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Resumo

Criar modelos a partir de observações e garantir a eficácia em novos dados é a essência do
aprendizado de máquina. Portanto, estimar o erro de generalização de um modelo é um
passo crucial. Apesar da existência de muitas métricas de desempenho que aproximam o
poder de generalização, ainda é um desafio selecionar modelos que generalizem para da-
dos futuros desconhecidos. Neste trabalho, investigamos como os modelos se comportam
em conjuntos de dados que possuam diferentes funções geradoras, mas constituem tarefas
correlatas. A principal motivação é estudar o Efeito Rashomon, que aparece sempre que o
problema de aprendizagem admite um conjunto de soluções que apresentam desempenho
semelhante. Muitos problemas do mundo real são caracterizados por múltiplas estruturas
locais no espaço de dados e, como resultado, o problema de aprendizagem correspondente
apresenta uma superfície de erro não convexa sem mínimo global óbvio, implicando assim
uma multiplicidade de modelos performantes, cada um deles fornecendo uma explicação
diferente. A literatura sugere este tipo de problema estar sujeito ao Efeito Rashomon. Por
meio de um estudo empírico em diferentes conjuntos de dados, elaboramos uma estratégia
focada na explicabilidade, especificamente na importância de variáveis. Nossa abordagem
para lidar com o Efeito Rashomon é estratificar, durante o treinamento, modelos em
grupos que sejam coerentes entre si ou contrastantes. A partir desses grupos, podemos
selecionar modelos que aumentem a robustez das respostas em tempo de produção, sendo
também capazes de medir possíveis desvios nos dados. Apresentamos ganhos de desem-
penho na maioria dos cenários avaliados ao criar um comitê de modelos e garantir que cada
constituinte cubra um subespaço independente da solução. Validamos nossa abordagem
em conjuntos de dados fechados e abertos, fornecendo intuições sobre possíveis aplicações
ao analisar alguns estudos de caso do mundo real nos quais nosso método foi empre-
gado com sucesso. Não apenas nossa abordagem provou ser superior ao estado-da-arte
a comitês baseados em árvores, com ganhos em AUC de até 0,20+, mas os constituintes
são altamente explicáveis e permitem a integração de humanos no processo de tomada de
decisão do modelo, assim os tornando mais eficientes.

Palavras-chave: Rashomon Effect, Ensemble Learning, Data Drift



Abstract

Creating models from previous observations and ensuring effectiveness on new data is the
essence of machine learning. Therefore, estimating the generalization error of a trained
model is a crucial step. Despite the existence of many capacity measures that approxi-
mate the generalization power of trained models, it is still challenging to select models
that generalize to future data. In this work, we investigate how models perform in datasets
that have different underlying generator functions but constitute co-related tasks. The
key motivation is to study the Rashomon Effect, which appears whenever the learning
problem admits a set of models that all perform roughly equally well. Many real-world
problems are characterized by multiple local structures in the data space and, as a result,
the corresponding learning problem has a non-convex error surface with no obvious global
minimum, thus implying a multiplicity of performant models, each of them providing a
different explanation, which literature suggests to being subject to the Rashomon Effect.
Through an empirical study across different datasets, we devise a strategy focusing pri-
marily on model explainability (i.e., feature importance). Our approach to deal with the
Rashomon Effect is to stratify, during training, models into groups that are either co-
herent or contrasting. From these Rashomon groups, we can select models that increase
the robustness of the production responses along with means to gauge data drift. We
present performance gains on most of the evaluated scenarios by locating these models
and creating an ensemble guaranteeing that each constituent covers an independent solu-
tion sub-space. We validate our approach by performing a series of experiments in both
closed and open-source benchmark suites and give insights into the possible applications
by analyzing real-world case studies in which our framework was employed with success.
Not only does our approach prove to be superior to state-of-the-art tree-based ensembling
techniques, with gains in AUC of up to .20+, but the constituent models are highly ex-
plainable and allow for the integration of humans into the decision-making pipeline, thus
empowering them.

Keywords: Rashomon Effect, Ensemble Learning, Data Drift
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Chapter 1

Introduction

Akira Kurosawa (1910-1998) was a Japanese film director, screenwriter, and producer
who directed 30 films in a career spanning 57 years. He is regarded as one of the most
influential filmmakers in the history of cinema [Davis et al., 2015, Prince, 1999]. One of
his greatest movies was entitled Rashomon [Kurosawa, 1950], which premiered in 1950 in
Tokyo and became the winner of the Golden Lion at the 12th International Venice Film
Festival in 1951.

In the film, Kurosawa deals with the impossibility of objective truth by portraying
a mysterious crime reported by four witnesses who contradict themselves from different
points of view. A terrible crime occurs in a forest: a samurai was murdered by a bandit
and his wife raped in front of him before he was killed - these are supposedly the facts
from which four witnesses are heard in a court. The only sure truth in this story is the
fact that the samurai is dead. Everything else is uncertain. Any conclusion about what
transpired in the forest is impossible to assert. This happens because the versions relayed
by the witness are antagonistic and divergent. Each of the four witnesses tells a story that
is either the least compromising or best favors themselves. The narrative ends with the
testimonies, without any manifestation from the judges. Given the difficulty of searching
for objective truth based on biased reports exhibited by the witnesses, the job of reaching
a verdict is left entirely the responsibility of the viewer.

Kurosawa’s construction impressed philosophers. In tribute to the movie, the
Rashomon Effect was coined as the difficulty of detecting the truth of a fact through
the testimonies of several witnesses as a relationship between epistemology and subjec-
tivity. That is the effect in which the same objective epistemological fact causes different
interpretations by the subjective perspective launched by each of the observers [Dorland,
2016]. Although the movie reached western audiences several years ago in 1951, the term
is still employed up to this date. Justice Applegarth [2020] pointed out in a recent case
in the Supreme Court of Queensland:

“The Rashomon effect describes how parties describe an event in a different
and contradictory manner, which reflects their subjective interpretation and
self-interested advocacy, rather than objective truth. The Rashomon effect is
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evident when the event is the outcome of litigation. One should not be surprised
when both parties claim to have won the case.”

When studying the machine learning and statistics fields, one often comes across
different models that can fit data with statistically similar performance. In this scenario,
models used in an analysis may employ a completely distinctive set of factors from another,
in such a way that it is not possible to draw a correlation between the models, aside from
the fact both achieve similar predictive capability. This phenomenon was termed as
the Rashomon effect of statistics by Breiman [2001a]. A common consequence is that
attempting to induce a single model that encompasses all possible factors often leads to
underperfomance [Pujari and Gupta, 2012].

Within the Rashomon Effect concept, Fisher et al. [2019] analyzes the set of mod-
els that contain accuracy close to the optimal model. From this set, he formally defines
the concept of Rashomon Set, this being the subspace of the universe of models that sum-
marize the range of effective prediction strategies that an optimal analyst might choose.
Semenova and Rudin [2019] delve deeper into the theme of the Rashomon effect in ma-
chine learning, giving pertinent definitions about the generalization of the Rashomon Set
as well as its format and volume. In particular, it is explored in which situations it is pos-
sible to obtain a sample of the model space such that the properties related to Rashomon
in this subspace are similar to those of the sample universe.

The standard approach for model selection, adopted both in industry and research,
is cross-validation. Although it usually produces robust risk estimation, it has been
shown to fail for some problems depending on the goal of model selection [Arlot and
Celisse, 2010], and the obtained measure of empirical risk on a test set might not directly
translate to good performance in real-world applications, posing a major challenge for
successful machine learning [D’Amour et al., 2020]. Although it is hard to understand the
generalization power of machine learning models, a common observation is that empirical
risk is significantly affected when different models perform indistinguishably well on the
test set [Hinns et al., 2021].

The main problem arises when the selected model faces data drawn from a different
distribution during production. The guarantees established by cross-validation do not
hold for out-of-distribution data leading to unpredictable model performance and thus,
the held-out performance is not a reliable risk estimation anymore. Analyzing models
under additional axes, besides the empirical risk, could allow for the selection of models
that increase the robustness of predictions. By definition, Rashomon set for some problem
consists of the subset of all risk-equivalent functions, which are all plausible candidates
for model selection. Cross-validation gives guarantees that all of these should perform
similarly with high confidence on data distributions that match those of the training data.
A simple approach asses new data distribution could be the evaluation of each model’s
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prediction. However, deploying the whole Rashomon set might be intractable. Further,
there could also exist functions that are so similar that changes in data distribution affect
them equally.

Consider two scenarios. In the first we perform some transformation over the
validation data to induce a different distribution. We will call the resulting dataset our
’transformed test’ data. The second consists of a co-related dataset to the one used in
training, but that was collected either at another point in time or location. We will call this
dataset our ’production’ data. In real-world applications, this could be data presented
to a model once it is deployed. We can use insights regarding model behavior on this
transformed test to extrapolate for possible distribution divergences during production.
We may select only the models from the Rashomon set that diverge under the transformed
test, thus building an ensemble and drastically reducing the number of deployed models.
If, during production time, the ensemble’s constituents diverge on their predictions, this
should be indicative of the unreliability of output. In fact, inducing an ensemble from the
performant models of the Rashomon set is promissing, as the utilization of a diverse set
of robust learning algorithms has been demonstrated to be a more effective approach of
ensemble learning compared to utilizing techniques that seek to reduce the complexity of
the models in the interest of promoting diversity [Gashler et al., 2008].

We view diversity among individual models as crucial for gaining a broad under-
standing of any phenomenon. We assume that problems are not tied to a single causative
factor, and that causative factors may vary depending on factors that might not be directly
intuitive. Indeed, the Rashomon effect in statistics also referred to as “the multiplicity of
good models”, suggests the existence of multiple potential explanations for a given prob-
lem, all consistent with the data. To encourage diversity and identify patterns, we group
models based on the similarity of their explanations. Ideally, this leads to dense groups
in which models assigned to the same cluster share common explanatory factors, while
dissimilarity is expressed in disjoint clusters. For each group, we select the most distinct
models under the proposed transformed test, resulting in an ensemble that is diverse in its
constituents, incorporates high-performing models, summarizes the entire Rashomon set
and solution space, and allows for an approximation of a risk metric under new data dis-
tributions based on constituent agreement. We coin this idea as the Rashomon Ensemble.
Our approach can be summarized by the following steps:

1. Sample models from a pre-defined Rashomon subspace (set of models with equivalent
empirical risk).

2. Compute the explanation vector of the sampled models and their pair-wise similarity.

3. Perturbate a held-out test data through some data transformation.

4. Compute the pair-wise distance in the transformed test set.
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5. Split the Rashamon set into subgroups given models explanation vectors and dis-
tances.

6. Select a set of models with contrasting explanations and divergent predictions on
the transformed data.

7. Build an ensemble and evaluate agreement to estimate reliability.

We validate our approach on a set of public datasets for reproducibility and demon-
strate its robustness in simulated scenarios. We also collect four datasets to validate our
hypothesis regarding model behavior under scenarios where the data generation function
might be different. Our results show that Rashomon ensembles consistently outperform
state-of-the-art ensemble learning approaches if the Rashomon set is large enough. When
exposed to data drift, our approach remained the performant one in most evaluated sce-
narios providing further evidence of its reliability. We proceed to employ the Rashomon
ensembles in three real-world applications partnered with various institutions and study
the impact of our approach in these case studies.

1.1 Contribution

Our main premise is that explicability can be employed to induce diversity in en-
sembles. From this, we consider two hypotheses. The first is that we can estimate the
reliability of an ensemble by exploiting the fact that some models might behave similarly
only when data is drawn from the same distribution as the one seen in training. And
the second is that we can find these models by looking at their divergent explanations.
If these hypotheses are true, then we could verify at the production stage the output of
any given instance. If the models disagree, then that would imply that data is drawn
from a new unknown distribution, and we cannot trust predictions. Thus, we can es-
tablish an estimation of a production risk metric by the prediction distance from these
explainability-diverse models. We empirically demonstrate these hypotheses and that we
can elect suitable ensemble constituents after splitting the Rashomon set and performing
a perturbation of the training data. We validate this finding in distinct problems in which
we verify the existence of large Rashomon spaces. The Rashomon Effect guarantees that
all models selected are performant and coherent with the data.

We tackle the identification of contrasting models to serve as ensemble constituent
candidates. In complex problems, data is inherently composed of several local structures
and sub-populations which might lead to poor performance by attempting to induce a
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single model from all sub-populations. We argue that by analyzing the Rashomon set
and dividing it into subspaces is a preferable approach, and present a technique for the
division of the Solution-space. By combining individuals from each of these populations,
we investigate the possibility of building ensembles with highly explainable and diverse
members that can answer specific parts of the problem. Further, since each constituent
encompasses a different explanation for the target phenomenon, the ensemble output
is directly tied to the trustworthiness of prediction. If after deployment on the real-
world constituents agree, this serves as a strong indicator that the data distribution
matches the one seen during training and all cross-validation guarantees hold. On the
other hand, if the constituents disagree, then those proprieties cannot be trusted. As such,
we also present a new strategy to ensemble learning coherent with this theory, deemed
Rashomon ensembles. The most straightforward technique for combining the outputs of
the constituent individuals is simple voting, albeit we also investigate stacking. A desirable
characteristic of such a simple method is that the returned output of the ensemble is a
direct measure of agreement and thus, an estimation of the Rashomon ensemble reliability
under new data distributions.

Applied to real-world problems tackled in this work, our method presented con-
siderable improvements to the respective industry practices. After translating model
explanations to process rules, we observed a reduction in over 50% in the occurrence
of heating slivers in Duplex stainless steel plates, the problem addressed in Chapter 5.
We were also able to verify that Brazil is unlikely to handle its own energetic demand
by 2070, 20 years prior to expert projections, while also measuring the impact on ener-
getic consumption of different extreme events, described in Chapter 6. Finally, from the
proposed experiments regarding COVID-19 automated diagnosis presented in Chapter 7,
we observed a significant gap in the literature regarding virus biases in medical machine
learning literature. These case studies provide empyrical evidence on the robustness of
Rashomon ensemble learning.

1.2 Thesis Statement

In many situations, the data is inherently composed of several local structures
and sub-populations. The traditional all-in-one approach considers the use of all data at
once to induce a single model. Assuming that each local structure could be viewed as a
different view of the same data, it is more difficult for an algorithm to minimize the error
by considering the information of all views, in many cases contrasting. Further, assessing
the risk of deploying a single model under data distributions that differ from training
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is challenging. This thesis aims to show, based on evidence, that in these situations
it is advantageous to make use of the concept of these local structures for induction of
models that are more robust and consistent with the data. We argue that each local
structure can be mapped to a partition of the solution space and, by exploiting model
explanation techniques, we can elect different underlying explanations for the studied
phenomenon. We argue that by locating the performant models within each partition and
then performing an ensembling approach, we can obtain a general view of the problem
such that each ensemble constituent is explainable, covers an independent sub-space of
the problem, and is resilient in the presence of data drift by providing an estimation of
prediction reliability under unknown data distributions.

1.3 Thesis Structure

The remainder of the thesis is organized as follows: Chapter 2 presents a discussion
of relevant related work and gives some literature background. Chapter 3 describes our
approach and the insights that led to the proposed ensembling technique, followed by a
series of empirical experiments in Chapter 4. Complementing this discussion, Chapters 5
to 7 describe real-world case studies in which we were able to successfully identify a large
Rashomon space and learn an ensemble. Finally, Chapter 8 presents our conclusions and
a summary of the study carried out, as well as the directions for future work.



23

Chapter 2

Background

One of the core inspirations of this work arises from the insight that a dataset might
be heterogeneous. There might exist regions of the data that show complex correlations
among a specific set of features and the target label, and the same correlations are not
necessarily so strongly observed in other regions represented by a data bias. This could
lead to different areas of the solution space being able to similarly approximate the tar-
get label, giving rise to multiple models with comparable performance and contrasting
explanations and thus inducing the Rashamon effect. If this is true, it would be more
suitable if local behavior was represented by a local model, which can be incorporated
into an ensemble [Zuin et al., 2021]. Sampling multiple local minima allow for an approx-
imation of the global objective while also expanding the representation space [Dietterich,
2000]. One of the advantages of this approach is the ability evaluate the ensemble under
different contexts. Since all constituents present similar performance under the train data
distribution, a divergence in their behavior could be an indicator of anomalities in data,
such as data drift.

2.1 Data Drift

Data drift is usually associated with the notion of online learning, in which a model
is applied to production and is constantly updated as new instances arrive. Under online
learning, a model must be able to handle new concepts as they arrive, properly tuning
itself to new data distributions. The main challenge consists in the fact that, as data
drift toward these new concepts, it negatively impacts the accuracy of the models that
are learned based on past training instances [Gonçalves et al., 2014]. Therefore, early
data drift identification and adaptation are key aspects of such systems. Lu et al. [2019]
provides a basic framework underlying general drift detection:

• Stage 1 (Data Retrieval): retrieval of chunks from data streams to infer data distri-
bution.
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• Stage 2 (Data Modeling): extraction of key features that present the most impact
on the system in the presence of drift.

• Stage 3 (Test Statistics Calculation): the measurement of a dissimilarity or distance
metric.

• Stage 4 (Hypothesis Test): evaluation of the statistical significance of the measured
metric.

The main differences between one method and another are tied to stages 3 and
4. Concerning stage 3, two of the big categories of drift identification are error-based
and data-based algorithms. Most error-based drift detection employs a base classifier and
tracks the change in the online error rate. The main hypothesis behind these methods
relies on the fact that the base model will misclassify new instances when data drifts, thus
increasing the error rate. This is the core idea behind DDD [Minku and Yao, 2011], which
also establishes warning levels for the error rate to identify when the model should be
retrained with data of this new concept or updated with new incoming instances. There
are many other error-based methods but, as stated by Lu et al. [2019], DDD is perhaps
the most-referenced method. Under their framework, other methods can be summarized
by changes to some stage of drift detection to DDD, such as employing another hypothesis
testing [Frias-Blanco et al., 2014] or changing some detail of the evaluated metric [Baena-
Garcıa et al., 2006].

Data-based drift detection algorithms rely on directly quantifying the dissimilarity
between the distribution of historical and new data. The standard strategy is to define a
fixed window for the past and a sliding window for new data during the online learning
process [Kifer et al., 2004]. If we ignore Stage 1 of the drift detection framework, the
problem turns into a multivariate two-sample test evaluating if samples come from the
same distribution. But there remains a problem concerning actual and virtual drift.

Let T be the train distribution of the source data, and U be some unknown distri-
bution from another dataset. Candela et al. [2009] defines data drift as a change in the
joint distribution of features. That is:

P (xt, yt) 6= P (xu, yu) (2.1)

Probably approximately correct learning relies on the independent and identically dis-
tributed assumption between data distributions to estimate the empirical risk of a learn-
ing function. If we verify data drift, we cannot guarantee that the empirical risk is close
to the real risk.

We can decompose P (x, y) = P (x) × P (y|x). Thus, if we verify data drift, we
could assume that it might come from two sources. We can observe a change in P (x)

(covariate drift), or a change in P (y|x) (concept drift). As stated by Moreno-Torres
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et al. [2012], covariate drift is tied to the distribution of a variable, while concept drift
implies that the relationship between the target and predictor changes between datasets.
Finally, it’s possible that both P (x) and P (y|x) present significant differences from the
original distributions, which we define as dual drift. Overall, data drift can be stated as
a phenomenon in which the statistical properties of a target domain change over time in
an arbitrary way [Lu et al., 2014].

The decomposition of Equation 2.1 presents the sources of data drift, them being
covariate and concept drift. Covariate drift is often called virtual drift due to drift in P (x)

not affecting the decision boundary of models [Ramírez-Gallego et al., 2017]. Learning
a new model when presented with covariate drift might not be necessary, as the learned
conditional P (y|x) remains unchanged. This is not the case for dual drift, however, when
both P (x) and P (y|x) exhibit shift under new data. It is important to highlight that
the aforementioned approaches to drift detection are well suited specifically in online
learning scenarios, which is not the case for our proposed problem. We can only compute
error-based metrics if we know the correct label of new incoming instances. And sliding
window data-based methods depend on the notion of temporal relationships. Further, the
knowledge of novel instances’ labels is necessary to differentiate between dual and virtual
drift, which might not be possible in scenarios outside of online learning.

2.2 Feature Importance

Regardless of the algorithm of choice, understanding the model predictions, and
giving an explanation of how the model arrived at the decision, are challenging tasks.
Both legal and ethical reasons gave rise to the field of Explainable AI (XAI) research to
address these challenges [Holzinger et al., 2018, Shneiderman, 2020]. A particular research
subtopic is that of Human-Centered XAI (HCXAI) discussed by Ehsan and Riedl [2020],
in which we place the human decision-makers at the core of the algorithmic pipeline.
This sort of approach helps in building trust on the end model prediction [Weitz et al.,
2019]. As such, Xu [2019] suggests that any HCXAI professional should not only strive to
provide an explainable and comprehensible model, but also a tool that is both useful and
usable by the greater public. As such, one of our main goals in this thesis is to provide
a mechanism that can empower human beings through the lenses of explainable AI, as
previously achieved in our previous work in Zuin and Veloso [2019] and Zuin et al. [2020].
Regarding the more general XAI research, there is an extensive literature in the field of
measuring variable importance, in particular about tree-based models which tend to be
highly explainable. One of the most commonly employed metrics is called Gini importance
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and was first introduced by Breiman [2001b] alongside the definition of Random Forests.
The Gini importance is a special case of a Mean Decrease Impurity (MDI), in which

we add up the weighted impurity decreases for all nodes on a tree and, in the case of Ran-
dom Forest, average out each feature’s impurity decrease across all trees. When applied
to the Gini coefficient [Gastwirth, 1972], the MDI approach produces the Gini importance
result. The Gini coefficient measures inequality between frequency distributions, that is,
the difference between the hypothetical straight line depicting perfect equality and the
actual curve depicted by the sampled probability distribution. Another common met-
ric employed alongside MDI is entropy or information gain. One of the key algorithms
to build decision trees, the ID3 devised by Quinlan [1986] employs a top-down, greedy
search through the space of possible branches and computes the information gained by
each feature to decide the best split point. Thus, it is no surprise that this should have
a somewhat direct relationship with feature importance in trees and both these metrics
are present in the scikit-learn python package [Pedregosa et al., 2011b] that we employ in
this thesis.

Given the plethora of methods, it is not obvious how to compare one feature at-
tribution method to another, Lundberg et al. [2020] proposes two proprieties that should
be desirable in any feature or variable importance method: consistency and accuracy.
Whenever we change a model such that it relies more on a feature, then the attributed
importance for that feature should not decrease. If consistency fails to hold, then impor-
tance does not translate to model reliance on a given feature. Further, the sum of all the
feature importances should sum up to the total importance of the model. If accuracy fails
to hold, then it is uncertain how attributions of each feature combine to represent the
output of the whole model. Any attempt at normalization might jeopardize the consis-
tency of results. Thus, if any of these characteristics cannot be guaranteed, then we also
cannot properly compare different approaches.

One such method that attempts to address these issues is the work of Lundberg
and Lee [2017]. Shapley Additive Explanations (or simply SHAP) is the usage of Shapley
values to interpret a target model. We represent how model x′ explains the data as a
d−dimensional vector E(x′) = e1, e2, . . . , ed showing which features are contributing most
to the model’s prediction. The Shapley value is a concept in cooperative game theory
[Shapley, 1953]. In each game, a unique distribution of the rewards generated by the
cooperation of all players given is provided.

Let N be a set of n players in a cooperative game, S denote a coalition of players,
and ν be a characteristic function over S. That is, ν(S) denotes the worth of a coalition
S and describes the total expected sum of payoffs that the members of S obtain by
cooperation. Adding player ni to an existing coalition S increases the expected payoff
by ν(S ∪ {ni})− ν(S). Since there are n! possible ways to line up the n players and the
player ni must be preceded by all the members of S and followed by remaining players in
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N , there are |S|!(n− 1− |S|)! lineups in which player ni joins the existing coalition S. If
we sum its contribution over all lineups in which ni joins S and over all possible existing
coalitions S that it might join, we get its total contribution over all possible lineups of
N . The Shapley value ϕni

(ν) of player ni is the average of its total contribution in the
cooperative game (ν,N). The Shapley value ϕni

(ν) in the cooperative instance (ν,N) is
the average of its total contribution over all possible scenarios:

ϕni
(ν) =

∑
S⊆N\{ni}

=
1

n!
|S|!(n− 1− |S|)! (ν(S ∪ {ni})− ν(S))

in which v(S ∪ {ni})− v(S) is called the marginal contribution.
Thus, in each iteration, a unique distribution of the rewards generated by the

cooperation of all members given all possible coalitions is provided, giving each feature’s
contribution to the explanation. To interpret the target model, all features are players in
a cooperative game represented by the trained predictive model cooperating to predict a
given task. Each feature’s aggregate payoff, its reward, is its actual prediction minus the
result from the explanation model. The impact of each feature can, therefore, be found
by calculating its Shapley value. A key important aspect is that this approach is model
agnostic. Any learning algorithm, from simple linear regression models to complex deep
networks, can be explained through Shapley values however, their exact computation is
an NP-hard problem as it involves averaging the results of all possible N ! permutations
of coalitions. SHAP proposes several approximation methods. Feature independence
and model linearity are two optional assumptions that simplify the computation of the
expected values. Aside from GINI and Shap, there are many other feature attribution
methods [Breiman et al., 1984, Chen and Guestrin, 2016, Ribeiro et al., 2016, 2018, Saabas,
2014], but SHAP is the only method with the three desirable properties as pictured in
Figure 2.1:

• Local accuracy: the explanations are truthfully explaining the model.

• Missingness: missing features have no attributed impact on the model decisions.

• Consistency: if a model changes so that some feature’s contribution increases or
stays the same regardless of the other features, that feature’s attribution should not
decrease.

The local accuracy axiom states that the value assigned to a player should equal
the player’s marginal contribution to the coalition if the player were to join or leave the
coalition. The missingness axiom ensures that the value assigned to a player should not
depend on the presence or absence of other players in the coalition. The consistency axiom
requires that the value assigned to a player should remain unchanged if the player joins or
leaves different coalitions. These axioms work together to ensure that the Shapley value
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Figure 2.1: Two examples of decision trees that demonstrate inconsistencies in the Saabas,
gain, and split count attribution methods.

Source: Lundberg and Lee [2017]

accurately reflects the contribution of each player to the coalition and is not affected by
external factors or the presence of other players.Shapley [1953] proved that if these three
axioms are to hold, then the only solution to the proposed problem of fairly distributing
credit importance is through the Shapley values.

As stated by Lundberg and Lee [2017], the feature importance values from the
gain, split count, and Saabas methods are all inconsistent. Applied to the field of Machine
Learning, this means that under these alternative feature importance methods, a model
can change such that it relies more on a given feature, yet the importance estimate
assigned to that feature decreases. In the example from Figure 2.1, the Cough feature has
a larger impact on Model B than Model A but is attributed less importance in Model B.
The global attributions represent the overall importance of a feature in the model. It is
important to highlight that the consistency guarantee of Shapley values is what allows us
to use it as a direct measure of model reliance, which is one of the key concepts behind
our Rashomon ensembles.

2.3 Ensemble Learning

Regarding ensemble learning and searching for partitions in data, Grosskreutz
[2008] propose splitting dataset lines into subgroups given a set of restrictions over its
columns, and apply this approach to an unsupervised problem. If the groups are large
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enough, the associated restrictions express some significant pattern in the data. Grosskreutz
focuses on a problem where there is no target variable. However, one can employ an equiv-
alent technique regardless of this fact, similar to Malik and Kender [2008] and Knobbe
and Valkonet [2009]. All these works operate primarily within the data space, looking for
relevant patterns, clusters, or subgroups that induce diverse models. Our approach, in
contrast, operates within the model space, finding different groups of explanations. The
Rashomon groups can be interpreted as a particular set of restrictions on the data, which
in turn induce the subgroups presented. We improve upon previous work in the sense
that the SHAP groupings aided by the Rashomon concept not only prune a large portion
of the search space but also provide a direct measure of model behavior similarity while
tackling the problem of data drift detection in domains outside of online learning

Another possibility is the one presented by Dembczyński et al. [2008], focusing on
understanding how one can learn a performant rule-based ensemble via boosting. Starting
from the standard initial rule, they iteratively add new rules to obtain an ensemble that
can cover most of the data. To validate their approach they also define the concept of
coverage through a φ(x), this being an arbitrary axis-parallel region in the attribute space.
The diversity of constituents is measured solely by the coverage φ of each rule. As noted
by D’Amour et al. [2020], it is possible that two rules may have the same coverage but
exhibit divergent behavior in practice. Thus, using some other metric associated with the
inner mechanism of the model and not simply the observed response may be relevant, such
as a vector representation of the explainability of a model. However, boosting remains
one of the state-of-the-art techniques concerning ensemble learning.

The main idea behind boosting is using an ensemble of weak learners that can be,
somehow, combined to generate a stronger one. This idea was first proposed by Kearns
[1988] as the Hypothesis Boosting Problem. He states that there might be an efficient
algorithm that could convert poor hypotheses, like weak learners which are slightly better
than a random guesser, into a single very good hypothesis. One approach is filtering the
observations, thus modifying the distribution of examples in such a way as to force the
weak learning algorithm to focus on the harder-to-learn parts of the distribution [Schapire,
1990].

Therefore, boosting consists of the usage of the weak learning method several
times to get a succession of hypotheses. Each one is focused on learning to handle the
remaining difficult observations in which the previous learner struggled. Predictors are not
made independently, but sequentially and each learns from the mistakes of the previous
predictors. This in turn leads to observations having an unequal probability of appearing
in subsequent models and the ones with the highest error appear the most. Gradient
boosting machines (GBM) is an example of a boosting algorithm that originated from the
observation of Breiman [1997]: boosting can be interpreted as an optimization algorithm
over a suitable loss function.
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Let y be the actual values of the output variable, i be an iteration of the gradient
boosting algorithm, and Fi(x) be the output of the proposed model at time i. The gradient
boosting algorithm improves Fi(x) by constructing a new model that adds an estimator h
to provide a better model, which leads to Fi+1(x) = Fi(x)+h(x). A perfect h would imply
in h(x) = y − Fi(x) . Therefore, the gradient boosting approach will attempt to fit h to
the residual loss. However, in classification and ranking problems, residuals y−F (x) for a
given model are the negative gradients concerning F (x). Therefore, gradient boosting is a
gradient descent algorithm for combining and training weak learners. A common learner
used is random forests.

In this work we explore using XGBoost, which improves upon the original GBM
[Chen and Guestrin, 2016]; LightGBM, a both faster and more efficient implementation
of GBM by Ke et al. [2017b]; and Catboost, the state-of-the-art in decision tree-based
boosting [Prokhorenkova et al., 2018]. For instance, it allows trees to be greedily created
from sub-samples of the training dataset. This leads to a reduction in the correlation
between the trees and prevents over-fitness. This variation of boosting is called stochastic
gradient boosting. The main drawback lies in its sensitivity to outliers since every con-
stituent is dependent on the errors of the predecessors in the ensembling pipeline. Another
disadvantage is its scalability and parallelization due to this inner dependence, as as such
we diverge from boosting for our Rashomon learning approach.

2.4 Rashomon Effect

According to D’Amour et al. [2020], a learning pipeline selects a prediction f(X)

from a model space F by minimizing the predictive risk RZ(f) := E(X,Y )∼Z [L(f(X), Y )]

validating that f achieves low expected risk on a second identically distributed
Z = [Y,X]. This validation provides a statistical guarantee of model performance on
unseen data and, as such, we say that in this scenario the model is specified. A pipeline
is underspecified if there are many predictors f that achieve a similar predictive risk,
encompassing a set of equivalent near-optimal predictors. When these encode different
biases, we can expect different generalization behavior on distributions that differ from Z.
This notion is closely related to the Rashomon effect of statistics of Breiman [2001a], also
known as the multiplicity of performant models, and which can be exploited to obtain
insights from the explored problem.

The Rashomon set represents the study of a set of close-to-optimal models that
share similar performance due to the Rashomon Effect. In Fisher et al. [2019] definition,
we need a comparison to some key reference model, which will be denoted as fref . This
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Figure 2.2: Hypothetical ε-Rashomon set within a model class F . The y-axis represents
the loss of each model and the x-axis the model’s reliance on X1.

Source: Fisher et al. [2019]

fref can be derived from expert knowledge such as, for example, a flowchart used to predict
injury severity in a hospital’s emergency room, or from another quantitative decision rule
that is currently implemented in practice. This prespecified reference model will serve as
a baseline performance. Thus, if we establish ε as the maximum accepted error about
fref to consider a model as part of a subset compromised by fref , we can denote the
ε-Rashomon set as:

R(F , ε) := {f ∈ F : E[L(f, Z)] ≤ E[L(fref , Z)] + ε} (2.2)

where E denotes expectations with respect to the population distribution, L is some
nonnegative loss function. The ε metric takes into account models that might be arrived
at due to differences in data measurement, processing, filtering, model parameterization,
covariate selection, or other analysis choices.

Further, let x1 ∈ X be a feature that model fref rely upon to reach a prediction.
This reliance metric has a direct relationship with the explanation of the model. We
can expect models that rely too heavily on x1 to be prone to high variance, leading to
low performance. Likewise, models that rely too laxly on x1 are prone to high bias, also
leading to low performance. The model reliance (MR) of variable x1 can be computed as
the increase in expected loss when the contribution of this variable is removed by random
permutation. Figure 2.2 illustrates a hypothetical Rashomon set R(ε), within a model
class F . The range of all possible MR values inside this class gives rise to the notion of
Model Class Reliance (MCR), shown in blue, and helps us define a minimum (MCR−(ε))
and maximum (MCR+(ε)) value of MR to render a model f to be within the class of
models defined by fref , ε and X. These models compromise the set of performant models
that also share a similar reliance on the predictor variables as the reference model fref .
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Semenova and Rudin [2019] extend the definition of a Rashomon set by defining the
anchored Rashomon set. Given a threshold γ that restricts the empirical risk of a model
concerning a loss function σ, we denote the anchored-Rashomon set R̂(F ′, γ) as the subset
of models with expected loss no more than γ, defined by R̂(F ′, γ) := {f ∈ F ′ : L̂(f) ≤ γ}.
There are two key distinctions between Semenova’s and Fisher’s definitions. The first is
that a threshold is employed to define the Rashomon set instead of a prespecified reference
model, which in turn makes it independent of the choice of an anchor model. The second
is that it measures directly the empirical Rashomon set instead of making assumptions
regarding the true Rashomon set concerning empirical observations.

As a theorem, let F1 and F2 be hypothesis spaces such that F1 ⊂ F2. For instance,
F1 could be the less complex empyrical hypothesis space, and F2 be the true complete
hypothesis space. Further, let the expected loss σ be bounded by b such that σ(f2, z) ∈
[0, b]∀f2 ∈ F2, ∀z ∈ Z with, again, Z = [Y X]. We can define an optimal function
f ∗2 ∈ argminf2∈F2L(f2). Thus, f ∗2 is the model with the smallest loss among all models
contained within F2. If we assume that the true Rashomon set is large enough to include
a function f ′1 ∈ F1 such that f ′1 ∈ R(F2, γ) is also true then, for any ε > 0 with probability
at least 1− ε concerning the random draw of data:

|L(f ∗2 )− L̂(f̂1)| ≤ γ + 2b

√
log|F1|+ log2− logε

2n
(2.3)

where f̂1 is the model with the lowest loss among all models within F1.
This implies that the difference between the smallest empyrical error found in F1

is close to the smallest true error found in F2 and we can approximate an optimal model
for F2 with the best empirical model within F1. Another finding of Semenova and Rudin
[2019] is that we can create F1 by random sampling of F2. If we sample sufficiently many
models from F2, with a high probability there will be a model from F1 that will be within
the Rashomon set of F2. If R(F1, γ) is large enough to include a function f ′1 ∈ F1 such
that f ′1 ∈ R(F2, γ), then the difference between the losses of the best models found within
R(F1, γ) and R(F2, γ) is small. Figure 2.3 illustrates both of these ideas. Semenova and
Rudin [2019] provides a Theorem with these previous statements, reproduced as follows:

Lemma: For any models f, f ′ ∈ F that are in the true anchored Rashomon
set, we have |L(f)− L(f ′)| ≤ γ.

Proof: Consider two models f and f ′ from the true anchored Rashomon set.
Let L(f) = γ′ and L(f ′) = γ′′. Then if γ′ > γ′′ : L(f)− L(f ′) = γ′ − γ′′ ≤ γ,
otherwise L(f ′)− L(f) = γ′′ − γ′ ≤ γ′′ ≤ γ. Combining these inequalities, we
get the statement of the lemma.

model f̃1 ∈ F1 such that f̃1 ∈ Ranc
set (F2, γ). In that case, for any ε > 0 with

probability at least 1− ε with respect to the random draw of data:
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Figure 2.3: Relationship between different hypotheses spaces Rashomon sets.

(a) Risks of F1 and F2 are close if there exists a model
f̃1 in the intersection of F1 and R(F2, γ) if F1 ⊂ F2.

(b) Sampling enough models from
F2 to be included in F1 leads to
high probability of a model from
F1 to be in R(F2, γ).

Source: Semenova and Rudin [2019].

|L(f ∗2 )− L̂(f̂1)| ≤ γ + 2b

√
log|F1|+ log2− logε

2n

Proof of Theorem: We apply the union bound and Hoeffding’s inequality to
the Lemma. The result is that with probability at least 1− ε for every f1 ∈ F1

we have, for a finite hypothesis space F1:

|L(f1)− L̂(f1)| ≤ 2b

√
log|F1|+ log2/ε

2n
.

Combining this Occam’s razor bound with the definition of
f ∗2 ∈ argminf∈F2L(f) we get that, under the same conditions:

L(f ∗2 ) ≤ L(f̂1) ≤ L̂(f̂1) + 2b

√
log|F1|+ log2/ε

2n
.

By assumption of the theorem, there exists a function f̃1 ∈ F1 such that
f̃1 ∈ Ranc

set (F2, γ). Since f ∗2 is an optimal model, then f ∗2 ∈ Ranc
set (F2, γ) is one as

well. From the lemma |L(f ∗2 ) − L(f̃1)| ≤ γ, which implies
L(f̃1) ≤ L(f ∗2 ) + γ. Given that f̂1 ∈ argminf∈F1L̂(f), and using the equa-
tion, we get that with probability at least 1− ε, we have:

L̂(f̂1) ≤ L̂(f̃1) ≤ L(f̃1) + 2b

√
log|F1|+ log2/ε

2n
≤ L(f∗2 ) + γ + 2b

√
log|F1|+ log2/ε

2n

Combining the previous two equations we obtain:
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|L(f∗2 )− L̂(f̂1)| ≤ γ + 2b

√
log|F1|+ log2/ε

2n

[Semenova and Rudin, 2019]

The theorem provides a bound on the difference between the expected value of the
loss function of two models: f̂1 in the hypothesis space F1 and f ∗2 in the hypothesis space
F2. The loss function L is evaluated on the Rashomon set. The bound is dependent on
the presented lemma pertaining to the difference between the losses of the two models
L(f1) and L(f ′), which in the theorem represent L(f ∗2 ) and L̂(f̂1), and also on the size
of the hypothesis space log|F1| and the tolerance ε. The theorem states that with a high
probability, the expected loss of the model f̂1 ∈ F1 will be close to the expected loss of
the optimal model f ∗2 ∈ F2.

Occam’s Razor bounds and Hoeffding’s inequality are used in the theorem to
provide a probabilistic bound on the difference between the expected value of the loss
functions. Occam’s Razor bounds help ensure that the model is not over-complicated,
by penalizing complex models. In this theorem, the Occam’s Razor bound provides
a term proportional to the square root of log|F1|, which becomes smaller as the size
of the hypothesis space F1 becomes smaller, thus becoming more restrictive. Hoeffd-
ing’s inequality is a concentration inequality that provides a bound on the deviation
of the sum of independent random variables from its expected value. In this theorem,
Hoeffding’s inequality is used to provide a term that becomes smaller as the number
of samples increases or as the error tolerance ε decreases. By combining these two
bounds, the theorem provides a probabilistic bound on the difference between the ex-
pected value of the loss function of two models, penalizing both the complexity of the
models and the deviation from the expected loss value. This in turn leads to the fol-
lowing proposition of Fisher et al. [2019]: for a loss σ bounded by b and for any ε > 0,
with probability at least 1 − e−2n(ε/b)2 for the random draw of data, if f ∈ R̂(F , γ) then
f ∈ R(F , γ + ε).

From these definitions, many works have exploited the Rashomon effect to gain
insights into the solution space. Marx et al. [2020] explore the concept of predictive mul-
tiplicity, the ability of a prediction problem to admit competing models with conflicting
predictions, which can be seen as a restriction on the Rashomon set. Kissel and Mentch
[2021] search for an entire collection of plausible models via a forward selection approach
and resampling the training dataset to account for uncertainty. Dong and Rudin [2020]
introduces the notion of variable importance cloud mapping every variable to its impor-
tance for the Rashomon set, and experimenting on criminal justice, marketing data, and
image classification tasks, while Ning et al. [2022] performs a similar approach but using
Shapley values as a measure of importance. There is also relevant literature regarding
Rashomon sets and a specific learning algorithm of choice. For instance, Ahanor et al.
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[2022] and Danna et al. [2007] both look for the set of near-optimal solutions for inte-
ger linear programs while Xin et al. [2022] restrict their analysis of the Rashomon set
to Decision Trees. However, to the author’s knowledge, building an ensemble from the
Rashomon set is a novel idea.
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Chapter 3

Method

We consider a supervised learning scenario and formulate a classification model as a func-
tion f(X, Y ; θ) parameterized by θ that maps inputs xi ∈ X to labels yi ∈ Y . During
cross-validation, we train models on data Dtrain coming from a distribution T . We can es-
timate the predictive risk of each function by employing additional data Dtest correspond-
ingly coming from T and evaluating fn ∈ F on this independent and identically distributed
data. Usually, the most straightforward way to achieve this is to draw dataD and hold out
a set of instances selected completely at random, guaranteeing that [D,Dtrain, Dtest] ∼ T ,
Dtrain ∪Dtest = D and Dtrain ∩Dtest = ∅. The standard model selection step consists in
selecting the function that minimizes the empirical predictive risk. If future data follow
the same distribution T , we obtain a guarantee of performance. These guarantees do not
hold for other distributions such as when drift happens.

Let T be the train distribution of the source data, and U be some unknown distri-
bution from another dataset. Candela et al. [2009] defines data drift as a change in the
joint distribution of features. That is:

P (xt, yt) 6= P (xu, yu) (3.1)

Probably approximately correct learning relies on the independent and identically dis-
tributed assumption between data distributions to estimate the empirical risk of a learn-
ing function. If we verify data drift, we cannot guarantee that the empirical risk is close
to the real risk. That is if U 6= T , then the risk found during cross-validation may be
inaccurate and model behavior becomes unpredictable.

We can decompose P (x, y) = P (x) × P (y|x). Thus, if we verify data drift, we
could assume that it might come from two sources. We can observe a change in P (x)

(covariate drift), or a change in P (y|x) (concept drift). As stated by Moreno-Torres
et al. [2012], covariate drift is tied to the distribution of a variable, while concept drift
implies that the relationship between the target and predictor changes between datasets.
Finally, it’s possible that both P (x) and P (y|x) present significant differences from the
original distributions, which we define as dual drift. Overall, data drift can be stated as
a phenomenon in which the statistical properties of a target domain change over time in
an arbitrary way [Lu et al., 2014].
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Our main objective is building a diverse ensemble compromised of different and
contrasting explanations for the same problem. As a secondary objective, we would like
to estimate the reliability of our predictions under uncertainty due to the presence of an
unknown data distribution U , which may contain drift when compared to the training
data distribution T . We start our investigation by understanding how a model can behave
when the differences between one execution and another may be only minor. Under this
framework, θ encompasses any choices made during the training procedure that lead to
virtually similar models possessing contrasting performances. We then introduce drift to
the test data and once again evaluate its effects on each model.

Our hypothesis is three-fold and centered around the Rashomon effect. First, that
individual model behavior under this new data distribution correlates to behavior under
unseen distributions. Second, that electing models from the Rashomon set that disagree
under this new test data enable the induction of an ensemble that tends to agree under
distributions similar to training and disagree on other situations. And finally, that these
learned insights are exploitable to real-world applications, addressed in the later Chapters.

Learning a model from the data space requires the minimization of an objective
function f(x). Instead of simply mixing multiple different structures into a single model
x and minimizing f(x), we can sample the model space by minimizing different functions
f(x′), such that x′ ⊆ x and |x′| < |x| [Zuin et al., 2020]. When considering Rashomon
sets, optimizing inside this subspace is similar to optimizing in the complete model space
if the subsample is large. In the absence of expert knowledge regarding the problem
or a baseline, the loss obtained by a model trained on the whole set X should prove a
suitable value for the stipulation of the Rashomon set. As the model space F ′ may contain
models with competing explanations about their decisions, we want to build an ensemble
exploiting two concepts:

• The concept of diversity between individual models. We recognize diversity as a
central element to getting a more general understanding of any phenomenon. We
assume that problems are not tied to a single causative factor, and that causative
factors may vary depending on factors that might not be directly intuitive. To
promote diversity while finding patterns, we cluster models in F ′ based on the
distance between their explanation vectors (i.e., SHAP values). Ideally, this creates
numerous groups of models that are internally dense and also separated from the rest
of the models in terms of their explanatory factors, that is, within each cluster, the
explanatory factors are similar, while factors within disjoint clusters are dissimilar.

• The concept of stability between model explanation and empirical predictions [Shmueli,
2010]. This is also tied to Occam Learning [Blumer et al., 1987]. We define a con-
figuration of clusters as stable if models within the same cluster are associated with
the same explanatory factors and perform similar predictions. Achieving cluster sta-
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bility is challenging, as models that perform similar predictions can be associated
with very different explanatory factors.

To assess prediction-explanation stability, we cluster the model space based on the dis-
tance between the explanation vector associated with each model, and then we project
the clusters into the prediction space. This enables us to locate different Rashomon sub-
groups inside the Rashomon set and select models from each subspace. If we evaluate
one constituent model at a time, the remaining constituents of the ensemble serve as hint
models to address new data distribution. If it agrees with the remainder of the ensem-
ble, this is indicative of prediction stability. But to study the Rashomon set for a given
problem, we need to sample models from the complete model space. See Algorithm 1 for
the pseudo-code regarding our ensemble learning approach, in which each step is further
described in this chapter.

3.1 Deriving an Ensemble of Models from the

Rashomon Set

We assume a factorial combinatorial space encompassed by all feature combinations
constrained to a single learning algorithm. A key question is defining how many models
to sample to guarantee the diversity of the Rashomon set. We assume that for a model
to be considered within a specific Rashomon subset, it needs to contain a nonempty set
of key features K that characterize the evaluated subspace. That is, there exists a region
in the complete model space characterized by the nonempty F feature set that show
complex correlations among a specific set of K features and the target label and the same
correlations are not necessarily so strongly observed in other regions of the data space
thus inducing a Rashomon subspace. This corroborates with the notion of Model Class
Reliance and its relationship with the Rashomon set proposed by Fisher et al. [2019]. The
complete model space is characterized by models from size s = 1 to F . If we also consider
the ∅ model to be a part of the complete model space, then there are FC0+FC1+ ...+FCF

models. From the binomial theorem:

FC0 + FC1 + ...+ FCF =
F∑
s=0

FCs = 2F (3.2)

For any model with less than |K| features, intuitively it cannot contain all features
from K. Furthermore, |K| ≈ |F | implies that nearly all features must be present for a
model to be part of the Rashomon subset. In this scenario, it is unlikely that there exist
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multiple Rashomon subsets as the Rashomon ratio will be small. We limit our scope to
problems in which |K| << |F |. For simplicity, we shall disregard our equations models
with less than K features. The number of models containing K is:

F∑
s=0

K!(F −K)!

s!((F −K)− (s− |K|))!
=

2F

FCK
(3.3)

Combining the results of Equations 3.2 and 3.3 we obtain:

models containing K
total models

=
2F

FCK

2F
=

1

FCK
(3.4)

If we sample an arbitrary model from the complete model space, the probability
of this model not containing K is (FCK − 1)/FCK . From Equation 3.4, if we wish to
guarantee that a given pattern is present with α probability we need to sample at least:

η =
ln(1− α)

ln(1− 1

FCK)

(3.5)

For F = 75, K = 3 and α = 0.90 one needs to sample at least 155 481 models. It is
important to highlight that since a subset containing K span up to |F | − |K| smaller
subsets with |K| + 1 key features, this equation addresses the limit regarding the most
specific patterns able to be found by sampling.

3.2 Time Complexity

Due to the large sample size, the time complexity of the algorithm needs to
be addressed. In the experiments highlighted in our case studies we consider Decision
Trees as base models for ensemble constituents, as they possess the advantage of being
human-understandable, are not ensembles themselves, and allow for a fair comparison of
the Rashomon ensemble to other tree-based state-of-the-art algorithms such as Gradient
Boosted Machines or Random Forests, which are ensembles of Decision Trees themselves.
As such, we will provide the complexity of running our proposed approach employing
Decision Trees as base models.

Let I be the number of instances on a dataset, F be the number of features, and
D be the maximum tree depth. The time complexity of training and explaining a tree
is O(log(F )ID +D2) Lundberg and Lee [2017]. Since we sample T trees to evaluate the
Rashomon space with both log(F ) and D being small constants, and since other steps
present negligible complexity in comparison to the sampling stage, this results in O(TI)

complexity. That is, the time to train and explain T decision trees that employ log(F )
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features on the I sized data. However, it is extremely unlikely that all sampled models
will lie within the Rashomon set, thus not all sampled models will need to be explained.

The main advantage of employing a Rashomon set lies in severely reducing the
number of models to be evaluated. For instance, any model with a loss close to random
guessing is unlikely to present itself as a useful constituent. In real-world scenarios,
only a small fraction of the sampled models will need to be explained. We can then
compare the outputs of each base decision tree on a controlled test set and evaluate the
agreement of constituents to establish the ensemble final prediction. The agreement of
the ensemble is used as a proxy for empyrical uncertainty estimation. If the constituents,
all of them independent and encompassing different biases, disagree even though during
training they mostly agreed, then this should be an indicator of uncertainty. But to induce
these independent constituents, we also need to adrees how to split the Rashomon set to
uncover the different data biases regions. That is, the different regions of the Rashomon
set that show complex correlations among specific sets of features and the target label
and which are not necessarily so strongly observed in other regions.

3.3 Splitting the Rashomon Set

We represent how model f ′ explains a phenomenon as a d-dimensional vector
S(f ′) = [e1; e2; ...; ed] showing which features [x1, x2, ...xd] are driving the model’s pre-
diction. If among a pair of models, the importance given to some feature varies wildly
then this is an indicator that behavior in production may likewise vary. We wish to split
the Rashomon set into cluster given the vector representation of each model within. We
used K-Means to induce this division, finding a suitable number of clusters by maximizing
the silhouette value. The silhouette is a measure of how similar a model is to its cluster
(cohesion) compared to other clusters (separation) and ranges from −1 to +1, where a
high value indicates that the model is well matched to its cluster and poorly matched
to neighboring clusters. If the clustering presents a high average silhouette value, then
its configuration is appropriate. In out experiments, we were able to determine that the
groupings are divided primarily by which features compose their models. There usually
exists a small subset of key features that are only present in models from one cluster, and
absent in the remaining ones. The presence of this subset leads to these models being
close in the feature preference space, since cohesion values are relatively high, and leads
to concise and well-divided clusters.
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3.4 Kullback-Leibler Divergence and Unknown Data

Distributions

Consider two decision tree models fp and fq training optimizing the cross-entropy
function on the same data coming from the distribution T but that, due to some arbitrary
parameterization of θ, differ from one another in their first split of features x1 and x2 while
achieving the same empirical risk on a held-out test set. This leads to the importance of
these features on fa and fb differing even though both equally fit the source data, implying
the existence of multiple solutions for the same problem. Since S(fp) 6= S(fq) due to the
first split, we have no guarantee nor insight into their behavior on data drawn from an
unknown distribution U . We could compute the empirical risk of models fp and fq on U
to assert that the empirical risk remains small, but if data from U is unlabeled we cannot
perform this estimation. But we can compare the probabilities returned from these two
similar models to indirectly measure their risk.

Let P be the probability distributions returned from a model fp, and we wish to
compute a metric that estimates the risk of selecting it in production. Further, let Q
be the probability distribution from a model fq that ideally behaves similarly to fp. As
shown by MacKay and Mac Kay [2003], we can compute the error of P from Q by the
cross-entropy between P and Q as:

H(P,Q) = H(P ) +DKL(P ||Q) (3.6)

Since the entropy H(P ) is inherent to fp regardless of the choice of fq, we can omit
it from our calculation and instead focus on the Kullback-Leibler (KL) divergence DKL,
representing the expected excess surprise from usingQ to approximate P . During training,
we can restrain the choice of fq to only models that achieve a statistically equal empyrical
risk to that of fp, that is, the Rashomon effect. We can also compute the KL divergence
between both of these models under the test data distribution T ′. In our experiments ee
empirically verified small KL for the held-out test set for models within the Rashomon
set.

We can then compute the KL divergence between these models under the unknown
distribution U . If P and Q agree (i.e. low KL divergence) then we have a strong indicator
that U should be similar to T . However, if P and Q are contrasting (i.e. high KL
divergence), then it might be the case that U differs from T , and the returned predictions
cannot be trusted. It can even be the case that the evaluated point is an outlier, whose
feature domain lies outside the one seen during training. The main drawback of employing
Kullback-Leibler divergence is that it is non-symmetric. That is, DKL(P,Q) might be
different from DKL(Q,P ). To avoid confusion, we opt to employ the Jensen-Shannon
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distance defined by Endres and Schindelin [2003] as our metric of choice for a measure of
risk. Let M = (P + Q)/2, the Jensen-Shannon distance (JSD) is the total divergence to
the average distribution:

JSD(P,Q) =

√
1

2
DKL(P,M) +

1

2
DKL(Q,M) (3.7)

3.5 Searching for Optimal Constituents

In summary, we verify that looking at the explanatory factors in isolation is not
enough to observe meaningful patterns. In our preliminary experiments, we find instances
of models with similar SHAP but contrasting predictions as well as contrasting SHAP but
similar predictions. The choice of a fq model to estimate the risk of the target constituents
becomes a challenging task. We propose performing a controlled transformation in T to
create a simulated production dataset. This should enable us to estimate model behavior
in an out-of-distribution scenario. Namely, the transformation employed over data drawn
from T consists of adding Gaussian noise to the input features such that yi = f(xi + εi)

and εi ∼ N(0, σ2). We can then select models that have contrasting explanations and
predictions. There are many possible data transformations. We opt for the addition of
gaussian noise due to its simplicity and ease of computing the exact feature distortion.
In many real-world scenarios, gaussian noise might not be the closest representative of
divergence. However, we verify that this simple transformation is enough to induce large
changes in model behavior and enable our ensemble learning approach.

Further, not all variables are relevant for prediction, and some features may even be
detrimental. To find a set of relevant features to induce the Rashomon set, we represent
the model space as a directed acyclic graph (DAG) in which each node represents a
distinct feature subset, and vertex A → B is connected if B can be reached by simple
feature addition from A, thus representing a transitive reduction of the more complex
combinatorial complete model space. This modeling approach presents two desirable
properties: the first being that any vertex is reachable from the [∅] model, the second
being that there exists a topological ordering, an ordering of all vertices into a sequence
such that for every edge, the start vertex occurs earlier in the sequence than the ending
vertex of the edge for any feature set path. These properties imply a partial ordering of
the graph starting from the root node, which allows us to search it in an orderly manner.
It has been shown that this modeling approach is effective for the task at hand [Zuin
et al., 2021, 2022a].
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We can, for example, apply the A* algorithm [Hart et al., 1968] employing as
heuristic the performance of the model represented by the feature set of a given vertex
and the Jensen-Shannon distance to the predictions of the remaining Rashamon subgroups
clusteroids. We hypothesize that there exists a set of optimal feature expansions that
lead to the most performant models for each specific base task. After sampling models
and clustering them by their explanatory factors, we can build a single graph for each
cluster and prune it. If after sampling a large number of models we do not verify the
existence of a feature in any of the models about a specific grouping, we can prune all
vertexes concerning this feature from the cluster’s graph. This allows us to search the
F ! combinatorial space of feature subsets to select the best-performing specialized models
and build the Rashomon ensemble. Algorithm 1 presents the pseudo-code of our complete
approach.

Input: Set of available features F , train dataset Z, number of models to sample
n, maximum model width m, and error margin ε

Output: List of models constituting the ensemble

initialize pool P with n models containing random combinations of features from
F
Href ← choose a reference model to establish the Rashomon set
set R as an empty list
for each Hi ∈ P do

if E[L(Hi, Z)] ≤ E[L(Href , Z)] + ε then
R.insert((Hi, explanation(Hi))

end
end
cluster R into C given the explanation of each Hi ∈ R
find the D clusteroids of C
set E as an empty list
for each cluster c ∈ C do

Hc ← the candidate model for expansion
while |Hc| ≤ m do

find the feature f that minimizes E[L({Hc, f}+
D−Hc∑
Hd

{Hd}, Z)]

assert {Hc, f} ⊂ c
Hc.insert(f)

end
E.insert(Hc)

end
return E

Algorithm 1: Rashomon ensemble algorithm.
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3.6 Related Work

The idea of capturing model uncertainty by exploring the relationship between test
points and the learned model is not new. Typical approaches include building an ensemble
of models and measuring inter-model variance [Madras et al., 2020] or learning a scoring
rule that captures ambiguity in targets [Lakkaraju et al., 2017, Lakshminarayanan et al.,
2017]. However, most recent research on this topic has been mainly focused on Neural
Networks and how they learn intermediary features. More specifically, the state-of-the-
art approaches to Out-of-Distribution (OoD) detection enrich the intermediate feature
space beyond what would ordinarily be learned via only supervised learning, such as en-
couraging a model to learn as many high-level task-agnostic semantic features as possible
[Winkens et al., 2020] or employing an additionally labeled outlier dataset during training
[Hendrycks et al., 2019]. When one cannot look at the intermediate feature space, most of
the mentioned approaches fail. As mentioned by Chen et al. [2021], this sort of approach
possesses two drawbacks: the first is that models trained to identify OoD may fail to cover
the whole data distribution. And the second is that explaining the source of OoD may
be non-trivial.

The key difference in our work lies in the analysis of additional unexplored axes,
such as the decision-making process of a model via their explanatory factors [Lundberg and
Lee, 2017]. A second key idea is to exploit the Rashomon Effect to look for models with
similar performance during training. Both of these propositions enable an explanation of
the risk metric by assigning importance to the factors leading to each model decision and
comparing both. Further, our approach is algorithm-agnostic, and reproducible in any
model that handles tabular data. We can therefore summarize three pivotal points under-
lying our approach: understanding that production data may fall in out-of-distribution
data; the multiplicity of performant models; and the explanatory factors behind a model
decision. Finally, we present in this section some other relevant definitions to understand
the context and project decisions behind our approach:
Underspecification: Underspecification in deep learning arises when models achieve
similar in-sample performance but present divergent behaviors in out-of-sample data.
This is a problem when some of these models perform significantly worse when employed
in production and thus present a challenge for proper model selection [D’Amour et al.,
2020]. Although underspecification literature has been focusing on the emergence of this
phenomenon in deep neural networks, in which underspecification mainly arises from
the elevated number of optimized parameters [Bui Thi Mai, 2021, Ortiz-Jiménez et al.,
2021], Mei and Montanari [2019] state that this phenomenon is common to any machine
learning pipeline. Damour et al. observed that repeating a training process can generate
many models of identical test performance but significantly different behaviors, even when
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performing only minor perturbations such as selecting a different random seed. This in
turn differentiates each created model into small arbitrary learning decisions and, even
though these differences are usually considered minor, the consequence is varying degrees
of performance seen in the real world. As such, underspecification is closely tied to the
Rashomon effect.

Rashomon Effect: Fisher et al. [2019] analyzes the set of models with accuracy close to
the optimal model. From this set, they formally defined the concept of Rashomon Set, this
being the subspace of the universe of models that summarize the range of effective predic-
tion
strategies that an optimal analyst might choose. Semenova and Rudin [2019] delve deeper
into the theme of the Rashomon Effect in machine learning, giving pertinent definitions
about the generalization of the Rashomon Set as well as its format and volume. In par-
ticular, it is explored in which situations it is possible to obtain a sample of the model
space such that the properties related to Rashomon in this subspace are similar to those
of the sample universe.

As discussed previously, the Rashomon set thus compromises a study of a set
of close-to-optimal models that share similar explanations and performance due to the
Rashomon Effect. For that, we need a comparison to some key reference model, which
will be denoted as fref . Fisher suggests that fref can be derived from expert knowledge
or from some quantitative decision rule that is implemented in practice. This prespecified
reference model will serve as a baseline performance which, when coupled with a maximum
error margin ε, estabilish the Rashomon set R(F , ε) of Equation 2.2.

Rashomon ratio: Semenova and Rudin [2019] also explore the shape and volume of the
Rashomon set. In their study, they define the Rashomon ratio, that is, the fraction of
models inside the Rashomon set derived from the complete model space. This can be
computed as

Rratio =
|R|
|H|

(3.8)

in which R represents the Rashomon space and H is the complete hypothesis space.
The exact computation of the Rashomon ratio requires evaluating all possible h ∈ H,
which is untractable. We can approximate the R̂ratio by random sampling models from
the complete model space and checking the number of sample models that lie within
the Rashomon set. Most of our proposed approach relies on sampling the model space
and evaluating the empirical Rashomon set which, if large enough, holds guarantees of
similarities to the real Rashomon set.

Model Explanation: Instead of the model reliance metric proposed by Fisher et al.,
another possible approach is the one presented in Lundberg and Lee [2017]. Shapley
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Additive Explanations (or simply SHAP), is the usage of Shapley values to interpret a
prediction model. We represent how model f ′ explains the data as a d−dimensional vector
E(f ′) = e1, e2, . . . , ed showing which features are contributing most to the model’s pre-
diction. The Shapley value is a concept in cooperative game theory by Shapley [1953]. In
each game, a unique distribution of the rewards generated by the cooperation of all play-
ers given is provided. There are many other feature attribution methods [Breiman et al.,
1984, Ribeiro et al., 2018, Saabas, 2014] but, as highlighted by Hinns et al. [2021], both
sound mathematical foundation and ease of implementation make SHAP ideal for under-
specification identification. Further, SHAP is the only method with the three desirable
properties:

• Local accuracy: the explanations are truthfully explaining the model.

• Missingness: missing features have no attributed impact on the decisions.

• Consistency: if a model changes so that some feature’s contribution increases or
stays the same regardless of the other features, that feature’s attribution should not
decrease.
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Chapter 4

Exploring the Rashomon Set

We assess the statistical significance of our measurements through a pairwise t-test with
p-value ≤ 0.05 and 5-fold cross-validation. No hyperparameter tuning was performed in
any of the algorithms employed, opting to keep their default values across all datasets. We
evaluate the performance of both classical and state-of-the-art algorithms for tabular data,
namely Random Forests [Breiman, 2001b], LightGBM [Ke et al., 2017a], XGBoost [Chen
and Guestrin, 2016] and Multi-layer Perceptron Neural Networks [Murtagh, 1991] with a
single hidden layer of 100 neurons. For the LightGBM and XGboost models, we set the
subsample probability to 50% to both avoid overfitting given the size of the evaluated
datasets and introduce some stochastic behavior. We hold out 20% data from all training
datasets to perform our evaluations, leaving the remaining 80% for training employing
the SMOTE [Chawla et al., 2002] algorithm to upsample the minority class. All models
were trained to optimize the binary cross-entropy function.

Five datasets were employed in our exploratory stage, one consisting of a classical
open-source dataset that has been employed in numerous studies, thus allowing for easy
reproducibility of results. The remaining four consist of data from pairs of co-related
tasks that were collected in different locations. Table 4.1 summarizes the mean AUROC
of each algorithm on each dataset. As expected, the performance variance on data from
the same distribution is smaller than those on co-related ones.

WDBC: TheWisconsin Breast cancer dataset is composed of 569 diagnosis of breast mass
usually associated with breast cancer alongside 32 features from a digitalized image of a
fine needle aspirate (FNA) [Street et al., 1993]. Each feature describes the characteristics
of cell nuclei present in a breast image. The problem is formulated as a binary classification
task, where the end goal is to predict the presence of malignant tumor cells.

COVID: The COVID-19 Data Sharing/BR is an initiative of the São Paulo Research
Foundation (FAPESP) in collaboration with a variety of local hospitals to publish open
COVID-19 data to contribute to and foster research [FAPESP, 2020].
Pseudonymized data regarding clinical and laboratory exams, as well as
hospitalization information, is available. We collected data from two key
institutions in Brazil, the Beneficência-Portuguesa hospital (HBP), consisting of 91 648
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exams, and from the Sírio-Libanês hospital (HSL), consisting of 37 643 exams, both of
which share a similar set of biomarkers that we employ as features. The problem is formu-
lated as a binary classification task, where the end goal is to predict the death prognosis of
a patient 20 days before the event. We propose training on HBP data and evaluating HSL
as our production stage representing the unknown U distribution that might be subject
to drift. After filtering non-hospitalized patients, the training dataset consists of exams
from 453 individuals hospitalized on HBP, and the production dataset consists of exams
from 4 018 individuals hospitalized on HSL.

Alzheimer Disease: These datasets comprise data from patients who may suffer from
Alzheimer’s Disease symptoms. Each patient is represented using features such as gender,
age, education level, and laboratory test results. The outcome indicates whether a patient
is diagnosed with Alzheimer’s Disease or not. The data come from two different hospital
departments, namely: Geriatrics and Neurology. It is important to highlight that each de-
partment receives patients with different socio-economic characteristics, and some groups
might be either under or over-represented in one of the departments. We propose train-
ing on geriatric data and evaluation on Neurology as our production stage representing
the unknown U distribution that might be subject to drift. The neurology department
includes patients that do not classify as geriatric, and thus ensures some degree of di-
vergence. The training dataset consists of exams from 154 individuals admitted to the
geriatrics department and the production dataset consists of exams from 166 individuals
admitted to the neurology department.

Table 4.1: AUROC performance of models on each dataset.

WDBC COVID-19 Alzheimer

Algorithm Beneficência
Portuguesa

Sírio
Libanês Neurology Geriatrics

Random Forest .985 (±.007) .929 (±.015) .903 (±.030) .914 (±.031) .891 (±.040)
LightGBM .982 (±.006) .943 (±.004) .901 (±.013) .907 (±.023) .812 (±.032)
XGBoost .975 (±.009) .935 (±.009) .907 (±.020) .878 (±.031) .848 (±.039)
MLP .996 (±.001) .988 (±.002) .962 (±.014) .703 (±.041) .677 (±.027)

4.1 Understanding Model Behavior

In our first set of experiments, we wish to understand how models differ from one
another when performing only minor changes. The only hyperparameter changed from
one model to another is its random seed and we trained all models on the same data. Thus,
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we study the models within this extremely concise Rashomon set. We elect the WDBC
dataset for this set of experiments due to the vast literature explaining its intricacies. We
progressively introduce Gaussian noise to the validation set, from σ2 = 0 (no-noise) to
σ2 = 0.2 (high noise). Figure 4.1 illustrates each model’s response to the increasing noise
over its inputs. Ideally, we would expect the models’ behavior to be indistinguishable
from one another since they have seen the same training samples. In practice, each model
responds differently to the modified input.

Figure 4.1: WDBC: effect of introducing increasing amounts of noise to the input features.
For all subplots, each row represents a model and each column is a test instance while
color illustrates the returned probability. Columns are ordered by the mean probability
of all models.
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We verify that some models’ predictions are more impaired by noise than others,
implying that each model’s reliance on the feature set differs. The more significant the
amount of noise introduced, as shown in Figure 4.2, the higher the variance between mod-
els’ predictions. This result corroborates with the underspecification observations made
by D’amour et al. in which the differences in each model decision-making process, which
at first are considered minor, can lead to varying effects. Under this controlled scenario,
large amounts of noise introduced resulted in less than 10% in returned probabilities vari-
ation. This was not enough to change the predicted class for most instances, retaining
comparable performance between models.

4.1.1 Divergence in Production

In our second set of experiments, we explore the behavior of models when trained
on one dataset and evaluated on the second dataset of a co-related task. Namely, training
on the Beneficência-Portuguesa COVID-19 dataset and evaluating on the Sírio-Libanês
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Figure 4.2: WDBC: effect of introducing noise to the model’s input features. 5000 models
are evaluated and the mean predicted probability for each test instance is computed. The
greater the amount of gaussian noise, the greater the divergence around the mean average
probability.
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dataset, and training on the Neurology Alzheimer’s dataset and evaluating on the Geri-
atrics Neurology dataset. This scenario represents what might happen when deploying
a model. Like the previous experiments with the WDBC, we also separate 20% of each
training dataset and introduce Gaussian (σ2 = 0.2) noise to it, thus simulating a possible
synthetic deployment dataset. The main hypothesis we wish to answer is whether we can
employ some strategy from the data of this simulated dataset that could help us select a
good deployment model. Further, since we already verified that each model can have a
varying response to a new data generation function, we compute all pair-wise differences
from 5 000 models with their only difference being the random seed, thus representing
12 497 500 point-wise comparisons. This enables us to understand the relationship be-
tween all models within this proposed Rashomon subset without being anchored to a
single reference model. In practice, 100 models were enough to verify our results, but we
sample 5 000 models for better visualization of the found patterns and behaviors. Box-Cox
normalization was employed for clarity.

Figure 4.3 illustrates the comparison of models in the production and training stage
in the COVID-19 pair datasets. We employ the cosine similarity between SHAP vectors
as a means to compute the relatedness in the explanatory factors of each model while
employing the Jensen-Shannon distance to measure the divergence in returned probability
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outputs. Figure 4.4 illustrates how the explanatory factors relate to themselves on the
Alzheimer pair datasets. We also explore other state-of-the-art models on this same
problem and observe a similar pattern across all of them, regardless of the problem or
algorithm of choice.

Figure 4.3: COVID: Relationship between explanation, returned probabilities, and per-
formance. We cannot observe a correlation between performance and either explanation
or the returned probabilities themselves, but we can draw a relation from how similar the
explanatory factors are in training and production and the probability vectors.

(a) Random Forest. (b) LightGBM.

Figure 4.5, on the other hand, shows how the predictions themselves compare
in test and production on the COVID datasets. Although there seems to be a small
correlation in the Jensen-Shannon distance in the two scenarios, there is high variability
across the whole prediction spectrum. We can however verify a relationship between the
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Figure 4.4: Alzheimer: Relationship between SHAP and returned probabilities.

Figure 4.5: COVID - Relationship between the returned probabilities in production and
the noisy test simulation.

(a) Random Forest. (b) LightGBM.

probabilities vectors and the similarity of the explanatory factors, much like in Figures
4.3 and 4.4. We also reproduce this analysis on the Alzheimer’s datasets, summarized in
Figure 4.6.

Combining the results from our two previous experiments, we propose
stratifying the models into two distinct sets and observing their behavior on produc-
tion. The first one is comprised of pairs of models which have high similarity in both
the predictions and the explanatory factors in the noisy simulated test set. We select
only the pairs above the 95th percentile in the SHAP cosine similarity order and below
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Figure 4.6: Alzheimer- Relationship between the returned probabilities in production and
the noisy test simulation.

Figure 4.7: COVID: Rashomon subspaces characterized by high similarity in both ex-
planation and probabilities (95th percentile and above) and low similarity in explanation
and probabilities (5th percentile and below).

(a) Random Forest. (b) LightGBM.

the 5th percentile in the Jensen-Shannon distance ordering. We hypothesize that these
models should likewise behave similarly in production. The second group is composed
of pair of models which have a SHAP cosine similarity below the 5th percentile, and
a Jensen-Shannon distance above the 95th percentile. Analogously, we hypothesize that
these models should diverge from one another in production. Figures 4.7 and 4.8 illustrate
these two groupings in the COVID and Alzheimer’s datasets respectively.
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4.1.2 Choosing Models for Production

Looking at the standard cross-validation performance, all models reach statistically
equal performance and empirical risk on the held-out test set. This can be seen in our
first set of experiments where we do not introduce any Gaussian Noise to the input
features. In this scenario, the variability in model predictions is small. Further, even
under small perturbations, such as σ2 = 0.04, this pattern can still be seen and the
returned probabilities don’t change much. We verify that the explanatory factors of each
model are not similar, implying that the decision-making process differs from one model
to another. We can expect outputs to diverge under other data distributions. For values
of σ2 above 0.1, we verify an increase in the confidence interval margin for the returned
probabilities, thus signifying diverging outputs. We can also draw a correlation between
the distance from the initial data distribution T and the inter-model prediction variability.
This key result motivates all our remaining experiments.

In our production setting experiments, we saw no relationship between either prob-
ability or explanation and an increase in performance. As such, we cannot recommend
any pair for production if this is the only parameter of interest. However, we can observe

Figure 4.8: Alzheimer: Rashomon subspaces characterized by high similarity in both
explanation and probabilities (95th percentile and above) and low similarity in explanation
and probabilities (5th percentile and below). Similar patterns to the ones observed on
the COVID dataset can be seen.
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a direct relationship between the explanation and the probabilities. The more similar the
explanatory factors of the two given models, the more similar the returned probabilities
tend to be. There is also a direct relationship between the explanatory factors in the
test and production. The similarity in returned probabilities allows us to further stratify
models in those that behave similarly in the proposed setting from those that do not. The
same cannot be said when comparing the similarity of probabilities in isolation. We do
verify a weak relationship between outputs in production and under the simulated noise
scenario, but not as strong as the explanation itself. Looking at the intercept between
probabilities and explanations leads to some emerging patterns. This finding is found in
both COVID-19 and Alzheimers experiments and across all algorithms.

We can split the model pairs into two relevant groups given their behavior. Those
with contrasting explanations and predictions, and those with compounding ones. We
can expect pairs of models that behave similarly to one another under the presence of
noise to remain to do so under other distributions. Models that differ under the presence
of noise, on the other hand, might prove more useful. We know that these models do
not diverge in predictions when test and train distributions match. Thus, we can use this
knowledge to derive a risk assessment. If we employ both of these models at production
and they disagree, we have a strong indicator that the new instances seen lie outside
the train distribution. Under this scenario, the cross-validation risk guarantees cease
to hold and we cannot trust the prediction. Analogously, if the models agree then the
distributions should be similar. The threshold of how close the predictions should be to
validate that the distributions match is a work in progress. We suggest that this limit
should be evaluated in a case-by-case scenario, depending on the application and with the
aid of a domain expert. Using the same framework described so far, we can explain why
the models diverge.

Let F be a set of f features, S denote a coalition of features, and ` be a charac-
teristic function over the loss function L. That is, `(S) denotes the worth of a coalition
S and describes the total expected loss that the members of S obtain. If we consider
a pair of models to be a black box and the Jensen-Shannon distance between the pair
predictions as a loss function, then computing the Shapley values of the Jensen-Shannon
distance concerning both model’s input features is akin to finding the optimal payoff for
`(S) following the Shapley axioms. We can encapsule the output of each model, creating a
function `(S) that expresses the Jensen-Shannon distance between any two models reciev-
ing as input F . This enables SHAP to explain the distance between individual model’s
predictions given the data, and is similar to what was proposed by Lundberg et al. [2020],
monitoring a model’s loss employing SHAP and observing the feature importance. Figure
4.9 illustrates an example of employing the SHAP algorithm to explain the difference in
model predictions for a given instance. Because of complex relationships that arise when
training a model, the explanation of prediction difference is not the same as the difference
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in prediction explanation.

Figure 4.9: SHAP explanations for a sample target and anchor model, alongside the
explanation for the difference between predictions. Single production instance for the
Alzheimer dataset, LightGBM with random seeds 114 and 3452.
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4.2 Learning Rashomon Ensembles

In the presence of problems with many possible contrasting or competing expla-
nations, employing the Rashomon sets as a method for obtaining ensemble constituents
can be useful. Even in the absence of such structures, diversity is a desirable character-
istic for any ensemble as it allows the end model to cover a wider region of the solution
space. To support this statement and to verify whether Rashomon sets provide a suitable
tool for model space partitioning, we propose splitting the Rashomon space into clusters,
grouped by the explainability vectors of each model, and creating ensembles composed
solely of models located close to centers of each Rashomon subgroup. We consider the
K-Means algorithm to induce clusters, performing silhouette to obtain optimal K. We
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expand upon our previous datasets by considering a series of open-source datasets, ac-
quired from the UCI machine learning repository [Asuncion and Newman, 2007] and the
OpenML database [Bischl et al., 2017]. Following is a brief description of each problem
in our benchmark suite:

APS Failure: this is the dataset used for the 2016 IDA Industrial Challenge [Costa and
Nascimento, 2016]. It consists of data collected from heavy Scania trucks in everyday
usage. The problem is formulated as a binary classification task consisting of component
failures for a specific component of the APS system

Diabetes readmission: this dataset was submitted on behalf of the Center for Clini-
cal and Translational Research, Virginia Commonwealth University [Strack et al., 2014],
representing 10 years of clinical care at 130 US hospitals and integrated delivery net-
works. The problem is formulated as a binary classification task predicting whether a
given patient will be readmitted to a hospital.

Heart disease: this dataset from the Cleveland database focuses on the diagnosis of
coronary artery disease [Aha and Kibler, 1988]. From several indicators such as age or
pain profiles, the goal is to predict the presence of heart disease in the patient, with
a severity indicator valued from 0 (no presence) to 4. We have focused on the binary
counterpart of this problem, in which we simply attempt to distinguish presence (value
1,2,3,4) from absence (value 0).

MADELON: this is an artificial dataset containing data points grouped in 32 clusters
placed on the vertices of a five-dimensional hypercube and randomly labeled +1 or -1,
being one of five datasets used in the NIPS 2003 feature selection challenge [Guyon et al.,
2004]. The problem is formulated as a binary classification task separating examples into
two classes.

MAGIC: this dataset is composed of a series of Monte Carlo simulations regarding the
registration of high-energy gamma particles in a ground-based atmospheric Cherenkov
gamma telescope (Major Atmospheric Gamma Imaging Cherenkov Telescope project,
MAGIC) [Bock et al., 2004]). The problem is formulated as a binary classification task dis-
criminating the patterns caused by primary gammas (signal) from the images of hadronic
showers initiated by cosmic rays in the upper atmosphere (background).

Nursery: this dataset was derived from a hierarchical decision model originally developed
to rank applications for nursery schools, thus constituting the Nursery Database [Olave
et al., 1989]. The final decision depended on three subproblems: the occupation of the
parents and child’s nursery, family structure and financial standing, and the social and
health picture of the family. The goal is to predict the final decision, ranging from not
recommended to priority. We have focused on the binary counterpart of this problem, in
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which an applicant was given either a priority recommendation or not.

Speed dating: this dataset was gathered from participants in experimental speed dating
events from 2002 to 2004 [Fisman et al., 2006]. During the events, the attendees would
have a four-minute "first date" with every other participant of the opposite sex. At the
end of their four minutes, participants were asked if they would like to see their date
again. The problem was formulated as a binary classification task in which, given each
participant’s questionary responses and characteristics, the goal is to predict whether both
participants would like to date each other again.

WDBC: this dataset is composed of features computed from a digitized image of a fine
needle aspirate (FNA) of a breast mass associated with breast cancer [Street et al., 1993].
The problem was formulated as a binary classification task, in which the end goal is to
predict the presence of malignant tumor cells.

Wine quality: this dataset is composed of chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars [Aeberhard et al., 1992]. The
analysis determined the quantities of 13 constituents found in each of the three types of
wines. The end goal is to predict the wine quality score, ranging from 0.0 to 8.0, given
its chemical characteristics. We have focused on the binary counterpart of this problem,
in which we wish to predict whether a given wine is of high quality (>5) or not.

Table 4.2 summarizes our comparison between our approach and classic and state-
of-the-art algorithms. In our experiments, we sample 100 000 decision trees to guarantee
a minimum subset diversity and train a meta-model to combine constituent outputs in a
stacking ensemble. Figures 4.10a and 4.10b illustrate some Rashomon subspaces.

Table 4.2: Benchmark suite results.

Benchmark Baseline Algorithm Rashomon

Dataset Instances Features Decision AdaBoost GBM Random XGBoost LGBM CatBoost Ensemble Ratio
Tree Forest size

APS Failure 76000 172 .866 .824 .806 .869 .835 .853 .888 .911 12.4%
Diabetes 101766 1691 .544 .614 .609 .599 .615 .616 .619 .618 17.4%
Heart 303 171 .748 .787 .793 .826 .796 .830 .834 .839 50.3%
MADELON 2000 502 .764 .598 .782 .694 .828 .832 .852 .746 < 0.5%
MAGIC 19020 102 .808 .830 .812 .857 .837 .850 .850 .848 19.4%
Nursery 12630 784 .999 .999 .964 .999 .991 .999 .999 .999 83.2%
Speeddating 8378 123 .650 .673 .619 .630 .639 .642 .668 .632 < 0.5%
WDBC 569 903 .949 .973 .956 .967 .963 .967 .974 .974 21.5%
Wine 4898 13 .762 .722 .723 .802 .755 .764 .782 .805 8.9%

The poor performance of our approach on the Speeddating and MADELON datasets
can be explained by the scarcity of contrasting explanations, represented by the small size
of the Rashomon set. The same cannot be said of the MAGIC dataset. As such, our fol-
lowing experiment focuses on comparing MAGIC to the remaining datasets, as a means
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Figure 4.10: TSNE reduction of the Rashomon space and optimal silhouette for the
Rashomon subgroups.

(a) Optimal k (15) for MAGIC models.

(b) Optimal k (23) for APS Failure models.

to both comprehend what makes this problem unique and grasp a better understand-
ing of our Rashomon ensemble learning technique. Taking into consideration the time
complexity to perform each experiment, we evaluate the following scenarios in Figure
4.11:

I) Assess the choice of the random seed, thus replicating the whole Rashomon pipeline
(30 runs, green points).

II) Maintain the Rashomon sets found previously, but select models from each cluster
to represent ensemble constituents (10,000 runs, red points).

III) Ignore the Rashomon subgroups, selecting models from the whole Rashomon set to
represent ensemble constituents. (10,000 runs, blue points).
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Figure 4.11: Similarity to a reference model found from running the Rashomon pipeline,
filtering models with statistically worse performance.
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(a) WDBC Rashomon
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(b) MAGIC Rashomon
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(c) MAGIC other pipelines)

There is a significant overhead of running the whole proposed pipeline in compari-
son to arbitrarily selecting a model from the Rashomon pool to pose as a constituent. For
this simple reason, we do not perform the same amount of runs for each scenario. As dis-
cussed by D’Amour, only observing the performance of these models poses an ineffective
way to judge underspecification. We propose an alternative view in Figure 4.11 comparing
the models of each scenario with the one previously found (performance on Table 4.2).
For better visualization, we filter all models of III with statistically inferior performance
to the said reference model. Our visualization scheme relies on a joint observation of
the Jaccard Index and SHAP values similarity between the reference model and the ones
found in each scenario. The Jaccard metric is a useful way of assessing the degree of agree-
ment between two prediction sets given the relation between their intersection and union
sizes. This provides an interpretation of the minor differences between predictions that
are overlooked by standard performance metrics. The comparison between the Shapley
vectors, in turn, shows us the robustness of the explanations and whether the explicatory
factors remain unchanged under the stochastic behavior of algorithms

When exploring drift, we verified that Group III’s population represents a sample
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of several ensembles that can be reached by direct optimizations over their constituents.
On the opposite extreme, Group I represent the ensembles found following our proposed
pipeline. It is important to remark that our approach depends on sampling the extremely
complex model space. Thus, it is highly unlikely that the clusteroids found in each
repetition are the same. However, the high Jaccard coefficient associated with the high
cosine similarity between the SHAP vectors provides a shred of strong evidence that the
centroids found in each repetition are contiguous, resulting in similar clusteroids that lead
to similar ensembles. Finally, Group II represents a sample of possible optimization paths
within the respective Rashomon sets.

In all experiments, Group III not only presented the lowest values of Jaccard and
SHAP similarity but also consisted of the sparser point cloud. Groups I and II were
more cohesive and concentrated over high values of similarity with the reference model.
When we consider that all models have a statistically equal or higher performance than
the reference model, it is reasonable to conclude that the pipeline involving Rashomon
sets reduces the impact of data drift while retaining concise predictions. When further
exploring phenomenons akin to underspecification by both introducing Gaussian noise and
shuffling feature values, the robustness of Rashomon ensembles becomes evident. In most
explored scenarios, our approach remained the performant model even when considering
the MAGIC dataset in which Rashomon ensembles had slightly worse original performance
than other ensembling approaches.

4.2.1 Performance as Generator Function Diverges

Addressing the concerns of out-of-distribution data, we evaluated the performance
impact of models on distributions that diverge from the trained one. We considered two
scenarios, the first being the addition of Gaussian noise with increasing values of σ2 as a
means to simulate data drift. In the second scenario, we shuffled the values of features
in such a way that their distribution stays the same, but any correlation to the target
variable is lost. This second scenario aims to evaluate how heavily models rely on core
key features and whether they can extrapolate from global information rather than local
aspects, which bears similarities to the notion of Model Reliance from Fisher et al. [2019].
Table 4.3 presents a comparative analysis of each approach in the form of ring plots
ordered by performance and whose radius represents the respective mean AUROC after
30 repetitions.
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Table 4.3: Performance loss comparison between Random Forest , LightGBM , Cat-
Boost and Rashomon ensembles .

Data Drift (σ2) Data Shuffle (n)
0.4 0.8 1.2 1.6 2.0 10% 30% 50% 70% 90%

APS

Heart

MAGIC

Nursery

WDBC

4.2.2 Intra-model Associations

When further investigating the relationships learned, a variety of interesting pat-
terns can be observed. For instance, in Figure 4.12a we observe that the ensemble learns
to employ the output of the 9th constituent model to give mostly positive predictions,
with nearly all points above the 0.2 probability threshold presenting a positive SHAP. We
also verify that models 9 and 10 provide a complementary view of the problem, as we can
observe that higher prediction values of 9 and likewise associated with high prediction
values of 10. Figure 4.12b on the other hand shows that models 13 and 15 are mostly con-
trasting. Whenever there is disagreement, the relative importance of model 13 increases.
Similarly, model 13 presents Shapley values close to zero when both models agree. These
give rise to a concentration of yellow points on the lower side of the distribution. Figure
4.12c illustrates that models 15 and 11 are mostly complementary, except for a distinct
set of points. This pattern suggests that model 15 is specialized in solving these instances,
for which model 11 gives a low positive probability and which model 15 presents both
high Shapley and prediction values.

4.2.3 Ensemble Behavior under Train and Production

Divergence

We look back to the COVID-19 and Alzheimer dataset pairs for our last set of
experiments. Once again, to ensure fairness to the previously evaluated ensemble algo-
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Figure 4.12: Dependence between relevant base models in the MAGIC Rashomon ensem-
ble.

(a) Dependence between models 9 and 10. (b) Dependence between models 13 and 15.

(c) Dependence between models 15 and 11.

rithms, we consider decision trees as base constituents. Since there is no strong baseline
in the literature, we used the all-in-one approach to provide a reference fref and ε value.
The average AUROC values obtained by the all-in-one model were 0.90 and 0.81 for the
two dataset pairs respectively, which were used as a performance threshold to consider a
model minimally performant and establish the Rashomon set. This resulted in a sub-space
containing 2 554 and 6 251 models out of the original 100 000 sample, thus presenting a
Rashomon ratio of 2.5% and 6.2%. Figure 4.13 illustrates the Rashomon subspaces found
after clustering, as well as the performance of each constituent. We verified that all clus-
ters have a strong completely connected component. That is a set of key features that are
present in all models encompassed within the same cluster. This matches our previous
hypothesis. When evaluating model performance, we observe no strong relationship be-
tween group labeling and individual model loss, thus suggesting the multiplicity of feasible
explanations, the Rashomon Effect.

We proceed to search for constituents inside each Rashomon subgroup. We consider
two ensembling techniques, one in which we learn a meta-model that combines the outputs
of each base model (Stacking, denoted by S) and another where we return as agreement
ratio of the predicted classes by each base model (Voting, denoted by V). The advantage
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Figure 4.13: TSNE visualization of the Rashomon space of each problem.
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of the first approach is that the meta-model can learn to optimally combine base model
outputs. For instance, if some model outputs a low probability for a given class, the
meta-model can learn to ignore the said prediction. The main drawback is that this
meta-model is prone to some of the same biases from the base models, and we likewise
have no guarantee of performance on distributions that diverge from the train data.

Under the voting approach, since each model is trained on different inductive biases,
we can expect noise in individual base model output to be smoothed out. Further, the
ensemble output is a direct measure of prediction reliability. The agreement ratio can be
seen as the returned probability by the ensemble. Probabilities close to the upper bounds
imply that nearly all models agreed on the same predictions. Likewise, probabilities close
to the lower bounds imply a large disagreement. This is a desirable property, as it allows
for quick expert judging without the need for extra analysis.
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Our final set of experiments aims to understand the relationship between model
agreement and confidence. The main hypothesis behind the proposed ensemble approach
is that experts can only trust the provided predictions if models agree. Figure 4.14
illustrates the comparison between ensemble accuracy and constituent agreement, and
we can infer a direct relationship between these two metrics. Since we formulated the
problem as a binary classification task, the agreement can never fall below 50%. We
verify performance close to random guessing when near this threshold. We also observe
accuracy close to 100% when all constituents agree. We can compute the calibrated
prediction reliability from these curves.

Figure 4.15 illustrate the performance of each base model and the ensembles on
the COVID and Alzheimer dataset. As expected, all constituents present statistically
equal performance under the training dataset. However, once presented with new data,
their behavior becomes erratic. Comparing the two proposed ensemble approaches, their
performances are comparable on the train data, but voting outperforms stacking on new
distributions. It is worth mentioning that both approaches always presented performance
superior to the mean on the constituents. Voting was able to outperform all base models
under all evaluated scenarios, as well as the state-of-the-art methods presented in Table
4.1.

Figure 4.14: Relationship between Rashomon Ensemble accuracy and intra-constituent
agreement. As we hypothesized, there exists a direct correlation between ensemble per-
formance and agreement. When constituents agree, accuracy lies close to 1 implying a
similarity to training and that predictions are trustable. When constituents disagree, the
observed instance likely diverges from what was learned resulting in untrustable predic-
tions. The ensemble degenerates to random guessing with accuracy close to 0.5.

(a) COVID-19 production dataset. (b) Alzheimer’s production dataset.

A potential solution to mitigate drift is to utilize multiple models in production,
however, this selection process can be challenging as we have outlined certain limitations in
the choice of reference models. In many cases, the data comprises multiple local structures
and sub-populations. In these circumstances, it is beneficial to make use of local structures
for the induction of models that are more reliable and in line with the data. We contend
that each local structure can be correlated with domains and, utilizing model explanation
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Figure 4.15: Comparison of model performances across evaluated datasets. Each con-
stituent model is represented by the Cluster from which it hailed. In the train datasets,
we can observe that all constituents model behave similarly. On the novel datasets, under
the unknown U distribution, performance becomes unpredictable. However, in our em-
pirical experiments, we verify that the voting approach outperforms the best constituent
model, thus suggesting itself as a suitable technique to smooth individual model erratic
behavior.
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techniques, we can distinguish contrasting plausible explanations for the studied problem,
in accordance with the Rashomon Effect. Our approach demonstrated consistent gains
in AUROC compared to other tree-based ensemble techniques in scenarios where such
multiple local structures are expected. In situations where the generator function at
production time may differ from that seen during training, we observed a direct correlation
between accuracy and model consensus. That is, if the models concur, the accuracy is
high, and ensenble predictions can be trusted. Conversely, if the agreement between
models is low, the accuracy is also low and their predictions should not be trusted, which
was our intended outcome and demonstrates the robustness of our approach. All these
characteristics are valuable in real-world industrial scenarios, as described in the following
chapters.
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Chapter 5

Case Study: Surface Defects in
Stainless Steel Manufacturing

Initial applications for duplex stainless steel materials were almost exclusively heat ex-
changer tubing, particularly in corrosive cooling water services, and shafting or forgings.
Currently, these steel materials have a great variety of potential applications as discussed
by Davis and Committee [1994], Gunn [1997]. In particular, duplex stainless steels are
finding increasing use in the offshore industry, primarily because they often offer an eco-
nomical combination of strength and corrosion resistance. The duplex stainless steel most
commonly used today in deepwater exploration includes those with ≈22% chromium (Cr),
which usually also contains more molybdenum (Mo) and nitrogen (N). Other elements
that may be included in this steel material are nickel (Ni), copper (Cu), manganese (Mn),
phosphorus (P), sulfur (S), boron (B), niobium (Nb), and silicon (Si). These elements
must occur in certain specified ranges to properly characterize the finished material as
duplex stainless steel [Davison and Redmond, 1990].

The quality of duplex stainless steel is often threatened by the presence of surface
defects, specially slivers, which are postulated to originate during the solidification stages
of the casting process [Stradomska et al., 2009]. Such defects are elongated in the direction
of lamination, with a usual length of 70mm, and they are generally concentrated closer
to the edges of the steel plates [Thomas, 2006], as shown in Figure 5.1. Slivers increase
production costs as they remain undetected in intermediate processing stages, being ob-
served only during the final inspection of the finished product. Once slivers are observed
the defective plate is usually discarded, and thus the design of new steel materials that
are less susceptible to sliver formation is of paramount importance.

With the expansion of the sub-salt oil exploration segment, there is an increasing
need for ultra-resistant stainless steel materials. These novel steel materials are imposed
on high-quality standards to withstand the extremely adverse deepwater environmental
conditions, and a major challenge for achieving the required quality standards is slivering.
To determine the relationship between sliver formation and factors associated with the
production of duplex stainless steel, in partnership with APERAM South America we
created a dataset containing the chemical compositions and metallurgical process vari-
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ables of 122 duplex stainless steel production runs, from which 71 presented at least one
defective plate. This corresponds to a dataset with nearly 500 stainless steel plates for
studying the slivering problem. Nevertheless, according to Barbosa et al. [2007], deter-
mining the causative factors associated with sliver formation is not trivial, because slivers
can be associated with either combination of process variables or chemical compositions,
and these variables are obtained at different steps of the steelmaking process.

Figure 5.1: Top − Duplex stainless steel
plate presenting slivers near its edge. Bot-
tom − A zoomed image of the slivers.

Intuitively, if different data points
(i.e., steel plates) are associated with dif-
ferent local structures in the data, then we
would expect each structure to be better
described by a different model. In this
case, instead of modeling the data using
the standard all-in-one approach which fits
all the available factors (or features) into a
single model, we wish to obtain models as-
sociated with contrasting possible causes.
In high dimensionality problems, such as
the prediction of heating sliver, attempt-
ing to perform direct inference of the possi-
ble explanations is ineffective, as shown in
our experiments by the poor performance
of all-in-one models. The main hypothesis
of this work is that we can isolate the var-

ious explanations by considering only subgroups of correlated features. We believe that
models with similar responses and similar feature importance distributions are likewise
associated with similar effects. During our analysis, we found a strong link between fea-
tures and model predictions, showing that some features are tailored for detecting different
sliver formation mechanisms and cover a specific region of the defect space, as presented
in our work [Zuin et al., 2021].

While there are several guidelines regarding which components are related to sliver
formation in duplex stainless steel [Chai and Kangas, 2014], to the best of our knowledge,
an in-depth analysis using a unique dataset of scale and considering the entire spectrum
of chemical components and process variables has never been done. Further, the novelty
of this work lies in the framework proposed to learn multiple contrasting explanations.
The specific contributions of this case study are two-fold:

• Among our main results, we emphasize that our predictive models are empirically
accurate for estimating whether an arbitrary steel plate will be defective, with an
AUC score that ranges from 0.78 to 0.85. This can be considered a relevant result,
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as the ability to anticipate defects right on the first steps of the steelmaking process
is of great importance for reducing operational costs.

• Our novel methodology employs a large number of predictive models to find a diverse
set of patterns that are associated with non-defective plates.

5.1 Defects and Data

Steelmaking is the process of producing steel from iron ore and scrap. The process
involves removing impurities such as nitrogen, silicon, phosphorus, sulfur, and excess car-
bon from the raw iron, and adding alloying elements such as manganese, nickel, chromium,
and vanadium to produce different grades of steel [Deo and Boom, 1993]. As illustrated
in Figure 5.2, the process can be divided into seven main steps:

Initial Casting: in the first step of the steelmaking process we have primordial ferrous
materials coming from two sources: pig iron, a product obtained directly from the iron
ore transformed into blast furnaces which have roughly 5% carbon in its composition; and
recycled scrap, materials obtained from either external acquisitions or the scrapping of
other materials provided from the production line. The resulting material constitutes a
mixture of liquid pig iron and scrap.

Adjusting Steel Composition: The second step involves melting, purifying, and alloy-
ing operations carried out at approximately 1 600°C (2 900°F) in molten conditions. Vari-
ous chemical reactions are initiated, either in sequence or simultaneously, to arrive at the
specified chemical compositions of the duplex stainless steel. The chemical composition
adjustment process is done by adding or removing certain elements and/or manipulating
the temperature and pressure and production environment.

AOD (Argon-Oxygen-Decarburization): the start of the melting process consists of
taking the mixture to the AOD, where a significant reduction of the partial pressure of
the system takes place. Alongside an intense blow of oxygen, a drastic reduction of the
carbon content of the mixture takes place. Tons of substances that have a chemical affinity
with the carbon are complemented, also to reduce the carbon content. Relevant chemical
data is mainly collected in this stage through spectrometers. Two relevant samplings
are associated with the chemical composition in AOD. The first and most immediate is
made of the gases emitted during the process. The second sampling is done through the
use of spectrometers and allows the generation of more detailed data about its chemical
composition.
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VOD (Vacuum-Oxygen-Decarburization): during the VOD stage, the reduction of
the partial pressure of the system is much more intense, reaching what is considered abso-
lute vacuum. These conditions allow a more controlled reduction of carbon content. While
in the AOD stage the additions are made in the order of tons, in the VOD stage additions
are done in pounds. To be carried out accurately, the VOD operations depend on the
ability to measure the composition of the stream of gas leaving the furnace throughout the
process. Sampling systems based on mass spectrometers provide precise, representative,
and real-time analysis of the chemical composition of the steel being produced.

Continuous Casting: the refined steel is reheated in a pan oven before being taken to
continuous casting. More specifically, refined steel is taken to cooling molds and trans-
formed into semi-finished and solidified plates. From this moment, the steel ingots can be
rolled according to the specifications of each customer. During the solidifying moment,
a pair of scissors cut the ingots and it is already possible to observe the steel in lengths
useful for the remaining processes.

Steckel Mill Hot Rolling: steel, during the process of solidification, is mechanically
conformed and transformed into duplex stainless steel products used by the transformation
industry, such as heavy and thin plates and coils. Specifically, the duplex stainless steel
is conformed into plates and coils by hot rolling using a Steckel mill, which is a reversing
mill with a heated coiler at each end, and the two coilers are used to feed the material
through the mill. The material is fed back and forth through the mill until a precise
thickness across the full width is reached, as well as consistent flatness. Steel thickness is
drastically reduced while the length is expanded.

Visual Inspection after rolling, duplex stainless steel plates are moved to inspection
facilities. The identification and registration of any defects that the plates may have, as
well as their location and extent, are made by trained experts [Neogi et al., 2014, Zhao
et al., 2017]. In particular, this step is where the occurrence of the sliver defect is reported.
Experts can verify the occurrence of defects only after the whole process is completed,
thus expressing the value of a predictive approach to defect formation.

Our working dataset consists of the chemical composition of duplex stainless steel
plates and hot rolling process variables measured during the steelmaking process. Spec-
trometers were used to assess the relative abundances (%) for each element in a given
plate. Each element has a particular spectrum pattern, and thus peaks in the spectra are
associated with specific elements, based on comparison with reference sample results. In
total, we have 20 chemical elements that are measured in different stages of the steelmak-
ing process. We also consider the ratios between these elements as features, thus extending
the evaluated feature space to 220 attributes. The hot rolling variables are composed of
1 160 temporal series related to each aspect of the steelmaking process. Since we wish to
evaluate their importance alongside the chemical features, we discretize the data by cal-
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Figure 5.2: The steelmaking process.

culating the momentum of each variable in 30-second spans accessing averages, kurtosis,
variances, and skewness. After filtering non-actionable variables, we obtained 11 488 hot
rolling features.

The performance of machine learning methods is heavily dependent on the choice
of features on which they are applied [Forman et al., 2003]. For this reason, much of the
current effort in deploying such algorithms goes into the design of preprocessing pipelines
and data transformations that result in a representation of data that can support effective
machine learning [Forman et al., 2003, LeCun et al., 2015, Leiner et al., 2019]. The process
of using available features to create additional ones to improve model performance is often
called ’feature engineering’, a predominantly human-intensive and time-consuming step
that is central to the data science workflow. It is a complex exercise, performed in an
iterative manner with trial and error, and mostly driven by domain knowledge [Gada
et al., 2021]. Recently, many studies have shown the benefits of automatizing this process
by creating candidate features in a domain-independent and data-driven manner followed
by an effective method of feature selection. This way it is possible not only to improve
model correctness but also to discover powerful new features and processes that could
be additional candidates for domain-specific studies [Gada et al., 2021, Kaul et al., 2017,
Sumonja et al., 2019]. We avoid potential spurious correlations by confirming that all
selected features present a strictly non-zero impact on model output after n-fold cross-
validation.

Data was collected during the entire year of 2018 and led to a dataset composed
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of 122 steelmaking runs, each with 4 duplex stainless steel plates on average, and with
11 708 possible (chemical and hot rolling) features. There were 71 defective runs (due
to slivering) with the remaining 51 being non-defective ones. Although the chemical
compositions are approximately the same for all plates in a given run, the hot rolling
features vary constantly throughout the process. This led to a dataset composed of 499

duplex plates. The proposed task corresponds to solving the binary classification problem
regarding the formation of slivers given both chemical and hot-rolling features.

5.2 Building a Rashomon Ensemble

As described in Chapter 3, the first step towards building a Rashomon Ensemble
consists of sampling the complete model space. Due to the nature of this dataset, simple
random sampling features would lead to process features overshadowing the importance
of chemical ones. Because chemical features are less numerous than hot-rolling ones, we
modified the selection probabilities to guarantee that a model is equally likely to choose
either a chemical or hot-rolling feature. Otherwise, our model sampling approach would
be biased towards solely hot-rolling causes. We also had two constraints for algorithm
selection. The first one is that we aimed to discover pure models, that is, models with no
concurrent explanations introduced into the stand-alone models. The second constraint
is that we needed a human-understandable model to derive a set of rules and standards to
be employed, as the project’s end goal is heating sliver prevention rather than real-time
prediction. To achieve both of these objectives, we opted out of ensembling approaches
and employed Decision Trees [Pedregosa et al., 2011a].

We sampled 75 000 models for each possible feature set size, until no significant gain
in performance could be verified by including additional features into a model. To evaluate
performance, we utilized the standard AUC (area under the ROC curve) measure [Fawcett,
2006, Hanley and McNeil, 1982] with five-fold cross-validation. There exists diminishing
gains in performance for models with more than 15 features, as seen in Figure 5.3. We
limited our experiments to this threshold, which led to a sample total of 1 049 999 models.

The next step consisted in establishing the Rashomon set in terms of a reference
model. Since there is no strong baseline in the literature, we used the all-in-one approach
to provide a baseline comparison. The all-in-one employs the same implementation of
the sampled models but produces only a single model composed of all available features.
The average AUC value obtained by the all-in-one model was 0.62, which was used as
a performance threshold to consider a model minimally performant and establish the
Rashomon set. This resulted in a sampled model space H′ containing 63 374 models out
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Figure 5.3: AUC values of sampled models. Dashed lines represent an increase in set size.

Figure 5.4: T-SNE visualization of the sampled model space H′. Each point represents a
model x′. Models are placed according to the defect explanations assigned to each steel
plate so that models that possess similar SHAP values are placed next to each other in
space (see Section 4.4). The color indicates the cluster for which the model was assigned.
N = 2 500 models.
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(a) AUCs. (b) All found clusters. (c) Filtering the sparse cluster.

of the original 1 049 999 (6.04% of the models perform better than the all-in-one model).
For better visualization, we show only 4% models in Figure 5.4a, which sums up to 2 500

points. Later in this chapter, we evaluate both state-of-the-art and classical models for
our ensembling baseline and present a performance comparison with and without feature
selection to reduce input space dimensionality.

We assumed a learning scenario in which models can be mapped to explanation
domains (C), enabling us to learn specific models for each domain. The constituent
selection step of the Rashomon ensemble consists in searching the model space. However,
to reduce search space, we only considered models associated with each domain c ∈ C

alongside a feature relationship graph. We believe two features to be related if they
co-occur in the same performant model and both have a statistically significant impact
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on model explanation. This entails only complementary or contrasting features being
related to one another. Organizing models under explanations, such as the division seen
in Figure 5.4, enable us to acquire feature relationship graphs for each specific grouping
and feature vectors xc ⊆ x. The dual problem of learning distinct explanation models
consisted in finding optimal paths in the feature relationship graphs. We solved this task
by minimizing different functions f(x′c), such that x′c ⊆ xc and |x′c| � |xc| and, unlike in
the model sampling approach, selecting features to compose each model x′c in accordance
to their relationship. Section 5.3 describes with more detail our searching approach for
the heating sliver problem.

Once models are selected, it is important to verify their suitability as Rashomon
constituents. Our main hypothesis is that by exploiting models that behave differently
under data drift and that encompass diverse explanations, we can build a more robust
ensemble. Since our proposed clustering of the Rashomon space guaranteed diversity in
explanations, a pivotal next step was verifying drift response empirically. In Figure 5.5, we
introduced increasing amounts of gaussian noise to the normalized features and observed
each constituent’s returned probability distributions under each scenario. We verified a
direct relationship between noise and the confidence interval, thus signifying that models
become more divergent under drift and ensemble reliability decreases, as intended. This
suggested that our constituent selection was appropriate and that we could employ them
in production. In this work, we did not have access to a separate dataset that could be
subject to drift. However, our model was deployed into the APERAM South America and
used to predict heating slivers during 2019’s production. By actively changing produc-
tion rules according to our ensemble’s predictions and explanations, APERAM verified a
decrease of over 50% in the occurrence of heating slivers.

5.3 Experiments and Results

After performing model sampling and explanation grouping, we obtain feature
relationship graphs related to each perceived explanation. The next step consists of
finding optimal traversing paths. In terms of action space, we consider the neighborhood
of a model as those that are reachable by the aggregation of a co-related feature. We
experiment using the A* algorithm employing as a heuristic the AUC of the current
model. We hypothesize that there exists a set of optimal feature expansions that lead
to the performant model, and exploiting models of solid performance is a reasonable
approach. To further investigate this possibility, we also modify the algorithm to attempt
to follow a backbone-like structure. Instead of considering all of a model’s features to
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Figure 5.5: Heating sliver: effect of introducing noise to ensemble constituents’ input
features.
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compute its neighborhood, we only access co-relation to the last added feature. Once
the search is no longer able to follow a backbone, the algorithm traces back to the root
exploring new backbone chains. We also experiment with Monte Carlo simulations as a
means to introduce a non-stochastic behavior to the search exploring otherwise neglected
areas of the search space. Given that Monte Carlo Tree Seach (MCTS) often copes with
opening moves, we also judge the impact of briefly running A* before early simulations.

5.3.1 Optimal Expansion Paths

These strategies can only be accomplished if feature relationships translate to con-
nected graphs. During our analysis, we verify that not only graphs are connected, but
also that nearly all share a similar trait: the existence of a small completely connected
component that is adjacent to all the remaining vertexes. We call this structure keynodes
of the respective feature relationship graphs. Further, the keynode of a given graph is
not present in any of the remaining relationship graphs. The only exception to this rule
is the sparse cluster 12 illustrated in Figure 5.4b, in which we encounter the presence of
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Figure 5.6: Typical search patterns found while running the A* algorithm. N = 100 000
models.

most keynodes and we do not observe the pattern of a strongly connected component with
edges to all remaining vertexes. This phenomenon implies that any model that attempts
to mix multiple keynodes also mixes up multiple causes, providing a split in credit and a
distinct SHAP pattern. We believe that the keynode importance is so distinct that this
sparse cluster contains all models that ’do not fit’ any of the remaining patterns. When
filtering these models, we obtain concise clusters with little to no overlap as evidenced in
Figure 5.4c

When observing the evolution of the best models found by the A* algorithm,
we verify premature convergence. The algorithm quickly finds a configuration of high-
performance features and tends to explore only minor modifications. In particular, it
focuses on the addition of null-impact features that maintain AUC. This behavior gen-
erates the repetitive patterns of AUC noticed in the graphs of Figure 5.6. We propose
two methods to remedy this problem. The first involves altering the standard A* algo-
rithm to promote a more extensive exploration stage before reaching convergence. The
second involves reducing the solution space by considering expansion using whole groups
of related features rather than unitary ones.

5.3.2 Halting Null Expansions

Consider a space of solutions with features A-Z, and the optimal model is ABYZ.
Among the possible feature pool, there should exist a group that does not affect the
performance of models positively or negatively. Perhaps because they are not relevant or
because they partially explain a phenomenon that is already covered by another feature.
For this example, let’s consider that these encompass features D-G. There may be models
such as ABC that are superior to ABY, ABZ, ABCY, and ABCZ. Thus, throughout the
search, the algorithm will prioritize the ABC model and, consequently, find ABC {D-G}
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models with similar performance to ABC. In the next iterations, the algorithm will focus
on ABCD, ABCE . . . ABCG, ABCDE, ABCDF, and so on until all possible combinations
involving the D-G features are found. Due to the high degree in the action graph of the
heating sliver problem, the search algorithms are prone to fall into this type of situation
and are unable to explore promising solution paths in a feasible time. This mainly happens
because the search algorithms were not able to explore enough of the model space before
attempting the exploitation of the best models.

A simple method to attempt to halt null expansions is introducing an improved
patience threshold. In the case of the default A*, if a model is not able to be improved
upon after a certain number of iterations, then we should not attempt further expansions.
For backbone A*, this patience threshold tells the algorithm when to stop pursuing a
specific backbone chain and rather focus on other possible paths. A second approach to
further improve exploration is modifying the fitness function to introduce a penalty to
large models. This promotes the expansion of models with few features and enables the
search algorithms to find a more diverse set of base models before beginning exploitation.
Figure 5.7 illustrates this experiment. The patience threshold and the size penalty work
toward the same goal of promoting exploration. However, there is an inherent tradeoff
in their concurrent deployment, as both tend to hinder the expansion of large models.
To find appropriate values for these approaches, we analyze how they interact with one
another as pictured in Figure 5.8.

Figure 5.7: Effects of different α size penalties. N = 200 000 models.
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Search in the action graph is a challenging task due to its structure. However,
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Figure 5.8: Effects of different α relative to patience threshold. N = 200 000 models.
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the feature relationship graph provides useful insights regarding promising paths. Since
edges represent features that co-occur in performant models, we should be able to en-
counter highly connected components that most likely contain features that should be
evaluated together. We employ the NBNE algorithm from Pimentel et al. [2018] to com-
pute neighborhood-based node embeddings and collapse nodes that have a high cosine
similarity between vectors. At first, we observe a bimodal distribution with a prominent
set of highly similar nodes but after collapsing, we obtain a bell-shaped curve with even
distributions, as pictured in Figure 5.9.

Figure 5.9: Cosine similarity distribution between nodes.

(a) Before collapsing. (b) After collapsing.

5.4 Discussion

Model interpretability is one of the main requirements for the design of novel
steel plates. An interpretable model needs to shed some light on the rationale behind the
prediction. Figure 5.10 (Left) shows ROC curves for some performant models. Figure 5.10
(Right) shows SHAP summary plots. These plots show the SHAP values of each feature
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Figure 5.10: Representative models for some clusters. Left − ROC curve showing the
performance of the model. Right − The corresponding SHAP summary plot shows an
overview of which features are most important for the model. N = 499 steel plates.
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in all steel plates. In each plot, features are sorted by the sum of SHAP value magnitudes,
with colors representing feature value. Curiously, some elements seem to be very relevant,
as they occur very often in models within different clusters. In general, however, summary
plots show that the features in models within different clusters are rather distinct. Overall,
the predominant behavior is that specific groups of features are associated with distinct
solution spaces and no clear relationship between feature sets and performance can be
seen.

When accessing AUC performance among clusters, we can see that performant
models are scattered through the model space, indicating that there are models with
similar performances being assigned to different clusters. That is, models associated with
different explanatory factors and different preferences can obtain similar performance
numbers. There is no pattern in the distribution of clusters by AUC. Indeed, Pearson’s,
Spearman’s and Kendal’s correlation between the clusters and AUC are inferior to 0.1.
When searching the model space, we were able to considerably improve upon the best
models previously found by the model sampling approach. Further, our proposed pipeline
presents superior results to the alternatives.

We explore the usage of various methods to search for the best models within each
cluster. We found that any technique, even a greedy search, is superior to an all-in-one
model expecting it to learn which features are the most relevant. This phenomenon hap-
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pens in support of our original hypothesis and can be associated with data dimensionality.
In our experiments, we also found that attempting to force a backbone-like structure does
not appear to be effective. However, due to the high dimensionality and the degree of the
feature relationship graphs, search algorithms appear to regularly get stuck in an exploita-
tion step by assessing only small modifications of the same performant model, leading to
visible repetitive patterns through iterations. The introduction of hyper-parameters that
penalize this type of behavior proved to be useful, improving the exploratory stage of the
algorithms.

We were able to verify that performing MCTS can be beneficial in some situations.
We believe that the stochastic factor present in Monte Carlo simulations might help the
algorithm explore different model spaces. To keep results comparable, we only allowed
MCTS to perform as many simulations as the number of models explored by A*. It might
be the case that we should allow the algorithm to run longer and achieve convergence, as
these extra simulations should lead to a more reliable approximation. Nevertheless, these
results provide an argument that there might be sequences of sub-optimal expansions
that, when combined, lead to an overall better model.

Once we find the optimal models within each cluster, we can combine them into
an ensemble to give a final prediction. We employed a simple voting ensemble in which
each of the constituents shares the same importance. Figure 5.11 illustrates the results
of an ensemble consisting of both the best models found (A* Ensemble) and one where
we simply use the clusteroid model within each cluster. We evaluate our method against
other state-of-the-art tree-based ensemble techniques as well as classic algorithms from
the literature. Plotting the results of such algorithms against our approach would prove
to be an unfair comparison as we already discussed that all-in-one approaches can have
below-par performance. Therefore, we also consider selecting only the features with the
highest shap values as well as applying the Boruta [Kursa and Rudnicki, 2010] feature
selection strategy.
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Figure 5.11: Comparison of different algorithms to our approach in the steel manufac-
turing defects problem. Even when employing the clusteroid ensemble, in which most
constituents are underperforming, our approach exceeds other state-of-the-art results. N
= 499 steel plates.
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Table 5.1: Experimental results. We can observe that the default A* outperforms the
remaining methods in most scenarios, thus justifying the A* (explorative) approach which
refers to the optimizations discussed. N = 499 steel plates.

Cluster
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Clusteroid .60 .60 .61 .60 .60 .62 .60 .61 .60 .61 .60 .60 .62 .65 .61 .61
All-in-one .64 .62 .65 .62 .64 .64 .62 .64 .61 .64 .62 .58 .62 .67 .65 .63

Greedy .70 .70 .71 .70 .72 .71 .74 .71 .70 .73 .72 .70 .71 .70 .70 .71

A* (default) .78 .76 .76 .76 .83 .77 .80 .78 .75 .80 .79 - .76 .79 .80 .78
A* (backbone) .70 .76 .77 .76 .81 .76 .78 .74 .76 .75 .77 - .75 .77 .77 .76
MCTS (default) .75 .74 .77 .75 .78 .75 .75 .76 .76 .76 .74 - .73 .75 .73 .75
MCTS (backbone) .79 .74 .75 .75 .78 .76 .76 .75 .76 .77 .75 - .73 .77 .75 .76

A* + MCTS (default) .78 .76 .77 .77 .79 .76 .77 .75 .77 .77 .77 - .76 .79 .75 .77
A* + MCTS (backbone) .77 .76 .76 .77 .78 .76 .76 .74 .76 .77 .76 - .74 .77 .75 .76

A* (explorative) .80 .79 .80 .79 .81 .82 .81 .80 .79 .78 .80 - .77 .80 .81 .80
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Chapter 6

Case Study: Identifying the drivers of
energetic consumption

Energy systems are increasingly coupled with economic, social, and climate systems. For
example, the deployment of renewable energy sources is critical for mitigating future cli-
mate change [IEA, 2021], and hydropower is the leading renewable energy resource in
the world [Moran et al., 2018]. However, both energy and climate experts are raising
concerns regarding hydropower’s reliability under future climate change uncertainty and
human development pressures. Expected growth in electricity consumption due to popu-
lation and economic growth, the severity and frequency of extreme weather events, long
terms effects of climate change on drought conditions, and expanding agricultural pro-
duction all present immediate and urgent challenges to energy systems, particularly so
for those dependent on renewables [Moazami et al., 2019] A crucial component of en-
ergy planning, therefore, requires an understanding of how these challenges are impacting
electricity consumption and supply.

Such challenges are typified by Brazil, a country whose electricity system is heavily
dependent on hydropower and is undergoing substantial economic and social transitions
with populations living in geographically and climatologically diverse regions, all con-
tributing to changing patterns in consumption. As of November 2021, Brazil’s total
generation capacity is 180.6GW, the third-largest electricity sector in the Americas and
only second to China in total hydroelectricity capacity. Currently, 56.98% of Brazil’s
electricity sector is compromised of hydropower and 25.42% of thermal [ANEEL, 2021]
with expected growth in the grid capacity of 2.7% yearly [EPE et al., 2021]. There are
also indications that Brazil is on the brink of a multi-year energy crisis, spurred by low
reservoir levels and drought, exacerbated by increases in electricity consumption [Ferraz,
2021]. Historically, Brazil relied almost completely on clean energy, but recently (see in
Figure 6.1) there has been an increased reliance on thermal energy. In 2010 over 90%

of the energetic demand was satisfied by hydro. In less than 10 years this changed to
50%− 60% of the generation coming from hydro-power, with thermal constituting about
20% of the total generated energy. The adoption of wind-based alternatives was able to
somewhat halt the increase in thermal reliance, however, the main concern still stands:
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Figure 6.1: Energy generation profile of Brazil. Although hydro-power constitutes over
50% of the generated energy, Brazil is experiencing a growth in the thermal share driven
mostly by low reservoir levels, scarcity of rain, and fast load growth.
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hydro-power might not be enough to supply the entirety of Brazil in the future and hydro-
related crises are sure to occur more frequently. For these reasons, developing a deeper
understanding of the Brazilian system is both timely and of critical societal importance
[Hunt et al., 2022].

Climate and weather have been known to bear an influence on energy demand, one
of the most meaningful variables being temperature [Davies, 1959, Hor et al., 2005]. A
plethora of temperature-related metrics exist and many accurately approximate energetic
consumption [Huang et al., 1986]. Although degree days remain one of the most common
temperature-related metrics for load forecast, recent work has shown the significant impact
of other weather variables. For instance, both Maia-Silva et al. [2020] and Woods et al.
[2022] highlight the relationship between air humidity and the search for cooling during
hotter days, and its direct consequence on summer electricity demand. Thus, many
possible weather predictors that explain drivers of energetic consumption exist, suggesting
the Rashomon effect and presenting a suitable scenario for our approach. Given the tight
coupling of weather to the Brazilian electrical system at a national and regional level, the
impact of disruptive events, and the need for future planning under climate change, we
narrow our study’s focus to one aspect of the energy system: weather determinants of
consumption, as presented in our work [Zuin et al., 2022b].
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6.1 Weather and Data

We applied two primary datasets in our study, Brazilian’s National Energy System
Operator (ONS) historical reports [ONS, 2018] and the ERA5 reanalysis [Hersbach et al.,
2020]. Energy data was sourced directly from the Brazilian ONS website, containing
daily measures dating back to 1999. The available information includes load, maximum
consumption, mean and total daily megawatts (MWd), and hourly megawatts (MWh).
The Brazilian electric grid is split into four subsystems associated with its main regions.
Although there is some exchange of energy between adjacent subsystems, they are mostly
independent in supplying local consumption. Figure 6.2 illustrates the load profiles for
each of Brazil’s macro-regions, all characterized by an increase in load over the last 20
years (1999-2021). We observe a rapid load growth, with an increase of nearly 60% in
consumption in these 20 years. We also observe a close relationship between urban devel-
opment and load, with Brazil’s technological hubs having a higher energy consumption
than less developed areas. Finally, there is a sharp drop in consumption near the year
2002 related to a curtailment intervention initiated by the Brazilian government.

Figure 6.2: Consumption for each subsystem in Brazil from 1999 to 2021 (30-day moving
averages).
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The ERA5 dataset consists of global hourly estimates from 1950-2021 for atmo-
spheric variables, with a spatial resolution of 0.25 degrees (approximately a 30 x 30 km
grid cell). To associate this weather data to Brazilian subsystems we extracted the mean
values from grid cells using coordinates from each city with at least 100 000 inhabitants,
weighting the values by the population so that larger cities will have a larger impact on
mean values compared to smaller ones. Figure 6.3 depicts all considered cities and towns,
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encompassing over 70% of the total Brazilian population. Our final weather-related fea-
ture subset consists of daily temperature minimums, means and maximums, humidity,
wind speed, and precipitation, heating degree days (HDD), cooling degree days (CDD),
heat index, wind chill index, apparent temperature, HDD-derived from wind chill index
and CDD derived from heat index.

Degree days are a measure of heating or cooling, which has extensively been used
for estimating energy consumption required for a household to reach a comfortable tem-
perature and can be computed as an integral of a function of time over temperature.
However, since temperature measurements are not continuous, but rather taken at dis-
crete intervals, we can approximate heating degree days and cooling degree days for a
single day as:

CDD =

∑T
i=1(θi − θb)((θi−θb)>0)

T
(6.1)

HDD =

∑T
i=1(θb − θi)((θi−θb)<0)

T
(6.2)

in which θi represents the temperature at instant i, θb is some constant representing the
base comfort temperature and T is the number of equally spaced temperature measure-
ment intervals. Thus, HDD is related to the amount of time that temperature remained
below some established threshold and the size of this difference, implying that household
heating was needed to reach the comfort temperature. Analogously, CDD is related to
temperatures rising above this same threshold, leading to the need for cooling. A further

Figure 6.3: Brazilian cities with at least 100 000 inhabitants.
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approximation employed in the literature considers only the difference between the base
temperature and the mean daily temperature [Yang et al., 1995] or the maximum and
minimum daily temperature [Ring et al., 1983]. We consider the base comfort temperature
in Brazil as 65oF .

However, as noted bySteadman [1984], the perceived temperature often differs
from ambient dry bulb temperature. For example, on high dry bulb temperature days
when the humidity is high, perception of heat is often greater than on days with an
equivalent dry bulb temperature and lower humidity. The effect of wind has a similar
perceptive impact of making cold days feel colder. Thus, Steadman defines the apparent
temperature as the temperature equivalent perceived by humans caused by the combined
effects of air temperature, relative humidity, and wind speed. The NOAA National Digital
Forecast Database (NDFD) states that when the temperature falls below 50oF , wind chill
is a suitable measure of apparent temperature, and when the temperature rises above
80oF , heat index should be employed. Between these two thresholds, humans experience
the combined effect of both wind speed and humidity, and the ambient dry bulb air
temperature is a reasonable measurement of apparent temperature. Heat index (HI) and
wind chill index (WCI) can be computed as:

HI = c1 + c2θ + c3φ+ c4θφ+ c5θ
2 + c6φ

2 + c7θ
2φ+ c8θφ

2 (6.3)

WCI = 35.74 + 0.6215θ − 35.75ν0.16 + 0.4275θν−0.16 (6.4)

in which θ is the dry bulb air temperature, φ is the relative humidity, ν is the air speed and
ci are constants used to approximate Steadman (1979) original heat index table [Stead-
man, 1979, Stull et al., 2000], valued as c1 = 0.363445, c2 = 0.988622, c3 = 4.777114, c4 =

−0.114037, c5 = −8.50208e−4, c6 = −2.071619e−2, c7 = 6.87678e−4, c8 = 2.74954e−4.
Since both HI and WCI are measured in oF , we can replace the temperature from Equa-
tions 6.1 and 6.2 to obtain both CDD and HDD derived from either heat index, wind chill
or apparent temperature.

Brazil has relatively high climate diversity. This is mostly due to the size of the
territory, the extent of its coastal regions, the variation in altitude, and the presence of
different air masses that influence the temperature and humidity of each region. Most of
Brazil is located between the Tropics of Cancer and Capricorn and for this reason it is
called intertropical, but other types of climate are also present. According to Strahler and
Strahler [2007], Brazil possesses six climate zones: equatorial, tropical, semi-arid, coastal,
subtropical, and tropical high-altitude. This climate diversity, coupled with demographic
heterogeneity, would make building a unified model for the entirety of Brazil a challenging
task. However, by taking advantage of the political macro-regions and examining each of
them individually, an analysis could be made more manageable and interpretable. This
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Figure 6.4: TSNE representation of Brazilian weather. Each point represents a day in one
of Brazilian’s sub-regions. There seems to be a direct relationship between temperature
and geographical location, that produces well-dived partitions on the plot on the left
without explicitly performing clustering.

approach results in each region of interest encompassing at most two climate domains that
are similar. However, our weighting approach relies on the weather of cities in the same
region being similar, so climates from different regions do not offset. Figure 6.4 illustrates
a two-dimensional reduction of the evaluated daily weather variables employing the TSNE
algorithm, in which each point represents a day in our dataset that is colored to correspond
to a region and its mean temperature.

We can observe that each region’s weather seems to be well-defined, with a clear
separation between most regions and small intersections. These clear boundaries validate
our analysis of distinct regions and the proposed city-to-region aggregation approach for
climate variables. Given that the main focus of this work is on the impact of tempera-
ture on energy consumption, we also wish to understand how temperature impacts this
separation, and, after visualizing these measures, the relationship between geography and
temperature is evident. Further, we can also draw some conclusions regarding the inter-
section between regions. The are only a handful of days where the weather in the South
region is similar to the Southeast. From the temperature plot, we also observe that the
colder Southeast days are similar to the hotter days in the South. An analogous pattern
can be identified between the Southeast and the Northern region. The Northeast days
appear to be isolated from the remainder of the plot. In our experiments, we verify that
predicting consumption for this specific region is more difficult, and this might be one of
the reasons for this observed phenomenon.

We also include data from various Coupled Model Intercomparison Project Phase 6
(CMIP6) models to forecast demand under future climate change, ranging from SSP1-2.6
to SSP5-8.5 [Eyring et al., 2016]. SSP-RCP (shared socioeconomic pathway-representative
concentration path-way) narratives were designed to capture possible future scenarios for
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energy demand due to temperature and the shared socioeconomic pathways represent
varying assumptions regarding future global development. Each of the five SSPs corre-
sponds to a projection of greenhouse gas emissions, namely: SSP5 (fossil-fueled devel-
opment), SSP4 (inequality), SSP3 (regional rivalry), SSP2 (middle-of-the-road develop-
ment), and SSP1 (sustainable development). By design, SSPs were devised to work in
conjunction with the representative concentration pathways. The various pathways relate
to the levels of radiative forcing by the year 2100 and range from 1.9 to 8.5W/m2, in which
higher values depict more global warming. Although various combinations of SSP and
RCP are possible, many do not lead to feasible narratives of interest. For instance, the
SSP5, characterized by fossil-fuel development and high gas emissions, is not a realistic
pairing with low-emission RCPs such as 1.9W/m2. Here, we employ four Tier 1 SSP-RCP
narratives from the Scenario Model Intercomparison Project (ScenarioMIP) within Phase
6 of the Coupled Model Intercomparison Project (CMIP6), SSP1-2.5, SSP2-4.5, SSP3-7.0
and SSP5-8.5 [Abram et al., 2019, O’Neill et al., 2016].

Individual models can introduce distinct biases driven by their methodologies and
the physical phenomena that each attempts to represent. As such, forecasting and eval-
uation from a single model might lead to results that contradict another model. Con-
sidering the means from a group of models therefore can allow for a better evaluation
of the overall trend for the forecasted RCP-SSP future pathways [Cheng and Zhu, 2016,
Wang et al., 2018]. Specifically, we consider an ensemble for each specific SSP-RCP
pathway compromised by the models ACCESS-CM2 [Bi et al., 2020], AWI-CM-1-1-
MR [Semmler et al., 2020], BCC-CSM2-MR [Wu et al., 2019], CESM2-WACCM [Liu
et al., 2019], CMCC-CM2-SR5 [Cherchi et al., 2019], CMCC-ESM2 [Lovato et al., 2022],
CanESM5 [Swart et al., 2019], EC-Earth3 [Döscher et al., 2021], FGOALS-g3 [Li et al.,
2020], GFDL-ESM4 [Dunne et al., 2020], IITM-ESM [Krishnan et al., 2019], INM-CM4-
8 [Volodin, 2021], INM-CM5-0 [Volodin, 2020], IPSL-CM6A-LR [Boucher et al., 2020],
MIROC6 [Tatebe et al., 2019], MPI-ESM1-2-HR [Müller et al., 2018], MRI-ESM2-0 [Yuki-
moto et al., 2019], and NorESM2-MM [Tjiputra et al., 2020], sampling maximum and
minimum near-surface air temperature (tasmax and tasmin), precipitation flux (pr), near-
surface eastward and northward component of wind (uas and vas), and near-surface rel-
ative humidity (hurs). Across all models and pathways, we can expect an increase in
temperature coupled with a decrease in humidity by the end of the century. Largely
due to warming, we can expect an increase in perceived temperature even in a future
Brazil climate with less humidity, as illustrated in Figure 6.5. No clear pattern was iden-
tified concerning wind speed and precipitation, with most models providing conflicting
predictions regarding the latter.
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Figure 6.5: CMIP6 projections for temperature and humidity, and the resultant increase
in apparent temperature.

2020 2040 2060 2080 2100
72.5

75.0

77.5

%

Relative humidity

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

2020 2040 2060 2080 2100

80

85

ºF

Near-surface air temperature

2020 2040 2060 2080 2100
Year

90

100

ºF

Apparent temperature

6.2 Building a Rashomon Ensemble

Our main objective in this case study is to predict consumption in the absence of
any abnormal events, as this allows for a direct comparison of predicted and actual con-
sumption to estimate the event’s contribution to the consumption change. We formulate
the problem as a regression. Given a set w ∈ W weather descriptors and a set of t ∈ T
time descriptors, we apply a function f(w; t;σ) parameterized by σ that maps a period
to a consumption. To exclude disrupting factors, we search for optimal W ′ ⊂ W and
T ′ ⊂ T . Guided by existing literature [Giannakopoulos and Psiloglou, 2006], we propose
the existence of three major groups of factors that drive electricity consumption:

• Load growth: increase in population, increase in consumer purchasing power, GDP,
industrialization, etc.

• Historical events: pandemics, large-scale government policies, large celebrations,
events, etc.

• Weather: heatwaves, winter storms, droughts, etc.
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Figure 6.6: Consumption and load for the Southeast/Center-west subsystem.
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(b) Consumption curves.
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(c) Daily consumption normalized by load growth.

We observed that yearly energetic consumption follows a logistic growth trend as exempli-
fied by Figure 6.6a and as typified by emerging countries [Tursun et al., 2016, Tuunanen
et al., 2015]. When plotting the daily energy curves in Figure 6.6b, a similar pattern
can be seen as the shape of the curves themselves remain relatively similar but there
exists a step between one year’s curve and the next, with the year 2020, highlighted in
red, posing an abnormality. Normalizing daily consumption by the load growth function,
which can be found from yearly load interpolation filtering out important atypical events,
allowing us to build a counterfactual model focused on weather and temporal (e.g., day
of the week, month, etc.) factors. We can then learn many models f ′(w; t;σ′) employing
different sets of features, and then build an ensemble that encompasses the many possible
explanation biases per the Rashomon effect. Figure 6.6 illustrates the consumption for
the Southeast/Center-West region after normalization removing the load growth trend.

Regarding the choice of a learning algorithm, we evaluated different possibilities as
base constituents and found lightGBM to be performant. However, Tree-based algorithms
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are known to struggle with data pertaining outside the training domain, even if it follows
the same distribution. While extrapolation beyond the data range can lead to biased
results [Hahn, 1977], we use it as a way to gain scenario-based insights into future periods,
such as forecasting consumption for the next century under climate change in Section
6.3.3. To address the challenge of out-of-distribution observations, Hooker [2004] proposes
augmenting datasets to improve extrapolation using the Data-Augmented Regression for
Extrapolation (DARE) algorithm, consisting of repeat sampling on the desired domain
and the employment of a background model to provide weighted responses. To allow tree-
based algorithms to cope with temperatures outside the training domain we augmented
training data by 10% from 1872 Monte Carlo simulations uniformly sampling temperatures
between 50°F and 120°F and employed a linear regression as the background model.

The first step to building our ensemble is sampling models to estimate the Rashomon
space. However, in our approach, we often need to compare models with a different num-
ber of features. Although an standard literature metric, an unattractive property of the
R2 is its non-decreasing property. The addition of explanatory variables which bear no
relevance to the target variable does not decrease the value of R2, thus requiring some
sort of penalization for models with too many features [Dufour, 2011]. Due to this fact,
we elected the usage of the Mean Average Percentile Error (MAPE) to induce Rashomon
sets. This approach led to the minimization of error, rather than the maximization of AU-
ROC as in previous experiments. Figure 6.7 illustrates the found Rashomon space after
sampling 100 000 models and also depicts the impact of different choices for the MAPE
ε threshold to induce the Rashom set. For MAPE of 7%, we found a Rashomon ratio of
.82 (82 114 of the original 100,000 models presentedMAPE ≤ 0.07) while decreasing this
threshold to 5% reduced the ratio to .04 (4 064 of the original 100,000 models presented
MAPE ≤ 0.05). In Figure 6.7a, we observed a correlation between performance and
cluster assignment, as nearly all underperforming models are assigned to the same sparse
grouping. Including models from this cluster in the ensemble might not be productive as
we are unlikely to find a good representative due to its sparsity. Properly tunning epsilon
severely reduced the space, which allowed us to extract meaningful explanation groupings
as seen in Figure 6.7b.

Following our proposed algorithm, we searched for optimal representatives under
each explanation cluster. However, it is important to highlight that not all variables
are relevant for forecasting. We represented the model space as a directed acyclic graph
(DAG) and each node depicted a model built from a distinct feature subset. Let A and
B be two nodes representing two distinct models. Vertex A → B exists if B can be
reached by simple feature addition from A, thus constituting a transitive reduction of the
complete model space. This approach presents two desirable properties: (i) any vertex is
reachable from the [∅] model, and (ii) there exists a topological hierarchy, an ordering of
all vertices into a sequence such that for every edge, the start vertex occurs earlier in the
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Figure 6.7: Induced Rashomon spaces when setting ε threshold to 7% and 5% MAPE
respectively. Overestimating the choice of ε leads to a larger Rashomon space bearing
direct correlations between cluster assignment and explanatory factors.

(a) ε = 7%.

(b) ε = 5%.
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sequence than the ending vertex of the edge for any feature set path. We proposed the
existance of a set of optimal feature expansions that lead to performant models. These
properties imply a partial ordering starting from the root node, enabling the search of
the N ! combinatorial space. In our experiments, we applied the greedy beam search
algorithm [Reddy et al., 1977], employing as a heuristic the R2 of the model represented
by a vertex and a beamwidth β = 5. Unlike when establishing the Rashomon set, we
opted for choosing R2 due to its informative properties in comparison to other regression
metrics when evaluating models with a similar number of features [Chicco et al., 2021],
as we sought the features that maximized the performance of each target model.

The beam search algorithm is an optimization of the best-first search parameter-
ized by a beamwidth β, thus combining characteristics from breadth-first and depth-first
searches. At each iteration, the best β nodes are considered expansion candidates, and all
of their children are evaluated. If β = 1, then beam search behaves as best-first, in which
only the best child in each iteration is expanded. If β = ∞, then beam search becomes
a breadth-first search in which all possible expansion paths are considered. This allowed
us to search the N ! combinatorial space of feature subsets to select the best-performing
specialized models.

Once models are selected, their suitability as Rashomon constituents was verified.
In Figure 6.8, we introduced increasing amounts of gaussian noise to the normalized fea-
tures and observed the normalized consumption estimated by each individual constituent.
As expected, in the absence of noise all models behaved in a statistically similar manner
and the confidence interval was narrow. As we introduced noise, models quickly started
disagreeing. Like in the previous experiments, we verified a direct relationship between
noise and the confidence interval width, thus signifying that models become more diver-
gent under drift and ensemble reliability decreases. In fact, even if the mean prediction
of the ensemble stayed relatively the same, small amounts of noise already introduced
drastic effects on predictions.

To apply our approach in production, our hypothesis is that measuring model
disagreement allows for the estimation of ensemble reliability. However, the previous
definition of agreement is ill-defined for regression as a visual inspection of confidence
intervals is undesirable. When considering a classifier, we can state that two models agree
if they predict the same class. It is unlikely that two regressors output the same value.
We would argue that they ’agree’ if the predictions are ’close’, a subjective measure that
depends on context. We opted for the coefficient of variance (CV ) between regressors as
our measure of agreement, defined as:

CV =
σ

µ
(6.5)

The standard deviation σ provides a measure of spread. Dividing σ by µ provides a
dimensionless metric representing the extent of variability concerning the population
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Figure 6.8: Energetic consumption: effect of introducing noise to ensemble constituents’
input features
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means. Therefore higher the CV , the greater the dispersion and disagreement between
constituents. Under a voting scheme, the ensemble prediction is µ, CV states how far apart
are the individual constituents to the final ensemble. Section 6.3.1 provides an example
of how this metric can be used during production to estimate ensemble reliability.

Finally, we validated our ensemble by a comparison between performance and
constituent predictions dispersion CV , as illustrated in Figure 6.9. We inferred a direct
relationship between these two metrics. We also considered the distribution of constituent
dispersion and observe that most instances are located below CV = 0.05. That is, the ma-
jority of instances presented less than 5% dispersion between constituents of the ensemble.
In this scenario, we can expect a MAPE below 4%, which is desirable. As dispersion rose,
error quickly increased. Thus, we can conclude that disagreement between constituents
turns predictions unreliable following our hypothesis. This approach enabled us to extract
relevant scenario insights by applying our model to different scenarios, described in the
following Section.
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Figure 6.9: Relantionship between constituent agreement and ensemble performance. The
coefficient of variance between constituent predictions was used as an agreement metric.
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6.3 Experiments and Results

We assessed the statistical significance of our measurements through a pairwise
t-test with p-value ≤ 0.05 and a one-year walk-forward validation. An exhaustive grid
search was employed for hyperparameter tuning. We considered many algorithms for
base constituents, but the performant model found was a lightGBM optimizing the L2
loss function. The quantile regression used to obtain the prediction intervals employs the
same hyperparameters but optimizes the pinball loss function. The learning rate was set
to 5e−2, with 64 bins and training 100 trees with 30 leaves and a maximum depth of 50.

Figure 6.10 presents a simulation in which we only altered temperature and ob-
served the deviation in energy consumption. The lightGBM model trained on augmented
data from a linear regression was able to extrapolate consumption past the 80°F threshold,
at which point the standard lightGBM produced an unrealistic flat consumption curve.
However, we can expect a trade-off between extrapolating and predictive power. Table
6.1 presents the performance in terms of R2 and MAPE for all evaluated methods in each
Brazilian subregion and on the whole dataset. Gradient boosting outperforms all other
methods in the overall scenario. Thus, introducing a dependence on a linear model which
presents a larger error reduces performance in comparison to the standalone lightGBM.
Nevertheless, from the Table, we verify that this loss in predictive power is minimal and
for some regions, there is no statistical difference between both lightGBM methods. Thus,
DARE augmentation was able to retain the robustness of gradient-boosting machines and
the extrapolative ability of the linear models.
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Figure 6.10: Consumption simulation while varying temperature. Southeast/Center-west
2020-11-16, weekday.
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6.3.1 Atypical Historical Events Impact

To understand the impact of events on energy consumption, we compared the
predicted consumption from our counterfactual model with the observed consumption.
To get sensible ranges, we performed quantile regression through the pinball loss function
to obtain the 5% and 95% quantile predictions. If the observed consumption lies outside
this range, we assumed that this event generates an atypical consumption profile, reflecting
a low (< 10%) probability of this occurring.

We show three relevant case study periods for analysis regarding RQ2. The first
case study period is 2018 in which the Brazilian economy recovered after a long recession
during a period with no severe heatwaves, droughts, or other extreme weather events
of note, serving as a suitable year for baseline comparisons. Figure 6.11 illustrates the
consumption for the most developed region in Brazil for these two scenarios. The only
anomaly observed during 2018 was the truck drivers’ strike that lasted from May 21st
to May 30th, resulting in the disruption of entire supply chains across Brazil, empty gas
stations, and people forced to work from home due to limited transportation options. The
dramatic impacts of this strike on consumption are easily identifiable in Figure 6.11.

The second case study period is the year 2020, in particular during the early
stages of the COVID-19 pandemic which resulted in substantial restrictions on mobility
and a reduction in GDPs that were also experienced on a global scale. In Figure 6.12 we
compared consumption with the Oxford Stringency Index, which measures the strictness of
COVID-19-related policies that restrict population behavior [Hale et al., 2020]. During the
early COVID pandemic, we observe a close relationship between the drop in consumption
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Figure 6.11: Consumption for 2018 in the Southeast/Center-west and South subsystems.
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and the Stringency index for Brazil. The exception is the South region, which overall was
less impacted by the pandemic compared to other regions in Brazil. One explanation for
this lower observed impact is due to the region’s economic dependency on tourism and
lower levels of population concern about the COVID-19 virus in March. As such, by April
most restrictions had already been lifted [GULLO, 2020].

The absence of variables concerning demographics and population behavior makes
our model unable to predict consumption during the COVID-19 pandemic, which enables
us to measure its impact in a counterfactual approach. Therefore, we expect all constituent
errors to be equally high across 2020. Figure 6.13 presents ensemble and constituent
performance when trained on data from 2014 to 2018 and employed for prediction in 2019
and 2020. As expected, errors for 2019 are similar to those seen in training, meaning
similar weather variables distributions.

However, in 2020 we witness erratic behavior from the Rashomon ensemble. While
in 2019 the coefficient of variance was 0.04, we observed a variance of 0.14 in May 2020,
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Figure 6.12: 2020 COVID-19 impact on Brazil. Stringency data from Ritchie et al. [2020].
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implying that the weather for 2020 did not conform to earlier years. Since this pertains to
the high point of restrictions in Brazil, we can conclude that the pandemic effect shadowed
this change in weather. Brazil registered record-breaking heatwaves in October, surpass-
ing temperatures from the past 100 years. Under such extremes diverging from 2014-2018
distributions, predictions became unreliable due to error rising alongside ensemble disper-
sion. If prediction errors in May were exclusively due to the pandemic, we would expect
similar performance across constituents. However, their erratic behavior implies that the
weather for the entirety of the year was atypical. Months before the heatwave, we could
already forecast drift.

Our third case study period spans from 2001 to 2002. After a long drought with
low reservoir levels in early 2001, system operators were concerned that the electric grid
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Figure 6.13: Comparison of model performances across periods. Each constituent model is
represented by the Cluster from which it hailed. For 2019 data, all models behave similarly
to training and we observe a low MAPE. During the year 2020 individual constituent
performance becomes erratic implying data coming from distributions different from the
ones seen in training. This is to be expected, as October’s heatwave registered century-
long record-breaking temperatures.
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might collapse. To avoid a worst-case scenario, the Federal Government enacted a series
of policies aimed at reducing energy consumption by 20% [Bardelin, 2004]. These ranged
from awareness campaigns and propaganda to increasing energy prices at peak hours. It
was also heavily incentivized to turn off all lights during certain periods of the day, with
the intent of keeping all non-essential energy consumption to a minimum to minimize
grid strain. An appeal of examining this period is the presence of an exact measure of
expected impact, which is uncommon in counterfactual literature and allows for a direct
evaluation of our approach. Figure 6.14 highlights the impacts of these policies on all
regions, with the South excluded from this rationing plan.
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Figure 6.14: Consumption on 2001’s Brazilian Apagão (Blackout).
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6.3.2 Outages Impact

Extreme events such as the pandemic and heat waves usually leave a lasting impact
which, as demonstrated above, can be evaluated from daily energy consumption measures.
However, atomic or short-duration events might not provide the same consumption sig-
nature. This is true for most outages, given that the recovery time can happen within a
few hours. In this respect, using the same daily consumption model might lead to under-
predicting their impact. For events such as these, we applied the hourly counterfactual
model. Using the same methodology as previously described, we can measure an outage
impact by computing the residuals between the counterfactual model output and the ob-
served consumption. Additionally, we can accurately measure grid recovery time. Even
if the utility indicates that electricity is completely restored, it might take some time for
the grid to stabilize, and this approach accounts for this potential delay.

One of the largest outages in Brazil’s history was the 2009 Brazil and Paraguay
blackout. According to Brazil’s Ministry of Mines and Energy, adverse "atmospheric
factors" caused the failure of three transmission lines from the Itaipu Hydroelectric Power
Plant, which resulted in its complete shutdown on November 10th, 2009 [Brasil, 2009]. The
massive blackout affected not only 18 of Brazil’s 27 states, but also the entire population
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Figure 6.15: 2009 Brazil and Paraguai blackout on 10th November 2009. The energy was
restored between 1:00 and 6:00, and affected an estimated 90 million people in Brazil
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of Paraguay [Conti, 2010]. As a result, four Brazilian states and 90% of Paraguay were left
in complete darkness. It was reported that the outage started at 22:13 GMT-3 and that
the Itaipu power plant returned to normal operations at 6:00 AM GMT-3 the following
day.

There is some debate however regarding recovery time from this outage event.
For example, Hudedmani (2019) states that the energy was restored at 2:45 AM GMT-3
[Hudedmani et al., 2019] as reported by national news media at the time. However, Globo,
one of the largest news portals in Brazil, states that the southeast region began seeing
recovery after 3 hours of blackout Globo [2022], therefore at 1:00 AM GMT-3. Figure
6.15 illustrates the energy consumption for the South-east and Center-west regions which
contains all four states that experienced outages during this event. Indeed, at 1 AM the
start of the recovery can be seen with consumption only returning to pre-outage levels
between 6 AM and 7 AM.

Another wide-scale outage occurred on March 21st of 2018, reaching all regions of
the country, with greater intensity and duration in the North and Northeast. According
to the Brazilian Electric System Operator, human failure was responsible for the outage,
which resulted in an overload of the electric grid and eventually, its collapse [Silveira,
2018]. This also raised concerns regarding the security of the power grid [Liu, 2019]. The
outage began at 15:48 GMT-3 when the transmission line connected to the Belo Monte
Power Plant failed after not being able to support an increase in load. Belo Monte lies in
the Northern state of Pará close to the border of the Northeastern region. However, by
16:15 GMT-3 electricity was already restored in the Southeast and Center-west region,
thus these regions were not severely affected. The same cannot be said of the regions that
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Figure 6.16: 2018 North and Northeast outage in Brazil, on 21st March 2018. The energy
was restored between 16:00 and 21:00 and affected at least 80 million people in Brazil.
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(a) North region.
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(b) Northeast region.

depend on Belo Monte more heavily. Figure 6.16 shows the consumption for March 21st,
2018, in the North and Northeast region. Indeed we can see the drop in consumption
at the 16:00 hour mark, coinciding with the beginning of the outage. Recovery followed
immediately after, with an estimated total grid recovery occurring shortly after 21:00,
when consumption returned to pre-outage levels. Computing the area between observed
and counterfactual consumption, we obtained approximately a loss of 200% (12MW) and
300% (36MW) of energy for the North and Northeast regions respectively.
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Figure 6.17: Normalized consumption forecast for each Brazilian subsystem under all
evaluated RCP-SSP scenarios, considering the means of the respective CMIP6 ensembles.
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6.3.3 Forecasting Under a Changing Climate

Earth’s mean temperature is expected to increase by the end of the century com-
pared to pre-industrial levels, and how much of an increase will depend on future actions
taken by human populations to mitigate carbon emissions. Due to climate change, other
weather transformations are also probable such as a decrease in the humidity of dry regions
and shorter rainy seasons. All these climate changes are likely to impact energy usage, as
there is a close relationship between weather and electricity consumption. However, not all
regions of the globe will be subject to the same climatic changes. Furthermore, there exist
many possible scenarios highlighting different climate change projections. To account for
this variability, we propose forecasting energy consumption under 106 distinct CMIP6
models encompassing SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, building en-
sembles for each pathway taking into account the future projections for precipitation,
temperature, humidity, and wind speed.

We explored how each of the Brazilian regions’ energy consumption is expected
to change under the different warming scenarios in Figure 6.17. North and Northeast,
the hotter regions, present a larger increase in energy usage than the remaining ones.
This conforms with the expected temperature increases for the continent, as the northern
portion is expected to become significantly hotter than the southern portion. When
comparing one subregion to another, we can associate the disparity in energetic usage due
to heat index. The Northern region encompasses the Amazon rainforest and presents a
significantly higher humidity than the primarily semi-arid Northeast. As such, the effects
of high temperatures are exacerbated in the form of a larger increase in the perceived
temperature.

We also considered the overall consumption increase for the whole country. Each
pathway provides minimum and maximum temperature ranges, which we employed to
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Figure 6.18: Normalized consumption forecast for each evaluated SSP-RCP pathway on
the entirety of Brazil. Each area illustrates the consumption forecast range from an
individual CMIP6 model. While the lower bound for both temperature and energetic
consumption is similar across all scenarios, there is an increasing range and variance
regarding the upper bounds as the scenarios become more pessimistic.

obtain the consumption band in Figure 6.18. Nearly all CMIP6 models provide similar
minimum near-surface air temperatures (tasmin), regardless of the pathway. The same
cannot be said regarding maximum near-surface air temperatures (tasmax). As the sce-
narios become more severe in terms of projected climate change, the mean maximum
temperature increases and we observe a larger variance near the extremes of the distribu-
tions.

For the next five years (2021 - 2026), Brazilian’s Energy Research Company (EPE),
National Electric System Operator (ONS) and Electric Energy Trading Chamber (CCEE)
expect a 3.6% and 2.7% yearly load and power grid expansion respectively [EPE et al.,
2021]. Figure 6.19 presents a simulation of daily consumption through the year 2070
assuming that Brazil retains its 60% hydro-based energy supply. We presented 360 rolling
day averages to suppress seasonality and evaluate consumption tendencies. Although
Brazil currently holds 100GW+ of installed hydro capacity, it is unrealistic to assume
that any hydropower will be able to constantly operate at 100% efficiency. Itaipu, the
largest hydropower plant in Brazil and responsible for supplying over 10% of country-wide
consumption, has historically operated at an average of 61.15%1 power over the past 36
years. Thus, we considered a mean 60% hydropower operative power to estimate Brazil’s
total grid capacity.

1Available in Portuguese at https://www.itaipu.gov.br/energia/geracao

https://www.itaipu.gov.br/energia/geracao
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Figure 6.19: Electricity consumption forecast for Brazil through 2070. Light-colored lines
represent forecasts from individual CMIP6 models, while bold lines illustrate the mean of
the ensemble.
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6.4 Discussion

While many statistical methods for demand prediction have been proposed and
are demonstrated to be performant [Wang et al., 2021], one primary limitation has been
an overreliance on linear or quasilinear relationships [Jiang et al., 2020]. For example,
Wang et al. [2021] compares classical statistical methods utilizing linear relationships
against more complex statistical approaches and found that gradient-boosting methods
have higher performance when predicting city-wide energy consumption. However, this
is expected as tree-based approaches are known to struggle with out-of-distribution data
[Meyer and Pebesma, 2021]. If applied to demand forecasting this could be problematic
as impacts from extreme events and climate change can exceed historical records. In our
work, we proposed applying the DARE algorithm to a tree-based consumption model
so that it can accommodate out-of-distribution data, which we hypothesized to enable
state-of-the-art performance in face of extreme and disruptive events.

Disruptive events can impact electricity consumption, with the most notable recent
event being the COVID-19 pandemic, which has contributed to uncertainty in consump-
tion forecasting at the country scale. While the pandemic is an example of one type of
disruptive event [Ruan et al., 2020], other disruptive events such as economic recessions
can have dramatic impacts on the power sector [Bardelin, 2004]. In addition to such
disruptions, long-term social and economic trends, such as population growth and urban
development, will likely contribute to load growth. There is also the potential that future
climate change – which will result in warmer yearly temperatures – will in turn result in
increasing consumption. Warmer temperatures could also change the timing and inten-
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sity of daily electricity consumption, with peak electricity demand occurring at different
hours of the day and higher levels due to new deployment and utilization of building
cooling technologies [Burillo et al., 2019]. Moreover, these challenges and impacts may
not be ubiquitous, and in the Brazilian context may differ substantially due to climate,
geographic, and economic variations across regions [Swart and Brinkmann, 2020].

While some disruptive events may have impacts that persist across longer time hori-
zons, such as the COVID-19 pandemic, economic recessions, and climatological changes,
there are also shorter-term extreme weather events such as heat/cold waves, hurricanes,
and flooding that generate dramatic impacts on energy supply and demand (e.g., the
2021 Texas electricity crisis [Kemabonta, 2021]). Research has identified the importance
of generating better seasonal, subseasonal, and even weeks ahead forecasts to account
for extreme events and their potential impacts on everything from renewable energy gen-
eration to electricity demand [Orlov et al., 2020]. However, forecasting these extreme
events, and even generating a better understanding of their direct impacts on the electric-
ity system, remains an ongoing challenge [Kumar et al., 2021, Lerch et al., 2017, Vitart
and Robertson, 2018]. In acknowledgment of these challenges, industry and regulatory
groups are now calling for the introduction of reliability and resource adequacy metrics
that better account for extreme weather events [EPRI, 2022].

Counterfactual modeling has emerged as a technique to understand the impacts
of disruptive events on the electricity system in a more generalized manner, allowing for
comparisons across disparate areas of the world, including North America, South Amer-
ica, Europe, and Asia. For example, Buechler et al. [2022] used a counterfactual modeling
approach to understand the impact of COVID-19-related restrictions on electricity con-
sumption across 58 different countries/regions. In this work, counterfactual models of
electricity consumption were developed for each country/region to simulate what con-
sumption would have been in the absence of the pandemic and then compared against
actual demand during this same period.

Concerning the Brazilian energy system, Belançon [2021] evaluated 20 years of elec-
tricity load for the Brazilian grid and investigated scenarios for the balance of electricity
supply and demand in 2030 considering projected renewable penetration. In related work,
Trotter et al. [2016] generated a large number of realistic weather paths and presented
a probabilistic electricity demand forecast for Brazil for 2016-2100. In addition to these
research efforts, a spatial econometrics approach was applied in de Assis Cabral et al.
[2017] to forecast regional electricity consumption in Brazil. Focusing on the residential
sector in Brazil, de Assis Cabral et al. [2020] proposed spatiotemporal models to estimate
electricity demand.

In our first set of experiments, we focused on identifying the best algorithm to
build a counterfactual model of consumption prediction. lightGBM, although performant,
fails to extrapolate beyond training data. This makes it unable to cope with previously
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unrecorded extreme weather events, such as unprecedented heat waves made more severe
due to global warming. We propose augmenting training data with the predictions from
a linear regression model in temperatures outside the training scope. This enables the
lightGBM model to handle these previously unseen scenarios albeit at a small loss of
performance.

In all experiments, the North subsystem remained the most challenging. This re-
gion was not part of the integrated energy system until 2014, which induced two distinct
consumption distributions. To counteract this, we filtered data on the North before 2014
leading to a scarcity of data. Furthermore, the northern region had the smallest nominal
consumption, and as a consequence, small fluctuations led to large relative effects. When
exploring the drivers of consumption from SHAP, the most important feature identified
is whether a given day is a weekend/holiday, with weekdays being associated with higher
consumption. We observe that further stratifying by day of the week is helpful, as Sat-
urdays tend to have higher consumption than Sundays, and Mondays lower than other
weekdays, a characteristic also found in Europe [Ziel, 2018]. Since SHAP assumes feature
independence, co-related features can share the credit for their importance. This is par-
ticularly true for the temperature-derived variables, as they share a causal relationship.
Nevertheless, we verify that CDD remains one of the most impactful drivers, suggesting
a near-directly proportional relationship – potentially due to Brazil’s tropical climate.

Some insights into disruptive event impacts emerge when comparing the coun-
terfactual output with the observed consumption in 2001 when the Federal Government
enacted a series of policies to reduce consumption by 20%. From our counterfactual model,
the mean and median relative residuals for the Center-West region between June 2001
and January 2002 are −18.1%(±1.6%) and −18.6%. This matches the expected −20%

reduction on the period in which the restriction policies were in place, from July 1st, 2001
to February 19th, 2002. A similar pattern was also observed in the North and Northeast
regions with −19.1% and −18.9% relative residuals.

When evaluating the beginning of 2020 in Figure 6.12, we observe that our counter-
factual predictions closely match the observed consumption. In March, state Governors
started issuing recommendations about social distancing during the initial stages of the
COVID-19 pandemic. During this initial period, electricity consumption decreased with
a pattern that remained mostly constant from April to June, with a mean −8.87%±1.2%

residuals. However, by July we observe a recovery to pre-pandemic levels that coincides
with the relaxation of COVID-19-related restrictions. Although more severe restrictions
were again imposed in the latter part of the year, consumption was not as impacted
compared to the initial stages of the pandemic.

We identified a clear distinction in behavior during weekdays and weekends and
proceeded to evaluate them separately. Indeed, during the COVID-19 pandemic, we ob-
serve that there is a larger error margin between observed consumption and counterfactual
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output during weekdays. This finding corroborates with other works addressing mobility
and consumption during the early pandemic, in which many commercial and industrial
sectors either closed or adopted a home-office strategy. We proceeded to examine the
consumption curve shapes and we can observe that curves during the weekdays match
the shapes seen during the weekends. That is, due to the higher levels of restrictions to
daily life displayed by the Stringency Index, as well as the adoption of the home office,
we observe weekday consumption patterns to appear more similar to weekends compared
to before the pandemic. For most regions, we see a change from a consumption peak
near mid and late afternoon to a steady ramping consumption till late night. This phe-
nomenon is particularly significant for the Southeastern-center western subsystem, the
most industrialized region.

Regarding heatwaves, we observe a compound phenomenon of the later-stage pan-
demic and higher temperature conditions. Many commercial establishments had reopened
at this time but a portion of the population remained in the home office. This contributed
to commercial and industrial consumption returning to pre-pandemic levels, but residen-
tial consumption increasing. One potential explanation is an extreme heat event coupled
with the record increase in energy-intensive cooling systems adoption (e.g., air condition-
ing), as well as less adherence of the population to restrictions [Freitas, 2020]. During
the heatwave, we observe erratic behavior from the constituents, which is to be expected
when we consider this period to have broken temperature records from the past century
and be a clear example of data drift.

We also examined the monthly consumption profiles for each region in Brazil. For
all regions, the major sectors are commercial, industrial, and residential loads. We observe
that the consumption profile of the Southeast/Center-West region closely matches one of
the Southern regions. This might be a reason why the model performed well on both of
these subsystems. For the Southern region, we see a significant part of the load tied to
Agribusiness which presents a strong seasonality pattern. The Northern and Southeast
regions likewise show this same pattern, which cannot be seen in the Northern region.
This is to be expected given the extractive focus and the large proportion of the Amazon
rainforest in the region. Figure 6.20 illustrates each region’s consumption profiles.

We also found there to be a drastic decrease in the industrial prevalence in the
Northern region after 2014, with an increase in residential consumption. Further analysis
is needed, but one explanation is that in the second half of 2014 this region became part
of Brazil’s National Interconnected System (SIN), which in turn is tied to a large increase
in consumption. It might be the case that many small cities and towns, which are quite
abundant in the region as seen by the absence of points in the Northern region of Figure
6.3, were not properly accounted for in the data before this period. Nevertheless, we
can conclude that overall, the consumption profiles of all regions did not change much
between early 2013 and late 2019, regardless of the financial crisis that happened during
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Figure 6.20: Consumption profiles for each Subsystem.
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this period. This is a strong indicator that we can expect the same to be true for future
projections. The same cannot be said of the 2020 pandemic, which was unlike previous
events that impact consumption that Brazil had previously experienced.

Our final experiments explored future periods by applying forecasting from CMIP6
projections. We observe that given Brazil’s current sources of generation, it will not be
able to sustain its consumption, and it will face shortages sooner than initially thought
even under optimistic assumptions. Under this scenario, we can expect a considerable
reliance on non-hydro energy sources by 2030 to meet demand. This suggests a need
to promote renewable energy alternatives, as currently, the next most available energy
resource in Brazil is carbon-intensive thermal power stations. Additionally, under the
SSP5-8.5 forcing scenario, we project that Brazil will be unable to meet its consumption
by 2070.
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Chapter 7

Case Study: Diagnosing COVID-19
from Complete Blood Counts

At the end of 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2)
appeared in the city of Wuhan, China, [Wu et al., 2020] which led to a global outbreak
weeks later [Hui et al., 2020]. This highly transmissible novel Coronavirus disease was
named Coronavirus disease 2019 (COVID-19) [Wu and McGoogan, 2020]. At the time
this work is being written, over 630 million cases of COVID-19 infections and over 6.67
million deaths have already been reported worldwide. One of the main challenges for its
diagnosis is the list of initial symptoms: fever, dry cough, and/or tiredness [Dias et al.,
2020] which are all common in many other respiratory diseases.

Currently, the golden-standard tests for SARS-Cov-2 direct detection include the
Reverse Transcription Polymerase Chain Reaction exam (or simply, RT-PCR) and the
serology count analysis. The first action of the RT-PCR exam is the use of the enzyme
reverse transcriptase to transform the RNA of the virus into complementary DNA. RNA
is produced from a DNA molecule and presents information with which it is possible to
coordinate the production of proteins. With a complementary probe to a particular virus,
it is possible to verify whether the molecular content corresponds to that of the suspected
infectious agent. However, in particular, for the case of SARS-Cov-2, the RT-PCR is more
efficient at the peak of the infectious cycle [Singanayagam et al., 2020]. This leads to
high false-negative occurrences with a sensitivity rate of between 50% and 62% according
to Guan et al. [2020], Wang et al. [2020]. Xiao et al. [2020] verified instances of over
20% infected individuals with a positive RT-PCR result only after two consecutive false-
negative results. Serology exams have been found to reach a sensitivity and specificity rate
of .95+ but only after 15 to 28 days of symptom onset [Iyer et al., 2020]. Furthermore,
both exams are relatively expensive and results take longer to process when compared
with other kinds of laboratory tests, such as the complete blood count.

Complete blood counts (or simply, CBC) are extensively used for general individual
diagnosis [Walters and Abelson, 1996]. As a low-cost test that measures analyte levels
of the white and red series in the blood, it is a useful tool to support medical decisions,
as intrinsic variations of analytes can bring relevant insights regarding potential diseases.
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Patients with most kinds of infectious diseases have noticeable changes in their CBC tests.
However, proving that these results can be interpreted as sufficient to support a particular
diagnosis is a considerably more difficult task, as changes in analyte values could be easily
confounded for different diseases’ patterns.

In analyzing complete blood counts of individuals with COVID-19 infection in iso-
lation, we find some changes to be quite characteristic of the disease [Foldes et al., 2020,
Formica et al., 2020, Hu et al., 2020]. This implies that machines, which can detect pat-
terns not easily noticeable by humans, could be employed for automatic detection and
preliminary screening of the disease. However, many possible analyte combinations might
lead to the same conclusion regarding a target disease, thus elucidating the Rashomon
Effect and posing a suitable problem to deploy our ensembling approach. Indeed, many
models have been proposed for automated COVID-19 diagnosis through CBCs and omics
data. Further, we argue that the detection performance of these models is possibly bi-
ased - or overestimated - as many patterns are not unique to SARS-Cov-2. With this,
the performance of these models will likely drop significantly as the prevalence of other
respiratory viruses increases. This work employs a dataset collected between 2016 and
2021 in partnership with Grupo Fleury containing exams of individuals who underwent
blood tests in conjunction with RT-PCR exams throughout Brazil, both for COVID-19
and for other pathologies like Influenza-A or H1N1. More specifically, our dataset includes
individuals who underwent a CBC at an interval of 60 days before or after a RT-PCR
test.

For 2020 and 2021 we collected laboratory data for 900 220 unique individuals,
809 254 CBCs, and 1 088 385 RT-PCR tests, of which 21% (234 466) were positive and
less than 0.2% (1 679) were inconclusive. This work does not investigate demographic,
prognostic, or clinical data, such as ethnicity, hospitalization, or symptomatology, as
these fall out of laboratory scope. We propose modeling the task as a binary classification
problem and analyzing two distinct timeframes: one considering the early pandemic stage,
namely the first wave of COVID-19 cases in Brazil; and a second stage after November
2020, when the second wave of COVID-19 started, and when we saw the emergence of
a new variant of concern, P1, which eventually led to the health system collapse in the
capital state of Amazonas in late December [He et al., 2021, Naveca et al., 2021].

One of the key highlights of this case study is the analysis of other RNA respiratory
viruses. We also collected 120 807 CBCs from 2016 to 2019 of 16 940 individuals who
tested positive for Influenza-A, Influenza-B or H1N1, as well as other respiratory viruses,
and additionally 307 978 unlabeled CBCs. In particular, these additional CBCs included
exams from the 2016 H1N1 surge in São Paulo [Santos et al., 2017], during which the
population developed similar hygienic habits to the ones recommended in 2020, like social
distancing and the use of masks, although at a minor scale. To the best of the authors’
knowledge, this is the most extensive and comprehensive COVID-19-related dataset to
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date. Therefore, we hypothesize that employing Rashomon Ensembles is not enough if
we cannot somewhat reduce biases coming from the data collection stage.

We follow the guidelines provided by the IJMEDI1 checklist [Cabitza and Cam-
pagner, 2021] regarding the application of machine learning to medical data, allowing
for both higher quality work and an easier reproducibility and understanding of results.
Our analysis focused on patients older than 18 years. We employed our Rashomon en-
semble technique to predict COVID-19 and, as one of its advantaghes, used it as means
to gain insights of predictions between different age groups. We verified the Accuracy x
Agreement curves for both young and old patients and found no significant difference in
ensemble performance thus implying that our model is well-tuned, exemplified in Figure
7.1. We believe more experiments are necessary to guarantee performance for children
and teens, but data regarding these age groups are present in all training and test sets.

Throughout our experiments, we train an ensemble of machine learning models
on this million-scale dataset to predict Sars-CoV-2 positivity. To guarantee the correct
labeling of training instances, we focus on the CBC results as close to the first positive
result as possible. Our analysis shows that the additional data from other RNA respiratory
viruses is a fundamental aspect of properly screening for COVID-19. In the absence of such
information, models are prone to confound SARS-Cov-2 with other respiratory viruses or
infections. This finding corroborates with many studies that raised concerns regarding bias
in COVID-19 research such as Bastos et al. [2020], Palayew et al. [2020], Wynants et al.
[2020]. We also demonstrate the necessity of maintaining a model as up-to-date as possible
to allow any machine learning model to keep up with the different stages of a pandemic
surge. Our model retains high-performance values across multiple evaluation scenarios
and on simulations with varying prevalences of COVID-19, properly differentiating Sars-
CoV-2 from other confounding viruses, thus demonstrating the robustness of our approach
presented in our work [Zuin et al., 2022a].

Our stacking definition extends all previously related COVID-19 learning approaches
by building specialized models targeted at confounding viruses. When building the final
model, we can expect to learn prediction relationships between COVID-19 and other res-
piratory infections. For example, in a scenario of a moderately high chance of Influenza,
we would need an exceedingly high COVID-19 probability to confirm a positive infection
hypothesis.

1International Journal of Medical Informatics
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Figure 7.1: Relationship between Rashomon Ensemble accuracy and intra-constituent
agreement. As we hypothesized, there exists a direct correlation between ensemble per-
formance and agreement. Similar patterns can be found across all age strata. Further,
the concentration of data points in high agreement values implies that the returned pre-
dictions are mostly trustable and empirical risk found in training can be extrapolated to
production.
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(a) Under 18 years.
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7.1 Complete Blood Count and Data

The Fleury database structure was created on 10/1997 using an InterSystems
Caché and Ensemble, version 1.42, a high-performance architecture that is commonly
used to develop software applications for healthcare management (Cambridge MA). The
database was built using standard healthcare industry practices to ensure the accuracy,
completeness, and security of the data collected. The results of the laboratory tests are
automatically inserted in a Microsoft SQL database after verification of the RT-PCR out-
put. Within a few seconds, data is replicated to the Cache Database − Intersytems − for
permanent storage. Once stored in the database, the result is made available to patients.
All users have a username and password, maintained by AD Windows (Active Directory).
All registry changes to the database are tracked through a log and are restricted to users
with high-level administrative permissions. Information is kept secure through a separate
network firewall, accessed only by authorized persons within the Fleury Group’s domains.
Data stored in this database has been used previously in several clinical studies before
the COVID-19 outbreak [Baldo et al., 2019, Brandão et al., 2021, Candido et al., 2020,
Chauffaille et al., 2021, Idrees et al., 2021]

This project was submitted, evaluated, and approved by the Research Ethics Com-
mittee (CEP) of Grupo Fleury (CAAE: 33790820.3.0000.5474), duly qualified by the Na-
tional Research Ethics Committee (CONEP) of the National Health Council of Brazil.
The Research Ethics Council (CEP) is an interdisciplinary and independent collegiate
of public relevance, consultative, deliberative, and of educational character, created to
defend the interests of research participants in their integrity and dignity as well as to
contribute to research development within the highest ethical standards. By decision of
the CEP, since this project uses retrospective and anonymized data, there is no need to
apply an e-Free and Informed Consent Term (TCLE) to participating patients.

Quality control is performed daily using 3 control levels for each parameter. Mea-
surements are analyzed using the InsightTM Interlaboratory Quality Assessment Program
for Sysmex hematology analyzers, where data from users worldwide are compared. To
guarantee equivalence and reproducibility of our analysis and enable the use of common
reference intervals for different measurement procedures [Miller and Greenberg, 2021],
harmonization of equipment is performed per the Clinical and Laboratory Standards In-
stitute’s (CLSI) guidelines [Hayward et al., 2015]. Results are accepted if the percentage
difference is less than 50% of the total error for each parameter, which allows us to devise
reference values for each measurement [Medicare, 1992, Ricós et al., 2015].

CBC measurements were obtained from EDTA-K3 collected peripheral blood sam-
2Caché, InterSystem, 2018; https://docs.intersystems.com/; November 2020

https://docs.intersystems.com/
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ples analyzed by the Automated Hematology Analyzer XT or XN series from Sysmex
(Sysmex Corporation, Kobe, Japan). In total, 72 pieces of equipment are distributed
in 36 laboratories over the country. Red blood cells (RBC) and platelets were counted
and sized by direct current impedance with hydrodynamic focusing and heath flow direct
current (DC) detection was used. The hematocrit was determined from the RBC pulse
height. The hemoglobin was measured using sodium lauryl sulfate spectrophotometry.
CBCs also include the physical features of t RBC: Mean corpuscular volume (MCV) is a
measurement of the average size of red blood cells; Mean corpuscular hemoglobin (MCH)
is a calculated measurement of the average amount of hemoglobin; Mean corpuscular
hemoglobin concentration (MCHC) is a calculated measurement of the average concentra-
tion of hemoglobin; Red cell distribution width (RDW) is a measurement of the variation
in RBC size. The white blood cells (WBC) and six-part differential were determined by
fluorescence flow cytometry. Specifically, the WBC subpopulations were separated based
on cell complexity (side-scattered fluorescent intensity), cell size (forward-scattered light),
and fluorescence signal (side fluorescent light).

Abnormal increases or decreases in cell counts may indicate an underlying biological
process taking place, like inflammation or immune response. Also, values such as the
Neutrophil-Lymphocyte ratio, Platelet-Monocyte ratio, or Platelet-Lymphocyte ratio are
recognized as inflammatory markers [Nanava et al., 2020]. Table 7.2 shows analyte means
and standard deviations, as well as the employed units of measure in each of our cohorts.
We can easily identify some patterns that might help us in sorting COVID-19-infected
patients from the remaining ones. We can also clearly perceive that the distributions
for each gender are slightly different. This is to be expected, as it is known that CBC
values vary with age and gender [Bain et al., 2016]. However, introducing an explicit
gender variable into our model could entail bias. To avoid this, we instead normalize each
analyte by the corresponding gender and age reference values devised by Grupo Fleury,
thus building a unified model that considers CBC analyte values regardless of gender.
Specifically, we perform normalization by employing the reference ranges as a pivot. Let
R be the reference values of an analyte, the general formula scaling features is given as:

x′ =
x− Ω(R(x|sex = s, age = a))

O(R(x|sex = s, age = a))− Ω(R(x|sex = s, age = a))
(7.1)

where x is an original value, x′ is the normalized value, R(x|sex = s, age = a) describes
the reference values for x given the sex s and age a of a patient, and Ω and O represent
the lower and upper bounds respectively. For example, suppose a male adult presents
a 5.0 millions/mm3 RBC and knowing that the reference values lie in the range [4.30 −
5.70], we first subtract 4.30 from 5.0 and divide the result by 1.4 (the difference between
the maximum and minimum reference values), thus obtaining the normalized 0.5 RBC
count. Consequently, normalized values above 1 represent abnormally high cell counts.
Likewise, normalized values below 0 represent abnormally low counts. Our model analyzes
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normalized cell counts and their corresponding pair-wise ratios as potential features for
building our models.

However, proper feature selection is not the only step needed to ensure perfor-
mance. It is worth mentioning that CBCs and RT-PCRs are part of different exam
batteries, and are therefore often collected on different dates for the same individual.
Thus, an important decision is the ideal time frame between the collection of a CBC and
that of the RT-PCR test used to validate its label. It is challenging to validate the precise
moment the infection has initiated considering the lack of information concerning the on-
set of symptoms. We also observed abnormalities in the CBCs associated with recovered
individuals. These differences could be related to drug usage and/or other therapies, or
be due to symptoms that persist even after the virus has been eliminated. In this context,
we have the hypothesis that CBCs, even when associated with a positive RT-PCR, may
be affected by treatment-related effects. Figure 7.2 shows the concentration distribution
of some analytes along with the disease progression time frame. The lower the ratio be-
tween white blood cells (WBC) and red blood cells (RBC), the higher the probability of
the individual being positive for COVID-19. Additionally, we observed that the lowest
value for this ratio lies on day 0. Since our working dataset consists of patients who
went to one of Grupo Fleury’s laboratories to undertake an exam, we hypothesize that
the search for an RT-PCR, in particular for patients who obtained a confirmatory diag-
nosis of COVID-19, might be associated with the start of symptoms onset, explaining
this particular pattern. We did not observe similar behavior for other evaluated viruses,
perhaps due to the relative difference in public awareness/concern regarding SARS-Cov-2
and Influenza infections.

Furthermore, we also observed that most analytes tend to present abnormal values
for up to 30 days. This might be related to the natural evolution of COVID-19 onto
the inflammatory stage, the effects of treatments, or even long-lasting effects on patients’
immunological systems. We concluded that the safest and most effective gap to use
for labeling CBCs with RT-PCR outcomes’ is the 24-hour window centered on the first
positive RT-PCR result of an individual, with the remaining frames being highly uncertain
about a positive diagnosis, and thus discarded.

To ensure safe labeling, one should also address any gender or age biases. Figure
7.3 presents the age distribution of each pathology subset. We verify a small prevalence
in male-positive COVID-19 cases and Female positive Influenza. To address this, we sub-
sampled the training sets to remove possible biases that could jeopardize learning and
validated unsampled data to properly verify model behavior in real-world scenarios.

Another point of attention is the possible existence of false-negative results for
RT-PCR exams. In particular, we often see cases of the same individual having negative
results interspersed with two or more positive results. Therefore, it is also necessary to
carry out a pre-processing step to guarantee the authenticity of negative labels and to
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Figure 7.2: Average values of the most impactful analytes along with the disease time
frame, from 30 days before the first positive RT-PCR result up to 30 days after. N=120 726
patients.
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Figure 7.3: Age distribution of the patients across all the evaluated diseases. Only patients
with positive RT-PCR were considered. The number of patients available on Table 7.1.
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ensure that the model is as faithful as possible to the real scenario of COVID-19, and not
to the limitations of the RT-PCR exam. We filter out any negative RT-PCR results issued
after the first positive RT-PCR result, thus focusing our analysis on pre-covid individuals
and those in the preliminary stages of the infection. We also consider individuals that
never had any contact with SARS-Cov-2 in our negative cohort, namely individuals with
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exams dating before 2020.
Finally, the scale of our dataset allows us to produce high-quality training sets and

massive validation sets. Table 7.1 provides the gender and RT-PCR results distribution
employed for training and evaluating our models. In addition to SARS-Cov-2, Influenza-A,
Influenza-B, and Influenza-H1N1, our dataset also comprehends a variety of other viruses,
including Coronavirus OC43, Human Metapneumovirus A, Adenovirus, Parainfluenza
1, Coronavirus HKU1, Enterovirus B, Parainfluenza 2, Coronavirus NL63, Respiratory
Syncytial Virus A, Mycoplasma pneumoniae, Respiratory Syncytial Virus B, Rhinovirus,
Human Metapneumovirus B, Coronavirus 229E, Chlamydophila pneumoniae, Bordetella
pertussis, Parainfluenza 3, Bocavirus, and Parainfluenza 4. We argue that taking this
variety of confounding viruses into consideration is of utmost importance to learning
models that are specific to COVID-19.

7.2 Building a Rashomon Ensemble

Our main objective in this case study is to predict COVID-19 disgnosis on blood
related data. As a secondary objective, we also sought to demonstrate that training a
model directly on COVID-19 data is not enough to guarantee robustness if multiple res-
piratory infections are present, as might be expected to occur in a possible COVID-19
endemic scenario. This was true even in the case of a massive dataset such as the one we
employed for our study. We built resilient models for a pre-selected case of core confound-
ing viruses and showed that we can retain similar COVID-19 detection performance in a
scenario containing the prevalence of COVID-19 as well as achieving high discriminatory
figures in low-prevalence scenarios with an abundance of other respiratory infections. Fur-
thermore, we also demonstrated that the model indeed learns useful relationships between
CBC patterns of other respiratory infections. To ensure the relevance of the results, we
assess the statistical significance of our measurements through a pairwise t-test [Sakai,
2014] with p−value ≤ 0.05 and 5-fold cross-validation.

Our models were trained with the objective of distinguishing CBCs (+) from CBCs
(−) (refer to Table 7.1). We followed a stacking procedure, that is, the training stage
consists of creating multiple specialized models for each of the viruses considered (i.e.,
COVID-19, Influenza-A, Influenza-B, Influenza-H1N1, and other viruses) and then com-
bining their outputs to obtain a final prediction about the target disease. For the COVID-
19 predictor, we employed our Rashomon Ensemble technique with gradient-boosting ma-
chines as base models. We divided the training samples into two equally sized batches.
The first one was used to train the specialized models and the second one to train the
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final stacked meta-model. Each specialized model only had access to label information
regarding the corresponding virus, and the stacking model employs CBC (+) and CBC
(−) labels. Table 7.1 shows training and validation sets for the two waves that occurred
during the COVID-19 outbreak in Brazil. The training set for the first wave comprises
labeled CBCs acquired until 26 June 2020, whilst its validation set comprises labeled
CBCs acquired between 27 June 2020 and 05-September-2020. The training set for the
second wave comprises labeled CBCs acquired until 30 September 2020, whilst its vali-
dation set comprises labeled CBCs acquired between 01 October 2020 and 28 February
2021. Both training and validation sets contain data corresponding to viruses other than
SARS-Cov-2: the training sets contain instances from 2016 to 2018, while the validation
sets contain instances from 2019.

Both specialized models as well as the final stacking model were trained with
lightGBM [Ke et al., 2017a], a fast implementation of a tree-based gradient boosting
technique. We employed the SHAP algorithm [Lundberg and Lee, 2016, 2017, Lundberg
et al., 2018] to obtain an interpretation of the model’s prediction, allowing us not only to
have a probability that a specific CBC is associated with a positive RT-PCR for COVID-
19 but also an explanation consisting of the feature importance leading to the model
decision. We assessed performance by calculating AUROC, sensitivity, and specificity
in the validation sets as well as running 5-fold cross-validation in the training sets. We
performed extensive grid-search for hyperparameter tuning for all the aforementioned
models. Our final models employ 100 Gradient-Boosted Decision Trees estimators with
a maximum tree depth of 50 and a maximum number of leaves of 50. The learning rate
was set to 2e−1 optimizing the binary cross-entropy function.

As the first step of our algorithm, we sampled 100 000 models from the complete
model space, considering both raw analytes as analyte ratios as possible features. Section
7.4 presents related literature which helps in finding a suitable baseline for predicting
COVID-19 from blood tests and infer a reference model. We considered the AUROC value
of .81 as a performance threshold to consider a model minimally performant and establish
the Rashomon set, the lowest AUROC value found in the literature. This resulted in a
sampled model space H′ containing 47 708 models out of the original 100 000 (47.71% of
the models perform better than the minimally performant model from literature). Such a
large Rashomon set implies that blood-related features are useful for preliminary disease
diagnosis. Figure 7.4 illustrates the induced Rashomon space and the found divisions
after clustering models according to their explanatory vectors.

Similarly to our previous case studies, not all CBC analytes are relevant features
for differentiating the base targets (i.e., each virus), and some features may be detrimental
to the task. To properly perform the subsequent step of our algorithm and find a set of
relevant features for each representative Rashomon constituent, we represented the model
space as a directed acyclic graph (DAG) in which each node represents a distinct feature



7.2. Building a Rashomon Ensemble 122

Figure 7.4: TSNE visualization of the Rashomon space. No clear relationship exists
between cluster assignment and predictive power. Cluster 11 appears to be more spread
over the space overlapping with other clusters, while the remaining ones are mostly concise,
reminiscing the steel-plate defects of Rashomon space. N=47 708 models.

subset, and vertex A→ B is connected if B can be reached by simple feature addition from
A, thus representing a transitive reduction of the more complex combinatorial complete
model space. This modeling approach presents two desirable properties: the first being
that any vertex is reachable from the [∅] model, the second being that, for any feature set
path, there exists a topological ordering, an ordering of all vertices into a sequence such
that for every edge, the start vertex occurs earlier in the sequence than the ending vertex
of the edge. These properties imply a partial ordering of the graph starting from the root
node, which allows us to search it in an orderly manner. We apply the A* algorithm [Hart
et al., 1968], employing as heuristic the AUROC of the model represented by the feature
set of a given vertex. We hypothesize that there exists a set of optimal feature expansions
that lead to the best-performing models for each specific base task. This allowed us
to search the N ! combinatorial space of feature subsets to select the best-performing
specialized models.

Once models are selected, it is important to verify their suitability as Rashomon
constituents. Our main hypothesis is that by exploiting models that disagree under data
drift and that encompass diverse explanations, we can build a more robust ensemble.
In Figure 7.5, we introduced increasing amounts of gaussian noise to the normalized
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Figure 7.5: COVID-19 diagnosis from blood analytes: effect of introducing noise to en-
semble constituents’ input features.
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features and observed each constituent’s returned probability distributions under each
scenario. We verified a direct relationship between noise and the confidence interval,
thus signifying that models become more divergent under drift and ensemble reliability
decreases, as intended. This suggested that our constituent selection was appropriate and
that we could deploy them. The following Section presents multiple experiments in which
we applied our ensemble, enabling us to extract relevant scenario insights and deepen the
literature behind COVID-19 AI-guided diagnostics.

7.3 Experiments and Results

Our first set of experiments is dedicated to validating that CBCs are useful sources
of information for identifying SARS-Cov-2 virus infection. It is worth mentioning that in
this initial experiment we did not employ information about infections other than COVID-
19 while training the model, that is, CBC (−) is composed only by the sub-population in
COVID-19 (−). We trained a COVID-19 model with the labeled CBCs within the first
two quarters of 2020 and evaluated it with the labeled CBCs within the third quarter
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of 2020. Figure 7.6 shows the AUROC improvement as we proceed to include more
features in the COVID-19 model. We can verify that employing only three features is
already enough to surpass the .85 AUROC mark. Our final COVID-19 model achieves
an AUROC of .922, specificity of .918, and sensitivity .824, thus clearly indicating the
potential of employing large volumes of CBCs to identify SARS-Cov-2 virus infection.
Since electing more than 15 features doesn’t seem to significantly improve performance,
our sampling step for the Rashomon approach did not explore larger models. Figure
7.7 presents the 15 most important features identified by our algorithm as well as their
contribution to the final specialized COVID-19 model prediction.

Figure 7.6: Increase in performance as we allow more features to enter the model while
performing a greedy search (i.e., each iteration increases the feature size). Each point in
the figure represents a COVID-19 model, and the number of features within a model is
given according to the corresponding dashed lines. a Performance increase of the area
under the Receiver operating characteristic curve. b Performance increase of specificity.
c Performance increase of sensitivity. N=75,923 patients.
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7.3.1 SARS-Cov-2 Mutations and Variants

By mid-November 2020, Brazil entered the second wave of COVID-19, which even-
tually led to the collapse of the health system in Manaus, the capital of Amazonas, a state
in Brazil [Emmerich, 2021]. One of the explanations raised by the local government was
the emergence of a new COVID-19 variant, known as 20J/501Y.V 3 - or simply P.1 [He
et al., 2021]. To evaluate the performance of our COVID-19 model as the SARS-Cov-2
virus mutates, we trained it on two distinct points in time. The first one, which we will
refer to as the “First-wave model”, was trained using the training set associated with the
first wave (as shown in Table 7.1). The second, which we will refer to as the “Second-wave
model” was trained using the training set associated with the second wave in Brazil (as
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Figure 7.7: Features in red are exclusively from the red series (roughly 60% of total
importance). Features in gray are exclusively from the white series (roughly 26% of total
importance). Features in purple involve analytes from both red and white series (roughly
14% of total importance). N=103 822 CBCs.
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shown in Table 7.1).
Figure 7.8 presents the AUROC obtained after the application of each of these two

models during the pandemic, up to March 2021, considering a 7-days sliding window, as
well as the respective COVID-19 prevalence (i.e., the proportion of positive cases over all
RT-PCR exams in a given period). We investigate three periods of interest: R(t) > 1.00,
a period in which the SARS-Cov-2 reproduction number was above 1.00 uninterruptedly
for several days. During this period the virus spread quickly through the entire country;
Christmas + New Year’s day, a period in which families reunite, spreading the virus and
resulting in a clear increase in COVID-19 cases. This was observed in the entire country;
and during Carnival, a period in which large crowds fraternize. Carnival events were
canceled for 2021, but many gatherings were reported in some regions of the country,
such as Rio de Janeiro, Natal, and Recife.

We evaluate the COVID-19 Rashomon ensemble on both periods using the model
trained with data up to October, illustrated in Figure 7.9. Performance on both periods
appears to be comparable, thus implying that the constituents were able to properly
generalize onto the second wave. We also verify that the Rashomon ensemble remains a
suitable approach, outperforming all constituents in either scenario. Further, the empirical
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Figure 7.8: AUROC fluctuation over time considering a 7-day sliding window. The red
line represents the model trained only on the first wave of COVID-19 in Brazil data (up to
2020-06) while the green line represents a model trained with data immediately before the
start of the second wave of COVID-19 in Brazil (up to 2020-10). Thinner lines depict the
measured AUROC values while thicker lines illustrate their respective trends. The second-
wave model can retain performance during the second wave while the performance of the
first-wave model deteriorates. Key events are marked in gray and purple. N=357 956
CBCs.
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risk found during training can be used to estimate the empirical risk on production as no
significant divergences were observed.

The performance of the First-wave model, trained on data up to May, seems to
deteriorate with time mostly as a result of periods of high COVID-19 prevalence due to
SARS-Cov-2 variants. On the other hand, the Second-wave model reaches AUROC values
as high as .952. The periods analyzed affected the two models in different ways, and the
experiment highlights the importance of retraining the models so that they can account for
eventual virus variants. Thus, a key concern is an ability to distinguish between different
respiratory viruses. After a careful study, we further trained specialized models in an
attempt to predict the RT-PCR result for various types of Influenza and other respiratory
viruses. Our approach employs stacking to combine the outputs of each specialized model
(i.e., COVID-19, Influenza-A, Influenza-B, H1N1, etc.) to perform a final prediction for
COVID-19. Specifically, we used half of the training data to learn specialized models,
and the other half to train the final stacked model. As illustrated in Figure 7.10, our
stacked COVID-19 model achieves performance as high as .913 (cross-validation on the
stacking training sets shown in Table 7.1) and .917 (using stacked training and validation
sets shown in Table 7.1) while retaining .80 sensitivity and .91 specificity.
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Figure 7.9: Comparison of model performances across periods. Each constituent model
is represented by the Cluster from which it hailed. Both in the train and novel datasets,
we can observe that all constituents model behave similarly. We should expect data
distributions from late 2020 and early 2021 to be properly represented in data before
October 2020.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 V

0.6

0.8

1.0

M
ea

n 
A

U
C

Train dataset (2020-03 to 2020-10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 V

0.6

0.8

1.0

M
ea

n 
A

U
C

Novel dataset (2020-10 to 2021-03)

Figure 7.10: AUROC values for the proposed stacking model. a Cross-validation perfor-
mance. b Test set performance. N= 91 014 train CBCs and 261 630 test CBCs.

   a                                      Train          b                                        Test
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7.3.2 Presence of Confounding Diseases

While the stacked model achieves high performance in predicting COVID-19, it is
also important to verify its specificity by analyzing the predictions performed for individu-
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als infected with viruses other than SARS-Cov-2. Figure 7.11 shows how different models
perform specifically on individuals that were infected by some viruses in 2019. The ideal
result would be all predictions being negative for COVID-19. As discussed before, models
trained solely on SARS-Cov-2 data are very effective in identifying COVID-19 cases, but
the result on 2019 data indicates that these models performed poorly on other viruses
(Figure 7.11a). Including viruses other than SARS-Cov-2 during training increases the
performance of 2019 data (Figure 7.11b). The stacked model proves to be much more
specific for COVID-19 than both previous models (Figure 7.11c).

Figure 7.12 also investigates the specificity of the stacked model by showing the
prediction distribution on the 2019 data (i.e., individuals infected by a virus other than
SARS-Cov-2). The stacked model associates 0−10% COVID-19 probability to roughly
44% of the predictions on 2019 data. Furthermore, the stacked model correctly places
almost 80% of the evaluated individuals below the 30% COVID-19 prediction mark, with
over 40% being placed below the 7% probability mark.

Figure 7.11: Results of different models evaluated on 2019 individuals with confirmed RT-
PCR results for diverse viruses, including Influenza-A, Influenza-B, Influenza-H1N1, and
Seasonal Influenza. a Model trained only on SARS-Cov-2 data. CBC (−) includes only
COVID-19 (−). b Model trained using data of diverse viruses, including SARS-Cov-2.
CBC (−) also includes viruses other than SARS-Cov-2. c The stacked model. CBC (−)
also includes viruses other than SARS-Cov-2. Specialized models are trained using half
of the training sets, and then these specialized models are combined using the other half
of the training sets. N=11 116 CBCs.
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We also consider how the model would perform in an endemic scenario in which in-
dividuals infected with SARS-Cov-2 could be scarce, and where other types of confounding
viruses might be present. To simulate different scenarios, we evaluate the stacked model
on data with different COVID-19 prevalences. Specifically, we sample exams from the
second wave validation and 2019 data to control the COVID-19 prevalence. The main
goal is to stress the stacked model by presenting cases before any safety and/or social
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Figure 7.12: Stacked model probability of predicting COVID-19 on 2019 data. Nearly
90% of the cases lie below the 50% covid probability threshold, with roughly 75% being
concentrated below the 30% probability threshold. N=307 978 CBCs.
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distancing policies could take place, in an attempt to mimic what could happen in an
endemic future. These results are summarized by the AUROC, sensitivity, and specificity
numbers for each evaluated COVID-19 prevalence presented in Table 7.3. To guarantee
statistical significance, we perform 30 repetitions of each simulation and present the re-
spective 95% confidence intervals. The stacked model proved to be robust on varying
levels of COVID-19 prevalence.

7.4 Discussion

The CBC is a simple and inexpensive exam. It is part of most laboratory rou-
tines, so “astute practitioners may use nuances and clues from the CBC in many clinical
situations” [Walters and Abelson, 1996]. Liu et al. [2021] devised a high-accuracy risk
assessment tool that can predict mortality for COVID-19 through CBCs. Tan et al. [2020]
verified that the low count of white blood cells is related to COVID-19 severity by analyz-
ing 12 death cases of COVID-19 and 18 individuals with moderate to severe symptoms,
verifying low lymphocyte percentage in most of the cases. Although our dataset had no
indicator of severity, we did find a drop in lymphocyte count the closer individuals were to
their first positive RT-PCR results, corroborating this finding. Furthermore, we also veri-
fied many other analytes that shared a similar pattern. Although more research is needed,
we believe that the key analytes indicated by our model might provide possibilities for
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future research. Literature suggests that there might be existing intrinsic relationships
between analytes that might be characteristic of COVID-19. For instance, Nalbant et al.
[2020] found that the neutrophil/lymphocyte ratio (NLR) might be particularly typical of
COVID-19 infection. However, there is a profusion of other possible promising ratios and
patterns currently being under-analyzed for the sake of COVID-19 diagnosis. One of the
secondary goals of this case study was to investigate this hypothesis, and we confirmed
that our search algorithm tends to favor ratios over analyte count values.

We identified several works attempting to exploit blood counts to detect COVID-
19 with the help of machine-learning algorithms. Avila et al. [2020] trained a naive Bayes
classifier with data from 510 individuals admitted to hospitals presenting COVID-19-like
symptoms with a reported AUROC of .84. Silveira [2020] devised a solution based on gra-
dient boosting machines that focuses primarily on white series analytes. They achieved an
AUROC of .81 in a dataset composed of anonymous data from 1 157 individuals. Banerjee
et al. [2020] trained both a shallow neural network as well as a random forest model to
distinguish COVID-19 cases on data from 954 individuals, reaching an AUROC of .94 for
those who were admitted to the hospital with severe symptoms and an AUROC of .80 for
individuals with mild symptoms. Cabitza et al. [2021] evaluate different machine learn-
ing algorithms on both a COVID-19-specific dataset as well as another dataset including
individuals who exhibited pneumonia symptoms in 2018, consisting of data from 1, 624

cases. By exploring a variety of biomarkers, including the analytes from CBCs, they were
able to achieve an AUROC of .90. However, a point of concern for such studies is the
data scale. We know from the literature that complex machine learning models are prone
to overfitting and, with small sample sizes containing only a few hundred individuals, all
these works are at risk of presenting unreliable results and overestimated performance.

Wynants et al. [2020] provided a study of 37 421 research titles, with 169 studies
describing 232 prediction models, of which 208 contained unique, newly developed models.
These models contained both a diagnostic solution to identify suspected infection cases
as well as a prognostic evaluation. One of the key findings was that all models were at
high (n = 226, 97%) or unclear (n = 6, 3%) risk of bias according to an assessment with
PROBAST, suggesting a risk for unreliable predictions when employed in the real world.
A similar finding was also reported by Bastos et al. [2020], which verified that, out of
the 49 risk assessments performed over 5 016 references, and 40 studies, 98% reported a
high risk of individual selection bias. Only 4 studies included outpatients and only two
performed some sort of validation at the point of care. This kind of problem is not specific
to COVID-19-related research and has been present in many previous medical studies. As
mentioned by DeCamp and Lindvall [2020],

"... failure to proactively and comprehensively mitigate all biases − including
latent ones that only emerge over time − risks exacerbating health disparities,
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eroding public trust in healthcare and health systems, and somewhat ironically,
hindering the adoption of AI-based systems that could otherwise help individ-
uals live better lives."

With that in mind, it is important to highlight the work of Soltan et al. [2020]
which, with the help of the Oxford University Hospital, included 114 957 individuals in a
COVID-negative cohort and 437 in a COVID-positive cohort, thus establishing a dataset
of 115 394 individuals for a full study. Before our work, this was the most extensive
COVID-19 study to date. While exploring a variety of scenarios regarding COVID-19
prevalence, they reported AUROC values ranging from .88 up to .94 if their model employs
additional data from CBCs, blood gas, and other vital signs collected in routine clinical
exams. However, one key concern in this study is the low prevalence of Influenza-like
infections (< 0.1%), which drew our attention to a different kind of selection bias in
COVID-19 research. Due to the hygiene habits acquired by the population worldwide
after the pandemic outbreak, we believe that many other confounding diseases might
be underrepresented in most performed datasets. As such, models might be learning
patterns that are associated with a general infectious condition rather than specifically
with COVID-19.

Our concern regarding data bias in the latest COVID-19 research appears to be
valid, as was verified during our experiments assessing performance on data before 2020.
Several instances of individuals with different variants of the Influenza virus were initially
labeled as potential COVID-19 infected, which we knew not to be true. As such, we
devised an approach to insert information regarding other diseases into our model without
harming accuracy. In particular, we explored two approaches: the first one being simply
retraining our specialized model with the added data of negative COVID, whilst keeping
positive results for other diseases. The second approach had the objective of creating an
ensemble of models with constituents specialized in other virus infections. We observed
similar AUROC results between both, with the first one having a slightly higher AUROC
result at the cost of lower differentiation capabilities.

We plot the importance of each feature for every individual, and these results are
shown in Figure 7.13. Yellow points are associated with individuals for whom the cor-
responding feature shows a relatively high value. Blue points, on the other hand, are
associated with individuals for whom the corresponding feature shows a relatively low
value. Furthermore, there is a vertical line separating individuals for whom the feature
is contributing either to decrease (left side) or increase (right side) the probability of
active SARS-Cov-2 infection. Figure 7.13a shows the COVID-19 specialized Rashomon
ensemble, and the CBC patterns shown in the figure are not specific to COVID-19, as
discussed in previous experiments. Figure 7.13b shows the stacking model, where the
COVID-19 specialized model is included as one of the features (i.e., COVID-19 probabil-
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Figure 7.13: Learned analyte patterns and disease prediction relationships. a SHAP
Summary plot for the COVID-19 specialized model. b SHAP Summary plot for the
stacking model, which combines different specialized models and CBC patterns. c Partial
dependence plots with the relationship between COVID-19 specialized model’s predictions
and Influenza-H1N1. d Partial dependence plots with the relationship between COVID-
19 specialized model’s predictions and Influenza-A. e Partial dependence plots with the
relationship between COVID-19 specialized model’s predictions and Seasonal Influenza.
N=75 923 CBCs.

ity). As the stacking model takes into consideration the probability of diverse infections,
COVID-19-specific CBC patterns are found.

The stacking approach allows us to study how the physiological patterns found in
CBCs of different diseases co-relate. Figure 7.13c to Figure 7.13e illustrate dependence
plots of our COVID-19 specialized prediction concerning remaining diseases, which present
relevant patterns that enhance the credibility of our approach. For instance, looking at
the right portion of Figure 7.13c, we observe a concentration of high Influenza H1N1
predictions (yellow points) on the upper side of the plot, with a similar pattern on the left
side of the plot and a concentration on the lower portion. This behavior shows us that in
cases of suspicion of H1N1, the overall prediction of COVID is significant, be it to confirm
an H1N1 hypothesis (left side) or rule it out (right side). However, when there is a lower
probability of H1N1, we likewise see a lower scoring attributed to the COVID-19 model.
The stacking ensemble learns to use the information regarding all diseases for these hard-
to-predict individuals. We observe similar patterns in Influenza-A (Figure 7.13d), and
Seasonal Influenza (Figure 7.13e).
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Employing Shapley values as an explanation technique not only allows us to under-
stand the model’s final prediction but also to understand the testing time frame. Figure
7.14 shows a 2D representation of the tests of several individuals contained in the dataset
and their respective RT-PCR results for COVID-19. In Figure7.14 we observe no clear
distinction between exams of infected or healthy individuals and represent what might be
observed in an attempt to draw linear correlations between analytes. Figure Figure7.14b
shows a visualization of the decision process of the model in the shape of a 2D representa-
tion of the returned Shapley values. This scenario reflects all the non-linear relationships
present in a CBC that might be challenging for humans to extrapolate on their own. Not
only can we draw clear divisions between both individual populations but we are also
able to infer a measure of confidence. The closer to the decision boundary, the higher the
uncertainty of the prediction and, thus, the more important the discerning capabilities
when combining these results with other relevant factors for diagnosis, such as reported
symptoms and possible disease onset period.

Figure 7.14: Representation of the CBC space. a TSNE representation of the CBC space
using the analyte’s raw data. b TSNE representation of the CBC space using analyte’s
Shapley values and model predictions. N=16,958 patients.
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Predicting data from the second wave proved to be particularly hard, as we ob-
served a deterioration in the performance of our first wave model as time went on, which
might be associated with concept drift. In particular, we observed that the peak in per-
formance on the second half of the chart is associated with a lower COVID-19 prevalence,
which implied that the model was losing its ability to predict COVID-19 infections. We
hypothesize some explanations for this behavior, including the effect of the distribution of
COVID-19 prevalence in 2020 and across 2021, as well as the prevalence of other possible
confounding diseases, which changed as restriction measures were lifted. Likewise, one of
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the main characteristics of the second wave is the emergence of a new COVID-19 strain,
namely the P.1 variant that ran rampant in Brazil during the analyzed period. It might
be the case that the physiological reaction of the body to the new strain was distinct
from the earlier variants, resulting in degradation in performance. Finally, another pos-
sibility is that RT-PCR tests at the time of evaluation might not have been tuned to
properly identify the new strain, thus inducing a divergence between model output and
ground-truth data due to possible false negatives.

The proposed solution consisted of employing data close to the start of the second
wave, simulating a scenario where we keep the model as up-to-date as possible before the
start of a new pandemic stage. Although we could not test for each of these hypotheses,
the proposed approach should solve all of the three possible explanations described. With
this approach, not only did we verify a higher performance from the start, but the model
was able to largely mitigate the concept drift phenomena, retaining an AUROC above the
.90 threshold throughout most of the evaluated period. When observing the Accuracy x
Agreement, we were able to observe that the curves for the training and deployment stage
were similar, as well as individual constituent performance, thus presenting indications
that our technique was successful in handling this issue.

A point of attention that should be addressed by any health professional when
employing our approach is the presence of co-infections. For instance, multiple cases of
COVID-19 hospital cross-infections have been identified [Chen et al., 2020]. As we do
not have data explicitly concerning co-infections, we cannot provide insights regarding
the blood profiles that emerge in such situations which might confuse the model. It
is also important to highlight the impact of ethnicity on CBC results [Lim et al., 2015].
Although the large data sample and the demographic plurality of Brazil serve as indicators
of robustness, further testing is needed to understand if the Brazilian model can be directly
applied to other contexts. Nevertheless, our method is generalist to an extent that the
achieved results could be potentially replicated anywhere on Earth if data concerning a
specific region/scenario is collected.
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Table 7.1: Entire dataset, training sets, and validation sets for the two waves that occurred
during the Brazilian COVID-19 outbreak. Training sets were obtained after applying the
inclusion-exclusion criteria to the entire data and downsampling the COVID-19(-) class
in the training sets to account for class unbalance. We considered October 1st as the split
point between the first and second wave data to eliminate possible incubation periods
before the start of the second wave in early November. As such, validation for the first
wave encompasses data from late June to late September, and validation for the second
wave ranges from early October to late February. N=1 138 728 CBCs.

Entire data

CBC (+) CBC (−)
Gender COVID-19 (+) COVID-19 (−) Influenza-A (+) Influenza-B (+) H1N1 (+) Other (+)

Male 11.3% 34.0% 46.7% 46.5% 48.4% 59.5%
(122,793) (369,787) (3,160) (1,384) (4,108) (20,107)

Female 10.3% 44.4% 53.3% 53.5% 51.6% 40.5%
(111,673) (482,453) (3,604) (1,588) (4,380) (13,691)

Training set: first wave data

Male 12.9% 9.8% 4.2% 2.1% 6.0% 12.8%
(5,859) (4,469) (1,895) (975) (2,742) (5,825)

Female 12.1% 15.2% 4.9% 2.8% 6.9% 10.3%
(5,527) (6,918) (2,223) (1,214) (3,118) (4,656)

Validation set: first wave data

Male 4.9% 37.6% 1.0% <0.1% 1.4% 2.3%
(5,808) (44,637) (1,113) (188) (1,660) (2,710)

Female 4.7% 43.4% 1.1% <0.1% 1.6% 1.7%
(5,647) (51,550) (1,343) (134) (1,842) (2,028)

Training set: second wave data

Male 25.9% 10.5% 2.0% 1.0% 3.1% 6.3%
(24,104) (9,770) (1,895) (975) (2,742) (5,825)

Female 24.2% 15.1% 2.3% 1.3% 3.3% 5.0%
(22,404) (14,088) (2,223) (1,214) (3,118) (4,656)

Validation set: second wave data

Male 4.5% 38.9% 0.4% <0.1% 0.6% 1.0%
(11,860) (101,655) (1,113) (188) (1,660) (2,710)

Female 4.3% 48.1% 0.5% <0.1% 0.7% 0.8%
(11,021) (125,776) (1,343) (134) (1,842) (2,028)
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Table 7.2: Mean and standard deviation for all considered cell counts in each cohort.
N=1 138 728 CBCs.

Male patients

Analyte Covid-19 (+) Covid-19 (-) Influenza (+) Other Viruses (+) Entire Data

RBC (1012/L) 5.06 ± 0.52 4.21 ± 0.98 4.73 ± 0.60 3.67 ± 0.87 4.28 ± 0.96
Hemoglobin (g/dl) 14.9 ± 1.4 12.4 ± 2.8 14.0 ± 1.7 10.8 ± 2.5 12.6 ± 2.7
Hematocrit (%) 43.8 ± 4.0 36.8 ± 7.9 41.0 ± 4.9 31.7 ± 7.3 37.4 ± 7.7
MCV (fL) 86.8 ± 4.7 88.1 ± 6.4 87.0 ± 6.7 86.9 ± 8.0 88.0 ± 6.2
MCH (pg/cell) 29.5 ± 1.9 29.6 ± 2.3 29.6 ± 2.3 29.6 ± 2.6 29.5 ± 2.2
MCHC (g/dL) 34.1 ± 1.1 33.6 ± 1.4 34.0 ± 1.1 34.1 ± 1.4 33.6 ± 1.4
RDW (%) 13.0 ± 1.0 14.3 ± 2.2 13.6 ± 1.2 15.1 ± 2.1 14.1 ± 2.2
WBC (109/L) 6.07 ± 2.37 8.07 ± 3.81 6.96 ± 2.81 5.87 ± 4.69 8.02 ± 3.81
Monocytes (109L) 0.66 ± 0.29 0.68 ± 0.35 0.75 ± 0.37 0.66 ± 0.46 0.66 ± 0.34
Lymphocytes (109L) 1.40 ± 0.72 1.67 ± 1.05 1.23 ± 0.92 1.25 ± 1.40 1.54 ± 0.99
Eosinophils (109/L) 0.07 ± 0.09 0.18 ± 0.20 0.07 ± 0.10 0.10 ± 0.16 0.15 ± 0.20
Basophils (109/L) 0.02 ± 0.02 0.03 ± 0.02 0.02 ± 0.01 0.02 ± 0.02 0.03 ± 0.02
Neutrophils (109/L) 3.92 ± 2.22 5.53 ± 3.50 4.90 ± 2.57 4.08 ± 3.93 5.64 ± 3.57
Platelets (109/L) 195.7 ± 56.7 222.0 ± 102.3 182.9 ± 63.6 145.8 ± 115.6 222.7 ± 99.9

Female patients

RBC (1012/L) 4.57 ± 0.44 4.03 ± 0.75 4.62 ± 0.67 3.75 ± 0.78 4.05 ± 0.75
Hemoglobin (g/dl) 13.3 ± 1.2 11.8 ± 2.1 13.6 ± 1.9 11.0 ± 2.1 11.8 ± 2.1
Hematocrit (%) 39.8 ± 3.4 35.4 ± 6.1 40.3 ± 5.4 32.8 ± 6.4 35.6 ± 6.0
MCV (fL) 87.3 ± 5.0 88.3 ± 6.3 87.7 ± 6.7 87.9 ± 8.1 88.3 ± 6.2
MCH (pg/cell) 29.2 ± 2.0 29.3 ± 2.3 29.7 ± 2.3 29.4 ± 2.7 29.3 ± 2.2
MCHC (g/dL) 33.5 ± 1.0 33.2 ± 1.3 33.8 ± 1.2 33.5 ± 1.4 33.2 ± 1.3
RDW (%) 13.1 ± 1.1 14.2 ± 2.1 13.7 ± 1.3 14.9 ± 2.1 14.1 ± 2.1
WBC (109/L) 5.87 ± 2.40 8.03 ± 3.71 7.11 ± 3.15 6.62 ± 4.63 7.84 ± 3.66
Monocytes (109/L) 0.56 ± 0.24 0.62 ± 0.32 0.70 ± 0.35 0.61 ± 0.43 0.60 ± 0.31
Lymphocytes (109/L) 1.54 ± 0.80 1.85 ± 1.05 1.36 ± 0.95 1.54 ± 1.40 1.78 ± 1.02
Eosinophils (109/L) 0.06 ± 0.08 0.16 ± 0.18 0.075 ± 0.11 0.09 ± 0.18 0.15 ± 0.18
Basophils (109/L) 0.02 ± 0.01 0.03 ± 0.02 0.01 ± 0.01 0.02 ± 0.02 0.03 ± 0.02
Neutrophils (109/L) 3.68 ± 2151.51 5.39 ± 3.36 4.94 ± 2.97 4.56 ± 3.81 5.29 ± 3.34
Platelets (109/L) 222.6 ± 63.0 249.2 ± 101.4 185.0 ± 69.1 188.9 ± 123.8 248.4 ± 100.4

Table 7.3: COVID-19 endemic and pandemic simulations. AUROC, Specificity and Sen-
sitivity, and the respective confidence intervals for different COVID-19 prevalence simu-
lations under 95% confidence. N=30 simulations with 20 000 unique patients each.

COVID-19
Prevalence AUROC Specificity Sensitivity

1% 0.928 ± 0.093 0.875 ± 0.018 0.913 ± 0.152
2% 0.881 ± 0.117 0.877 ± 0.024 0.812 ± 0.250
3% 0.917 ± 0.046 0.874 ± 0.016 0.873 ± 0.099
4% 0.922 ± 0.037 0.882 ± 0.033 0.896 ± 0.087
5% 0.918 ± 0.046 0.874 ± 0.012 0.879 ± 0.104
6% 0.909 ± 0.041 0.874 ± 0.032 0.857 ± 0.116
7% 0.910 ± 0.024 0.883 ± 0.018 0.840 ± 0.083
8% 0.904 ± 0.054 0.879 ± 0.036 0.849 ± 0.102
9% 0.907 ± 0.046 0.872 ± 0.025 0.871 ± 0.085
10% 0.896 ± 0.059 0.871 ± 0.025 0.848 ± 0.118
20% 0.916 ± 0.029 0.866 ± 0.025 0.878 ± 0.045
30% 0.906 ± 0.021 0.871 ± 0.018 0.862 ± 0.059
40% 0.911 ± 0.016 0.871 ± 0.024 0.873 ± 0.032
50% 0.913 ± 0.032 0.886 ± 0.030 0.863 ± 0.028
60% 0.901 ± 0.015 0.868 ± 0.031 0.852 ± 0.037
70% 0.906 ± 0.021 0.867 ± 0.033 0.858 ± 0.035
80% 0.902 ± 0.040 0.869 ± 0.074 0.854 ± 0.025
90% 0.911 ± 0.030 0.889 ± 0.081 0.864 ± 0.022
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Chapter 8

Conclusions

In this thesis, we studied an underexplored link between explanatory modeling and Rasha-
mon sets, leading to a novel approach for ensemble learning. In this chapter, we briefly
summarize the results already obtained and also present some directions for future work.

8.1 Main Results

We proposed a novel approach to estomate the risk of employing a model in produc-
tion and used its finding to propose a choice of constituents for ensemble learning based
on explainability. We do show, however, that there are some constraints in the choice
of this model. First, we must establish a Rashomon subset around the target model.
That is, the set of models that satisfy the same predictive accuracy criteria equally, but
process information in the data in substantially different ways. From this, we can induce
perturbation on our held-out test set to simulate out-of-distribution data and obtain a
model that diverges under this scenario, while also estimating the ensemble loss of pre-
dictive power as its constituents diverge. After selecting said models, we can estimate
at deployment time the reliability of predictions by constituents output distance. The
further appart are each individual’s predictions, the higher our approximated risk.

A solution is therefore to collect several models and employ them in production, but
this selection process is non-trivial. In many situations, the data is inherently composed of
several local structures and sub-populations. This work aimed to show, based on evidence,
that in these situations it is advantageous to exploit the concept of local structures for
the induction of models that are more robust and consistent with the data. We argue
that each local structure can be mapped to a context domain and, by harnessing model
explanation techniques, we can single out different underlying explanations of the studied
phenomenon.

Our proposed approach is grounded in three core concepts: (i) models that compose
the ensemble should be diverse in terms of their explanatory factors, (ii) the higher the
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difference between data distributions, the more divergent constituent behavior tends to
be, and (iii) candidate models should be organized by seeking stability in the sense that
models that perform similar predictions should be also similar in terms of their explanatory
factors, which enable clustering of models. We evaluate our ensemble learning approach in
many tasks. In problems where one can expect the existence of multiple local structures,
our approach presented consistent gains in AUROC in comparison to other tree-based
ensembling techniques. In the absence of such structures, our approach proved to be
robust enough to retain high performance. When applied to the problem of predicting in
a scenario where the generator function may be different than the one seen in training,
we observed a direct relationship between accuracy and model agreement. That is, if the
constituents agree, then the accuracy is high and we should trust the predictions. On the
other hand, if the agreement between models is low, the accuracy is likewise low and the
predictions should not be trusted, which is exactly what we aimed to show and highlights
the robustness of our approach.

We also verified a key limitation, that being the diversity scarcity of some hy-
pothesis spaces. Out of the three datasets in which our approach was not able to beat
the state-of-the-art in Chapter 3, two presented narrow Rashomon sets quantified by the
low Rashomon ratio. In most scenarios, a fair share of the sampled performant models
presents performance statistically close, which directly translates to explanation diversity.
In the aforementioned datasets, less than 0.5% of the sampled models were comparable
to the all-in-one model. The Rashomon ratio is a property of both the data and the
hypothesis space, serving as a gauge for the simplicity of the learning problem. A small
Rashomon ratio implies a harder learning problem in the sense of model and feature se-
lection thus typifying a limitation on the set of decisions a model might make to belong to
a Rashomon set. This harms our sub-space division leading to non-representative groups
and poor predictive power. Fortunately, we can quickly estimate this ratio with high
confidence and a small sample size during the preliminary sampling stage. For instance,
less than 10 000 models drawn at random need to be evaluated to admit a maximum error
of 0.01 on the estimative of Rashomon ratio with 95% confidence.

Our method presented satisfactory results when applied to the real-world problems
analysed is this study, both when formulating the tasks as binary classifications or regres-
sions. In the COVID-19 case study, to the author’s knowledge, we employed the largest
COVID-19 dataset to date. We found that training machine learning models solely on
2020 data are not enough to guarantee robustness while also reaching high performance in
the wake of scenarios with both prevalence and absence of COVID-19 infections, attaining
AUROCs of .90+. Similar patterns were found in the energetic consumption problem,
with a R2 of 0.848 and a mean average percentile error below 2.7%, outperforming all
other state-of-the-art approaches while also giving relevant understandings of the present
and future energy demand.
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A special mention lies in the stainless steel case study, in which we asked for
inputs from the metallurgical experts after performing selecting base constituents. The
main lesson learned is that there are cases where some conclusions found do not fit with
realistic scenarios. For instance, some models implied that an oversaturation of Carbon
was preferable. However, high concentrations of this element might disqualify a steel plate
from categorization as Duplex stainless steel. By design, many patterns are actionable,
and experts can freely select explanations to include as ensemble constituents. This is true
for all evaluated case studies and proved particularly effective concerning key chemical
elements used in the stainless steel production process. After filtering those patterns that
do not fit realistic scenarios, the most relevant ones were turned into production rules
and employed in the 2019 and 2020 steelmaking process. A reduction of over 50% in
the occurrence of heating slivers was reported, showing the potential of this strategy in a
real-world problem, validating the proposed framework, and serving as a pivotal argument
towards human-centered AI.

8.2 Future Work

We are currently collecting more accessible datasets to strengthen our benchmark
evaluation. As of now, we evaluate ten datasets of different sizes involving binary clas-
sification problems, all acquired from the UCI machine learning repository [Asuncion
and Newman, 2007] and the OpenML database [Bischl et al., 2017]. We believe our
method to be robust enough to handle both multi-class and regression tasks. As such,
our benchmark suite should encompass datasets that approach such problems. We also
only provided preliminary results in the case studies of hemogram-based disease detection
and energetic consumption. Both of these are relevant real-world problems that deserve
an in-depth analysis concerning deployment.

For instance, it is imperative to assess the impact of our approach on a hospital’s
daily flow concerning the COVID-19 Rashomon Ensemble, as the adoption of new tech-
nology can potentially disrupt existing processes. This should enable us to collect data
concerning other relevant analyses. We are currently studying the implementation of the
developed algorithm in different Brazilian hospitals using an API framework connected
directly to their databases. In these scenarios, we aim to understand how a tool can be in-
troduced into a hospital’s existing workflow in the least disruptive way, as well as find out
how comfortable health professionals feel when using it. Imperative to the human-centered
AI narrative, some validation thesis includes observing health professionals’ interactions
with an API, changes in procedures, protocols, and decision-making processes, and the
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benefits of the solution if applied in fast-paced and high-volume contexts. For example,
the Rashomon ensembles for COVID-19 diagnostics could be employed to help in prior-
itizing patient queues and minimize the occurence of COVID-19 infected patients being
assigned to the same waiting rooms of non-infected ones.

Further, our search inside each Rashomon set could also be improved. Applying
Monte Carlo proved to be less effective than directly employing an informed search al-
gorithm such as A∗. However, due to the high degree in the action space of relationship
graphs, A∗ often gets stuck in a series of null expansions and barely outperforms a greedy
expansion approach. The other evaluated search algorithms, them being greedy and beam
search, suffer from similar problems. Further, since we do not know the ‘goal’ end model
or even its desired performance, we need to make assumptions that harm A∗ search speed.
For instance, a reinforcement learning approach similar to Silver et al. [2016] should be
able to encounter promising regions of the model space, being a further refinement of
our improved A∗ search. Another option is directly applying feature selection approaches
to the feature sets Xc ⊆ X for each explanation and modifying the equations to take
into account cluster membership. Kissel and Mentch [2021] provides relevant theories
regarding model path selection, which bear a close relationship to our graph-based model
path search. Further experiments need to be performed but forward stability might be a
suitable heuristic metric to use alongside the A∗ algorithm in lieu of performance.

Finally, another direction for future work lies in exploring ensembles constituting
different algorithms. In all our experiments, we constrained the Rashomon sets to include
only models subject to the same learning algorithms, such as the hypothesis space of all
decision trees with depth up to some value. However, employing different methods enables
a final model to capture nuances that are particular to all base methods, such as combining
a convolutional neural network and an LSTM to capture both temporal and context-aware
patterns [Zuin et al., 2018]. However, our method relies on computing feature importance
to compare models. When under the same constraining learning algorithm, a comparison
of Shapley values is intuitive but it becomes non-trivial when different algorithms also need
to be compared to one another. For example, we do not know if a feature importance of
20% in linear regression is comparable to the same 20% in a deep neural network. The
problem arises partly due to the non-linearities and interactions that features suffer under
more complex models. Heskes et al. [2020] explored the notion of causality in SHAP
attributions to disentangle direct influences of a single feature from indirect influences
the feature has in a coalition. This causal theory might enable us to compare different
learning algorithms and is a study in progress.
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