiva das abordagens

propostas é a estabilidade assintótica local da origem do sistema em malha fechada, que se faz

necessária devido à validade do modelo politópico obtido. Isso garante o correto funcionamento

do sistema em malha fechada, pois suas trajetórias permanecem dentro da estimativa da região

de atração obtida dentro do domínio de validade dos sistemas politópicos. Exemplos numéricos

ilustram o potencial e a eĄcácia das condições propostas. Adicionalmente, outros trabalhos

que vêm sendo desenvolvidos durante o doutorado são brevemente apresentados, sendo estes:

i) novas condições de estabilidade e estabilização para sistemas LPV utilizando diferentes

tipos de funções candidatas de Lyapunov, ii) uma nova abordagem de controle em rede com

acionamento por eventos para sistemas sujeitos a ataques cibernéticos estocásticos assim como

retardos no tempo induzidos pela rede de comunicação; iii) um novo método para a estimativa

de falhas para sistemas não lineares sujeitos a retardos variantes no tempo e a não linearidades

não mensuradas.

Palavras-chave: Realimentação estática de saída. Sistemas não lineares. Retardos variantes

no tempo. Sistemas lineares com parâmetros variantes no tempo. Desigualdades matriciais

lineares.



ABSTRACT

Over the past few decades, polytopic systems such as linear parameter-varying (LPV) and

Takagi-Sugeno (TS) fuzzy models have been widely employed to represent a large class of

nonlinear systems. The Lyapunov theory has been successfully used to develop efficient

conditions for stability analysis and support the design of stabilization controls for polytopic

systems, usually expressed through Linear Matrix Inequalities (LMIs). Among stabilization

strategies for LPV and TS fuzzy systems, the static output-feedback (SOF) control design

problem is known to be harder to solve and has received a lot of attention in the past

years. However, SOF control remains one of the most challenging topics in control theory.

Based on that, this Thesis addresses two main topics. i) New synthesis conditions for gain-

scheduling static output-feedback control of discrete-time nonlinear systems represented by

polytopic systems. ii) A novel delay-dependent condition for static output-feedback control of

nonlinear systems represented by polytopic systems with time-varying delay. One feature of the

proposed methods, unlike most approaches in the literature, is that no structural constraints

on the output matrix are imposed, that is, the proposed approaches can handle variation in

the dynamics, input, and output matrices without resorting to similarity transformations or

iterative procedures. Unlike other works in the related literature, another distinctive feature

of the proposed approaches is to ensure the local asymptotic stability of the origin of the

closed-loop system, which is necessary due to the validity of the polytopic model obtained.

This guarantees the correct operation of the closed-loop system since its trajectories remain

inside the guaranteed region of attraction estimation obtained within the validity region of

the polytopic systems. Numerical examples illustrate the potential and effectiveness of the

proposed conditions. Additionally, further works that have been developed along the Ph.D.

are briefly presented: i) novel stability and stabilization conditions for discrete-time LPV

systems employing different kinds of Lyapunov functions, ii) results for the problem of periodic

event-triggered control co-design for polytopic systems subject to stochastic deception attacks

iii) a fault estimation method for a class of nonlinear parameter-varying systems subject to

time-varying delay and unmeasured nonlinearities.

Keywords: Static output-feedback control. Nonlinear systems. Time-varying delays. Linear

parameter varying systems. Linear matrix inequalities.
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1 INTRODUCTION

Nonlinear systems play a fundamental role in control systems from an engineering point

of view. This is because, in practice, most plants are nonlinear in nature. However, there is

no general control methodology for nonlinear systems but only control techniques aimed at

speciĄc classes of systems [1]. Nevertheless, it is possible to approximate nonlinear systems by

different classes of systems. Figure 1.1 depicts the main approximations for nonlinear systems

used in the context of robust control, namely Linear Time-Invariant (LTI) systems, uncertain

LTI systems, Takagi-Sugeno (TS) fuzzy models, Linear Parameter-Varying (LPV) systems, and

quasi-LPV systems. One of the simplest methods to represent nonlinear systems is to linearize

the system around an operating point, in which case, a LTI system is obtained. However, the

linearized system is only valid in the region of the operating point. On the other hand, if

nonlinearities are modeled as uncertainties, an uncertain LTI system can be obtained.

Nonlinear Systems

LTI Uncertain LTI LPV quasi-LPV TS

Figure 1.1 Ű Systems representation.

Among the different ways of representing nonlinear systems, there are TS fuzzy models

with the aid of fuzzy sets, fuzzy rules, and a set of local linear models [2, 3, 4, 5, 6, 7].

The model is obtained by merging the local models through fuzzy membership functions

that usually depend on the system states. For nonlinear TS fuzzy models, that is, TS fuzzy

models with a nonlinear consequent, there are two main approaches to represent nonlinear

systems, the Ąrst one consists of using TS fuzzy systems with polynomial consequent [8, 9],

and the other one, sector-bounded functions are added to the TS fuzzy model to obtain the

nonlinear consequent [10, 11, 12, 13, 14, 15]. In the case of Linear Parameter-Varying (LPV)

systems, the nonlinearity is embedded in the time-varying parameters that depend on some

endogenous signals [16, 17]. Often, uncertain LTI systems can be seen as a particular case of

LPV systems. Besides, to make an additional distinction concerning pure LPV systems, if the

time-varying parameters depend on some system states (similar to membership functions in TS

fuzzy models), the system is referred to as a quasi-LPV system [18, 19, 20]. Notwithstanding,

nonlinear parameter-varying systems can preserve a nonlinear structure instead of reducing it

to a purely LPV system [21, 22, 23, 24].

The main advantage of considering LPV systems or TS fuzzy models is that, based on the

Lyapunov stability theory [1], conditions for stability analysis and controller or observer design
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can be formulated as convex optimization problems given by Linear Matrix Inequalities (LMIs).

Although many cases in the literature related to the control design of TS fuzzy models and

LPV systems assume that the states of the systems are fully available, in numerous situations,

some of the system states are not available for measurement, or the required sensors are too

expensive, making the use of state-feedback controllers impractical. An alternative to cope

with this inconvenience is considering only measured states in the control scheme. This is the

foundation of output feedback control, which can be categorized into dynamic or static. In

the Ąrst case, the controller has an associate (full-order) dynamics designed to stabilize the

system using the measured outputs [25, 26, 27]. In contrast, static output feedback (SOF)

controllers have a simpler structure that can be useful for implementations with lower costs.

Based on that, techniques based on SOF control have received considerable attention. However,

SOF control remains one of the most challenging topics in control theory, even for linear

time-invariant systems [28]. One of the principal reasons for the static output-feedback design

to be so difficult to deal with is due to its non-convex characterization [29]. Nonetheless,

several methods have been developed intended to provide numerically tractable solutions for

SOF designs.

In [30, 31], to deal with the SOF problem for linear continuous-time systems, a set of

LMIs connected by the constraint that one Lyapunov matrix is the inverse of another one has

been considered and a min/max algorithm has been employed to iterate between solving each

of the Lyapunov inequalities until one of the resulting Lyapunov matrices is approximately the

inverse of the other. A modiĄed version of the min/max algorithm proposed in [31] to design

SOF controllers bounded by a given linear quadratic performance index has been proposed

in [32]. In [33], a SOF condition with matrix-equality constraint for linear discrete-time periodic

systems has been proposed considering that the output matrix has full rank. In [34], the

SOF problem for a class of linear continuous-time systems has been solved by applying a

congruence transformation and by imposing a block-diagonal structure on the Lyapunov matrix.

In [35], a sufficient SOF condition has been obtained considering that the Lyapunov matrix

has a special structure. In [36], an algorithm that solves an optimal SOF problem for linear

systems subject to convex gain constraints and ensures monotonic convergence to a local

minimum has been provided. The cone complementary formulation has also been used to derive

SOF control design conditions for linear continuous-time systems [37, 38], linear discrete-time

systems [39, 40, 41, 42, 43], Takagi-Sugeno fuzzy models [44, 45, 46, 47]. Conditions for

the existence of SOF solutions requiring a similarity transformation for the convexiĄcation

procedure have been presented in [48, 49].

In [25], an LMI-based technique of designing robust SOF controllers for linear sys-

tems with time-invariant uncertainties has been proposed based on introducing a parameter-

independent slack variable with a lower-triangular structure. However, the robust design requires

the system output matrix be Ąxed, i.e., without uncertainties. In [50, 51, 52], these constraints

have been relieved using the null space properties of output matrices and introducing slack
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variables with a lower-triangular structure. In [53], it is presented a condition for SOF control

of discrete-time LPV systems with a prescribed bound on the rate of variation, and it depends

on the constraint that the output matrix cannot be affected by the time-varying parameter.

SOF conditions requiring matrix-equality constraints for the convexiĄcation procedure have

been provided in [54, 55]. To reduce conservativeness, a descriptor redundancy to provide a

SOF controller for Takagi-Sugeno fuzzy models has been considered in [56]. This strategy

has been employed later in [57] for the discrete-time case to derive LMI conditions with extra

decision variables introduced by the application of Finsler’s lemma. In [58], a technique based

on a line search for a robust SOF controller design has been proposed. In [59], a condition

has been stated for the output-feedback H∞ control design of linear discrete-time systems

in which it is assumed that the system input matrix is of full column rank and an additional

positive deĄnite matrix is introduced. Robust SOF control H∞ has been studied in [60] for

uncertain linear systems and in [61] for TS fuzzy systems.

Numerical algorithms have also been used to design SOF controllers. A two-step method

to deal with the SOF problem has been introduced in [62] for linear discrete-time systems.

The approach is initiated by the state-feedback controller design, and that state-feedback gain

is employed to determine the SOF control gain. Thereafter, the two-step approach has been

employed to handle the SOF problem for linear continuous-time systems [63, 64], uncertain

linear discrete-time systems [65], and LPV systems [66, 67, 68, 69]. A design procedure

in terms of sequentially solving three parameter-dependent LMIs optimization problems has

been presented in [70] for LPV systems. Other methods based on iterative algorithms have

been proposed for linear systems [71, 72, 73, 74, 75], polytopic systems [76, 77, 78, 79],

LPV systems [80, 81, 82], TS fuzzy models [83, 84], uncertain polynomial systems [85], and

uncertain rational nonlinear systems [86].

Recently, in [87], a procedure has been proposed to adapt the conditions presented

in [88] for state-feedback control design to deal with the output-feedback case. A given

matrix is introduced to the problem to make dimension adjustments, enabling a linearization

procedure of the inequalities associated with the output-feedback controller design. However,

the output-feedback control design is based on a scalar parameter search, which is cited

as a disadvantage by the authors since the computational burden increases. More recently,

[89] proposed a linear SOF controller for discrete-time LPV systems based on augmenting

the matrices related to the control input and control gain. In [90], a design method for

gain-scheduled SOF controllers of saturated continuous-time LPV systems based on speciĄc

congruence transformations has been introduced. Another recent framework that has been

studied for reducing design conservativeness in the SOF control design is the delayed approach.

It is based on including past membership functions in both fuzzy controller and fuzzy Lyapunov

function. This approach was considered by [91, 92] to design a delayed SOF controller for TS

fuzzy models. Table 1.1 summarizes the main works presented above and the convexiĄcation

procedure used to solve the SOF problem. Motivated by the aforementioned discussion, the
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Ąrst objective of this Thesis is:

(i) to propose a novel LMI-based SOF control conditions for discrete-time nonlinear

systems represented by LPV systems and TS fuzzy models without requiring some

kind of procedure to provide numerical tractable solutions.

Table 1.1 Ű Main constraints for the convexiĄcation procedure: I) full rank, II) matrix-
equality constraint, III) SpeciĄc structure on Lyapunov matrix or slack vari-
ables, IV) Congruence or state coordinate transformation V) Two-stage
approach, VI) Iterative algorithms, VII) cone complementary algorithm.

LTI systems Uncertain LTI systems LPV systems TS fuzzy model
I [31, 32, 33, 34, 49, 59] [35, 37, 50, 77] [51, 55] [44, 48]
II [33] [55] [54]
III [34] [35, 25, 50] [51, 53] [52, 57]
IV [49] [58, 60] - [48]
V [63, 64] [62, 65] [66, 67, 68, 69] -

VI
[30, 31, 32, 71, 72]

[73, 74, 75]
[77, 76, 78, 79] [70, 80, 81, 82] [83, 84]

VII [38, 39, 42, 43] [37] -
[40, 41, 44]
[45, 46, 47]

Based on the sector-nonlinearity approach, quasi-LPV systems and TS fuzzy models

provide exact representations of nonlinear dynamical systems inside of a compact set D ⊂ R
nx .

Therefore, when a fuzzy or gain-scheduled controller is designed based on the TS or quasi-LPV

representations, the closed-loop stability guarantees hold locally due to the validity of the

model. For this reason, it is necessary to estimate the set of admissible initial conditions for

which the state trajectories converge to the equilibrium point of the closed-loop system. It is

worth mentioning that the methods [52, 44, 45, 48, 51, 53, 54, 57, 66, 67, 68, 69, 70, 81, 82,

83, 84, 87, 89, 92] which deal with the SOF control synthesis for LPV systems or TS fuzzy

models do not consider the state constraints. That is, these approaches cannot deal with the

case of local premise variables or scheduling parameters that depend on the systems’ states.

Therefore, the second motivation of this Thesis is:

(ii) to provide an estimate of the domain of attraction (DoA) of the closed-loop nonlinear

system represented by an LPV system or a TS fuzzy model.

In the last decades, stability analysis and stabilization of linear time-delayed systems

have been a very active research area. The interest relies on the fact that time delay is a

phenomenon that is frequently encountered in control systems such as communication systems,

vehicular traffic flows, networked control systems, engineering systems, population dynamics,

and epidemics, among others [93]. In general, the existence of time delay can degrade the

performance of systems, cause undesired oscillation, and even instability [94].

As a matter of fact, the Lyapunov-Krasovskii functional (LKF) approach is regarded as

one of the most effective solutions, if not the most effective solution, to derive LMI conditions
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for analysis and control of time-delayed systems. Although selecting an appropriate LKF that

provides nonconservative stability conditions is not an easy task, it has been noticed that

the LKF approach for discrete time-delayed systems usually consists of two main steps. The

Ąrst one is to construct the LKF per si and the second step is to derive sufficient conditions

guaranteeing that the forward difference of an LKF is negative. Therefore, to improve stability

and stabilization conditions many augmented LKFs and LKFs with multiple summation terms

have been constructed [95, 96, 97, 98]. It has been shown in [99] that the following double

summation term is one of the most relevant terms applied during the construction of LKF

V (xk) =
−h∑︂

i=−h+1

k∑︂

j=k+i

η⊤
j Rηj,

where h and h are, respectively, the lower and the upper bounds of a time-varying delay (i.e.,

h ≤ hk ≤ h), R is a positive deĄnite matrix, and ηk = xk+1 − xk with xk being the system

state. Computing the forward difference of V (xk) leads to

∆V (xk) = (h− h)η⊤
k+1Rηk+1 −

k−h∑︂

i=k−hk+1

η⊤
i Rηi −

k−hk∑︂

i=k−h+1

η⊤
i Rηi. (1.1)

During the development of stability criteria, a challenging problem related to Equa-

tion (1.1) arises regarding how to include these negative terms to derive LMI conditions. Ini-

tially, the trick was to apply the Jensen inequality or free-weighting matrix approach [42, 100].

However, these methods unavoidably introduce some conservativeness. By relaxing the

Jensen-based inequality, Wirtinger-based inequalities have been provided in [99]. Follow-

ing this idea, several stability and state-feedback synthesis conditions for discrete-time

linear systems [98, 99, 101, 102, 103, 104, 105, 106, 107], uncertain linear time-delayed

systems [108, 109, 110, 111], LPV systems [112, 113, 114, 115, 116], TS fuzzy sys-

tems [95, 117, 118, 119, 120] with time-varying delay have been derived.

On the other hand, it can be noticed that scant attention has been paid to SOF control

problem of discrete-time delayed systems. In [41, 45], the cone complementary formulation has

been used to derive SOF control design conditions, however, both techniques consider TS fuzzy

models with constant time delay. The cone complementary linearization algorithm has also

been used to derive SOF control design conditions for linear [39, 40, 42] and singular fuzzy [46]

discrete-time systems with time-varying delay. However, to the best of the author’s knowledge,

the SOF problem has not been investigated so far for discrete-time LPV systems using the

Lyapunov-Krasovskii theory. Besides that, even for TS fuzzy models with time-varying delay,

there are no works in the literature that deal with the local SOF control problem. Therefore,

the third motivation of this Thesis is:

(iii) to derive local delay-dependent SOF synthesis conditions for discrete-time nonlinear

systems with time-varying delay represented by LPV and TS fuzzy models.
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1.1 Objectives

This work is concerned with the static output-feedback stabilization of discrete-time

nonlinear systems described by polytopic models. Hence, based on the forenamed motivations,

the main objectives of this Thesis are:

(1) to use the sector-nonlinearity approach for obtaining an exact polytopic representation

(LPV or TS fuzzy model) for nonlinear systems within the domain of validity D.

(2) to propose novel SOF control conditions for discrete-time nonlinear systems repre-

sented by LPV systems and TS fuzzy models.

(3) to provide novel LMI-based delay-dependent conditions to design the SOF gain-

scheduled controller for ensuring asymptotic stability of the polytopic system.

(4) to provide an enlarged estimate of the set of admissible initial conditions within the

domain of validity D of the polytopic model.

1.2 Thesis outline and contributions

The Thesis’s organization and the related contributions of each chapter are:

Chapter 2 presents an overview of Linear Parameter Varying (LPV) systems and Takagi-

Sugeno (TS) fuzzy models. A comparison between these models is provided and it is shown

how to represent nonlinear systems employing those kinds of polytopic models.

Chapter 3 provides local synthesis conditions for gain-scheduling static output-feedback

control of discrete-time nonlinear systems represented by LPV and TS fuzzy models. The

proposed approach is relatively simple, and the slack variables introduced along the formulation

provide extra degrees of freedom to reduce design conservativeness. As extra advantages, no

iterative algorithms are required and the output matrix can be parameter-dependent, without

requiring that the output matrix has any speciĄc structure or should admit particular similarity

transformations (as previous works in the literature have done). Besides that, for the nonlinear

case, the domain of attraction of the closed-loop polytopic system is estimated. The proposed

conditions are presented in the form of LMIs. The results presented in this chapter are published

in Peixoto, Coutinho & Palhares [121].

Chapter 4 introduces a novel delay-dependent condition for static output-feedback

control of nonlinear systems with time-varying delay represented by quasi-LPV systems and TS

fuzzy models. The appropriate choice of a Lyapunov-Krasovskii functional, Wirtinger-based

inequality, delay-dependent Moon’s inequality, and selection of a suitable augmented vector

allow obtaining new stabilization conditions that depend on the minimum and maximum values

of the time-varying delay. Additionally, Finsler’s Lemma is employed to derive the stabilization

conditions, which helps to obtain the controller gains. A distinctive feature of the proposed

approach is the local asymptotic stability of the origin of the closed-loop system, unlike other
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works in the literature. This ensures the correct operation of the closed-loop system since its

trajectories remain inside the guaranteed region of attraction estimation obtained within the

validity region of the polytopic model. The results presented in this chapter are published in

Peixoto et al. [122].

Chapter 5 briefly presents some other results that have been developed up to the

qualifying exam, such as new LMI-based conditions for stability analysis and control design of

LPV systems employing Lyapunov functions with nonmonotonic terms and using Lyapunov

functions with dependence on delayed scheduling parameters. In addition, further works

that have also been developed along the Ph.D. are shortly presented in this chapter, namely:

results for the problem of periodic event-triggered control co-design for polytopic systems

subject to stochastic deception attacks; a fault estimation method for a class of nonlinear

parameter-varying systems subject to time-varying delay and unmeasured nonlinearities.

Finally, Chapter 6 presents concluding remarks and suggestions for future works.
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2 SYSTEM DESCRIPTION: POLYTOPIC SYSTEMS

In this chapter, linear parameter varying (LPV) systems and Takagi-Sugeno (TS) fuzzy

models are presented. It is illustrated how to represent nonlinear systems by means of quasi-

LPV and TS fuzzy models. In addition, some connections between LPV systems and TS are

provided.

2.1 Linear parameter-varying (LPV) systems

Linear parameter-varying (LPV) systems have been extensively studied by the control

community in recent years. This kind of model allows describing the dynamics of linear systems

affected by time-varying parameters as well as representing nonlinear systems in terms of a

family of LPV models [123]. The Ąrst gain scheduling ideas in the context of LPV have been

proposed by Shamma [124] in 1988. A great difficulty, at that time, was the lack of a general

theory for analyzing the stability and for efficiently designing gain-scheduled control laws of

LPV systems. The last thirty years have seen increasingly rapid advances in gain scheduling in

both practical and theoretical outcomes. As a result, it has become widely employed in many

engineering applications, such as robotic systems [125], fault-tolerant control [126], energy

production systems [127], power systems [128, 129], and wind turbine systems [130].

Consider the following discrete-time LPV system

xk+1 = A(ρk)xk +B(ρk)uk, ∀k ∈ Z
+

yk = C(ρk)xk,
(2.1)

where xk ∈ R
nx is the state, uk ∈ R

nu is the input, yk ∈ R
ny is the output, ρ =

[ρ1,k, ρ2,k, . . . , ρp,k]⊤ ∈ Ω is a vector of time-varying parameters, which are functions of

measured exogenous signals and/or the output, and Ω is a convex set. The parameters ρ are

assumed to be bounded and are deĄned by the minimal ρ
i
, and maximal ρi values of ρi such

that

ρi,k ∈
[︂
ρ

i
, ρi

]︂
, i ∈ N≤p.

There are several classes of LPV models, for instance: affine parameter dependence [131],

polynomial parameter dependence [132, 133], rational parameter dependence [134], and

polytopic models. Here the objective is to deal with polytopic models. Considering a polytopic

representation, system (2.1) can be written as

xk+1 =
N∑︂

i=1

αi(ρk) (Aixk +Biuk)

yk =
N∑︂

i=1

αi(ρk)Cixk

(2.2)
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being N = 2p the number of vertices of the polytopic domain, Ai, Bi, Ci are constant matrices,

α(ρ) ∈ Λ, and the unit simplex Λ is deĄned as

Λ =

∮︂
α(·) ∈ R

N :
N∑︂

i=1

αi(·) = 1, αi(·) ≥ 0, i ∈ N≤N

⨀︁
. (2.3)

In this work, the polytopic LPV system (2.2) is considered in the following general form

xk+1 = A(αk)xk +B(αk)uk

yk = C(αk)xk (2.4)

with ⋃︁
⨄︁A(αk) B(αk)

C(αk)

⋂︁
⋀︁ =

N∑︂

i=1

αi,k

⋃︁
⨄︁Ai Bi

Ci

⋂︁
⋀︁ . (2.5)

To illustrate, Figure 2.1 depicts the unit simplex considering the values for N = 2 and

N = 3. For N = 2, the set takes the form of a segment on a line; for N = 3, the set is a

triangular closed surface on a plane; and so on.

Figure 2.1 Ű Set Λ for N = 2 and N = 3.

For an LPV system with 2 bounded parameters, ρ1,k ∈ [ρ
1
, ρ1] and ρ2,k ∈ [ρ

2
, ρ2], the

corresponding polytope has N = 22 = 4 vertices as:

Pρ =
{︂
(ρ

1
, ρ

2
), (ρ

1
, ρ2), (ρ1, ρ2

), (ρ1, ρ2)
}︂
.

The polytopic coordinates (αi) are obtained as:

ω1 =
(︂
ρ

1
, ρ

2

)︂
, α1 =

(︃
ρ1−ρ1,k

ρ1−ρ1

)︃
×

(︃
ρ2−ρ2,k

ρ2−ρ2

)︃

ω2 =
(︂
ρ

1
, ρ2

)︂
, α2 =

(︃
ρ1−ρ1,k

ρ1−ρ1

)︃
×

(︃
ρ2,k−ρ2

ρ2−ρ2

)︃

ω3 =
(︂
ρ1, ρ2

)︂
, α3 =

(︃
ρ1,k−ρ1

ρ1−ρ1

)︃
×

(︃
ρ2−ρ2,k

ρ2−ρ2

)︃

ω4 = (ρ1, ρ2) , α4 =
(︃

ρ1,k−ρ1

ρ1−ρ1

)︃
×

(︃
ρ2,k−ρ2

ρ2−ρ2

)︃
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where ρ1,k and ρ2,k are the instantaneous values of the parameters. Thus, the LPV system can

be rewritten under the polytopic representation:
⎛
∐︂A (ρ) B (ρ)

C (ρ)

∫︁
ˆ︁ =α1

⎛
∐︂A (ω1) B (ω1)

C (ω1)

∫︁
ˆ︁ + α2

⎛
∐︂A (ω2) B (ω2)

C (ω2)

∫︁
ˆ︁

+α3

⎛
∐︂A (ω3) B (ω3)

C (ω3)

∫︁
ˆ︁ + α4

⎛
∐︂A (ω4) B (ω4)

C (ω4)

∫︁
ˆ︁ .

Remark 2.1. If the parameter ρ in the system (3.1) is constant (Ąxed), then a linear time-

invariant (LTI) system is obtained. On the other hand, if ρ is Ąxed but unknown, system (3.1)

is an uncertain linear time-invariant system. Table 2.1 presents these cases in more detail.

Table 2.1 Ű Particular cases of LPV systems.

Parameter (α) System Description
Constant LTI xk+1 = Axk +Buk

Constant and
unknown

Uncertain
LTI

xk+1=A(α)xk+B(α)uk [A(α) B(α)]=
N√︂

i=1
αi[Ai Bi],∀α ∈ Λ

Remark 2.2. The quasi-LPV model is also a particular class of LPV systems [23] whose

parameters depend only on endogenous signals, such as the state.

In the sequel, an example illustrates how to represent a nonlinear system by a quasi-LPV

model.

Example 2.1 (Discretized van der Pol equation: quasi-LPV model). Consider the discretized

van der Pol equation [135]

x1,k+1 = x1,k + Tx2,k

x2,k+1 = − 9Tx1,k + (1 + 2T (1 − x2
1,k))x2,k + Tuk

(2.6)

being T = 0.05s and ♣x1,k♣ ≤ r0, with r0 being a positive scalar. By considering the scheduling

ρ(xk) = x2
1,k which is bounded by ρ(xk) = [ρ, ρ] = [0, r2

0], system (2.6) can be equivalently

represented by the following polytopic quasi-LPV system

xk+1 =
2∑︂

i=1

αi(ρk)Aixk +Buk (2.7)

with

A1 =

⋃︁
⨄︁ 1 T

−9T 1 + 2T

⋂︁
⋀︁ , A2 =

⋃︁
⨄︁ 1 T

−9T 1 + 2T (1 − r2
0)

⋂︁
⋀︁ , B =

⋃︁
⨄︁0

T

⋂︁
⋀︁ ,

and parameters

α1(ρk) =
ρ− x2

1,k

ρ− ρ
=
r2

0 − x2
1,k

r2
0

, α2(ρk) = 1 − α1(ρk).
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2.2 Takagi-Sugeno (TS) fuzzy models

TakagiŰSugeno (TS) fuzzy model-based techniques have been recognized as an effective

alternative to developing constructive stability analysis and control synthesis conditions for

nonlinear systems [3, 4, 5, 11, 13, 136]. The fuzzy model proposed by Takagi and Sugeno [137]

is described by fuzzy IF-THEN rules which represent local linear input-output relations of a

nonlinear system. The main feature of a Takagi-Sugeno fuzzy model is to express the local

dynamics of each fuzzy implication rule by a linear system model. TS fuzzy models have been

successfully used in the same Ąelds where LPV systems demonstrated to be successful: robotic

systems [138, 139], fault-tolerant control [140, 14], energy production systems [141], power

systems [142], and wind turbine systems [143].

Consider a nonlinear system, whose dynamics can be described as

xk+1 = A(µk)xk +B(µk)uk, ∀k ∈ Z
+

yk = C(µk)xk

(2.8)

where xk ∈ R
nx is the state, uk ∈ R

nu is the input, yk ∈ R
ny is the system output, µk ∈ R

nµ is

the vector of measured premise variables. Using fuzzy modeling technique [144], the nonlinear

system (2.8) can be reformulated as the following TS fuzzy model:

Rule Ri : IF µ1 is Mi
1 and . . . and µnµ

is Mi
nµ
. THEN

∏︂
⨄︂
⋃︂
xk+1 = Aixk +Biuk

yk = Cixk

where the constant matrices (Ai, Bi, Ci) are known, Ri is the ith fuzzy rule, r denotes the

number of fuzzy rules, and Mi
j, with i ∈ N≤r and j ∈ N≤nµ

, are the fuzzy sets. The fuzzy

membership functions are deĄned as

zi(µk) =

√︃nµ

j=1 λ
i
j(µj)

√︂r
i=1

√︃nµ

j=1 λ
i
j(µj)

, i ∈ N≤r, (2.9)

where λi
j(µj) represents the membership grade of µj with respect to the fuzzy set Mi

j. Notice

that the membership functions deĄned in (2.9) belong to the unit simplex Λ with r vertices

Λ =

∮︂
z ∈ R

r :
r∑︂

i=1

zi = 1, 0 ≤ hi ≤ 1, i ∈ N≤r

⨀︁
, (2.10)

with z =
[︂
z1(µk), z2(µk), . . . , zr(µk)

]︂
. Applying the center-of-gravity method for defuzziĄca-

tion [144], the TS fuzzy system (2.9) can be rewritten as

xk+1 =
r∑︂

i=1

zi(µk) (Aixk +Biuk)

yk =
r∑︂

i=1

zi(µk)Cixk. (2.11)
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Example 2.2 (Discretized van der Pol equation: TS fuzzy model). Consider again the

discretized van der Pol equation described in (2.6). To represent system (2.6) as TS fuzzy

model, the premise variable is given as µk = x2
1,k ∈ [0, r2

0]. Therefore, system (2.6) can be

rewritten in the form (2.8) with

A(µk) =

⋃︁
⨄︁ 1 T

−9T 1 + 2T (1 − µk)

⋂︁
⋀︁ , B =

⋃︁
⨄︁0

T

⋂︁
⋀︁ .

Applying the sector nonlinearity approach [144, Chapter 2] with the measured premise variable

µk = x2
1,k, system (2.6) can be represented by a two-rule TS fuzzy model (2.11) with

A1 =

⋃︁
⨄︁ 1 T

−9T 1 + 2T

⋂︁
⋀︁ , A2 =

⋃︁
⨄︁ 1 T

−9T 1 + 2T (1 − r2
0)

⋂︁
⋀︁ , B =

⋃︁
⨄︁0

T

⋂︁
⋀︁ .

The corresponding membership functions are given by

z1(µk) =
r2

0 − x2
1,k

r2
0

, z2(µk) = 1 − z1(µk).

Remark 2.3. Notice that the LPV system (2.2) and the Takagi-Sugeno fuzzy model (2.11)

are similar in their descriptions, that is, if the time-varying parameters depend on some systems’

states (i.e.: quasi-LPV models), they are equivalent to membership functions in TS fuzzy

models. The number of vertices N is related to the number of fuzzy rules r, and the premise

variable µk is related to the scheduling function ρk. Table 2.2 shows the main analogies

between LPV and TS fuzzy systems. It is worth mentioning that in this work the LPV model

description is being used to construct the results, however, all content present here can be

applied to both cases, LPV (quasi-LPV) systems and TS fuzzy models. Besides that, when

the author of this Thesis refers to a system as a quasi-LPV model it can be understood as a

Takagi-Sugeno fuzzy model.

Table 2.2 Ű Analogies between LPV and TS fuzzy models.

quasi-LPV systems Takagi-Sugeno fuzzy models
Number of vertices (N) Number of fuzzy rules (r)
Scheduling function (ρk) Premise variable (µk)
Time-varying parameters (αi(·), i ∈ N≤N) Membership functions (zi(·), i ∈ N≤r)
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3 SOF STABILIZATION CONDITIONS OF POLYTOPIC SYSTEMS

This chapter introduces a novel local synthesis condition for gain-scheduling static

output-feedback (SOF) control of discrete-time polytopic systems. The proposed condition is

formulated as a set of parameter-dependent linear matrix inequalities that are incorporated into

a convex optimization procedure to provide an enlarged estimate of the region of attraction of

the closed-loop equilibrium. The results presented in this chapter are published in [121].

3.1 Problem Formulation

This section presents the system description as well as formulates the SOF control

design problem of discrete-time polytopic systems. The description of the considered LPV

system is presented below, however as mentioned in Chapter 2, all results presented here can

also be applied to TS fuzzy models.

Consider the following discrete-time LPV system

xk+1 = A(αk)xk +B(αk)uk

yk = C(αk)xk,
(3.1)

where xk ∈ R
nx is the state, uk ∈ R

nu is the input, yk ∈ R
ny is the output. The parameter-

dependent matrices A(αk) ∈ R
nx×nx , B(αk) ∈ R

nx×nu and C(αk) ∈ R
ny×nx belong to a

polytopic domain parameterized by the time-varying parameters α ∈ Λ, deĄned as in (2.5).

Assumption 3.1. The region where the LPV system (3.1) is valid is a polytope containing

the origin described by

D = ¶x ∈ R
nx : bjx ≤ 1, j ∈ N≤ne

♢ , (3.2)

where ne is the number of hyper-planes and bj ∈ R
nx deĄnes the j-th hyper-plane.

Consider the following gain-scheduled SOF controller

uk = X(αk)−1L(αk)yk, (3.3)

being L(αk) ∈ R
nu×ny and X(αk) ∈ R

nu×nu the control gains to be designed. The resulting

closed-loop system is

xk+1 =
(︂
A(αk) +B(αk)X(αk)−1L(αk)C(αk)

)︂
xk. (3.4)

For analyzing the local asymptotic stability of the closed-loop system (3.4), the following

parameter-dependent Lyapunov function candidate is considered:

V (xk) = x⊤
k P (αk)xk, ∀αk ∈ Λ, (3.5)

being P (αk) ∈ S
nx
+ a parameter-dependent matrix.
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DeĄnition 3.1. The region R0 associated with the unitary level set of the Lyapunov function

candidate deĄned in (3.5),

R0 = ¶x ∈ R
nx : V (xk) ≤ 1, ∀αk ∈ Λ♢ , (3.6)

is said to be positively invariant [1] if ∆V = V (xk+1) − V (xk) < 0, ∀x ∈ R0 \ ¶0♢, ∀αk ∈ Λ.

The following control problem is addressed in this chapter.

Problem 3.1. Given the LPV system (3.1), design a gain-scheduled static output-

feedback (SOF) controller of the form (3.3) and compute the estimate of the domain of

attraction of the system’s equilibrium given by R0 in (3.6), such that R0 ⊂ D.

3.2 Local static output-feedback (SOF) stabilization

This section presents a novel local stabilization condition for the discrete-time polytopic

systems described in (3.1) using the gain-scheduled SOF controller in (3.3).

Theorem 3.1. The origin of the closed-loop system (3.4) is asymptotically stable and the region

R0 ⊂ D is an estimation of the DoA for the origin of (3.4), if there exist matrices P (αk) ∈ S
nx
+ ,

X(αk) ∈ R
nu×nu , L(αk) ∈ R

nu×ny , F (αk) ∈ R
nx×nx , Y (αk) ∈ R

ny×ny , M(αk) ∈ R
nu×ny ,

S(αk) ∈ R
nu×ny , J(αk) ∈ R

nu×ny , Z(αk) ∈ R
nx×nx such that the following inequalities hold

for a given η ∈ R>0:
⋃︁
⨄︁P (αk) ⋆

bj 1

⋂︁
⋀︁ ≥ 0, j ∈ N≤ne

(3.7)

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

−P (αk) + ηHe¶(F (αk)A(αk) +B(αk)S(αk)C(αk)♢ ⋆ ⋆ ⋆

Z(αk)A(αk) +B(αk)J(αk)C(αk) − ηF (αk)⊤ Υ22 ⋆ ⋆

ηY (αk)C(αk) + η (B(αk)L(αk) −B(αk)S(αk))⊤ Υ32 Υ33 ⋆

η (M(αk)C(αk)) + η (F (αk)B(αk) −B(αk)X(αk))⊤ Υ42 Υ43 Υ44

⋂︁
⎥⎥⎥⎥⎥⎥⋀︁
< 0, (3.8)

with

Υ22 = P (αk+1) − Z(αk) − Z(αk)⊤,

Υ32 = (B(αk)L(αk) −B(αk)J(αk))⊤ ,

Υ33 = − ηY (αk) − ηY (αk)⊤,

Υ42 = (Z(αk)B(αk) −B(αk)X(αk))⊤ ,

Υ43 = η (L(αk) −M(αk)) ,

Υ44 = − ηX(αk) − ηX(αk)⊤.

Proof. Consider that the inequalities (3.7)Ű(3.8) hold and that xk ∈ R0. Firstly, multiply-

ing (3.7) by
[︂
−x⊤

k 1
]︂

on the left and by its transpose on the right, it results in

1 + x⊤
k P (αk)xk − x⊤

k b
⊤
j − bjxk ≥ 0. (3.9)
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Since for all xk ∈ R0, one has x⊤
k P (αk)xk ≤ 1, it implies that bjxk ≤ 1. This proves the

inclusion R0 ⊂ D. Finally, multiplying (3.8) by
[︂
I A(αk)⊤ C(αk)⊤ C(αk)⊤L(αk)⊤X(αk)−⊤

]︂

on the left and by its transpose on the right, it yields

A(αk)⊤P (αk+1)A(αk) − P (αk) < 0, (3.10)

with A(αk) = A(αk) +B(αk)X(αk)−1L(αk)C(αk). Multiplying (3.10) by x⊤
k on the left and

by xk on the right results in

∆V = V (xk+1) − V (xk) < 0,

for V (xk) = x⊤
k P (αk)xk, ∀αk ∈ Λ. This proves that if the condition on Theorem 3.1 is feasible,

then the controller ensures that the origin of the closed-loop system (3.4) is asymptotically

stable and R0 is an invariant set for (3.4), therefore it is an estimate of the DoA for the origin

of (3.4). It is worth mentioning that the SOF controller does not depend on future instants,

i.e., the control law can be computed in real-time.

Notice that the block Υ44 of (3.8) guarantees that X(αk) +X(αk)⊤ > 0, ensuring the

existence of the inverse of matrix X(αk), ∀αk ∈ Λ.

Remark 3.1. Differently from existing results in the literature on SOF control design, the

condition proposed in Theorem 3.1 does not require any structural constraint in the output

matrix C(αk) neither requires any similarity transformations. Moreover, no iterative algorithms

are necessary for solving the proposed conditions. Furthermore, the given scalar η has only the

role of introducing an extra degree of freedom in the proposed condition.

Remark 3.2. It is important to point out that for the case where the time-varying parameters

depend only on measured exogenous signals, that is, a purely LPV system is considered, the

LMI (3.7) in Theorem 3.1 can be removed.

3.2.1 Enlarging the estimation of the DoA

Based on the result stated in Theorem 3.1, it is important to enlarge the estimation of

the DoA. Therefore, the following optimization is considered to attain this goal:

min µ

s.t. :

∏︂
⋁︂⨄︂
⋁︂⋃︂

LMIs in (3.7) and (3.8)

trace(P (αk)) ≤ µ, ∀αk ∈ Λ.

(3.11)

The optimization problem in (3.11) intends to minimize the largest trace of

P (αk),∀αk ∈ Λ, which tends to enlarge the region R0 in (3.6). Notice that since the

conditions in Theorem 3.1 are written as parameter-dependent inequalities, in order to com-

putationally solve them, Lemma A.1 in Appendix A is employed to obtain Ąnite sets of LMIs.

Thus, (3.11) turns into a convex optimization problem.
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3.3 Numerical Examples

In this section, numerical experiments are presented to illustrate the effectiveness of

the conditions proposed in this chapter. The routines were implemented in Matlab using the

parser Yalmip, and the semideĄnite programming solver MOSEK.

Example 3.1. Consider the following discrete-time LPV system described in [51]:

A1 =

⋃︁
⨄︁1.3 + δ −1

0.2 0.6

⋂︁
⋀︁ , A2 =

⋃︁
⨄︁0.8 −1.5

0.1 0.3

⋂︁
⋀︁ ,

B1 =

⋃︁
⨄︁ 1

0.2

⋂︁
⋀︁ , B2 =

⋃︁
⨄︁1

0

⋂︁
⋀︁ , C1 =

[︂
1 1.5

]︂
, C2 =

[︂
1 1

]︂
.

The problem to be solved is to determine the largest δ > 0, denoted as δ∗, such that the

system can be static output feedback stabilized. This value is considered to evaluate the

conservativeness of different approaches in the literature. In this example, the proposed

condition in Theorem 3.1 is compared with the conditions in [51, 87, 16, 89, 69]. It is

important to mention that for this example, the LMI constraint (3.7) can be removed since this

is a purely LPV system. The results are presented in Table 3.1 where is shown the value of δ∗,

the number of scalar decision variables (Sv), and the number of LMI rows (LR). In particular,

two scenarios are considered for comparisons: parameter-independent and gain-scheduling.

Table 3.1 Ű Maximum δ values obtained by several methods with number of LMI rows
LR and scalar variables Sv Ű Example 3.1.

Method
Parameter-independent Gain-Scheduling

δ∗ Gain Sv LR δ∗ Sv LR

[51, Theorem 5] 0.33 −1.1161 16 32 - - -
[51, Theorem 1] 0.40 −1.3336 16 32 - - -
[16, Theorem 2] (N = 2) 0.60 −1.0146 22 148 0.69 24 148
[16, Theorem 2] (N = 3) 0.62 −1.0212 28 602 0.69 30 602
[89, Theorem 1] 0.86 −1.7581 36 48 - - -
[69, Theorem 2] (ρ = 1) 0.60 −1.2069 14/241 24/44 0.88 14/24 25/44
Theorem 3.1 0.87 −1.8447 20 40 0.92 22 40

Regarding the parameter-independent case in Table 3.1, for [51, Theorem 5], the

maximum value of δ for feasibility is 0.33, whereas δ∗ = 0.40 is achieved with [51, Theorem 1].

For [16, Theorem 2], using N = 2 and a given matrix Y = B1, the maximum δ is 0.60. If one

uses N = 3 and Y = B1, the maximum value is δ∗ = 0.62. The maximum value reached by [89,

Theorem 1] is δ∗ = 0.86 using δ = 0.2 and β = 0.9. Applying the two-stages method proposed

in [69] the maximum value of δ∗ for feasibility is 0.60. To solve the parameter-independent
1 The approach in [69] is based on two-stages procedure, therefore, the first value is related to the first step

while the second one is obtained in the second step.
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condition using Theorem 3.1 proposed in this chapter, it is considered Z(αk) = Z, F (αk) = F ,

Y (αk) = Y , M(αk) = M , J(αk) = J , L(αk) = L and X(αk) = X, the scalar search is

performed considering η ∈ [0, 5] and the best result, δ∗ = 0.87, is obtained for η assuming

values in the interval [1.6, 2.4].

On the other hand, for the parameter-dependent case in Table 3.1, it is considered

Theorem 3.1 with parameter-dependent structures for L(αk) and X(αk) as in (2.3), and

constant matrices Z(αk) = Z, F (αk) = F , Y (αk) = Y , M(αk) = M , J(αk) = J . For the

scalar parameter assuming values in the interval η = [0.2, 1.9], it follows that δ∗ = 0.92, which

is clearly an improvement in comparison with the parameter-dependent conditions presented

in [16, 69]. The approaches proposed in [51, 89] are not able to deal with the parameter-

dependent case. It is worth mentioning that the condition presented in [87, Theorem 1] fails

to Ąnd a solution for this example, we have used values suggested in [87] to perform the scalar

searches, namely: ξ ∈ [−0.9, 0.9] with a grid of 0.01 in ξ, γ = −105, ρ = 1, and a given

matrix Q(αk) = C(αk).

From Table 3.1, it can be veriĄed that the proposed method can achieve less conservative

results than the methods in [51, 87, 16, 89, 69]. Notice also that for the proposed condition

in this chapter, there is a commitment between conservativeness reduction and numerical

complexity, since the proposed Theorem 3.1 has provided the largest value of δ requiring less

number of decision variables and the number of LMI rows in comparison to [16, 89, 69], in

both parameter-independent and dependent cases.

Example 3.2. Consider the discrete-time LPV system with vertices:

A1 =

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

0.7445 −0.1398 0.5880 −0.1402

0.7190 −0.3427 −0.6993 0.0017

1.1088 0.3664 −0.7344 0.4628

−0.0921 −0.4727 0.5423 −0.5607

⋂︁
⎥⎥⎥⎥⎥⎥⋀︁
, B1 =

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

0.3344

0.2966

−2.1774

0.5941

⋂︁
⎥⎥⎥⎥⎥⎥⋀︁
,

A2 =

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

−0.0688 −0.8214 −0.6759 0.1621

−0.2066 −0.6346 −0.3925 −0.5422

−0.2521 −0.1341 0.4933 −0.1415

0.1943 −0.4248 0.1209 0.6465

⋂︁
⎥⎥⎥⎥⎥⎥⋀︁
, B2 =

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

−0.9477

−0.1021

0.1003

0.0466

⋂︁
⎥⎥⎥⎥⎥⎥⋀︁
,

C1 = C2 = C =

⋃︁
⨄︁1 0 0 0

0 1 0 0

⋂︁
⋀︁ .

For this model the methods reported in [51, 53, 87, 16, 89, 69] fail to Ąnd a solution. For the con-

dition presented in [87], the scalar searches were performed using ξ ∈ ¶−0.9,−0.8 . . . , 0.8, 0.9♢,

γ = −105, ρ = 1, and a given matrix Q(αk) = C(αk) = C. The condition presented in [16]

was tested with N = 1, . . . , 3 and Y = B1. The condition of [89] was simulated considering a

scalar search over the set [δ, β] ∈ U × U with U = ¶−1,−0.9, . . . , 0.9, 1♢. Notice that if one

considers Z(αk) = Z, F (αk) = F , Y (αk) = Y , M(αk) = M , J(αk) = J , X(αk) = X and
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L(αk) = L, in Theorem 3.1 proposed in this chapter, no solution is found. On the other hand,

the condition proposed in Theorem 3.1 employing parameter-dependent matrices is able to Ąnd

a solution for a given η = 0.1 (other values for η can be selected). This example illustrates

clearly the necessity of making use of parameter-dependent matrices to have a feasible solution.

The gain-scheduling SOF control gains can be obtained for:

X1 = 1.0354, X2 = 0.9684,

L1 =
[︂
0.8202 0.0325

]︂
, L2 =

[︂
0.1094 −0.5138

]︂
.

Figure 3.1 depicts the (convergent) state trajectories for the closed-loop system described

in (3.4) (with the gain-scheduled controller designed using Theorem 3.1), the control input

sequence, and the output trajectories for an initial condition x0 =
[︂
−1.5 1 2 −1

]︂⊤

. It can

be noticed that the trajectories converge asymptotically to the origin. For this simulation, the

time-varying parameter has been considered as α1,k = 0.5+0.5 sin(0.85πk) and α2,k = 1−α1,k,

as shown in Figure 3.1d.

Remark 3.3. It is noteworthy that even though the results presented here seem less conservative

when compared to other works in the literature, the papers [89, 69] were published after our

work in [121] that presents part of the results of this chapter. Furthermore, our approach [121]

has inspired the method presented in [145], which provides results for the SOF problem in the

context of difference-algebraic representations.

Example 3.3. In this example, considering a TS fuzzy model, the goal is to evaluate the

conservativeness of the approach presented in Theorem 3.1 when compared to fuzzy SOF

controller design conditions. However, it is possible to notice that the system used can also be

described as an LPV system. To this end, consider the following TS fuzzy model borrowed

from [92]:

A1 =

⋃︁
⨄︁ 0.7 1.2 + 0.3a

−0.6 −0.3

⋂︁
⋀︁ , B1 =

⋃︁
⨄︁ 0

−1.8

⋂︁
⋀︁ , C1 =

[︂
0.3 0

]︂
,

A2 =

⋃︁
⨄︁ 0.1 1.6

−1.4 0.1

⋂︁
⋀︁ , B2 =

⋃︁
⨄︁ 0

−2.8 − 0.5b

⋂︁
⋀︁ , C2 =

[︂
0.1 0

]︂
,

where a, b ∈ R. The design conditions are constructed by evaluating their feasibility for several

values of a ∈ [0, 10] and b ∈ [−5, 0]. It should be pointed out that conditions of [48, 83, 146]

cannot be applied here because this model has different output matrices. On the other

hand, the method proposed in [92] can be applied in this case. The feasible sets obtained

by Theorem 3.1 with η = 0.1 and by [92, Theorem 3] are depicted in Figure 3.2. Notice

that the proposed condition provides a feasible set that contains the one obtained using [92,

Theorem 3], illustrating less conservative outcomes. It is worth mentioning that to obtain more

relaxed results, the technique presented in [92] has used the information of past states in the

control law, as well as in the Lyapunov function, which is much more demanding than the

approach provided in this chapter.
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Figure 3.1 Ű (a) State trajectories for the closed-loop system, x1,k (straight magenta
line), x2,k (blue dashed line), x3,k (dashed-dotted black line), x4,k (dotted
red line); (b) trajectory of the control input uk; (c) trajectory of the output
yk; (d) temporal evolution of the time-varying parameters Ű Example 3.2.

0 2 4 6 8 10

-5

-4

-3

-2

-1

0

Figure 3.2 Ű Feasible sets for Theorem 3.1 with η = 0.1 (Ś◦’) and [92, Theorem 3] (Ś•’) -
Example 3.3.
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Example 3.4. Consider the following nonlinear system:

x1,k+1 = 1.15x3
1,k + x2,k

x2,k+1 = −2x1,k + 0.7x2
1,kx2,k + (1 − 0.1x2

1,k)uk

yk = x1,k

(3.12)

where D = ¶x ∈ R
2 : ♣x1♣ ≤ 1, ♣x2♣ ≤ 0.5♢. Considering ρ(xk) = x2

1,k, such that ρ(xk) ∈ [0, 1],

as the scheduling parameter or premise variables, the nonlinear system given by (3.12) can

be represented by means of a quasi-LPV system as in (3.1) or as TS fuzzy model with the

following two vertices

A1 =

⋃︁
⨄︁ 0 1

−2 0

⋂︁
⋀︁ , A2 =

⋃︁
⨄︁1.15 1

−2 0.7

⋂︁
⋀︁ , B1 =

⋃︁
⨄︁0

1

⋂︁
⋀︁ , B2 =

⋃︁
⨄︁ 0

0.9

⋂︁
⋀︁ , C1 = C2 =

[︂
1 0

]︂
.

The time-varying parameters or membership functions can be calculated as

α1,k = 1 − x2
1,k and α2,k = 1 − α1,k.

In this example, the purpose is to design the SOF controller (3.3) obtaining an enlarged

DoA estimate such that the origin of the closed-loop system (3.12) is asymptotically stable.

Since a quasi-LPV (or TS fuzzy model) is obtained, in this case, to design a SOF controller for

local stabilization of the nonlinear system (3.12), it is essential to obtain an estimate of the DoA

inside the region in which both the polytopic model and the control law remain valid. However,

the SOF design approaches for LPV [51, 87, 16, 89, 69] and TS fuzzy [48, 83, 146, 92] systems

do not provide such a characterization, and therefore, these approaches will be not used to

comparison in this case. To solve the optimization problem (3.11), a parameter-independent

structure has been considered, that is, Z(αk) = Z, F (αk) = F , Y (αk) = Y , M(αk) = M ,

J(αk) = J , L(αk) = L and X(αk) = X. Figure 3.3 depicts the objective function µ with

respect to the scalar parameter η. Recall that for larger values of µ, the DoA estimation

R0 tends to reduce. As can be seen in Figure 3.3, the results are improved with the scalar

parameter search. In this case, the minimum µ = 8.2829 is attained with η = 0.11.

Considering the solution of the optimization problem (3.11) with η = 0.11, the Lyapunov

function matrices in (3.5) and the constant SOF controller are:

P1 =

⋃︁
⨄︁1.3104 1.3791

1.3791 6.1275

⋂︁
⋀︁ , P2 =

⋃︁
⨄︁1.3511 1.5601

1.5601 6.9318

⋂︁
⋀︁ , X = 7.9166, L = 15.8784.

For this case, several closed-loop trajectories starting within the region R0 are depicted in

Figure 3.4. It can be noticed that all trajectories converge to the origin without leaving the

region R0 ⊂ D. Some divergent closed-loop trajectories initiating outside the region R0

are also provided to illustrate the effectiveness of the proposed local SOF control synthesis

condition and the relevance of the estimation of R0. Figure 2.1 also depicts the estimated
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Figure 3.3 Ű The objective function µ obtained by solving the optimization problem (3.11)
for different values of the parameter η - Example 3.4.

region R0 obtained from [91, Theorem 1] with α = 0.1177. As suggested by the authors in [91],

a line grid search for α has been done with 100 points distributed over a logarithmic scale in

[10−4, 104] and we have chosen the value of α that provided the larger estimate of the DoA.

As one can see, the proposed approach provides an estimate of the DoA for the origin of the

closed-loop system (4.34) that contains the estimate obtained by [91]. It is worth mentioning

that, unlike our approach, the technique presented in [91] has used a parameter-dependent

structure in the control law that uses the information of past states. Besides that, Table 3.2

shows the computational efforts in terms of the number of scalar variables (Sv) and the number

of LMI rows (LR) required by the proposed approach and the method in [91]. Notice that the

proposed technique provides a less conservative result with fewer number of LMI rows and

scalar decision variables than the method in [91].

Figure 3.4 Ű Estimate of the domain of attraction R0 (magenta) obtained from the
optimization problem (3.11) with η = 0.11; estimate of DoA R0 (red
line) obtained from [91], convergent trajectories (blue line) with initial
conditions at the border of R0, and trajectories (green line) leaving the
set D - Example 3.4.
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Table 3.2 Ű Computational complexity given by the number of scalar decision variables
(SV ) and the number of LMI rows (LR) - Example 3.4.

µ SV LR

[91, Theorem 1] 8.3275 55 81
Theorem 3.1 8.2829 21 67

3.4 Final remarks

This chapter has introduced new less conservative conditions to design gain-scheduled

static output-feedback controllers for discrete-time nonlinear systems represented by LPV

systems and TS fuzzy models. The synthesis conditions have been formulated in terms of linear

matrix inequalities. One of the novelties in this Thesis is the possibility of the output matrix

being parameter-dependent, without requiring any speciĄc structure or admitting particular

similarity transformations, unlike most of the approaches in the related literature. Another

distinctive feature of the proposed approach is to ensure the local asymptotic stability of the

origin of the closed-loop system. The proposed conditions sound to be less conservative when

compared to other conditions in the literature, as illustrated by numerical examples.
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4 SOF CONTROL FOR TIME-DELAYED POLYTOPIC SYSTEMS

This chapter introduces a novel delay-dependent condition for static output-

feedback (SOF) control of quasi-linear parameter varying (LPV) systems and Takagi-

Sugeno (TS) fuzzy models with time-varying delay. Unlike other works in the related

literature, another distinctive feature of the proposed approaches is to ensure the local asymp-

totic stability of the origin of the closed-loop system, which is necessary due to the validity of

the polytopic model obtained. This guarantees the correct operation of the closed-loop system

since the set of admissible initial states is obtained inside of the domain of validity D. The

results presented in this chapter are published in [122].

4.1 Problem Statement

After a system description, this section formulates the SOF control design problem of

nonlinear systems with time-varying delay represented by quasi-LPV models. However, once

more as mentioned in Chapter 2, all results presented here can also be devoted to TS fuzzy

models.

Consider the discrete-time linear parameter varying (LPV) system with time-varying

delay:
xk+1 = A(αk)xk + Ad(αk)xk−hk

+B(αk)uk, ∀k ∈ Z
+

yk = C(αk)xk,

xk = ϕk, k ∈ ¶−h, . . . , 0♢,
(4.1)

where xk ∈ R
nx is the state, uk ∈ R

nu is the input, yk ∈ R
ny is the output, and ϕk is the

initial condition. The parameter-dependent matrices A(αk) ∈ R
nx×nx , Ad(αk) ∈ R

nx×nx ,

B(αk) ∈ R
nx×nu , and C(αk) ∈ R

ny×nx belong to a polytopic domain parameterized by the

time-varying parameters α ∈ Λ, deĄned as in (2.5).

The following assumptions are considered for system (4.1).

Assumption 4.1. The time-varying delay hk satisĄes h ≤ hk ≤ h, for ∀k ∈ N, where the

lower bound h and the upper bound h are given.

Assumption 4.2. The region where the LPV system (4.1) is valid is a polytope containing

the origin described by

D = ¶x ∈ R
nx : bjx ≤ 1, j ∈ N≤ne

♢ , (4.2)

where ne is the number of hyper-planes and bj ∈ R
nx deĄnes the j-th hyper-plane.

The following gain-scheduled SOF controller is considered

uk = X(αk)−1L(αk)yk (4.3)
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where X(αk) and L(αk) are gains to be designed. From (4.1) and (4.3), the closed-loop

system is

xk+1=A(αk)xk + Ad(αk)xk−hk
(4.4)

where A(αk) = A(αk)+B(αk)X(αk)−1L(αk)C(αk).

Problem 4.1. Design the gain-scheduled SOF controller (4.3) such that the origin of (4.4)

is locally asymptotically stable. Moreover, determine the set of admissible initial conditions

for which the state trajectories of the closed-loop system (4.4) converge towards the origin

remaining constrained into the validity domain D.

4.2 Useful Lemmas

The following technical lemmas are useful to develop the design SOF controller as

stated in Problem 4.1.

Lemma 4.1 (Wirtinger-based inequality [99]). For a given symmetric positive deĄnite matrix

R ∈ Sn
+, integers b > a, any sequence of discrete-time variable x : Z[a, b] → R

n, the following

inequalities hold

b−1∑︂

i=a

η⊤
i Rηi ≥ 1

b− a

⋃︁
⨄︁ Θ1

Θ2

⋂︁
⋀︁

⊤ ⋃︁
⨄︁ R 0

0 3
(︂

b−a+1
b−a−1

)︂
R

⋂︁
⋀︁

⋃︁
⨄︁ Θ1

Θ2

⋂︁
⋀︁ (4.5)

≥ 1

b− a

⋃︁
⨄︁ Θ1

Θ2

⋂︁
⋀︁

⊤ ⋃︁
⨄︁ R 0

0 3R

⋂︁
⋀︁

⋃︁
⨄︁ Θ1

Θ2

⋂︁
⋀︁ (4.6)

where ηi = xi − xi−1, Θ1 = xb − xa, and Θ2 = xb + xa − 2
b−a+1

√︂b
i=a xi.

Lemma 4.2 (Moon’s inequality [147]). For any matrices R1 ∈ S
n
+, R2 ∈ S

n
+, Y1 ∈ R

2n×n, and

Y2 ∈ R
2n×n, the following inequality holds

⋃︁
⨄︁

1
ϑ
R1 0

0 1
1−ϑ

R2

⋂︁
⋀︁ ≥ ΘM(ϑ), ∀ϑ ∈ (0, 1)

where

ΘM(ϑ) = He ¶Y1 [In 0n] + Y2 [0n In]♢ − ϑY1R
−1
1 Y ⊤

1 − (1 − ϑ)Y2R
−1
2 Y ⊤

2 .

4.3 Guaranteed DoA estimation for time-delayed nonlinear systems

This section presents the main results of this chapter. First, based on an augmented

Lyapunov-Krasovskii functional, a new delay-dependent LMI condition for the SOF control

design is provided. In the sequel, the local asymptotic stability of the origin of the closed-loop

system is presented, which ensures the correct operation of the closed-loop system since its

trajectories remain enclosed in the guaranteed domain of attraction estimation obtained inside

of the validity region of the LPV system.
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Lemma 4.3. For given positive integers h and h, where h < h, and a scalar ϵ ∈ R>0, if there

exist parameter-dependent matrices X(αk) ∈ R
nu×nu , L(αk) ∈ R

nu×ny , H(αk) ∈ R
ny×ny ,

M1(αk) ∈ R
nx×nx , M2(αk) ∈ R

nu×ny , M3(αk) ∈ R
nx×nx , M4(αk) ∈ R

nu×ny , M5(αk) ∈
R

nx×nx , M6(αk) ∈ R
nu×ny , M7(αk) ∈ R

nu×ny , positive deĄnite matrices P , S, D ∈ S
nx
+ , R1,

R2, Z1, Z2 ∈ S
nx
+ , and matrices T , E, Q ∈ R

nx×nx , Y1, Y2 ∈ R
(8nx+nu+ny)×2nx , such that

following inequalities hold

P > 0,
⋃︁
⨄︁Φαk

(h) Y2

Y ⊤
2 − ˜︁Z2

⋂︁
⋀︁ < 0,

⋃︁
⨄︁Φαk

(h) Y1

Y ⊤
1 − ˜︁Z2

⋂︁
⋀︁ < 0,

(4.7)

where

Φαk
(h) = F⊤

1 (P + Π1)F1 − F⊤
2 PF2 + He

{︂
Γ⊤(h)PF1

}︂
− He

{︂
Γ⊤(h)PF2

}︂

+ ˜︁R −G⊤
1

˜︁Z1G1−He¶Y1G2+Y2G3♢ + He¶U(αk)B(αk)♢,
(4.8)

Φαk
(h) = F⊤

1 (P + Π1)F1 − F⊤
2 PF2 + He

{︂
Γ⊤(h)PF1

}︂
− He

{︂
Γ⊤(h)PF2

}︂

+ ˜︁R −G⊤
1

˜︁Z1G1−He¶Y1G2+Y2G3♢ + He¶U(αk)B(αk)♢,
(4.9)

˜︁Z1 = diag (Z1, 3σ (h)Z1) , ˜︁Z2 = diag (Z2, 3Z2) ,

Π1 = diag
(︂
h2Z1 + h̃

2
Z2, 02nx

)︂
, (4.10)

˜︁R = diag
(︂
0nx

, R1,−R1 +R2, 0nx
,−R2, 03nx+nu+ny

)︂
,

vi =
[︂
0nx×(i−1)nx

Inx
0nx×(8−i)nx

0nx×(nu+ny)

]︂
,

F1 =

⋃︁
⋁︁⋁︁⋁︁⨄︁

v1 − v2

v6 − v3

v7 + v8 − v4 − v5

⋂︁
⎥⎥⎥⋀︁ , F2 =

⋃︁
⋁︁⋁︁⋁︁⨄︁

0nx×(8nx+nu+ny)

v6 − v2

v7 + v8−v3 − v4

⋂︁
⎥⎥⎥⋀︁ ,

G1 =

⋃︁
⨄︁ v2 − v3

v2 + v3 − 2v6

⋂︁
⋀︁ , G2 =

⋃︁
⨄︁ v3 − v4

v3 + v4 − 2v7

⋂︁
⋀︁ , G3 =

⋃︁
⨄︁ v4 − v5

v4 + v5 − 2v8

⋂︁
⋀︁ ,

P =

⋃︁
⋁︁⋁︁⋁︁⨄︁

P Q T

Q⊤ S E

T⊤ E⊤ D

⋂︁
⎥⎥⎥⋀︁ , Γ(h)=

⋃︁
⋁︁⋁︁⋁︁⨄︁

v2

hv6

(h− h)v7

⋂︁
⎥⎥⎥⋀︁ , Γ(h)=

⋃︁
⋁︁⋁︁⋁︁⨄︁

v2

hv6

(h− h)v8

⋂︁
⎥⎥⎥⋀︁ ,

B(αk) =

⋃︁
⋁︁⋁︁⋁︁⨄︁

−Inx
A(αk) 0nx×nx

Ad(αk) 0nx×4nx
0nx×nx

B(αk)

0ny×nx
C(αk) 0ny×nx

0ny×nx
0ny×4nx

−Iny
0ny×nu

0nu×nx
0nu×nx

0nu×nx
0nu×nx

0nu×4nx
L(αk) −X(αk)

⋂︁
⎥⎥⎥⋀︁ ,
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U(αk) =

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

M1(αk) B(αk)M2(αk) B(αk)

M3(αk) B(αk)M4(αk) ϵB(αk)

0nx×nx
0nx×ny

0nx×nu

M5(αk) B(αk)M6(αk) ϵB(αk)

04nx×nx
04nx×ny

04nx×nu

0ny×nx
ϵH(αk) 0ny×nu

0nu×nx
M7(αk) Inu

⋂︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⋀︁

,

with h̃ ≜ h− h, such that σ (h) = 1 (if h = 1) or σ (h) = (h+ 1) / (h− 1) (if h > 1). Then,

the origin of the closed-loop system (4.4) is asymptotically stable for any integer time-varying

delay hk ∈ ¶h, . . . , h♢ via the static output-feedback control law in (4.3).

Proof. Consider the LyapunovŰKrasovskii functional (LKF) candidate given by

W (ϕk) = V (xk) + U(ϕk) (4.11)

where
V (xk) = x⊤

k Pxk,

U(ϕk) =
3∑︂

i=1

Ui(ϕk),

with
U1 = ϖ⊤

k
˜︁Pϖk,

U2 =
k−1∑︂

i=k−h

x⊤
i R1xi+

k−h−1∑︂

i=k−h

x⊤
i R2xi,

U3 = h
0∑︂

i=−h+1

k∑︂

j=k+i

η⊤
j Z1ηj + h̃

−h∑︂

i=−h+1

k∑︂

j=k+i

η⊤
j Z2ηj,

being

ϖk =

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

xk

k−1√︂
i=k−h

xi

k−h−1√︂

i=k−h

xi

⋂︁
⎥⎥⎥⎥⎥⎥⎥⋀︁

, ˜︁P =

⋃︁
⋁︁⋁︁⋁︁⨄︁

0nx
Q T

Q⊤ S E

T⊤ E⊤ D

⋂︁
⎥⎥⎥⋀︁ ,

and ηi = xi − xi−1. Notice that the LKF in (4.11) is positive deĄnite, since P > 0, R1 > 0,

R2 > 0, Z1 > 0, and Z2 > 0. Next, it is intended to derive an upper bound to ∆W (xk) by

employing the following augmented vector

ζk=
[︂
x⊤

k+1 x⊤
k x⊤

k−h x⊤
k−hk

x⊤

k−h
ν⊤

1k
ν⊤

2k
ν⊤

3k
y⊤

k u⊤
k

]︂⊤

(4.12)

where

ν1k
= 1

h+1

k∑︂

i=k−h

xi, ν2k
= 1

hk−h+1

k−h∑︂

i=k−hk

xi, ν3k
= 1

h−hk+1

k−hk∑︂

i=k−h

xi.
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Given that

ϖk =

⋃︁
⋁︁⋁︁⋁︁⨄︁

0

−xk + ν1k

ν2k
+ ν3k

− xk−h − xk−hk

⋂︁
⎥⎥⎥⋀︁ +

⋃︁
⋁︁⋁︁⋁︁⨄︁

xk

hν1k

(hk − h) ν2k
+

(︂
h− hk

)︂
ν3k

⋂︁
⎥⎥⎥⋀︁

= (F2 + Γ(hk)) ζk,

and

ϖk+1 =

⋃︁
⋁︁⋁︁⋁︁⨄︁

xk+1 − xk

−xk−h + ν1k

ν2k
+ ν3k

− xk−hk
− xk−h

⋂︁
⎥⎥⎥⋀︁ +

⋃︁
⋁︁⋁︁⋁︁⨄︁

xk

hν1k

(hk − h) ν2k
+

(︂
h− hk

)︂
ν3k

⋂︁
⎥⎥⎥⋀︁

= (F1 + Γ(hk)) ζk,

where

Γ(hk)=

⋃︁
⋁︁⋁︁⋁︁⨄︁

v2

hv6

(hk − h)v7 + (h− hk)v8

⋂︁
⎥⎥⎥⋀︁ .

Then ∆(V (xk) + U1(ϕk)) can be written as

∆(V (xk) + U1(ϕk)) = ζ⊤
k

[︂
(F1 + Γ(hk))⊤ P (F1 + Γ(hk))

− (F2 + Γ(hk))⊤ P (F2 + Γ(hk))
]︂
ζk.

(4.13)

Moreover, the computation of ∆U2(ϕk) leads to

∆U2(ϕk) = x⊤
k R1xk + x⊤

k−h (R2 −R1)xk−h − x⊤

k−h
R2xk−h

which can be written as

∆U2(ϕk) = ζ⊤
k

˜︁Rζk.

Finally, the computation of ∆U3(ϕk) results in

∆U3(ϕk) = η⊤
k+1

(︂
h2Z1 + h̃

2
Z2

)︂
ηk+1 − h

k∑︂

i=k−h+1

η⊤
i Z1ηi − h̃

k−h∑︂

i=k−h+1

η⊤
i Z2ηi,

(4.14)

that can be rewritten as

∆U3(ϕk)) = η⊤
k+1

(︂
h2Z1 + h̃

2
Z2

)︂
ηk+1 − h

k∑︂

i=k−h+1

η⊤
i Z1ηi

− h̃
k−hk∑︂

i=k−h+1

η⊤
i Z2ηi − h̃

k−h∑︂

i=k−hk+1

η⊤
i Z2ηi.

(4.15)
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Now, based on Lemma 4.1, an upper-bound can be derived to the second term of (4.15)

regarding (4.5), and upper-bounds for the two last terms of (4.15) with (4.6). Thus, we have

− h
k∑︂

i=k−h+1

η⊤
i Z1ηi ≤ −

⋃︁
⨄︁Θ1

Θ2

⋂︁
⋀︁

⊤ ⋃︁
⨄︁Z1 0

0 3
(︂

h+1
h−1

)︂
Z1

⋂︁
⋀︁

⋃︁
⨄︁Θ1

Θ2

⋂︁
⋀︁ ,

− h̃
k−h∑︂

i=k−hk+1

η⊤
i Z2ηi ≤ −h̃

hk − h

⋃︁
⨄︁Θ̄1

Θ̄2

⋂︁
⋀︁

⊤ ⋃︁
⨄︁Z2 0

0 3Z2

⋂︁
⋀︁

⋃︁
⨄︁Θ̄1

Θ̄2

⋂︁
⋀︁ ,

− h̃
k−hk∑︂

i=k−h+1

η⊤
i Z2ηi ≤ −h̃

h− hk

⋃︁
⨄︁ Θ̂1

Θ̂2

⋂︁
⋀︁

⊤ ⋃︁
⨄︁Z2 0

0 3Z2

⋂︁
⋀︁

⋃︁
⨄︁Θ̂1

Θ̂2

⋂︁
⋀︁ ,

with

Θ1 = xk − xk−h,

Θ2 = xk + xk−h − 2

h+ 1

k∑︂

i=k−h

xi,

Θ̄1= = xk−h − xk−hk
,

Θ̄2 = xk−h + xk−hk
− 2

hk − h+ 1

k−h∑︂

i=k−hk

xi,

Θ̂1 = xk−hk
− xk−h,

Θ̂2 = xk−hk
+ xk−h − 2

h− hk + 1

k−hk∑︂

i=k−h

xi.

Then, with the deĄnitions of matrices F1, G1, G2, and G3 in (4.10), the following

upper-bound is derived for ∆U3(ϕk)):

∆U3(ϕk)) ≤ ζ⊤
k

∏︂
⋁︂⨄︂
⋁︂⋃︂
F⊤

1 Π1F1 −G⊤
1

˜︁Z1G1 −
⋃︁
⨄︁G2

G3

⋂︁
⋀︁

⊤ ⋃︁
⨄︁

h̃
hk−h

Z̃2 02nx

02nx

h̃

h−hk
Z̃2

⋂︁
⋀︁

⋃︁
⨄︁G2

G3

⋂︁
⋀︁

∫︂
⋁︂⋀︂
⋁︂⋂︂
ζk. (4.16)

Re-injecting the expressions of ∆V (xk), ∆U1(ϕk), ∆U2(ϕk), and the upper bound of

∆U3(ϕk), into the expression of W (ϕk), it leads to

∆W (ϕk) ≤ ζ⊤
k

[︂
(F1 + Γ(hk))⊤ P (F1 + Γ(hk))

− (F2 + Γ(hk))⊤ P (F2 + Γ(hk)) + ˜︁R + F⊤
1 Π1F1

]︂
ζk

+ ζ⊤
k

⋃︁
⋁︁⨄︁−G⊤

1
˜︁Z1G1 −

⋃︁
⨄︁G2

G3

⋂︁
⋀︁

⊤ ⋃︁
⨄︁

h̃
hk−h

Z̃2 02nx

02nx

h̃

h−hk
Z̃2

⋂︁
⋀︁

⋃︁
⨄︁G2

G3

⋂︁
⋀︁

⋂︁
⎥⋀︁ ζk.

(4.17)

Hence, it follows from Lemma 4.2, with ϑ = (hk−h)

h̃
, that

∆W (ϕk) ≤ ζ⊤
k Ξ(hk)ζk (4.18)
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where

Ξ(hk) = F⊤
1 (P + Π1)F1 + He

{︂
Γ⊤(hk)PF1

}︂
− F⊤

2 PF2 − He
{︂
Γ⊤(hk)PF2

}︂

+ ˜︁R −G⊤
1

˜︁Z1G1 − He¶Y1G2 + Y2G3♢ + ϑY1
˜︁Z−1

2 Y ⊤
1 + (1 − ϑ)Y2

˜︁Z−1
2 Y ⊤

2 .
(4.19)

Consider

˜︁B(αk)=

⋃︁
⋁︁⋁︁⋁︁⨄︁

−Inx
A(αk) 0nx×nx

Ad(αk) 0nx×4nx
0nx×ny

B(αk)

0ny×nx
C(αk) 0ny×nx

0ny×nx
0ny×4nx

−Iny
0ny×nu

0nu×nx
0nu×nx

0nu×nx
0nu×nx

0nu×4nx
X(αk)−1L(αk) −Inu

⋂︁
⎥⎥⎥⋀︁ (4.20)

such that ˜︁B(αk)ζk = 0. Considering

˜︁U(αk) =

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

M1(αk) B(αk)M2(αk) B(αk)X(αk)

M3(αk) B(αk)M4(αk) ϵB(αk)X(αk)

0nx×nx
0nx×ny

0nx×nu

M5(αk) B(αk)M6(αk) ϵB(αk)X(αk)

04nx×nx
04nx×ny

04nx×nu

0ny×nx
ϵH(αk) 0ny×nu

0nu×nx
M7(αk) X(αk)

⋂︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⋀︁

(4.21)

and using Finsler’s lemma arguments (see [148, Lemma 2]), the negative deĄniteness of (4.18)

is ensured if

Ξ(hk) + ˜︁U(αk) ˜︁B(αk) + ˜︁B(αk)⊤ ˜︁U(αk)⊤ < 0. (4.22)

Since the condition (4.22) is affine with respect to hk, it can be satisĄed for all

hk ∈ ¶h, . . . , h♢ if it satisĄed at the vertices of the interval hk ∈ ¶h, . . . , h♢. Therefore, we

have

Ξ(h) + ˜︁U(αk) ˜︁B(αk) + ˜︁B(αk)⊤ ˜︁U(αk)⊤ < 0, (4.23)

Ξ(h) + ˜︁U(αk) ˜︁B(αk) + ˜︁B(αk)⊤ ˜︁U(αk)⊤ < 0, (4.24)

with

Ξ(h) = F⊤
1 (P + Π1)F1 + He

{︂
Γ⊤(hk)PF1

}︂
− F⊤

2 PF2 − He
{︂
Γ⊤(hk)PF2

}︂

+ ˜︁R −G⊤
1

˜︁Z1G1 − He¶Y1G2 + Y2G3♢ + Y2
˜︁Z−1

2 Y ⊤
2 ,

Ξ(h) = F⊤
1 (P + Π1)F1 + He

{︂
Γ⊤(hk)PF1

}︂
− F⊤

2 PF2 − He
{︂
Γ⊤(hk)PF2

}︂

+ ˜︁R −G⊤
1

˜︁Z1G1 − He¶Y1G2 + Y2G3♢ + Y1
˜︁Z−1

2 Y ⊤
1 .

Finally, it follows from Schur Complement in (4.23) and (4.24) that
⋃︁
⨄︁Φαk

(h) Y2

Y ⊤
2 − ˜︁Z2

⋂︁
⋀︁ < 0,

⋃︁
⨄︁Φαk

(h) Y1

Y ⊤
1 − ˜︁Z2

⋂︁
⋀︁ < 0, (4.25)

with Φαk
(h) and Φαk

(h) deĄned in (4.8) and (4.9), respectively. Notice that (4.25) is

exactly (4.7), which is affine and, consequently, convex concerning hk, implying that (4.7) is
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negative deĄnite for all hk ∈ ¶h, . . . , h♢. Therefore, if LMIs (4.7) are feasible, the origin of the

closed-loop system (4.4) is asymptotically stable for any integer delay hk ∈ ¶h, . . . , h♢. This

concludes the proof.

Remark 4.1. Notice that the condition proposed in Lemma 4.3 does not require any structural

constraint in the output matrix C(αk) nor any similarity transformations. Moreover, no iterative

algorithms are necessary for solving the proposed conditions.

Remark 4.2. Theorem 4.3 provides a delay-dependent condition to ensure the asymptotic

stability of the origin of the closed-loop system (4.4) by employing the Wirtinger-based integral

inequality and the Moon’s inequality lemma. As pointed out by [147], the Moon’s inequality

inequality given in Lemma 4.2 allows deriving delay-dependent conditions which are related to

the time-varying delay and usually lead to less conservative results.

The following theorem characterizes the regions R0 and R, guaranteeing that the

trajectories of the closed-loop system, emanating from R0 converge to the origin without

leaving R.

Theorem 4.1. Consider the closed-loop system (4.4). Assume that conditions in (4.7) are

satisĄed and (4.11) is a Lyapunov-Krasovskii functional that certiĄes the asymptotic stability

of the origin of the closed-loop system (4.4). Let the sets1

R0 ≜ ¶ϕk ∈ Cnx : ∥ϕk∥ ≤ γ1, ∥∆ϕk∥ ≤ γ2♢ (4.26)

and

R ≜ ¶xk ∈ R
nx : V (xk) ≤ 1♢ , (4.27)

where γ1 and γ2 are scalars satisfying

κ1γ
2
1 + κ2γ

2
2 = 1

with
κ1 =

(︂
1 + h2 + h̃

2
)︂

(λmax(P)) + hλmax(R1) + h̃λmax(R2),

κ2 =
1

2

[︂
h2(1 + h) (λmax(Z1)) +h̃

2
(1 + h+ h) (λmax(Z2))

]︂
.

(4.28)

Then, for every initial condition, ϕk ∈ R0, the state trajectory xk, for all k > 0,

converges asymptotically to the origin and remains conĄned in the region R.

1 For any φ ∈ Cnx , ∥φk∥ = max
k∈¶−h,...,0♢ ∥φk∥2 and ∥∆φk∥ = max

k∈¶−h,...,0♢ ∥∆φk∥2, being ∆φk =

φk+1 − φk.
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Proof. Consider that (4.11) is a Lyapunov-Krasovskii functional for the closed-loop system (4.4).

At k = 0, one has

W (ϕ0) ≤ (1 + h2 + h̃
2
) (λmax(P)) ∥ϕ0∥2

2 + hλmax(R1)∥ϕ0∥2
2+h̃λmax(R2)∥ϕ0∥2

2

+ 0.5h2(1 + h) (λmax(Z1)) ∥∆ϕ0∥2
2 + 0.5h̃

2
(1 + h+ h) (λmax(Z2)) ∥∆ϕ0∥2

2

≤ κ1∥ϕ0∥2
2 + κ2∥∆ϕ0∥2

2

(4.29)

with κ1 and κ2 deĄned as in (4.28). Therefore, one has

W (ϕ0) ≤ κ1γ
2
1 + κ2γ

2
2 . (4.30)

From Lemma 4.3, one has that W (ϕk+1) < W (ϕk) and, consequently,

W (ϕk) < W (ϕ0) ≤ κ1γ
2
1 + κ2γ

2
2 .

Given that W (ϕk) = V (xk) + U(ϕk) and κ1γ
2
1 + κ2γ

2
2 = 1, then

V (xk) ≤ W (ϕk) < W (ϕ0) ≤ 1.

Therefore,

V (xk) ≤ 1.

Thus, for every initial condition ϕk ∈ R0, k ∈ ¶−h, . . . , 0♢, the trajectories converge

to the origin without leaving the region R.

4.4 Enlargement of the admissible initial condition set

Although the result in Theorem 4.1 ensures the local asymptotic stability of the origin

of the closed-loop system (4.4), it is of interest to obtain an enlarged set of admissible initial

conditions. Similar to [149], the following optimization problem is considered to enlarge the

regions R0 and R:

min ϱ

s.t. :

∏︂
⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⨄︂
⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋁︂⋃︂

LMIs in (4.7)
⋃︁
⋁︁⨄︁
P ⋆

bj 1

⋂︁
⎥⋀︁ ≥ 0, j ∈ N≤ne

P ≤ diag(J1, J2, J3)

J1 ≤ p1Inx
, J2 ≤ p2Inx

, J3 ≤ p3Inx

R1 ≤ r1Inx
, R2 ≤ r2Inx

Z1 ≤ β1Inx
, Z2 ≤ β2Inx

(4.31)

where J1, J2, J3 ∈ S
nx
+ , p1, p2, p3, r1, r2, β1, β2 ∈ R≥0, and

ϱ = p1 + h2p2 + h̃
2
p3 + hr1 + h̃r2 + 0.5(h2)(1 + h)β1 + 0.5(h̃

2
)(1 + h+ h)β2. (4.32)
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If the optimization problem is feasible, κ1 and κ2 are determined by

κ1 = λmax(J1) + h2λmax(J2) + h̃
2
λmax(J3)+hλmax(R1)+h̃λmax(R2)

κ2 =
1

2
h2(1 + h) (λmax(Z1)) +

1

2
h̃

2
(1 + h+ h) (λmax(Z2)) .

(4.33)

The second constraint of the optimization problem ensures that R ⊂ D, with D given as

in (3.2) (see Chapter 3 for details). In addition, the admissible bounds of R0, γ1 and γ2, are

determined by κ1γ
2
1 + κ2γ

2
2 = 1. In particular, if γ1 = γ2 = γ, then γ = 1/

√
κ1 + κ2. Finally,

as the LMIs in (4.7) are in inĄnite-dimensional form, the relaxation considered in Appendix A is

employed to obtain a Ąnite set of solvable LMIs. Thus, (4.31) turns into a convex optimization

problem. The optimization problem is solved in Matlab using the parser Yalmip and the solver

MOSEK.

4.5 Numerical Examples

Two examples are presented in this section to illustrate the effectiveness of the proposed

local delay-dependent conditions for SOF control design of nonlinear systems represented by

quasi-LPV models.

Example 4.1. Consider the following nonlinear system with time-varying delay:

x1,k+1 = − 0.1x1,k + 0.5x2,k + 0.1x1,k−hk
+0.1x2

1,kuk

x2,k+1 =x1,k + 0.5x3
1,k + x2,k + 0.1x2

1,kx2,k−hk
+ uk

y1,k =x1,k,

(4.34)

where D = ¶x ∈ R
2 : ♣x1♣ ≤ 1, ♣x2♣ ≤ 1.5♢. Applying the sector nonlinearity approach [144,

Chapter 2] with ρ(xk) = x2
1 ∈ [0, 1], the quasi-LPV or TS fuzzy model with 2 vertices is

obtained with the matrices:

A1 =

⋃︁
⨄︁−0.1 0.5

1 1

⋂︁
⋀︁ , A2 =

⋃︁
⨄︁−0.1 0.5

1.5 1

⋂︁
⋀︁ , Ad,1 =

⋃︁
⨄︁0.1 0

0 0

⋂︁
⋀︁ ,

Ad,2 =

⋃︁
⨄︁0.1 0

0 0.1

⋂︁
⋀︁ , B1 =

⋃︁
⨄︁0

1

⋂︁
⋀︁ , B2 =

⋃︁
⨄︁0.1

1

⋂︁
⋀︁ , C1 = C2 =

[︂
1 0

]︂
.

(4.35)

The time-varying parameters or membership functions can be calculated as

α1,k = 1 − x2
1,k, and α2,k = 1 − α1,k.

The aim here is to design the SOF controller (4.3) obtaining an enlarged set of admissible initial

conditions such that the origin of the closed-loop system (4.34) with (4.3) is asymptotically

stable. The Ąrst experiment is to evaluate the influence of the maximum delay bound h over

the estimated set of admissible initial conditions, which is related to the minimization of ϱ.

The values of ϱ obtained by solving the optimization problem (4.31) for different values of h,
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Table 4.1 Ű Minimum ϱ for different values of h with h = 1 and ϵ = 0.1 such that the
optimization problem (4.31) is feasible.

h 2 3 4 5 6 7
ϱ 1.572 1.667 1.791 1.956 2.208 2.681

with h = 1 and ϵ = 0.1, are presented in Table 4.1. The maximum delay for feasibility is h = 7.

As the value of ϱ increases as h increases, the size of R0 is reduced for larger delays h.

For h = 1, h = 3, and ϵ = 0.1, the SOF control gains obtained with the optimization

problem (4.31) are

L1= − 0.3680, L2 = −0.6523, X1 = 0.2582, X2 = 0.2764.

From (4.33), κ1 = 1.5667 and κ2 = 0.1007 are obtained, and for γ1 = γ2 = γ, one obtains

γ = 0.7744. The set of admissible initial conditions for the closed-loop system (4.34) is shown

in Figure 4.1 with several closed-loop trajectories initiating inside of R0.

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4.1 Ű Set of admissible initial conditions R0 ⊂ R ⊂ D for h = 1 and h = 3
with convergent trajectories (in blue) initiating at the border of R0 and
divergent trajectories (in green) leaving the set D with initial conditions
denoted by Ş×Ť.

Notice that all these trajectories converge to the origin without leaving the region

R ⊂ D. Also, some divergent closed-loop trajectories initiating outside the region R, but

inside of the modeling region D, are also provided to illustrate the importance of performing a

local analysis as proposed here. All simulations were performed considering the time-varying

delay hk = round (2 + sin (0.5kπ)) and the following initial condition ϕ0 = x0,

ϕ−3 =

⋃︁
⨄︁0.2702

0.4207

⋂︁
⋀︁ , ϕ−2 =

⋃︁
⨄︁−0.2081

0.4546

⋂︁
⋀︁ , ϕ−1 =

⋃︁
⨄︁−0.4950

0.0706

⋂︁
⋀︁ . (4.36)

For further illustrations, consider the initial condition x0 = [0.7743 0.0130]⊤ ∈ R0, ϕ0

as in (4.36), and time-varying delay hk = round (2 + sin (0.5kπ)). The (convergent) state
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trajectory of the closed-loop system, the control input signal, the output trajectory, and the

time-varying delay evolution are depicted in Figure 4.2. It illustrates the effectiveness of the

proposed local SOF control design condition.

(a) (b)

(c) (d)

Figure 4.2 Ű (a) State trajectories for the closed-loop system with initial condition x0 =
[0.7743 0.0130]⊤, x1,k (straight magenta line), x2,k (blue dashed line); (b)
trajectory of the control input uk; (c) trajectory of the output yk; (d)
temporal evolution of the time-varying delay Ű Example 4.1.

Example 4.2. Consider the electronic circuit system depicted in Figure 4.3 which can be

described for the following dynamical equations [150]:

x1,k+1 = xk+1 − Ts

R1C1

x1,k−τk
+

Ts

10R2C1

x1,kx2,k − Ts

R3C1

uk

x2,k+1 = x2,k − Ts

R5C2

x2,k +
Ts

10R4C2

x1,k−τk

x3,k+1 = x3,k − Ts

R7C3

x1,k − Ts

R6C3

x3,k +
Ts

10R8C3

x2
2,k

yk = x2,k,

(4.37)
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where xj, j ∈ N≤3, are the voltages on the capacitors with D =

¶x ∈ R
2 : ♣x1♣ ≤ 0.8, ♣x2♣ ≤ 0.7, ♣x3♣ ≤ 1.5♢, u is the voltage source, and Ts is the

sampling period. The parameters are R1 = 30Ω, R2 = 66.667Ω, R3 = 100Ω, R4 = 5Ω,

R5 = 1000Ω, R6 = 1100Ω, R7 = R8 = 100Ω, C1 = C2 = C3 = 10mF.

−

+

R5

R4

C2

+ −

x2

×

−

1

10

τ

×

−

1

10

−

+

R2

R1
τ

C1

+ −

x1

R3

−

+ u

−

+

R6

R7

C3

+ −

x3

R8
×

−

1

10

Figure 4.3 Ű Diagram of the electronic circuit system - Example 4.2.

DeĄning ρ(xk) = x2,k ∈ [−0.7, 0.7] as the scheduling parameter, the system (4.37) can

be rewritten as in (4.1) with

A(αk) =

⋃︁
⋁︁⋁︁⋁︁⨄︁

1 + Ts

10R2C1

ρ(xk) 0 0

0 1 − Ts

R5C2

0
−Ts

R7C3

Ts

10R8C3

ρ(xk) 1 − Ts

R6C3

⋂︁
⎥⎥⎥⋀︁ , B =

⋃︁
⋁︁⋁︁⋁︁⨄︁

−Ts

R3C1

0

0

⋂︁
⎥⎥⎥⋀︁ ,

Ad =

⋃︁
⋁︁⋁︁⋁︁⨄︁

−Ts

R1C1

0 0
Ts

10R4C2

0 0

0 0 0

⋂︁
⎥⎥⎥⋀︁ , C =

[︂
0 1 0

]︂
.

Considering Ts = 0.1 and applying the sector nonlinearity approach [144, Chapter 2],

the quasi-LPV model with 2 vertices is obtained with the matrices:

A1 =

⋃︁
⋁︁⋁︁⋁︁⨄︁

0.9895 0 0

0 0.99 0

−0.1 −0.07 0.9909

⋂︁
⎥⎥⎥⋀︁ , A2 =

⋃︁
⋁︁⋁︁⋁︁⨄︁

1.0105 0 0

0 0.99 0

−0.1 0.07 0.9909

⋂︁
⎥⎥⎥⋀︁ ,

Ad =

⋃︁
⋁︁⋁︁⋁︁⨄︁

−0.3333 0 0

0.2 0 0

0 0 0

⋂︁
⎥⎥⎥⋀︁ , B =

⋃︁
⋁︁⋁︁⋁︁⨄︁

−0.1

0

0

⋂︁
⎥⎥⎥⋀︁ .

The corresponding time-varying parameters are given by

α1,k =
0.7 − x2,k

1.4
, α2,k = 1 − α1,k.
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In this example, the goal is to Ąnd a gain-scheduled SOF controller obtaining an enlarged

set of admissible initial conditions such that the origin of the closed-loop system (4.37) is

asymptotically stable. Considering h = 1 and h = 2, Figure 3.3 depicts the objective function

ϱ concerning the scalar parameter ϵ obtained solving the optimization (4.31). Recall that for

larger values of ϱ, the set of admissible initial conditions estimation R0 tends to reduce. As

can be noticed in Figure 4.4, the results are enhanced with the scalar parameter search. In this

case, the minimum ϱ = 4.0291 is reached with ϵ = 0.9.

0 2 4 6 8 10

4

4.1

4.2

4.3

4.4

4.5

4.6

Figure 4.4 Ű The objective function ϱ obtained by solving the optimization problem (4.31)
for different values of the scalar parameter ϵ with h = 1 and h = 2 -
Example 4.2.

Therefore, for h = 1 and h = 2, and ϵ = 0.9, the SOF control gains obtained with the

optimization problem (4.31) are

X1 = 0.0816, X2 = 0.0926, L1 = 0.0727, L2 = 0.0838.

From (4.33), κ1 = 3.2286 and κ2 = 0.8003 are obtained, and for γ1 = γ2 = ρ, one

obtains ρ = 0.4982. The set of admissible initial conditions for the closed-loop system (4.37)

is shown in Figure 4.5 with several closed-loop trajectories initiating inside of R0.

Notice that all these trajectories converge to the origin without leaving the region

R ⊂ D. In this example, all simulations were performed considering the time-varying delay

hk = round (1.5 + 0.5 cos (0.02kπ)) and the following initial condition ϕ0 = x0,

ϕ−2 =

⋃︁
⋁︁⋁︁⋁︁⨄︁

0.2702

0.1683

0.2161

⋂︁
⎥⎥⎥⋀︁ , ϕ−1 =

⋃︁
⋁︁⋁︁⋁︁⨄︁

−0.2081

0.1819

−0.1665

⋂︁
⎥⎥⎥⋀︁ . (4.38)

4.6 Final remarks

This chapter has addressed the synthesis of SOF controllers for discrete-time nonlinear

systems with time-varying delays represented by quasi-LPV models and Takagi-Sugeno fuzzy
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(c)

Figure 4.5 Ű Set of admissible initial conditions R0 ⊂ R ⊂ D for h = 1 and h = 2 with
convergent trajectories initiating at R0 - Example 4.2.

models. The proposed delay-dependent condition has been developed based on an augmented

Lyapunov-Krasovskii functional together with the Wirtinger-based summation inequality and

the Moon’s inequality and formulated as parameter-dependent linear matrix inequalities. The

main novelty of the proposed approach is the local asymptotic stability analysis performed to

guarantee the correct operation of the closed-loop system since it is ensured that its trajectories

remain inside of the guaranteed region of attraction estimation obtained inside of the validity

region of the LPV system. In addition, another feature of the proposed approach is the

possibility of considering a time-varying output matrix, namely it is not necessary to impose

any structure on the system matrices or resort to iterative procedures. Finally, two numerical

examples have been provided to illustrate the effectiveness of the proposed methods.
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5 ADDITIONAL RESEARCH SUBJECTS DEVELOPED ALONG THE PH.D.

Additional works have been developed during the Ph.D. period, and the main ideas

related to these works are shortly presented in this chapter. These works are presented apart in

this chapter for the sake of brevity and cohesion.

5.1 Choosing different kinds of Lyapunov functional

Oftentimes, the choice of the Lyapunov function is a key point in the stabilization and

stability analysis of LPV systems. In this sense, in the works initially developed in the Ph.D.,

the idea was to search for Lyapunov function candidates that would lead to less conservative

results in the stability analysis and control design of LPV systems. In the sequel, the main

ideas of these works are presented.

5.1.1 Lyapunov functions with nonmonotonic terms

Novel conditions for stability analysis, static output-feedback control, and state-feedback

control have been presented employing Lyapunov functions with nonmonotonic terms. The

proposed methodology is based on the combination of quadratic ŞLyapunov-likeŤ terms such

that individually each one is not necessarily monotonically decreasing along the state trajectories.

Besides that, unlike existing conditions for stability and control design of discrete-time LPV

with polytopic time-varying parameters, the proposed approach makes use of the dynamics

of the system to construct the Lyapunov function. The Lyapunov function candidate with

nonmonotonic terms is described in the following lemma.

Lemma 5.1. If there exist continuous functions Vi : Rnx ↦→ R, i ∈ N≤Z , such that

Z∑︂

i=1

iVi(0) = 0, (5.1)

Z∑︂

i=j

Vi(xk) > 0, ∀x ̸= 0, j ∈ N≤Z (5.2)

Z∑︂

i=1

(︃
Vi(xk+i) − Vi(xk)

)︃
< 0 (5.3)

hold along trajectories of the LPV system (2.4) with uk ≡ 0, then, its origin is asymptotically

stable and

W (xk) =
Z∑︂

j=1

Z∑︂

i=j

Vi(xk+j−1) (5.4)

is a Lyapunov function.
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The function W (x(k)) fulĄlling the previous Lemma is a Lyapunov function [1], since

W (x(0)) = 0, W (xk) > 0, ∀x ̸= 0, and the variation of (5.4) is monotonically decreasing, i.e.,

∆W ≜ W (xk+1) −W (xk) < 0, ∀x ̸= 0.

However, it can be noticed from (5.3) that the individual variations Vi(xk+i) − Vi(xk),

i ∈ N≤Z , are not necessarily monotonically decreasing, that is, they can be increasing or

decreasing on different intervals of their domain. For this reason, they are referred to as

non-monotonic terms.

We have considered Vi(xk) = x⊤
k Pi(αk)xk, being P (αk) ∈ S

nx
+ a parameter-dependent

matrix. Therefore, with Z = 1, the parameter-dependent Lyapunov function with nonmonotonic

terms (5.4) returns to the standard parameter-dependent Lyapunov function described as

in (3.5). The results obtained using this approach were less conservative when compared with

other approaches in the literature for stability analysis [151, 152, 153], state-feedback control

design [154, 155, 156, 151], and output-feedback control problem [51, 87] of discrete-time

LPV systems. These results are published in:

[16] PEIXOTO, M. L. C.; PESSIM, P. S. P.; LACERDA, M. J.; PALHARES, R.

M. Stability and stabilization for LPV systems based on Lyapunov functions with

non-monotonic terms. Journal of the Franklin Institute, v. 357, n. 11, p.

6595Ű6614, 2020.

A similar discussion to TS fuzzy models has been published in [5].

5.1.2 Delayed Lyapunov functions

New state-feedback design conditions for discrete-time LPV systems using Lyapunov

functions with dependence on delayed scheduling parameters have been introduced. This class

of Lyapunov functions candidate can be described as follows:

V (xk) = x⊤
k P0xk, (5.5)

with

P0 =
N∑︂

i1=1

αi1, k+d1

N∑︂

i2=1

αi2, k+d2
· · ·

N∑︂

inP
=1

αinP
, k+dnP

Pi1i2...inP
,

being ¶d1, d2, . . . , dnP
♢ delays related to the time-varying parameter. To illustrate this case,

consider that the time-varying parameter of the Lyapunov function has the following delays

d1 = −2, d2 = −1 e d3 = 0. Therefore, the Lyapunov matrix can be rewritten as

P0 =
N∑︂

i1=1

N∑︂

i2=1

N∑︂

i3=1

αi1, k−2αi2, k−1αi3, kPi1i2i3
.

In addition, a lifted condition has been presented based on a Lyapunov function with

dependence on delayed scheduling parameters, constructed in terms of an augmented state
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vector that takes into account a generic number of higher-order shifted states in the following

form

V(˜︁x) = ˜︁x⊤

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

P1
0 0nx

· · · 0nx

0nx
P2

1
. . .

...
...

. . . . . . 0nx

0nx
· · · 0nx

PZ
Z−1

⋂︁
⎥⎥⎥⎥⎥⎥⋀︁

⏞ ⏟⏟ ⏞
P

˜︁x, (5.6)

with

˜︁x =
[︂
xk xk+1 . . . xk+Z−1

]︂
,

equivalently

V(x̃) = x⊤
k P1

0xk⏞ ⏟⏟ ⏞
V1

+ x⊤
k+1P2

1xk+1⏞ ⏟⏟ ⏞
V2

+ x⊤
k+2P3

2xk+2⏞ ⏟⏟ ⏞
V3

+ . . .+ x⊤
k+Z−1PZ

Z−1xk+Z−1⏞ ⏟⏟ ⏞
VZ

, (5.7)

where Z depends on the size of the augmented state vector. In addition, P i
j ∈ S

nx
+ , for all

i ∈ N≤Z and i ∈ N≤Z−1 with

P1
0 =

N∑︂

i1=1

αi1, k+d1

N∑︂

i2=1

αi2, k+d2
· · ·

N∑︂

inP
=1

αinP
, k+dnP

P 1
i1i2...inP

,

P2
1 =

N∑︂

i1=1

αi1, k+d1+1

N∑︂

i2=1

αi2, k+d2+1 · · ·
N∑︂

inP
=1

αinP
, k+dnP

+1P
2
i1i2...inP

,

...

PZ
Z−1 =

N∑︂

i1=1

αi1, k+d1+Z−1

N∑︂

i2=1

αi2, k+d2+Z−1 · · ·
N∑︂

inP
=1

αinP
, k+dnP

+Z−1P
Z
i1i2...inP

.

Notice that the Lyapunov function candidate (5.6) with Z = 1 recovers the Lyapunov

function candidate described in (5.5). The proposed condition for the state-feedback design of

LPV systems has presented less conservative results when compared with the works presented

by [155, 156, 87, 151, 154]. These results are published in:

[17] PEIXOTO, M. L. C.; LACERDA, M. J.; PALHARES, R. M. On discrete-time

LPV control using delayed Lyapunov functions. Asian Journal of Control, v. 23,

n. 5, p. 2359Ű2369, 2021.

5.1.3 Exploring alternative Lyapunov-Krasovskii functional

In the context of time-delayed systems, a parameter-dependent Lyapunov-Krasovskii

functional with augmented vector and triple summation terms has been constructed to reduce

the conservativeness in stabilization problems of LPV systems. To obtain the stabilization

conditions, the following LyapunovŰKrasovskii functional candidate has been proposed:
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V (xk) = V1(xk) + V2(xk) + V3(xk) + V4(xk) + V5(xk) (5.8)

where

V1 (xk) =

⋃︁
⋁︁⋁︁⋁︁⨄︁

xk
√︂k−1

i=k−h xi
√︂k−h−1

i=k−h
xi

⋂︁
⎥⎥⎥⋀︁

⊤

P (αk)

⋃︁
⋁︁⋁︁⋁︁⨄︁

xk
√︂k−1

i=k−h xi
√︂k−h−1

i=k−h
xi

⋂︁
⎥⎥⎥⋀︁ ,

V2 (xk) =
k−1∑︂

i=k−h

x⊤
i Q1xi +

k−h−1∑︂

i=k−h

x⊤
i Q2xi,

V3 (xk) = h
0∑︂

i=−h+1

k∑︂

j=k+i

η⊤
j Z1ηj + (h− h)

−h∑︂

i=−h+1

k∑︂

j=k+i

η⊤
j Z2ηj,

V4(xk) =
−h∑︂

i=−h+1

i∑︂

l=−h+1

k∑︂

j=k+l

η⊤
j S1ηj +

−h∑︂

i=−h+1

−h∑︂

l=i

k∑︂

j=k+l

η⊤
j S2ηj,

V5(xk) =
0∑︂

i=−h+1

0∑︂

l=i

k∑︂

j=k+l

η⊤
j R1ηj +

0∑︂

i=−h+1

i∑︂

l=−h+1

k∑︂

j=k+l

η⊤
j R2ηj,

where ηi = xi − xi−1 and P (αk) ∈ S
nx
+ is a parameter-dependent matrix.

It should be pointed out that the part of Lyapunov-Krasovskii functional (5.8) is adapted

from [99] for the parameter-dependent case, and the terms V4 and V5 are added to obtain less

conservative results. The main contributions related to this part of the work are summarized

as follows:

• a parameter-dependent Lyapunov-Krasovskii functional with augmented vector and

triple summation terms has been constructed to reduce the conservativeness in

stabilization problems;

• the appropriate choice of an LKF, multiple auxiliary functions, delay-dependent

reciprocally convex inequality, and selection of a suitable augmented vector allow

obtaining new stabilization conditions that depend on the minimum and maximum

values of the time-varying delay. Additionally, Finsler’s Lemma is employed to derive

the stabilization conditions, which helps to obtain the controller gains;

• new delay-dependent LMI conditions for the state-feedback and SOF control design

for time-delayed LPV systems and nonlinear parameter-varying systems where the

nonlinearity is subject to cone-bounded sector constraints have been presented.

These results are published in:

[23] PEIXOTO, M. L. C.; BRAGA, M. F.; PALHARES, R. M. Gain-scheduled control

for discrete-time non-linear parameter-varying systems with time-varying delays.

IET Control Theory & Applications, v. 14, n. 19, p. 3217Ű3229, 2020.
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5.2 SOF stabilization of discrete-time LPV systems under actuator saturation

The control of systems subject to actuator saturation is also a relevant topic since

saturation occurs in several applications due to physical and technical constraints of the

actuators or even for safety reasons. If it is neglected during the control design, the closed-loop

performance may be degraded or it may even lead to instability [157]. Consequently, the

local stability analysis must be considered to estimate the domain of attraction (DoA) of

the closed-loop equilibrium. Despite its theoretical and practical signiĄcance, scant attention

has been paid to the static output-feedback control design of LPV systems under actuator

saturation. Therefore, the results proposed in Chapter 3 have been extended to deal with local

stabilization of discrete-time LPV systems under actuator saturation and state constraint.

Consider the following discrete-time LPV system under actuator saturation

xk+1 = A(αk)xk +B(αk)sat(uk)

yk = C(αk)xk,
(5.9)

where xk ∈ R
nx is the state, uk ∈ R

nu is the input, yk ∈ R
ny is the output. The parameter-

dependent matrices A(αk), B(αk), and C(αk) belong to a polytopic domain parameterized by

the time-varying parameters α ∈ Λ, deĄned as in (2.5). Moreover, the control input is subject

to the component-wise saturation map sat(·) : Rnu → R
nu deĄned as

sat (ul,k) = sign (ul,k) min (♣ul,k♣ , ūl) , ∀l ∈ N≤nu
,

where ūl ∈ R, with ūl > 0, is the maximum allowed bound of the l-th control input component

due to the actuator saturation. Consider the following gain-scheduled SOF controller

uk = X(αk)−1L(αk)yk, (5.10)

being L(αk) ∈ R
nu×ny and X(αk) ∈ R

nu×nu the control gains to be designed. The resulting

closed-loop system is

xk+1 =
(︂
A(αk) +B(αk)X(αk)−1L(αk)C(αk)

)︂
xk −B(αk)ψ(uk),

where ψ(uk) = uk − sat(uk) is the dead-zone nonlinearity, which can be handled by using the

following lemma.

Lemma 5.2 (Adapted from [91]). Consider the parameter-dependent diagonal matrix S(αk) ∈
S

nu
+ and the parameter-dependent matrix U(αk) ∈ R

nu×nx , ∀αk ∈ ΛN . Let the set

Du =
{︂
xk ∈ R

nx :
\︄\︄\︄
(︂
S(αk)−1U(αk)

)︂

l
xk

\︄\︄\︄ ≤ ūl

}︂
.

If xk ∈ Du, then

ψ(uk)⊤S(αk)
[︂
uk−ψ(uk)−S(αk)−1U(αk)xk

]︂
≥ 0, (5.11)

for any uk ∈ R
nu .
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To demonstrate the effectiveness of the results obtained, consider the following nonlinear

system
x1,k+1 = x2,k

x2,k+1 = x1,k +
1

3
x3

1,k + x2,k + sat(uk)

y1,k = x1,k,

y2,k) = x3
1,k + 3x1,k

(5.12)

with D = ¶x ∈ R
2 : ♣x1♣ ≤ 1, ♣x2♣ ≤ 1.5♢, and ū = 1. Considering ρ(xk) = x2

1,k, such that

ρ(xk) ∈ [0, 1], as scheduling parameter, the nonlinear system given by (5.12) can be represented

by means of a quasi-LPV system as in (5.9) with the following two vertices

A1 =

⋃︁
⨄︁0 1

1 1

⋂︁
⋀︁ , A2 =

⋃︁
⨄︁0 1

4
3

1

⋂︁
⋀︁ , C1 =

⋃︁
⨄︁1 0

3 0

⋂︁
⋀︁ , C2 =

⋃︁
⨄︁1 0

4 0

⋂︁
⋀︁ , B =

⋃︁
⨄︁0

1

⋂︁
⋀︁ . (5.13)

The proposed approach has been used to design the gain-scheduled SOF controller (5.10)

which stabilizes (5.12) and maximizes the DoA estimate. Figure 5.1 depicts the estimated DoA

for the origin of the closed-loop system (5.12) with (5.10) obtained by the proposed condition.

Several closed-loop trajectories starting within the region R0 are depicted in Figure 5.1. It can

be noticed that all trajectories converge to the origin without leaving the region R0 ⊂ (D ∩Du).

Some divergent closed-loop trajectories initiating outside the region R0 are also provided

to illustrate the effectiveness of the proposed local SOF control synthesis condition and the

relevance of the estimation of R0. Figure 5.1 also depicts the estimated region R0 obtained

from [91]. As one can see, the proposed approach has provided a larger estimate of the DoA

for the origin of the closed-loop system (5.12) than the method proposed in [91].

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5.1 Ű Estimate of DoA R0 (magenta) obtained from the proposed optimization
problem, Estimate of DoA R0 (red line) obtained from [91], convergent
trajectories (blue line) with initial conditions at the border of R0, and
trajectories (dotted green line) leaving the set D.

The results related to this part are published in:
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[158] PEIXOTO, M. L. C.; COUTINHO, P. H. S.; BESSA, I.; PALHARES, R. M. Static

output-feedback stabilization of discrete-time linear parameter-varying systems under

actuator saturation. International Journal of Robust and Nonlinear Control,

p. 5799Ű5809, 2022.

5.3 ETC of systems subject to cyber-attacks and network-induced time-delays

Networked control systems (NCS) are systems where a communication network is used

in the data exchange between their elements, namely the actuators, sensors, and controllers.

While the NCS are becoming popular due to the advances in internet resources and the

convenience of the operation and maintenance, it raises new challenges and threats which

are inherent to those systems, such as network-induced delays, data packet dropouts, limited

bandwidth of communication networks, disorder, and the vulnerability to cyber-attacks. All

those issues are discussed in [159] and references therein.

The event-triggered control (ETC) arises as a solution for reducing network communi-

cation burden while ensuring the desired performance of NCS in opposition to the traditional

time-triggering mechanisms [160]. The ETC design strategies are classiĄed into emulation [161]

or co-design [162, 163] approaches. The emulation approaches consider a previously designed

controller, and it only designs the event-triggering mechanism (ETM) which provides the

desired guarantees (e.g., stability and performance). Meanwhile, in the co-design strategy, the

controller is designed along with the ETM, which usually ensures better performance in terms

of network resources saving. However, in the context of nonlinear systems, the ETC co-design

is more challenging [20].

Some ETC strategies presented in the literature can deal with the possibility of cyber-

attacks. The cyber-attacks can be classiĄed into two main classes: deception attacks and

denial-of-service. Denial-of-service attacks affect the transmission channels blocking the

communication between the controller, sensors, and actuators [164, 165, 166]. Otherwise, the

deception attacks affect the data integrity by injecting false data into some components, such

as the actuators or controllers [167]. In particular, control strategies concerning deception

attacks are still incipient due to the difficulties in accurately modeling those attacks, which

may effectively be any type of signal injection. However, a common approach is to adopt a

stochastic model for the attack success and assume some norm-bounded signal injection [168].

Along the Ph.D. term, the problem of periodic event-triggered control co-design for the

stabilization of LPV systems and Takagi-Sugeno fuzzy models subject to stochastic deception

attacks whose occurrence follows a given Bernoulli distribution has been addressed. A novel

delay-dependent condition is presented to simultaneously design the event-triggering mechanism

and the state-feedback controller to ensure the local mean-square asymptotic stability of the

closed-loop system. The co-design condition is derived as linear matrix inequalities by considering

Lyapunov-Krasovskii stability arguments. In the case of nonlinear systems, an optimization
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x̂(t)
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Attacks E

Network

Figure 5.2 Ű A periodic ETC system under deception attacks.

procedure has been provided to estimate an enlarged set of admissible initial conditions and

the corresponding ultimate bound within the validity of the domain of the fuzzy model.

Figure 5.2 presents the networked control conĄguration that has been used in this

work. In this scenario, the communication through the network is packet-based. The plant

information is periodically available with a sampling period h for the ETM that compares the

signal from x(jh), j ∈ N0, with the last signal sent over the communication network, x(tkh).

In this way, the ETM determines the next transmission instant from an appropriate triggering

function. In this context, the sequence of transmissions is given by ¶tkh♢k∈N0
, with tk ∈ N0

satisfying tk < tk+1, ∀k ∈ N0, and t0 ≥ 0. At each transmission instant tkh, k ∈ N, the

signal x(tkh) is sent to the controller node over the communication over the network subject

to a bounded time-varying delay τk ∈ R≥0. Considering the implementation of a zero-order

hold, the signal available to the controller is held constant in the time interval between two

consecutive transmissions. Furthermore, the network is subject to deception attacks, which

are characterized by the injection of false information in order to generate a corrupted state

signal, x̃(tkh), to be made available to the controller in place of the correct state information

x(tkh). A stochastic deception attack is characterized by the injection of false information

by a malicious attacker to corrupt the state measurement to be available to the controller.

When the transmission of x(tkh) is attempted at tkh, the attacker can replace it. In this work,

stochastic deception attacks have been considered as in [169]. Notice that in the case where

the network is not subject to deception attacks, one simply has x̃(tkh) ≡ x(tkh).

Considering the conĄguration presented above, results where the plant is a nonlinear

system represented by Takagi-Sugeno fuzzy models are submitted, and results where the plant

is described for linear parameter-varying systems are published in:

[170] PEIXOTO, M. L. C.; COUTINHO, P. H. S.; PESSIM, P. S. P.; BESSA, I.;

PALHARES, R. M. Controle em rede com acionamento por eventos para sistemas

sujeitos a ataques cibernéticos. In: Anais do XXIV Congresso Brasileiro de

Automática., Fortaleza, CE, Brasil: [s.n.], 2022. p. 1Ű6.
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5.4 Observer design approaches

In collaboration with Prof. Thierry-Marie Guerra and Prof. Anh-Tu Nguyen from the

Université Polytechnique Hauts-de-France and LAMIH-CNRS laboratory, some observer-based

approaches have been developed and these methods are presented shortly in the sequel.

5.4.1 Unknown input observers for time-delayed nonlinear systems

State estimation of nonlinear systems in the presence of unknown inputs has received

increasing research attention. The main reason is that, within different application contexts,

unknown inputs can be seen as unmodeled dynamics, faults in engineering systems, uncertain

disturbances, attack signals in secure communication or cyber-physical systems [171, 172, 173,

174, 175]. Consequently, simultaneous estimation of the state of a dynamical system and its

unknown input has become a key aspect in several practical applications [176, 177, 178].

A great deal of research effort has been devoted to designing observers represented by

TS fuzzy and quasi-LPV models in the presence of unknown inputs [175]. It is noteworthy that

when the premise variables or scheduling functions can be measured, many results existing

for linear observer design can be extended to LPV and TS fuzzy systems [179]. However, the

corresponding results can only be applied to a restrictive class of nonlinear systems. Hence,

observer design with unmeasured scheduling functions or premise variables may be considered,

which leads to a challenging observer design problem due to mismatching nonlinear terms

involved in the estimation error dynamics [176, 180]. To avoid this major drawback, the mean

value theorem has been exploited for TS fuzzy observer design with unmeasured nonlinearities

[180, 173, 181]. Unknown input observers have also been developed for TS fuzzy systems with

unmeasured premise variables [173, 181]. Despite great advances, there is a lack of literature

on unknown input observer design for delayed nonlinear systems with unmeasured nonlinearities.

This work has given a new contribution to the design of unknown input observers for

time-varying delay nonlinear systems with unmeasured nonlinearities. To this end, nonlinear

systems are represented by a polytopic form, where all unmeasured nonlinearities are regrouped

in the nonlinear consequents. By means of the mean value theorem, this enables an effective

way to deal with the major issue related to unmeasured nonlinearities in gain-scheduling observer

design. The effect of time-varying delay on the estimation error dynamics is explicitly taken

into account in the observer design procedure via a parameter-dependent Lyapunov-Krasovskii

functional with a suitable augmented vector to reduce the design conservativeness. The

Wirtinger-based summation inequality has been used jointly with Moon’s inequality as well as

the well-known Finsler’s lemma to derive numerically tractable unknown input observer design

conditions. It is worth mentioning that the result of polytopic unknown input observer design

for time-varying delayed systems with unmeasured nonlinearities has not been observed in any

previous work in the open literature. Therefore, the main contributions related to this subject

can be summarized as follows:
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a) Using LKF stability tools jointly with various relaxation techniques, a new set

of delay-dependent LMI conditions have been derived to design unknown input

observers for time-varying delayed nonlinear systems with unmeasured nonlinearities.

b) The designed observer allows to simultaneously and asymptotically estimate both

the system state and the unknown inputs without requiring any a priori information

on unknown inputs.

This results have been consolidated in the following work currently in revision:

PEIXOTO, M. L. C.; NGUYEN, A.-T.; GUERRA, T-M.; PALHARES, R. M.

Unknown input observers for time-varying delay Takagi-Sugeno fuzzy systems with

unmeasured nonlinear consequents. Submitted.

5.4.2 Fault estimation for nonlinear time-delayed systems

Modern control systems demand more sophisticated design requirements concerning

safety, reliability, and maintainability. Possible occurrences of sensor and actuator faults can lead

to closed-loop performance degradation or even instability [182]. To this end, Fault-tolerant

control (FTC) techniques have been proposed to ensure desirable closed-loop requirements

despite the presence of faults [14]. Generally speaking, FTC techniques are classiĄed into

passive schemes [183] and active schemes [182]. Passive FTC deals with the fault effects

as system disturbances or uncertainties. In this case, speciĄc information on the location

or the severity of the faults is not required. On the contrary, active FTC makes use of

these speciĄc information provided by fault detection and isolation schemes [184] to act on

the system by actively modifying the control law to mitigate the fault effects. The main

advantage of active FTC over passive FTC is the ability to avoid unnecessary performance

loss in fault-free conditions since passive FTC design is often performed considering worst-case

fault estimations [185]. However, a key point for the correct operation of active FTC is a

well-designed fault detection and isolation scheme, which is able to provide precise and correct

information about the faults. Although fault detection and isolation schemes are designed to

provide residual signals to indicate the fault occurrence and the information of its type and

location, the exact information about the magnitude and the shape of the fault cannot be

obtained, which has motivated the development of fault estimation techniques to provide more

precise information about the fault [186].

Observer-based fault estimation techniques have been widely studied, including sliding

mode observers [187], adaptive observers [188], and unknown input observers [189]. However,

these techniques normally require the so-called matching condition to be satisĄed, which

may be restrictive, especially for nonlinear systems. To overcome this issue, Zhu et al. [186]

have proposed the use of intermediate estimators to estimate both the states and the faults

of nonlinear systems with Lipschitzian nonlinearities. Other results concerning intermediate

estimators have been presented [190, 191, 192, 193]. However, the issue of intermediate
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estimator-based fault estimation has not been addressed for nonlinear time-delayed systems

in the open literature. Accordingly, the Ąrst motivation of this work has been to address the

fault estimation problem for a class of nonlinear time-delayed systems using observers without

requiring matching conditions.

This problem has been handled here regarding the polytopic embedding of nonlinear

systems. However, although these representations are useful to derive constructive and

numerically implementable conditions for designing observers [175], there is an important issue

that should be accounted into the observer design, i.e., the necessity to deal with unmeasured

scheduling functions or premise variables in TS fuzzy systems. The results available for fault

estimation and diagnosis for LPV systems [194] and TS fuzzy models [195] assume that the

scheduling functions are measured or dependent on the output variables, which makes the

design easier but limited to speciĄc classes of nonlinear dynamical systems. To avoid this

restriction, the second motivation of this work has been to provide constructive observer

design conditions considering a polytopic representation of nonlinear time-delayed systems with

unmeasured nonlinearities.

This line of work has addressed the fault estimation problem for a class of nonlinear

time-delayed systems considering intermediate observers. The main contributions can be

summarized as follows.

a) A new class of gain-scheduling intermediate observers has been proposed to si-

multaneously estimate the state and fault, without requiring matching conditions.

Note that results on intermediate observers are only available for linear time-delayed

systems [196, 197].

b) Time-delayed nonlinear systems have been represented by a speciĄc nonlinear

parameter-varying form, which allows circumventing the assumption of measured

scheduling functions or premise variables in [194, 195].

c) Constructive and numerically implementable conditions have been derived in the

form of linear matrix inequalities for gain-scheduling intermediate observer design

such that the error dynamics is input-to-state stable with respect to the fault time-

derivative. Results for nonlinear parameter-varying systems without time-varying

delays have also been provided.

The main results of this discussion is under revision in:

PEIXOTO, M. L. C.; COUTINHO, P. H. S.; NGUYEN, A.-T.; GUERRA, T-M.;

PALHARES, R. M. Fault estimation for nonlinear parameter-varying time-delay

systems. Submitted.
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6 CONCLUDING REMARKS

This Thesis has addressed the static output feedback control problem for nonlinear

systems represented by LPV and TS fuzzy models.

Chapter 3 has introduced new less conservative conditions to design gain-scheduled static

output-feedback controllers for discrete-time LPV systems and nonlinear systems represented by

quasi-LPV and TS fuzzy models. Slack variables have been introduced along the formulation

providing extra degrees of freedom to reduce design conservativeness. The novel proposed

conditions are relatively simple and sound to be less conservative when compared to other

conditions in the literature, as illustrated by numerical examples.

Chapter 4 has addressed the synthesis of SOF controllers for discrete-time nonlinear

systems with time-varying delays. This problem has been handled regarding the polytopic

embedding of nonlinear systems. The conditions have been developed based on an augmented

Lyapunov-Krasovskii functional combined with Wirtinger-based summation inequality and

Moon’s inequality and formulated as delay-dependent linear matrix inequalities. The Finsler’s

Lemma has been employed to derive the stabilization conditions, which has helped to obtain

the controller gains. Numerical examples have been provided to illustrate the effectiveness of

the proposed methods.

In Chapter 3 and Chapter 4, one feature of the proposed approaches is the possibility

of the output matrix being parameter-dependent without requiring any speciĄc structure or

admitting particular similarity transformations, unlike most of the methods in the related

literature. Another novelty of the proposed approaches is the local asymptotic stability analysis

performed to guarantee the correct operation of the closed-loop system since it is ensured that

its trajectories remain inside of the guaranteed region of attraction estimation obtained within

the validity region of the quasi-LPV model (TS fuzzy model).

Finally, Chapter 5 has briefly presented other works that have been developed during

the doctoral term. Novel conditions to certiĄcate stability and to compute scheduling output-

feedback and state-feedback control gains for discrete-time LPV systems employing a Lyapunov

function with non-monotonic terms have been obtained. New conditions to compute state-

feedback control gains for discrete-time LPV using Lyapunov functions with dependence on

delayed scheduling parameters have been proposed. The results of Chapter 3 have been

extended to deal with local stabilization of discrete-time SOF systems under actuator saturation

and state constraint. Additionally, approaches that have been obtained for unknown input

observers and fault estimation of nonlinear time-delayed systems have been shortly presented.
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6.1 Future research

In this section, some suggestions for potential next steps for this doctoral research are

presented. They are based on the further development of the main objective of this Thesis: to

propose novel stabilization conditions for nonlinear systems represented by polytopic models.

The additional steps are listed as follows:

a) Other types of Lyapunov function candidates, such as Lyapunov with nonmonotonic

terms and Lyapunov functions with dependence on delayed scheduling parameters,

could be employed to reduce the conservativeness of the proposed approach in

Chapter 3.

b) To reduce conservativeness, it is possible to include the use of parameter-dependent

Lyapunov-Krasovskii functional and to extend the proposed methodology in Chap-

ter 4 to employ Bessel-Legendre inequalities in an arbitrary order which is less

conservative than the Jensen and Wirtinger-based inequalities (zero and Ąrst order

BesselŰLegendre inequalities, respectively) [147].

c) The results presented in Chapters 3 and 4 can be extended to handle the H2 and

H∞ performance.

d) It is possible to adapt the method proposed in Section 5.3 to deal with multiple

cyber attacks [198]. In this case, the network may be subject to deception attacks

as well as denial of service attacks.

6.2 Publications

During the period in which this doctoral research was developed, contributions concerned

with the topics presented in Chapters 3, 4 and 5 have been attained. The publications related

to this topics are listed below:

a) PEIXOTO, M. L. C.; COUTINHO, P. H. S.; LACERDA, M. J.; PALHARES,

R. M. Guaranteed region of attraction estimation for time-delayed fuzzy systems

via static output- feedback control. Automatica, p. 110438, jun 2022. <https:

//doi.org/10.1016/j.automatica.2022.110438>

b) PEIXOTO, M. L. C.; COUTINHO, P. H. S.; PALHARES, R. M. Improved

robust gain-scheduling static output-feedback control for discrete-time LPV systems.

European Journal of Control, Elsevier, v. 58, p. 11Ű16, 2021. <https://doi.

org/10.1016/j.ejcon.2020.12.006>

c) PEIXOTO, M. L. C.; COUTINHO, P. H. S.; BESSA, I.; PALHARES, R. M. Static

output-feedback stabilization of discrete-time linear parameter-varying systems under

actuator saturation. International Journal of Robust and Nonlinear Control,

p. 5799Ű5809, 2022. <https://doi.org/10.1002/rnc.6106>

https://doi.org/10.1016/j.automatica.2022.110438
https://doi.org/10.1016/j.automatica.2022.110438
https://doi.org/10.1016/j.ejcon.2020.12.006
https://doi.org/10.1016/j.ejcon.2020.12.006
 https://doi.org/10.1002/rnc.6106
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d) PEIXOTO, M. L. C.; BRAGA, M. F.; PALHARES, R. M. Gain-scheduled control

for discrete-time non-linear parameter-varying systems with time-varying delays.

IET Control Theory & Applications, IET, v. 14, n. 19, p. 3217Ű3229, 2020.

<https://doi.org/10.1049/iet-cta.2020.0900>

e) PEIXOTO, M. L. C.; PESSIM, P. S. P.; LACERDA, M. J.; PALHARES, R.

M. Stability and stabilization for LPV systems based on Lyapunov functions with

non-monotonic terms. Journal of the Franklin Institute, v. 357, n. 11, p.

6595Ű6614, 2020. <https://doi.org/10.1016/j.jfranklin.2020.04.019>

f) PEIXOTO, M. L. C.; LACERDA, M. J.; PALHARES, R. M. On discrete-time

LPV control using delayed Lyapunov functions. Asian Journal of Control, v. 23,

n. 5, p. 2359Ű2369, sep 2021. <https://doi.org/10.1002/asjc.2362>

g) PEIXOTO, M. L. C.; COUTINHO, P. H. S.; PESSIM, P. S. P.; BESSA, I.;

PALHARES, R. M. Controle em rede com acionamento por eventos para sistemas

sujeitos a ataques cibernéticos. In: Anais do XXIV Congresso Brasileiro de

Automática., Fortaleza, CE, Brasil: [s.n.], 2022. p. 1Ű6.

During the doctoral term to which this Thesis refers, additional related topics have been

researched and new results have also been obtained in collaboration with other members of the

D!FCOM. The works published related to other topics are listed below:

a) PEIXOTO, M. L. C.; REIS, G. L.; COUTINHO, P. H. S.; TORRES, L.A .B.;

PALHARES, R. M. Stability analysis of uncertain discrete-time systems with time-

varying delays using difference-algebraic representation. In: Proceedings of the

2022 European Control Conference. London, United Kingdom, 2022. p.

2069Ű2074 <https://doi.org/10.23919/ECC55457.2022.9838021>

b) COUTINHO, P. H. S.; PEIXOTO, M. L. C.; BESSA, I.; PALHARES, R. M.

Dynamic Event-triggered gain-scheduling control of discrete-time quasi-LPV systems.

Automatica, v. 141, p. 110292, 2022. <https://doi.org/10.1016/j.automatica.

2022.110292>

c) de SOUZA, L. T. F.; PEIXOTO, M. L. C.; PALHARES, R. M. New gain-

scheduling control conditions for time-varying delayed LPV systems. Journal of

the Franklin Institute, v. 359, n. 2, p. 719Ű742, 2022. <https://doi.org/10.

1016/j.jfranklin.2021.04.029>

d) PESSIM, P. S. P.; PEIXOTO, M. L. C.; PALHARES, R. M.; LACERDA, M. J.

Static output-feedback control for cyber-physical LPV systems under DoS attacks.

Information Sciences, Elsevier BV, v. 563, p. 241Ű255, 2021. <https://doi.

org/10.1016/j.ins.2021.02.023>

e) COUTINHO, P. H. S.; PEIXOTO, M. L. C.; LACERDA, M. J.; BERNAL, M.;

PALHARES, R. M. Generalized non-monotonic Lyapunov functions for analysis and

 https://doi.org/10.1049/iet-cta.2020.0900
https://doi.org/10.1016/j.jfranklin.2020.04.019
https://doi.org/10.1002/asjc.2362
https://doi.org/10.23919/ECC55457.2022.9838021
https://doi.org/10.1016/j.automatica.2022.110292
https://doi.org/10.1016/j.automatica.2022.110292
https://doi.org/10.1016/j.jfranklin.2021.04.029
https://doi.org/10.1016/j.jfranklin.2021.04.029
https://doi.org/10.1016/j.ins.2021.02.023
https://doi.org/10.1016/j.ins.2021.02.023
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synthesis of Takagi- Sugeno fuzzy systems. Journal of Intelligent & Fuzzy Sys-

tems, v. 39, n. 3, p. 4147Ű4158, 2020. <https://doi.org/10.3233/JIFS-200262>

f) COUTINHO, P. H. S.; PEIXOTO, M. L. C.; BERNAL, M.; NGUYEN, A.-T.;

PALHARES, R. M. Local sampled-data gain-scheduling control of quasi-LPV systems.

In: 4th IFAC Conference on Embedded Systems, Computational Intelligence

and Telematics in Control (CESCIT 2021), Valenciennes, France, 2021, p.

86Ű91. <https://doi.org/10.1016/j.ifacol.2021.10.015>

g) COUTINHO, P. H. S.; BESSA, I.; PEIXOTO, M. L. C.; PESSIM, P. S. P.;

PALHARES, R. M. Controle com acionamento por eventos resiliente a ataques de

negação de serviço. In: Anais do XXIV Congresso Brasileiro de Automática.

Fortaleza, CE, Brasil, 2022. p. 1Ű6.

h) CORDOVIL, L. A. Q.; COUTINHO, P. H. S.; BESSA, I.; PEIXOTO, M. L. C.;

PALHARES, R. M. Learning event-triggered control based on evolving data-driven

fuzzy granular models. International Journal of Robust and Nonlinear Control,

v. 32, n. 5, p. 2805Ű2827, 2022. <https://doi.org/10.1002/rnc.6024>

i) PESSIM, P. S. P.; COUTINHO, P. H. S.; BESSA, I.; PEIXOTO, M. L. C.;

LACERDA, M. J.; PALHARES, R. M. Controle distribuıdo para sistemas não

lineares interconectados sujeitos a retardos variantes no tempo nas interconexões.

In: Anais do XXIV Congresso Brasileiro de Automática. Fortaleza, CE, Brasil,

2022. p. 1Ű6.

Finally, the following papers are under revision.

a) PEIXOTO, M. L. C.; COUTINHO, P. H. S.; BESSA, I.; PESSIM, P. S. P.;

PALHARES, R. M. Event-Triggered Control of Takagi-Sugeno Fuzzy Systems under

Deception Attacks. Submitted.

b) PEIXOTO, M. L. C.; COUTINHO, P. H. S.; NGUYEN, A.-T.; GUERRA, T-M.;

PALHARES, R. M. Fault estimation for nonlinear parameter-varying time-delay

systems. Submitted.

c) PEIXOTO, M. L. C.; NGUYEN, A.-T.; GUERRA, T-M.; PALHARES, R. M.

Unknown input observers for time-varying delay Takagi-Sugeno fuzzy systems with

unmeasured nonlinear consequents. Submitted.

d) COUTINHO, P. H. S.; BESSA, I.; PEIXOTO, M. L. C.; PALHARES, R. M.

A co-design condition for dynamic event-triggered feedback linearization control.

Submitted.

e) NGUYEN, A.-T.; COUTINHO, P. H. S.; PEIXOTO, M. L. C.; GUERRA, T-M.;

PALHARES, R. M. Output Feedback Control of Takagi-Sugeno Fuzzy Systems with

Unmeasured Nonlinearities via a Local Separation Principle. Submitted.

https://doi.org/10.3233/JIFS-200262
https://doi.org/10.1016/j.ifacol.2021.10.015
 https://doi.org/10.1002/rnc.6024
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6.3 Awards

The author of this Thesis received the award for best paper [170] in the Ph.D. category

in the Congresso Brasileiro de Automática 2022, which took place in the Fortaleza, Brazil.

Figure 6.1 Ű CertiĄcate of the awarded paper at CBA 2022.
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APPENDIX A Ű FINITE-DIMENSIONAL LMI RELAXATION

The LMIs proposed in this Thesis are parameter-dependent, that is, the problems

are of inĄnite dimensions. These problems can be numerically solved using the following

Ąnite-dimensional LMI conditions.

Lemma A.1. Let Γijql = Γ⊤
ijql, i, j, q, l = 1, . . . , N , be matrices of appropriate dimensions.

The polynomially parameter-dependent condition

Γ(αk, αk+1) =
N∑︂

i=1

N∑︂

j=1

N∑︂

q=1

N∑︂

l=1

αi,kαj,kαq,kαl,k+1Γijql < 0 (A.1)

is certiĄed if the following LMIs hold for all i, j, q, l = 1, . . . , N :

Γiiil < 0, i = j = q

Γiiql + Γiqil + Γqiil < 0, i = j, j < q

Γiqql + Γqiql + Γqqil < 0, i < j, j = q

Γijql + Γiqjl + Γjiql + Γjqil + Γqijl + Γqjil < 0, i < j, j < q.

(A.2)

Proof. The parameter-dependent matrix Γ(αk, αk+1) in (A.1) can be equivalently rewritten as

follows:

Γ(αk, αk+1) =
N∑︂

i=1

N∑︂

l=1

α3
i,kαl,k+1Γiiil

+
N−1∑︂

i=1

N∑︂

q=i+1

N∑︂

l=1

α2
i,kαq,kαl,k+1 (Γiiql + Γiqil + Γqiil)

+
N−1∑︂

i=1

N∑︂

q=i+1

N∑︂

l=1

αi,kα
2
q,kαl,k+1 (Γiqql + Γqiql + Γqqil)

+
N−2∑︂

i=1

N−1∑︂

j=i+1

N∑︂

q=j+1

N∑︂

l=1

αi,kαj,kαq,kαl,k+1 (Γijql + Γiqjl + Γjiql + Γjqil + Γqijl + Γqjil) .

Therefore, LMIs (A.2) are sufficient to ensure that (A.1) holds.


	Title page
	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Objectives
	Thesis outline and contributions

	System description: Polytopic systems
	Linear parameter-varying (LPV) systems
	Takagi-Sugeno (TS) fuzzy models

	SOF Stabilization conditions of polytopic systems
	Problem Formulation
	Local static output-feedback (SOF) stabilization
	Enlarging the estimation of the DoA

	Numerical Examples
	Final remarks

	SOF control for time-delayed polytopic systems
	Problem Statement
	Useful Lemmas
	Guaranteed DoA estimation for time-delayed nonlinear systems
	Enlargement of the admissible initial condition set
	Numerical Examples
	Final remarks

	Additional research subjects developed along the Ph.D.
	Choosing different kinds of Lyapunov functional
	Lyapunov functions with nonmonotonic terms
	Delayed Lyapunov functions
	Exploring alternative Lyapunov-Krasovskii functional

	SOF stabilization of discrete-time LPV systems under actuator saturation
	ETC of systems subject to cyber-attacks and network-induced time-delays
	Observer design approaches
	Unknown input observers for time-delayed nonlinear systems
	Fault estimation for nonlinear time-delayed systems


	Concluding Remarks
	Future research
	Publications
	Awards

	Bibliography
	Appendix
	Finite-dimensional LMI relaxation


