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Resumo

A predição de defeitos representa uma área de interesse tanto no meio acadêmico quanto
na indústria. Os defeitos são comuns no desenvolvimento de software e podem gerar
muitas dificuldades para gerentes de projetos, usuários, e desenvolvedores. Estudos re-
centes revelam que cerca de 42% do orçamento de desenvolvimento é gasto corrigindo
defeitos. Embora a literatura atual ofereça múltiplas abordagens para prever a proba-
bilidade de defeitos, ainda existe uma falta de compreensão sobre as características que
contribuem para os defeitos. Além disso, a maioria destes estudos concentra-se na predição
de defeitos a partir de um amplo conjunto de características. Entretanto, o poder discrim-
inador individual das características ainda é desconhecido, já que algumas têm um bom
desempenho apenas em projetos específicos. Por essa razão, nesta tese, nosso objetivo
é compreender as características que afetam os defeitos em projetos de software. Para
isso, aplicamos técnicas de aprendizado de máquina em conjuntos de dados populares.
Portanto, realizamos uma investigação exploratória que produziu milhares de modelos a
partir de uma coleção diversa de características. Estes modelos são aleatórios porque sele-
cionam as características de todo o conjunto de características. Embora a imensa maioria
dos modelos seja ineficaz, conseguimos produzir vários modelos que fornecem previsões
precisas. Logo, os modelos distinguem classes propensas a defeitos de classes que não
tenham defeitos. Concentramos nossa investigação em modelos que classificam com mais
de 85% de precisão uma classe defeituosa. Assim, utilizamos esses resultados para discutir
um conjunto de características que contribuem para a explicabilidade do modelo. Como
resultado, notamos que os modelos mais eficientes são fáceis de entender, pois dependem
de um conjunto pequeno de características. Além disso, comparamos o limite dessas car-
acterísticas. Para validar os resultados, realizamos uma pesquisa com 40 desenvolvedores
para medir suas percepções sobre os modelos e concluímos que os modelos são bastante
explicáveis. Complementarmente, também avaliamos a percepção dos desenvolvedores
sobre os atributos de qualidade com desenvolvedores ativos do GitHub, onde obtivemos
54 participantes. Assim, concluímos que as percepções dos desenvolvedores diferem signi-
ficativamente dos modelos. Finalmente, comparamos as similaridades entre os modelos de
predição de defeito com o mau cheiro do código. Ao final, esta tese promove o raciocínio
sobre quais características de software influenciam os defeitos desses projetos.

Palavras-chave: predição de defeitos, aprendizado de máquina explicável, características
do código



Abstract

Software defect prediction represents an area of interest in both academia and industry. In
fact, defects are prevalent in software development and might generate numerous difficul-
ties for project managers, users, stakeholders, and developers. Recent studies reveal that
approximately 42% of the software development budget goes to fixing defects. Although
the current literature offers multiple alternative approaches to predict the likelihood of de-
fects, there is a lack of understanding about the features that contribute to the defects of
a software project. Furthermore, most of the literature concentrates on predicting defects
from a broad set of features. However, the individual discriminating power of software
features is still unknown as some perform well only with specific projects. For this rea-
son, in this thesis, we aim at understanding the features that impact the defectiveness of
software projects. To do so, we applied machine learning techniques to popular datasets.
Hence, we convey an exploratory investigation that produced thousands of models from a
diverse collection of software features. These models are random because they promptly
select the features from the entire pool of software features. Even though the immense
majority of models are ineffective, we could produce several models that yield accurate
predictions. Thus, the models distinguish defect-prone classes from clean ones. We focus
our investigation on models that rank a randomly chosen defective software class higher
than a randomly selected non-defective class with over 85% accuracy. More importantly,
we employ these results to discuss a set of features contributing to the understandability
of model decisions. As a result, we notice that the best-performing models are sim-
ple to understand as they rely on a small set of features. Therefore, we present which
features contribute to the defects of twelve projects. Further, we also compare the thresh-
old of these features. To validate the results, we survey 40 developers to measure their
perceptions of the models and conclude that the models are fairly understandable. Com-
plementary, we also evaluate developers’ perception of the quality attributes with active
GitHub developers, where 54 participated in the investigation. Then, we conclude that
developers’ perceptions differ significantly from the machine learning models in terms of
quality attributes. Finally, we compare the redundancies and similarities between defect
models with code smell as they share several features. By the end, this thesis promotes
reasoning on which software features influence the defects of these projects.

Keywords: defect prediction, explainable machine learning, source code features.
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Chapter 1

Introduction

With the continuous expansion of software development, the reliability of software systems
has become a key concern [Nagappan et al., 2010, Jing et al., 2014, Wang et al., 2016a,
Tantithamthavorn and Hassan, 2018]. The intrinsic complexity of software systems may
cause defects, leading them to collapse in various stages of development. To assist project
managers and developers in anticipating defects, software defect prediction1 is one of the
research directions applying machine learning techniques to software engineering [Menzies
and Zimmermann, 2013, Ghotra et al., 2015]. In this area, prior studies have statistically
analyzed defect data investigating the impact of code features [Nagappan and Ball, 2005,
Nagappan et al., 2006, Menzies et al., 2007, D’Ambros et al., 2010, Nagappan et al., 2010,
Menzies et al., 2010, Menzies and Zimmermann, 2013, Madeyski and Jureczko, 2015,
Tantithamthavorn et al., 2019], development activities [Hindle et al., 2009, Shihab et al.,
2010, Wang et al., 2016a], code smells [Khomh et al., 2009, 2012, Cruz et al., 2020], object-
oriented programming [Chidamber and Kemerer, 1994, Moser et al., 2008, Binanto et al.,
2018], continuous integration [Storey et al., 2008, Vasilescu et al., 2015, Vassallo et al.,
2018], and the interpretation of software features in defect prediction [Mori and Uchihira,
2018, Jiarpakdee et al., 2020]. This area is still strengthening as software engineering and
machine learning techniques join efforts to predict defects.

Despite the undeniable importance of existing efforts for defect prediction, these
studies are concerned with limited aspects of the source code [Hassan, 2009, Nagappan
et al., 2010, D’Ambros et al., 2010, Jing et al., 2014, Tantithamthavorn et al., 2015,
Wang et al., 2016b, Xu et al., 2018, Tantithamthavorn and Hassan, 2018]. In fact, these
works lack an understanding of why the machine learning model has predicted a target
software class as defective-prone. This problem happens because machine learning models
consider features as individual inputs to the machine learning algorithm. Thus, the current
literature needs an overview of the software features as groups serving as predictors for
the defective task. Recently, other studies have taken the first steps into explainable
defect prediction, using tools such as LIME and BreakDown [Mori and Uchihira, 2018,
Jiarpakdee et al., 2020]. While explaining the decisions made by the models is key to

1In this thesis, we use the term “prediction” because it is more commonly used in the current litera-
ture, even though most of the data we applied relates to “identification”.
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understanding the arrangement of defects and avoiding them, the software engineering
literature often left aside this topic for a considerable time [Ghotra et al., 2015, Agrawal
and Menzies, 2018]. Furthermore, little is known about the discriminating ability of
software features proposed and used in the current literature on software defect prediction
[Mori and Uchihira, 2018].

For this reason, this thesis investigates the application of machine learning tech-
niques to predict software defects. More importantly, we aim to understand these machine
learning models and how each software feature impacts the defectiveness of the target
classes [Menzies and Zimmermann, 2013, Lundberg et al., 2018a]. To do so, we rely on an
algorithm to explain the software features that interfere with the defectiveness of software
classes [Lundberg and Lee, 2017, Lundberg et al., 2018b, 2020]. We then explore a large
set of software defects located in publicly available datasets for defect prediction [Jureczko
and Spinellis, 2010, Jureczko and Madeyski, 2010, D’Ambros et al., 2010, Menzies et al.,
2010]. In this manner, we examine the predictive power of these software features and
their capacity to explain the defects to stakeholders [Mori and Uchihira, 2018, Jiarpakdee
et al., 2020]. Finally, we examine developers’ understanding of the software features and
their importance in software defect prediction.

1.1 Problem and Motivation

Software defects are a problem for developers, users, and stakeholders alike. De-
fects are not only able to reduce software quality and increase the software budget but
also suspend the development schedule [Fowler, 1999]. As a result, finding and fixing de-
fects cost a lot of money [Knab et al., 2006]. For instance, data from the US Department
of Defense demonstrates that the United States spent around 780 billion dollars fixing
existing software defects [Knab et al., 2006]. In addition, the US Department of Defense
also estimates that around 42% of the software development budget in Information Tech-
nology (IT) products is spent on fixing defects [Knab et al., 2006]. This is a significant
amount of money that could be used to develop new features and improve the quality
of the software. Therefore, it is important to find ways to predict software defects to
mitigate the cost of fixing them.

Usually, during software development, the team learns about defects by testing re-
sults or Continuous Integration/Continuous Delivery (CI/CD) pipelines [D’Ambros et al.,
2010]. However, these methods are not able to predict software defects [Menzies and Zim-
mermann, 2013, Tóth et al., 2016, Pornprasit et al., 2021]. Therefore, the team has to
wait until the software system is deployed to the production environment to discover any
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defects in the source code. This is a time-consuming process that can be avoided by
predicting software defects. Additionally, the team may fix defects before the software
system is deployed to the production environment [Zimmermann and Nagappan, 2008].
Hence, the software team may reduce the cost of fixing defects and improve the overall
quality of the software. It is important to find methods to predict software defects to
avoid the cost of fixing them [Shepperd et al., 2014]. For this reason, software defect
prediction is relevant to both software engineering and the research community.

Although the current literature has an extensive amount of research studies about
software defect prediction, there is a lack of understanding of the software features that
contribute to the defectiveness of software classes [Tantithamthavorn et al., 2017, 2019,
Jiarpakdee et al., 2020, Pornprasit et al., 2021]. The current literature lacks an under-
standing of why the machine learning model has predicted a target software class as
defect-prone [Tantithamthavorn and Hassan, 2018]. While explaining the decisions made
by the models is key to understanding the arrangement of defects and avoiding them, the
software engineering literature has often neglected this topic for a considerable time [Gho-
tra et al., 2015, Agrawal and Menzies, 2018]. Furthermore, many investigations focus on
the various software features extracted from source code that may lead software projects
to a defective state [Nagappan et al., 2006, Moser et al., 2008, Nagappan et al., 2010,
Wang et al., 2016a, Amasaki, 2018]. However, as code complexity increases in software
development, the project may hinder characteristics that contribute to the defective state.
For this reason, one of the greatest challenges faced by this research community is the
identification of relevant software features (i.e., the effective features for defect predic-
tion) and the irrelevant ones [Ghotra et al., 2015, Tantithamthavorn et al., 2015, Nam
et al., 2018]. One technique to tackle this issue is data preparation aimed at identifying
important software features from the code [D’Ambros et al., 2010, Ghotra et al., 2015].
Hence, the extensive literature about defect prediction has proposed features more specific
to software attributes, such as class-level features [D’Ambros et al., 2010, Couto et al.,
2012, Herbold, 2015], entropy features [Hassan, 2009, D’Ambros et al., 2010, Kaur et al.,
2015], change features extracted from source code [Moser et al., 2008, D’Ambros et al.,
2010, Kumar and Sureka, 2017, Rhmann et al., 2020], and established features to measure
source code complexity [McCabe, 1976, Halstead, 1977, McCabe and Butler, 1989].

For these reasons, this thesis aims to fill the gap between not only assessing the
performance of machine learning models for defect prediction but also understanding
the reasons behind the software features that contribute to defective code. To do so, we
employ historical data with existing defects and other features to predict the defects in the
source code. In the end, we also focus on developers’ perception of the software features
as they are the primary beneficiary of the results reported in this thesis. As a result, we
provide insights into the software defect prediction community that may support future
explorations in this area.
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1.2 General Goals

This thesis aims at providing a detailed investigation into understanding defects
in software source code (i.e., classes or modules). In other words, our main goal is to
understand machine learning models for defect prediction based on the software features.
Hence, we employ a variety of software features to verify the understandability of machine
learning models for defect prediction. These software features represent many aspects of
the source code, including code size and complexity. To do so, we explore the feature
space of machine learning models to investigate the impact of software features on the
defectiveness of a particular class or module. Thus, the results may help practitioners
to reason about their code quality. In addition, understanding these machine learning
models may help project managers to make decisions about the software development
process and identify defective-prone classes or modules. To explore these overarching
objectives, we propose the following specific goals.

- SG1 Investigate the datasets commonly applied in the current literature to predict
software defects.

- SG2 Find a machine learning model that can search the space of software features
comparing the predictive accuracy of these models with baseline machine learning
models.

- SG3 Understand the software features that may generate defects in several software
projects.

- SG4 Evaluate developers’ perceptions about the software features that contribute
to their defective code.

- SG5 Compare the similarities and redundancies between models for defect predic-
tion and models for code smells detection.

SG1, investigating the datasets commonly applied in the current literature to pre-
dict software defects, is relevant because it helps to establish a baseline understanding
of what data have been used in past studies to predict software defects and allows us to
compare the results to previous research in the defect prediction literature. SG2, find-
ing a machine learning model that can search the space of software features, is key to
systematically explore the potential predictive power of different software features. In
addition, we might identify the software features that are most effective in predicting
defects. SG3, understanding the software features that may generate defects in several
software projects, is relevant because it may help to identify potential causes of defects
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in software projects, which can inform strategies for preventing or addressing them. SG4,
evaluating developers’ perceptions about the software features that contribute to their
defective code, is essential to provide valuable insights into how developers perceive the
causes of defects in their work. Likewise, it might help to identify potential areas for im-
provement in their development processes. Finally, SG5, comparing the similarities and
redundancies between defect and code smell models, is relevant because usually defect
and code smells share equivalent software features, and a group of code smell models
might be similar to defect models. Overall, each of these steps is important for advancing
our understanding of software defects and for developing effective strategies for predicting
and preventing them.

1.3 Research Method

We have divided this thesis into three main steps. Figure 1.1 provides an overview
of these steps, along with the executed activities required to accomplish the objectives of
each step. Therefore, this research project begins with an ad-hoc literature review of the
existing literature on defect prediction and model understandability (Step 1 - Literature
Review). This step is important to identify the machine learning models, evaluation
metrics, and software features applied to understand software defect prediction (Ad-hoc
Review). As a result, we have also classified the relevant research projects that explored
defect prediction and understandability of machine learning models for defect prediction
(first rectangle of the first box of Figure 1.1). More importantly, this step has resulted in
the identification of the datasets [Jureczko and Spinellis, 2010, Jureczko and Madeyski,
2010, D’Ambros et al., 2010, Menzies et al., 2010] used in the literature to investigate
defect prediction (Datasets Discovery). Hence, we have discovered that these datasets
differ in many aspects, such as the software features they use to predict defects, the
distribution of defects within the classes or modules, and how they define a software
defect (second rectangle of the first box of Figure 1.1).

We then proceed to explore the datasets to predict software defects using machine
learning techniques (Step 2 - Defect Prediction). In this step, we use the datasets to
understand the distribution of software features that contribute to defects and how they
are related to the occurrence of defects. By analyzing the datasets, we can gain insights
into the characteristics of software systems that are most likely to cause defects and use
this information to develop more effective strategies for predicting and preventing defects.
The first activity of this step is to explore the datasets, clean the data, and identify the
software features that contribute to the defects (Datasets Exploration). We concluded that
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Figure 1.1: Overview of the Research Method Main Steps.

Understand Models

Step 1 - Literature Review Step 2 - Defect Prediction Step 3 - Model Understandability

Step 5 - Summarization of Understanding Software Defect Models

Developers Perception

Ad-hoc Review

Datasets Discovery

Datasets Exploration

Predict Defects

Empirical Results

Step 4 - Code Smells

Gather Code Smells

Compare with Defects

Source: Elaborated by the author.

the software features vary in a range of source code aspects [Moser et al., 2008, Hassan,
2009, D’Ambros et al., 2010, Couto et al., 2012, Herbold, 2015, Kaur et al., 2015, Kumar
and Sureka, 2017, Rhmann et al., 2020]. For instance, we categorize the software features
into class-level, entropy, change, and specific features (first rectangle of the second box of
Figure 1.1). We then apply machine learning techniques to predict software defects using
the identified software features (Predict Defects). As a result, we investigate a machine
learning model to predict the software class that is defective-prone (second rectangle of the
second box of Figure 1.1). To do so, we focus on feature-space exploration and propose an
algorithm from the analysis. In the end, we compare the predictive accuracy with several
machine learning models identified in the ad-hoc literature review. In a popular study,
Hall et al. [2012] already conducted a Systematic Literature Review (SLR) to investigate
the machine learning models applied to predict software defects. However, this study did
not consider the understandability of the machine learning models, which is the main
focus of this thesis.

In the third step of the investigation, we execute two studies to reason about
software defects (Step 3 - Model Understandability). For the first study, we employ
a recent machine learning technique known as SHAP (Shapley Additive exPlanations)
[Lundberg et al., 2018a] to understand the predictions made by machine learning models
(Understand Models). We then reason about the understandability of these machine
learning models and how they impact software defects (first rectangle of the third box
of Figure 1.1). Finally, we conduct a survey with developers from different backgrounds
to understand how they perceive the influence of several software features (Developers
Perception) on defects in the source code (second rectangle of the third box of Figure
1.1). In the concluding step of the research project, we compare defect and code smell
models to understand the similarities and redundancies between them (Step 4 - Code
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Smells). To do so, we gather a list of class-level code smells (Gather Code Smells) and
then compare the generated models (Compare with Defects). The final step (Step 5 -
Summarization of Understanding Software Defect Models) is the summarization of the
results of the understandability of defect models focused on software features.

1.4 Main Contributions

We expect the main contribution of this thesis project is the understandability of
machine learning models for defect prediction based on the software features. Moreover,
we evaluate how each software feature contributes to the defectiveness of the software
class or module. In this case, we focused on the limit of selected software features for
defect prediction. We believe our empirical results may assist both developers and project
managers in understanding the software features that contribute to software defects. Con-
sequently, we may help developers to enhance their software quality and ability to reason
about different aspects of their code. Besides, the defect prediction community may rely
on our empirical investigations to improve current efforts in the defect prediction field.
For instance, the applied machine learning model can serve as a benchmark for future ex-
plorations to detect defects. By this point, the research reported in this thesis produced
the following publications [Mariano et al., 2019, dos Santos et al., 2020a, dos Santos and
Figueiredo, 2020b,a, dos Santos et al., 2020b, Mariano et al., 2020, dos Santos et al.,
2022a,b, 2023]. Only one of the publications listed below (the last one) is under review
at an international journal.

1. dos Santos, G. E., Figueiredo, E., Veloso, A., Viggiato, M., and Ziviani, N. (2020).
Understanding machine learning software defect predictions. Automated Software
Engineering Journal (ASEJ).

2. dos Santos, G. E., Santana, A., Vale, G., Figueiredo, E. (2022). Yet Another Model!
A Study on Model’s Similarities for Defect and Code Smells. 26th International
Conference on Fundamental Approaches to Software Engineering (FASE), Paris,
France.

3. dos Santos, G. E. and Figueiredo, E. (2020). Failure of one, fall of many: An ex-
ploratory study of software features for defect prediction. In Proceedings of the 20th
IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM), Adelaide, Australia.
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4. dos Santos, G. E., Figueiredo, E., Veloso, A., Viggiato, M., and Ziviani, N. (2020).
Predicting software defects with explainable machine learning. In Proceedings of
the 19th Brazilian Symposium on Software Quality (SBQS), São Luís, Brazil.

5. dos Santos, G. E. and Figueiredo, E. (2020). Commit classification using nat-
ural language processing: Experiments over labeled datasets. In Proceedings of
the XXIII Iberoamerican Conference on Software Engineering (CIbSE), Curitiba,
Paraná, Brazil.

6. dos Santos, G. E., Veloso, A., Figueiredo, E. (2022) Understanding thresholds of
software features for defect prediction. 36th Brazilian Symposium on Software En-
gineering (SBES), Uberlândia, Brazil.

7. dos Santos, G. E., Veloso, A., Figueiredo, E. (2022). The Subtle Art of Digging for
Defects: Analyzing Features for Defect Prediction in Java Projects. International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE),
Online Streaming.

8. Mariano, R., dos Santos, G. E., Viggiato, M., and Brandão, W. (2019). Feature
changes in source code for commit classification into maintenance activities. In
Proceedings of the 18th International Conference on Machine Learning and Appli-
cations (ICMLA), Boca Raton, USA.

9. Mariano, R., dos Santos, G. E., and Brandão, W. (2021). Improve classification of
commits into maintenance activities with quantitative changes in source code. In
Proceedings of the 2021 International Conference on Enterprise Information Systems
(ICEIS), Online Streaming.

10. dos Santos, G. E., Muzetti, I., Figueiredo, E. (2022). Two Sides of the Same Coin:
A Study on Developers’ Perception of Defects. In review at the Journal of Software:
Evolution and Process (JSEP).

1.5 Empirical Results

This section summarizes the main empirical results of this thesis, as we discuss
next.

SG1 We identified three datasets from an ad-hoc literature review conducted in the
early stages of this project. These datasets vary in size, software features, and
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how they implement the concept of a software defect. The datasets comprise three
relevant sources for researchers, and they illustrate the importance of data quality
and reproducibility for defect prediction research. Despite most software features
being unique to each dataset and software project, the datasets share the imbalanced
nature commonly encountered in the current literature. In this case, datasets for
defect prediction usually have more non-defective instances (i.e., classes or modules)
than defective ones. As a result, we observed that software features relate to various
aspects of the source code. For instance, we identified five categories of software
features: (i) class-level features, (ii) entropy features, (iii) change features, (iv)
McCabe and Halstead features, and (v) additional features not correlated to the
remaining features. Most software features relate to object-oriented design (i.e.,
either CK features or other features that measure code complexity and size).

SG2 In the first empirical study, we employed baseline machine learning models to pre-
dict software defects and evaluated the effectiveness of these models on the target
datasets. Furthermore, we compared these baseline models with the implementation
of gradient boosting. The proposed implementation conveys an exploratory exam-
ination that produced hundreds of thousands of random machine learning models
from a diverse collection of software features. These machine learning models are
random because they promptly select features from the entire pool of software fea-
tures available for defect prediction. Finally, we analyzed the predictive power of the
machine learning models using the target datasets. This investigation reveals how
hard it is to detect defects, as only a small fraction of the models (1.8%) achieved a
performance higher than 83% based on the AUC numbers. We hope that our efforts
can become a baseline for other solutions to defect prediction using Java projects.
We also conclude that a limited set of features produced high accuracy numbers.

SG3 In the second empirical investigation, we used a technique known as SHAP (Shapley
Additive exPlanations) to explain the machine learning models [Lundberg and Lee,
2017, Lundberg et al., 2018a, Jesus et al., 2021]. Therefore, we can reason about the
model decision and how the target software features influence these decisions (i.e.,
predicting whether a software class is defective or not). We conclude that the best-
performing machine learning models are easy to understand, as they employ fewer
features from the power-set. Furthermore, the results indicate how difficult it is to
generate a unique solution to understand defect models. Independent projects are
subject to distinct software features that may cause software defects. The SHAP
explanations also suggest that a variety of software features (e.g., Lines of code,
Age of a class in weeks, Number of attributes, Average method complexity, among
others) tend to lead to a higher probability of defects if the software feature value
is high. To confirm that high values tend to indicate defective code [Lundberg
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et al., 2018b], we investigated to determine the threshold of software features for
defect prediction. We conclude that higher values usually help the model predict
software defects. For example, Weighted Method per Class (WMC) higher than 35
consistently increases the probability of predicting a defect in the class.

SG4 In this empirical study, we conducted two survey studies with developers. First, we
examined the developers’ understanding of SHAP values [Lundberg et al., 2020]. We
concluded that SHAP explanations are valuable for developers in two ways. First,
developers could understand and reason about the most impactful software features
with their knowledge of software development. Second, we questioned developers
about how they perceived a list of software features and their relationship to de-
fective code. We concluded that developers’ perceptions differ from the machine
learning models. We noted that developers classify software feature complexity
as the main quality attribute contributing to defects, while the machine learning
models classified documentation as the primary quality attribute contributing to
defects. This is an interesting result as it contradicts common sense about the
quality attributes and their impact on defects. More importantly, the applied tech-
nique identifies software features that developers could act upon in the source code,
although it is difficult to evaluate to what extent it affects software development.

SG5 In our final empirical investigation, we examine the connection between defects
and code smell models. To do this, we employ a tool called Organic to identify and
validate code smells in our data. We then clean and select important features for our
prediction models. Later, we train and evaluate the models using an ensemble of the
models. In the end, as the models present good performance measures, we employ
an explainability technique known as SHAP to understand the models’ decisions.
Our results show that out of the seven code smells we initially identified, only three
(Refused Bequest, God Class, and Spaghetti Code) present similar models to the
defect model. We also report that the features Nesting Level Else-If and Comment
Density are important for all four models. We observe that most features need high
values to predict defects and code smells, except for Refused Bequest. Finally, we
conclude that documentation, complexity, and size quality attributes are the most
important for these models.
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1.6 Thesis Structure

This section presents this thesis’ structure. We distribute the remainder of this
thesis into seven chapters.

Chapter 2 presents the relevant studies that guide this thesis, focusing on relevant ma-
chine learning and software engineering definitions. We briefly discuss the datasets used
to predict defects, the features applied to evaluate the defect models, and how the current
literature addresses defect prediction.

Chapter 3 discusses in-depth the datasets used to predict defects in the current litera-
ture, focusing on the software features and defect distribution. As a result, we concentrate
on three datasets that vary in their characteristics of the source code.

Chapter 4 examines the results of predicting software defects with the target datasets
and compares them with baseline algorithms commonly applied in the literature. Finally,
we discuss the predictive power of the machine learning algorithms employed to predict
defects.

Chapter 5 investigates the understandability of machine learning models to predict soft-
ware defects using SHAP. In doing so, we reason about the software features that may
help developers to understand the defects in their code. The investigation focuses on
several software projects.

Chapter 6 discusses the results of two survey investigations with software developers
about the machine learning models’ results. To do so, we compare both the SHAP ex-
planations and developers’ perception about the software features that may cause defects
in their code. The main goal is to understand the developers’ perception of the machine
learning models.

Chapter 7 investigates the results of the empirical evaluation that compares defect and
code smells models. For this purpose, we use class-level software features to compare
them. The main goal is to understand the similarities and redundancies between these
models.

Chapter 8 presents a summarization of this thesis. We then discuss the current status
of the thesis project. Hence, we present the next steps we aim to perform to complete the
thesis project. Finally, we provide insights about the expected schedule.
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Chapter 2

Background and Related Work

Most software systems must evolve to cope with stakeholders’ requirements and fix ex-
isting defects. Therefore, the reliability of these systems has become a key concern for
the development team [Zimmermann and Nagappan, 2008, Nagappan et al., 2010, Kamei
et al., 2013, Jing et al., 2014, Wang et al., 2016a, Zhang et al., 2017, Tantithamthavorn
et al., 2019, Jiarpakdee et al., 2020]. To assist developers in finding defects, software de-
fect prediction is one of the research directions that applies machine learning techniques
to software engineering. Moreover, predicting software defects is an area of interest in
software engineering as it helps development teams maintain significant levels of software
quality [Turhan et al., 2009, Ghotra et al., 2015, Pornprasit et al., 2021]. Hence, machine
learning models have become increasingly popular for software defect prediction and have
demonstrated their effectiveness in many scenarios throughout the last decade [Nagap-
pan and Ball, 2005, Nagappan et al., 2006, Menzies et al., 2007, D’Ambros et al., 2010,
Nagappan et al., 2010, Menzies et al., 2010, Menzies and Zimmermann, 2013, Madeyski
and Jureczko, 2015, Tantithamthavorn et al., 2019, Jiarpakdee et al., 2020]. As a result,
the current literature employs a vast number of machine learning techniques for software
defect prediction. This chapter presents the background and related work associated with
defect prediction in software projects. We discuss the challenges of predicting software
defects and how the current literature applies recent techniques to address these issues. It
is important to note that the literature presented in this chapter was not gathered using
a Systematic Literature Review (SLR) approach. Instead, we used an ad-hoc approach
to identify the most relevant papers in the field of software defect prediction.

In this chapter, we aim to provide a comprehensive overview of software defects
and the techniques used to predict them in the software development process. Thus, we
divide the remainder of this chapter into six sections. Section 2.1 provides an overview
of software defects. We contextualize software defects and how the defect prediction field
can help software developers. In addition, we briefly discuss the types of software features
one may use to predict software defects in their source code. Section 2.2 briefly discusses
class-level code smells and anti-patterns. Section 2.3 introduces the quality attributes that
organize the software features in the literature. Section 2.4 examines the machine learning
algorithms used to predict defects in the literature. Therefore, we present commonly used
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evaluation metrics to test model performance. In the next chapter, we discuss the features
that each dataset has to predict defects in multiple projects. Then, Section 2.5 explains
the background of predicting defects with source code features such as Lines of Code
(LOC) or Weighted Methods per Class (WMC). Additionally, we present studies related
to predicting software defects from metadata information. Moreover, we investigate how
the current literature explains software defects from these features. Finally, Section 2.6
concludes the chapter with insights into the background and related work.

2.1 Software Defects

The current literature employs different definitions for software defects. In this
thesis, we utilize the IEEE definition [IEEE, 1990]. The term “defect” is usually re-
ferred to as a fault, error, failure, or bug [IEEE, 1990, Valente, 2020]. A software defect
may harm the appearance, operation, functionality, or performance of the target software
project [Haskins et al., 2004, Herzig and Zeller, 2013]. Software defects may appear in
various stages of software development [Kaur and Sharma, 2019], interrupt the develop-
ment progress, and increase the planned budget of software projects [Menzies et al., 2010].
Furthermore, a software team may discover software defects after code release, which gen-
erates significantly more effort to tackle these defects in production [Levin and Y., 2017].
In addition, we can divide the Software Development Life Cycle (SDLC) into five phases:
(i) Analysis, (ii) Design, (iii) Implementation, (iv) Testing, and (v) Maintenance [Bassil,
2012]. As a result, if a company notices more software defects than expected in the Testing
or Maintenance phases, it may impair its ability to meet customer deadlines or milestones
[Turhan et al., 2009]. Therefore, it is challenging to upgrade a software system that is
already defective, as the software team continues to spend development time fixing the
existing code instead of developing new features for their customers [Kaur and Sharma,
2019].

To mitigate these issues with software development, defect prediction is a method
for predicting defects in a software project [Menzies et al., 2007, 2010]. Thus, the use of
defect predictors is valuable for anticipating defects in the source code. For instance, if a
software team has limited resources for software inspection, a defect predictor may indicate
which modules are most likely to be defective. To generate a machine learning model able
to predict software defects, it is necessary to collect the data and build statistical models
based on the dataset [Burkov, 2019]. First, we need a dataset with instances of known
labels (i.e., defective or clean) [Turhan and Bener, 2009]. Usually, the labels are extracted
from bug reports, commits that fix defects, and other tools. We discuss in detail how
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several data sources employ the concept of defects in Chapter 3. Since we are interested
in identifying defective instances, it is generally ideal to have a dataset with only binary
labels. Later, we employ feature extraction to the entire data source extracting the most
relevant features from the existing ones. Next, the complete pool of software features
with the corresponding label (i.e., defective or clean) serves as the input of the machine
learning classifier1. Finally, the model can classify unseen software instances (i.e., classes,
files, or modules) into defective or clean. More specifically, a group of datasets [Ghotra
et al., 2015] defines a defect based on the following expression, where one or more errors
change the status of a module to defective.

defective? = errorcount >= 1

The input of a defect prediction model is usually a set of software features. A
software feature is a measure of a specific software property. For example, a software
feature may represent the total number of lines of code (LOC) in a class. Therefore,
we utilize a set of software features to describe different aspects of software artifacts
such as a file, a class, or a module. As a result, several software features are easy to
compute, and others are more complex to represent in the source code. For instance,
it is easy to calculate a software feature such as LOC. On the other hand, the WMC
(Weighted Method per Class) is more complex to compute and express in a software
artifact. Furthermore, these software features can express numerical values (integer or
real) or represent a linearly ordered range of values known as continuous features [Fayyad
and Irani, 1993]. However, the use of continuous software features may interfere with
the predictive capacity of the model. As an example, the Lack of Cohesion in Methods
(LCOM) is a continuous feature that may assume any value in the feature space [Jureczko
and Madeyski, 2010, Ferenc et al., 2020b]. For this reason, we need to define the feature
space of the model by discretizing the continuous software features [Ma et al., 2014].
Finally, as most studies apply a classification learning method [Elish and Elish, 2008], it
focuses on learning a model that classifies new instances into one of the two labels (i.e.,
defective or clean) [Jing et al., 2014]. We cover in detail the entire list of software features
we employ to explore the defect prediction field in the next chapter of this thesis (Chapter
3).

1In this thesis, the terms “classifier” and “model” are used interchangeably to refer to a statistical
or machine learning algorithm that is used to predict a certain outcome or target based on input data.
Both terms refer to the same concept.
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2.2 Code Smells

Brown et al. [1998] proposed a catalog of anti-patterns, which are solutions to
recurring problems based on design patterns. However, instead of providing reusable
code, anti-patterns have a negative impact on the source code. A code smell (short for
“bad smells” or “smells”) is a symptom of poor design and implementation choices [Tufano
et al., 2015]. Therefore, a code smell is a surface indication that usually corresponds to
a deeper problem in the system [Fowler, 1999]. By definition, a code smell is something
quick to spot (i.e., “sniffable”). For example, a long method may represent a code smell
because a developer may quickly realize that the method has too many lines simply by
looking at the code [Fowler, 1999]. However, code smells do not always indicate a problem
within the source code. Some long methods are acceptable [Fowler, 1999]. As a result,
code smells are often an indicator of a problem rather than the problem itself [Fowler,
1999]. Additionally, code smells are not defects, but they are indicators of potential
problems in the source code [Khomh et al., 2009, 2012, Fontana et al., 2013, Sjøberg et al.,
2013, Yamashita and Counsell, 2013, Yamashita and Moonen, 2013, Palomba et al., 2014,
Cunha et al., 2020]. Since this thesis focuses on class-level datasets, only problems related
to classes are considered. Table 2.1 presents a comprehensive list of class-level code smells
and anti-patterns. The first column shows the code smell name, while the second column
provides a brief definition of the smell or anti-pattern. Finally, the last column presents
the reference that discusses it in more detail.

Table 2.1: Code Smell and Anti-Pattern Definitions.

Problem Definition Proponent
God Class (GC) A large class that have too many responsibili-

ties and centralizes the module functionality.
Riel [1996]

Refused Bequest (RB) A class that does not want to use its parent
behavior.

Fowler [1999]

Spaghetti Code (SC) A class that has methods with large and
unique multistage process flow.

Brown et al.
[1998]

Class Data Should be
Private (CP)

A class with too many public fields. Shvets [2021]

Data Class (DC) Classes that have only fields, getters and set-
ters.

Fowler [1999]

Lazy Class (LC) Classes that have little behavior, with few
methods and fields.

Fowler [1999]

Speculative General-
ity (SG)

Classes that support future behavior, usually
interacting with test classes only.

Fowler [1999]

Source: Elaborated by the author.
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2.3 Quality Attributes

A software feature may be related to a quality attribute [Ferenc et al., 2018, 2020a].
Although the current literature proposes different quality attributes to group similar soft-
ware features [Aghajani et al., 2020, Basili et al., 1996, Stroulia and Kapoor, 2001], we
focus on the quality attributes previously discussed in one of the main datasets used for
defect prediction [Ferenc et al., 2018, 2020a]. These quality attributes cluster a wide range
of software features. Therefore, we consider seven quality attributes to group the entire
collection of software features: (i) Complexity [Basili et al., 1996, Stroulia and Kapoor,
2001, Ferenc et al., 2020a], (ii) Coupling [Stroulia and Kapoor, 2001, Abdullah AlOmar
et al., 2019, Ferenc et al., 2020a], (iii) Size [Fowler, 1999, Wang et al., 2016a, Ferenc et al.,
2020a], (iv) Documentation [Fowler, 1999, Aghajani et al., 2020, Ferenc et al., 2020a], (v)
Clone [Tóth et al., 2016, Ferenc et al., 2018], (vi) Inheritance [Fowler, 1999, Aghajani
et al., 2020, Ferenc et al., 2020a], and (vii) Cohesion [Tóth et al., 2016, Ferenc et al.,
2020a]. Table 2.2 presents the quality attributes with their definition and reference. The
first column shows the name of the quality attribute. The second column is the definition
of the quality attribute, and the third column represents the literature reference. For
instance, inheritance measures the different aspects of the inheritance hierarchy of the
project [Fowler, 1999, Aghajani et al., 2020, Ferenc et al., 2020a].

Table 2.2: Quality Attributes Definition.

Name Definition Proponent
Clone Measure code cloning, we identify instances

of copy-pasting existing source code or mak-
ing minor modifications to the original code.

Tóth et al. [2016], Ferenc
et al. [2018, 2020a]

Cohesion Measure to what extent the source code el-
ements are coherent in the system.

Tóth et al. [2016], Ferenc
et al. [2020a]

Complexity Measure the complexity of source code ele-
ments (typically algorithms).

Basili et al. [1996], Strou-
lia and Kapoor [2001]

Coupling Measure the amount of dependencies of
source code elements.

Stroulia and Kapoor
[2001], Abdullah AlO-
mar et al. [2019]

Documentation Measure the amount of comments and doc-
umentation of source code elements in the
system.

Fowler [1999], Aghajani
et al. [2020]

Inheritance Measure the different aspects of the inheri-
tance hierarchy of the system.

Fowler [1999], Aghajani
et al. [2020]

Size Measure the system’s properties in terms of
different aspects (e.g., number of code lines,
number of classes, or methods).

Fowler [1999], Wang
et al. [2016a]

Source: Elaborated by the author.
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2.4 Machine Learning and Software Engineering

Machine learning refers to the process of solving practical problems by gathering
a dataset and algorithmically building a statistical model based on that data [Burkov,
2019]. To do so, data collection relies on examples of some phenomenon, which can come
from nature, be handcrafted by humans, or be generated by another algorithm [Burkov,
2019]. In the software engineering field, researchers use machine learning techniques to
create cognitive services for vision and speech, conversational agents for human interac-
tion, real-time translation of text and voice, and many more applications [Amershi et al.,
2019]. One of the uses of machine learning in software applications is to detect defects
in software projects [Bowes et al., 2018]. In fact, predicting software defects is a task
that researchers have employed distinct machine learning models for. To compile these
models, we conducted an ad-hoc literature review, considering popular digital libraries
for the research community such as ACM, IEEE, Springer, Google Scholar, among other
resources. Hence, we noticed that researchers have implemented eight algorithms to pre-
dict defects in source code. Some of the machine learning models identified in previous
works include Logistic Regression, Naive Bayes, K-Nearest Neighbor, Neural Networks,
Decision Trees, Support Vector Machine, Random Forest, and Gradient Boosting Ma-
chine. Next, we present a detailed explanation of each algorithm utilized in the defect
prediction literature.

Logistic Regression: This algorithm represents a statistical method used for classifica-
tion in a dataset. It is commonly employed when there are one or more independent
variables that determine the outcome. The classifier defines the value of one of two
potential outcomes.

Naive Bayes: This method performs classification based on Bayes’ rule. Here, the algo-
rithm finds the conditional probability of an instance holding a specific label from
the set of possible labels. Thus, the algorithm picks the label with the highest
probability as the chosen classification.

K-Nearest Neighbors: This algorithm represents a non-parametric decision that clas-
sifies an unknown instance based on the nearest neighbor. The algorithm employs
a distance function to determine the distance between the unknown and the known
instances. Therefore, the method selects the k-nearest neighbors of the unknown
instance and utilizes the majority vote to decide the approximate classification.

Neural Networks: This method consists of layers of units known as neurons. The
layers are typically named the input layer, hidden layer, and output layer. Multiple
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hidden layers may exist between the input and output layers. The algorithm uses
the weights of the connections between the layers to predict the output.

Support Vector Machine: This algorithm uses a set of labeled data considering two
possible labels to classify. Then, the method builds a model mapping the data as
points in a space so that the generated mapping divides the two separate labels by a
clear gap as wide as possible. As a result, the model can map unknown data into a
mapped space. Hence, the method determines the label prediction of the unknown
instance based on the side of the gap it is located on.

Decision Trees: This method is a type of flowchart that shows a clear pathway to a
decision. Therefore, it is a type of algorithm that includes conditional statements
to classify the data. Consequently, a decision tree starts at a single point and
then branches in two or more directions. Each branch proposes different outcomes,
incorporating several decisions and chance events until the algorithm achieves a
definite outcome.

Random Forest: This algorithm consists of a collection of tree predictors, each of which
is employed to classify an unknown instance. Therefore, the learning method con-
siders the number of trees, node size, and the number of features sampled. Finally,
the classification applies the majority result of the trees’ predictions to decide the
correct label.

Gradient Boosting Machine: This method can improve the prediction accuracy of
machine learning classifiers by combining a set of weak classifiers to create a ro-
bust classifier. The algorithm is a combination of ensemble learning and boosting
techniques. Popular implementations of this algorithm include XGBoost and Light-
GBM.

Table 2.3 presents a list of relevant investigations that have implemented each
of the mentioned classifiers for defect prediction, along with their respective literature
references. The list is sorted alphabetically. The first column of the table represents the
literature reference to facilitate access to the source. The remaining columns (two to nine)
list the eight algorithms that were applied for the defect prediction task. By analyzing
the references, we conclude that the Random Forest algorithm is a popular option in
current literature, followed by the Decision Trees and Naive Bayes algorithms. Another
important option is the Logistic Regression algorithm. The least applied algorithm is the
Gradient Boosting Machine. We believe that the reason for the limited application of the
Gradient Boosting Machine is the fact that it is the most recent algorithm among those
discussed in the literature [Chen and Guestrin, 2016, Ke et al., 2017].
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Table 2.3: Baseline Machine Learning Classifiers Employed in Defect Prediction.

Proponent LR NB KNN NN SVM DT RF GB
Elish and Elish [2008] • • • • • •
Ferenc et al. [2020a] •
Fukushima et al. [2014] •
Gray et al. [2011] •
Jiang et al. [2013] • • •
Jing et al. [2014] • • •
Kamei et al. [2013] •
Kaur and Sharma [2019] •
Knab et al. [2006] •
Nagappan et al. [2006] •
Pascarella et al. [2020] • • •
Pornprasit et al. [2021] • • •
Shuai et al. [2013] •
Sun et al. [2012] • • •
Tantithamthavorn et al. [2015] •
Tantithamthavorn et al. [2017] • • •
Tantithamthavorn and Hassan [2018] • •
Turhan et al. [2009] • • •
Wang and Li [2010] •
Xuan et al. [2015] • • • • •
Yang et al. [2016] • • • •
Yatish et al. [2019] • •
Zhongbin et al. [2018] • • •

Source: Elaborated by the author.

LR: Logistic Regression; NB: Naive Bayes; KNN: K-Nearest Neighbors; NN: Neural Networks; SVM:
Support Vector Machine; DT: Decision Trees; RF: Random Forest; GB: Gradient Boosting Machines.

Additionally, we compiled a list of the data and programming languages used in
the literature. Table 2.4 presents the literature reference in the first column (which cor-
responds to Table 2.3). The second column shows the data availability. We note that the
majority of the data is not available to the community because it is proprietary. For ex-
ample, the study by Nagappan et al. [2006] focuses on Microsoft data that is not available
to the community. However, a significant number of papers have open data, although a
substantial amount applies to the NASA datasets [Wang and Li, 2010, Gray et al., 2011,
Jing et al., 2014]. Other literature references only had a portion of the data available
for the community. In terms of programming languages used in the literature, we found
that the majority of the papers focused on Java, with several papers exclusively using
that language. Other popular languages included C and C++. Some studies did not
clearly state the programming languages their data was based on. For data availability,
we only considered data to be open if it was directly cited in the paper. We did not search
the internet for data. Furthermore, we only considered programming languages explicitly
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stated in the paper and did not search for source code to identify the language. Finally,
the last column displays the type of classification (i.e., binary or multiclass). We note
that most papers focus on binary classification. However, there are several papers that
focus on multiclass classification [Nagappan et al., 2006, Sun et al., 2012, Kamei et al.,
2013, Kaur and Sharma, 2019].

Table 2.4: Details about the Defect Prediction Literature.

Proponent Data Language Binary/Multiclass
Elish and Elish [2008] Open C++, Java Binary
Ferenc et al. [2020a] Open Java Binary
Fukushima et al. [2014] Closed C, C++, Perl, Ruby Binary
Gray et al. [2011] Open C, C++, Java, Perl Binary
Jiang et al. [2013] Closed C, Java Binary
Jing et al. [2014] Open C, C++, Java Binary
Kamei et al. [2013] Closed C, C++, Java Multiclass
Kaur and Sharma [2019] Open Java Multiclass
Knab et al. [2006] Closed Not Mentioned Binary
Nagappan et al. [2006] Closed C++, C# Multiclass
Pascarella et al. [2020] Closed Java Binary
Pornprasit et al. [2021] Closed Not Mentioned Binary
Shuai et al. [2013] Open C, C++ Binary
Sun et al. [2012] Open C, C++, Java, Perl Multiclass
Tantithamthavorn et al. [2015] Partially Not Mentioned Binary
Tantithamthavorn et al. [2017] Partially Java Binary
Tantithamthavorn and Hassan [2018] Closed Not Mentioned Binary
Turhan et al. [2009] Partially C, C++, Java Binary
Wang and Li [2010] Open C, C++, Java, Perl Binary
Xuan et al. [2015] Open Java Binary
Yang et al. [2016] Closed Java Binary
Yatish et al. [2019] Closed Java Binary
Zhongbin et al. [2018] Open Java Binary

Source: Elaborated by the author.

Evaluation Metrics. To evaluate the performance of a defect prediction model, we
typically analyze four possible outcomes [Zimmermann et al., 2007, Peters et al., 2013,
Fukushima et al., 2014, Pascarella et al., 2020], which represent whether the instance
(e.g., file, class, module, or method) is defective or clean (i.e., also referred to as non-
defective). Table 2.5 describes these possible outcomes of the defect prediction model and
their respective descriptions. The first two columns present the predicted outcomes (i.e.,
positive or negative), and the last two columns show the actual outcomes (i.e., positive
or negative). Thus, the confusion matrix is a table that illustrates the number of True
Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).
Below Table 2.5, we explain the meaning of each outcome for the defect prediction task.
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Table 2.5: Confusion Matrix for Defect Prediction Outcomes.

Actual
Positive Negative

Predicted Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

True Positive (TP) → A defective entity is classified as defective
False Negative (FN) → A defective entity is classified as clean
True Negative (TN) → A clean entity is classified as clean
False Positive (FP) → A clean entity is classified as defective

Source: Elaborated by the author.

Thus, the confusion matrix represents a valuable asset for evaluating the perfor-
mance of a defect prediction model. However, the most comprehensive performance mea-
surement of a classification model is a Receiver Operating Characteristic Curve (ROC)
[Kuhn and Johnson, 2013]. To calculate the ROC, it is necessary to examine some as-
pects of the performance. For this reason, we will briefly introduce how to calculate ROC.
To do so, we will present two important evaluation metrics: recall (i.e., sensitivity) and
specificity.

− Recall (Sensitivity)→ This metric represents how many existing defective instances
are detected by the model. Recall is calculated as the percentage of true positives
(tp) over the total number of actual positives (tp + fn). This measurement is also
known as the true positive rate of the model’s predictions [Kuhn and Johnson, 2013].

recall :
tp

tp+ fn

− Specificity → This metric represents the proportion of actual clean instances that
are predicted as defective. Specificity is calculated as the number of true negatives
(tn) over the total number of actual negatives (tn + fp). This metric is also called
the true negative rate of the model’s predictions [Kuhn and Johnson, 2013].

specificity :
tn

tn+ fp

If we plot sensitivity (recall) versus specificity of a prediction model, it creates a
ROC curve. ROC improves the model’s performance by maximizing sensitivity and speci-
ficity, thus maximizing the Area Under the Curve (AUC) calculation. The maximum value
for AUC is 1, which indicates the model’s highest performance. In the defect prediction
literature, an acceptable threshold for AUC in both binary or multi-class classification
is around 69%, as previously reported [Tong et al., 2018]. AUC is a strong indicator
of model performance, but two additional evaluation metrics can help investigate model
performance in defect prediction.
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− Precision→ This metric represents the proportion of correct predictions of defective
instances. Precision is calculated as the percentage of true positives (tp) over the
total number of predicted positives (tp + fp) [Kuhn and Johnson, 2013].

precision :
tp

tp+ fp

− F-Score → This metric represents the harmonic mean of precision and recall. The
F1-Score is also referred to as F1 or F-Measure. The F1-Score is calculated as
the weighted average of precision and recall multiplied by two [Kuhn and Johnson,
2013].

f1 : 2 ∗ precision ∗ recall
precision+ recall

2.5 Related Work

This section discusses relevant research that applies machine learning to predict
software defects. First, we present related work on datasets used for defect prediction.
Second, we discuss studies that effectively use source code features to predict defects in
source code. Then, we briefly discuss the use of metadata information to predict defects.
Finally, we present recent studies on applying machine learning model interpretability to
defect prediction.

Datasets for Defect Prediction. This section discusses the main studies involved in
four of the most commonly used datasets for defect prediction. In the early stages of the
defect prediction literature, the lack of data sources was a significant challenge for the
community [Kamei and Shihab, 2016]. To address this, NASA decided to publish data
on the NASA Metric Data Program for the first time. The dataset2 gained considerable
popularity among the defect prediction community. The dataset [Menzies et al., 2007,
2010] is based on features from Halstead’s operator-operand counts [Halstead, 1977] and
McCabe’s dependencies and complexity [McCabe, 1976, McCabe and Butler, 1989]. The
main reason for its popularity is the fact that the dataset was available for free, and
the data does not require much additional processing to predict defects with moderate
performance [Hall et al., 2012]. Despite the dataset’s popularity, several studies have
pointed out that the data quality is not optimal, and the dataset requires a data cleaning
process to improve the classifiers’ overall performance [Ghotra et al., 2015]. Furthermore,

2https://www.nasa.gov/sites/default/files/files/nasa_metrics_data_program_data_set_
v1.0.xlsx

https://www.nasa.gov/sites/default/files/files/nasa_metrics_data_program_data_set_v1.0.xlsx
https://www.nasa.gov/sites/default/files/files/nasa_metrics_data_program_data_set_v1.0.xlsx
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the current literature recognizes that the choice of the classifier is essential since the data
is not standardized and is noisy. However, the dataset is relevant to the defect prediction
community because it confirms how important data quality is for predicting defects.

Due to the expansion of data sources and algorithms for defect prediction over
the years, researchers have had the opportunity to explore new approaches to defect
prediction. This transformation originated in the study of the use of software features
for Object-Oriented Programming (OOP) [Chidamber and Kemerer, 1994]. Chidamber
and Kemerer [1994] proposed a novel set of software features based on Object-Oriented
design patterns. Later, the research community named these features CK features after
the authors’ names. They relate these features to measurements that reflect the viewpoint
of experienced Object-Oriented programmers. After extensive experimentation with the
novel features, the authors found that the features are beneficial for reducing the cost
of software development, testing, and maintenance, and improving the overall software
quality. They concluded that higher values of individual software features are associated
with higher design effort and lower productivity of the software team to fix potential
defects [Chidamber and Kemerer, 1994]. Other works investigated the benefits of the
software features proposed by Chidamber and Kemerer [1994]. In Basili et al. [1996], the
authors drew connections between the CK features and the defectiveness of a module.
They experimented with the set of features and concluded that some software features
could generate satisfactory predictors using the C++ programming language.

A couple of years later, Jureczko and Spinellis [2010] gathered an impressive collec-
tion of data based on the CK features. The data is publicly available under the PROMISE
repositories3 [Jureczko and Madeyski, 2010, Jureczko and Spinellis, 2010]. The authors
discussed the inefficiency of current methods of extracting CK features from existing soft-
ware projects [Jureczko and Spinellis, 2010]. To collect the data, the authors used a tool
known as ckjm to calculate each feature for each project. Additionally, they employed
a tool called BugInfo to identify the defects. BugInfo analyzed the logs of each target
repository (using a Version Control System). Therefore, the tool could extract the content
and determine if a commit was a fix to a defective state. To do so, the authors identified
the comments that indicate defect fixes and proposed a regular expression to identify the
commits that were intended to fix defects. Then, the tool compared the regular expres-
sion with the commit comments. In case the comment fit the regular expression, BugInfo
incremented the defect count for all classes the commit modified. The authors concen-
trated on the Java programming language. After experimenting with the tool and data
source, the authors documented that two CK features are class size factors: Weighted
Methods per Class (WMC) and Lines of Code (LOC). Finally, the authors demonstrated
the effectiveness of the data for defect prediction using simple regression models [Jureczko
and Spinellis, 2010].

3http://promise.site.uottawa.ca/SERepository/

http://promise.site.uottawa.ca/SERepository/
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In another study over the same dataset, the works of Jureczko and Madeyski [2010]
described an analysis of 92 releases of 38 proprietary, open-source and academic projects.
The authors used software features to generate clusters that could join projects that have
similar defect causes. They experimented with the clusters with a state-of-art technique
for defect prediction based on hierarchical and k-means clustering. They found at least
six groups in the dataset, but statistically, only two demonstrated to be true. The authors
prove the existence of those two clusters with statistical tests. The comparison confirmed
that the clusters did not have significant inconsistencies with other studies about defect
prediction, and the overlap is consistent with the current literature. They conclude that
the results were not astonishing enough to justify using the clusters to detect defects
[Jureczko and Madeyski, 2010] in future explorations. Even so, the data sources gathered
are relevant as the authors expanded the previous work [Jureczko and Spinellis, 2010]. For
this reason, the authors strongly encourage the use of the data to improve defect prediction
using CK features [Jureczko and Madeyski, 2010, Jureczko and Spinellis, 2010].

Similarly, another approach to defect prediction data sources is the Bug Predic-
tion dataset4 [D’Ambros et al., 2010]. In this data source, the authors present a publicly
available dataset for the defect prediction community. The data source consists of sev-
eral software systems related to the Java Programming Language, including the popular
Eclipse IDE. Unlike previous works [Jureczko and Madeyski, 2010, Jureczko and Spinellis,
2010], the dataset does not focus entirely on CK features. Instead, the authors propose
novel features about other aspects of the source code [D’Ambros et al., 2010]. The authors
built the data based on several approaches: (i) changes cause defects in the source code
[Moser et al., 2008]; (ii) previous defects may predict future defects [Kim et al., 2007];
(iii) complex components are harder to change, and hence defect-prone [Basili et al.,
1996]; and finally, (iv) complex changes are more defect-prone than simpler ones [Hassan,
2009]. Finally, they divide the software features into three main categories: class-level
[Gyimothy et al., 2005, Herbold, 2015], entropy [Hassan, 2009, Kaur et al., 2015], and
change features [Moser et al., 2008, Rhmann et al., 2020]. The software features included
in the data are part of Object-Oriented Programming (OOP) as they represent aspects
included in that paradigm. In the end, the authors propose a new set of features for
defect prediction based on code churn. D’Ambros et al. [2010] state that the dataset may
serve as a benchmark for further explorations and comparisons between machine learning
approaches for defect prediction.

More recently, Ferenc et al. [2020a] presented a collection of relevant open-source
projects with a wide range of software features and quality attributes5. The authors
merged several bug reports available in the literature with static features gathered us-
ing the OpenStaticAnalyzer (OSA) [Department of Software Engineering, 2022]. To do

4https://bug.inf.usi.ch/index.php
5https://zenodo.org/record/3693686

https://bug.inf.usi.ch/index.php
https://zenodo.org/record/3693686
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so, they considered five bug reports that are widely available in the defect prediction
literature [Tóth et al., 2016]. Furthermore, they assessed the capabilities of the unified
dataset in defect prediction with a decision tree model. As a result, they produced a large
unified dataset comprising 47,618 classes with 71 software features. Using the OpenStat-
icAnalyzer, the software features can be divided into seven quality attributes: (i) Clone
Duplication, (ii) Cohesion, (iii) Complexity, (iv) Coupling, (v) Documentation, (vi) In-
heritance, and (vii) Size. Finally, the authors concluded that the unified dataset is a
valuable resource for defect prediction [Ferenc et al., 2018, 2020a], and they encourage
the use of the dataset for future explorations [Ferenc et al., 2020b]. We provide more
details about the datasets discussed in this section in Chapter 3.

Learning from Source Code Features. Software defect prediction using machine
learning techniques has received extensive recognition in the software engineering com-
munity for a long time. Several research studies rely on source code metadata [Wang
et al., 2016a] and software features [Menzies et al., 2007, Jing et al., 2014] as features
for machine learning-based algorithms. For instance, Wang et al. [2016a] studied the
impact of using the program’s semantics as features for the prediction model. The au-
thors used deep learning networks to automatically learn semantic features from token
vectors obtained from abstract syntax trees [Wang et al., 2016a]. In a similar approach,
Xu et al. [2018] employed a non-linear mapping method to extract representative features
by embedding the original data into a high-dimensional space. Their results achieved an
average F-measure, g-mean, and balance of 0.480, 0.592, and 0.580 [Xu et al., 2018].

The current literature applies several software features for defect prediction. As an
example, Menzies et al. [2007] presented defect classifiers utilizing code attributes defined
by McCabe and Halstead features. They concluded that the choice of the learning method
is more important than which subset of the available data we use for learning the software
defects. The study also discusses the usefulness of defect prediction models for software
development [Menzies et al., 2007]. From a different perspective, Jing et al. [2014] used
a dictionary learning technique to predict software defects by using characteristics of
software features mined from open-source software projects. They employed datasets
from NASA projects as test data to evaluate the proposed method, which achieved a
recall value of 79%, improving the recall by 15% compared to other methods previously
employed to predict defects in the same dataset [Jing et al., 2014].

Some studies investigate cross-project defect prediction with cross-company defect
prediction [Fukushima et al., 2014, Turhan et al., 2009]. For instance, Fukushima et al.
[2014] explored cross-project prediction models within the context of just-in-time predic-
tion. Their results demonstrate no relationship between project prediction performance
and cross-project prediction performance. Furthermore, they conclude that just-in-time
prediction models built using projects with similar characteristics or applying ensemble
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methods usually perform well in a cross-project context [Fukushima et al., 2014]. In a
similar approach, Turhan et al. [2009] used cross-company data for building localized
defect predictors. They employed principles of analogy-based learning to cross-company
data to fine-tune these models for localization. The authors analyzed static code features
extracted from the source code, such as complex software features and Halstead code
complexity features. The paper concludes that cross-company data are useful in extreme
cases and when within-company data is not available [Turhan et al., 2009].

Similarly, He et al. [2012] investigate defect prediction based on data selection.
The authors propose a brute force approach to select the most relevant data for learning
the software defects. To do so, they experiment with three large-scale experiments on 34
datasets obtained from ten open-source projects. They conclude that training data from
the same project does not always help to improve the prediction performance [He et al.,
2012]. In the same direction, the work of Turhan et al. [2011] evaluates the effect of mixing
data from different project stages. In this case, the author uses within and cross-project
data to improve the prediction performance. They show that mixing project data based
on the same project stage does not significantly improve the model performance. For this
reason, they conclude that optimal data for defect prediction is still an open challenge for
researchers [Turhan et al., 2011].

Defect prediction is a challenging task, and previous work has addressed this sub-
ject [Tantithamthavorn and Hassan, 2018, Tantithamthavorn et al., 2015]. For instance,
Tantithamthavorn and Hassan [2018] documented the pitfalls and difficulties of apply-
ing novel defect prediction modeling. The authors divided their model into seven steps:
hypothesis formulation, designing features, data preparation, model specification, model
construction, model validation, and model interpretation. They discussed the pitfalls
for each step of the proposed defect modeling process [Tantithamthavorn and Hassan,
2018]. In a different paper, Tantithamthavorn et al. [2015] showed the impact of noisy
data on creating defect prediction models. They argue that mislabeled data could not
only impact the effectiveness but also the reliability of the model. The authors apply a
case study with thousands of manually curated issue reports. Next, we will discuss the
learning methods where researchers use metadata information to predict software defects
[Tantithamthavorn et al., 2015].

Furthermore, studies also differ in terms of the scope of the software features they
employ to predict defects [Tosun et al., 2010, Pascarella et al., 2020]. For instance, Pas-
carella et al. [2020] reports negative results about method-level defect prediction using
a set of popular Java projects. They conclude that (i) the performance of previously
proposed models, tested using the same strategy but on different systems/timespans, is,
in fact, comparable. However, (ii) when evaluated with a more practical strategy, all
the models show a dramatic drop in performance, with results close to that of a random
classifier. Finally, they find that (iii) the contribution of some features is limited. Fur-
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thermore, Tosun et al. [2010] conducted a study in a large telecommunications company
in Turkey to employ a software measurement program and predict pre-release defects.
They conclude that implementing statistical techniques and machine learning in a real-
life scenario is a difficult yet possible task. Therefore, they recommend optimizing the
hyperparameter space of defect models.

Learning from Metadata Information. The prediction of software defects is a com-
plex task by definition. In some cases, the source code features, such as the ones men-
tioned in the previous section, are not sufficient and efficient for the defect prediction
task. For these reasons, many papers have adopted models that employ code metadata
information. For example, Wang et al. [2016a] examined the impact of using a system’s
semantics as the prediction model’s features. The authors used deep belief networks
to automatically learn these features from token vectors collected from abstract syntax
trees. Then, they evaluated the model on ten open-source projects and improved the F1
score for both within-project defect prediction by 14.2% and cross-project defect predic-
tion by 8.9% [Wang et al., 2016a]. Similarly, the works of Xu et al. [2018] employed a
non-linear mapping method to extract representative features by embedding the initial
data into a high-dimensional space. Their results achieved an average F-measure, g-mean,
and balance of 0.480, 0.592, and 0.580, respectively, and outperformed nearly all baseline
methods [Xu et al., 2018].

In a similar perspective, Zhongbin et al. [2018] compared the effectiveness of pre-
dicting software defects from the Jureczko dataset. The authors demonstrate that the
model performance is more dependable on the machine learning process. For instance,
they discuss that applying an optimal data cleaning process in the target data is more
important than the machine learning model. Furthermore, the authors conclude that
data cleaning is necessary for the Jureczko dataset as they achieved better model per-
formance. To do so, the authors compare the performance of a cleaned version of the
Jureczko dataset with the raw data available on the internet [Zhongbin et al., 2018].
In the same direction, Ferenc et al. [2018] gathered a wide variety of defect prediction
datasets, including Jureczko, and studied the accuracy of decision trees. The authors
concluded that these datasets for defect prediction could join data to create a resource
for the community. Next, we discuss the different machine learning methods commonly
applied to predict defects in source code [Ferenc et al., 2018].

Explaining Software Defects. Software defect explainability is a relatively recent
topic in the machine learning community [Mori and Uchihira, 2018, Jiarpakdee et al.,
2020, Pornprasit et al., 2021]. Mori and Uchihira [2018] analyzed the trade-off between
the accuracy and interpretability of various defect models. The experiment displays a
comparison between the balanced output that satisfies both accuracy and interpretability
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criteria. To do so, the authors propose a unique classification machine learning model
called superposed naive Bayes (SNB), which transforms a naive Bayes ensemble method
into a simple naive Bayes model by linear approximation. To evaluate the SNB inter-
pretability, they apply a qualitative approach that assesses the interpretability of different
types of classification techniques based on another study [Lipton, 2016]. The approach
concentrates on model transparency (simulatability), component transparency (decom-
posability), and algorithmic transparency. They conclude that the proposed method may
deliver a balanced output that satisfies both accuracy and interpretability criteria [Mori
and Uchihira, 2018]. This thesis does not focus on qualitative approaches to explain soft-
ware defects. Instead, we rely on SHAP values to understand the machine learning models
and the software features. Finally, we employ a qualitative evaluation of developers’ per-
ception of the software features that may indicate defects and the machine learning model
itself.

Likewise, Jiarpakdee et al. [2020] empirically evaluated two model-agnostic proce-
dures, Local Interpretability Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]
and BreakDown [Staniak and Biecek, 2019] techniques. To do so, the authors investi-
gated a large case study with several defect datasets and nine open-source projects. The
authors find that (i) model-agnostic techniques are relevant to explain individual predic-
tions of defect prediction models; (ii) instance explanations generated by model-agnostic
techniques mostly overlap with the global explanation of defect models (except for the
LIME technique) and are reliable when they are re-generated; (iii) model-agnostic tech-
niques usually are fast to generate instance explanations (i.e., they do not take more than
a minute); and (iv) the explanations are necessary and useful to understand the predic-
tions of defect models. In the end, they improve the results obtained with LIME using
hyperparameter optimization, which they called LIME-HPO. This work concludes that
model-agnostic methods are necessary to explain individual predictions of defect models
[Jiarpakdee et al., 2020]. This thesis also focuses on model-agnostic methods to explain
individual predictions of defect models. However, we employ a larger set of software
features, machine learning models, and a different technique to understand the defects
(i.e., SHAP [Lundberg and Lee, 2017, Lundberg et al., 2018b]). Furthermore, we measure
developers’ understandability using SHAP explanations and the software features they
perceived as defect predictors.

Finally, Pornprasit et al. [2021] proposes a tool called PyExplainer that predicts
defects using the Python programming language. The input data consists of 40,978 soft-
ware commits, and the authors compare its performance with the LIME technique [Ribeiro
et al., 2016]. Through a basic case study of two large open-source projects (OpenStack and
Qt [McIntosh and Kamei, 2018]), they conclude that PyExplainer produces (i) synthetic
neighbors that are 41%-45% more similar to an instance to be explained; (ii) 18%-38%
more accurate local models; and (iii) explanations that are more unique and consistent
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with the actual characteristics of defect-introducing commits compared to LIME. The
authors claim that the tool might help practitioners focus on the most important aspects
of the commits to mitigate the risk of being defect-introducing. They conclude that the
results are comparable to state-of-the-art technology to explain models [Pornprasit et al.,
2021]. Unlike these papers, this thesis does not focus on commits that may cause software
defects. Instead, we focus on a large set of software features that may indicate software
defects. Furthermore, we are interested in the usefulness of the machine learning models
for the developers as they are the most beneficiary from the understandability concepts
applied to software defects. Next, we discuss the methods to detect code smells on the
source code.

Code Smells Detection. Several automated detection strategies for code smells and
anti-patterns have been proposed in the literature [Fokaefs et al., 2011, Khomh et al.,
2011, Maiga et al., 2012b,a, Fontana et al., 2013, Amorim et al., 2015, Fernandes et al.,
2016, Fontana et al., 2016, Di Nucci et al., 2018, Oizumi et al., 2018, Cruz et al., 2020,
PMD, 2021]. They use diverse strategies in their identification. For instance, some meth-
ods are based on combinations of features [Oizumi et al., 2018, PMD, 2021], refactoring
opportunities [Fokaefs et al., 2011], textual information [Palomba et al., 2016], historical
data [Palomba et al., 2013], and machine learning techniques [Khomh et al., 2011, Maiga
et al., 2012b,a, Fontana et al., 2013, Amorim et al., 2015, Fontana et al., 2016, Di Nucci
et al., 2018, Cruz et al., 2020]. Khomh et al. [2011] used Bayesian Belief Networks to
detect three anti-patterns. They trained the models using two Java open-source systems.
Maiga et al. [2012b] investigated the performance of Support Vector Machines trained
in three systems to predict four anti-patterns. Later, the authors introduced a feedback
system to their machine learning model [Maiga et al., 2012a]. Amorim et al. [2015] inves-
tigated the performance of Decision Trees to detect four code smells in one version of the
Gantt software project. Differently from these works, our dataset is composed of fourteen
systems, and we evaluate nine class-level code smells (Chapter 7).

Cruz et al. [2020] evaluated seven machine learning models to detect four code
smells in twelve systems. The authors discussed that algorithms based on trees encoun-
tered a better F1 score than other machine learning models. Fontana et al. [2016] evalu-
ated six machine learning models to predict four smells. However, they used the severity
of the smells as the target. They reported high-performance numbers for the evaluated
models. Later, Di Nucci et al. [2018] replicated [Fontana et al., 2016] to address several
limitations that potentially generated bias in the models’ performance. The authors found
out that the models’ performance, when compared to the reference study, was 90% lower,
indicating the need to further explore how to improve code smell prediction. In contrast
to previous work on code smell prediction, we are interested in exploring the similarities
and differences between models for predicting code smells and defect prediction models
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(Chapter 7). Next, we discuss how the current literature investigate defects and code
smells.

Defects and Code Smells. Several studies have tried to understand how code smells can
affect the software life-cycle, evaluating different aspects of quality, such as maintainability
[Fontana et al., 2013, Sjøberg et al., 2013, Yamashita and Counsell, 2013], modularity
[Santana et al., 2021], program comprehension [Abbes et al., 2011], change-proneness
[Khomh et al., 2009, 2012], and how developers perceive code smells [Yamashita and
Moonen, 2013, Palomba et al., 2014]. Other studies aim to evaluate how code smells
impact defect proneness [Hall et al., 2014, Jebnoun et al., 2022, Khomh et al., 2012,
Olbrich et al., 2010, Openja et al., 2022, Palomba et al., 2018]. For instance, Olbrich
et al. [2010] evaluated the fault-proneness evolution of God Class and Brain Class in
three open-source systems. They discovered that classes with these two code smells can
be more faulty, although this finding is not valid for all analyzed systems. Similarly,
Khomh et al. [2012] evaluated the impact of 13 different smells on fault-proneness in
several versions of three large open-source systems. They reported the existence of a
relationship between some code smells and defects, but it is not consistent for all system
versions. Additionally, Openja et al. [2022] evaluated how code smells can make a class
more fault-prone in quantum projects. Unlike these studies, we aim to understand whether
models built for defects and code smells are similar or not (Chapter 7).

Regarding the relationship between code smells and defects, Hall et al. [2014]
investigated whether files with smells have more defects than files without them. They
found that, for most of the analyzed smells, there was no statistically significant difference
between smelly and non-smelly classes. In contrast, Palomba et al. [2018] evaluated the
impact of 13 code smells on the presence of defects using a dataset of 30 open-source Java
systems. They reported that classes with smells tend to have more bug fixes than those
that do not have any smells. Moreover, Jebnoun et al. [2022] studied the relationship
between Code Clones and defects in three different programming languages and found
that smelly classes are more defect-prone, although this varies depending on the language.
In contrast to these three studies, our focus is on understanding the differences between
models used for defect prediction and those used for code smell detection, rather than
establishing a correlation between defects and code smells (Chapter 7).
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2.6 Final Remarks

This chapter presented a contextualization of software defects and how the cur-
rent literature predicted them in the source code. For this reason, we started with a
definition of software defects. Then, we introduced code smells as we compared them
with the defect models because they may share similar software features (Chapter 7). In
addition, we presented quality attributes that grouped several software features. Hence,
we discussed the machine learning models commonly applied to predict defects in the
literature. We noted that most studies focused on the Random Forest algorithm within
the Java programming language with binary classification. Unfortunately, most of the
datasets used to predict software defects were not available for replication. Furthermore,
we also introduced in this chapter a set of suitable evaluation metrics for the classification.
Finally, we discussed the related works of this thesis project. As a result, we identified
four main datasets to predict software defects in the current literature [Menzies et al.,
2007, D’Ambros et al., 2010, Jureczko and Madeyski, 2010, Ferenc et al., 2018]. These
datasets mostly employed a set of software features based on Object-Oriented Program-
ming (OOP) and their complexity and size. We also discussed relevant studies about
learning from source code features and metadata information. Then, we presented recent
investigations about the understandability of software defect models using different tech-
niques. To conclude, we discussed studies that compared defect prediction models with
code smell detection. In the next chapter, we will present an overview of the datasets
employed to predict software defects identified in the literature. Thus, we will focus on
the software features that compose these data sources. We identified these data sources
from the ad-hoc literature review executed in the early stages of this thesis and discussed
in this chapter.
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Chapter 3

Datasets for Defect Prediction

Machine learning and statistical modeling techniques are commonly used to predict de-
fects in software systems. As a result, the effectiveness of defect prediction heavily relies
on the quality of the data used, as it provides insights about the software features for
the development team [Menzies et al., 2010, Ghotra et al., 2015, Tantithamthavorn and
Hassan, 2018]. After discussing the studies that introduced the datasets in Section 2.5,
this chapter focuses on the dataset’s features and how they can be grouped into categories.
Additionally, the class-level features can be clustered into seven quality attributes. We
identified these datasets from an ad-hoc literature review conducted in the early stages
of this thesis. These datasets vary in size, software features, and how they implement the
concept of defects. The selected datasets come from four relevant sources for research,
and they illustrate the importance of data quality and reproducibility for defect predic-
tion. Furthermore, these datasets are popular in the community [Menzies et al., 2004,
2007, 2010, Jureczko and Madeyski, 2010, Ghotra et al., 2015, Ferenc et al., 2018, 2020a]
and are publicly available on the internet. Although most software features are unique
to each dataset and software project, the datasets share the commonly found imbalanced
nature in the literature. In this case, the data sources for defect prediction usually have
more non-defective instances (i.e., classes or modules) than defective ones.

We have organized the remainder of this chapter into seven sections. Section 3.1
introduces the NASA dataset and explains how we use it for defect prediction [Menzies
et al., 2010, Ghotra et al., 2015]. In Section 3.2, we discuss the Jureczko dataset and
provide information about the data distribution of each project [Jureczko and Spinellis,
2010, Jureczko and Madeyski, 2010]. Section 3.3 presents the Bug Prediction dataset,
including its data distribution and applications [D’Ambros et al., 2010]. We discuss the
Unified dataset for defect prediction in Section 3.4, highlighting its wide range of features
[Ferenc et al., 2018, 2020b]. In Section 3.5, we describe the software features used by each
dataset to predict defects and divide them into five categories. It is worth noting that
the datasets differ in the software features they provide for defect prediction. Therefore,
in Section 3.6, we present the quality attributes that group the software features [Ferenc
et al., 2020a]. Finally, in Section 3.7, we conclude the chapter by providing insights into
the different opportunities to explore defect prediction using these datasets.
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3.1 NASA Dataset

The NASA dataset is an important source of data for the defect prediction com-
munity. One of the main reasons for its popularity is that it was one of the first large
publicly available datasets. The dataset represents software modules with their respec-
tive defect distribution and contains features from Halstead’s operator-operand counts
[Halstead, 1977] and McCabe’s dependencies and complexity [McCabe, 1976, McCabe
and Butler, 1989]. Furthermore, the data are easy to handle, and the software features
require little processing to predict defects with fair accuracy [Menzies et al., 2010]. As
the dataset has multiple available versions, the current literature usually investigates the
cleaned version of the data [Ghotra et al., 2015]. This allows us to avoid the need to
deeply process the data and maintain a version with fewer inconsistencies in terms of the
overall data quality of each module [Ghotra et al., 2015]. The dataset is popular in the
defect prediction community and is the subject of study in many contexts of the field
[Menzies and Stefano, 2004, Menzies et al., 2007, 2010, Agrawal and Menzies, 2018]. The
various NASA projects comprise a broad range of NASA systems, with CM1 referring to
spacecraft instruments, KC1, KC3, MC2 referring to storage management for grounded
data, MW1 managing data transactions, and PC1, PC2, PC3, PC4 referring to software
systems for an earth-orbiting satellite.

Table 3.1 exemplifies the dataset with the five projects that have the most in-
stances, along with their features (out of the nine projects available in the dataset). The
NASA projects contain 21 software features, mostly related to McCabe and Halstead
software features. For each module within a project, a value is assigned to each software
feature. The average value for a project represents the sum of values assigned to each
module divided by the number of modules within the project (Table 3.1). These aver-
age values differ between projects, as observed in Table 3.1. For example, the average
BRANCH_COUNT (number of branches) for project CM1 is 12.98, whereas for KC1, it
is 7.24. Table 3.1 also shows the percentage of defective modules in each project, and it
is clear that the data is imbalanced, i.e., defective software modules are heavily under-
represented in comparison with non-defective modules. The data is not balanced, as the
number of defective modules is not equal to the number of non-defective modules. The
modules are associated with three programming languages: C, C++, and Java. Java
is not included in Table 3.1 because we only display the top-5 projects. As the NASA
features differ from the features used in other datasets, we include a description of all
features in Appendix A.
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Table 3.1: Overview of NASA Data Program Features (Top-5 Projects out of 9).

Projects KC1 PC1 PC2 PC3 PC4
Programming Language C++ C C C C
Number of Modules 1,571 1,059 4,505 1,511 1,347
Defective Modules 20.31% 7.18% 0.51% 10.59% 13.21%

1 BRANCH_COUNT 7.24 13.20 7.62 12.60 8.28
2 CYCLOMATIC_COMP. 4.13 7.41 4.39 6.99 4.75
3 DESIGN_COMP. 3.63 4.32 3.18 3.62 2.88
4 ESSENTIAL_COMP. 2.17 3.46 2.19 2.97 2.28
5 HALSTEAD_CONTENT 31.37 37.52 22.95 43.52 28.46
6 HALSTEAD_DIFFICULTY 10.36 20.34 14.38 18.30 18.09
7 HALSTEAD_LEVEL 0.19 0.08 0.11 0.08 0.11
8 HALSTEAD_EFFORT 9248 42547 12995 47008 21432
9 HALSTEAD_ERR._EST 0.15 0.32 0.14 0.35 0.20

10 HALST._LENGTH 82.00 157.45 79.46 162.21 110.89
11 HALST._PROG_TIME 513.8 2363.7 721.94 2611.6 1190.6
12 HALSTEAD_VOLUME 438.11 964.11 426.10 1036.2 596.65
13 LOC_BLANK 2.98 8.76 11.12 8.22 7.82
14 LOC_CODE_AND_COMM. 0.21 1.43 14.55 1.75 2.38
15 LOC_COMMENTS 1.65 5.80 5.74 5.73 5.49
16 LOC_EXECUTABLE 24.17 29.85 2.62 28.26 20.47
17 LOC_TOTAL 32.28 31.27 17.17 30.01 22.85
18 NUM_OPERANDS 31.16 68.43 32.45 72.68 42.72
19 NUM_OPERATORS 50.84 89.02 47.01 89.54 68.17
20 NUM_UNIQ._OPERAN. 15.07 27.20 12.70 27.77 14.40
21 NUM_UNIQ._OPERAT. 10.58 16.46 11.88 15.21 12.73

Source: Elaborated by the author.

3.2 Jureczko Dataset

The Jureczko dataset is a collection of projects related to various aspects of the
source code. The data contain features representing the CK features [Jureczko and
Madeyski, 2010]. The dataset introduces the concept of defining a defect based on the
commit message and comments that indicate a defect fix [Jureczko and Spinellis, 2010].
The dataset includes several versions of different repositories, and the cleaned version
maintains data from seven software projects, making it the most common representative
of the dataset [Zhongbin et al., 2018]. In this version, the Jureczko dataset consists of 23
releases of the seven software projects. Thus, each instance in the data represents a Java
class corresponding to the software features and a label indicating the number of defects
in the selected class. As is commonly applied in the literature, we preprocess the Jureczko
datasets by considering a software class as defective if the value of the labeled feature is
equal to or greater than one [Ghotra et al., 2015, Zhongbin et al., 2018]. The current
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literature employs this adaptation to transform the dataset into a classification problem
[Jureczko and Madeyski, 2010, Zhongbin et al., 2018]. As a result, we process the Jureczko
dataset with 20 features and a binary label (i.e., defective or clean class instance). Another
predominant characteristic of the Jureczko dataset is its imbalanced nature. As a result,
the data have more clean classes than defective classes. Specifically, the Jureczko dataset
has a ratio of approximately 26% of the total number of classes being defective, while
the rest are non-defective. The proportion of defective/clean classes is similar to that of
the NASA dataset [Menzies et al., 2007]. Furthermore, we employ a technique known as
Synthetic Minority Oversampling Technique (SMOTE) [Tantithamthavorn et al., 2019]
to deal with the imbalanced nature of the dataset.

Table 3.2 shows the data for seven software projects and the 20 software features of
the Jureczko dataset [Jureczko and Madeyski, 2010, Jureczko and Spinellis, 2010]. These
projects are the Tomcat, Ant, Log4J, Prop, Xalan, Camel, and JEdit [Zhongbin et al.,
2018]. The Java programming language is predominant in all seven projects. Again,
for each software class, there is a value attached to each software feature. The average
value is the sum of all values referred to each module divided by the number of classes
in the project. These average values differ between projects, for instance, the software
feature LCOM (lack of cohesion of methods) for project JEdit is 233.00, and for the
software system Log4J is only 37.17. Table 3.2 also illustrates the percent of defective
modules in each project and the imbalanced nature of the data [Zhongbin et al., 2018].
Furthermore, we conclude that the proportion of defective classes varies in the dataset.
The lowest number of defects is only 8.87% from the Tomcat project, while we find the
highest number of defects in the Log4J project, where 57.90% of the modules had at least
one defect.

3.3 The Bug Prediction Dataset

Another source of data for defect prediction is known as the Bug Prediction dataset
[D’Ambros et al., 2010]. In contrast to the other datasets discussed previously in this
chapter, these data are from several sources. First, D’Ambros et al. [2010] report the
application of changelogs, including reconstructed transactions and links to model the
software classes. Second, they identify software defects using a defect repository. Third,
the authors report the use of Biweekly versions of the systems parsed into object-oriented
models. Fourth, they employ values of all features used as machine learning predictors
considering each version of each software class. Finally, they use data from post-release
defect counts for each software class. As a result, the dataset contains software classes
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Table 3.2: Jureczko Dataset Features.

Projects TOMCAT ANT LOG4J PROP XALAN CAMEL JEDIT
Classes 835 745 449 69653 3320 2784 1749
Defects (%) 8.97% 22.28% 57.90% 12.28% 54.39% 20.18% 17.32

1 WMC 12.95 11.07 7.72 5.22 11.15 8.43 12.78
2 DIT 1.68 2.52 1.67 3.02 2.54 1.95 2.61
3 NOC 0.36 0.73 0.26 0.59 0.55 0.52 0.45
4 CBO 7.65 11.04 7.20 15.03 12.76 10.68 13.33
5 RFC 33.47 34.36 23.58 24.65 29.52 20.87 39.48
6 LCOM 176.27 89.14 37.17 37.59 127.51 70.40 233.00
7 Ca 3.86 5.65 3.93 2.82 6.07 5.13 8.10
8 Ce 0.0 5.74 3.61 12.27 7.39 6.13 6.77
9 NPM 10.77 8.36 5.22 3.46 9.08 6.84 7.75

10 LCOM3 1.08 1.01 1.00 1.35 1.14 1.08 1.03
11 LOC 350.43 280.07 177.45 170.23 412.72 111.76 457.30
12 DAM 0.57 0.64 0.22 0.19 0.43 0.61 0.52
13 MOA 0.94 0.72 0.81 0.091 0.80 0.65 1.05
14 MFA 0.29 0.50 0.29 0.61 0.54 0.39 0.49
15 CAM 0.48 0.47 0.43 0.55 0.47 0.49 0.45
16 IC 0.27 0.72 0.34 1.08 0.80 0.37 0.64
17 CBM 0.59 1.31 0.66 1.71 2.87 0.71 1.53
18 AMC 25.57 23.64 20.25 30.27 57.36 10.94 30.64
19 MAX_CC 4.27 4.66 3.43 3.30 4.35 2.17 6.72
20 AVG_CC 1.25 1.36 1.34 1.28 1.32 0.94 1.83

Source: Elaborated by the author.

and references to defects from five different projects. These projects focus on the Java
programming language. Besides, the five projects are open-source and available for con-
tributions from developers. D’Ambros et al. [2010] argued that the use of the same
programming language avoids inconsistencies in the target software features. Further-
more, the same programming language allowed the same parser to collect the data from
the different repositories. Thus, they avoided issues with reverse engineering tools.

Table 3.3 presents the entire set of features reported in the Bug Prediction dataset.
As we can observe, the data have 37 software features related to specific characteristics
of the source code [Moser et al., 2008]. Furthermore, the data present features associated
with the Object-Oriented Programming paradigm. The dataset also holds information
on 5,371 software classes. We associate these classes with five Java projects (Eclipse
JDT, Eclipse PDE, Equinox, Lucene, and Mylyn). Table 3.3 also presents the average
numbers of each software feature in the five projects (i.e., 37 software features). We
remark that the number of defective classes varies among each project. For example, for
the Equinox project around 66% of its classes are defective, while only 10% of Lucene
presented defects (Table 3.3). As in the case of the other datasets, the data is imbalanced
as only approximately 20% of the software classes (i.e., instances) represent a defect.
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Table 3.3: The Bug Prediction Dataset Features.

Projects JDT PDE Equinox Lucene Mylyn
Classes 997 1,497 324 691 1,862
Defects (%) 26.4% 16.2% 66.15% 10.2% 15.1%

1 NR 45.61 3.51 11.39 6.26 10.98
2 NFIX 7.64 0.48 1.35 8.54 0.25
3 NREF 0.01 0.19 0.16 0.1 0.27
4 NAUTH 5.79 3.97 2.54 2.9 1.93
5 LINES 1209.4 211.70 278.78 104.62 106.38
6 mLINES 222.25 68.55 100.63 42.34 38.41
7 aLINES 14.86 12.49 16.33 9.36 6.65
8 LINESr 1209.4 14.21 162.90 75.9 88.58
9 mLINESr 222.25 57.12 66.36 38.77 37.09

10 aLINESr 11.15 8.17 7.22 7.69 5.48
11 CHURN 228.18 68.48 115.87 28.72 17.78
12 mCHURN 78.26 48.84 60.52 19.32 19.72
13 aCHURN 3.71 4.32 9.1 1.67 1.17
14 AGE 279.07 167.95 140.88 149.15 71.01
15 wAGE 63.63 60.69 27.37 52.17 23.44
16 HCM 10.68 8.54 5.47 4.01 5.22
17 WHCM 0.05 0.04 0.15 0.07 0.02
18 LinHCM 0.07 0.02 0.01 0.03 0.11
19 LogHCM 3.66 0.26 0.14 0.23 5.78
20 ExpHCM 0.12 0.05 0.03 0.06 0.19
21 CBO 12.21 10.20 9.67 8.73 8.16
22 DIT 2.72 2.28 1.23 1.76 1.45
23 FanIn 5.36 3.69 2.95 4.66 3.67
24 FanOut 7.39 6.67 7.14 4.16 4.63
25 LCOM 364.72 82.17 124.22 63.28 72.68
26 NOC 0.71 0.59 0.17 0.72 0.42
27 NOA 7.38 5.54 6.7 4.85 5.01
28 NOIA 102.21 3.9 1.45 1.52 0.69
29 LOC 224.72 98.16 122.01 105.91 83.83
30 NOM 13.58 9.62 9.87 7.41 7.81
31 NOMI 49.23 28.62 14.72 20.44 14.52
32 NOPRA 1.67 2.67 3.49 2.61 3.16
33 NOPRM 1.29 2.24 2.08 1.32 1.01
34 NOPUA 2.74 1.88 1.4 1.13 0.93
35 NOPM 8.95 5.57 5.74 4.78 6.03
36 RFC 76.87 47.5 58.33 33.39 34.82
37 WMC 58.38 23.74 32.64 23.68 16.78

Source: Elaborated by the author.
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3.4 Unified Dataset

The unified dataset represents a merged version of several resources available for
the defect prediction community [Ferenc et al., 2018, 2020a,b]. In total, five data sources
provided bug reports about software classes: PROMISE [Sayyad S. and Menzies, 2005],
Eclipse Bug Prediction [Zimmermann et al., 2007], Bug Prediction Dataset [D’Ambros
et al., 2010], Bugcatchers Bug Dataset [Hall et al., 2014], and GitHub Bug Dataset [Tóth
et al., 2016]. PROMISE uses Buginfo to collect whether an SVN or CVS commit is
a bugfix or not [Sayyad S. and Menzies, 2005]. Eclipse Bug Prediction extracts defect
information from the CVS repository and Bugzilla [Zimmermann et al., 2007]. The Bug
Prediction dataset applies to commit logs of SVN and the modification time of each file
(Section 3.3). Bugcatchers Bug Dataset employs an Ant script that associates the defects
of a file with the SVN or CVS information [Hall et al., 2014]. GitHub Bug Dataset uses
the GitHub feature that handles references between commits and issues and then utilizes
this information to match commits with bugs [Tóth et al., 2016]. The Unified dataset
uses a tool called OpenStaticAnalyzer (OSA) [Department of Software Engineering, 2022]
to extract software features from the source code. OSA is a source code analyzer tool
that can perform deep static analysis of the source code of complex Java systems and
other languages [Ferenc et al., 2020a]. The calculated features are class-level, as they
are extracted from the source code of the classes [Ferenc et al., 2018]. To calculate the
feature values, the Unified dataset uses the same release version of a given project [Ferenc
et al., 2020a]. Therefore, as the project was open-source in the five resources, the authors
downloaded and analyzed it individually.

The final version of the dataset contains 47,618 classes from 34 open-source Java
projects [Ferenc et al., 2020b]. Some of the relevant projects include Ant, Broadleaf,
Camel, Elasticsearch, Hazelcast, JDT, JEdit, Lucene, Neo4J, OrientDB, PDE, POI, Ti-
tan, Xalan, among others. Furthermore, the data comprises 71 software features related
to different quality attributes, such as (i) Clone Duplication, (ii) Cohesion, (iii) Complex-
ity, (iv) Coupling, (v) Documentation, (vi) Inheritance, and (vii) Size. The dataset is
imbalanced as only around 20% of the classes represent a software defect [Ferenc et al.,
2018], which is a known characteristic of defect prediction datasets [Menzies et al., 2007,
Jureczko and Madeyski, 2010, D’Ambros et al., 2010]. As the number of features and
projects is too high to be presented in a table that fits on a page, we provide a complete
overview of the dataset in the replication package of this thesis [dos Santos, 2023b].
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3.5 Features for Defect Prediction

Estimating software defects involves predicting defects based on software features.
Therefore, we require information about the behavior of the source code, and these fea-
tures provide such information. This section presents an overview of the software features
used to predict defects in the source code. These features are relevant for three reasons:
(i) they are used to predict defects in the source code, (ii) they are used to explain the
machine learning models, and (iii) they are used to validate the results of our research
project with developers. Thus, we divide this analysis into five categories derived from the
four datasets presented in the previous sections. First, we discuss the class-level features
[D’Ambros et al., 2010, Couto et al., 2012, Herbold, 2015]. Then, we examine the entropy
features [Hassan, 2009, D’Ambros et al., 2010, Kaur et al., 2015]. Next, we present the
change features [Moser et al., 2008, D’Ambros et al., 2010, Kumar and Sureka, 2017,
McIntosh and Kamei, 2018, Rhmann et al., 2020]. We also analyze the McCabe and
Halstead features [McCabe, 1976, Halstead, 1977]. Finally, we provide a list of additional
features that do not fit into the aforementioned categories [Menzies and Stefano, 2004,
Menzies et al., 2007, 2010, D’Ambros et al., 2010].

Class-Level Features - These software features consist of two complementary groups:
CK and Object-Oriented features [D’Ambros et al., 2010, Jureczko and Spinellis,
2010, Jureczko and Madeyski, 2010, Couto et al., 2012, Herbold, 2015]. Six software
features relate to CK, and eleven software features relate to the Object-Oriented
(OO) paradigm [Jureczko and Spinellis, 2010, D’Ambros et al., 2010]. The list of
software features related to the class-level is too long to fit on one page. Therefore,
Appendix C shows all the software features divided by quality attributes, as we
discuss in the next section. Table 3.4 provides an example of each of the seventeen
software features related to this category. The first column shows the software
feature’s type (either CK or OO). The second column displays the acronym, and the
last column presents the name of the feature. Notably, current literature considers
Lines of Code (LOC) as one of the most critical features for defect prediction in
various datasets [Gyimothy et al., 2005, Jiang et al., 2013].

Entropy Features - Table 3.5 describes the five features related to entropy. The first
column shows the software feature’s acronym, and the second column is the name
of the feature. The fundamental idea behind code entropy consists of estimating
how distributed changes happen in a system over a time interval [Hassan, 2009,
D’Ambros et al., 2010, Kaur et al., 2015]. It suggests that the wider distributed
the code is, the higher the code complexity [Kaur et al., 2015]. The intuition is
that one change concerning one file is simpler than one affecting many modified
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Table 3.4: Class-Level Source Features.

Type Acronym Name
CK WMC Weighted Method Count
CK DIT Depth of Inheritance Tree
CK RFC Response for Class
CK NOC Number to children
CK CBO Coupling Between Objects
CK LCOM Lack of Cohesion in Methods
OO FanIn Number of classes that reference the class
OO FanOut Number of classes referenced by the class
OO NOA Number of attributes
OO NOPRA Number of private attributes
OO NOPUA Number of public attributes
OO NOAI Number of attributes inherited
OO LOC Number of lines of code
OO NOM Number of methods
OO NOPM Number of public methods
OO NOPRM Number of private methods
OO NOMI Number of methods inherited

Source: Elaborated by the author.

files. This occurs because the developer who has to implement the change usually
has to maintain all other files [D’Ambros et al., 2010]. For instance, the History
Complexity Measure (HCM) is an entropy feature with four variants that take into
account the weight, linear, logarithmic, and exponential measures of the feature
[D’Ambros et al., 2010]. Entropy has demonstrated its efficiency for the defect
prediction task [Hassan, 2009, D’Ambros et al., 2010].

Table 3.5: Entropy Level Features.

Acronym Name
HCM History Complexity Measure
WHCM Weighted History Complexity Measure
LinHCM Linearly Decayed History Complexity Measure
LogHCM LoGarithmically decayed History Complexity Measure
ExpHCM Exponentially Decayed History Complexity Measure

Source: Elaborated by the author.

Change Features - Table 3.6 presents a list of change features considered for defect
prediction. The first column presents the feature acronym, and the second column
shows the feature’s name. These features are the principal topic related to the
modification executed in source code files [Moser et al., 2008, D’Ambros et al., 2010,
Kumar and Sureka, 2017, Rhmann et al., 2020]. Two features deserve attention: the
AGE of a file and code churn (CHURN). The AGE describes the number of weeks
since the file release date. This feature has one variation that considers the weight
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of the file age (Table 3.6 last row). Likewise, CHURN is the sum of added lines of
code plus deleted lines of code in modifications of a file. According to the current
literature [Moser et al., 2008, D’Ambros et al., 2010, Kumar and Sureka, 2017],
modifications executed in source code files are one of the major subjects for defects.
Hence, the number of fixes in production (NFIX) stores this relevant information
[D’Ambros et al., 2010].

Table 3.6: Change Features.

Acronym Name
NR Number of revisions
NREF Number of times file has been refactored
NFIX Number of times file was involved in bug-fixing
NAUTH Number of authors who committed the file
LINES Lines added and removed (sum, max, average)
CHURN Codechurn (sum, maximum and average)
CHGSET Change set size (maximum and average)
AGE Age and weighted age

Source: Elaborated by the author.

Halstead and McCabe Features - Table 3.7 describes the software features related to
McCabe and Halstead features [McCabe, 1976, Halstead, 1977, McCabe and Butler,
1989]. The first column represents the software feature’s acronym, and the second
column is the feature’s name. Halstead [1977] proposed these software features
to measure the source code complexity. Hence, the software features estimate the
reading complexity by counting the number of operators and operands in a specific
module. A complement to the Halstead features comes from the complexity features
proposed by McCabe [1976]. Unlike Halstead [Halstead, 1977], McCabe and Butler
[1989] argued that the complexity of pathways between module symbols is more
insightful than just a count of the symbols [McCabe, 1976]. For this reason, the
literature applied these software features collectively to measure code complexity. In
addition, these classic measures are module-based features, meaning that they were
originally proposed to anticipate the complexity of a module and also the reason for
the quality of a software system [Weyuker, 1988, Menzies et al., 2007, Ghotra et al.,
2015, Menzies and Zimmermann, 2013]. We give more details about the Halstead
and McCabe features in Appendix A.

Additional Features - Table 3.8 lists the software features related to the source code
that are not part of the changes, entropy, class-level, or Halstead and McCabe
features. The first column shows the software feature acronym, and the second
column displays the feature’s name. These features are associated with crucial
aspects of the code, such as coupling (CBM, Ca, Ce, IC), complexity (CC, AMC),
and cohesion (CAM) [Jureczko and Madeyski, 2010, Jureczko and Spinellis, 2010].
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Table 3.7: Halstead and McCabe Features.

Acronym Name
Branch count Number of branches
McCabe’s complexity Number of independent paths
McCabe’s design Complexity of a module
McCabe’s essential Degree of structuredness
Halstead content Independent complexity of a module
Halstead difficult Difficult to handle the module
Halstead level Inverse of the error proneness
Halstead effort Estimated mental effort
Halstead error Number of errors in module
Halstead length Operators and operands numbers
Halstead time Estimate time to develop module
Halstead volume Bits required to execute the module
Operands Total number of operands
Operators Total number of operators
Unique operands Number of unique operands
Unique operators Number of unique operators

Source: Elaborated by the author.

Additionally, a separate group of features pertains to the size of the module (DAM,
MOA, MFA) [D’Ambros et al., 2010, Kumar and Sureka, 2017]. The McCabe
complexity features are classic examples of defect predictors, and the NASA datasets
use these features for the predictors [Menzies and Stefano, 2004, Menzies et al., 2007,
2010].

Table 3.8: Additional Features.

Acronym Name
DAM Data Access Metric
MOA Measure of Aggregation
MFA Measure of Functional Abstraction
CAM Cohesion Among Methods of Class
IC Inheritance Coupling
CBM Coupling Between Methods
AMC Average Method Complexity
Ca Afferent couplings
Ce Efferent couplings
CC McCabe’s cyclomatic complexity (max and mean)

Source: Elaborated by the author.
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3.6 Quality Attributes

Table 3.9 shows the software features that belong to each of the seven quality
attributes discussed in the previous section (Section 2.3). These quality attributes are
clone, cohesion, complexity, coupling, documentation, inheritance, and size. Clone mea-
sures the amount of code cloning present in the source code, typically detected by identify-
ing copy/pasted code. Cohesion represents the degree of interdependence between source
code attributes. Complexity measures the overall complexity of the source code attributes.
Coupling measures the number of dependencies among the source code attributes. Docu-
mentation represents the amount of comments and documentation available for the source
code attributes. Inheritance measures various aspects of the inheritance hierarchy within
the system. Size represents the basic properties of the analyzed projects in terms of their
size-related characteristics (e.g., number of lines of code, number of classes, number of
methods). Table 3.9 lists the seven quality attributes along with their corresponding
software features. The first column shows the acronym of each software feature, while
the second column presents its name. To conserve space, we have limited the number
of software features displayed to five, but Appendix C contains the full list of software
features for each quality attribute. The third column indicates the quality attribute to
which the software feature belongs, and the fourth column displays the distribution value
of the software feature, which measures its central tendency among all 47,618 classes.
Note that, on average, the open-source projects analyzed in this study consist of around
131 lines of code and 22 methods, with 44 statements. The replication package for this
thesis contains the distribution value for each software feature [dos Santos, 2023b].

3.7 Final Remarks

This chapter discussed four datasets used to predict software defects in current
literature. While these datasets share some similarities, they also have differences. For
instance, they all are publicly available on the internet [Menzies et al., 2007, Jureczko
and Spinellis, 2010, Jureczko and Madeyski, 2010, D’Ambros et al., 2010, Ferenc et al.,
2018, 2020a], but they use different software features to predict defects. We classified
the features into five categories: (i) class-level features, (ii) entropy features, (iii) change
features, (iv) McCabe and Halstead features, and (v) additional features not correlated to
the remaining ones. We also identified seven quality attributes that group the class-level
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Table 3.9: List of Quality Attributes with Relevant Software Features.

Acronym Feature Quality Attribute Mean
CC Clone Coverage Clone 1.139
CCL Clone Classes Clone 0.961
CCO Clone Complexity Clone 7.297
CI Clone Instances Clone 1.664
CLC Clone Line Coverage Clone 0.089
LCOM5 Lack of Cohesion in Methods 5 Cohesion 1.575
NL Nesting Level Complexity 1.522
NLE Nesting Level Else-If Complexity 1.319
WMC Weighted Methods per Class Complexity 17.876
CBO Coupling Between Object Classes Coupling 5.846
CBOI Coupling Between Object Classes Inverted Coupling 5.614
NII Number of Incoming Invocations Coupling 7.531
NOI Number of Outgoing Invocations Coupling 7.243
RFC Response for a Class Coupling 14.727
AD API Documentation Documentation 0.338
CD Comment Density Documentation 0.195
CLOC Comment Lines of Code Documentation 30.114
DLOC Documentation Lines of Code Documentation 23.555
PDA Public Documented API Documentation 2.773
DIT Depth of Inheritance Tree Inheritance 1.139
NOA Number of Ancestors Inheritance 1.417
NOC Number of Children Inheritance 0.604
NOD Number of Descendants Inheritance 1.219
NOP Number of Parents Inheritance 0.668
TLOC Total Lines of Code Size 131.904
TNG Total Number of Getters Size 4.844
TNM Total Number of Methods Size 22.036
TNOS Total Number of Statements Size 44.362
TNA Total Number of Attributes Size 12.629

Source: Elaborated by the author.

software features: (i) Clone Duplication, (ii) Cohesion, (iii) Complexity, (iv) Coupling, (v)
Documentation, (vi) Inheritance, and (vii) Size. Java is the predominant programming
language used in the Jureczko [Jureczko and Madeyski, 2010], Bug Prediction [D’Ambros
et al., 2010], and Unified datasets [Ferenc et al., 2020a], whereas the NASA dataset
[Menzies et al., 2007] includes some projects in C and C++. In the next chapter, we
investigate the results of predicting and understanding software defects using baseline
models and an explainable technique to reason about the impact of each software feature
on the prediction.
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Chapter 4

Predicting Defects with Machine
Learning

Defect prediction can assist organizations in improving the quality of their software prod-
ucts by identifying potential defects early in the development process [Turhan and Bener,
2009]. This can save time and resources that would otherwise be spent on fixing defects
after the product has been released [Knab et al., 2006]. This chapter investigates the
use of machine learning techniques to predict software defects in two datasets commonly
used in the literature: the Bug Prediction dataset (Section 3.3) and the Jureczko dataset
(Section 3.2) [Jureczko and Spinellis, 2010, D’Ambros et al., 2010]. We exclude the NASA
dataset results to maintain the clarity of the models, although Chapter 6 presents a study
with developers using the features from that dataset. Similarly, the Unified dataset is
not used in this chapter, although Chapter 7 investigates the defects and code smells
using that dataset. First, we apply baseline machine learning models to predict software
defects and evaluate their effectiveness in the target datasets. Then, we compare these
baseline models with the implementation of gradient boosting machines, which we chose
due to their superior performance compared to the baseline models (Tables 4.1 and 4.2).
Our proposed implementation conducts an exploratory study that produces thousands of
random machine learning models from a diverse collection of software features. These
models are random because they promptly select the features from the entire pool of soft-
ware features available for defect prediction. Although most of the models are ineffective,
we were able to produce several models that yield accurate predictions, thus accurately
predicting defects.

In the end, we analyze the predictive power of the machine learning models using
the target datasets. Therefore, the primary objective of this chapter is to examine software
features used for defect prediction, focusing on their predictive accuracy. We organize the
remainder of this chapter into six sections. First, we discuss the study design with the
main steps executed to explore the defect prediction datasets (Section 4.1). Here, we focus
on data exploration and machine learning model implementation. Second, we present the
main results of the exploratory investigation using the baseline models (Section 4.2).
Third, we focus on the predictive power of several machine learning models for each
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dataset (Section 4.3). Next, we address the implications of these chapter results for
practitioners and the research community (Section 4.4). Then, we present the threats to
the validity of our investigation (Section 4.5). Finally, we provide concluding remarks for
this chapter (Section 4.6).

4.1 Study Design

This section discusses the methodology applied in this research alongside its main
stages.

Goals and Research Questions. The primary objective of this chapter is to examine
a pool of software features employed for defect prediction in terms of their power in two
popular datasets [D’Ambros et al., 2010, Jureczko and Spinellis, 2010]. To investigate the
predictive capacity, we introduce an algorithm that randomly selects the software features
to predict defects. To do so, the algorithm arbitrarily selects software features for model
generation. Guided by this goal, this chapter explores the following overarching research
questions.

RQ1. How effective are random models in the defect prediction task?

RQ2. Which software features are more effective in predicting defects?

Research Method. To ease the understanding of each methodology phase, Figure
4.1 presents an overview of the method employed in the study. Note that the study
has 4 main phases: (1) Collect the Data, (2) Explore the Data, (3) Machine Learning
Models, and (4) Results. The rectangle in phase Exploration and Model indicates that
the phase has several steps. For instance, we need to execute data cleaning, preparation
and feature engineering for the Exploration phase (phase 2 of Figure 4.1). In addition, we
employ model generation, classification and evaluation for phase 3 (i.e., Model of Figure
4.1). The first phase is the data exploration, where we analyze the datasets and the
features available for defect prediction. The second phase is the baseline models, where
we implement several machine learning models to predict defects. The third phase is
the gradient boosting, where we implement the gradient boosting algorithm to predict
software defects. The fourth phase is the model analysis, where we analyze the predictive
power of the machine learning models.

The first phase is the selection of the dataset that contains defects (Collect the Data
of Figure 4.1). The only criterion we use to determine the datasets for the experiment
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Figure 4.1: Overview of the Methodology to Explore the Defect Prediction Data.
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4. Results

Source: Elaborated by the author.

is the quality of the software features available in the dataset. For this reason, the
current literature considers the NASA dataset noisy and problematic [Gray et al., 2011,
Ghotra et al., 2015]. Therefore, it is hard to reason about the results of the defect
prediction models from that dataset, as there is little contextual information available for
researchers [Turhan and Bener, 2009, Menzies et al., 2010]. Consequently, we excluded
the NASA dataset from this chapter due to the software features being specific to classic
McCabe and Halstead [Menzies et al., 2007, Gray et al., 2011]. Additionally, we did not
use the Unified dataset [Ferenc et al., 2020a] because it was proposed after the empirical
investigation discussed in this chapter. However, we used the software features from the
Unified dataset in Chapter 7 to compare with the code smells. Therefore, we selected
the Bug Prediction dataset [D’Ambros et al., 2010] and the Jureczko dataset [Jureczko
and Madeyski, 2010, Jureczko and Spinellis, 2010]. These datasets offer a relevant set of
features that may help with the defect prediction and understandability of the models.

In phase two (Explore the Data of Figure 4.1), we employ an extensive data ex-
ploration process to prepare the datasets and work on the features. First, we perform a
data cleaning step as the datasets have some improper data in CSV format. We look for
non-numeric fields, remove duplicated entries, and track missing values. Second, we per-
form a data preparation step where we normalize, balance, and encode the data. Third,
we perform a feature engineering step aimed at the highly correlated features and checked
for multicollinearity. As a result, we end up with 37 working software features for the
Bug Prediction dataset and 20 features for the Jureczko dataset. These software features
offer relevant information for the defect prediction task as they represent the size and
complexity of software classes. We exclude redundant features that have close to zero



4.1. Study Design 63

occurrences in the target datasets. The replication package of this thesis contains the
executed steps alongside the datasets [dos Santos, 2023b].

In the third phase (Machine Learning Models, as shown in Figure 4.1), we focus
on implementing machine learning models to predict defects in software projects. Our
approach involves applying several models that have been used in various settings of soft-
ware defect prediction [Nagappan et al., 2006, Menzies et al., 2007, Jing et al., 2014,
Wang et al., 2016a, Tantithamthavorn et al., 2017, Tantithamthavorn and Hassan, 2018,
Xu et al., 2018, Ferenc et al., 2018], as discussed in Section 2.4. To validate our experi-
ments for each software project, we use a cross-validation process with a set of parameters:
the k value, which indicates how many folds we divide the data, and the evaluation metric,
which is the F1 score because that is the metric we want to optimize. We apply the stan-
dard 10-fold cross-validation (i.e., setting the k to 10). To identify the best-performing
software features, we implement a variant of XGBoost [Tantithamthavorn et al., 2017,
Levin and Y., 2017]. XGBoost is a scalable machine learning system for tree boosting
[Chen and Guestrin, 2016], which is widely used in the machine learning community [Chen
and Guestrin, 2016]. In fact, Kaggle, a popular machine learning competition platform,
shows that 17 out of their 29 competitions in 2015 had XGBoost as the primary model
[Chen and Guestrin, 2016]. We compare the custom XGBoost with baseline models.

To estimate the predictive accuracy of each feature, we quantify all models that
include the target software feature. As a result, the predictive accuracy represents the
average AUC number of all models that incorporated the specific software feature. The
variability represents the average Mean Absolute Deviation (MAD) value of all models
that include the target software feature. We apply the Scott-Knott Effect Size Difference
(ESD) to test the statistical significance of the results. Finally, in the last phase (Re-
sults, as depicted in Figure 4.1), we present the evaluation results of the model. In the
following sections, we detail each phase of the machine learning model (i.e., Generation,
Classification, and Evaluation).

Model Generation. The precise method to assess the impact of features for defect
prediction would require the exhaustive enumeration of all combinations of software fea-
tures. However, inspecting all subsets of features is computationally restrictive for many
reasons. Alternatively, we examine the model space by arbitrarily selecting the software
features that compose a specific model. We begin this process by enumerating all possible
1-feature and 2-feature models. Then, we select each of the 2-feature models and include
one experimental feature determined uniformly at random to produce 3-feature models.
This means that we start with the most performing feature after testing the entire set of
available features. Then, we tentatively add the second feature and capture the predictive
accuracy. The process goes on until we cover all software features. However, it is a greedy
approach as we do not test all permutations, though we carry on with the best perform-
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ing. As an example, we continue this step until we generate a model composed of all 37
software features (i.e., for the Bug Prediction dataset). Hence, we create thousands of
models. Specifically, we generate 6,377 models for the Bug Prediction dataset and 5,204
for the Jureczko dataset, resulting in 11,581 models. For research purposes, we have made
these models available online [dos Santos, 2023a]. In each process, we ensure that each
software feature appears an equal number of times. We also have a constraint that no
feature can appear twice within the same model. As a result, these models are unbiased
as they arbitrarily select the software features from the entire pool of available features.
To exemplify the model generation, Algorithm 1 presents a pseudocode of the executed
steps. Lines 2 to 7 represent the main loop implemented by the approach (Figure 4.2).

Figure 4.2: Pseudocode Algorithm based on Sampling the Model Space.

Algorithm 1 Sampling the Model Space
Require: training set D
Require: pool of features F
Require: number of candidate models n
Ensure: the most performant model m(f ∗)

1: i← 0
2: while i < n do
3: i← i+ 1
4: k ← random integer between 1 and |F |
5: f ← k features randomly selected from F
6: compute the predictive accuracy of m(f) in D
7: end while
8: m(f ∗)← model with the highest performance

Source: Elaborated by the author.

Learning to Predict Software Defects: We assume the following definition of software
defects. We have as input the training set (referred to as D), which comprises a set of
records in the form < x, y >, where x is a module represented as a vector of features
x = {x1, x2, . . . , xn}, in which each xi encodes a particular characteristic of the module,
and y is the corresponding outcome, i.e., whether the corresponding module is defective.
The training set is used to construct a model that relates features of the modules to the
corresponding outcome. The test set (referred to as T ) comprises records < x, ? > for
which only the module x is available, while the corresponding outcome y is unknown. The
model learned from D is used to predict the outcomes for modules in T .

Model Classification. The defect prediction features we use may have complex in-
teractions, requiring a versatile classification algorithm. We selected Gradient Boosting
Machines (GBM) as our learning algorithm, known for its ability to build an ensemble of
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shallow and weak successive trees, with each tree learning and improving on the previous
one [Chen and Guestrin, 2016]. Unlike Random Forest, which builds a deep independent
tree, the idea behind GBM is to combine weak models into a more robust model (Section
2.4). We produce each model on the errors of the previous models, giving more impor-
tance to problematic cases. At each iteration, we compute the errors by adapting a model
to these errors. Finally, we find the contribution of each base model to the prior one by
minimizing the overall error of the ultimate model. Fitting the base models is computa-
tionally challenging, which is why we implemented a high-performance implementation of
GBM [Chen and Guestrin, 2016, Tantithamthavorn et al., 2017], referred to as Unbiased
Search XGBoost (US-XGB).

Model Evaluation. We tested the effectiveness of the considered machine learning
models by applying the standard Area Under the Curve (AUC) and the F1 score, as
adopted by the project Caret: Classification and Regression Training [Kuhn, 2015]. These
evaluation metrics consider the sensitivity-specificity trade-off [Kuhn and Johnson, 2013].
Essentially, AUC scores an estimate of the probability that a model ranks a randomly
chosen defect example higher than a randomly chosen clean example [Sokolova et al.,
2006]. F1 score represents the harmonic mean between the precision and recall [Goutte
and Gaussier, 2005]. These metrics are sound for imbalanced classes [Ling et al., 2003,
Goutte and Gaussier, 2005, Tan et al., 2015] (especially the F1 score), as in the case of
our study (approximately 20% of instances are defective for the Bug Prediction dataset
and 26% for the Jureczko dataset).

To begin the experimentation with the models, we employed stratified 10-fold
cross-validation for each machine learning model. As a result, we partitioned the datasets
into ten partitions, out of which we employed nine as training data and the remaining
one as the testing set for the classifier. We then replicated the gradual process ten times
using each set exactly once as the testing set, thus producing ten results. Hence, the
reported AUC and F1 values represent the average over the ten runs. Therefore, the
experiments are even and comparable to each other. Finally, to ensure the relevance
of the experiments, we assessed the statistical significance of our measurements using
the Scott-Knott Effect Difference test [Tantithamthavorn et al., 2017, 2019]. The Scott-
Knott Effect Difference test is a non-parametric test employed to assess the statistical
significance of the results. The test represents the mean comparison that leverages a
hierarchical clustering to partition the set of treatment means into statistically distinct
groups with a non-negligible difference [Tantithamthavorn et al., 2019].
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4.2 Competitiveness of Baseline Models

In the first set of experiments, we applied machine learning techniques to explore
the best-performing models in the target datasets (i.e., Bug Prediction and Jureczko
datasets). This step was necessary to measure the predictive capability of the datasets
(data quality). To compare the results of the baseline algorithms, we applied the exper-
iments in the five projects from the Bug Prediction dataset and the seven projects in
the Jureczko dataset. Besides, we also focused on the XGBoost (XGB) algorithm and
the proposed implementation known as Unbiased Search XGBoost (US-XGB). Tables 4.1
and 4.2 show the results of the baseline models for each dataset. The first column of each
table presents the name of the model, and the remaining columns are the projects. As
we can see, the AUC numbers are not significantly different between US-XGB and the
other baseline models. However, the F1 score shows that US-XGB is slightly better at
predicting defects for each project (i.e., it varies from 7% to 52% for the Bug Prediction
Dataset and 5% to 46% for the Jureczko dataset). To facilitate understanding of the
tables, we use bold font to highlight the best evaluation metric (AUC numbers and F1
score) in each project.

In all considered systems, the Unbiased Search (US-XGB) reached similar or
slightly superior accuracy when compared with the baseline models (the remaining seven
algorithms and classic XGBoost). On average, 4.5% of the machine learning models us-
ing the Unbiased Search are superior to the best-performing baseline models. Hence, we
notice that using all software features from the power set was never the best choice to
predict defects as the accuracy is lower than using the features tested by US-XGB. The
high-performing models used a limited set of software features as opposed to the baseline
models that applied the entire set (37 and 20 software features for the respective datasets).

Table 4.1: AUC Numbers / F1 Measure Score for the Bug Prediction Dataset.

Baseline Models Performance (AUC/F1)
Models JDT PDE Equinox Lucene Mylyn
LR 0.835/0.498 0.721/0.246 0.806/0.641 0.797/0.466 0.803/0.252
NB 0.797/0.474 0.732/0.361 0.839/0.599 0.795/0.427 0.752/0.365
KNN 0.764/0.535 0.659/0.221 0.815/0.709 0.744/0.235 0.735/0.209
NN 0.727/0.461 0.634/0.253 0.693/0.728 0.437/0.388 0.751/0.322
SVM 0.621/0.420 0.724/0.167 0.688/0.626 0.730/0.218 0.649/0.144
CART 0.697/0.531 0.676/0.284 0.697/0.687 0.686/0.431 0.651/0.295
RF 0.822/0.630 0.757/0.487 0.762/0.755 0.810/0.388 0.760/0.395
XGB 0.864/0.671 0.788/0.558 0.843/0.752 0.769/0.401 0.837/0.423
US-XGB 0.863/0.774 0.808/0.638 0.879/0.815 0.828/0.697 0.839/0.642

Source: Elaborated by the author.
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To statistically test the soundness of the baseline results shown in Tables 4.1 and
4.2, we applied the Scott-Knott Effect Size Difference (ESD) test [Tantithamthavorn et al.,
2017, 2019] in each dataset. In this case, we focus on the AUC numbers as the principal
evaluation metric [Kuhn and Johnson, 2013]. Figure 4.3 shows that US-XGB has the
lowest treatment means compared to the seven baseline algorithms. Out of the eight
predictors used in this experimentation, we located seven clusters in the Scott-Knott
Effect Size Difference test for the Bug Prediction dataset (top portion of Figure 4.3).
Similarly, for the Jureczko dataset (bottom portion of Figure 4.3), we also discovered seven
clusters using the same setting. The best-performing model is an isolated cluster for both
evaluated datasets, separated from the other baseline models (Figure 4.3). Therefore,
we can conclude that the proposed approach (Section 4.1) is slightly more effective in
predicting software defects when compared to the baseline models applied in the literature
[D’Ambros et al., 2010, Jureczko and Spinellis, 2010].

Table 4.2: AUC Numbers / F1 Measure Score for the Jureczko Dataset.

Baseline Models Performance (AUC/F1)
Models TOMCAT ANT LOG4J PROP XALAN CAMEL JEDIT

LR 0.785 0.722 0.722 0.706 0.668 0.665 0.807
0.237 0.642 0.642 0.511 0.622 0.316 0.288

NB 0.781 0.704 0.704 0.677 0.648 0.607 0.771
0.296 0.556 0.556 0.254 0.411 0.473 0.381

KNN 0.689 0.584 0.584 0.698 0.620 0.633 0.711
0.170 0.568 0.568 0.216 0.601 0.436 0.296

NN 0.788 0.657 0.601 0.744 0.655 0.613 0.561
0.541 0.625 0.547 0.516 0.591 0.519 0.541

SVM 0.775 0.487 0.487 0.523 0.561 0.662 0.761
0.022 0.625 0.625 0.151 0.625 0.167 0.102

CART 0.602 0.566 0.558 0.635 0.570 0.639 0.630
0.224 0.585 0.591 0.298 0.583 0.498 0.379

RF 0.766 0.592 0.595 0.739 0.611 0.723 0.753
0.253 0.625 0.626 0.288 0.614 0.459 0.452

XGB 0.776 0.636 0.626 0.777 0.662 0.762 0.821
0.328 0.631 0.631 0.433 0.674 0.414 0.612

US-XGB 0.859 0.731 0.715 0.889 0.665 0.802 0.836
0.687 0.667 0.692 0.655 0.669 0.601 0.693

Source: Elaborated by the author.

As an outcome of this experiment, we believe that the superiority of unbiased mod-
els is due to two fundamental reasons. First, the use of a flexible tree boosting algorithm
[Chen and Guestrin, 2016, Ke et al., 2017]. Second, we employ a particular subset of soft-
ware features rather than forcing the algorithm to consider all available software features.
In summary, our results can serve as a benchmark for future explorations about defect
prediction using similar features [Moser et al., 2008]. Therefore, the restricted number of
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software features adopted in this experiment may suggest that the power of defect predic-
tion features varies among them. We were able to generate accurate models with fewer
features than those applicable in the datasets [D’Ambros et al., 2010, Elish and Elish,
2008]. Hereafter, we will compare the predictive accuracy of the machine learning model
implementing the ROC curve (AUC). Furthermore, we will focus on the Bug Prediction
dataset [D’Ambros et al., 2010] since its overall performance is slightly better (84% and
79% of AUC), and we also have more software features to reason about the predictive
accuracy.

Figure 4.3: Scott-Knott Effect Size Estimation Test for the Baseline Models.
(a) Scott-Knott AUC Numbers for The Bug Prediction Dataset
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(b) Scott-Knott AUC Numbers for Jureczko Dataset
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In conclusion, based on the results reported in this section, we have answered the
first overarching question. RQ1. How effective are random models in the defect prediction
task?

RQ1. We conclude that the random model discussed in this chapter named Un-
biased Search XGBoost slightly outperforms baseline machine learning models for
the defect prediction task.

4.3 Predictive Accuracy of Software Features

This section evaluates the accuracy and variability of software features generated
from the top 10% machine learning models in terms of performance. We focus on this
subset of models as they yield better results in terms of both accuracy and variability.
Once again, the US-XGB generated thousands of models. Figure 4.4 shows the predictive
accuracy and variability of software features using US-XGB. Only a few features delivered
superior predictive accuracy. Specifically, around 4% of the features are part of models
where the average AUC numbers are higher than 0.83. The unbiased models associated
most software features with significantly lower average AUC numbers (around 70%). We
observe a similar trend when investigating the distribution of software features in terms
of variability. Nearly 2.5% of the considered features relate to models with relatively low
variability.

Figure 4.4: Distribution of Features in the Generated Models.
(a) Predictive Accuracy (AUC)
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In Figure 4.5, each dot’s diameter (size) corresponds to the ratio between the
model’s AUC value and corresponding variation (MAD). Thus, each point represents a
machine learning model. The color indicates AUC numbers (on a scale of 5), and size
symbolizes variability (MAD), with a higher size implying lower variability. We gather
the coordinates of each dot from the vector of probabilities assigned by the model to each
defect expectation case. Thus, Figure 4.5 presents a scatter plot of the arrangement of
the probabilities. To compute this plot, we take these probabilities as a vector and cal-
culate their 2-dimensional representation using t-SNE [Maaten and Hinton, 2008]. This
process is known as dimension reduction [Maaten and Hinton, 2008]. We conclude that
the AUC numbers are between 0.785 and 0.835. We observe the proximity of a few models
with high performance on average (red dots, AUC > 0.82) and low variability. However,
some models represented lower variability than the best-performing models, although with
lower AUC numbers. To properly interpret the correlation between features and machine
learning model performance, we employ the best-performing models and estimate the pre-
dominance of features. To clarify the relationship between software features and accuracy
(AUC) and variability (MAD), we analyze the top 10% with the highest accuracy and
the 10% with the lowest variability and compute the predominance of features in these
clusters.

Figure 4.5: Model Predictive Accuracy and Variability.
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US-XGB Highest Accuracy: As we take into consideration models with the highest AUC
numbers, we note that features extracted from the change features are more frequent
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(47%), compared to entropy (27%) and class-level (26%). Among those features, the
most significant occurrence was the AGE feature (specifically the segment related to the
age itself and not the weighted age - wAGE). This software feature appeared in around
21% of the top 10% models representing an occurrence on 1 out of 5 models generated by
the unbiased search. Closing the top 3 features from the generated models, two software
features appeared in 8% of the models each: the History Complexity Measure (HCM) and
Weighted History Complexity Measure (WHCM).

US-XGB Lowest Variability: Features from the class-level are the most common among
those with the lowest variability, representing around 50% of the data. They include
features such as Number of Attributes (NOA), Number of Methods Inherited (NOMI),
and Number of Methods (NOM). Change metric features account for approximately 40%
of the low variability cluster, while entropy-related features make up only 10%, such as the
Weighted History Complexity Measure (WHCM). It is intriguing to note that Weighted
Age (wAGE) appeared in nearly 14% of the models, Depth of Inheritance Tree (DIT)
in 13%, and Number of Attributes Inherited (NOAI) in 10%. In summary, we conclude
that many combinations of features can yield models with high performance and low
variability.

To summarize, the results presented in this section support the second overarching
question of the investigation. RQ2. Which software features are more effective in predict-
ing defects?

RQ2. We conclude that the software features extracted from the change features
are more effective in predicting defects. Furthermore, the AGE (i.e., the age of a
class in weeks) feature is the most significant feature in the top 10% models with
the highest accuracy.

4.4 Implications for Practitioners

This section introduces the main implications of our study for project managers
and developers. This investigation can serve as a benchmark for future research on defect
prediction using similar models. We discuss these implications next.

(i) The proposed machine learning model could aid in the development of a tool to
classify the likelihood of a Java class being defective. This tool could load pre-
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existing models that yield high accuracy and attempt to achieve consistent results
with the data provided by the Java project. The only limitation to using pre-existing
machine learning models relates to the software features. Therefore, it is necessary
to collect the features before making a prediction.

(ii) The results suggest that change features are more likely to result in higher predictive
accuracy than other features (such as entropy or class-level features). Therefore,
the development team could focus on change features.

(iii) Our results indicate that explaining software defects is a project-specific task. Thus,
practitioners should not expect the same models to explain defect predictions for
different projects. We recommend training machine learning models within the same
project. One technique to split the data could involve using pre- and post-release
data. By doing so, the model could learn from pre-release data and predict the
post-release behavior based on its features.

4.5 Threats to Validity

This section investigates some limitations that could potentially threaten our re-
sults. First, we discuss the external threats to validity. Then, we review the internal
threats to validity. Next, we examine the construct threats to validity. Finally, we
present the conclusion and its threats to validity.

External Validity: Threats to external validity are conditions that limit our ability
to generalize the results of our research [Wohlin et al., 2012]. In our investigation, a
threat to external validity relates to the limited number of projects we considered (only
twelve projects across both datasets) [Jureczko and Spinellis, 2010, D’Ambros et al., 2010].
Moreover, all projects are related to the Java programming language. Therefore, the con-
clusions may not generalize to projects developed in different programming languages.
Another external threat relates to the fact that our results depend on defects within the
project context. Hence, we could not draw any conclusion about cross-project defects.
Additionally, another threat relates to the limited number of baseline algorithms we used
to classify a software module as defective. Thus, we could not guarantee that our re-
sults generalize to all existing classification algorithms. Finally, although we used a large
set of software features (57 across both datasets), all the software features are related
to Object-Oriented Programming design [Jureczko and Spinellis, 2010, D’Ambros et al.,
2010]. Therefore, we cannot guarantee that the model will perform well for different soft-
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ware features.

Internal Validity: Threats to internal validity refer to factors that could affect the re-
lationship between the independent variable and causality [Wohlin et al., 2012]. In our
study, this threat is related to the datasets we used, as we relied on the data provided by
the Bug Prediction dataset [D’Ambros et al., 2010] and the Jureczko dataset [Jureczko
and Madeyski, 2010, Jureczko and Spinellis, 2010] without being able to verify their accu-
racy and completeness. As a result, the data may contain errors or omissions that could
affect our results. To address the issue of imbalanced data, we applied machine learning
techniques such as XGBoost, which is known to handle imbalanced data well. We used
two evaluation metrics, ROC Curve (AUC) and F1, to assess the performance of our mod-
els. However, we cannot guarantee that our results accurately reflect the nature of the
twelve Java projects included in our study. Additionally, our data represent a snapshot
of the projects at a specific point in time.

Construct Validity: Construct validity concerns the assumptions linking the results
of the experiments to the underlying concepts or theories [Wohlin et al., 2012]. In our
context, we evaluate the models using AUC and F1 score. Although we tested other met-
rics such as accuracy and F1 includes precision and recall, other metrics in the literature
could be used to assess the effectiveness of the generated models. For instance, we could
employ the Matthews correlation coefficient [Yao and Shepperd, 2020] and the Kappa
coefficient [Cohen, 1960]. Therefore, we cannot guarantee the models’ performance with
these additional metrics.

Conclusion Validity: Threats to the conclusion validity are related to issues that affect
the ability to draw the correct conclusion about the relationship between the treatment
and the outcome [Wohlin et al., 2012]. The model’s predictive ability depends on the
defect labels of the Bug Prediction dataset [D’Ambros et al., 2010] and the Jureczko
dataset [Jureczko and Madeyski, 2010]. Other studies [Yatish et al., 2019] have found
that many datasets rely on a six-month post-release window to predict defects effectively,
as opposed to using affected releases of issue reports, such as those used in the target
data [D’Ambros et al., 2010]. Therefore, since we are not dealing with the post-release
window, the model may not generalize to these cases [Yatish et al., 2019].
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4.6 Final Remarks

In conclusion, the machine learning models presented in this chapter are effective
for defect prediction in software development based on two popular datasets. First, the
proposed implementation of gradient boosting machines reveals how difficult it is to detect
software defects, as only a small fraction of the machine learning models (4.5%) achieved
a detection performance higher than 83% based on the AUC numbers. We hope that our
efforts can serve as a baseline for other solutions to defect prediction using Java projects.
Second, we showed how a limited set of features produced high AUC numbers. Third,
the collection of dominant software features for the defect prediction task is variable.
However, features related to change features are more prominent in the top-performing
machine learning models. To reach these results, we employed an algorithm (Figure
4.2) to explore the space of all software features. The proposed approach (US-XGB)
resulted in thousands of random models. We then evaluated these models considering
their accuracy and variability. By implementing machine learning-based defect prediction
techniques, organizations may improve the quality of their software products, resulting
in improved customer satisfaction and a stronger reputation for producing high-quality
software [Menzies et al., 2007, Turhan et al., 2009]. Based on the results of this chapter,
we have created a replication package that may assist future explorations of software
features [dos Santos, 2023b], as discussed in Section 4.4. In the next chapter, we discuss
the results of applying understandability concepts to reason about the software features
found in this chapter.
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Chapter 5

Understanding Software Defect
Models

Understanding machine learning models for defect prediction is crucial because it allows us
to identify potential software defects before release [Jiarpakdee et al., 2020]. By analyzing
patterns in past defects, we can create models that predict which parts of a software system
are most likely to contain defects, helping us prioritize testing and development efforts
[Pornprasit et al., 2021]. This chapter presents the results of understanding software
defect models, building on the machine learning model exploration and predictive accuracy
presented in Chapter 4. However, rather than solely focusing on model accuracy, this
chapter aims to understand the defects reported in the target datasets [D’Ambros et al.,
2010, Jureczko and Madeyski, 2010, Jureczko and Spinellis, 2010, Ferenc et al., 2018].
We employ the SHAP (Shapley Additive exPlanations) technique to explain the machine
learning model decisions for all three datasets [Lundberg and Lee, 2017, Lundberg et al.,
2018a]. SHAP is a game-theoretic approach that connects optimal credit allocation with
local explanations, allowing us to reason about the model decision and how target software
features influence these decisions (i.e., predicting whether a software class is defective or
not).

The remainder of this chapter is divided into seven sections. Section 5.1 provides
context on SHAP values and the feature importance of machine learning models. In
Section 5.2, we analyze the results of the SHAP analysis over the machine learning models
presented in Chapter 4, examining each dataset separately as they do not share the same
software features (as discussed in Chapter 3). Section 5.3 investigates the threshold of
software features. Section 5.4 discusses the main results of the previous sections. Section
5.5 presents the implications of this study for practitioners and the defect prediction
research community. Section 5.6 identifies the main threats to the validity of the reported
results, and finally, Section 5.7 concludes the chapter with a summary of the findings.
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5.1 Feature Importance and Explanation

Effective machine learning models often produce complex predictions that are dif-
ficult to explain. As a result, understanding why a model has made a specific prediction
is a central challenge in software defect prediction [Jiang et al., 2013, Lewis et al., 2013,
Yatish et al., 2019]. For instance, by knowing that the complexity of a software class
is a factor that influences the defectiveness of the target class, the software team may
modify that class to address its complexity [Tantithamthavorn et al., 2015, Jiarpakdee
et al., 2020].

The typical approach for understanding defect prediction is based on the calcula-
tion of feature impact, or feature importance. In current literature, feature importance
is defined as an increased error after permuting feature values. Permutation breaks the
relationship between the feature and the outcome [Lundberg and Lee, 2017, Lundberg
et al., 2018a]. Therefore, a software feature is relevant if permuting its value increases the
model error because the model relied on that feature for the prediction [Jiarpakdee et al.,
2020, Lundberg et al., 2020]. Conversely, a feature has little importance if permuting
its values keeps the model error unchanged because the model ignored that feature for
the prediction. Often, software features interact in many different ways to create models
that provide accurate predictions. Thus, feature importance represents a function of the
interaction between other software features. In this case, we use Shapley values [Shapley,
1953] to find a fair division design that defines how we can distribute the total importance
among features.

More specifically, we transform instances into a space of simplified binary features,
and the explanation model g is a linear function of binary variables:

g(z) = ϕ0 +
m∑
i=1

ϕi × zi, (5.1)

Where ϕi for i = 0, 1, . . . ,m are parameters called Shapley values, m is the number
of simplified input features, zi = {z1, z2, . . . , zm} is a binary vector in simplified input space
where z ∈ {0, 1}m. Shapley values measure how each feature contributes to the prediction.
In fact, Shapley values are theoretically optimal and are unique consistent, and locally
accurate attribution values. In this work, we use SHAP (SHapley Addictive exPlanation)
values [Lundberg and Lee, 2017, Lundberg et al., 2018b, 2020] as an approximation of
Shapley values to compute the importance of each feature in the prediction.
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5.2 Model Understandability

In our exploration of model understandability, we investigate the models generated
by US-XGB (previously discussed in the previous chapter). We assume that models with
fewer features are more understandable than the ones trained on the entire set of features.
We use SHapley Additive exPlanation (SHAP) [Lundberg and Lee, 2017, Lundberg et al.,
2018a, 2020] to explain why the model made a specific prediction. SHAP assigns an
importance value (positive or negative) to each feature in a particular defect prediction.
The output value comprises the sum of the base value (average defect prediction over the
validation set) and these important values. The SHAP value is relevant because we could
find reasonable accuracy numbers with the unbiased algorithm. Besides, SHAP allows us
to summarize important software features. Hence, we associate low and high feature values
with an increase/decrease in output values, through color-coded violin plots built from
all predictions. The color red shows high numbers, and blue shows low numbers. In this
case, a high value indicates that a model predicts a defect in the class, while a low value
registers a clean class. For these experiments, we present the results of applying SHAP
to the target datasets (i.e., the Bug Prediction dataset, the Jureczko dataset, and the
Unified dataset) [Jureczko and Madeyski, 2010, Jureczko and Spinellis, 2010, D’Ambros
et al., 2010].

Figure 5.1 shows SHAP summary plots associated with the most superior models
for the selected projects (Eclipse JDT and PDE, Mylyn, Equinox, and Lucene) in the Bug
Prediction dataset. Figure 5.1 has a vertical line aligning the values that appear along the
right, which are contributing to increase the odds of a defect. Values in red indicate a high
influence on the defect prediction, while numbers in blue indicate less influence on the
defects. Additionally, values appearing on the left side lead to decreasing the probability
of a software defect. Hence, this reveals that for the Eclipse JDT project (bottom right),
higher fanOut values increase the chances of the model predicting defects. In contrast,
for the Mylyn project, second from the top left (d), the higher the age of the project, the
lower the predicted defects in the project. Note that we explain model decisions for the
Lucene project with only two features. Two of the selected projects used three software
features (Eclipse JDT and Equinox), and the remaining two projects used four software
features (Mylyn and Eclipse PDE). We also remark that important features may vary
depending on the project. Some of the most relevant software features to understand
a defect derived from entropy level features, such as the History Complexity Measure
(HCM) and its variations (for example, the log and exponential versions of this feature).
Features related to change features and class-level source features are also frequent in the
target projects. For instance, the AGE of a software class in weeks is a feature that is
relevant to the defect prediction of the Mylyn project.



5.2. Model Understandability 78

Figure 5.1: SHAP Values that Influence Defects in the Bug Prediction Dataset.
(a) Eclipse JDT Project
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Source: Elaborated by the author.

Figure 5.2 shows the same experiments for the Jureczko dataset. Here, we note
that the model demands up to only three features to understand the defects in the selected
data. Hence, this reveals that for the tomcat project (Figure 5.2 top-left plot), higher Lines
of Code (LOC) values increase the chance of our model predicting defects in that specific
project. Model decisions for the Tomcat, Jedit, and Prop projects are explained with solely
one feature. Four of the selected projects used only two software features (Log4J, Xalan,
Ant, and Lucene), and the remaining project used three software features (Camel). We
also remark that important features may vary depending on the project. Some of the most
relevant features derived were LOC, AMC (Average Method Complexity), Data Access
Metric (DAM), Response for a Class (RFC), and Number of Public Methods (NPM).

These results indicate that searching the feature space is not only able to slightly
improve the AUC numbers but also to generate models with fewer features, thus making
them more explainable (Figures 5.1 and 5.2). We produce models composed of up to only
four features for the Bug Prediction dataset and three software features for the Jureczko
dataset. Therefore, these models are simpler than the models generated for exploring the
entire feature space. We argue that machine learning models composed of fewer software
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Figure 5.2: SHAP Values that Influence Defects in the Jureczko Dataset.
(a) Tomcat Project
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Source: Elaborated by the author.

features are more explainable. Therefore, if a developer received the model explanation
obtained from Figures 5.1 and 5.2, it would be easier for them to work on the features
that have a high probability of causing defects. For example, a Mylyn developer could
use our results to acknowledge that the age of a class (Figure 5.1d) contributes to the
defects in that project. Thus, the developer could give more attention to software classes
developed a long time ago.
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5.3 Impact of Software Features

To confirm the hypothesis that smaller software feature values reduce the chance
of having classes with defects, we designed an experiment to measure the limit of selected
software features. For this purpose, we required a dataset with a wide range of software
features. Therefore, we used the Unified dataset, which offers a broad set of software
features (71 in total) that could help us visualize the contributions of all software features
for a specific software class [Ferenc et al., 2018, 2020a] (Section 3.4). However, as most of
the software features are not important to the model, we had to select the most relevant
software features for the defect prediction task. Thus, we could find the software features
for the defect prediction task and further threshold analysis. The main objective of our
investigation was to examine the threshold of software features applied for the defect
prediction task. Therefore, this section explores the following research question: RQ.
What is the limit value of software features that prevent the class from being defective?

In this section, we present the results of applying the Unified dataset to measure
the threshold of software features. First, we demonstrate the results of selecting the rel-
evant software features for model understandability [Lundberg et al., 2020]. Here, we
employed a recent implementation of a tree-based algorithm to choose the software fea-
tures [Ke et al., 2017]. Second, we describe the results of the experiment to measure the
threshold of software features based on Lundberg et al. [2018b]. These results indicate
that developers should keep software features as small as possible to avoid defects in Java
classes.

Selected Software Features. The current literature incorporates many software fea-
tures to predict defects [Menzies et al., 2007, Zimmermann and Nagappan, 2008, Jing
et al., 2014, Pornprasit et al., 2021]. In the Unified dataset (Section 3.4), we have 71
software features available to predict defects. We experimented with several methods to
choose the optimal software features, and a recent implementation of the Gradient Boost-
ing Machine (LightGBM, [Ke et al., 2017]) achieved better results compared to other
baseline models. This technique automatically selects the most relevant features for pre-
dictive modeling, resulting in fourteen software features that we use to train the models.
Although we apply all fourteen features to build the models, we individually evaluated
each of them to measure their impact [dos Santos, 2023b].

Table 5.1 shows the fourteen software features selected by the tree-based algo-
rithm. The first column shows the identifier of each feature, while the second column
presents its acronym. The third column displays the feature’s description, and the fourth
column represents the quality attribute it belongs to. All features are class-level due to
their scope. Most features relate to size (NA, NG, NLG, NS, and TNM) [Ferenc et al.,
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2018, 2020b], while some are associated with documentation (CLOC, CK, AD, PUA),
code coupling (CBOI, NOI), and code complexity (CC, WMC, NL) [Tóth et al., 2016,
Ferenc et al., 2020a].

Table 5.1: Selected Software Features Unified Dataset.

Acronym Description Quality Attribute
1 WMC Weighted Method per Class Complexity
2 NL Nesting Level Complexity
3 CC Clone Coverage Complexity
4 CBOI Coupling Between Objects classes Inverted Coupling
5 NOI Number of Outgoing Invocations Coupling
6 AD API Documentation Documentation
7 CD Comment Density Documentation
8 CLOC Comment Lines of Code Documentation
9 PUA Public Undocumented API Documentation
10 NA Number of private attributes Size
11 NG Number of getters Size
12 NLG Number of local getters Size
13 NS Number of setters Size
14 TNM Total Number of Methods Size

Source: Elaborated by the author.

Threshold of Software Features. We apply a unified model-agnostic approach known
as SHAP [Lundberg and Lee, 2017] to explain the model decisions. This technique con-
nects game theory and local explanations to interpret the output of machine learning
models (using accuracy). Among the many possibilities that SHAP provides to explain a
machine learning model, we focus on understanding how each feature contributes to push-
ing the model decision to a defective class. To be more specific, we follow the experimen-
tation of Lundberg et al. [2018b], where we are able to visualize the relative contributions
of all software features for a specific class. The replication package of this thesis contains
the code to generate the plots presented in this section [dos Santos, 2023b]. Therefore, we
discuss the impact of the selected fourteen software features on the explainability of the
machine learning model. Furthermore, the order of importance of each feature is CLOC,
CD, AD, NOI, WMC, CBOI, TNM, NL, NA, CC, NG, NLG, NS, and PUA.

1. Weighted Method per Class (WMC): The machine learning model predicted
that when the weighted methods per class are up to 35, the model has a 42% in pre-
dicting a defect. Higher numbers contribute consistently to increase the probability
of predicting a defect.

2. Nesting Level (NL): The model predicted that when the nesting level (which is
counted by ifs structures [Ferenc et al., 2018]) is higher than 57, the model is more
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likely to predict defects (nearly 71% of a chance in predicting a software defect in the
source code). Low numbers contributed consistently less to find a software defect.
For instance, when NL is 2, the model could predict a defect with only around a
20% chance.

3. Clone Coverage (CC): If the clone coverage is up to 11%, the model predicted a
defect with a 40% chance. In the case of clone coverage higher than 11%, the model
predicts a software defect with only 21%. In this case, a higher number of clone
coverage helped the model to predict a clean class.

4. Coupling Between Objects classes Inverted (CBOI): For the number of cou-
pling between objects inverted between 410 and 450, the model predicts a defect
with a 70% chance. Higher numbers help the model to stabilize (dropping to close
to 40%). Lower numbers (around 77) help the model in predicting a software defect
with only a 20% chance.

5. Number of Outgoing Invocations (NOI): A high number of outgoing invoca-
tions is considered above 22, and helps the model to predict defects (up to 70%
chance of predicting a defective class). The limit to predict clean classes happens
up to only twelve outgoing invocations (up to only 21% chance of being defective).

6. API Documentation (AD): If the API documentation is around 98%, the model
predicts a defect with a 69% chance. For low numbers of API documentation, such
as 2%, the model predicted a defective class with only 29%. One argument for this
finding is that documented APIs are from large source codes from more complex
software systems. Thus, they may generate more defects by definition.

7. Comment Density (CD): When the comment density is up to 47%, the model
has a 49% to predict a defect (highest value). When the comment density numbers
are low, for example, up to 3% helped the model very little in predicting a software
defect (up to around 15%). Higher numbers affected less the prediction (around
30-40% to predict a software defect).

8. Comment Lines of Code (CLOC): The peak of our prediction happens around
850 lines of comments in a class, where the model can predict a defective software
class with a 78% chance. Lower values help the model less (between only 30% only).
This finding may indicate that larger software classes are defective-prone. Hence,
they have hundreds of lines of code and comment [Fowler, 1999].

9. Public Undocumented API (PUA): For up to 284 lines of undocumented API
lines of code, the model predicts a defect with a considerable chance (67%). If the
lines of undocumented API lines are low such as only 12 lines, the model predicted
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a software defect with only 17% (50% down the chance in predicting a software
defect).

10. Number of private Attributes (NA): Up to 66 attributes in a class, the model
predicted a defect with approximately a 52% chance. Values higher than 66 at-
tributes consistently increase the prediction of defects in the source code (up to
76% chance of predicting a defective class). Only up to 22 software attributes per
class made the model predict a defect with a low possibility (around 22%).

11. Number of Getters (NG): For up to 80 getters in a class, the model predicts a
defect with a 77% chance. Thus, higher values than 80 do not increase the prediction
of a software defect (stabilizes between 50-65%). Low numbers, up to 6 getters in a
class, helped the model to predict a defect with only 23%.

12. Numbers of Local Getters (NLG): The analysis is very similar to NG as if the
number of local getters is up to 70. It helps the model consistently to predict a
defect (around 68%). Low numbers of local getters decreased the possibility to find
a software defect (up to 6 getters, only 22% to find a software defect in the class).

13. Number of Setters (NS): In the case of the number of setters in the code, for up
to 60-70 setters in the class, the model has a 70% to predict a defect. However, low
values than 50 (for instance, between 10 and 30) decrease the chance of predicting
a defect to around 40%.

14. Total Number of Methods (TNM): For up to 46 methods per class, there is only
a 36% chance of being a defective class. More than 46 methods consistently increase
the possibility of a defect (up to 77% chance in predicting a software defect). Our
study suggests that the number of software methods should not exceed 46.

From these findings analyzing each software feature, we could answer the research
question. RQ. What is the limit value of software features that prevent the class from
being defective?

The threshold varies considerably among the target software features used in this
work. For instance, developers should keep WMC around 35, and CBOI should not
exceed 77 to help the class maintaining a clean state.

Using the explanations provided by SHAP, we could understand the limit of several
software features for defect prediction. In the end, we could rank the quality attributes
according to their impact: i. Documentation, ii. Size, iii. Complexity, and iv. Coupling.
To the best of our knowledge, this is a unique use of SHAP [Lundberg et al., 2018b], as
it was used to define the threshold of software features for defect prediction. As a result,
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these thresholds may help developers to reason about the impact of software features on
code defectiveness. Therefore, they can improve the quality of the code, tracking the
features that introduced more defects in the source code.

5.4 Discussion

This section discusses our results and their impact on the software engineering
community. First, the results of this work indicate that different projects have different
features that may help the model predict defects. For example, the Tomcat project has a
high number of lines of code per class, which is a feature that aids in predicting defects
(i.e., LOC). Second, the results of this work are consistent with previous studies. For
instance, Ferenc et al. [2018] found that the Total Number of Methods (TNM) is a good
predictor of software defects. However, they did not identify a threshold for the TNM.
In this work, we found that the TNM should not exceed 46, as higher values consistently
increase the model’s prediction of defects. We can extend this analysis to all fourteen
software features discussed in Section 5.3. To the best of our knowledge, the identification
of the thresholds for the software features is unique in the literature. This analysis can
help developers reason about the impact of software features on code defectiveness and
improve the code’s quality by tracking the features that introduce more defects in the
source code. Finally, although we have a wide range of software features to measure
various aspects of the source code, only a limited number of features aid in predicting
defects. Therefore, we can focus on these features to improve the code’s quality. Moreover,
as data collection is an expensive process [Menzies et al., 2007, Jureczko and Madeyski,
2010], the research community can focus on important features and ignore the ones that
do not seem to indicate defects. Ultimately, this approach can reduce the cost of gathering
data for defect prediction.

5.5 Implications for Practitioners

This section discusses the fundamental implications of our study for practitioners.
We believe that the proposed investigation can serve as a guide for the research community
to understand the potential of SHAP values for defect prediction.
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(i) We found that a limited set of software features are relevant to predict defects in
Java (considering that the datasets have 37 and 20 software features, respectively).
Therefore, we do not need to concentrate on most of the features presented in the
datasets to build explainable models for defect prediction. Consequently, we could
use these models to propose a tool to predict whether a software class is likely to
cause defects or not.

(ii) The SHAP explanations seemed to indicate that for a variety of software features
(e.g., LOC, AGE, HMC, NOA, AMC, MFA), the higher the feature value, the
higher the probability of defect prediction (as shown in Figures 5.1 and 5.2). The
threshold analysis confirms that most software features should have small values to
avoid defects.

(iii) Our analysis using SHAP values revealed that the software feature AGE, which
represents the age of a class in weeks, has the highest impact on model accuracy
compared to other features (as discussed in Chapter 4). This finding is particularly
relevant for developers, as they can use this knowledge to prioritize and take special
care of classes that have been developed a long time ago, which may be more prone
to defects.

(iv) One of the main findings is related to the impact of each selected software feature.
The results discussed in Section 5.3 could assist developers to mitigate software
defects in Java projects. The thresholds of these features are publicly available in
the replication package for further explorations of these software features by the
research community in defect prediction.

5.6 Threats to Validity

This section presents potential threats to the validity of this study that could po-
tentially impact our results. First, we discuss external threats to validity, followed by
internal threats to validity. Next, we investigate construct threats to validity. Finally,
we examine conclusion threats to validity.

External Validity: Wohlin et al. [2012] defines threats to external validity as conditions
that limit our capacity to generalize the results of the research. The current literature
accepts SHAP values as a method to explain machine learning models [Lundberg et al.,
2018a]. However, other approaches may have different explanations based on a series
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of characteristics. For instance, current literature considered techniques such as LIME
[Mori and Uchihira, 2018] and BreakDown [Jiarpakdee et al., 2020] to understand defect
models. At this moment, we cannot guarantee that the results are replicable using these
tools. For this reason, we may use these mechanisms (i.e., Lime and BreakDown) in the
concluding stage of this project to compare the results presented in this chapter [Mori
and Uchihira, 2018, Jiarpakdee et al., 2020].

Internal Validity: According to Wohlin et al. [2012], threats to internal validity refer to
rules that can influence the independent variable to causalities. Our explanations depend
upon the defect labels of the Bug Prediction dataset [D’Ambros et al., 2010] and the Ju-
reczko dataset [Jureczko and Madeyski, 2010, Jureczko and Spinellis, 2010]. However, we
could not validate how the authors gathered the data available in the datasets. We only
know that the Jureczko dataset uses a regular expression to extract the defect labels, and
the Bug Prediction dataset applies an approach based on bug reports. More importantly,
we cannot guarantee that the defects are correctly labeled. For instance, the authors
may have categorized the software defects in the Jureczko dataset as “false positive” or
“false-negative” instead of an actual software defect found during development.

Construct Validity: Wohlin et al. [2012] describes the construct threats to validity as
the ability to assume the results of the experiments to the concept or theory. In this
case, this threat correlates to the limited number of projects we investigated (twelve
in total counting both datasets) and the use of only one programming language (i.e.,
Java) [Jureczko and Spinellis, 2010, D’Ambros et al., 2010]. Additionally, the threshold
analysis has the limitation of only using the Java programming language. As a result,
we cannot guarantee that the models generalize well for other programming languages
different from Java, such as popular interpreted programming languages (e.g., Python
and JavaScript). Further explorations should focus on the use of multiple programming
languages from different projects. Moreover, it would be better to use a larger dataset
with the same software features to compare the results. In this case, we did not compare
the results of the two datasets because they do not share all the same software features.
Another threat relates to the fact that although the current literature recognizes SHAP
as a method to explain models, this technique is not the only option to understand these
machine learning models. For instance, the current literature offers a set of other ex-
plainability techniques for this matter. As an example, LIME [Ribeiro et al., 2016] and
InterpretML [Nori et al., 2019] are tools to explain any black-box machine learning model.

Conclusion Validity: According to Wohlin et al. [2012], a threat to conclusion validity
refers to the study’s ability to connect issues that affect the ability to express the correct
conclusion between the treatment and the outcome. In this investigation, this threat
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relates to how developers could use these software features to act upon their defective
software code. We assume these software features are relevant to understanding the defects
practitioners may find during development. However, we cannot conclude to what extent
these software features are relevant to the development process. To validate these software
features, we need to conduct new explorations with practitioners aiming at evaluating the
usefulness of these features for the development process. Another solution would involve
categorizing these features into categories that are more actionable by developers.

5.7 Final Remarks

This chapter concludes our investigation into the use of SHAP values for under-
standing defect models. We used SHAP explanations to understand model decisions and
found that the best-performing models are simple to understand, as they use only a
few features from the power-set (complementary to Chapter 4 results). Furthermore, we
employed one of the many possibilities that SHAP offers to determine the threshold of
software features for defect prediction. To the best of our knowledge, this is a unique use
of SHAP [Lundberg et al., 2018b], as it was used to define the threshold of software fea-
tures for defect prediction. In summary, our findings suggest that we can identify software
defects with determined combinations of features. More importantly, the results display
how difficult it is to generate a unique solution to understand defect models. Independent
projects are subject to distinct software features that may cause software defects. In ad-
dition, we discovered that a limited set of software features is relevant to understanding
software defects in Java. The SHAP explanations also suggest that a variety of software
features (e.g., LOC, AGE, HMC, NOA, AMC, MFA) tend to lead to a higher probability
of defect prediction if the feature value is high. Complementarily, the threshold analysis
offered insights into the limit of these values for defect prediction. Overall, most features
should have small values to decrease the probability of the model finding a defect in the
class. Therefore, our findings could assist in the implementation of a tool to predict de-
fects in Java projects based on the software features examined in this chapter. In the
next chapter, we discuss the results of analyzing the developers’ perceptions about SHAP
explanations using a similar setting.
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Chapter 6

Developers Perception

Understanding predictive models of software defects is important because this under-
standing may assist developers in finding the classes with defects in their source code.
For this reason, this chapter presents the results of two survey studies with developers.
The first study focuses on understanding models through the use of SHAP [Lundberg and
Lee, 2017]. Our main goal is to check whether or not SHAP explanations are valuable for
developers. In this case, we evaluate the results presented in Chapter 5. To do so, we em-
ploy an exploratory study using a survey with forty developers. The developers compose
a mixed group with various backgrounds, including software engineers, data scientists,
and researchers. Additionally, we want to validate how developers could act upon the
SHAP explanations knowing that certain software features impact the software defects.
The second study focuses on developers’ perception of the quality attributes that may
contribute to defective code. In this study, we invited developers to evaluate different
scenarios that employ a set of quality attributes. We selected active developers from
GitHub to participate in the survey, allowing us to survey developers from different parts
of the world, not just limited to Brazil. Finally, we questioned developers about which
static software features they perceived as defect predictors.

We divide the remainder of this chapter into five sections. First, we present the
results of the first survey about SHAP explanations (Section 6.1). In this case, we in-
troduce the survey design with the main steps executed to investigate the developers’
perceptions. Then, we present the developers’ backgrounds. Later, we discuss the results,
focusing on the developers’ perception of SHAP explanations. Section 6.2 describes the
second survey study about developers’ perception of quality attributes. We present the
survey design and the background of the participants, then discuss the results, focusing
on the developers’ perception of the quality attributes. Section 6.3 explores the main
implications of our findings for the defect prediction community. Section 6.4 presents
the main threats to these studies. Finally, we summarize and conclude the main results
reported in the chapter (Section 6.5).
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6.1 Developers Perception on Explanations

This section describes how we designed the survey with developers to investigate
their perceptions of SHAP explanations. First, we present the survey design and the
background of the developers who participated. Next, we discuss the results of the study,
focusing on the developers’ perceptions of SHAP explanations.

Survey Design. We designed a survey with developers from various software develop-
ment backgrounds to investigate a dataset containing features computed from nine NASA
software projects (see Section 3.1). In Figure 6.1, we present an explanation for the deci-
sion of a model randomly selected from the model space composed of all features. This
model represents one instance of one module in one of the nine NASA projects. The
red features in the figure increase the model output, while the blue features decrease
the output. We found that features LOC_TOTAL=284 (total number of lines of code)
and BRANCH_COUNT=45 (number of branches) had the most significant impact on
predicting a defective module, whereas features NUM_UNIQUE_OPERANDS (unique
operands) and LOC_EXECUTABLE (number of lines of executable code) had a minor
impact on the model prediction in the same direction. There were also blue features that
contributed to the module not being defective, but their influence was too low to display
in the figure. This explanation can be helpful for developers when evaluating a single
defective module. Therefore, we used this figure as a reference for our survey study.

Figure 6.1: Local Explanation Randomly Selected from the Predictor.

Source: Elaborated by the author.

Based on this scenario, we developed an online survey with 40 developers. We
invited the developers via mailing lists from two universities in Brazil, and we also pub-
licized the survey on a professional social network. Therefore, we cannot assess exactly
how many people accessed the survey link. However, due to the number of participants
on these lists, we estimate that a couple of hundred people had access to the survey.
The survey is in Portuguese, and we believe that most developers are from Brazil due
to the disclosure of the list. The principal example used in the survey is the same as
presented in Figure 6.1. The fundamental idea of the survey is to understand whether
developers can comprehend the results of our models generated from SHAP. After briefly
examining the local explanation (Figure 6.1), we check whether developers are taking the
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proper actions on the defective module based on multiple-choice questions. Although the
survey was multiple-choice, we provided the participants with a text box to express any
opinions about the study design. Additionally, the first part of the survey focuses on the
developers’ backgrounds, as we discuss next.

Developers’ Background. Among the developers that participated in the survey, we
found that 18 (45%) held a master’s degree in some computer science area, such as in-
formation systems, computer science, or computer engineering. Another 11 (27.5%) held
an undergraduate degree in a computing-related area, and 7 (17.5%) were still under-
graduates in computer-related fields. The remaining 4 (10%) had a Ph.D. in computer
science. Twenty-seven developers (67.5%) studied computer science, eleven (27.5%) stud-
ied information systems, and two (5%) studied computer engineering in their most recent
degree. We conclude that the majority of developers who participated in the survey hold
a graduate degree in computer science-related fields (82.5% of developers hold an under-
graduate or graduate degree in a computer science-related field). Moreover, most of the
participants are masters in computer science and studied computer science in their degree.

The first part of the survey also questioned how long the participants had been
developing code in their careers. Table 6.1 shows the results of the years of experience
of the developers. The results show that 19 (47.5%) participants had developed software
systems for over five years, ten (25%) had developed code between three and five years,
and another ten (25%) had worked in the industry for less than three years. Only one
participant (representing 2.5%) did not respond to this question, as it was not required
to complete the survey. As the survey suggests, most developers who participated had
worked in software development for over three years (72.5% of developers). Thus, we
conclude that the participants were mostly at a mid-senior level, which is appropriate for
analyzing the explanations provided in the study.

Table 6.1: Developers’ Years of Experience in Software Development.

Years of Experience # Developers
More than 5 years 19
Between 3-5 years 10
Less than 3 years 10
Did not respond 1
Source: Elaborated by the author.

Developers Understandability. The second part of the survey evaluates the extent
to which the developers understood the importance of the SHAP features. To do so,
we showed Figure 6.1 and asked the developers three questions to understand their per-
ceptions of the results. As not all software features are trivial for developers, Table 6.2
provides an explanation of the features contained in Figure 6.1.
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Table 6.2: Features Definition for the Survey with Developers.

Feature Definition
Branch Count Measures the number of branches of the software module.
Essential Complexity Measures the degree of structure and quality of the code.
Lines of Code Exe-
cutable

Measures the total lines of code inside the module subtracting
the blank lines and comment lines.

Total Lines of Code Measures all lines of code, regardless of whether they contain
code, comments, or whitespace.

Total Number of
Unique Operands

Measures the number of unique operands in a module.
Operands are objects manipulated by a software system.

Source: Elaborated by the author.

To facilitate the analysis of the results, Table 6.3 displays the three survey questions
we ask developers about their perceptions of the SHAP explanations. Since the survey is
in Portuguese, we translated the questions from that language to English (Table 6.3).

Table 6.3: Set of Questions Developers Answered.

Q1 Acknowledging the local explanation showed in Figure 6.1, do
you agree that increasing the total lines of code avoids defects?

Q2
Based on Figure 6.1, do you agree that restricting the total
lines of code is more important to avoid defects than restricting
the total number of unique operands?

Q3 Pick the set of three features most relevant for causing defects
based on the explanation shown in Figure 6.1?

Source: Elaborated by the author.

Q1 - In the first question (Q1), we wanted to understand if the participants would increase
the number of lines of code based on the local explanation shown in Figure 6.1. As
we can observe in Figure 6.1, the total number of lines of code is associated with
defect-prone modules. Therefore, we expected that developers would not increase
the size of the module that is already defect-prone (Table 6.3). To analyze the data,
we applied a Likert-type scale with five options: (1) strongly disagree, (2) disagree,
(3) neither agree nor disagree, (4) agree, and (5) strongly agree, as shown in Figure
6.2. Among the developers, 19 (or 47.5% of participants) strongly disagreed (1) with
the increase of lines of code in the module. Eleven developers (27.5%) disagreed
with the statement (2), and six developers (15%) agreed (4) to increasing lines of
code. Other options had a minor impact on the developers, e.g., only two developers
(5%) strongly agreed (5) in adding more lines of code, and two developers (5%) (3)
could not give an opinion about the subject. From this question, we may conclude
that most developers could understand the local explanation, as 30 developers (75%)
disagreed or strongly disagreed that they should increase the lines of code in this
module, which is already defect-prone.
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Figure 6.2: Questions 1 and 2 about the Defectiveness of the Model.

Source: Elaborated by the author.

Q2 - In the second question (Q2), we wanted to explore whether the developers under-
stood the order of importance of the features that affect the defectiveness of the
module (Table 6.3). Figure 6.1 shows that the number of lines of code is the feature
that contributes the most to classifying the module as defective. Thus, we asked
if the developers agree that the total number of lines of code was more important
than the number of unique operands. We chose this comparison because these two
features are similar. This question applied a Likert-type scale [Liu et al., 2017],
as in the last question (Q1). We also display the results in Figure 6.2. Thirteen
developers (32.5% of participants) (5) strongly agree that the total number of lines
of code is more important for the model. Twelve developers (30%) (4) agree that
the total number of lines of code is more relevant to the model than the number
of unique operands. Nine developers (22.5%) (2) disagree with the importance of
the total lines of code. Participants chose other options, as four developers (10%)
(1) strongly disagree that the total number of lines of code is more important to
the model, while two developers (5%) (3) could not express an opinion about the
question. We conclude that most developers (25 or 62.5%) understood the output
and considered the total number of lines of code more important than the number
of unique operands.

Note that little to no training was provided to the developers to respond to the
survey. We adopted a basic textual description of the features and models as the
only training for the survey. For this reason, we believe proper training would
improve the developers’ understanding of the SHAP’s importance. However, the
results from both questions (Q1 and Q2) show that most developers comprehend
the local explanation.

Q3 - Finally, we asked developers to identify the top three features that contribute to a
module being defective (Q3), based on Figure 6.1. We presented participants with
several combinations of three options (Table 6.3), and the correct answer was the
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combination of the total number of lines of code, number of branches, and number
of unique operands. As shown in Figure 6.3, 25 developers (62.5%) chose the correct
combination of defect-prone features. Overall, we concluded that most developers
were able to understand the local explanation generated by SHAP. Considering
that 25 developers (62.5%) chose the correct answer for all three questions (where
“strongly disagree” or “disagree” and “strongly agree” or “agree” correspond to
the correct answer for Q1 and Q2, respectively), we also believe that if developers
had access to local explanations during the development of a module, they could
anticipate problems that may arise based on the SHAP explanations.

Figure 6.3: Set of Important Features for Developers.

Source: Elaborated by the author.

6.2 Developers Perception of Quality Attributes

For the second study with developers, we created a survey to measure their per-
ceptions of quality attributes. We invited developers to evaluate different scenarios that
used a set of quality attributes, namely Documentation, Coupling, Complexity, and Size.
These quality attributes were selected based on their importance for defect prediction
(Chapter 5.3). Our aim was to explore the following research question: Do developers
agree with the machine learning models in terms of quality attributes and software features
that indicate defective code?
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Furthermore, we invited developers from GitHub due to the large pool of develop-
ers we could reach with the survey. Additionally, all projects that we built the models on
are open-source and mostly available on GitHub or similar tools (such as GitLab).

Developers Background. Before sending the survey to developers, we conducted a
pilot study with members of the Software Engineering Lab (LabSoft) at UFMG. In total,
ten researchers helped to enhance the survey with valuable feedback. The pilot survey
was helpful in improving several aspects of the study, both related to the developers’
background and their perspective on the quality attributes. Thus, we divided the study
into two major groups: (i) developers’ background and (ii) developers’ understanding of
the quality attributes and their impact on software defects.

After the pilot survey, we executed the consolidated version of the study with
a different set of developers. Furthermore, the selected developers had to meet some
requirements to participate in the survey. First, we only sent the invitation email to
developers who had contributed to at least ten repositories on GitHub in the past two
years. Using this criteria, we focused on active developers on GitHub, which is one of the
most popular version control systems widely adopted in the software community [Thung
et al., 2013, Gousios et al., 2014, Constantino et al., 2021, Oliveira et al., 2021]. As a
result, we were able to select more experienced developers who could provide relevant
insights into defects and the relationship with the software features and their quality
attributes.

We distributed the survey to the developers for three weeks in April 2021. In total,
we sent invitations to 735 developers, and 54 responded to the survey. As a result, our
acceptance rate was approximately 7.35%. Upon initial analysis, we found that among
the 54 responses, we could not consider four of them because the participant submitted
invalid or incomplete responses. In the end, we had 50 valid survey responses to analyze
and compare with the machine learning model’s results. In the first part of the survey,
we aimed to collect information about the background of the developers. Therefore, we
asked three questions about their experience with programming languages and software
development. First, we asked the developers about their highest level of education at
the present moment. In total, 22 developers (44% of the developers) hold a degree in
some computer science-related field. Additionally, 13 developers (26%) have a master’s
degree in a computer science-related field, and 11 developers (22%) are undergraduates in
computer science-related courses. Finally, two developers (4%) hold a Ph.D. in a computer
science-related field. As we allowed developers to add more responses as they replied to
the survey, two developers included unexpected degrees. One participant (2%) answered
that they did some college but did not finish it, and one participant (2%) stated that they
are a self-taught learner.

In the second background question, we wanted to check which programming lan-
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guages the developers are more comfortable coding. In this case, the developers could
choose more than one option. Although the models we based our analysis on apply to the
Java programming language, we decided to allow developers with any programming lan-
guage background to respond to the survey since programming languages are not essential
to understanding the software quality attributes. In fact, the machine learning models
may generalize to other programming languages, and we expect that programming lan-
guages share many similarities. As a result, any software development background can
help the developers evaluate the software features and their impact on the defectiveness of
the code. Figure 6.4 shows the principal programming languages developers use in their
projects. We note that the Python programming language is the most common option
among developers, with twelve developers (24% of the developers) programming in this
language. Following that, eleven developers (22% of developers) develop code in C#.
To complete the top 3 languages, ten developers (20% of developers) use Java in their
projects.

Figure 6.4: Developers’ Primary Programming Languages.

Source: Elaborated by the author.

Finally, we also asked developers about their years of experience in software devel-
opment to complement their backgrounds. They could choose only one of three options.
According to Table 6.4, 22 developers (44% of respondents) have between five and ten years
of experience, while 19 developers (38% of respondents) have over ten years of experience.
Only nine developers (18% of respondents) have less than five years of experience. From
this part of the survey, we conclude that most developers have a significant amount of
experience, as 41 developers (82% of respondents) have more than five years of experience.
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Table 6.4: Developers’ Years of Experience with Software Development.

Years of Experience # Developers
Less than 5 years 9
Between 5-10 years 22
More than 10 years 19
Source: Elaborated by the author.

Developers’ Software Features Perception. For the second part of the survey, we
questioned developers about how they perceived a list of software features and their
relationship to defects in the source code. To do so, we present a scenario of use that
focuses on API development not tied to on any programming language. Although we
provide insights into the behavior of the API and specific classes that relate to each of
the quality attributes explored in our investigation, we supply the developers with little
information about the structure of the project. Thus, the primary goal of this part of the
survey is to capture developers’ perceptions about the potential impact of each quality
attribute on software defects. We originally grouped these software features into four
quality attributes [Ferenc et al., 2018, 2020a,b]: documentation, size, complexity, and
coupling. Figure 6.5 shows how the developers rank each quality attribute assessing their
impact to cause defects in the software class. The stacked bar chart represents how many
developers ranked each quality attribute as the most important (i.e., 1st choice to the
least important choice 4th). In this case, each developer had to pick a first, second, third,
and fourth option.

Figure 6.5: Developers’ Perception about the Quality Attributes.

Source: Elaborated by the author.
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As stated previously, 54 developers took part in the survey, although we received
four invalid responses. Among them, twenty-one developers (42% of the developers) con-
sider code complexity the key quality attribute contributing to defects in the source code
compared to the other quality attributes (documentation, size, and coupling). Another
10 developers (20% of the developers) classify code documentation and size as the most
relevant quality attribute to indicate software defects in the source code. In addition, only
nine developers (18% of the developers) think that coupling is the major category to pre-
dict software defects. This result differs from the machine learning models we discussed
in Chapter 5.3 since the documentation and size quality attributes are the most relevant
categories to predict defects in the source code according to our models. As a result, we
conclude that the machine learning model contradicts developers’ common sense.

To further explore the developers’ perception of the quality attributes, we asked
the developers four questions concerning each of the quality attributes that group the
software features discussed in Section 2.3. Hence, we employed a software feature included
in the quality attribute to exemplify the relationship between the group and software
development. For instance, for the coupling quality attribute, we picked the Coupling
Between Object classes (CBO) to represent the quality attribute. In this case, we opted to
introduce the software feature with the most influence on defect prediction. For instance,
we relied on WMC as an example of code complexity. We designed these questions to
allow developers to analyze each category separately from the remaining ones. Besides, the
software feature introduction in each question may help developers examine the effects
of the quality attribute in their source code. Table 6.5 presents each of the questions
developers had to evaluate.

Table 6.5: Questions for Developers about the Quality Attributes.

Q1

You notice that major classes have many responsibilities (WMC). Based on
your experience, how would you classify the impact of modularization to
create precise responsibilities for each class as a contributor to the
defectiveness of the API?

Q2
You then notice that the coupling between the objects is also high (CBO).
How would you classify the impact of loosely coupled objects to avoid
defects in the API?

Q3
In the end, you notice that some classes have too many attributes (NOA).
How would you classify the impact of smaller classes to avoid defects
in the API?

Q4
You also noticed that the API has little to no documentation. How would
you classify the impact of the lack of proper documentation to contribute
to the defectiveness of the API?

Source: Elaborated by the author.

After analyzing each question, the developers ranked the quality attributes based
on a 5-point scale ranging from “Very Important” to “Unimportant”. Figure 6.6 shows the
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Likert scale [Liu et al., 2017] used to evaluate the four questions. For the first question
(Q1), developers rated the impact of modularization very highly compared to the other
three questions. Thus, twenty-two developers (44% of developers) rated the complex-
ity category (represented by the WMC) as “Very Important”. Additionally, twenty-one
developers (representing 42% of the developers) rated code complexity as “Important”.
Only seven developers (14% of the developers) believed the WMC was “Moderately Im-
portant” for defects. As a result, the complexity category is the most important category
for causing defects in the code, based on developers’ perceptions.

Figure 6.6: Likert Distribution of Questions.

Source: Elaborated by the author.

The second question (Q2) is similar to the first question (Q1) presented to develop-
ers. The only difference is that the developers rate the impact of loosely coupled objects
less than the code complexity. In this case, nineteen developers (38% of the developers)
rank the coupling quality attribute (represented by the CBO) as very important for the
defectiveness of their code. Sixteen developers (32% of the developers) rank the coupling
category as important. Another thirteen developers (26% of developers) believe the CBO
is moderately important for defects, while one developer (2% of developers) believes the
CBO is slightly important for software defects in the code. Additionally, one developer
(2% of developers) considers the CBO unimportant for software defects. Hence, we con-
clude that the coupling category is the second most important category to cause defects
in the code based on developers’ perception.

The third question (Q3) is also similar to the first two questions (Q1 and Q2).
Developers rate the impact of smaller classes (represented by NOA) as less important
than code complexity and coupling between objects. The number of attributes is the
most controversial quality attribute as many developers ranked the category as moderately
important to cause a defect. In this case, twenty developers (40% of the developers) rank
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the code size as moderately important for the defectiveness of their code, while fifteen
developers (30% of developers) ranked the size as very important and nine developers (18%
of developers) ranked the category as important. On the other hand, five developers (10%
of developers) ranked the category as slightly important. Finally, only one developer (2%
of developers) ranked the category as unimportant. As a result, the code size is not as
important as the other two categories (complexity and coupling).

The final question (Q4) is similar to the remaining three questions (Q1, Q2, and
Q3). In this case, developers rate the impact of the lack of proper documentation as the
least relevant quality attribute to cause defects in the code. Thus, seventeen developers
(34% of the developers) rank documentation as very important for the defectiveness of
their code, while thirteen developers (26% of the developers) rank this quality attribute
as important. Additionally, twelve developers (24% of developers) believe the documenta-
tion is moderately important for software defects in the code, while five developers (10%
of developers) consider documentation slightly important, and three developers (6% of
the developers) rank documentation as unimportant for code defects. Overall, the doc-
umentation category is the least relevant quality attribute to cause defects in the code
based on developers’ perceptions, although 60% of the developers still consider this qual-
ity attribute as very important or important. Therefore, we rely on these questions to
answer the research question, Do developers agree with the machine learning models in
terms of quality attributes and software features that indicate defective code?

The developers do not always agree with the models since they believe code com-
plexity is the most relevant quality attribute to indicate software defects, while
models indicate documentation as the most important quality attribute.

Thematic Analysis. The survey includes an open question that allowed us to collect
qualitative information about quality attributes that are not present in the study. As
a result, developers could enter specific software features that they believe are relevant
to the defectiveness of software classes. Among the total number of developers (fifty
developers), twenty-two (representing 44%) entered the software features that they believe
are relevant to the defectiveness of the code and are not available in the static software
features. As the field is open, we received all sorts of comments from the developers’
perspectives. To analyze the responses, two research members, including the author of the
thesis, conducted a thematic analysis of the comments. Thematic analysis is a qualitative
method that allows researchers to analyze the data and identify the main themes [Flick,
2014]. Appendix B presents all the comments analyzed in the process. In the first stage
of the thematic analysis, the researchers separately classified each of the comments into
several categories. These two researchers then discussed the quality attributes with a third
researcher to consolidate the comments into reliable categories. Hence, we elaborated on
a set of ten quality attributes from the twenty-two developers’ comments. The list of
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quality attributes includes (i) testing, (ii) cohesion, (iii) coupling, (iv) code guidelines, (v)
documentation, (vi) team practices, (vii) inheritance, (viii) size, (ix) complexity, and (x)
invalid. We also concluded that the research members responsible for the categorization
could use up to three labels (i.e., quality attributes) per comment.

Finally, in the second stage of the thematic analysis, the researchers categorized
the comments based on the quality attributes. Figure 6.7 shows the quality attributes
created after the thematic analysis. The main quality attribute that developers selected
is Testing. In this case, eight developers pointed out that testing is important to avoid
defects, and it was not included in the quality attributes. Although we are aware of
the impact of testing the source code to guarantee high levels of software quality, this
characteristic of the code is not a static software feature. Testing the code is a dynamic
aspect of the source code that we have not used to predict defects. Second, four developers
think that both cohesion and coupling are important quality attributes, but cohesion is
not present in the quality attributes. Cohesion can be statically measured, and in fact,
they were included in the unified dataset [Ferenc et al., 2018, 2020a].

Figure 6.7: Thematic Coding of the Open-Field.

Source: Elaborated by the author.

Complementarily, three developers believe that Documentation and Code Guide-
lines are relevant to avoiding defects in the source code. Code documentation is one of
the quality attributes included in the survey. For example, one developer (D15) pointed
out that “Documentation should be intelligible around all development stages (QA, design,
product owner). For me, is the most important issue raised on this survey” (Appendix
B, comment 15). On the other hand, we did not include code guidelines in the static
feature set because they are not a static feature available in the dataset. We consider
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code guidelines to be related to design choices, such as design patterns. For instance, a
developer (D20) commented that “Some well-defined design pattern for the project is also
a very important thing” (Appendix B, comment 22).

Yet, two developers believed that Team Practices, Inheritance, Size, and Complex-
ity are relevant to the defectiveness of their code. Among these options, Inheritance is
not included in the study, although we could add features representing it. For instance,
DIT (Depth of Inheritance Tree) and NOC (Number of Children) are common features
representing this quality attribute. We consider team practices to be code agreements
between the team’s members (i.e., developers and project managers, among others). For
example, a developer (D17) pointed out that “I would consider testing (at least unit),
clean code and language standard conventions” (Appendix B, comment 17). Note that
the comment also mentions testing the code. We consider one invalid response (D1) in
the open field as the developer did not answer the question (Appendix B, comment 1).

To sum up, the open-field thematic analysis was relevant to identifying quality
attributes not included in the study. Although many quality attributes are related to
dynamic aspects of the code (e.g., code testing) or agreements between the team (such as
code guidelines and team practices), cohesion is a static quality attribute that we could
incorporate in a future investigation of the quality attributes.

6.3 Implications for Developers

The end of these surveys with machine learning models for developers’ understand-
ability provided insights into the implications of our work for the community.

(i) Such investigations are relevant as models could benefit developers during software
development. We conclude that developers can, for the most part, understand
SHAP explanations. Furthermore, it is interesting to note that developers consider
complexity as a significant quality attribute. These examinations demonstrate the
potential to apply a technique similar to the one used in our experimental phase
to build a tool or plugin that can reason about defects in software projects (as dis-
cussed in Chapter 4). The tool/plugin could prioritize complexity features, and we
could tune the model with the static features that developers cited in the thematic
analysis.

(ii) Even though we did not provide detailed training about the first survey (notably
the first survey and SHAP explanations), developers were able, in most cases (75%
in Q1, 62.5% in Q2, and 62.5% in Q3), to understand the output. We conclude
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that we achieved considerable model understandability, as developers could assess
the scenario by relying only on their knowledge about software development.

6.4 Threats to Validity

This section reviews the main limitations that could threaten the results discussed
in this chapter. We base the threats on well-known categories [Wohlin et al., 2012].

External Validity: The main threat to external validity concerns the classic software
features adopted in the first study. These features are based on McCabe or Halstead’s
work [McCabe, 1976, Halstead, 1977], and they do not capture modern software devel-
opment. It would be better to employ software features associated with object-oriented
design. Regarding the second study, the main threat to external validity concerns the
programming language we used to explore the features and models. In this case, we only
analyzed the Java programming language. Although the survey with developers had a
general-purpose approach, where we did not require developers to have experience with
that language, we cannot infer the effect of the programming language on the models and
developers’ perceptions.

Internal Validity: The main threat to the internal validity of both surveys is related to
the features we used to generate the explanations. We cannot guarantee that the authors
of these datasets collected the data correctly. Although we applied an extensive data
cleaning process to mitigate most of the problems [Petrić et al., 2016], we retained the
software feature values and the defect distribution as originally published [Menzies et al.,
2007, Ferenc et al., 2020a]. Therefore, if these values are imprecise, the SHAP explana-
tions may not accurately represent the understandability of a defect. Most importantly,
we recognize that the number of responses obtained in the surveys may not generalize to
the number of software professionals.

Construct Validity: The main threat to construct validity concerns the questions we
asked developers about the importance of the software features (Table 6.3). We designed
the questions to capture a quantitative overview of developers’ perception of a limited
local explanation or four quality attributes. Although there is an open field where de-
velopers could express their opinions about the study, it would be more appropriate to
validate the SHAP explanations/quality attributes with qualitative research. For exam-
ple, we believe the limitation of the questions may lead developers to the correct answer,
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even though we cannot assess how they could apply SHAP explanations in their software
development. As a result, we believe the limitation of the questions may result in a su-
perficial comparison between the SHAP explanations and quality attributes.

Conclusion Validity: For the first survey, although developers generally understood the
order of the features that influence defects, we noticed that some developers did not clearly
understand the output of Figure 6.1 and the importance of the given features (around
37). For the second survey, one prominent comment that emerged in the open field was
the inclusion of out-of-scope software features, such as code guidelines, team practices,
and testing. We believe the open field was not clear enough in terms of suggestions for
static software features (as in the case of coupling and cohesion). As a result, we could
not obtain most of the developers’ responses due to the out-of-scope software features.

6.5 Final Remarks

In this chapter, we conducted two investigations to examine the importance of
understanding the software features that contribute to defects. First, we conducted a
survey with 40 developers to evaluate their understanding of SHAP. We conclude that
SHAP explanations are useful for developers and that they can understand the most
impactful features using only their knowledge of software development. Although it is
difficult to evaluate the extent to which it affects them, we conclude that developers
could understand the local explanation because 30 developers (75%) disagreed or strongly
disagreed that they should increase the lines of code, which are already defect-prone. We
also explored whether developers understood the rank of importance of each software
feature that affects the defectiveness of the module. Developers performed slightly worse
than in the first question because only 62.5% agreed or strongly agreed with the correct
order of software features. Finally, we measured developers’ understanding of the order
of importance of each software feature, and in this case, 62.5% of developers chose the
correct combinations of software features contributing to a defective module.

For the second survey, we found that the developers’ perception was quite different
from that of the machine learning models. We noted that developers classified complexity
as the main quality attribute that causes defects in their code, while the models classified
documentation as the main quality attribute. This is an interesting result as it contradicts
the common sense about the quality attributes and their impact on defects. In the
upcoming chapter, we discuss the results of comparing defect models with code smells.
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Chapter 7

Comparison with Code Smells

As we discussed in previous chapters, software defects can appear at different stages of
the software system life-cycle, degrading software quality and impacting user experience
[Haskins et al., 2004]. Sometimes, the damage caused by software defects is irreversible
[Menzies and Zimmermann, 2013]. As a result, software costs increase as developers
require time to fix defects [Menzies et al., 2010], and it is better to avoid them as much as
possible. Several studies have shown that the presence of code smells and anti-patterns
are usually related to defective code [Olbrich et al., 2010, Khomh et al., 2012, Hall et al.,
2014, Palomba et al., 2018]. Code smells are indications of implementation decisions that
may degrade code quality [Fowler, 1999]. Anti-patterns are the misuse of solutions to
recurring problems [Brown et al., 1998]. For example, Khomh et al. (2012) found that
classes classified as God Classes are more defect-prone than classes that are not smelly.
In this chapter, we refer to code smells and anti-patterns simply as code smells.

One technique to mitigate the impact of defects and code smells is the application
of strategies to detect problematic code [Nagappan et al., 2006], usually using machine
learning models that predict defects or code smells [Menzies et al., 2004, Nagappan et al.,
2006, Hassan, 2009, D’Ambros et al., 2010, Khomh et al., 2011, Palomba et al., 2013,
Di Nucci et al., 2018, Tantithamthavorn et al., 2019, Cruz et al., 2020]. Training and
evaluating machine learning models are difficult tasks, as (i) a large dataset is needed
to avoid overfitting, (ii) obtaining labels and features for input is costly and requires
different supporting tools, (iii) setting up the environment for training and evaluating
models is time-consuming and computationally expensive, even though some tools can
help automate the process, and (iv) understanding the importance of features and how
they affect the model is complex [Lundberg and Lee, 2017].

With these difficulties in mind, our goal in this chapter is to identify a set of
features that developers can use to simplify the process of predicting defects and code
smells. We aim to reduce the number of features needed to predict or identify potential
candidates with defects and code smells. To the best of our knowledge, no other study
has investigated the similarities between defect and code smell models. Instead, most
studies focus on proposing and evaluating models that predict defects or detect code smells
[Khomh et al., 2011, He et al., 2012, Maiga et al., 2012b, Menzies and Zimmermann, 2013].
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In this chapter, we fill this gap by analyzing which features are redundant or different in
models built for predicting defects and seven code smells [Riel, 1996, Brown et al., 1998,
Fowler, 1999]. Furthermore, we highlight which quality attributes are relevant to their
prediction. This analysis is made possible by using the SHAP technique [Lundberg and
Lee, 2017, Lundberg et al., 2018b], which determines the contribution of each feature to
the prediction. Therefore, using SHAP (similar to the application presented in Chapter
5), we can verify which features contributed the most to the prediction and whether the
features had high or low values.

We organize the remainder of this chapter as follows. Section 7.1 describes the
study design. Then, Section 7.2 presents the results of our evaluation comparing the
defect model with the code smells. Section 7.3 discusses the main threats to the validity
of our investigation. Finally, Section 7.4 concludes this chapter.

7.1 Study Design

This section describes the study design employed to compare the software defects
and code smell models.

Goals and Research Questions. To investigate the similarities and redundancies be-
tween the software features used to predict defects and code smells. We employed data
preparation to find the software features for the defect and code smell models. Therefore,
our main objective is to compare the software features and quality attributes applied for
both predictions. We believe this information may simplify the prediction model and iden-
tify possible candidates for introducing defects and code smells. This chapter discusses
the following research questions.

RQ1. Are the defect and class-level code smell models explainable with the data?

RQ2. Which software features are present in both defect and code smell models?

RQ3. Which software quality attributes are more relevant for the prediction of both
defects and code smells?

To guide the remainder of the section. Figure 7.1 describes the study design in
detail. We start by collecting data about code smells and defects. Then, we validate the
code smells with developers. After that, we clean the data within the targets (i.e., code
smells and defects). Finally, we train the models and explain the results.
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Figure 7.1: Study Design Overview.
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Source: Elaborated by the author.

7.1.1 Data

Predicting defects or code smells is a supervised learning problem that requires
a dataset with values of independent and dependent variables for each sample [Khomh
et al., 2009, Tantithamthavorn et al., 2019]. In this study, we used a dataset that com-
bines several publicly available resources from the literature [Ferenc et al., 2018, 2020a,b,
Tóth et al., 2016] (see Section 3.4). The dataset contains data from 34 open-source Java
projects [Vale et al., 2021], and the features can be categorized into seven quality at-
tributes: documentation, coupling, cohesion, clone, size, complexity, and inheritance. It
is important to note that the dataset is imbalanced, with only around 20% of the classes
having a defect and code smells affecting 4-16.2% of classes. Despite this, the dataset
provides a rich set of software features for analyzing defects and code smells. Finally, the
use of open-source data makes it easier to collect code smells.

Data Collection. We started by collecting data on code smells to join with the defect
data [Ferenc et al., 2018]. We used the Organic tool [Oizumi et al., 2018] to detect the
code smells. This tool has been proven to effectively detect code smells and does not
require compilation. Since all projects are available on GitHub, we manually cloned the
source code matching the project version included in the dataset. As most of the systems
in the original dataset have fewer than 1,000 classes (20 systems), we collected data from
those with more than 1,000 classes (14 projects): Ant, Broadleaf, Camel, Elasticsearch,
Hazelcast, JDT, Jedit, Lucene, Neo4J, OrientDB, PDE, POI, Titan, and Xalan. We chose
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to focus on these projects because they represent 75% of the entire data and are readily
available on GitHub. Additionally, we matched the name of the detected instances of code
smells to the class name present in our defect dataset. Therefore, regardless of whether
a class had a smell or not, we only considered it if the match was found in both datasets
(i.e., the one with the defects and the one with the code smells). In these cases, we did
not consider the class for further investigation. We used this approach to avoid bias, as
it would be unfair to determine that a class that Organic could not find in the defect
dataset is non-smelly.

Organic collects a wide range of code smells, including method and class smells.
However, as the defect dataset is class-level, we only use the code smells found in classes.
For this reason, we obtained the ground truth of nine smells, as described in Section 2.2.
After collecting the data, we merged three code smells: Brain Class (BC), God Class
(GC), and Complex Class (CC) into one code smell. Despite their different definitions,
we merged BC and CC into GC due to their low occurrence in the dataset. GC repre-
sents a large class with too many responsibilities that centralize an important portion of
functionality [Riel, 1996]. Hence, we named the code smell as God Class (GC), since it is
more widely used in the literature [Schumacher et al., 2010]. Consequently, we evaluate
seven smells in total (God Class, Class Data Should be Private, Data Class, Lazy Class,
Refused Bequest, Spaghetti Code, and Speculative Generality).

Table 7.1 shows a summary of the data for each project. The first column presents
the project name and version included in the dataset. The second column presents the
number of classes for each system. Columns 3 to 9 show the number of smells found for
each project, and the last column shows the number of defects in the system. The “Total”
row represents the absolute number of classes and the number of smelly/defective classes.
The “Percentage” row presents the percentage of classes affected by smell/defect. We ob-
serve from Table 7.1 that the projects vary in size, with Lucene having the fewest classes
(500) and Elasticsearch having the most (2605). Although we selected projects with more
than 1,000 classes, not all classes were matched between the downloaded GitHub version
and Organic. As a result, some projects have less than 1,000 classes. We also observe
that the number of smells and defects varies greatly for each system. For instance, the
Xalan system has 456 instances of God Class and 947 defects, while even though Neo4J
is a large system, it has only 18 defects, i.e., 1% of its classes are defective.
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Table 7.1: Summary of the Data for each Project.

Project Class CP DC GC LC RB SC SG defect
Ant 1.7 1592 12 161 403 211 57 102 36 330
Broadl. 3.0 1303 3 231 168 97 66 36 36 277
Camel 1.6 2456 7 115 198 519 53 7 87 550
Elastic 0.9 2605 52 42 380 374 187 88 88 362
Hazelc. 3.3 1443 19 71 74 123 115 26 46 232
JDT 3.4 960 308 44 358 1 54 150 31 197
Jedit 4.3 1108 101 56 331 133 9 144 58 264
Lucene 2.4 500 51 13 96 67 66 36 15 208
Neo4J 1.9 1654 64 20 101 187 67 22 92 18
Orient. 1.6 880 54 30 181 141 40 58 53 171
PDE 3.4 1130 5 34 206 0 22 56 84 167
POI 3.0 822 6 103 58 130 219 18 17 434
Titan 0.5 765 28 11 75 96 18 29 54 66
Xalan 2.7 1794 102 113 456 298 211 159 60 947
Total 19012 812 1044 3085 2377 1184 931 757 4223
Percent. 100 4.3 5.5 16.2 12.5 6.2 4.9 4 22.2

Source: Elaborated by the author.

CP: Class Data Should be Private; DC: Data Class; GC: God Class; LC: Lazy Class; RB: Refused
Bequest; SC: Spaghetti Code; SG: Speculative Generality.

Code Smells Validation. To validate the code smells collected with Organic, we con-
ducted a manual validation with developers. First, we selected three of the most frequent
code smells from the dataset (God Class, Refused Bequest, and Spaghetti Code), since
manual validation is costly and developers have to first understand the code. Then, we
elaborated questions about each code smell based on the current literature: God Class
(GC) [Schumacher et al., 2010], Refused Bequest (RB) [Lanza et al., 2005], and Spaghetti
Code (SC) [Brown et al., 1998]. We then produced a pilot study with four developers
that did not participate on the final survey to improve the questions using classes that
Organic classified as one of the code smells. This allowed us to verify if the questions
were suitable for our goals and whether the surveyed developers understood them. For
each instance in our sample, we asked nine questions (three for each code smell). The
developer was blind to which code smells they were evaluating and had four possible re-
sponses: “Yes”, “No”, “Don’t Know”, and “NA” (Not Applicable). Furthermore, to make
our validation robust, we calculated the sample size based on the number of instances
for each of the three smells in our dataset. We then set a confidence level of 90% and a
margin error of 10%. As a result, the sample size should have at least eighteen classes
of each target code smell. Finally, to avoid biasing the analysis, we determined that two
developers should evaluate each instance in our sample. In this case, developers had to
validate 108 software classes (54 unique). To validate the 108 software classes, we invited
fifteen developers from distinct backgrounds.
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Table 7.2 presents the questions for each code smell that developers had to answer.
The first column represents the name of the code smell (three questions for each). The
second column presents the question itself. Finally, the last column is the expected
answer that developers should choose to agree with the Organic tool. As there were
three questions for each smell, developers needed to reach an agreement on two out of
three questions to consider the instance as truly containing the smell. In addition, if
two developers that evaluated the same instance disagreed on the presence of the smell,
a third and more experienced developer checked the instance to make the final decision.
This tiebreaker evaluation was done by two software specialists who did not participate in
the previous validation. In the end, the developers agreed that all God Class classifications
made by the tool were correct (i.e., 18 out of 18 responses). For Refused Bequest, the
developers agreed in 14 out of the 18 software classes (meaning that approximately 77%
of developers agreed with the tool). Finally, Spaghetti Code was slightly worse, where
the developers classified 13 out of the 18 classes as Spaghetti Code. Thus, Spaghetti
Code classes achieved an agreement of 72% between the developers and the tool. The
results demonstrate that Organic can identify code smells with an appropriate level of
accuracy (around 84% of agreement between them). For this reason, we conclude that
the Organic data is adequate to represent code smells, and we can proceed with the data
for the experimentation.

Table 7.2: Questions to Manually Validate Code Smells with Developers.

Smell Question Answer

GC
Does the class have more than one responsibility? Yes
Does the class have functionality that would fit better into other
classes?

Yes

Would splitting up the class improve the overall design? Yes

RB
Does the class use only a little of parent’s behavior? Yes
Does the class have too many methods that overrides the parent be-
havior?

No

Would refactoring the inheritance improve the overall design of this
class?

Yes

SC
Is the class well-structured? For instance, would you be able to clearly
state what the class is doing?

No

Is the class difficult to maintain? For instance, are there many condi-
tional branches in the code?

Yes

Are most of the methods from this class interacting with other objects? No

Source: Elaborated by the author.
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7.1.2 Machine Learning

The predictive accuracy of machine learning classification models depends on the
association between the structural software properties and a binary outcome [Caruana
and Niculescu-Mizil, 2006]. In this case, the properties are the software features widely
evaluated in the literature [Ferenc et al., 2018, 2020a], and the binary outcome is the
prediction of whether the class is defective or non-defective or if the class presents any of
the evaluated smells. To compare the defect and code smell prediction models, we rely on
the same set of software features, i.e., the models are trained with the same 66 measures,
except for the target representing the presence/absence of defect/code smell. We train
a separate machine learning model for each target, where each code smell and software
defect has its own model. To build these models, we employ a tool known as PyCaret [Ali,
2020] to assist in the different parts of the process, which are described later. Finally,
to test the capacity of the models, we apply five evaluation metrics: accuracy, recall,
precision, F1, and AUC [Cawley and Talbot, 2010].

Data Preparation. To prepare the data, we follow the fundamental steps described in
Figure 7.2. The three rounded rectangles indicate the steps and the actions we performed
to prepare the data. Furthermore, we show below each step how many classes and software
features we had to process. First, we clean the data (i). Then, we explore the data to
identify the best representation for our models (ii). After that, we prepare the features
to avoid overfitting (iii).

Figure 7.2: Data Preparation Process Overview.
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Source: Elaborated by the author.
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Data Cleaning. We first applied data cleaning to eliminate duplicated classes, non-
numeric data, and missing values [Petrić et al., 2016]. Hence, we were able to
reduce the size of the dataset by removing a small number of repeated entries (61
classes) and over-represented software features, reducing the number of features
from 70 to 65. The four removed features gathered information about the exact line
and column of the source code where a class started and ended. Finally, we checked
for missing values and executed data imputation, but the dataset had none.

Data Exploration. In the second step of the machine learning process, we executed data
exploration. We used one-hot encoding [Lin et al., 2014] on the type feature, which
stores information about the class type, to create two new features for class and
interface types. Next, we applied data normalization using Standard Scaler [Raju
et al., 2020]. Finally, we employed Synthetic Minority Oversampling Technique
(SMOTE) [Tantithamthavorn et al., 2019] to deal with the imbalanced nature of
the dataset. Table 7.1 summarizes the imbalanced nature of the targets compared to
the data collection. For example, out of 19,000 classes, only 757 exhibit Spaghetti
Code (almost 4% of classes). Therefore, oversampling was necessary to generate
models that could generalize to unseen data.

Feature Engineering. In the final step, we applied feature engineering to select relevant
software features. First, we executed feature selection, correlation analysis, and mul-
ticollinearity thresholds. The feature selection technique chose a subset of software
features from various permutation importance techniques, including Random For-
est, Adaboost, and Linear correlation [Jiarpakdee et al., 2021]. Second, we checked
the correlation between the subset of software features (99% of threshold). We re-
moved five software features (LLDC, TNLPA, TNA, TNPA, and TCLOC) because
they were highly correlated with other software features (LDC, CLOC, NA, NLPA,
and NPA). Additionally, we set the multicollinearity threshold to 85%, meaning
that we removed software features with a correlation higher than the threshold. In
the end, we were left with 56 software features.

Training the Models. To build our classifier, we employed a technique known as the en-
semble model [Ali, 2020]. This technique learns how to best combine the predictions from
multiple machine learning models. Thus, we used a stronger machine learning model in
terms of prediction since the ensemble combines the prediction power of multiple models.
To assess the performance of our models, we employed a method called k-fold cross-
validation. This technique splits the data into K partitions. In our work, we used K=10
[Cawley and Talbot, 2010], and at each iteration, we used nine folds for training and the
remaining fold for validation. We then permuted these partitions on each iteration. As a
result, we used each fold as training and as the validation set at least once [Kohavi, 1995].
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This method allows us to compare distinct models, helping us to avoid overfitting as the
training set varies on each iteration.

To identify which models are suitable for our goal, we evaluated fifteen machine
learning algorithms: CatBoost Classifier [Ali, 2020], Random Forest [Fukushima et al.,
2014], Decision Tree [Ferenc et al., 2020a], Extra Trees [Ali, 2020], Logistic Regression
[Jiang et al., 2013], K-Neighbors Classifier (KNN) [Xuan et al., 2015], Gradient Boosting
Machine [Yatish et al., 2019], Extreme Gradient Boosting [dos Santos et al., 2020b], Lin-
ear Discriminant Analysis [Ali, 2020], Ada Boost Classifier [Pedregosa et al., 2011], Light
Gradient Boosting Machine (LightGBM) [Ke et al., 2017], Naive Bayes [Turhan et al.,
2009], Dummy Classifier [Pedregosa et al., 2011], Quadratic Discriminant Analysis [Ali,
2020], and Support Vector Machines (SVM) [Gray et al., 2009]. This is an extended list
of the algorithms presented in Chapter 2. The use of PyCaret allowed us to easily employ
these algorithms. Furthermore, to tune the hyperparameters of each model, we applied
a technique called Optuna [Akiba et al., 2019]. Optuna uses Bayesian optimization to
find the best hyperparameters for each model. After experimenting with all the targets,
we observed that five models are able to achieve good performance independently of the
target: Random Forest [Fukushima et al., 2014], LightGBM [Ke et al., 2017], Extra Trees
[Bui et al., 2022], Gradient Boosting Machine [Tantithamthavorn et al., 2017], and KNN
[Xuan et al., 2015]. The data on the performance of the evaluated models can be found in
Appendix D. To evaluate our models, we focused on the F1 and AUC metrics. F1 repre-
sents the harmonic mean of precision and recall [Davis and Goadrich, 2006]. Additionally,
AUC is relevant because we are dealing with binary classification, and this metric shows
the performance of a model at all thresholds. For these reasons, both metrics are suitable
for the imbalanced nature of data [Cawley and Talbot, 2010].

Explaining the Models. The current literature offers many possibilities to explain ma-
chine learning models in various problems. One of the most prominent techniques spread
in the literature is the application of SHAP (SHapley Additive exPlanation) values [Lund-
berg and Lee, 2017], as discussed in Chapter 5. These values compute the importance of
each feature in the prediction model. Therefore, we can reason why a machine learning
model made specific decisions about the domain. For this reason, SHAP is suitable since
machine learning models are challenging to explain [Tantithamthavorn and Hassan, 2018],
and features interact in complex patterns to create models that provide more accurate
predictions. Consequently, understanding the logic behind a software class is a critical
factor that can help address the causes of a defect or code smell in the target class.
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7.2 Results

This section presents the results of our study. First, we discuss the performance
of the models. Second, we present the results of the comparing the models.

Predictive Capacity. Before explaining the models, we evaluate whether they can
effectively predict code smells and defects. Even though we originally built models for
the entire set of code smells, we observed that only three code smells (God Class, Refused
Bequest, and Spaghetti Code) have comparable models to the defects. For this reason, we
focus on the results of these code smells. We believe that some code smells are dissimilar
to the defect model because they indicate simple code less likely to have a defect, such as
Lazy Class and Data Class. As a result, these code smells do not seem to have similarities
with the defects. Results of the remaining code smells are available in Appendix D.

Table 7.3 shows the performance of each ensemble machine learning model with
our four targets (i.e., defects and the three code smells). The values in the columns
represent the mean of the 10-fold cross-validation. We present the performance for the five
evaluation metrics in each column. From Table 7.3, we can observe that the performance
of the ensemble model for the four targets is fairly acceptable, with machine learning
models presenting an F1 score ranging from approximately 65% (defect model) to 82%
(God Class model). These numbers are similar to other studies with similar purposes
[Ferenc et al., 2018, 2020a]. We conclude that the models can predict the targets with
acceptable accuracy, as shown by the high AUC values in Table 7.3. Therefore, we
may exploit these machine learning models to explain their predictions using the SHAP
technique. By doing so, we can reason about the similarities of the software features
associated with defects and code smells.

Table 7.3: Performance of the Machine Learning Models.

Target Accuracy AUC Recall Precision F1
God Class 0.944 0.973 0.801 0.844 0.823
Refused Bequest 0.976 0.951 0.645 0.939 0.765
Spaghetti Code 0.971 0.977 0.715 0.692 0.705
Defect 0.843 0.865 0.701 0.609 0.652

Source: Elaborated by the author.

RQ1. The results show that the predictive accuracy of the defect and code smell
models can be used to compare the models in terms of their features, with good F1
measures and high AUC. We also found that the class-level code smell models are
slightly superior to the defect model in all five evaluation metrics.
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Explaining the Models. This section discusses the explanation of each target model,
and we rely on SHAP to support the model explanation [Lundberg and Lee, 2017]. To
simplify our analysis, we consider the top 10 software features that have the most influ-
ence on each prediction model’s targets. We then compare each code smell model with
the defective one to find similarities and redundancies between the software features that
help the machine learning model predict the target code smells and defects. We extract
these ten software features from the four target models, which include the defect model
and the three code smell models. To illustrate our results, we use a Venn diagram to
check the intersection of features between the four models (Figures 7.3, 7.4, and 7.5).
The Venn diagram displays two dashed circles: one for the code smell model and another
for the defect model. Inside each dashed circle, we present the top-10 software features
that contribute the most to the prediction of the target with inner circles. The color of
these inner circles represents the feature’s quality attribute (Section 2.2). Similarly, the
size of the inner circle represents the feature’s influence on the model, meaning that the
larger the size, the more it contributes to the target prediction. On each side of the inner
circles, we have an arrow that indicates the direction of the feature value. For instance,
a software feature with an arrow pointing up means that the software feature contributes
to the prediction when its value is high. On the other hand, a software feature with an
arrow pointing down means that the feature contributes to the prediction when its value
is low. The software features in the intersection have two inner circles because they have
a different impact on each target, i.e., defect and the three code smells. For a better
understanding of the acronyms, we provide a table on the right side of each diagram that
lists the acronym and the full feature name of all the features that appear on the diagram.

God Class. Figure 7.3 displays the top-10 features that contribute to the Defect and
God Class models, along with their feature intersection. From the figure, we can observe
that the Defect model has an intersection with the God Class model of six out of ten
features, which means that 60% of the top-10 software features that contribute the most
to predictions are the same for both models. These features are CD, CLOC, AD, NL,
NLE, and CLLC, with most of them related to documentation (three out of six) and com-
plexity (two out of six). The only difference is for the CD feature, where low values help
in predicting a God Class. For all the other features, high values predict a defect or a God
Class (as indicated by the arrows pointing up). Additionally, in terms of importance, the
largest inner circles for both models are for NLE, NL, and AD. However, the importance
of AD is smaller for the God Class model than for the Defect model. Meanwhile, for NLE,
the importance of the God Class model is slightly larger than that of the defect model.
For the NL feature, its importance is equivalent in both models.

Refused Bequest. Figure 7.4 shows the top 10 features that contribute the most to the
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Figure 7.3: Top-10 Software Features for the Defect and God Class Models.
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Defect and Refused Bequest models. We can observe from the Venn diagram in Figure
7.4 that the Defect model has an intersection of 40% (4 out of 10 features) with the Re-
fused Bequest model when considering their top 10 software features. The features that
intersect are CD, AD, NLE, and DIT. It is interesting to notice that for three out of the
four software features in the intersection, the values that help detect the Refused Bequest
have to be low (see arrows pointing down), while for the Defect model, all of them require
high values. Furthermore, most of the Refused Bequest features have to be low (6 or
60%). In terms of importance, DIT and NLE features have similar importance for both
models. However, CD and AD’s contribution to the Refused Bequest model was smaller.
Additionally, two features that highly contributed to the Refused Bequest are not in the
intersection (NOP and NOA), while one (NL) is outside the intersection for the Defect. We
also note that three features are related to the inheritance quality attribute, but only one
intersects for both models, the DIT one. We also observe that the size is relevant for both
models. However, we do not have any size feature in the intersection of the models. The
cohesion aspect was important only for the Refused Bequest model. The documentation
attribute, which is relevant for the Defect model (4 out of 10), has two of them with small
importance (CLOC and PDA). The complexity attribute, indicated by NLE, is also very
relevant for both models. CBO is the only coupling feature in the Refused Bequest model.

Spaghetti Code. Figure 7.5 presents the ten features that are the most important to
the Defect and Spaghetti Code models. We observe in Figure 7.5 that the Spaghetti Code
model has a 50% intersection with the Defect model. They intersect with the CD, CLOC,
CLLC, NL, and NLE software features. For both models, most features need high values,
except for one for Spaghetti Code, the CD. The features NL, NLE, and CLOC had similar
importance. On the other hand, the CD feature contributes less to the Spaghetti Code,
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Figure 7.4: Top-10 Software Features for the Defect and Refused Bequest Models.
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while the CLLC feature contributes less to the Defect model. It is interesting to notice
that most features that highly contribute to the Spaghetti Code prediction are outside
the intersection (NOI, TNOS, and CBO). Furthermore, the complexity quality attribute
intersects both models (i.e., 2 out of 5). In addition, two of the documentation features
on the Defect model are important for the Spaghetti Code model. In terms of clone du-
plication, it also intersects half of the features of the Spaghetti Code model (CLLC). The
size is relevant for both models, but none of the features intersect (2 out of 10 for both
models). The features TLOC and NLG appear on the Defect model, while the TNOS and
TNLA appear on the Spaghetti Code model. The coupling is exclusive to the Spaghetti
Code model, while the inheritance is exclusive to the Defect model.

Discussion. After observing the three figures (Figures 7.3, 7.4, and 7.5), we notice some
intersections between the four models. For instance, CLOC is important for the Defect,
God Class, and Spaghetti Code models, even though its importance for God Class was
smaller (see inner circle sizes). For this trio, we also note that NL and CLLC were impor-
tant for all three models, although CLLC made a smaller contribution in comparison to
other features. Regarding the Defect, God Class, and Refused Bequest, we highlight that
the AD feature was highly important for all three models. In addition, there were some
intersections between the smell models. For the God Class and Spaghetti Code pair, we
note that both NOI and TNOS were highly relevant to the models. Finally, CBO was
moderately important for the God Class, Refused Bequest, and Spaghetti Code models.
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Figure 7.5: Top-10 Software Features for the Defect and Spaghetti Code Models.

TNLA

CBO
Documentation

Size

Complexity

Clone

Coupling

Inheritance

TNOS

NOI

LDC

PDA

AD

DIT

TLOC

NLG

CD

CLOC

CLLC

NL

NLE

Defect vs. Spaghetti Code
AD API Documentation

CBO Coupling Between Object Classes

CD Comment Density

CLC Clone Line Coverage

CLLC Clone Logical Line Coverage

CLOC Comment Lines of Code

DIT Depth of Inheritance Tree

NL Nesting Level

NLE Nesting Level Else-If

NLG Number of Local Getters

NOI Number of Outgoing Invocations 

PDA Public Documented API

TLOC Total Lines of Code

TLNA Total Number of Local Attributes

TNOS Total Number of Statements

Source: Elaborated by the author.

RQ2. There is a group of software features that intersect between the defect models
and the three code smells. More importantly, Nesting Level Else-If (NLE) and
Comment density (CD) appear in the four models, although the CD influence is
considerably low for the evaluated code smells. Furthermore, CBO is important for
all the code smells, but not the defect model.

Figure 7.6 presents the number of features corresponding to the evaluated quality
attributes according to the top-10 features. We stack each quality attribute horizontally
to facilitate comparison. We note that documentation, complexity, and size are the most
important quality attributes contributing to the prediction of defects and code smells.
Hence, our results suggest that researchers do not need to focus on all features to predict
defects and code smells. The redundancies between the models imply wasted research
effort, as despite the models dealing with very different symptoms of problematic code
(i.e., code smells and defects), they are indeed very similar for at least three code smells.
Furthermore, we note that a subset of features is sufficient to predict the targets. For
instance, software features related to documentation are the most relevant for the Defect
and God Class models, with 4 and 3 features in the top-10, respectively. The Refused
Bequest model requires software features related to inheritance (3 features), but size
and documentation are also relevant with two features each. Meanwhile, the Spaghetti
Code model is the most comprehensive, requiring features linked to documentation, size,
complexity, coupling, and clone duplication, all with two features each. Finally, based on
the results discussed, we conclude that the four ensemble machine learning models require
at least one software feature related to documentation (CD) and complexity (NLE) to
predict the target.
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Figure 7.6: Comparison between the Top-10 Features of each Target.

Source: Elaborated by the author.

RQ3. The most relevant quality attributes to predict defects and code smells vary
greatly between them. For instance, documentation is more important for the De-
fect and God Class models, while Spaghetti Code has all of its five quality attributes
with the same importance, and Refused Bequest prioritizes the inheritance. Docu-
mentation, complexity, and size contribute more to the prediction of the targets.

7.3 Threats to Validity

This section reviews the main limitations of this chapter [Wohlin et al., 2012].

Internal Validity: In our investigation, the chosen dataset is a potential threat to in-
ternal validity [Wohlin et al., 2012], as we used data documented in the literature [Ferenc
et al., 2018, 2020a]. For this reason, we cannot assess data quality, as any storing process
could insert erroneous data, which is common in a complex context such as software de-
velopment. Furthermore, the use of Organic is also a threat; however, we validated the
outcome by asking developers for a statistical sample of the results. Finally, the limited
number of evaluated projects may hinder the model’s generalization to other contexts,
although we covered 75% of the defect data with the chosen projects.
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External Validity: In this study, the external threat to validity [Wohlin et al., 2012]
relates to the limited number of programming languages we examined to compare the tar-
gets. In this case, we restricted our analysis to the Java programming language to make
it feasible. However, we selected relevant open-source systems that differ in domains,
maturity, and development practices. Therefore, we cannot guarantee that our results
generalize to other languages and contexts.

Construct Validity: The use of SHAP is a potential threat to construct validity [Wohlin
et al., 2012]. Other techniques, such as Lime [Ribeiro et al., 2016], are available to explain
a machine learning model.

Conclusion Validity: Our study only matched a portion of the data collected with Or-
ganic and the defect data. Even though we retrieved the same version from GitHub, some
classes could not be located. One of the main reasons for unmatched software classes is
likely due to class name and dependency refactoring. Therefore, we cannot guarantee how
different the results would be if more classes could be matched. Additionally, our study
focused on a diverse range of domains, which could potentially impact generalization.

7.4 Final Remarks

Building upon the research presented in the previous chapter, in this chapter, we
investigated the relationship between defects and code smell models. To do so, we identi-
fied and validated the code smells collected with Organic. Then, we applied an extensive
data processing step to clean the data and select the relevant features for the prediction.
Subsequently, we trained and evaluated the models using an ensemble of models. In the
end, as the models performed well, we employed an explainability technique known as
SHAP to understand the models’ decisions. We concluded that among the seven code
smells initially collected, only three of them were similar to the defect model (Refused
Bequest, God Class, and Spaghetti Code). In addition, we found that the features Nesting
Level Else-If and Comment Density were relevant for the four models. Furthermore, most
features require high values to predict defects and code smells, except for the Refused
Bequest. Finally, we reported that the documentation, complexity, and size quality at-
tributes are the most relevant for these models. We encourage the community to further
investigate and replicate our results. For this reason, we made all data available [dos
Santos, 2023b].
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Chapter 8

Conclusion

Software defect prediction is a complex task due to the intrinsic characteristics of soft-
ware that may hinder the complexity of the software system. For this reason, current
literature focuses on a diverse range of techniques to predict software defects. Despite
the undeniable importance of existing efforts for defect prediction, these studies are con-
cerned with limited aspects of the source code. More importantly, these investigations
lack an understanding of why the machine learning model has predicted a target software
class as defective-prone. While explaining the decisions made by the models is key to
understanding the arrangement of defects, the software engineering literature often leaves
aside this topic.

In this thesis, we tackled the understandability of machine learning models for
defect prediction. This chapter presents the conclusion of the thesis with insights about
future research opportunities on the understandability of defect models. Therefore, we
divide the chapter into three main sections. Section 8.1 summarizes the results obtained in
the aforementioned chapters. Section 8.2 discusses the main findings of the thesis divided
into topics. Finally, Section 8.3 examines the research opportunities left open for future
explorations.

8.1 Thesis Summary

In the early stages of the thesis, we conducted an ad-hoc literature review to in-
vestigate the state-of-the-art on defect prediction. Our aim was not only to synthesize
available evidence in the literature but also to identify gaps and research opportunities.
Thus, we identified a research gap in the understandability of machine learning models
for defect prediction. For this reason, this thesis aimed to provide a detailed investigation
into understanding defects in software instances (i.e., classes or modules). To achieve this
goal, we employed a variety of software features to validate our investigations. These
software features represented various aspects of the source code, including size, complex-
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ity, documentation, coupling, inheritance, and cohesion. We searched the feature space
of machine learning models to investigate the influence of software features on the defec-
tiveness of a class or module. This is important because understanding these machine
learning models may assist developers in the decision-making process concerning software
development and the identification of defective-prone classes or modules. To investigate
these overarching goals, we introduced the following specific goals (SG).

− SG1 Investigate the datasets commonly applied in the current literature to predict
software defects.

− SG2 Find a machine learning model that can search the space of software features
comparing the predictive accuracy of these models with baseline machine learning
models.

− SG3 Understand the software features that may generate defects in several software
projects for three datasets.

− SG4 Evaluate developers’ perceptions about the software features that contribute
to their defective code.

− SG5 Compare the similarities and redundancies between models for defect predic-
tion and models for code smells detection.

For SG1, we identified three datasets from the ad-hoc literature review conducted
at the beginning of this thesis. These datasets vary in software features, size, and defect
distribution, among other characteristics. More importantly, these data differ in how they
implement the concept of a software defect. We concluded that the datasets comprise four
relevant sources for the research community because many studies employed these data to
predict defects [Menzies et al., 2004, D’Ambros et al., 2010, Menzies et al., 2010, Jureczko
and Spinellis, 2010, Jureczko and Madeyski, 2010, Ferenc et al., 2018, 2020a]. Hence, these
data illustrated the importance of data quality and reproducibility for defect prediction
investigations. Although most software features are unique to each dataset, the data
shared the imbalanced nature frequently found in the current literature. In this case, the
datasets usually have more clean instances (i.e., classes or modules) than defective ones
(see Chapter 3). As a result, we concluded that the software features relate to many
aspects of the source code. For instance, we identified five categories of software features:
(i) class-level, (ii) entropy, (iii) change, (iv) McCabe and Halstead, and (v) additional
features not correlated with the remaining groups. Additionally, the class-level software
features are divided into seven quality attributes: (i) documentation, (ii) coupling, (iii)
cohesion, (iv) complexity, (v) clone, (vi) inheritance, and (vii) size. Furthermore, most
software features are associated with object-oriented programming.
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For SG2, we employed a set of baseline machine learning models to predict soft-
ware defects and evaluate the effectiveness of these models. As a result, we compared
these baseline models with the proposed implementation of gradient boosting (named
Unbiased Search XGBoost). The algorithm conveyed an exploratory examination that
produced hundreds of thousands of random machine learning models from several software
features. These machine learning models were random because they promptly selected the
features from the entire pool of software features available for defect prediction. Finally,
we investigated the predictive power of the machine learning models using the target
datasets. This examination revealed how hard it is to detect defects, as only a minor
fraction of the models (only 1.8%) achieved a performance higher than 83% based on the
AUC numbers (see Chapter 4). We concluded that a limited set of features produced high
accuracy numbers. We hope our effort may convert into a benchmark for other solutions
to defect prediction using Java projects.

For SG3, we applied a technique described as Shapley Additive exPlanations
(SHAP) to explain the machine learning models [Lundberg et al., 2018a]. Thus, we could
reason about the model decision and how the target software features influence them
(i.e., predicting whether a software class is defective or not). The results indicated how
difficult it is to generate a unique solution to understand defect models (see Chapter 5).
For this reason, we concluded that independent projects are subject to distinct software
features that may cause software defects in different parts of the code. Moreover, the
SHAP explanations suggested that some software features (e.g., LOC, AGE, NOA, AMC,
among others) tend to lead to a higher probability of defects if the software feature value
is high. We also concluded that the best-performing models are simpler to understand,
as they employ fewer features from the pool of software features.

For SG4, we carried out a survey with 40 developers from different software engi-
neering backgrounds. We examined the developers’ perception of SHAP values [Lundberg
et al., 2020]. We concluded that SHAP explanations are valuable for developers in two
ways. First, developers could reasonably understand and reason about the most impact-
ful software features with only their knowledge about software development. Second,
the applied technique identified the software features the developers could eventually
act upon in the source code (see Chapter 6). We drew these conclusions from the fact
that 30 developers (75%) disagreed or strongly disagreed that they should increase the
lines of code in the defective-prone module (where lines of code were the main factor for
defect-proneness). In addition, developers performed slightly worse for the remaining two
research questions as 25 developers (62.5%) agreed or strongly agreed with the correct
order of software features that generated defects in the source code. However, we un-
derstand that the number of responses obtained in the survey may not generalize to the
number of software professionals, characterizing a threat to internal validity.

For SG5, we examined the similarities and redundancies between defect and code
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smell models. To do so, we employed an ensemble method that combines the predic-
tions of multiple models. First, we identified code smells using a tool called Organic and
then validated them with developers to ensure the precision of the tool. As a result, we
concluded that the tool has an agreement of 84% with developers. Second, we cleaned
and selected relevant features for our prediction models. Therefore, we trained and eval-
uated the models using the ensemble technique. As the models had good performance
measures, we applied SHAP to understand the decisions. Our results showed that out of
the seven code smells we initially identified, only three had similar models to the defect
model. These code smells are Spaghetti Code, God Class, and Refused Bequest. Finally,
we also concluded that certain software features, such as Nesting Level Else-If (NLE) and
Comment Density (CD), were important for all four models. We observed that most fea-
tures required high values to predict defects and code smells, except for Refused Bequest.
Finally, we concluded that documentation, complexity, and size quality attributes are the
most important for these models.

8.2 Main Results

This section presents the main results of the thesis. We distribute the thesis project
into five fundamental steps.

Step 1 ⇒ Foundations and Ad-Hoc Literature Review

− Theoretical Foundation: This step resulted in an ad-hoc literature review to identify
the most relevant studies about defect prediction and understandability of these
machine learning models. Thus, we gathered the essential concepts and definitions
concerning defect prediction.

− Description of the machine learning models: This step classified the machine learn-
ing models that the current literature applies to detect defects in source code.

− Association of the evaluation metrics: This step discovered the evaluation metrics
that studies employ to evaluate the performance of the machine learning models for
defect prediction.

Step 2 ⇒ Datasets for Defect Prediction Mapping

− Datasets literature mapping: This step involved identifying the three relevant data
for defect prediction. We found that two datasets relate to object-oriented design
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(measuring code complexity and size using CK features or other features), while
one dataset relates to McCabe and Halstead features.

− Datasets exploration: This step involved exploring the three datasets, including the
data distribution and the number of defects related to each software class or module.
As the datasets were imbalanced (with more clean classes than defective ones), we
explored the data to address this issue.

Step 3 ⇒ Empirical Studies over Defect Prediction Understandability

− Effectively predict software defects: This step resulted in an algorithm based on
gradient boosting that explores the feature-space. This investigation reveals how
difficult it is to detect defects, as only a small fraction of the machine learning models
(1.8%) achieved a performance higher than 83% based on the AUC numbers.

− Understandability of defect prediction models: This step focused on the under-
standability of defect prediction machine learning models. We determined that the
best-performing models are simple to understand, as they use only a few features
from the power-set. Additionally, the explanations suggest that numerous software
features lead to a higher probability of defect prediction if the feature value is high.

− Developers’ perception regarding the defect models: This step aimed to evaluate
developers’ perception of SHAP explanations generated from the machine learning
models. We conclude that the explanations are valuable to developers as they could
reasonably understand and reason about the most impactful software. In addition,
we identified software features that developers could act upon in the source code.
However, we recognize that the number of responses obtained in the survey requires
further investigation to complement the findings on developers’ perception.

Step 4 ⇒ Comparison with Code Smells Models

− Code smells identification: This step resulted in the identification of code smells
using the Organic tool. We focused on class-level code smells, such as Class Data
Should be Private, Data Class, God Class, Lazy Class, Refused Bequest, Spaghetti
Code, and Speculative Generality. We then merged the code smells with the defect
dataset.

− Code smells validation with developers: This step focused on the validation of the
code smells. To do so, we determined that fifteen developers should evaluate 108
Java software classes. We asked developers to evaluate classes related to three code
smells (i.e., God Class, Refused Bequest, and Spaghetti Code). Developers were
blind to the code smells related to each class. In the end, we conclude that the tool
has an agreement of 84% with developers.
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− Comparison between defect and code smell models: This step aimed at the com-
parison between software defect models and code smells focusing on similarities and
redundancies. We concluded that, in fact, models for defect prediction are similar to
models of two code smells: God Class (GC) and Spaghetti Code (SC). In addition,
the model is also comparable to the Refused Bequest (RB) model, although the
software features have opposite impacts on the target. For instance, Nesting Level
If-Else (NLE) required a low value to predict RB while it demanded a high value
to predict a defect. We also concluded that two software features are determinants
to predict defects with the Unified dataset features, NLE and Comment Density
(CD). In addition, we note that documentation, complexity, and size are the most
important quality attributes to avoid defects.

Step 5 ⇒ Summarization of Understanding Software Defect Models

− Developers perception about quality attributes: This step focused on the evaluation
of the developers’ perception about quality attributes and their impact on software
defects. We concluded that developers perceive that the complexity of the source
code is the most important quality attribute to avoid defects. However, the ma-
chine learning model detected that the documentation quality attribute is the most
important quality attribute to avoid defects. Furthermore, we noted that develop-
ers perceived a list of dynamic software features, such as testing and agreements
between the software team (e.g., code guidelines and team practices) as important
attributes left from the study.

− Threshold of software features to predict defects: This step aimed at the evaluation
of the threshold of selected software features to predict defects. We concluded that
most software features should have small values to decrease the probability of the
model finding a defect in the class. For instance, developers should keep WMC
around 35, and CBOI should not exceed 77 to help the class maintaining a non-
defective state.

− Release of the replication package: This step focused on the release of the replication
package that included the artifacts of the thesis [dos Santos, 2023b]. The replication
package is a crucial resource that allows other researchers to replicate our work and
build upon it [Yatish et al., 2019]. Replication is an important part of the scientific
process, as it helps to verify and validate the results of a study. By making our data
and methods available to the community, we are encouraging others to replicate our
work and contribute to the advancement of knowledge in understandability of defect
models. Furthermore, the replication helps to ensure the reliability and robustness
of research findings, and can lead to the development of new insights. We encourage
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the use of our replication package, and hope that it inspires further research and
collaboration within the defect prediction community.

8.3 Research Opportunities

This section presents the research opportunities that we identified during the thesis
project. We distribute the research opportunities into 5 themes.

− Method-level Defect Prediction and Code Smells Detection: This entire
thesis evaluated defects or code smells in two specific scopes: class-level or modules.
We can still explore the space of methods, decreasing the granularity and provid-
ing different insights about the software defects in terms of understandability. In
fact, methods are the subject of other studies within the defect prediction [Tosun
et al., 2010, Pascarella et al., 2020]. However, there is still room to explore the
understandability of machine learning models at the method-level. Furthermore,
we can explore the space of code smells in methods since there are several method-
level code smells, such as Feature Envy, Long Method, Brain Method, Dispersed
Coupling, Intensive Coupling, Long Parameter List, Message Chain, and Shotgun
Surgery [Fowler, 1999, Oizumi et al., 2018]. Thus, we could compare the mod-
els for method-level defect prediction and code smell detection by replicating the
experiments of Chapter 7.

− Translate the Replication Package into a Tool/Plugin: The replication pack-
age contains all the artifacts to replicate the experiments reported in this thesis.
Researchers and practitioners could develop a tool/plugin to automate the process
of running experiments and generating the results for unseen data. This tool/plugin
could also generate the SHAP explanations for the unseen data. The replication
package has a notebook designed for that purpose [dos Santos, 2023b]. However,
the notebook is not fully automated. Future iterations of the tool could also au-
tomatically collect data from public repositories to retrain the models and allow
practitioners to use the tool/plugin to predict defects in their code. Furthermore, a
tool/plugin would motivate the open-source community to contribute and improve
the tool. As a result, the tool/plugin would be more robust and reliable and poten-
tially integrated with open-source Integrated Development Environments (IDEs)
such as Visual Studio Code.
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− Integrate the Models into CI/CD Pipelines: One great opportunity to apply
the results discussed in this thesis is the integration into CI/CD pipelines. Other
studies have already explored the use of defect models in real-time software projects
[Turhan et al., 2009]. However, that study is relatively old for software development
standards, meaning that there are new technologies and opportunities to integrate
code checks [Zampetti et al., 2021]. In addition, the models could be integrated
into the CI/CD pipelines to provide developers with SHAP explanations. We could
do the integration in two ways: (i) developers could use the SHAP explanations to
improve the code before the CI/CD pipeline runs the tests; (ii) the CI/CD pipeline
could use the models to alert developers about the software features that may cause
defects in their code.

− Defect Definition: One of the main problems with the defect prediction literature
is the lack of standardization for the defect concept itself. For instance, the Jureczko
datasets employ the “BugInfo” tool to identify defects, which analyzes the logs
of each target repository to identify the commits that fix a defect [Jureczko and
Spinellis, 2010]. However, the tool does not consider the number of defects fixed
by each commit. Thus, the tool may identify a commit that fixes multiple defects
as a single defect. One opportunity to explore is the use of data from GitHub to
identify the commits that fix a software defect and the number of defects fixed by
each commit. The current literature already considers some heuristics to find a
corrective commit [Hindle et al., 2009] that could sustain these explorations. This
is important because the definition of the defect concept is essential not only for
the performance of the models but also for the understandability of the models. In
fact, the understandability of the models is directly related to the definition of the
defect concept [Lundberg et al., 2020].

− Unsupervised Learning: The current literature on defect prediction mostly em-
ploys supervised learning techniques to train the machine learning models. However,
other techniques could be explored such as unsupervised learning. For instance,
Yang et al. [2016] employed unsupervised learning techniques to predict defects and
compared the results with widely applied supervised learning techniques. They con-
clude that for a set of projects the unsupervised learning techniques outperformed
the traditional supervised learning techniques. For this reason, more studies should
explore the use of unsupervised learning techniques to predict defects, especially
because they do not depend upon the software defect definition discussed above.
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Appendix A

NASA Features

Table A.1: Description of NASA Features.

Feature Description
Branch Count Measures the number of branches of the module.
Cyclomatic Complex-
ity

Measures the number of linearly independent paths through
a program’s source code.

Design Complexity Measures the cyclomatic complexity of a module’s reduced
flowgraph.

Essential Complexity Measures the degree of structure and quality of the code.
Halstead Content Measures the number of unique operators and operands.
Halstead Difficulty Measures the difficulty of a module. It is proportional to the

number of unique operators.
Halstead Level Measures the inverse of the defect proneness of the module.
Halstead Effort Measures the effort to understand a module. It is proportional

to the volume and to the difficulty level.
Halstead Error Esti-
mation

Correlates with the overall complexity of the software.

Halstead Length Measures the size of the module after removing everything
except operators and operands.

Halstead Program
Time

Measures the time to develop the module. It is proportional
to the effort.

Halstead Volume Measures the size of the implementation of an algorithm.
LOC Blank Measures all whitespaces.
LOC and Comments Measures all lines of code and comments.
Lines of Comments Measures all lines of comments.
LOC Executable Measures the total lines of code inside the module subtracting

the blank lines and comment lines.
LOC Total Measures all lines of code, regardless of whether they contain

code, comments, or whitespace.
Number Operands Measures the number of objects manipulated by the module.
Number Operators Measures the actions of operands.
Number Unique
Operands

Measures the number of unique objects manipulated by the
module.

Number Unique Oper-
ators

Measures the unique actions of operands.
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Appendix B

Thematic Analysis of Developers’
Responses

This Appendix presents the developers’ responses about the quality attributes study and
the thematic analysis. The first column represents the ID of the developer (e.g., named
from D1 to D22). Columns two to four represent the labels that each developer gave
on their comment. On these columns, the ‘NA’ (Not Applicable) label means that the
developer did not give any additional label on their comment. The pilot study revealed
that we needed only up to three labels to represent the developers comments. Note that
only one gave an Invalid label (D1).

Table B.1: Developers’ Responses about the Quality Attributes Study.

Id Label #1 Label #2 Label #3
D1 Invalid NA NA
D2 Testing NA NA
D3 Coupling Inheritance Cohesion
D4 Testing NA NA
D5 Documentation NA NA
D6 Cohesion NA NA
D7 Coupling Inheritance Cohesion
D8 Testing NA NA
D9 Testing NA Testing
D10 Documentation NA NA
D11 Team Practices NA NA
D12 Testing Cohesion NA
D13 Testing NA NA
D14 Code Guidelines NA NA
D15 Documentation NA NA
D16 Inheritance Cohesion Coupling
D17 Testing Team Practices NA
D18 Code Guidelines NA NA
D19 Testing NA NA
D20 Code Guidelines NA NA
D21 Size Complexity NA
D22 Complexity Size Coupling



146

Developers Responses:

D1: No

D2: Code coverage

D3: Big stack traces caused by the excess of module and entity dependencies also creates
a difficulty to detect and solve bugs.

D4: I would consider automated tests (unit, integration, etc...) as an important tool for
bug detection

D5: Information about the count of access would help to define the architecture to be
used according to expected performance API

D6: I believe that it has many functions that could be one, because they interact with
the same method. Just what I saw as a little redundant.

D7: The type of relationship among classes.

D8: Good testing coverage.

D9: Automated Tests; Tests Code Coverage;

D10: I work with Ruby on Rails and one of the language paradigms is that if the code
needs comments or documentation to be understood then it is not code that has
been well written.

D11: Pure functions. Immutable data structures. Automated regression tests. Generative
tests. Small teams working on the code. Automated builds. Continuous integration.

D12: Lack of automated tests would be my #1. Also amount of code churn — if a module
has to be changed many times, it’s likely that there are bugs on the same module.

D13: Verification of test data in a database

D14: Yes - the best way to avoid bugs is NO CLASSES AT ALL. OOP and classes are a
bug farm.

D15: Documentation should be intelligible around all development stage (QA, design,
product owner), for my is the most important issue raised on this survey.

D16: This is geared around OOP. My defect level dropped considerably in projects where
OOP was not used to the point where even looking at it from this perspective seems
to be the fundamental issue.
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D17: I would consider testing (at least unit), clean code and language standard conven-
tions.

D18: Pretty much the same principles as Solid, exposed right here, with well semantic
and self-explanatory method, class and variable names, I don’t think any further
comments are necessary, since there is a good distribution of responsibility and good
modularity. Well-identified methods. Small projects for a small purpose

D19: Tests!!!

D20: Some well-defined design pattern for the project is also a very important thing.

D21: Repeated code/sentences, count line numbers, number of bucles, number of vari-
ables. All of this, if there are to much, most of the times is about the person don’t
understand the problem and start to create things based in trial and error. In that
type of code is common to find bugs

D22: Code complexity, number of conditionals / loops Library usage. too many external
libraries points at doing too much. No external libraries can also indicate writing
everything. Method length, a 100 hundred line method also has a bad smell.
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Appendix C

Quality Attributes

This appendix presents the complete list of class-level software features grouped into
quality attributes.

C.1 Clone Duplication

Table C.1: Clone Duplication Class-Level Features.

Acronym Feature Status
CC Clone Coverage Kept
CCL Clone Classes Kept
CCO Clone Complexity Kept
CI Clone Instances Kept
CLC Clone Line Coverage Kept
CLLC Clone Logical Line Coverage Kept
LDC Lines of Duplicated Code Kept
LLDC Logical Lines of Duplicated Code Gone

C.2 Cohesion

Table C.2: Cohesion Class-Level Feature.

Acronym Feature Status
LCOM5 Lack of Cohesion in Methods 5 Kept
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C.3 Complexity

Table C.3: Complexity Class-Level Features.

Acronym Feature Status
NL Nesting Level Kept
NLE Nesting Level Else-If Kept
WMC Weighted Methods per Class Kept

C.4 Coupling

Table C.4: Coupling Class-Level Features.

Acronym Feature Status
CBO Coupling Between Object Classes Kept
CBOI Coupling Between Object Classes Inverted Kept
NII Number of Incoming Invocations Kept
NOI Number of Outgoing Invocations Kept
RFC Response for a Class Kept

C.5 Documentation

Table C.5: Documentation Class-Level Features.

Acronym Feature Status
AD API Documentation Kept
CD Comment Density Kept
CLOC Comment Lines of Code Kept
DLOC Documentation Lines of Code Kept
PDA Public Documented API Kept
PUA Public Undocumented API Kept
TCD Total Comment Density Kept
TCLOC Total Comment Lines of Code Gone
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C.6 Size

Table C.6: Size Class-Level Features.

Acronym Feature Status
LLOC Logical Lines of Code Kept
LOC Lines of Code Kept
NA Number of Attributes Kept
NG Number of Getters Kept
NLA Number of Local Attributes Kept
NLG Number of Local Getters Kept
NLM Number of Local Methods Kept
NLPA Number of Local Public Attributes Kept
NLPM Number of Local Public Methods Kept
NLS Number of Local Setters Kept
NM Number of Methods Kept
NOS Number of Statements Kept
NPA Number of Public Attributes Kept
NPM Number of Public Methods Kept
NS Number of Setters Kept
TLLOC Total Logical Lines of Code Kept
TLOC Total Lines of Code Kept
TNG Total Number of Getters Kept
TNLA Total Number of Local Attributes Kept
TNLG Total Number of Local Getters Kept
TNLM Total Number of Local Methods Kept
TNLPM Total Number of Local Public Methods Kept
TNLS Total Number of Local Setters Kept
TNM Total Number of Methods Kept
TNOS Total Number of Statements Kept
TNPM Total Number of Public Methods Kept
TNS Total Number of Setters Kept
TNA Total Number of Attributes Gone
TNLPA Total Number of Local Public Attributes Gone
TNPA Total Number of Public Attributes Gone
TCLOC Total Comment Lines of Code Gone
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C.7 Inheritance

Table C.7: Inheritance Class-Level Features.

Acronym Feature Status
DIT Depth of Inheritance Tree Kept
NOA Number of Ancestors Kept
NOC Number of Children Kept
NOD Number of Descendants Kept
NOP Number of Parents Kept
TCD Total Comment Density Kept
TCLOC Total Comment Lines of Code Gone
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Appendix D

Remaining Code Smells Performance

This Appendix shows the performance of the remaining code smells that do not have
much similarity with the defects.

Table D.1: Remaining Class-Level Code Smells Performance.

Target Accuracy AUC Recall Precision F1-Score
Class Data Should be Private 0.943 0.971 0.801 0.843 0.821
Data Class 0.979 0.988 0.829 0.811 0.821
Lazy Class 0.943 0.971 0.801 0.843 0.821
Speculative Generality 0.978 0.967 0.705 0.740 0.722
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