
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Danilo Ferreira e Silva

Mining Refactorings from Version Histories: Studies, Tools, and Applications

Belo Horizonte
2020

Danilo Ferreira e Silva

Mining Refactorings from Version Histories: Studies, Tools, and Applications

Final Version

Dissertation presented to the Graduate Program in Computer
Science of the Federal University of Minas Gerais in partial
fulfillment of the requirements for the degree of Doctor in
Computer Science.

Advisor: Marco Túlio de Oliveira Valente

Belo Horizonte
2020

c⃝ 2020, Danilo Ferreira e Silva.
Todos os direitos reservados.

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende
Costa CRB 6a Região no 1510

Silva, Danilo Ferreira e.

S586m Mining refactorings from version histories: studies,
tools, and applications/ Danilo Ferreira e Silva — Belo
Horizonte, 2020.

xiv, 101 f. il.; 29 cm.

Tese (doutorado) - Universidade Federal de Minas
Gerais – Departamento de Ciência da Computação;

Orientador: Marco Túlio de Oliveira Valente.

1. Computação – Teses. 2. Refatoração de software.
3. Engenharia de Software. 4. Evolução de software.
5. Mineração de repositórios de software. I. Orientador.
II. Título.

CDU 519.6*32(043)

Agradecimentos

Gostaria de ressaltar minha gratidão a todos aqueles que me ajudaram na desafiadora

jornada do doutorado.

Em primeiro lugar, sou imensamente grato pelo empenho e dedicação de meu

orientador, professor Marco Túlio Valente, que ofereceu contribuição inestimável e todo

o apoio necessário para que este trabalho fosse desenvolvido.

Também ressalto a importância do professor Nikolaos Tsantalis, professor André

Hora, professor Ricardo Terra, professor Gustavo Santos, João Paulo Silva e professor

Eduardo Figueiredo, com os quais tive o privilégio de trabalhar em conjunto, resultando

em importantes publicações para meu doutorado.

Agradeço também aos meus colegas do grupo de pesquisa ASERG, sempre prontos

para ajudar nas dificuldades e calorosos ao celebrar nossas conquistas.

Agradeço ao Programa de Pós-Graduação em Ciência da Computação (PPGCC)

por oferecer um curso de tal ńıvel de excelência.

Ressalto ainda meu agradecimento aos professores Rohit Gheyi, Paulo Borba, Ed-

uardo Figueiredo e André Hora por aceitarem o convite de participar de minha defesa.

Por fim, agradeço a minha famı́lia, que sempre ofereceu apoio e motivação para

que eu não me deixasse abater pelas dificuldades e continuar em busca de meus objetivos.

Resumo

Refatoração de código é uma prática importante no desenvolvimento de sistemas e um

fator essencial para entender a evolução de um software. Sendo assim, pesquisadores

frequentemente reportam e discutem a prática de refatoração em sistemas reais. Infeliz-

mente, estudos emṕıricos sobre refatoração são frequentemente limitados pela dificuldade

de se obter informações confiáveis sobre a atividade de refatoração e muitas questões per-

manecem em aberto. Nesta tese, primeiro investigamos uma importante questão: por que

desenvolvedores refatoram? Para esse fim, desenvolvemos dois estudos emṕıricos em larga

escala, baseados na mineração de refatorações em históricos de versões. Inicialmente, in-

vestigamos a relação entre a refatoração Extrair Método e reúso de código. Após analizar

mais de 10 mil revisões de 10 sistemas, encontramos evidências de que em 56,9% dos casos

tal refatoração é motivada pelo reúso de código. Em seguida, investigamos as motivações

para refatorações encontradas em sistemas de código aberto com base em respostas dos

próprios desenvolvedores que as aplicaram. Como resultado, compilamos um catálogo com

44 motivações distintas para 12 tipos de refatorações. Tal catálogo revela que o esforço

de refatoração é mais direcionado pela necessidade de evolução do sistema do que pela

resolução de problemas de projeto conhecidos como code smells. Notadamente, Extrair

Método é a refatoração mais versátil, servindo a 11 propósitos diferentes. Em uma se-

gunda linha de pesquisa, nós propomos RefDiff, uma nova ferramenta para mineração de

refatorações em histórico de versões, com suporte a múltiplas linguagens de programação

e alta precisão. Nossa ferramenta introduz um algoritmo de detecção de refatorações

baseado na Code Structure Tree (CST)—uma representação do código fonte que abstrai

as particularidades das linguagens de programação—e em uma métrica de similaridade de

código baseada na técnica TF-IDF. Apesar do seu projeto multilinguagem, nossa avaliação

revelou que nossa ferramenta tem precisão (96%) e revocação (80%) equivalentes ao estado

da arte em ferramentas especializadas na linguagem Java.

Palavras-chave: refatoração, rvolução de software, mineração de repositórios.

Abstract

Refactoring is an important aspect of software development and a key factor to understand

software evolution. As such, researchers often report and discuss refactoring practice on

real software projects. Unfortunately, empirical studies on refactoring are often hindered

by the difficulty of obtaining reliable information of refactoring activity, and many ques-

tions remain open. In this thesis, we first investigate an overarching question: why do

developers refactor? To this end, we developed two large-scale empirical studies that rely

on mining refactorings from version histories. Initially, we investigated the relationship

between Extract Method refactoring and code reuse. After analyzing over 10,000 revi-

sions of 10 open source systems, we found evidence that, in 56.9% of the cases, Extract

Method is motivated by code reuse. Next, we investigated the motivations for refactorings

applied to open source systems based on feedback from the developers who performed the

refactorings. By applying thematic analysis on the collected responses, we compiled a

catalogue of 44 distinct motivations for 12 well-known refactoring types. We found that

refactoring activity is mainly driven by changes in the requirements and much less by code

smells. Notably, Extract Method is the most versatile refactoring operation, serving 11

different purposes. Additionally, we found evidence that the IDE used by the developers

affects the adoption of automated refactoring tools. As a second line of research, we pro-

pose RefDiff, a novel approach to mine refactorings from version histories that supports

multiple programming languages and offers high precision and recall. Our tool lever-

ages existing techniques and introduces a novel refactoring detection algorithm that relies

on the Code Structure Tree (CST)—a simple yet powerful representation of the source

code that abstracts away the specificities of particular programming languages—and on a

code similarity metric based on TF-IDF technique. Despite its language-agnostic design,

our evaluation shows that RefDiff’s precision (96%) and recall (80%) are on par with

state-of-the-art refactoring detection approaches specialized in the Java language.

Keywords: refactoring, software evolution, mining software repositories.

List of Figures

2.1 Overview of the methodology . 20

2.2 Example of the Duplication scenario . 26

2.3 Example of the Immediate Reuse scenario . 27

2.4 Example of the Later Reuse scenario . 28

2.5 Proportion of observed reuse patterns . 29

3.1 Distribution of (a) age, (b) commits, (c) Java source files, and (d) contributors

of repositories . 35

3.2 Example of Extract Method refactoring that was required to reach a consensus. 40

3.3 An example of a commit with refactorings and their motivations. 54

4.1 Illustrative diff between two revisions of a system annotated with refactoring

operations . 64

4.2 CST of both revisions of the example system from Figure 4.1 65

4.3 Algorithm to find relationships . 68

4.4 Relationships found in the example from Figure 4.1 71

4.5 Transformation of the body of methods into a multiset of tokens 73

4.6 Illustrative diff of an Extract Method refactoring considered as true positive

by the validators, taken from commit ce4f629 from infinispan project. 79

4.7 Violin plot of execution time per commit in log-10 scale 83

5.1 Typical diff visualization of a code change containing a moved method 93

5.2 Diff visualization focused on the moved method 94

5.3 git-blame visualization of the ReactMount.js file from React project, showing

that function getReactRootElementInContainer was last modified by Devel-

oper A . 95

5.4 Diff visualization of the commit in witch the conditional inside function get-

ReactRootElementInContainer was introduced, showing that the actual au-

thor is Developer B . 96

5.5 Hypotetical change made by first developer: Test if length is zero 97

5.6 Hypotetical change made by second developer: Move method median from

class Main to class Statistics . 97

5.7 When we merge the changes from figures 5.5 and 5.6 we get a conflict 97

List of Tables

2.1 Studied repositories . 21

2.2 Statistics from the analyzed repositories . 23

2.3 Extract Method instances related to code reuse 24

2.4 Extracted methods that were reused along the version history 25

3.1 RefactoringMiner Recall and Precision . 37

3.2 Refactoring activity . 41

3.3 Extract Method motivations . 42

3.4 Motivations for Move Class, Attribute, Method (MC, MA, MM), Rename

Package (RP) Inline Method (IM), Extract Superclass, Interface (ES, EI), Pull

Up Method, Attribute (PUM, PUA), Push Down Attribute, Method (PDA,

PDM) . 43

3.5 Manual vs. automated refactoring . 47

3.6 Refactoring automation by type . 48

3.7 Reasons for not using refactoring tools . 48

3.8 IDE popularity . 49

4.1 AST nodes that are represented in CSTs . 65

4.2 Definitions used in the Algorithm from Figure 4.3 and in the conditions from

Table 4.3 . 69

4.3 Relationship types and the conditions to find them 71

4.4 Java precision and recall results . 80

4.5 JavaScript and C repositories used in the evaluation 85

4.6 Search queries for each refactoring type . 88

4.7 JavaScript precision and recall results . 88

4.8 C precision and recall results . 89

Contents

1 Introduction 12

1.1 Problem and Motivation . 12

1.2 Proposed Thesis . 14

1.3 Outline . 16

2 Investigating Extract Method Refactoring Associated with Code Reuse 18

2.1 Introduction . 18

2.2 Methodology . 19

2.2.1 Selection of the Java repositories 20

2.2.2 Detecting refactorings . 21

2.2.3 Counting the method invocations 22

2.3 Results . 22

2.3.1 RQ1: How often is Extract Method motivated by code reuse? . . . 23

2.3.2 RQ2: How often is Extract Method motivated by removing dupli-

cate code? . 24

2.3.3 RQ3: How often does Extract Method favor code reuse? 25

2.4 Reuse patterns related to Extract Method 26

2.5 Threats to Validity . 28

2.6 Conclusion . 30

3 An Empirical Study on Refactoring Motivations 31

3.1 Introduction . 31

3.2 Related Work . 33

3.3 Research Methodology . 34

3.3.1 Selection of GitHub Repositories 35

3.3.2 RefactoringMiner Tool . 35

3.3.2.1 RefactoringMiner Precision and Recall 36

3.3.3 Study Design . 37

3.3.4 Examined Refactorings . 40

3.4 Why do Developers Refactor? . 41

3.4.1 Motivations for Extract Method . 42

3.4.2 Motivations for Other Refactorings 45

3.5 Refactoring Automation . 46

3.5.1 Are refactoring tools underused? 47

3.5.2 Why do developers refactor manually? 47

3.5.3 What IDEs developers use for refactoring? 49

3.6 Discussion . 50

3.7 Threats to Validity . 52

3.8 Conclusions . 53

3.9 Artifact Description . 54

3.9.1 License . 55

3.9.2 How to contribute? . 56

4 Detecting Refactoring in Version Histories 57

4.1 Introduction . 57

4.2 Background . 59

4.2.1 RefDiff 1.0 . 60

4.2.2 Refactoring Miner/RMiner . 61

4.2.3 Refactoring Crawler . 62

4.2.4 Ref-Finder . 62

4.3 Proposed Approach . 63

4.3.1 Phase 1: Source Code Analysis . 64

4.3.2 Phase 2: Relationship Analysis . 67

4.3.2.1 General algorithm to find relationships 67

4.3.2.2 Dependent and conflicting relationships 72

4.3.3 Code Similarity . 72

4.3.3.1 Name similarity . 74

4.3.3.2 Extract similarity . 75

4.3.3.3 Inline similarity . 76

4.3.3.4 Ignoring parameters and return keywords 76

4.3.4 Implementation details . 76

4.4 Evaluation with Java Projects . 78

4.4.1 Evaluation Design . 78

4.4.2 Results . 80

4.4.2.1 Comparison with RefDiff 1.0 80

4.4.2.2 Comparison with RMiner 81

4.4.3 Execution time . 82

4.4.4 Threats to Validity . 84

4.5 Evaluation with JavaScript and C . 84

4.5.1 Evaluation Design: Precision . 86

4.5.2 Evaluation Design: Recall . 87

4.5.3 Results for JavaScript and C . 88

4.5.4 Threats to Validity . 89

4.6 Challenges and limitations . 90

4.7 Conclusion . 91

5 Practical Applications of Refactoring Detection 92

5.1 Refactoring-aware Diff . 92

5.2 Tracking changes of a code element . 94

5.3 Resolving merge conflicts . 96

6 Conclusion 99

6.1 Contributions . 99

6.2 Future Work . 100

References 102

12

Chapter 1

Introduction

1.1 Problem and Motivation

Refactoring is the process of improving the design of an existing code base, without

changing its behavior [40]. Since the beginning, the adoption of refactoring practices was

fostered by the availability of refactoring catalogues, as the one proposed by [19]. These

catalogues define a name and describe the mechanics of common refactoring operations,

as well as demonstrate its application through some code examples. For example, Extract

Method is a well-known refactoring which consists in turning a code fragment that can be

grouped together into a new method, usually to decompose a large and complex method

or to eliminate code duplication. As a second example, Move Method consists in moving

a method from one class to another one, usually because it is more related to features of

another class than the class on which it is defined.

There are strong evidences that refactoring is widely adopted by development

teams. In fact, it is considered one of the pillars of agile development methodologies.

For example, Extreme Programming (XP) [5] and Test Driven Development (TDD) [6]

advocate the use of refactoring as an essential step in a software development cycle.

Moreover, refactoring is not only discussed in theory, but also observed in practice, as

there are several empirical studies that report and discuss refactoring activity found on

real software projects [36, 58, 30, 31, 37]. In addition, some types of refactoring are

applied so often that mainstream development environments, such as Eclipse, IntelliJ

IDEA, NetBeans, and Visual Studio, provide some sort of automated support to apply

them. All these facts corroborate to the argument that refactoring is an important and

well-known technique.

Given that refactoring is an essential aspect of the software development work-

flow, it is also a key factor to understand software evolution. As such, researchers have

investigated refactoring activity to study several questions: how and when developers

refactor [36], the impact of refactoring on code quality [30, 31], the challenges of refactor-

ing [30, 31], the risks of refactoring [30, 31, 28, 62, 1, 18], and the relationship between

1.1. Problem and Motivation 13

refactoring and merge conflicts [32].

Neverthless, some questions still need to be further investigated. In particular,

the motivations behind refactorings are not thoroughly investigated by existing empirical

studies. For example, [19] describes typical reasons or code smells that motivates each

refactoring, but there are no studies verifying that these are the actual motivations for

the refactorings applied in practice. Moreover, there may be other motivations driving

refactorings other than those documented in refactoring catalogues. Although existing

studies interview professional software developers asking the reasons that motivate their

refactoring activities [31, 61], they discuss the issue in a broader manner.

In fact, empirical studies that investigate actual refactorings applied in source code

are challenging, because refactoring information is not readily available. For example,

suppose that we intend to study the correlation between refactorings and defects on a

software component. Many software teams document fixed bugs in issue tracking systems,

but we could only correlate them with refactorings if we have a history of refactoring

activity in the defective code. Such information is usually not documented, and would

have to be inferred from the code changes. If we incorrectly classify code changes as

refactoring, or if we fail to find existing refactorings, the conclusions we drawn might

be incorrect. In summary, the feasibility of such studies depends on some technique to

identify refactoring activity, and the validity of their findings depends on how reliable

such technique is. Thus, refactoring information is valuable to study software evolution.

Unfortunately, obtaining refactoring information from version histories is a non-

trivial task, for three main reasons:

1. Refactorings are rarely documented. Thus, approaches that search for a predefined

set of terms in commit messages, such as the one proposed by [43], suffer from

low recall. For example, in a study using Eclipse and Mylyn version histories, [36]

found refactorings in 19 out of 40 commits whose messages did not contain any

of the refactoring indicator keywords proposed by [43]. Moreover, in a study with

JHotDraw and Apache Common Collections version histories, [52] reported a recall

of only 16% when using the approach proposed by [43] to find refactorings.

2. Refactorings are performed interleaved with feature additions and bug fixes [36].

Thus, analyzing code changes to find refactorings is challenging, because code ele-

ments may have changed due to refactoring and to other types of code changes si-

multaneously. For example, a developer may add more code to an existing method

to implement a new feature, and then decide to move it to another class that is

more related to it. Identifying that the method has been moved is more challeng-

ing in this case, because it is not identical to its original version. In fact, existing

approaches that detect refactorings by analyzing code changes have precision and

recall issues when used in practice. For example, in a study conducted by [52],

1.2. Proposed Thesis 14

Ref-Finder [41, 29], one well-known refactoring detection approach, achieved only

35% of precision and 24% of recall.

3. Refactorings are not always performed using automated support. Therefore, even

if we monitor refactoring tools usage, we may miss a significant portion of the

refactoring activity. For example, [36] report that several refactorings found in their

study using Eclipse and Mylyn data (89% and 91%, respectively) were not found in

the refactoring tool usage logs they collected, suggesting that they were performed

manually. As a second example, in a study using data collected from 23 developers,

[37] found that more than half of the refactorings were performed manually.

Despite the aforementioned difficulties, it is important that we develop reliable and

efficient approaches that are able to mine refactorings from version histories. The large

amount of open source repositories available on platforms such as GitHub offers huge

potential for empirical studies on refactoring practice, enabling researchers to verifying

previous findings and investigating new research questions. Moreover, such approaches

have great potential for practical application in code reviewing, code merging, and tracking

code evolution.

1.2 Proposed Thesis

In this thesis, we develop two research lines: empirical studies on refactoring prac-

tice and a tool to mine refactorings from version histories. In the first research line, we

investigate an overarching question: Why developers refactor. To answer that question,

we performed two empirical studies.

In Study 1, we investigated the relationship between Extract Method refactoring

and code reuse. Although Extract Method is usually associated with code smells such

as Long method [19], empirical studies suggest that it serves multiple porposes [58]. In

particular, we suspected that code reuse could be one important motivation for Extract

Method. Thus, we proposed three research questions: (i) How often is Extract Method

motivated by code reuse; (ii) How often is Extract Method motivated by removing duplicate

code; and (iii) How often does Extract Method favors code reuse. To answer these ques-

tions, we mined Extract Method refactorings from 10 open source Java repositories using

an adapted version of Refactoring Miner, an existing refactoring detection tool [58], and

also gathered information of method invocations along the entire history of the studies

projects. As result, we found that in 56.9% of the cases Extract Method is motivated by

code reuse. Additionally, 7.9% of the cases are motivated by removing duplication, and

1.2. Proposed Thesis 15

4.8% of the cases are not motivated by code reuse, but enables reuse in future modifica-

tions of the system.

In Study 2, we investigated the motivations for refactorings applied to open source

systems based on feedback from the developers who did the refactorings. This time, we ex-

tended the analysis to 12 well-known refactoring types: Move Class/Method/Attribute,

Extract Method, Inline Method, Pull Up Method/Attribute, Push Down Method/At-

tribute, Rename Package, and Extract Superclass/Interface. Specifically, we monitored

124 Java repositories hosted on GitHub to detect recently applied refactorings, and asked

the developers to explain the reasons behind their decision to refactor the code. We devel-

oped an automated workflow based on Refactoring Miner that was capable of identifying

applied refactorings in a daily basis, enabling us to contact developers in a timely man-

ner, while the refactoring was still fresh in their minds. By applying thematic analysis

on the collected responses, we compiled a catalogue of 44 distinct motivations for the 12

studies refactoring types. In summary, we found that refactoring effort is mainly driven

by changes in the requirements and much less by code smells. In particular, we found that

Extract Method is the most versatile refactoring operation, serving 11 different purposes.

Additionally, we also gathered insightful information about the usage of refactoring tools.

For example, we found evidence that the IDE used by the developers affects the adoption

of automated refactoring tools.

After our experience with the aforementioned studies, we felt the need for improv-

ing refactoring detection approaches. For example, in Study 2, we manually evaluated

each refactoring identified by our tool set, and found out that 37% of them were false pos-

itives (i.e., we achieved 63% of precision). For that reason, we initiated a second line of

research, focusing on improving the state-of-the-art on refactoring detection approaches.

First, we introduced RefDiff, a novel refactoring detection approach, whose main

goal was to improve precision over existing tools. Our approach employs a combination of

heuristics based on static analysis and code similarity to detect 13 well-known refactoring

types. One of its distinguishing features is using an adaptation of the classical TF-IDF

similarity measure from information retrieval to compute code similarity. We evaluated

precision and recall of our tool using an oracle of known refactorings applied by students,

and compared it with three existing approaches, namely Refactoring Miner [58], Refactor-

ing Crawler [15], and Ref-Finder [29]. As result, our approach achieved 100% of precision

and 88% of recall, surpassing the three tools subjected to the comparison.

Later, after further studies, we proposed an improved version of our tool, named as

RefDiff 2.0. Besides introducing improvements to our detection heuristics, we redesigned

our tool to support multiple programming languages. Our revised refactoring detection

algorithm relies on the Code Structure Tree (CST), a simple yet powerful representation of

the source code that abstracts away the specificities of particular programming languages.

Along with the core algorithm, we provide plugins for three programming languages: Java,

1.3. Outline 16

JavaScript, and C. In this study, we also performed a large-scale evaluation of our tool

using an oracle of 3,248 real refactorings, applied across 538 commits from 185 open

source Java repositories. In this extended evaluation, we compared our tool with RMiner,

which is an evolution of Refactoring Miner [59] and the current state-of-the-art in Java

refactoring detection. As result, RefDiff 2.0 achieves 96.4% of precision and 80.4% of

recall. RefDiff’s precision and recall is on par with RMiner (98.8% of precision and 81.3%

of recall), which is a key achievement because our approach is not specialized in a single

language. Moreover, our evaluation in JavasScript and C also showed promising results.

RefDiff’s precision and recall are respectively 91% and 88% for JavaScript, and 88% and

91% for C.

1.3 Outline

Three out of six chapters of this theses consists in studies published in software engi-

neering conference and journals. Therefore, these chapters preserve the original structure

of the manuscripts in order to facilitate independent read. We organized the remainder

of this work as follows:

Chapter 2: Investigating Extract Method Refactoring Associated with Code

Reuse. In this chapter we present Study 1, which investigates the relationship between

Extract Method refactoring and code reuse. This chapter consists of a translated version

of the following publication:

Silva, D., Valente, M. T., and Figueiredo, E. (2015) Um Estudo sobre Extração de Métodos

para Reutilização de Código. In 18th Conferencia Iberoamericana de Software Engineer-

ing (CIbSE) – Experimental Software Engineering Track (ESELAW), pages 404–417.

Chapter 3: An Empirical Study on Refactoring Motivations. In this chapter we

present Study 2, which investigates the motivations behind refactorings applied in 124

Java projects hosted on GitHub. This chapter consists of the following publication:

Silva, D., Tsantalis, N., and Valente, M. T. (2016) Why we refactor? confessions of

GitHub contributors. In 24th International Symposium on the Foundations of Software

Engineering (FSE), pages 858–870 (Distinguished paper award).

Chapter 4: Detecting Refactoring in Version Histories. In this chapter, we present

1.3. Outline 17

Study 4, which describes RefDiff, an approach to detect refactoring in version histories.

Besides, we also present an evaluation of our tool in Java, JavaScript, and C projects.

This chapter consists of the following manuscript, currently under review:

Silva, D., Silva J. P., Santos, G., Terra, R., and Valente, M. T. (2019) RefDiff 2.0: A

Multi-language RefactoringDetection Tool. Under review in a journal.

It is worth noting that this chapter is also based on the following publication, in which

we initially proposed RefDiff (superseded by RefDiff 2.0):

Silva, D. and Valente, M. T. (2017) RefDiff: Detecting Refactorings in Version Histories.

In 14th International Conference on Mining Software Repositories (MSR), pages 1–11.

Chapter 5: Practical Applications of Refactoring Detection. In this chapter, we

describe practical problems that could benefit from refactoring detection approaches, such

as RefDiff.

Chapter 6: Conclusion. This final chapter concludes the thesis, presents our contri-

butions, and gives suggestions for future research.

18

Chapter 2

Investigating Extract Method

Refactoring Associated with Code

Reuse

Refactoring is a well-know technique that is frequently studied by the scientific community.

However, little is known about the actual reasons developers refactor. In this study, we

investigate the relationship between Extract Method refactoring and code reuse, in order

to better understand the motivations behind it. After analyzing over 10,000 revisions of

10 open source systems, we found evidence that, in 56.9% of the cases, Extract Method is

motivated by code reuse. Also, in a small portion of these cases (7.9%), reuse eliminates

duplicate code that already exists in the system. Finally, we also find that there are cases

in which Extract Method favored long-term code reuse, even though their initial motivation

were not code reuse.

2.1 Introduction

There is a common sense that refactoring effort is mainly driven by certain code

patterns known as Bad Smells [19], which signal system design problems. However,

there are few empirical studies investigating the actual motivations behind refactoring,

especially for those refactoring types that may serve multiple purposes. In particular,

Extract Method, one of the most widely applied refactorings in practice [36, 37], serves

multiple porposes. For example, [58] found nine distinct motivations for this refactoring,

some of them related to the need for system extension rather than to code problems.

For this reason, this study investigates the relationship between Extract Method

refactoring and code reuse. We suspect that in many cases in which a method is extracted

the developer intends to reuse code. For example, when adding a new feature, a developer

may identify a code snippet in the system that shares common behavior with the new

2.2. Methodology 19

feature, extract such code as a new method, and reuse it. Specifically, we investigate three

research questions:

RQ1 How often is Extract Method motivated by code reuse?

RQ2 How often is Extract Method motivated by removing duplicate code?

RQ3 How often does Extract Method favors code reuse?

We believe that answers to these questions can contribute to a better understand-

ing of why development teams refactor their code. Such knowledge may be relevant to

propose or improve techniques and methodologies employed in software development. In

particular, it may be possible to refine existing tools specialized in recommending the

Extract Method [47, 57] refactorings, as new heuristics can be developed to address the

most frequently occurring scenarios in practice.

The remainder of this chapter is organized as follows. Section 2.2 describes the

methodology used in this study. Section 2.3 presents the results obtained and answers

the research questions raised. Section 2.4 formalizes and provides examples for the reuse

patterns we found during the analysis. Section 2.5 discusses threats to the validity of the

study. Finally, Section 2.6 presents the conclusions.

2.2 Methodology

The methodology employed in this study, illustrated in Figure 2.1, can be divided

into three steps:

1. We selected a set of Java repositories from GitHub using predefined criteria.

2. We detected Extract Method refactorings applied to the systems with the aid of a

tool. To this end, each code change (commit) in the version history was analyzed.

3. We counted the number of invocations of the extracted methods along the version

history. To this end, all future revisions were analyzed to identify method invoca-

tions, regardless of when they were introduced.

In the following sections we describe the details of each step.

2.2. Methodology 20

GitHub

Projects

Retrieval

Refactoring

Detection

Method Invocation

Analysis

Database Results

Flow of activities

Flow of data

Figure 2.1: Overview of the methodology

2.2.1 Selection of the Java repositories

To select the GitHub repositories, we defined the criteria listed below, according

to good practices on mining GitHub repositories described in the literature [26]:

• Projects must have Java as the primary language, due to limitations of the tools

used in the analysis.

• Projects must have at least six months of development to avoid projects that have

not gone through a relevant maintenance time.

• Projects must have at least 200 revisions for the same reasons as the previous re-

striction.

• Projects should not be derived (forks) from another project to avoid duplicate data.

• The projects obtained must be the 100 most popular projects that meet the other

criteria, using the stargazers count field as a metric.

From the set of 100 repositories, we selected a random sample of 10 systems to

perform this study due to limitations imposed by the long time required to perform

the analysis on the complete data. Table 2.1 lists the selected repositories and a brief

description of each. Note that there are well-known projects among them, such as the

JUnit testing framework and the Clojure programming language.

2.2. Methodology 21

2.2.2 Detecting refactorings

In this step, we analyzed each commit from the selected repositories to find in-

stances of Extract Method refactoring. For this task, we used an automated approach to

find refactorings proposed by [58], which we will denote as RefactoringMiner 0.1. Such

approach compares the source code before and after a code change and employs a com-

bination of heuristics designed to identify eleven types of refactoring. In this study, our

interest lies in Extract Method refactoring, whose detection heuristics are described below.

Let M+ be the set of methods that were added between two consecutive revisions

v and v′. Additionally, let M= be the set of methods that exist both in v and v′ (they

were neither added or deleted between revisions). A method mj is extracted from another

method mi when four conditions are met:

• mi ∈M=

• mj ∈M+

• The body of mi before the change contains the statements within the body of mj

• The body of mi after the change contains an invocation of mj

If the above conditions are met for more than one pair (mi,mj) for the same mj, this

means that the method was extracted from more than one location. For example, if these

conditions hold for two pairs (m1,m2) and (m3,m2), then the code encapsulated by m2

was duplicated in m1 and m3.

Table 2.1: Studied repositories

Repository Description

android GitHub Android App

android-async-http An Asynchronous HTTP Library for Android

clojure The Clojure programming language

facebook-android-sdk SDK to integrate Android apps with Facebook Platform

jsoup Java HTML Parser

junit A testing framework for Java.

picasso A powerful image downloading and caching API for Android

spark A Sinatra inspired framework for Java

storm Distributed and fault-tolerant realtime computation system

yuicompressor A JavaScript compressor

2.3. Results 22

We executed the aforementioned heuristic comparing each pair of consecutive revi-

sions, covering the entire commit history of each repository. We only discarded commits

that merge changes from different branches, because otherwise we would collect duplicate

information. For example, suppose a developer applies a refactoring r1 in a branch b1.

When the developer merges b1 with b2, the merge commit will apply the refactoring in b2

too. We also modified the source code of the original tool to automate the navigation in

the commit graph of a repository. Finally, we modified its source code to prevent it from

compiling the entire project during its analysis. This optimization allowed us to reduce

the execution time significantly and made it possible to use it in large scale.

2.2.3 Counting the method invocations

To detect the number of invocations of the methods of interest, we developed a

tool based on the JDT Core API, which is the API used by the Eclipse IDE to parse and

manipulate Java code. This API allows us to analyze the source code at the Abstract

Syntactic Tree (AST) level, making it possible to find every method invocation in the

code. In addition, the JDT Core API provides a resolution mechanism to bind a method

invocation to its declaration.

Taking advantage of information provided by such API, we searched for invocations

of each method of interest in each revision of the system. Specifically, the methods of

interest were the ones that were extracted from another method at some point in the

history, i.e,. they were created by applying an Extract Method refactoring. For that

reason, invocations of methods defined externally to the project, i.e., methods defined in

third party APIs, are not relevant to the analysis. This makes it possible to use JDT

Core API even in the absence of all build dependencies of the project. By the end of

this step, we recorded the number of invocations of each extracted method, along with

the methods that invoked them. This information is recorded for every revision after the

extracted method is introduced.

2.3 Results

In this section we present and discuss the results of the analysis. In total, we

analyzed 10,931 commits from 10 repositories, as detailed in Table 2.2. Additionally,

2.3. Results 23

Table 2.2 presents the number of distinct methods declared along the history of each

repository and the number of methods created by applying Extract Method. Interestingly,

649 methods out of 30,161 are extracted, which corresponds to 2.2%. Moreover, every

repository contains extracted methods. It is important to note that the number of methods

analyzed is always greater than or equal to the total number of methods in the last version

of a system. That is because throughout the evolution of the system, methods are created

and removed. In fact, out of 30,161 methods analyzed, only 17,707 (58.7%) of them exist

in the last version of their respective projects. In the next sections we discuss each research

question in detail, taking into consideration the set of 649 extracted methods.

2.3.1 RQ1: How often is Extract Method motivated by code

reuse?

To answer this first research question, we searched for the following scenario: in

a single commit, a developer extracts a method and invokes it two or more times in the

system. We assume that, in such cases, the developer extracted the method to reuse it.

The second column of Table 2.3 presents the number of extracted methods that are reused

(i.e., two or more invocations). When analyzing each repository individually, we note that

the lowest percentage of reused methods is 41.1%, for junit repository, and the highest

percentage is 68.6%, for jsoup. Moreover, for 7 out of 10 repositories, the percentage of

Table 2.2: Statistics from the analyzed repositories

Repository Commits Analyzed Methods Extracted Methods

android 2,351 3,386 100 (3.0%)

androidasynchttp 557 726 34 (4.7%)

clojure 2,629 6,276 122 (1.9%)

facebook-android-sdk 451 4,840 144 (3.0%)

jsoup 711 1,760 35 (2.0%)

junit 1,611 5,822 107 (1.8%)

picasso 461 1,357 41 (3.0%)

spark 281 738 19 (2.6%)

storm 1,491 4,987 38 (0.8%)

yuicompressor 388 269 9 (3.3%)

Total 10,931 30,161 649 (2.2%)

2.3. Results 24

reused methods is above 50%. Last, 369 out of 649 methods fall in this scenario (56.9%),

which yields the following answer to RQ1: in 56.9% of the cases developers apply

Extract Method to reuse code.

2.3.2 RQ2: How often is Extract Method motivated by

removing duplicate code?

In this second research question, we investigate a more specific scenario: in a

single commit, a developer extracts a method from two or more places of the system.

As a consequence, duplicate code in the original methods is removed and replaced by

invocations of the extracted method. The last column of Table 2.3 shows how often such

scenario occurs in total and in each repository. We found at least one case of removal of

duplicated code in each repository, except for the storm project. The project with more

occurrences is junit, with 11 instances, which represents 10.3% of all Extract Method

instances. It is worth noting that such duplicate code removal scenario is a specialization

of the scenario studied in RQ1. That is, out of 369 methods extracted with more than one

invocation, 51 were characterized as duplicate code removal. In summary, we found the

following answer to RQ2: in 7.9% of the cases developers apply Extract Method

to eliminate duplicate code in the system. Although this case is less frequent than

the prior, it could be observed in almost all repositories.

Table 2.3: Extract Method instances related to code reuse

Repository Extracted methods Invocations ≥ 2 Duplicated code

android 100 60 (60.0%) 10 (10.0%)

androidasynchttp 34 15 (44.1%) 3 (8.8%)

clojure 122 72 (59.0%) 11 (9.0%)

facebookandroidsdk 144 95 (66.0%) 9 (6.3%)

jsoup 35 24 (68.6%) 1 (2.9%)

junit 107 44 (41.1%) 11 (10.3%)

picasso 41 26 (63.4%) 4 (9.8%)

spark 19 10 (52.6%) 1 (5.3%)

storm 38 18 (47.4%) 0 (0.0%)

yuicompressor 9 5 (55.6%) 1 (11.1%)

Total 649 369 (56.9%) 51 (7.9%)

2.3. Results 25

2.3.3 RQ3: How often does Extract Method favor code reuse?

Table 2.4: Extracted methods that were reused along the version history

Repository Reused immediately Reused later Never reused

android 60 (60.0%) 3 (3.0%) 37 (37.0%)

android-async-http 15 (44.1%) 5 (14.7%) 14 (41.2%)

clojure 72 (59.0%) 5 (4.1%) 45 (36.9%)

facebook-android-sdk 95 (66.0%) 2 (1.4%) 47 (32.6%)

jsoup 24 (68.6%) 2 (5.7%) 9 (25.7%)

junit 44 (41.1%) 9 (8.4%) 54 (50.5%)

picasso 26 (63.4%) 2 (4.9%) 13 (31.7%)

spark 10 (52.6%) 2 (10.5%) 7 (36.8%)

storm 18 (47.4%) 1 (2.6%) 19 (50.0%)

yuicompressor 5 (55.6%) 0 (0.0%) 4 (44.4%)

Total 369 (56.9%) 31 (4.8%) 249 (38.4%)

While in the previous research questions we analyzed scenarios in which a method

is extracted and reused in the same commit, this time we investigate whether extracted

methods with a single invocation are eventually invoked by two or more methods through-

out the evolution of the system. Table 2.4 presents the number of methods that fall into

this scenario (column 3), in contrast to the ones that already started with more than one

invocation (column 2) and those that are never reused by other methods along the version

history (column 4). The overall result shows that the extracted methods are reused later

in 31 out of 649 cases (4.8%). This scenario is observed in almost all repositories, except

for the yuicompressor (possibly because of the small number of extracted methods iden-

tified in it). Table 2.4 also shows that in 249 out of 649 cases (38.4%) there is only one

invocation of the extracted method throughout the entire history of the project, i.e., the

method is never reused. These results suggest the following answer to RQ3: in 4.8% of

the cases that developers apply Extract Method, there is no initial intention

to reuse code, but a reuse opportunity appeared later. Although not frequent,

this case is also consistently observed.

2.4. Reuse patterns related to Extract Method 26

2.4 Reuse patterns related to Extract Method

In the light of the results presented in previous sections, we propose three distinct

patterns of code reuse associated with Extract Method refactoring:

Duplication: In this scenario, a developer identifies duplicated code in two or more

places in the system and applies Extract Method to fix the issue, replacing the du-

plicated code with a method invocation. Therefore, the refactoring is applied to fix

the Duplicated Code bad smell, which is a classical motivation for Extract Method,

as documented in the refactoring literature [19]. Figure 2.2 presents an example of

this scenario in junit project. A developer extracted the method createLoader,

encapsulating a piece of duplicated code in methods load (lines 8–9) and reload

(lines 12–13). These lines of code, which were responsible for instantiating the

TestCaseClassLoader class, are then replaced by the invocation of createLoader.

It is interesting to note that a new statement was also introduced in createLoader

(line 18), which would result in one more duplicate line of code if the method was

not extracted.

 junit/runner/ReloadingTestSuiteLoader.java



4 4
5 5
6 6

7
7 8

8 9

9

10 10
11

11 12

13

14
15
16

12 17

13 18

19
14 20
15 21

12  View

@@ ‐4,12 +4,18 @@

 * A TestSuite loader that can reload classes. * A TestSuite loader that can reload classes.
 */ */
 public class ReloadingTestSuiteLoader implements
TestSuiteLoader {

 public class ReloadingTestSuiteLoader implements
TestSuiteLoader {
+

 public Class load(String suiteClassName) throws
ClassNotFoundException {

 public Class load(String suiteClassName) throws
ClassNotFoundException {

‐ TestCaseClassLoader loader= new
TestCaseClassLoader();

+ return
createLoader().loadClass(suiteClassName, true);

‐ return loader.loadClass(suiteClassName,
true);
 } }

+
 public Class reload(Class aClass) throws
ClassNotFoundException {

 public Class reload(Class aClass) throws
ClassNotFoundException {
+ return
createLoader().loadClass(aClass.getName(), true);
+ }
+
+ protected TestCaseClassLoader createLoader() {

 TestCaseClassLoader loader= new
TestCaseClassLoader();

 TestCaseClassLoader loader= new
TestCaseClassLoader();

‐ return loader.loadClass(aClass.getName(),
true);

+
Thread.currentThread().setContextClassLoader(loader);
+ return loader;

 } }
 } }

Figure 2.2: Example of the Duplication scenario

Immediate Reuse: In this scenario, a developer identifies the opportunity to reuse ex-

isting code when modifying the system, either to introduce new functionality or

fix a problem. Extract Method is then applied and the new method is invoked in

the new feature. Figure 2.3 presents an example of this scenario in the storm

2.4. Reuse patterns related to Extract Method 27

project. A developer introduced a new method tryPublish, whose behavior

was very similar to the existing publish method. To do this, an overloaded

method publish(Object, boolean) was extracted from publish(Object)

and reused in tryPublish. Note that the boolean parameter introduced in the

extracted method allows a slight variation in the logic, enabling its reuse in both

cases.

 src/jvm/backtype/storm/utils/DisruptorQueue.java



92 95

93 96
94 97

98
99

100
101

102
103
104
105

106
107
108
109

95 110
96 111

112
113
114
115
116

97 117
98 118
99 119



22  View

@@ ‐92,8 +95,25 @@ private void consumeBatchToCursor(long cursor, EventHandler<Object> handler) {

 * Caches until consumerStarted is called, upon
which the cache is flushed to the consumer

 * Caches until consumerStarted is called, upon
which the cache is flushed to the consumer

 */ */
 public void publish(Object obj) { public void publish(Object obj) {

+ try {
+ publish(obj, true);
+ } catch (InsufficientCapacityException ex) {
+ throw new RuntimeException("This code should
be unreachable!");
+ }
+ }
+
+ public void tryPublish(Object obj) throws
InsufficientCapacityException {
+ publish(obj, false);
+ }
+
+ public void publish(Object obj, boolean block)
throws InsufficientCapacityException {

 if(consumerStartedFlag) { if(consumerStartedFlag) {
‐ final long id = _buffer.next(); + final long id;

+ if(block) {
+ id = _buffer.next();
+ } else {
+ id = _buffer.tryNext(1);
+ }

 final MutableObject m = _buffer.get(id); final MutableObject m = _buffer.get(id);
 m.setObject(obj); m.setObject(obj);
 _buffer.publish(id); _buffer.publish(id);

Figure 2.3: Example of the Immediate Reuse scenario

Later Reuse: In this scenario, a developer applies the Extract Method refactoring and

the extracted method is invoked in only one location. However, in future code

changes, a developer finds the opportunity to reuse that method. Therefore, there

is no evidence that the initial motivation for the refactoring is code reuse, but it

favors reuse later, possibly as a side effect. Figure 2.4 presents an example of this

scenario in the clojure project. A developer extracted the isMacro method from

analyzeSeq, encapsulating the code between lines 2799–2805. In this case, the

method was probably refactored to improve readability, since much of the logic in

analyzeSeq was intended to determine whether a certain object is a macro, which

became clearly indicated by the name of the extracted method. However, in a later

modification, the same logic was required and another invocation of the isMacro

method was introduced.

Figure 2.5 shows the proportion of the three observed reuse pattern in the studied

2.5. Threats to Validity 28

 src/jvm/clojure/lang/Compiler.java



2786 2786
2787 2787
2788 2788

2789
2790
2791
2792

2793
2794
2795
2796
2797
2798

2789 2799

2790 2800
2791 2801



2796 2806
2797 2807
2798 2808
2799 2809

2810
2800 2811
2801 2812

2802
2803
2804

2805
2806 2813
2807 2814
2808 2815



19  View

@@ ‐2786,6 +2786,16 @@ public CompilerException(String message, Throwable cause){

 } }
 } }

+static public Var isMacro(Object op) throws Exception{
+ if(op instanceof Symbol || op instanceof Var)
+ {
+ Var v = (op instanceof Var) ? (Var) op :
lookupVar((Symbol) op, false);
+ if(v != null && v.isMacro())
+ return v;
+ }
+ return null;
+}
+

 private static Expr analyzeSeq(C context, ISeq form,
String name) throws Exception{

 private static Expr analyzeSeq(C context, ISeq form,
String name) throws Exception{

 Integer line = (Integer) LINE.get(); Integer line = (Integer) LINE.get();
 try try

@@ ‐2796,13 +2806,10 @@ private static Expr analyzeSeq(C context, ISeq form, String name) throws Excepti

 RT.map(LINE, line)); RT.map(LINE, line));
 Object op = RT.first(form); Object op = RT.first(form);
 //macro expansion //macro expansion
‐ if(op instanceof Symbol || op instanceof
Var)

+ Var v = isMacro(op);

+ if(v != null)
 { {
‐ Var v = (op instanceof Var) ?
(Var) op : lookupVar((Symbol) op, false);

+ return analyze(context,
v.applyTo(form.rest()));

‐ if(v != null && v.isMacro())
‐ {
‐ return analyze(context,
v.applyTo(form.rest()));
‐ }
 } }
 IParser p; IParser p;
 if(op.equals(FN)) if(op.equals(FN))

Figure 2.4: Example of the Later Reuse scenario

repositories. Overall, the sum of the three scenarios represents 61.6% of Extract Method

instances, which indicates that code reuse is an important driver for refactoring effort.

The complementary 38.4% are those cases where the extracted methods are never reused.

2.5 Threats to Validity

There are at least two threats to the internal validity of the study:

• The accuracy of the results depends on how accurate the refactoring detection tool

is. Although the authors reported a precision of 96.4% [58], precision could be

different under the circumstances of this study. To mitigate such a threat, we

manually inspected a sample of the Extract Method instances we found. We choose

50 instances at random for manual inspection and assessed that 4 of them were false

2.5. Threats to Validity 29

Total

yuicompressor

storm

spark

picasso

junit

jsoup

facebook−android−sdk

clojure

android−async−http

android Duplication

Later Reuse
Immediate Reuse

0 20 40 60 80 100

Figure 2.5: Proportion of observed reuse patterns

positives (92.0% of precision). Additionally, there is the possibility that the tool does

not detect all Extract Method instances applied (false negatives). Unfortunately, it

is not feasible to assess the tool recall by manually inspecting the code changes.

• The validity of the results depends on the correctness of the method invocation

analysis tooling developed specifically for this study. In fact, we believe that not

every method invocation is identified for three reasons: (i) the methodology uses

only static analysis and it is not able to identify method invocations relying on

meta-programming features of the Java language, (ii) the JDT Core API is not able

to resolve method invocation bindings in 100% of the cases in the absence of the

complete compilation dependencies, and (iii) extracted methods that are moved or

renamed in a subsequent revision are not accounted for in the later reuse scenario.

Nevertheless, such issues would only result in an underestimation of the number of

invocations. Therefore, the existence of false negatives would not undermine the

finding that code reuse is a major motivation for Extract Method.

We should also mention the threat of external validity, especially considering that

the selected systems share the following characteristics:

• Only Java systems were considered, due to limitations of the analysis tools. The

results may differ if we consider other programming languages.

• The systems analyzed are all open source systems from a single source (GitHub).

Results may differ for proprietary systems developed in a different context.

2.6. Conclusion 30

2.6 Conclusion

In this study we analyzed 10,931 commits from 10 open-source Java projects to

investigate the relationship between Extract Method refactoring and code reuse. We

found evidence that 56.9% of the Extract Method instances are motivated by code reuse.

Specifically, this occurs in two distinct scenarios: Duplication (7.9% of cases) and Im-

mediate Reuse (49.0% of cases). In addition, we found a third scenario, Later Reuse,

in which Extract Method refactoring favored long-term code reuse, even though there was

no indication that this was the initial intention (4.8% of cases). All three scenarios were

found in virtually all systems analyzed in similar proportion.

The results obtained indicate that it is incorrect to assume that Extract Method

refactoring is always associated with the resolution of an existing bad smell, such as

Long Method or Duplicated Code. Approximately half of the cases analyzed fall into the

Immediate Reuse scenario, in which a developer refactors existing code to enable code

reuse in new code he is working on when modifying the system. From another perspective,

this also suggests that developers avoid introducing duplication when fixing a defect or

implementing new functionality.

In particular, this observation has two implications for research on Extract Method

recommendation approaches. First, regardless of the recommendation heuristic used,

certain decisions made by a developer take into consideration the feature she will introduce

to the system. Thus, it is quite challenging for a recommendation tool that relies only

on the existing code to suggest an appropriate recommendation in these cases. Second,

given that code reuse is a frequent scenario, new recommendation approaches could be

explored, for example, suggesting the extraction of code snippets that are likely to be

reused in the project.

31

Chapter 3

An Empirical Study on Refactoring

Motivations

Refactoring is a widespread practice that helps developers to improve the maintainability

and readability of their code. However, there is a limited number of studies empirically

investigating the actual motivations behind specific refactoring operations applied by de-

velopers. To fill this gap, we monitored Java projects hosted on GitHub to detect recently

applied refactorings, and asked the developers to explain the reasons behind their decision

to refactor the code. By applying thematic analysis on the collected responses, we compiled

a catalogue of 44 distinct motivations for 12 well-known refactoring types. We found that

refactoring activity is mainly driven by changes in the requirements and much less by code

smells. Extract Method is the most versatile refactoring operation serving 11 different

purposes. Additionally, we found evidence that the IDE used by the developers affects the

adoption of automated refactoring tools.

3.1 Introduction

Refactoring catalogues, such as the one proposed by [19], define a name and de-

scribe the mechanics of each refactoring, and usually discuss a motivation for applying

it. In many cases, such motivation is associated to the resolution of a code smell. For

example, Extract Method is recommended to decompose a large and complex method or

to eliminate code duplication. As a second example, Move Method is associated to smells

like Feature Envy and Shotgun Surgery [19].

However, there is a limited number of studies investigating the real motivations

driving the refactoring practice based on interviews and feedback from actual develop-

ers. [31] explicitly asked developers “in which situations do you perform refactorings?”

and recorded 10 code symptoms that motivate developers to initiate refactoring. [61]

interviewed professional software developers about the major factors that motivate their

3.1. Introduction 32

refactoring activities and recorded human and social factors affecting the refactoring prac-

tice. However, both studies were based on general-purpose surveys or interviews that were

not focusing the discussion on specific refactoring operations applied by the developers,

but rather on general opinions about the practice of refactoring.

Contribution: To the best of our knowledge, this is the first study investigating the

motivations behind refactoring based on the actual explanations of developers on specific

refactorings they have recently applied. To fill this gap on the empirical research in this

area, we report a large scale study centered on 463 refactorings identified in 222 commits

from 124 popular, Java-based projects hosted on GitHub. In this study, we asked the

developers who actually performed these refactorings to explain the reasons behind their

decision to refactor the code. Next, by applying thematic analysis [12], we categorized

their responses into different themes of motivations. Another contribution of this study

is that we make publicly available1 the data collected and the tools used to enable the

replication of our findings and facilitate future research on refactoring.

Relevance to existing research: The results of this empirical study are important for

two main reasons. First, having a list of motivations driving the application of refactorings

can help researchers and practitioners to infer rules for the automatic detection of these

motivations when analyzing the commit history of a project. Recent research has devised

techniques to help in understanding better the practice of code evolution by identifying

frequent code change patterns from a fine-grained sequence of code changes [38], isolating

non-essential changes in commits [27], and untangling commits with bundled changes (e.g.,

bug fix and refactoring) [14]. In addition, we have empirical evidence that developers tend

to interleave refactoring with other types of programming activity [36], i.e., developers

tend to floss refactor. Therefore, knowing the motivation behind a refactoring can help us

to understand better other related changes in a commit. In fact, in this study we found

several cases where developers extract methods in order to make easier the implementation

of a feature or a bug fix.

Second, having a list of motivations driving the application of refactorings can

help researchers and practitioners to develop refactoring recommendation systems tai-

lored to the actual needs and practices of the developers. Refactoring serves multiple

purposes [19], such as improving the design, understanding the code [7], finding bugs, and

improving productivity. However, research on refactoring recommendation systems [2] has

mostly focused on the design improvement aspect of refactoring by proposing solutions

oriented to code smell resolution. For example, most refactoring recommenders have been

designed based on the concept that developers extract methods either to eliminate code

duplication, or decompose long methods [57, 47, 54, 25, 33, 55]. In this study, we found 11

different reasons behind the application of Extract Method refactorings. Each motivation

requires a different strategy in order to detect suitable refactoring opportunities. Building

1http://aserg-ufmg.github.io/why-we-refactor

3.2. Related Work 33

refactoring recommendation systems tailored to the real needs of developers will help to

promote more effectively the practice of refactoring to the developers, by recommending

refactorings helping to solve the actual problems they are facing in maintenance tasks.

3.2 Related Work

Refactoring is recognized as a fundamental practice to maintain a healthy code

base [19, 5, 40, 34]. For this reason, vast empirical research was recently conducted to

extend our knowledge on this practice.

Studies on refactoring practices: [35] record the first results on refactoring usage,

collected using the Mylar Monitor, a standalone framework that collects and reports

trace information about a user’s activity in Eclipse. [36] rely on multiple data sources

to reveal how developers practice refactoring activities. They investigate nine hypotheses

about refactoring usage and conclude for instance that commit messages do not reliably

indicate the presence of refactoring, that programmers usually perform several refactorings

within a short time period, and that 90% of refactorings are performed manually. [37]

provide a detailed breakdown on the manual and automated usage of refactoring, using a

large corpus of refactoring instances detected using an algorithm that infers refactorings

from fine-grained code edits. As their central findings, they report that more than half of

the refactorings are performed manually and that 30% of the applied refactorings do not

reach the version control system.

Studies based on surveys & interviews: [30, 31] present a field study of refactoring

benefits and challenges in a major software organization. They conduct a survey with

developers at Microsoft regarding the cost and risks of refactoring in general, and the

adequacy of refactoring tool support, and find that the developers put less emphasis on

the behavior preserving requirement of refactoring definitions. They also interview a

designated Windows refactoring team to get insights into how system-wide refactoring

was carried out, and report that the binary modules refactored by the refactoring team

had a significant reduction in the number of inter-module dependencies and post-release

defects. [61] interviews 10 professional software developers and finds a list of intrinsic (i.e.,

self-motivated) and external (i.e., forced by peers or the management) factors motivating

refactoring activity.

Studies on refactoring tools: [60] reveal many factors that affect the appropriate and

inappropriate use of refactoring tools. They show for example that novice developers may

underuse some refactoring tools due to lack of awareness. [22] investigate the barriers in

using the tool support provided for the Extract Method refactoring [19]. They report

3.3. Research Methodology 34

that users frequently made mistakes in selecting the code fragment they want to extract

and that error messages from refactoring engines are hard to understand. [36] show that

90% of configuration defaults in refactoring tools are not changed by the developers. As a

practical consequence of these studies, refactoring recommendation systems [2] have been

proposed to foster the use of refactoring tools and leverage the benefits of refactoring, by

alerting developers about potential refactoring opportunities [56, 57, 3, 44, 4, 47].

Studies on refactoring risks: [28] show that there is an increase in the number of bug

fixes after API-level refactorings. [42] show that refactorings are involved in almost half of

the failed test cases. [62] show that refactorings are sometimes followed by an increasing

ratio of bug reports.

However, existing studies on refactoring practices do not investigate in-depth the

motivation behind specific refactoring types, i.e., why developers decide to perform a cer-

tain refactoring operation. For instance, [31] do not differentiate the motivations between

different refactoring types, and [61] does not focus on the technical motivations, but rather

on the human and social factors affecting the refactoring practice in general. The only ex-

ception is a study conducted by [58], in which the authors themselves manually inspected

the relevant source code before and after the application of a refactoring with a text diff

tool, to reveal possible motivations for the applied refactorings. Because they conducted

this study without asking the opinion of the developers who actually performed the refac-

torings, the interpretation of the motivation can be considered subjective and biased by

the opinions and perspectives of the authors. In addition, the manual inspection of source

code changes is a rather tedious and error-prone task that could affect the correctness of

their findings. Finally, the examined refactorings were collected from the history of only

three open source projects, which were libraries or frameworks. This is a threat to the

external validity of the study limiting the ability to generalize its findings beyond the

characteristics of the selected projects. In this study, we collected refactorings from 124

different projects, and asked the developers who actually performed these refactorings to

explain the reasons behind their decision to refactor the code.

3.3 Research Methodology

In this section we describe our methodology. First, we detail how we selected the

studied repositories (Section 3.3.1). Second, we describe RefactoringMiner, the tool we

used to find refactorings in version histories (Section 3.3.2). Third, we discuss the study’s

design (Section 3.3.3). Last, we present statistics of the collected data (Section 3.3.4).

3.3. Research Methodology 35

20
40

60
80

all active studied

●
●

●A
ge

 (
m

on
th

s)

(a)

●

●

●

all active studied

10
0

1,
00

0
10

,0
00

10
0,

00
0

N
um

be
r

of
 c

om
m

its
 (

lo
g

sc
al

e)
(b)

●

●

●

all active studied

1
10

10
0

1,
00

0
10

,0
00

N
um

be
r

of
 J

av
a

fil
es

 (
lo

g
sc

al
e)

(c)

●
●

●

all active studied

1
10

10
0

1,
00

0

N
um

be
r

of
 c

on
tr

ib
ut

or
s

(lo
g

sc
al

e)

(d)

Figure 3.1: Distribution of (a) age, (b) commits, (c) Java source files, and (d) contributors
of repositories

3.3.1 Selection of GitHub Repositories

First, we selected the top 1,000 Java repositories ordered by popularity in GitHub

(stargazers count) that are not forks. From this initial list, we discarded the lower quartile

ordered by number of commits, to focus the study on repositories with more maintenance

activity. The final selection consists of 748 repositories, including well-known projects, like

JetBrains/intellij-community, apache/cassandra, elastic/elasticsearch, gwtproject/gwt,

and spring-projects/spring-framework.

Figure 3.1 shows violin plots [23] with the distribution of age (in months), number

of commits, size (number of ∗.java files), and number of contributors of the selected

repositories. We provide plots for all 748 systems (labeled as all), for the 471 systems

(63%) with at least one commit during the study period (labeled as active), and for the

124 systems (17%) effectively analyzed in the study (labeled as studied), which correspond

to the repositories with at least one refactoring detected in the commits during the study

period (61 days), along with answers from the developers to our questions about the

motivation behind the detected refactorings. We can observe in Figure 3.1 that the active

systems tend to have a higher number of commits, source files, and contributors than

the initially selected systems (all). The same holds when comparing the studied systems

with the active systems. These observations are statistically confirmed by applying the

one-tailed variant of the Mann-Whitney U test.

3.3.2 RefactoringMiner Tool

In the study, we search for refactorings performed in the version history of the

selected GitHub repositories by analyzing the differences between the source code of two

3.3. Research Methodology 36

revisions. For this purpose, we use a refactoring detection tool proposed in a previous

work [58]. The tool, named RefactoringMiner 0.1 in this study, implements a lightweight

version of the UMLDiff [64] algorithm for differencing object-oriented models. This al-

gorithm is used to infer the set of classes, methods, and fields added, deleted or moved

between successive code revisions. After executing this algorithm, a set of rules is used to

identify different types of refactorings. Unlike other existing refactoring detection tools,

such as Ref-Finder [29] and JDevAn [65], RefactoringMiner provides an API and can be

used as an external library independently from an IDE, while Ref-Finder and JDevAn

can be executed only within the Eclipse IDE. The strong dependency of Ref-Finder and

JDevAn to the Eclipse IDE prevented us from using these tools in our study, since as

it will be explained in Section 3.3.3, our study required a high degree of automation,

and this could be achieved only by being able to use RefactoringMiner programmatically

through its API.

In the study, we analyze 12 well-known refactoring types detected by Refactoring-

Miner, as listed in the first column of Table 3.2. The detection of Rename Class/Method-

/Field refactorings was not supported by RefactoringMiner at the time of this study. Typ-

ically, these refactorings are performed to give a more meaningful name to the renamed

code element. Previous studies show that they are usually performed automatically, using

the refactoring tool support of popular IDEs [36, 37].

3.3.2.1 RefactoringMiner Precision and Recall

As we rely on RefactoringMiner to find refactorings performed in the version history

of software repositories, it is important to estimate its recall and precision. For this reason,

we evaluated RefactoringMiner using the dataset reported in a study by [10]. This dataset

includes a list of refactorings performed by two Ph.D. students on two software systems

(ArgoUML and aTunes) along with the source code before and after the modifications.

There are 173 refactoring instances in total, from which we selected all 120 instances

corresponding to 8 of the refactoring types considered in this study (8 × 15 instances

per type). The dataset does not contain instances of Extract Superclass/Interface, Move

Class, and Rename Package refactorings. We compared the list of refactorings detected

by RefactoringMiner with the known refactorings in those systems to obtain the results of

Table 3.1, which presents the number of true positives (TP), the number of false positives

(FP), the number of false negatives (FN), the recall and precision for each refactoring

type. In total, there are 111 true positives (i.e., existing refactoring instances that were

correctly detected) and 9 false negatives (i.e., existing refactoring instances that were not

3.3. Research Methodology 37

detected), which yield a fairly high recall of 0.93. Besides, there are 2 false positives (i.e.,

incorrectly detected refactoring instances), which yield a precision of 0.98. The lowest

observed recall is for Pull Up Method (0.80), while the lowest observed precision is for

Extract Method (0.88).

In conclusion, the accuracy of RefactoringMiner is at acceptable levels, since Ref-

Finder (the current state-of-the-art refactoring reconstruction tool) has an overall preci-

sion of 79% according to the experiments conducted by its own authors [41], while an

independent study by [52] has shown an overall precision of 35% and an overall recall of

24% for Ref-Finder.

Table 3.1: RefactoringMiner Recall and Precision

Refactoring TP FP FN Recall Precision

Extract Method 15 2 0 1.00 0.88

Inline Method 13 0 2 0.87 1.00

Pull Up Attribute 15 0 0 1.00 1.00

Pull Up Method 12 0 3 0.80 1.00

Push Down Attribute 15 0 0 1.00 1.00

Push Down Method 13 0 2 0.87 1.00

Move Attribute 15 0 0 1.00 1.00

Move Method 13 0 2 0.87 1.00

Total 111 2 9 0.93 0.98

3.3.3 Study Design

During 61 days (between June 8th and August 7th 2015), we monitored all selected

repositories to detect refactorings. We built an automated system that periodically fetches

commits from each remote repository to a local copy (using the git fetch operation).

Next, the system iterates through each commit and executes RefactoringMiner to find

refactorings and store them in a relational database.

As in a previous study [58], we compare each examined commit with its parent

commit in the directed acyclic graph (DAG) that models the commit history in git-based

version control repositories. Furthermore, we exclude merge commits from our analysis to

avoid the duplicate report of refactorings. Suppose that commit CM merges two branches

containing commits CA and CB, respectively. Suppose also that a refactoring ref is

performed in CA, and therefore detected when we compare CA with its parent commit.

3.3. Research Methodology 38

Because the effects of ref are present in the code that resulted from CM , ref would

be detected again if we compared CM with CB. Although a developer may introduce

arbitrary changes in CM (that are not in CA or CB), CM is unlikely to contain additional

refactorings. Thus, we assume that discarding merge commits from our analysis does not

lead to significant refactoring loss.

On each working day, we retrieved the recent refactorings from the database to

perform a manual inspection, using a web interface we built to aid this task. In this

step, we filter out false positives by analyzing the source code diff of the commit. In this

way, we avoid asking developers about false refactorings. Additionally, we also marked

commits that already include an explanation for the detected refactoring in the commit

description, to avoid asking an unnecessary question. For instance, in one of the analyzed

commits we found several methods extracted from a method named onCreate, and the

commit description was:

“Refactored AIMSICDDbAdapter::DbHelper#onCreate for easier reading”

Thus, it is clear that the intention of the refactoring was to improve readability by

decomposing method onCreate. Therefore, it would be unnecessary and inconvenient

to ask the developer.

This process was repeated daily, to detect the refactorings as soon as possible after

their application in the examined systems. In this way, we managed to ask the developers

shortly after they perform a refactoring, to increase the chances of receiving an accurate

response. We send at most one email to a given developer, i.e., if we detect a refactoring

by a developer who has been already contacted before, we do not contact her again, to

avoid the perception of our messages as spam email. The email addresses of the developers

were retrieved from the commit metadata.

In each email, we describe the detected refactoring(s) and provide a GitHub URL

for the commit where the refactoring(s) is(are) detected. In the email, we asked two

questions:

1. Could you describe why did you perform the listed refactoring(s)?

2. Did you perform the refactoring(s) using the automated refactoring support of your

IDE?

With the first question, our goal is to reveal the actual motivation behind real refactorings

instances. With the second question, we intend to collect data about the adequacy and

usage of refactoring tools, previously investigated in other empirical studies [36, 37]. In

this way, we can check whether the findings of these studies are reproduced in our study.

We should clarify that by “automated refactoring” we refer to user actions that trigger

the refactoring engine of an IDE by any means (e.g., through the IDE menus, keyboard

shortcuts, or drag-and-drop of source code elements).

3.3. Research Methodology 39

During the study period, we sent 465 emails and received 195 responses, achieving

a response rate of 41.9%. Each response corresponds to a distinct developer and com-

mit. The achieved response rate is significantly larger than the typical 5% rate found in

questionnaire-based software engineering surveys [51]. This can be attributed to the fire-

house interview [21] nature of our approach, in which developers provide their feedback

shortly after performing a refactoring and have fresh in their memory the motivation

behind it. Additionally, we included in our analysis all 27 commits whose description

already explained the reasons for the applied refactorings, totaling a set of 222 commits.

This set of commits covers 124 different projects and contains 463 refactoring instances

in total.

After collecting all responses, we analyzed the answers using thematic analysis [12],

a technique for identifying and recording patterns (or “themes”) within a collection of

documents. Thematic analysis involves the following steps: (1) initial reading of the

developer responses, (2) generating initial codes for each response, (3) searching for themes

among codes, (4) reviewing the themes to find opportunities for merging, and (5) defining

and naming the final themes. These five steps were performed independently by two

validators, with the support of a simple web interface we built to allow the analysis

and tagging of the detected refactorings. At the time of the study, the first validator

(Validator#1) had 3 years of research experience on refactoring, while the second validator

(Validator#2) had over 8 years of research experience on refactoring.

After the generation of themes from both validators, a meeting was held to assign

the final themes. In 155 cases (58%), both validators suggested semantically equivalent

themes that were rephrased and standardized to compose the final set of themes. The

refactorings with divergent themes were then discussed by both validators to reach a

consensus. In 94 cases (35%), one validator accepted the theme proposed by the other

validator. In the remaining 18 cases (7%), the final theme emerged from the discussion

and was different from what both validators previously suggested. Figure 3.2 shows a case

of an Extract Method refactoring instance that was required to reach a consensus between

the validators. The developer who performed the refactoring explained that the reason

for the refactoring was to support a new feature that required pagination, as described in

the following comment:

“Educational part of PyCharm uses stepic.org courses provider. This server recently de-

cided to use pagination in replies.”

By inspecting the source code changes, we can see that a part of the original method

getCourses() (left-hand side of Figure 3.2) was extracted into method addCoursesFromStepic()

(right-hand side of Figure 3.2). After the refactoring, the extracted method is called twice,

once before the while loop added in the original method, and once inside the while

loop. For this reason, Validator#1 labeled this case as “Avoid duplication”, since the ex-

3.3. Research Methodology 40

public static List?CourseInfoB;getCoursesz2;{

try {

List?CourseInfoB;result;K new ArrayList?CourseInfoBz21

final List?CourseInfoB;courseInfos;K

getFromStepicz,courses,H;CoursesContainerMclass2Mcourses1

for zCourseInfo;info;h;courseInfos2;{

final String;courseType;K;infoMgetTypez21

if zStringUtilMisEmptyOrSpaceszcourseType22 continue1

final List?StringB;typeLanguage;K;StringUtilMsplitzcourseTypeH ,;,21

if ztypeLanguageMsizez2;KK;0;EE;PYCHARM_PREFIXMequalsztypeLanguageMgetzX222;{

resultMaddzinfo21

}

}

return result1

}

catch zIOException;e2;{

LOGMerrorz,Cannot;load;course;list;, Y;eMgetMessagez221

}

return CollectionsMemptyListz21

}

public static List?CourseInfoB;getCoursesz2;{

try {

List?CourseInfoB;result;K new ArrayList?CourseInfoBz21

int pageNumber;K;X1

boolean hasNext;K;addCoursesFromStepiczresultH;pageNumber21

while zhasNext2;{

pageNumber;YK;q1

hasNext;K;addCoursesFromStepiczresultH;pageNumber21

}

return result1

}

catch zIOException;e2;{

LOGMerrorz,Cannot;load;course;list;, Y;eMgetMessagez221

}

return CollectionsMemptyListz21

}

private static boolean addCoursesFromStepiczList?CourseInfoB;resultH int pageNumber2

throws IOException;{

final String;url;K;pageNumber;KK;X;v ,courses, h ,coursesvpageK, Y

final CoursesContainer;coursesContainer;K;getFromStepiczurlH;CoursesContainerMclass21

final List?CourseInfoB;courseInfos;K;coursesContainerMcourses1

for zCourseInfo;info;h;courseInfos2;{

final String;courseType;K;infoMgetTypez21

if zStringUtilMisEmptyOrSpaceszcourseType22 continue1

final List?StringB;typeLanguage;K;StringUtilMsplitzcourseTypeH ,;,21

if ztypeLanguageMsizez2;KK;0;EE;PYCHARM_PREFIXMequalsztypeLanguageMgetzX222;{

resultMaddzinfo21

}

}

return coursesContainerMmetaMcontainsKeyz,has_next,2;EE

coursesContainerMmetaMgetz,has_next,2;KK;BooleanMTRUE1

}

StringMvalueOfzpageNumber21

Extracted Code

Added Code

Call to the Extracted Method

Figure 3.2: Example of Extract Method refactoring that was required to reach a consensus.

tracted method is reused two times after the refactoring. However, the extracted method

contains additional new code to compute properly the URL based on the page number

passed as a parameter (first line in the extracted method), and to return a boolean

indicating if there exists a next page (last line in the extracted method). For this reason,

Validator#2 labeled this case as “Facilitate extension”, since the extracted method also

helps to implement the new pagination requirement. After deliberation, the validators

reached a consensus by keeping both theme labels, since the extracted method serves both

purposes of reuse and extension.

3.3.4 Examined Refactorings

We monitored 748 Java projects during the study period, and found commits in

471 projects (63%), i.e., 277 projects remained inactive. We also found 285 projects with

refactoring activity, as detected by RefactoringMiner (including false positives). In these

projects, 2,241 refactoring instances were detected (in 729 commits), and were manually

to confirm whether they are indeed true positives.

Table 3.2 shows the number of true positives (TP), false positives (FP), and pre-

cision (Prec.) of RefactoringMiner by refactoring type, as computed after the manual

inspection of the detected refactorings. In general, our tool achieves very high precision

for Rename Package (100%), Pull Up/Push Down Attribute/Method refactorings (over

94%), and relatively high precision for Extract Method and Move Attribute refactorings

(over 75%), while the precision for Move Method and Extract Superclass is 67%. How-

3.4. Why do Developers Refactor? 41

Table 3.2: Refactoring activity

Refactoring TP FP Precision Commits Projects

Extract Method 468 135 0.78 312 136

Move Class 432 512 0.46 85 60

Move Attribute 129 44 0.75 45 38

Rename Package 105 0 1.00 25 24

Move Method 99 48 0.67 40 31

Inline Method 58 67 0.46 44 36

Pull Up Method 33 1 0.97 18 17

Pull Up Attribute 23 1 0.96 11 11

Extract Superclass 22 11 0.67 18 16

Push Down Method 16 1 0.94 6 6

Push Down Attribute 15 1 0.94 7 7

Extract Interface 11 8 0.58 10 9

Total 1,411 830 0.63 539 185

ever, for some refactorings the precision is closer to 50%, namely Extract Interface (58%),

Inline Method (46%), and Move Class (46%). We observed several cases of inner classes

falsely detected as moved, because their enclosing class was simply renamed. By support-

ing the detection of Rename Class refactoring, we could improve Move Class precision.

It should be emphasized that we asked the developers only about the true positives de-

tected by RefactoringMiner. In comparison to the results presented in Section 3.3.2.1,

the precision is lower, because the commits analyzed from GitHub projects may include

tangled changes, while the commits analyzed in Section 3.3.2.1 include only refactoring

operations. Tangled changes make the detection of refactorings more challenging, thus

resulting in more false positives. Finally, Table 3.2 shows the number of distinct commits

and projects containing at least one true positive refactoring (539 out of 729 commits

and 185 out of 285 projects with detected refactorings contain at least one true positive

refactoring).

3.4 Why do Developers Refactor?

In this section, we present the results for the first question answered by the de-

velopers, regarding the reasons behind the application of the refactorings we detected.

Based on the results of the thematic analysis process (Section 3.3.3), we compile a cat-

3.4. Why do Developers Refactor? 42

Table 3.3: Extract Method motivations

Theme Description Occur.

Extract reusable method Extract a piece of reusable code from a single place
and call the extracted method in multiple places.

43

Introduce alternative
method signature

Introduce an alternative signature for an existing
method (e.g., with additional or different parame-
ters) and make the original method delegate to the
extracted one.

25

Decompose method to im-
prove readability

Extract a piece of code having a distinct functionality
into a separate method to make the original method
easier to understand.

21

Facilitate extension Extract a piece of code in a new method to facilitate
the implementation of a feature or bug fix, by adding
extra code either in the extracted method, or in the
original method.

15

Remove duplication Extract a piece of duplicated code from multiple
places, and replace the duplicated code instances
with calls to the extracted method.

14

Replace Method preserv-
ing backward compatibil-
ity

Introduce a new method that replaces an existing
one to improve its name or remove unused parame-
ters. The original method is preserved for backward
compatibility, it is marked as deprecated, and dele-
gates to the extracted one.

6

Improve testability Extract a piece of code in a separate method to en-
able its unit testing in isolation from the rest of the
original method.

6

Enable overriding Extract a piece of code in a separate method to en-
able subclasses override the extracted behavior with
more specialized behavior.

4

Enable recursion Extract a piece of code to make it a recursive method. 2

Introduce factory method Extract a constructor call (class instance creation)
into a separate method.

1

Introduce async operation Extract a piece of code in a separate method to make
it execute in a thread.

1

alogue of 44 distinct motivations. We dedicate Section 3.4.1 to discuss Extract Method,

which is the most frequently occurring refactoring operation in our study, and also the

one with the most observed motivations (11). Section 3.4.2 presents the motivations for

the remaining refactorings.

3.4.1 Motivations for Extract Method

Table 3.3 describes 11 motivations for Extract Method refactoring and the number

of occurrences for each of them. The most frequent motivation is to extract a reusable

3.4. Why do Developers Refactor? 43

Table 3.4: Motivations for Move Class, Attribute, Method (MC, MA, MM), Rename
Package (RP) Inline Method (IM), Extract Superclass, Interface (ES, EI), Pull Up
Method, Attribute (PUM, PUA), Push Down Attribute, Method (PDA, PDM)

Type Theme Description Occur.

MC Move class to appropriate con-
tainer

Move a class to a package that is more functionally or conceptually relevant. 13

MC Introduce sub-package Move a group of related classes to a new subpackage. 7

MC Convert to top-level container Convert an inner class to a top-level class to broaden its scope. 4

MC Remove inner classes from dep-
recated container

Move an inner class out of a class that is marked deprecated or is being removed. 3

MC Remove from public API Move a class from a package that contains external API to an internal package,
avoiding its unnecessary public exposure.

2

MC Convert to inner class Convert a top-level class to an inner class to narrow its scope. 2

MC Eliminate dependencies Move a class to another package to eliminate undesired dependencies between
modules.

1

MC Eliminate redundant sub-
package

Eliminate a redundant nesting level in the package structure. 1

MC Backward compatibility Move a class back to its original package to maintain backward compatibility. 1

MA Move attribute to appropriate
class

Move an attribute to a class that is more functionally or conceptually relevant. 15

MA Remove duplication Move similar attributes to another class where a single copy of them can be
shared, eliminating the duplication.

4

RP Improve package name Rename a package to better represent its purpose. 8

RP Enforce naming consistency Rename a package to conform to project’s naming conventions. 3

RP Move package to appropriate
container

Move a package to a parent package that is more functionally or conceptually
relevant.

2

MM Move method to appropriate
class

Move a method to a class that is more functionally or conceptually relevant. 8

MM Move method to enable reuse Move a method to a class that permits its reuse by other classes. 3

MM Eliminate dependencies Move a method to eliminate dependencies between classes. 3

MM Remove duplication Move similar methods to another class where a single copy of them can be
shared, eliminating duplication.

1

MM Enable overriding Move a method to permit subclasses to override it. 1

IM Eliminate unnecessary method Inline and eliminate a method that is unnecessary or has become too trivial
after code changes.

13

IM Caller becomes trivial Inline and eliminate a method because its caller method has become too trivial
after code changes, so that it can absorb the logic of the inlined method without
compromising readability.

2

IM Improve readability Inline a method because it is easier to understand the code without the method
invocation.

1

ES Extract common state/behavior Introduce a new superclass that contains common state or behavior from its
subclasses.

7

ES Eliminate dependencies Introduce a new superclass that is decoupled from specific dependencies of a
subclass.

1

ES Decompose class Extract a superclass from a class that holds many responsibilities. 1

PUM Move up common methods Move common methods to superclass. 8

PUA Move up common attributes Move common attributes to superclass. 7

EI Facilitate extension Introduce an interface to enable different behavior. 1

EI Enable dependency injection Introduce an interface to facilitate the use of a dependency injection framework. 1

EI Eliminate dependencies Introduce an interface to avoid depending on an existing class/interface. 1

PDA Specialized implementation Push down an attribute to allow specialization by subclasses. 2

PDA Eliminate dependencies Push down attribute to subclass so that the superclass does not depend on a
specific type.

1

PDM Specialized implementation Push down a method to allow specialization by subclasses. 1

3.4. Why do Developers Refactor? 44

method (43 instances), which is consistent with the first finding from Study 1 (see Sec-

tion 2.3.1). In this case, the refactoring is motivated by the immediate reuse of a piece

of code in multiple other places, in addition to the place from which it was originally

extracted. We often observe a concern among developers to reuse code wherever possible,

by extracting pieces of reusable code. This is illustrated by the following comments:

“These refactorings were made because of code reusability. I needed to use the same code

in new method. I always try to reuse code, because when there’s a lot of code redundancy

it gets overwhelmingly more complicated to work with the code in future, because when

something change in code that has it’s duplicate somewhere, it usually needs to be changed

also there.”

“The reason for me to do the refactoring was: Don’t repeat yourself (DRY).”

The second most frequent motivation is to introduce an alternative method signa-

ture for an existing method (25 instances), e.g., with extra parameters. To achieve that,

the body of the existing method is extracted to a new one with an updated signature

and additional logic to handle the extended variability. The original method is changed

to delegate to the new one, passing some default values for the new parameters. The

following comment illustrates this case:

“The extracted method values(names List<String>, values List<Object>)

could be of help for some users using Lists instead of arrays, and because the implemen-

tation already transformed the provided arrays into Lists internally.”

Decomposing a method for improving readability (21 instances) is the third most

frequent motivation. Typically, this corresponds to a Long Method code smell [19], as

illustrated in this comment:

“The method was so long that it didn’t fit onto the screen anymore, so I moved out parts.”

The next two motivations are to facilitate extension (15 instances) and to remove

duplication (14 instances). In the first case, a method is decomposed to facilitate the

implementation of a new feature or the fix of a bug by adding code either in the extracted

or in the original method, as illustrated in this comment:

“I was fixing an exception, in order to do that I had to add the same code to 2 different

places. So I extracted initial code, replace duplicate with the extracted method and add the

‘fix’ to the extracted method.”

In the second case (i.e., remove duplication), a piece of duplicated code is extracted

from multiple places into a single method, as illustrated in the following comments:

“I refactored shared functionality into a single method.”

3.4. Why do Developers Refactor? 45

“I checked how other test methods create testing User objects and noticed that it takes two

lines of code that were repeated all over the test class. So I abstracted these two lines of

code into a method for better readability and then reused the method in all the places that

had the same code.”

Finally, two other important motivations are to improve testability (6 instances)

and to replace a method by preserving backward compatibility (6 instances). In the first

case, the decomposition enables the developer to test parts of the code in isolation, as

illustrated in this comment:

“I wanted to test the part of authenticate() which verifies that a member is element

of a set, and that would have been more complex using authenticate directly.”

In the second case, the goal is to introduce a method having the same functionality

with an already existing one, but a different signature (e.g., improved name, or removed

unused parameter), and at the same time preserve the public API by making the origi-

nal method delegate to the new one. This motivation is best illustrated in the following

comment:

“I did that refactoring because essentially I wanted to rename the functions involved -

you’ll see the old functions just forward straight to the new ones. But I didn’t just rename

because other code in other projects might be referring to the old functions, so they would

need to still be present (I guess they should have been marked as @deprecated then, but I

was a bit lazy here).”

3.4.2 Motivations for Other Refactorings

Table 3.4 presents the motivations for the remaining refactorings. We found nine

different motivations for Move Class. The two most frequent motivations are to move

a class to a package that is more functionally or conceptually related to the purpose of

the class (13 instances), and to introduce a sub-package (7 instances). The first one is

illustrated by the following comment:

“This refactoring was done because common interface for those classes lived in org.neo4j.kernel.impl.store.

record, while most of it’s implementors lived in org.neo4j.

kernel.impl.store which did not make sense because all of them are actually records.”

For Move Attribute, the most common motivation is also to move the attribute to

3.5. Refactoring Automation 46

an appropriate class that is more functionally or conceptually relevant (15 instances), as

in the example below:

“In this case, each of these fields was moved as their relevance changed. As UserService

already handles the login process, it makes sense that changes to the login process should

be encapsulated within UserService.”

Remove duplication is another motivation for moving an attribute, as illustrated

by the following comment:

“The attributes were duplicated, so I moved them to the proper common place.”

For Rename Package, the most common motivation is to update the name of a

package to better represent its purpose (8 instances), as in the example below:

“This was a simple package rename. test seems to fit better than tests here as a single

test can be executed too.”

We found three main reasons for a Move Method refactoring: move a method to an

appropriate class (8 instances), move a method to enable reuse (3 instances), and move a

method to eliminate dependencies (3 instances). The most frequent motivation for Inline

Method is to eliminate an unnecessary or trivial method, as illustrated in the comment:

“Since the method was a one-liner and was used only in one place, inlining it didn’t make

the code more complex. On the other hand, it allowed to lessen calls to getVirtualFile().”

Extract Superclass is usually applied to introduce a new class with state or behavior

that can be shared by subclasses (7 instances). Pull Up Method/Attribute is performed

to move common code to an existing superclass (8 and 7 instances, respectively). Extract

Interface and Push Down Attribute/Method are less popular refactorings and thus their

motivations have at most two instances.

3.5 Refactoring Automation

In this section, we discuss the results drawn from the second question answered by

the developers, regarding the use (or not) of automatic refactoring tools provided by their

IDEs to apply the refactorings we presented. First, in Section 3.5.1, we present how many

of the interviewed developers applied the refactoring(s) automatically. We also present

which refactoring types are more frequently applied with tool support. In Section 3.5.2,

3.5. Refactoring Automation 47

we discuss some insights drawn from developers’ answers that explain why refactoring is

still applied manually in most of the cases. Last, in Section 3.5.3, we present additional

details regarding which IDE developers most often used for refactoring.

3.5.1 Are refactoring tools underused?

Table 3.5 shows the results for this question. 95 developers (55% of valid answers)

answered that the refactoring was performed manually without tool support; 66 devel-

opers (38%) answered that the refactoring engine of an IDE was used; 13 developers

(7%) answered that the refactoring was partially automated. In summary, refactoring is

probably more often applied manually than with refactoring tools.

Table 3.5: Manual vs. automated refactoring

Modification Occurrences

Manual 95

Automated 66

Not answered 48

Partially automated 13

We also counted the percentage of automated refactorings by refactoring type,

as presented in Table 3.6. Rename Package is the refactoring most often performed

with tool support (58%), followed by Move Class (50%). Three other refactorings are

performed automatically in around a quarter of the cases: Extract Method (29%), Move

Method (26%), and Move Attribute (24%). Inline Method follows with 18% of automatic

applications. Finally, for the remaining refactorings, we do not have a large number of

instances to draw safe conclusions (maximum 9 instances), but there is a consistent trend

showing that inheritance-related refactorings are mostly manually applied.

3.5.2 Why do developers refactor manually?

29 developers explained in their answers why they did not use a refactoring tool.

Table 3.7 shows five distinct themes we identified in these answers.

3.5. Refactoring Automation 48

Table 3.6: Refactoring automation by type

Refactoring Type Occurrences Automated %

Extract Method 118 29

Move Class 36 50

Move Attribute 21 24

Move Method 19 26

Inline Method 17 18

Rename Package 12 58

Extract Superclass 9 11

Pull Up Method 9 11

Pull Up Attribute 7 14

Extract Interface 3 0

Push Down Attribute 3 33

Push Down Method 2 0

Table 3.7: Reasons for not using refactoring tools

Description Occurrences

The developer does not trust automated support for complex refactorings. 10

Automated refactoring is unnecessary, because the refactoring is trivial and
can be manually applied.

8

The required modification is not supported by the IDE. 6

The developer is not familiar with the refactoring capabilities of his/her IDE. 3

The developer did not realize at the moment of the refactoring that he/she
could have used refactoring tools.

2

Lack of trust (10 instances) was the most frequent reason. Some developers do not

trust refactoring tools for complex operations that involve code manipulation and only

use them for renaming or moving:

“I don’t trust the IDE for things like this, and usually lose other comments, notation,

spacing from adjacent areas.”

“I’d say developers are reluctant to let a tool perform anything but trivial refactorings,

such as the ones you picked up on my commit.”

On the other hand, some developers also think that tool support is unnecessary in

simple cases (8 instances). Sometimes the operation may involve only local changes and is

trivial to do by hand. Thus, calling a special operation to do it is considered unnecessary,

as illustrated by this comment:

“Automated refactoring is overkill for moving some private fields.”

3.5. Refactoring Automation 49

Additionally, developers also mentioned: lack of tool support for the specific refac-

toring they were doing (6 instances), not being familiar with refactoring features of the

IDE (3 instances), and not realizing they could use refactoring tools at the moment of

the refactoring (2 instances).

3.5.3 What IDEs developers use for refactoring?

When answering to our emails, 83 developers spontaneously mentioned which IDE

they use. Therefore, we decided to investigate these answers, specially because our study

is not dependent on any IDE, and thus differs from previous studies which are usually

based only on Eclipse data [36, 37]. Table 3.8 shows the most common IDEs mentioned

in these answers and the percentage of refactorings performed automatically in these

cases. 139 developers (63%) did not explicitly mention an IDE when answering this

question. Considering the answers citing an IDE, IntelliJ IDEA is the most popular

one. It also has the highest ratio of refactorings performed automatically (71%). Since 11

JetBrains/intellij-community (and related plug-ins) developers answered to our questions,

we also investigated the answers separately in two groups, namely answers from IntelliJ

IDEA developers and from IntelliJ IDEA users. We observed that the ratio of automated

refactorings in both groups is very similar (73% vs. 70%). Therefore, the responses from

these 11 IntelliJ IDEA developers do not bias the percentage of automated refactoring

reported for IntelliJ IDEA.

Table 3.8: IDE popularity

IDE Occurrences Automated %

Editor not mentioned 139 12

IntelliJ IDEA 51 71

Eclipse 18 44

NetBeans 8 50

Android Studio 4 25

Text Editor 2 0

3.6. Discussion 50

3.6 Discussion

In this section, we discuss the main findings of our study.

Refactoring Motivations: Our study confirms that Extract Method is the “Swiss army

knife of refactorings” [58]. It is the refactoring with the most motivations (11 in total).

In comparison to the study of [58], there is an overlap in the reported motivation themes

for Extract Method. We found some new themes, such as improve testability and enable

recursion, but we did not find any instances of the themes encapsulate field and hide

message chain, reported by [58], which are related to code smell resolution. We assume

these different themes are due to the nature of the examined projects, since [58] examined

only three libraries and frameworks, while in this study we examined 124 projects from

various domains including standalone applications. By comparing to the code symptoms

that initiate refactoring reported in the study by [31], we found the readability, reuse,

testability, duplication, and dependency motivation themes in common.

Most of the refactoring motivations we found have the intention to facilitate or

even enable the completion of the maintenance task that the developer is working on. For

instance, extract reusable method, introduce alternative method signature, and facilitate

extension are among the most frequent motivations, and all of them involve enhancing the

functionality of the system. Therefore, Extract Method is a key operation to complete

other maintenance tasks, such as adding a feature or fixing a bug. In particular, extract

reusable method was the most frequent motivation, confirming the findings from Study 1,

which shows that code reuse is a major motivation for Extract Method. In contrast, only

two out of the 11 motivations we found (decompose method to improve readability and

remove duplication) are targeting code smells. This finding could motivate researchers

and tool builders to design refactoring recommendation systems [57, 47, 54, 25, 33, 55]

that do not focus solely on detecting refactoring opportunities for the sake of code smell

resolution, but can support other refactoring motivations as well.

We also observe that developers are seriously concerned about avoiding code du-

plication, when working on a given maintenance task. They often use refactorings—

especially Extract Method—to achieve this goal, as illustrated by the following comments:

“I need to add a check to both the then- and the else-part of an if-statement. This resulted

in more duplicated code than I was comfortable with.”

“There was already code duplication, but the bug fix required another cut-and-paste, which

made it code triplication. That was above my pain level so I decided to group the replicated

code out into bail().”

3.6. Discussion 51

The other refactorings we analyzed are typically performed to improve the system

design. For example, the most common motivation for Move Class, Move Attribute, and

Move Method is to reorganize code elements, so that they have a stronger functional or

conceptual relevance.

Automated vs. Manual Refactoring: In a field study with Eclipse users, [37] report

that most refactorings (52%) are manually performed. In our study, involving developers

using a wider variety of IDEs, we found that 55% of refactorings are manually performed.

However, we also found that IntelliJ IDEA users tend to use more the refactoring tool

support than other IDE users. Moreover, the results for automated Extract Method

refactorings are very similar in both studies: 28% in our study vs. 30% in their study.

While the total percentages of manually performed refactorings are very similar, we should

keep in mind that Negara et al. counted simple refactorings, like renamings, which are

more often applied with tool support. Compared to the study by [36], where they report

that 89% of refactorings are performed manually (considering also renamings), we detected

significantly more automated refactorings. We suspect this difference may be due to two

reasons. First, automated refactoring tools may have become more popular and reliable

over the last years. Second, our study involves developers using a broader range of IDEs,

which may also influence how developers use refactoring tool support.

Regarding the reasons for not using automated refactoring, our results are in line

with the three main factors found in the study by [36]: awareness, opportunity, and trust.

The exception is the argument that tool support is unnecessary in simple cases, which is

not closely related to any of the three aforementioned factors. However, the same argu-

ment can be observed in the study by [31], in which some developers mention that they

do not feel a great need for automated refactoring tools.

Refactoring Popularity: In this study we detected refactorings in 285 of the monitored

repositories in a time window of 61 days. Given that only 471 out of the 748 monitored

repositories were active during that period, we found refactoring activity in 60.5% of the

repositories with at least one commit. This shows that refactoring is a common practice,

especially considering that frequent refactorings such as Rename Class/Method/Field

were not considered.

The top-5 most popular refactorings detected in our study are Extract Method,

Move Class, Move Attribute, Rename Package, and Move Method. Move Method is the

third most popular refactoring in the study by [37]. The top-2 refactorings in this study

(Rename Local Variable and Extract Local Variable) are low-level refactorings, which

have not been considered in our study. We focused on high-level refactorings, because

they can be motivated by multiple factors.

Using a sample of 40 commits with manual and automated refactorings, [36] report

that the two most popular refactorings are Rename Constant and Push Down. However,

3.7. Threats to Validity 52

Push Down refactorings are among the least popular ones in our study. This difference

may be related to the number of commits analyzed in the studies (40 vs. 539 commits

in our study), and the specialized nature of the software (i.e., the Eclipse IDE) examined

by [36].

3.7 Threats to Validity

External Validity: This study is restricted to open source, Java-based, GitHub-hosted

projects. Thus, we cannot claim that our findings apply to industrial systems, or to

systems implemented in other programming languages. However, we collected responses

from 222 developers contributing in 124 different projects, which is one of the largest

samples of systems used in refactoring studies.

Internal Validity: First, we use in the study a tool that detects refactorings by com-

paring two revisions of the code. We evaluated the recall of this tool using a sample of

120 documented refactoring operations. We achieved a recall of 0.93. However, we cannot

guarantee a similar recall in the studied GitHub projects, because some commits might

contain tangled changes making more difficult to isolate (or untangle [14]) the changes

related to refactorings. In addition, it is known that this kind of detection approach

may miss refactorings that do not reach the version control system (e.g., sequences of

overlapping refactorings applied to the same piece of code). We claim this threat should

be tolerated in large scale studies, where we cannot assume that the developers would

be willing to install an external monitoring tool in their IDEs [37]. Furthermore, as we

showed in this study, developers nowadays use IDEs from multiple vendors. In order to

cover as many IDEs as possible and strengthen the external validity, a study based on

monitoring would require to develop a separate version of this tool for each IDE. Second,

we cannot claim that the catalogue of motivations we propose is exhaustive. Notably, we

have a limited number of motivation themes for less frequent refactoring types, such as

Push Down Method/Attribute and Extract Interface. Third, to mitigate inconsistencies

in the proposed themes, we rely on an initial classification performed independently by

two evaluators, followed by a consensus building process. We also make publicly avail-

able the responses collected from the developers and the proposed refactoring motivation

themes to provide a means for replication and verification.

3.8. Conclusions 53

3.8 Conclusions

In summary, the main conclusions and lessons learned are:

1. Refactoring activity is mainly driven by changes in the requirements (i.e., new fea-

ture and bug fix requests) and much less by code smell resolution. Only 2 out of

the 11 motivations for Extract Method were related to fixing existing code smells

(remove duplication, decompose method) covering only 25% (35/138) of the motiva-

tion instances. Nevertheless, developers frequently avoid introducing code smells,

such as duplicate code.

2. Extract Method is a key operation that serves multiple purposes, specially those

related to code reuse and functionality extension. It is also used to improve the

testability of code, and deprecate public API methods.

3. The elimination of dependencies is the most common motivation among themove/abstract

related refactorings.

4. Manual refactoring is still prevalent (55% of the developers refactored manually the

code). In particular, inheritance related refactoring tool support seems to be the

most under-used (only 10% done automatically), while Move Class and Rename

Package are the most trusted refactorings (over 50% done automatically).

5. The IDE plays an important role in the adoption of refactoring tool support. IntelliJ

IDEA users perform more automated refactorings (71% done automatically) than

Eclipse users (44%) and NetBeans users (50%).

6. Compared to the study by [36], it seems that developers apply more automated

refactorings nowadays. Our findings confirm [37] who collected data only from

Eclipse IDE users, but our study covers developers using more IDEs.

Based on our findings, we propose that future research on refactoring recommenda-

tion systems should refocus from code-smell-oriented to maintenance-task-oriented solu-

tions. This could be achieved by leveraging feature location [17] and requirements tracing

to automatically locate the code associated with a feature or bug fix request, or a require-

ment change, and recommend suitable refactorings that will make easier the completion of

the maintenance task. We strongly believe this will boost the adoption of recommendation

systems by the developers.

3.9. Artifact Description 54

3.9 Artifact Description

The data collected in this study is provided as an artifact, which is publicly avail-

able at:

http://aserg-ufmg.github.io/why-we-refactor

The dataset includes a list of 539 commits from 185 GitHub-hosted Java projects

with 1,411 refactorings identified by the RefactoringMiner tool and confirmed with manual

inspection. The detected refactorings cover 12 different types:

1. Extract Method (EM)

2. Move Class (MC)

3. Move Attribute (MA)

4. Rename Package (RP)

5. Move Method (MM)

6. Inline Method (IM)

7. Pull Up Method (UM)

8. Pull Up Attribute (UA)

9. Extract Superclass (ES)

10. Push Down Method (DM)

neo4j b83e6a5

Authored by Mats Rydberg, Committed at 6/18/15 7:27 AM

Commit Message

Implement index prefix search for lucene indices

Refactorings

Extract Superclass org.neo4j.kernel.api.impl.index.AbstractLuceneIndexAccessorReaderTest from classes

org.neo4j.kernel.api.impl.index.LuceneIndexAccessorReaderTest and

org.neo4j.kernel.api.impl.index.LuceneUniqueIndexAccessorReaderTest

Extract Method protected query(query Query) : PrimitiveLongIterator extracted from public

lookup(value Object) : PrimitiveLongIterator and public scan() : PrimitiveLongIterator in class

org.neo4j.kernel.api.impl.index.LuceneIndexAccessorReader

Motivation Tags

EM: Remove duplication

ES: Extract common

state/behavior

Tool Usage Tags

Manual

manual: Lack of trust

ide: Unknown

Figure 3.3: An example of a commit with refactorings and their motivations.

http://aserg-ufmg.github.io/why-we-refactor

3.9. Artifact Description 55

11. Push Down Attribute (DA)

12. Extract Interface (EI)

Additionally, the dataset includes a list of 222 commits with 463 refactorings and

their motivations. This is the subset of the commits with refactorings where the developers

answered to our mails, describing the reasons for performing the detected refactorings.

The motivation theme for each refactoring was proposed after analyzing all developers’

answers using thematic-analysis. The dataset contains details of the themes assigned

by each evaluator that independently analyzed each commit, and also the final themes

derived after a discussion phase to reach a consensus. Moreover, the dataset also includes

information about the IDE used to perform the refactorings (if reported by the developer).

In case the refactoring is performed manually, we also include a possible reason for not

using the IDE refactoring tool support.

Figure 3.3 illustrates one of these commits. In this example, there are two refac-

torings applied in the neo4j project. The first one is an Extract Superclass, in which the

superclass AbstractLuceneIndexAccessorReaderTest was extracted from two

other classes. This refactoring was performed to Extract common state/behavior. The

second refactoring, in which the method query was extracted from two other methods

of class LuceneIndexAccessorReader, was performed to Remove duplication. Ad-

ditionally, the refactoring was performed manually (Manual tag) due to a Lack of trust

in refactoring tools. Finally, the IDE is Unknown, because it was not reported by the

developer. The dataset also includes meta-data about the commits (SHA1 hash, author,

date, and time).

The dataset is available as a navigable web site, where researchers and practitioners

can view and explore each commit including a refactoring with the motivation inferred in

our study. However, we also provide the dataset in JSON format, to facilitate its import

and use by other tools.

3.9.1 License

The dataset is distributed under the terms of the Creative Commons Attribution License,

which permits unrestricted use, distribution, reproduction and adaptation in any medium

provided that it is properly attributed.

Danilo Silva, Nikolaos Tsantalis, Marco Tulio Valente. Why We Refactor? Confessions

of GitHub Contributors. In Proceedings of the 24th International Symposium on the

3.9. Artifact Description 56

Foundations of Software Engineering (FSE), pages 858-870, 2016.

3.9.2 How to contribute?

Researchers are welcome to contribute to this dataset either reporting issues or

submitting new data from different projects or commits. Such contributions should be

made via GitHub issues or pull requests in the following repository:

https://github.com/aserg-ufmg/why-we-refactor

https://github.com/aserg-ufmg/why-we-refactor

57

Chapter 4

Detecting Refactoring in Version

Histories

Identifying refactoring operations in source code changes is valuable to understand soft-

ware evolution. Therefore, several tools have been proposed to automatically detect refac-

torings applied in a system by comparing source code between revisions. The availability

of such infrastructure has enabled researchers to study refactoring practice in large scale,

leading to important advances on refactoring knowledge. However, although a plethora

of programming languages are used in practice, the vast majority of existing studies are

restricted to the Java language due to limitations of the underlying tools. This fact poses

an important threat to external validity. Thus, to overcome such limitation, we propose

RefDiff 2.0, a multi-language refactoring detection tool. Our approach leverages techniques

proposed in our previous work and introduces a novel refactoring detection algorithm that

relies on the Code Structure Tree (CST), a simple yet powerful representation of the source

code that abstracts away the specificities of particular programming languages. Despite its

language-agnostic design, our evaluation shows that RefDiff’s precision (96%) and recall

(80%) are on par with state-of-the-art refactoring detection approaches specialized in the

Java language. Our modular architecture also enables one to seamlessly extend RefDiff to

support other languages via a plugin system. As a proof of this, we implemented plugins

to support two other popular programming languages: JavaScript and C. Our evaluation

in these languages reveals that precision and recall ranges from 88% to 91%. With these

results, we envision RefDiff as a viable alternative for breaking the single-language barrier

in refactoring research and in practical applications of refactoring detection.

4.1 Introduction

Knowing about the refactoring activity in software projects is a valuable informa-

tion to help researchers understand software evolution. For example, past studies have

4.1. Introduction 58

used such information to shed light on important aspects of refactoring practice, such

as: how developers refactor [36], the usage of refactoring tools [37, 36], the motivations

driving refactoring [30, 31, 48], the risks of refactoring [30, 31, 28, 62, 1], and the impact of

refactoring on code quality metrics [30, 31]. Moreover, it is often important to keep track

of refactorings when performing source code evolution analysis because files, classes, or

functions may have their histories split by the refactorings such as Move or Rename [24].

Additionally, knowing which refactoring operations were applied in the version

history of a system may help in several practical tasks. For example, in a study by [30],

many developers mentioned the difficulties they face when reviewing or integrating code

changes after large refactoring operations, which moves or renames several code elements.

Thus, developers feel discouraged to refactor their code. If a tool is able to identify such

refactoring operations, it can possibly resolve merge conflicts automatically. Moreover,

diff visualization tools can also benefit from such information, presenting refactored code

elements side-by-side with their corresponding version before the change. Another appli-

cation for such information is adapting client code to a refactored version of an API it

uses [20, 65]. If we are able to detect the refactorings that were applied to an API, we

might replay them on the client code automatically.

Given the importance of studying refactoring activity, we proposed RefDiff in pre-

vious work [49]. RefDiff is an automated approach that identifies refactorings operations

performed in the version history of Java systems. By that time, our main goal was to

provide a reliable tool to mine refactoring activity in a fully automated fashion, with

better precision and recall than existing approaches. Since then, other approaches have

emerged, such as RMiner [59], which enhanced precision to even higher standards. To-

day, the availability of such tools enables large-scale and in-depth empirical studies on

refactoring practice [48, 24].

Nevertheless, despite the advancements in the field of refactoring detection, ex-

isting tools are all centered in the Java language. Thus, we are still not able to mine

refactoring activity in a vast amount of software repositories written in other program-

ming languages. By restricting refactoring research to a single programming language,

we may get a biased understanding of the reality. Moreover, the practical applications of

such tools are hindered by the lack of support of other popular programming languages.

For all these reasons, in this chapter we propose a multi-language refactoring de-

tection approach, named as RefDiff 2.0, which is a complete redesign of its first version

that introduces an extensible architecture. In RefDiff 2.0, the refactoring detection heuris-

tics are fully implemented in a common core, and support for programming languages is

provided by plug-in modules. As a way to validate this architecture, we implemented

and evaluated extension modules for three mainstream programming languages with dis-

tinct characteristics: Java, JavaScript (a widely popular dynamic programming language,

used mostly to build web applications) and C (a procedural programming language, used

4.2. Background 59

mostly to implement system software).

Additionally, we reworked the refactoring detection heuristics of RefDiff to signifi-

cantly improve its precision when compared to our previous work. Now, RefDiff achieves

96.4% of precision and 80.4% of recall when evaluated in the Java dataset proposed by

[59], against 79.3% of precision and 80.2% of recall in its prior version. Moreover, RefDiff’s

precision is on par with RMiner, the current state-of-the-art in Java refactoring detection

(96.4% vs. 98.8%). This is a relevant achievement because our approach is not specialized

in a single language.

In summary, we deliver the following contributions in this work:

• Amajor extension of our refactoring detection approach proposed in previous work [49],

which includes a redesign of its core to work with a language-independent model

and improved detection heuristics.

• A publicly available implementation1 of our approach, with out-of-the-box support

for Java, C, and JavaScript.

• An evaluation of the precision and recall of RefDiff using a large scale dataset of

refactorings performed in real-world Java open source projects, comparing it with

RMiner, a state-of-the-art tool for detecting refactorings in Java. As a byproduct of

this evaluation, we also extend the dataset with new refactoring instances discovered

by our tool.

• An evaluation of the precision and recall of RefDiff in real-world C and JavaScript

open source projects.

The remainder of this chapter is structured as follows. Section 4.2 describes re-

lated work, discussing existing refactoring detection approaches. Section 4.3 presents the

proposed approach in details. Section 4.4 describes the design and results of a large scale

evaluation of RefDiff in Java projects. Section 4.5 describes the design and results of an

evaluation of RefDiff in C and JavaScript projects. Section 4.6 discusses challenges and

limitations. Last, Section 4.7 presents final remarks and concludes the chapter.

4.2 Background

Empirical studies on refactoring rely on means to identify refactoring activity.

Thus, different techniques have been proposed and employed for this task. For exam-

1RefDiff and all evaluation data are public available in GitHub:
https://github.com/aserg-ufmg/RefDiff

https://github.com/aserg-ufmg/RefDiff

4.2. Background 60

ple, [36] collected refactoring usage data using a plug-in that monitors user actions in

the Eclipse IDE, including calls to refactoring commands. [37] describe a tool, called

CodingTracker, to infer refactorings from fine-grained code edits. They use this tool to

study refactorings performed by 23 developers working in their IDEs during a total of

1,520 hours. The tool achieved a precision of 99.3% when evaluated with the automated

Eclipse refactorings performed by the study participants. On a sample of both manual

and automated refactorings, CodingTracker achieved a precision of 93% and a recall of

100%. However, CodingTracker requires the installation of a refactoring inference plugin

in IDEs.

Other studies use metadata from version control systems to identify refactoring

changes. For example, [43] search for a predefined set of terms in commit messages

to classify them as refactoring changes. In specific scenarios, a branch may be created

exclusively to refactor the code, as reported by [31]. Another strategy is employed by [53].

They propose an approach that identifies behavior-preserving changes by automatically

generating and running test-cases. While their approach is intended to guarantee the

correct behavior of a system after refactoring, it may also be employed to classify commits

as behavior-preserving. Moreover, many existing approaches are based on static analysis.

This is the case of the approach proposed by [13], which finds refactored elements by

observing changes in code metrics.

Static analysis is also frequently used to find differences in the source code by

comparing two revisions [15, 63, 58, 41, 29, 49, 59]. Approaches based on comparing

source code differences have the advantage of beeing able to identify refactoring operations

applied in version histories. As RefDiff is one of these approaches, it can be directly

compared with others within this category. In the next sections, we discuss RefDiff 1.0

and three other approaches.

4.2.1 RefDiff 1.0

The original version of RefDiff [49], which we will denote as RefDiff 1.0 throughout

this chapter, employs a combination of heuristics based on static analysis and code simi-

larity to detect 13 well-known refactoring types. One of its distinguishing characteristic is

the use of the classical TF-IDF similarity measure from information retrieval to compute

code similarity. In our previous work, we evaluated RefDiff 1.0 using an oracle of 448

refactoring operations, distributed across seven Java projects. We built this oracle by de-

liberately applying refactorings in software repositories in a controlled manner. Although

this strategy poses the risk of creating an artificial dataset, this way we assured this ora-

4.2. Background 61

cle was complete and could be used to compute both precision and recall. We compared

our tool with three existing approaches, namely Refactoring Miner 0.1 [58], Refactoring

Crawler [15], and Ref-Finder [29]. Our approach achieved precision of 100% and recall of

88%, surpassing the three tools subjected to the comparison.

4.2.2 Refactoring Miner/RMiner

Refactoring Miner 0.1 is an approach originally introduced by [58], capable of iden-

tifying 14 high-level refactoring types: Rename Package/Class/Method,Move Class/Method-

/Field, Pull Up Method/Field, Push Down Method/Field, Extract Method, Inline Method,

and Extract Superclass/Interface. In its original version, Refactoring Miner employs a

lightweight algorithm, similar to the UMLDiff proposed by [64], for differencing object-

oriented models, inferring the set of classes, methods, and fields added, deleted or moved

between two code revisions. Refactoring Miner was employed and evaluated in empirical

studies on refactoring along its evolution. In the first study, using the version histories

of JUnit, HTTPCore, and HTTPClient, [58] reported 8 false positives for the Extract

Method refactoring (96.4% precision) and 4 false positives for the Rename Class refactor-

ing (97.6% precision). No false positives were reported for the remaining refactorings. In

a second study that mined refactorings in 285 GitHub hosted Java repositories [48], we

found found 1,030 false positives out of 2,441 refactorings (63% precision). However, we

also evaluated Refactoring Miner using as a benchmark the dataset reported by [10], in

which it achieved 93% precision and 98% recall.

In a recent study, [59] proposed a major evolution of its tool, now named as

RMiner 1.0. In its current version, RMiner relies on an AST-based statement match-

ing algorithm and a set of detection rules that cover 15 representative refactoring types.

Its statement matching algorithm employes two techniques to be resilient to code restruc-

turing during refactoring: abstraction, which deals with changes in statements’ AST type

due to refactorings, and argumentization, which deals with changes in sub-expressions

within statements due to parameterization. To evaluate RMiner, the authors created a

dataset with 3,188 real refactorings instances from 185 open-source projects. Using this

oracle, the authors found that RMiner has a precision of 98% and recall of 87%, which was

the best result so far, surpassing RefDiff 1.0, the previous state-of-the-art, which achieved

precision of 75.7% and recall of 85.8% in this dataset.

4.2. Background 62

4.2.3 Refactoring Crawler

Refactoring Crawler, proposed by [15], is an approach capable of finding seven

high-level refactoring types: Rename Package/Class/Method, Pull Up Method, Push Down

Method, Move Method, and Change Method Signature. It uses a combination of syntactic

analysis to detect refactoring candidates and a reference graph analysis to refine the

results.

First, Refactoring Crawler analyzes the abstract syntax tree of a program and pro-

duces a tree, in which each node represents a source code entity (package, class, method,

or field). Then, it employs a technique known as shingles encoding to find similar pairs

of entities, which are candidates for refactorings. Shingles are representations for strings

with the following property: if a string changes slightly, then its shingles also change

slightly. In a second phase, Refactoring Crawler applies specific strategies for detecting

each refactoring type, and computes a more costly metric that determines the similarity of

references between code entities in two versions of the system. For example, two methods

are similar if the sets of methods that call them are similar, and the sets of methods they

call are also similar. The strategies to detect refactorings are repeated in a loop until no

new refactorings are found. Therefore, the detection of a refactoring, such as a rename,

may change the reference graph and enable the detection of new refactorings.

[15] evaluated Refactoring Crawler comparing pairs of releases of three open-source

software components: Eclipse UI, Struts, and JHotDraw. Such components were chosen

because they provided detailed release notes describing API changes. The authors relied

on such information and on manual inspection to build an oracle containing 131 refactor-

ings. The reported results are: Eclipse UI (90% precision and 86% recall), Struts (100%

precision and 86% recall), and JHotDraw (100% precision and 100% recall). However, in

our previous study [49], Refactoring Crawler achieved only 41.9% of precision and 35.6%

of recall.

4.2.4 Ref-Finder

Ref-Finder, proposed by [41, 29], is an approach based on logic programming ca-

pable of identifying 63 refactoring types from the Fowler’s catalog [19]. The authors

express each refactoring type by defining structural constraints, before and after applying

a refactoring to a program, in terms of template logic rules.

First, Ref-Finder traverses the abstract syntax tree of a program and extracts

4.3. Proposed Approach 63

facts about code elements, structural dependencies, and the content of code elements,

to represent the program in terms of a database of logic facts. Then, it uses a logic

programming engine to infer concrete refactoring instances, by creating a logic query based

on the constraints defined for each refactoring type. The definition of refactoring types

also consider ordering dependencies among them. This way, lower-level refactorings may

be queried to identify higher-level, composite refactorings. The detection of some types

of refactoring requires a special logic predicate that indicates that the similarity between

two methods is above a threshold. For this purpose, the authors implemented a block-

level clone detection technique, which removes any beginning and trailing parenthesis,

escape characters, white spaces, and return keywords and computes word-level similarity

between the two texts using the longest common sub-sequence algorithm.

The authors evaluated Ref-Finder in two case studies. In the first one, they used

code examples from the Fowler’s catalog to create instances of the 63 refactoring types.

The authors reported 93.7% recall and 97.0% precision for this first study. In the second

study, the authors used three open-source projects: Carol, jEdit, and Columba. In this

case, Ref-Finder was executed in randomly selected pairs of versions. From the 774

refactoring instances found, the authors manually inspected a sample of 344 instances

and found that 254 were correct (73.8% precision). However, in a study by [52] using a

set of randomly select revisions of JHotDraw and Apache Common Collections containing

81 refactoring instances in total, Ref-Finder achieved 35% of precision and 24% of recall.

Moreover, in our previous study [49], it also achieved 26.4% of precision and 64.2% of

recall.

It is worth noting that Ref-Finder and Refactoring Crawler require a full build

of the program under analysis. Therefore, their usage is not recommended when mining

refactorings from version histories in the large. In this case, it might be a challenge to

build each release, due to missing external dependencies, for example. For that reason,

our evaluation (Section 4.4) focus on comparing RefDiff with RMiner.

4.3 Proposed Approach

Our approach consists of two phases: Source Code Analysis and Relationship Anal-

ysis. In the first phase, Source Code Analysis, we take as input two revisions of a system,

v1 and v2, and build two models that represent their source code. Both models have the

form of a tree, in which each node corresponds to a code element (classes, functions, etc.).

In the second phase, Relationship Analysis, we compute a set R, which contains triples of

the form (n1, n2, t), where n1 is a code element from revision v1, n2 is a code element from

4.3. Proposed Approach 64

revision v2 and t is a relationship type. Such relationships may denote a high-level refac-

toring operation (move, rename, extract, etc.) or an exact correspondence between the

code elements. For example, consider the diff between two revisions of a system depicted

in Figure 4.1. Among other changes, the class Calculator , declared in revision 1, is

renamed to FpCalculator in revision 2. This corresponds to a relationship of the

type Rename between them. In the next sections, we describe in details each phase of

our approach.

my/calc/Main.java

my/calc/Calculator.java → my/calc/FpCalculator.java

Revision 1 Revision 2

package my.calc;

public class Main {
 public static void main(String[] args) {
 FpCalculator c = new FpCalculator();
 double r = c.sum(c.minimum(2.3, 3), 1.8);
 print(r);
 }
 private static void print(double res) {
 System.out.printf("%.2f", res);
 }
}

package my.calc;

public class Main {
 public static void main(String[] args) {
 Calculator c = new Calculator();
 double r = c.sum(c.min(2.3, 3), 1.8);
 System.out.printf("%.2f", r);
 }

}

package my.calc;

public class FpCalculator {
 public double sum(double x, double y) {
 return x + y;
 }
 public double minimum(double x, double y) {
 if (x < y) return x;
 else return y;
 }
 public double maximum(double x, double y) {
 if (x > y) return x;
 else return y;
 }
}

package my.calc;

public class Calculator {
 public double sum(double x, double y) {
 return x + y;
 }
 public double min(double x, double y) {
 if (x < y) return x;
 else return y;
 }

}

3

2

1

3
1

2

Method print is
extracted from main

Class Calculator is
renamed to FpCalculator

Method min is
renamed to minimum

Figure 4.1: Illustrative diff between two revisions of a system annotated with refactoring
operations

4.3.1 Phase 1: Source Code Analysis

The goal of this phase is to compute a language-independent model that represents

the source code of the system, which we denote from now on as Code Structure Tree (CST).

The CST is a tree-like structure that resembles an Abstract Syntax Tree (AST). However,

in this representation we are only interested in coarse-grained code elements (e.g., classes

and functions) that encompass a code region and may be referred by an identifier in other

parts of the system.

To construct the CST, we need to parse the source code, generate the AST for the

target programming language, and extract the necessary information. Thus, the decision

of which types of AST nodes become CST nodes depends on the programming language.

4.3. Proposed Approach 65

For example, in Java we represent classes, enums, interfaces, and methods as CST nodes.

In contrast, local variables are not represented. Nevertheless, it is important to note that

the granularity of the CST nodes determines the granularity of the relationships we are

able to find, e.g., we can only find relationships between methods if we represent methods

in the CST. Table 4.1 lists the types of AST nodes that are represented in the CST for

each programming language supported by the current implementation of our approach.

Table 4.1: AST nodes that are represented in CSTs

Language Node types

Java class, enum, interface, method, and constructor

C file and function

JavaScript file, class, and function

n3

n6 my.calc.Main

n7 main(String[])

n12 maximum(double,double)

CST for revision 1 CST for revision 2

n1 is parent of n2 n1 n2

n1 uses n2 n1 n2

n9 my.calc.FpCalculator

n10 sum(double,double)

n11 minimum(double,double)

n8 print(double)

n1 my.calc.Main

n2 main(String[])

my.calc.Calculator

n4 sum(double,double)

n5 min(double,double)

Figure 4.2: CST of both revisions of the example system from Figure 4.1

Figure 4.2 exemplifies the transformation of the example system from Figure 4.1

into a corresponding CST. In revision 1, the class Main is declared with a single method

main and the class Calculator contains two methods: sum and min . Note that

these classes and methods become nodes in the CST for revision 1, preserving the same

nesting structure of the source code. Analogously, the figure also depicts the CST for

revision 2, which contains seven nodes in total (two classes and five methods).

Besides the representation of the code elements, the CST also embeds a simplified

call graph and a type hierarchy graph of the nodes within the CST, that is, there are

edges to represent whether a certain node n1 calls n2, or whether n1 is a subtype of n2.

The first information is necessary to find Extract and Inline relationships between code

elements, while the second is used to find inheritance-related relationships, such as Pull

Up and Push Down.

4.3. Proposed Approach 66

Moreover, along with each node of the CST, we store the following information:

Identifier

An identifier of the code element in its declared scope. The identifier is usually the

name of the code element, but it may also contain additional information to avoid

ambiguities. For example, the identifier of the class Calculator from Figure 4.2 is

simply its name, but the identifier of the method sum is sum(double,double) ,

because there could be an overloaded method with a different signature.

Namespace

An optional prefix that, along with the identifier, globally identifies the code element.

This information only applies to top-level nodes and corresponds to the package or

folder that the element is contained. For example, the namespace of the class

Calculator from Figure 4.2 is my.calc. .

Node type

A string that identifies the node type in the target language (class, function, method,

etc.).

Parameters list

An optional list of the name of the parameters, in the case the node corresponds to

a method or function.

Tokenized source code

The source code of the element in the form of a list of tokens. Here, we include

all tokens in the code region that encompasses the complete declaration of the code

element, including its name/signature. This information is necessary to compute

the similarity between code elements, as explained in Section 4.3.3.

Tokenized source code of the body

The source code of the body of the code element in the form of a list of tokens.

Here we include only the tokens within the body of the code element, but not

its name/signature. This information is also necessary to compute the similarity

between code elements in the special cases of Extract and Inline relationships, as

explained in Section 4.3.3.2. It is worth noting that this information is optional, as

not every node has a body (e.g., abstract methods).

It is worth noting that we generate the CST only for source files that have been

added, removed, or modified between revisions. Such information can be efficiently ob-

tained from version control systems, without the need to analyze the content of all files

within the repository. This way, we avoid a costly operation that might compromise the

scalability of our approach, as large repositories contain thousands of source files, but

only a small fraction of them change between revisions.

4.3. Proposed Approach 67

Although the construction of the CST is a language-specific process, from this

point on, the approach is language-independent and relies only on information encoded in

CSTs. This way, one is able to extend our approach to work with different programming

languages only by implementing the Source Code Analysis module. To demonstrate this

capability, we provide implementations for three programming languages: Java, C, and

JavaScript.

4.3.2 Phase 2: Relationship Analysis

This phase takes as input the CST’s of revisions v1 and v2 and outputs the set of

relationships R. Let N1 and N2 be the sets of code elements from the CST’s of v1 and

v2 respectively. Each relationship r ∈ R is a triple (n1, n2, t), where n1 ∈ N1, n2 ∈ N2,

and t is a relationship type. The types of relationships are listed in the first column of

Table 4.3, and can be subdivided into two groups:

• Matching relationships, which indicate that the node n1 corresponds to n2 in the

subsequent revision. The possible matching relationships are Same, Convert Type,

Pull Up, Push Down, Change Signature, Move, Rename, and Move and Rename.

We say that a node n1 matches with n2 if there exists a relationship (n1, n2, t) ∈ R

such that t is a matching relationship.

• Non-matching relationships, which indicate that either node n1 is decomposed

to create n2, or node n1 is incorporated into n2. There are four non-matching

relationships: Extract Supertype, Extract, Extract and Move, and Inline.

4.3.2.1 General algorithm to find relationships

Our approach employs the algorithm described in Figure 4.3 to find the relation-

ships (i.e., to compute the set R). The procedure FindRelationships has two param-

eters, t1 and t2, which are the root nodes of the CST’s of both revisions. Initially, we

define R← ∅ as the set of relationships found so far (line 2). Additionally, we also define

M ← ∅ as the set of pairs of matching nodes found so far (line 3). Then, we execute four

subroutines:

1. In findMatchingsById, we recursively look for matching nodes that have the

4.3. Proposed Approach 68

1: procedure FindRelationships(t1, t2)
2: R← ∅
3: M ← ∅
4: findMatchingsById(t1, t2)
5: findMatchingsBySim
6: findMatchingsByChildr
7: resolveMatchings
8: findNonMatchingRel
9: return R
10:
11: procedure findMatchingsById(p1, p2)
12: for each (n1, n2) ∈ childr(p1)× childr(p2) do
13: if id(n1) = id(n2) ∧ ns(n1) = ns(n2) then
14: addMatch(n1, n2)
15: end if
16: end for
17: end procedure
18:
19: procedure findMatchingsBySim
20: for each (n1, n2) ∈ sortBySim(N− ×N+) do
21: if findMatchRel(n1, n2) ̸= ∅ then
22: addMatch(n1, n2)
23: end if
24: end for
25: end procedure
26:
27: procedure findMatchingsByChildr
28: for each (n1, n2) ∈ sortBySim(N− ×N+) do
29: if matchingChildr(n1, n2) > 1 ∧ nameSim(n1, n2) > 0.5 then
30: addMatch(n1, n2)
31: end if
32: end for
33: end procedure
34:
35: procedure resolveMatchings
36: for each (n1, n2) ∈M do
37: R← R ∪ findMatchRel(n1, n2)
38: end for
39: end procedure
40:
41: procedure findNonMatchingRel
42: for each (n1, n2) ∈M1 ×N+ do
43: R← R ∪ findExtractSupertype(n1, n2)
44: R← R ∪ findExtract(n1, n2)
45: R← R ∪ findExtractMove(n1, n2)
46: end for
47: for each (n1, n2) ∈ N− ×M2 do
48: R← R ∪ findInline(n1, n2)
49: end for
50: end procedure
51:
52: procedure addMatch(n1, n2)
53: if n1 ∈ N− ∧ n2 ∈ N+ then
54: M ←M ∪ {(n1, n2)}
55: findMatchingsById(n1, n2)
56: end if
57: end procedure
58: end procedure

Figure 4.3: Algorithm to find relationships

4.3. Proposed Approach 69

same identifier and parent, i.e., we assume that code elements with the same iden-

tifier and parent are the same. In the case of top-level nodes, which do not have

parents, their namespace should be the same. Such assumption allows us to match

many code elements at this step, reducing the number of possibilities that need to be

checked in the next steps. The procedure consists of a loop that pairs the children

of the nodes received as arguments and calls the procedure addMatch whenever

a matching is found (line 13). On its turn, addMatch (lines 46-51) adds a pair of

matching nodes to M and calls findMatchingsById again to look for matchings

on their children, completing the recursion. The matching pairs found in this step

will be resolved to Same and Convert type relationships later (see step 4).

2. In findMatchingsBySim, we look for matching nodes based on code similarity.

The goal is to find Change Signature, Pull Up, Push Down, Move, Rename, and

Move and Rename relationships. The procedure iterates over the unmatched pairs

of nodes sorted by similarity in descending order. We use the notation N− to

denote the set of unmatched nodes from t1 (presumably deleted) and N+ to denote

the set of unmatched nodes from t2 (presumably added). For each pair (n1, n2),

the procedure checks if it meets the conditions (specified in the second column

of Table 4.3) for any matching relationship by calling findMatchRel(n1, n2). This

function returns a singleton containing a matching relationship or an empty set if

none of the conditions are met. Last, the addMatch subroutine is called in the

case of a matching (line 24). The conditions to find those relationships and the

sortBySim function rely on a code similarity metric, which is described in details in

Table 4.2: Definitions used in the Algorithm from Figure 4.3 and in the conditions from
Table 4.3

Definitions

M1 the set of nodes from N1 that matches
with a node from N2

M2 the set of nodes from N2 that matches
with a node from N1

N− the set of unmatched nodes from N1

(N1 \M1)

N+ the set of unmatched nodes from N2

(N2 \M2)

n′ the code element that matches with n
in the other revision

π(n) parent of a node n (it may be a names-
pace or a CST node)

ns(n) namespace of the code element n

childr(n) set of children of n in the CST

name(n) simple name of the code ele-
ment n

id(n) identifier of the code ele-
ment n

nType(n) node type of the code ele-
ment n

subtype(n1, n2) n1 is subtype of n2

uses(n1, n2) n1 uses n2

sim(n1, n2) code similarity between n1

and n2

nameSim(n1, n2) name similarity between n1

and n2

simx(n1, n2) extract similarity between n1

and n2

sortBySim(S) elements of S sorted by sim
descending

4.3. Proposed Approach 70

Section 4.3.3.

3. In findMatchingsByChildr, we look for matching nodes based on matchings

of their children and name similarity. Once again, the procedure iterates over the

unmatched pairs of nodes sorted by similarity in descending order. For each pair

(n1, n2), if n1 has more than one children that match with n2’s children and their

names are similar, then we consider it a match. The nameSim function, used to

compute the similarity between names, is described in details in Section 4.3.3.1.

This heuristic is intended to cover the cases when a code element (e.g., a class) is

moved (and/or renamed) and it is also subjected to many additions or removals of its

members, so that its similarity with its matching pair is not enough to yield a match

in the previous step. Failing to detect that a class has been moved (or renamed)

may yield several incorrect Move relationships between its members before and after

the change.

4. In resolveMatchings, we add the relationships corresponding to the matching

pairs found at steps 1, 2, and 3 to R. The procedure iterates over the elements of

M and calls findMatchRel to find which relationship type holds between n1 and n2

(according to the conditions defined in Table 4.3). By the end of this step, R contains

all matching relationships found. The rationale for postponing the resolution of the

relationship type is discussed in Section 4.3.2.2.

5. In findNonMatchingRel, we look for non-matching relationships. First, we it-

erate over the pairs of matched/unmatched nodes, i.e., M1×N+, to look for Extract

Supertype, Extract and Extract and Move relationships. Similarly, we also iterate

over the pairs of unmatched/matched nodes (N− ×M2) to search for Inline rela-

tionships. The functions findExtractSupertype, findExtract, findExtractMove,

and findInline check the preconditions for the corresponding relationship types, ac-

cording to Table 4.3. After this last step, R contains all matching and non-matching

relationships between CST nodes of both revisions.

Figure 4.4 shows the relationships we find after running RefDiff in the example from

Figure 4.1. Each relationship is represented by an edge connecting nodes from the left and

right CSTs. There are three relationships of the type Same, involving the code elements

whose identifiers do not change: the class Main and the methods main and sum .

Two of the relationships are of type Rename, indicating that the class Calculator is

renamed to FpCalculator , and the method min is renamed to minimum . Moreover,

there is an Extract relationship indicating that the method print is extracted from

main . Finally, we can also note that two nodes, n8 and n12, are not involved in matching

relationships. Thus, we classify them as added code elements. In this example, as every

node on the left side is matched, there are no deleted code elements.

4.3. Proposed Approach 71

Table 4.3: Relationship types and the conditions to find them

Relationship type Conditions

(n1, n2) ∈ N− ×N+, such that:

Same nType(n1) = nType(n2) ∧ id(n1) = id(n2) ∧ π(n1)
′ = π(n2)

Convert Type nType(n1) ̸= nType(n2) ∧ id(n1) = id(n2) ∧ π(n1)
′ = π(n2)

Pull Up nType(n1) = nType(n2) ∧ id(n1) = id(n2) ∧ subtype(π(n1)
′, π(n2))

Push Down nType(n1) = nType(n2) ∧ id(n1) = id(n2) ∧ subtype(π(n2), π(n1)
′)

Change Signature nType(n1) = nType(n2) ∧ id(n1) ̸= id(n2) ∧ name(n1) = name(n2) ∧
π(n1)

′ = π(n2) ∧ sim(n1, n2) > 0.5

Move nType(n1) = nType(n2) ∧ name(n1) = name(n2) ∧ π(n1)
′ ̸= π(n2) ∧

sim(n1, n2) > 0.5

Rename nType(n1) = nType(n2) ∧ name(n1) ̸= name(n2) ∧ π(n1)
′ = π(n2) ∧

sim(n1, n2) > 0.5

Move and Rename nType(n1) = nType(n2) ∧ name(n1) ̸= name(n2) ∧ π(n1)
′ ̸= π(n2) ∧

sim(n1, n2) > 0.5

(n1, n2) ∈M1 ×N+, such that:

Extract Supertype ∃(n3, n4,PullUp) ∈ R (n1 = π(n3) ∧ n2 = π(n4))

Extract uses(n′
1, n2) ∧ π(n1)

′ = π(n2) ∧ simx(n2, n1) > 0.5

Extract and Move uses(n′
1, n2) ∧ π(n1)

′ ̸= π(n2) ∧ simx(n2, n1) > 0.5

(n1, n2) ∈ N− ×M2, such that:

Inline uses(n1, n
′
2) ∧ simx(n1, n2) > 0.5

n12

n3

n6 my.calc.Main

n7 main(String[])

maximum(double,double)

CST for revision 1 CST for revision 2

n1 is parent of n2 n1 n2

n1 uses n2 n1 n2

matching relationship n1 n2

non-matching relationship n1 n2

Same

Same

Same

Extract

Rename

Rename

n9 my.calc.FpCalculator

n10 sum(double,double)

n11 minimum(double,double)

print(double)

n1 my.calc.Main

n2 main(String[])

my.calc.Calculator

n4 sum(double,double)

n5 min(double,double)

n added node

n8

Figure 4.4: Relationships found in the example from Figure 4.1

4.3. Proposed Approach 72

4.3.2.2 Dependent and conflicting relationships

In some cases, correctly finding a relationship depends on finding a prior relation-

ship. For example, consider the relationship (n5, n11, Rename) in Figure 4.4 (method

min renamed to minimum). The conditions for this relationship includes the clause

π(n5)
′ = π(n11), which means that the matching node of the parent of n5 should be equal

to the parent of n11 (see Table 4.3, Rename row). This clause only yields true after the

matching pair (n3, n9) is added toM , i.e., after we find out that Calculator is renamed

to FpCalculator . In fact, if we call findMatchRel(n5, n11) before M contains (n3, n9),

we would incorrectly classify it as a Move and Rename relationship. To address this issue,

we only resolve the actual relationship types in steps 4 and 5, after all matching pairs

are found (note that in steps 1, 2, and 3 we record the matching pairs in M , purposely

ignoring the type of relationship).

Another issue which we may face when looking for relationships are conflicts, i.e.,

two or more matching relationships hold for the same code element (according to con-

ditions from Table 4.3). For instance, in the example from Figure 4.4, the conditions

for Rename yield true for the pair of methods min and minimum because their source

code are similar and their parents match. However, this is also the case for the pair of

methods min and maximum , whose bodies are also similar. We cannot match the same

node twice, thus, we must decide upon which relationship we will accept and discard

the other one. This issue is addressed in procedures findMatchingsBySim and find-

MatchingsByChildr by using the sortBySim function to sort the potential matching

pairs, enforcing that we take first the most likely matches. The sortBySim function relies

on a similarity metric, which we discuss in details in Section 4.3.3. After a matching

pair (n1, n2) is added to M , no more matchings involving n1 or n2 are accepted, because

addMatch procedure checks that n1 ∈ N− ∧ n2 ∈ N+ (line 47).

4.3.3 Code Similarity

A key element of our approach to find relationships, as previously mentioned, is

computing the similarity between code elements (i.e., CST nodes). The first step to

compute this similarity is to represent their source code as a multiset (or bag) of tokens.

A multiset is a generalization of the concept of a set, but it allows multiple instances of the

same element. The multiplicity of an element is the number of occurrences of that element

within the multiset. This representation provides two advantages for our approach. First,

4.3. Proposed Approach 73

Source code of a class

public class Calculator {

public int sum(int x, int y) {
return x + y;

}

public int min(int x, int y) {
if (x < y) return x;
else return y;

}

public double power(int b, int e) {
return Math.pow(b, e);

}
}

⇒

Multiset of tokens for each method

Token t msum(t) mmin(t) mpower(t)

return 1 2 1

x 1 2 0

+ 1 0 0

y 1 2 0

; 1 2 1

if 0 1 0

(0 1 1

< 0 1 0

) 0 1 1

else 0 1 0

Math 0 0 1

. 0 0 1

pow 0 0 1

b 0 0 1

, 0 0 1

e 0 0 1

nt

3

2

1

2

3

1

2

1

2

1

1

1

1

1

1

1

Figure 4.5: Transformation of the body of methods into a multiset of tokens

it makes the CST simpler and less coupled to the syntax of programming languages,

because we do not need to represent each statement (or AST node) from the source code.

Second, we can apply set operations to the bag of tokens, such as subtraction, which is

important to detect Extract relationships, as we will discuss in Section 4.3.3.2.

Formally, a multiset can be defined in terms of a multiplicity function m : U → N,
where U is the set of all possible elements. In other words, m(t) is the multiplicity of

the element t in the multiset. Note that the multiplicity of an element that is not in the

multiset is zero. For example, Figure 4.5 depicts the transformation of the source code

of three methods (sum , min , and power), of the class Calculator , into multisets

of tokens. In this figure, the multiplicity function m for each method is represented in a

tabular form. For example, the multiplicity of the token y in method min is two (i.e.,

mmin(y) = 2), whilst the multiplicity of the token if in method power is zero (i.e.,

mpower(if) = 0).

After extracting a multiset of tokens, we also compute a weight for each token of

the source code. In fact, some tokens are more important than others to discriminate a

code element. For example, in Figure 4.5, all three methods contain the token return .

In contrast, only one method (power) contains the token Math . Therefore, the later is

a better indicator of similarity between methods than the former.

In order to take this into account, we employ a variation of the TF-IDF weighting

scheme [45], which is a well-known technique from information retrieval. TF-IDF, which

is the short form of Term Frequency-Inverse Document Frequency, reflects how important

a term is to a document within a collection of documents. In the context of code elements,

we consider a token as a term, and a code element as a document. Let E be the set of

all code elements and nt be the number of elements in E that contains the token t. The

4.3. Proposed Approach 74

Inverse Document Frequency (idf), is defined as:

idf (t) = log(1 +
|E|
nt

) (4.1)

Note that the value of idf (t) decreases as nt increases, because the more frequent

a token is among the collection of code elements, the less important it is to distinguish

them. For example, in Figure 4.5, the token y occurs in two methods (sum and min).

Thus, its idf is:

idf (y) = log(1 +
|E|
nt

) = log(1 +
3

2
) = 0.398

On the other hand, the token else occurs in one method (min), and therefore its

idf is:

idf (else) = log(1 +
|E|
nt

) = log(1 +
3

1
) = 0.602

Last, to compute the similarity between two code elements e1 and e2, we use a

generalization of the Jaccard coefficient, known as weighted Jaccard coefficient [11]. Let

U be the set of all possible tokens andmi : U → N be the multiplicity function representing

the multiset of tokens of a code element ei. We define the similarity between e1 and e2

by the following formula:

sim(e1, e2) =

∑︁
t∈U min(m1(t),m2(t))× idf (t)∑︁
t∈U max(m1(t),m2(t))× idf (t)

(4.2)

The rationale behind this formula is that the similarity is at maximum (1.0) when

the multiset of tokens representing e1 and e2 contain the same tokens with the same

cardinality. In contrast, if the multisets contain no tokens in common, the similarity is

zero. Additionaly, tokens with higher idf will have a higher weight.

4.3.3.1 Name similarity

Besides relying on the code similarity, our algorithm also depends on the func-

tion nameSim(n1, n2) in Step 3. This function denotes the similarity between the names

of the code elements n1 and n2. For computing nameSim, we first decompose the

identifiers of n1 and n2 into their composing words. Specifically, we split camel case

(e.g., myIdentifier) or snake case patterns (e.g., my identifier). For example,

SomeLong Name yields three terms: Some , Long , and Name . Then, we compute

nameSim using the same formula from sim (see Equation 4.2), but in this case, each

multiset of tokens contains the terms composing the identifiers of n1 and n2.

4.3. Proposed Approach 75

4.3.3.2 Extract similarity

While the similarity function sim presented previously is suitable to compute

whether two code elements are similar, it is not appropriate to assess whether a code

element is extracted from another one, because their source code may be significantly

different on their entirety. However, if a method e2 is extracted from e1, we expect that

part of the code of e1 is moved to e2. Therefore, the source code of the body of e2 should

be similar to the source code removed from e1. Additionally, not all code removed from

e1 may have been moved to e2, i.e., some parts of the code may have been extracted to

other locations or simply deleted. To be less susceptible to this issue, our similarity index

for Extract relationships rely on the following assumption: the code from the body of e2

should be mostly contained in the code removed from e1.

Thus, to compute the extract similarity, first we need to compute the code removed

from e1. As we represent the source code as multisets of tokens, we are able to use the

subtract operation to achieve this goal. Let m1 be the multiset of tokens of e1 before the

change and m′
1 be the multiset of tokens of e1 after the change. The subtract operation

between both multisets, which we denote by m′
1 \m1, yields a new multiset m−

1 defined

by the following multiplicity function:

m−
1 (t) = max(0,m′

1(t)−m1(t)) (4.3)

Besides computing the code removed from e1, we need to measure if it is contained

within e2. Thus, we employ a variation of the weighted Jaccard coefficient introduced

previously (see Equation 4.2), which is defined as:

sim⊆(m1,m2) =

∑︁
t∈U min(m1(t),m2(t))× idf (t)∑︁

t∈U m1(t)× idf (t)
(4.4)

where m1 and m2 are multisets (defined by their multiplicity functions). In this variation,

we change the denominator of Equation 4.2 to include only the multiplicity of the tokens

from the first multiset (not their union). This way, the similarity is at maximum (1.0)

when m1 is a subset of m2, even if both multisets are not identical. In contrast, the

similarity is zero when the intersection between m1 and m2 is empty.

Given these definitions, we are able to define the extract similarity index, simx, as:

simx(e1, e2) = sim⊆(m2,m
−
1) (4.5)

where m−
1 is the multiset representing the code removed from e1 (m1 \ m′

1) and m2 is

the multiset representing the source code of the body of e2. The rationale behind this

formula is that the similarity is at maximum when m2 is a subset of m−
1 , addressing the

previously described heuristic.

4.3. Proposed Approach 76

4.3.3.3 Inline similarity

The similarity index for computing Inline relationships is analogous to the Extract

similarity index. If a code element e1 is inlined into a code element e2, we expect that the

code from the body of e1 should be mostly contained in the code added to e2. Specifically,

we define the inline similarity index, simi, as:

simi(e1, e2) = sim⊆(m1,m
+
2) (4.6)

where m1 is the multiset representing the source code of the body of e1 and m+
2 is the

multiset representing the code added to e2 (m
′
2\m2). Such similarity index is at maximum

(1.0) when m1 is a subset of the added code (m+
2).

4.3.3.4 Ignoring parameters and return keywords

When retrieving the tokenized source code of the body of a code element, some

tokens are ignored to avoid that syntactical constructs necessary to its declaration intro-

duce noise when computing the Extract or Inline similarity index. For example, suppose

we take the refactoring operation #1 depicted in Figure 4.1: print is extracted from

main . The body of the new method print contains a single statement:

System.out.printf("%.2f", res);

All the tokens within this method are present in main before the extraction, except

the identifier res , which is a declared parameter of print . In fact, in the original

statement, a variable r is used in place of res . To be less susceptible to such differences,

we omit all occurences of parameters in the tokenized source code of the body. Similarly,

occurences of return keywords are also ignored because they may be introduced when

turning the extracted code into a method. It is worth noting that discarding such tokens is

of responsability of the source analysis module. Thus, specific rules may be implemented

according to the peculiarities of the programming language.

4.3.4 Implementation details

RefDiff implementation consists of a core module and language plugins:

4.3. Proposed Approach 77

• refdiff-core: implements our core algorithm and contains common data types

to represent CSTs and interfaces to implement source code analysis (i.e., generation

of CSTs) for each programming language. Currently, this module contains 3,103

lines of code, implemented in Java.

• refdiff-java: language plugin for Java, which relies on the Eclipse JDT library

for parsing and analyzing Java code.2 This module contains 1,137 lines of code.

• refdiff-c: language plugin for C, using the Eclipse CDT library.3 This module

contains 615 lines of code.

• refdiff-js: language plugin for JavaScript, using the Babel parser4 and with

689 lines of code.

To add support to a new programming language, one must implement the LanguagePlugin

interface, which defines two methods: parse , which builds the CST given a set of source

files, and getAllowedFilesFilter , which returns an object with a list of allowed file

extensions and an optional list of ignored file name suffixes. For example, refdiff-js

ignores file names that end with .min.js, which are usually generated code.

When compared to existing refactoring detection approaches, RefDiff’s design has

the advantage of being loosed coupled to the syntax of Java (and of any other pro-

gramming language). For example, RMiner, which is a Java-based approach, relies on a

statement matching algorithm and applies two techniques to enable matching of state-

ments that are not textually identical: Abstraction and Syntax-aware replacements of

AST nodes [59]. Both techniques manipulate syntactic constructs of the Java language,

such as return statements, variable declarations, assignments, method invocations, condi-

tional statements, class instantiations, types, literals, operators, and others. Thus, when

adapting these techniques to other programming language, tool builders should carefully

consider its particular syntactic constructs. On the other hand, RefDiff’s similarity com-

parison is based on tokenized code. Therefore, it does not depend on the AST nodes

of any given language. As another example, Java code is structured with classes, which

contains methods and attributes, and RMiner detection rules are tightly based on this

structure. In contrast, JavaScript code contains functions inside functions with arbitrary

levels of nesting. RefDiff is able to deal with both languages because CSTs do not assume

any particular hierarchical structure between different types of nodes.

In summary, we do not claim that existing approaches cannot not be extended to

other languages, but that would require a non-trivial effort. By making fewer assumptions

about the syntax of the target language we facilitate multi-language support. Note that

the implemented language plugins have small code bases (between 615–1137 lines of code).
2https://www.eclipse.org/jdt/
3https://www.eclipse.org/cdt/
4https://babeljs.io/docs/en/babel-parser

https://www.eclipse.org/jdt/
https://www.eclipse.org/cdt/
https://babeljs.io/docs/en/babel-parser

4.4. Evaluation with Java Projects 78

4.4 Evaluation with Java Projects

In this section, we evaluate the precision and recall of our approach using a re-

cently proposed dataset of refactorings performed in real-world Java open-source projects.

We also compare RefDiff’s accuracy with RMiner—the current state-of-the-art tool for

detecting refactorings in Java—and RefDiff 1.0, the previous version of our tool. First,

we present our evaluation design (Section 4.4.1) and then we present the results (Sec-

tion 4.4.2).

4.4.1 Evaluation Design

To evaluate the precision and recall of RefDiff in Java we initially use an oracle

proposed by [59]. This oracle includes 3,188 manually-validated refactoring instances, de-

tected in 538 commits from 185 open-source projects, and covering 15 refactoring types. It

is important to emphasize that most commits contain non-refactoring changes interleaved

with refactorings, which is the most challenging scenario for refactoring detection tools.

In our evaluation, we also compare RefDiff’s precision and recall against RMiner 1.0. For

the purpose of the comparison, we restricted the oracle to 11 refactoring types supported

by both tools. Specifically, we excluded Change Package, Move Field, Push Down Field

and Pull Up Field from the analysis as they are not supported by RefDiff. Moreover,

Convert Type and Change Signature, although supported by RefDiff, are not evaluated

because they are not covered by the oracle. In total, our modified oracle contains 3,031

confirmed refactoring instances. Additionally, it also contains 704 refactoring instances

classified as false positives in the process of manual validation performed by [59]. These

instances are used to detect false positives reported by RefDiff, as described in the next

paragraph.

First, we run RefDiff on each commit of the oracle. For each detected refactoring

r we checked whether r is in the oracle, which may yield three outcomes: (i) if r is

a confirmed refactoring from the oracle, then it is a true positive; (ii) if r is a false

refactoring from the oracle, then it is a false positive; (iii) otherwise, r was inspected by

two researchers to assess whether it is a false positive or a true positive not covered by

the oracle. This extra manual validation is needed because the initial oracle must not

be granted as complete, i.e., including all refactorings performed in the set of analysed

commits. Specifically, it was constructed using a triangulation approach, based on an

initial list of refactorings produced by RMiner and RefDiff 1.0. For this reason, it might

4.4. Evaluation with Java Projects 79

miss true refactorings only detected by RefDiff 2.0.

After following this procedure, RefDiff 2.0 detected 263 new refactoring instances

(i.e., not listed in the initial oracle), which were validated by two researchers, called here

validators. In the case of 175 refactorings (66%), the validators agreed on their clas-

sification, including 138 refactorings labelled as true positives by both validators and

37 labelled as false positives. After this initial and independent validation, the valida-

tors discussed together the remaining 88 cases (34%), to reach an agreement. As a re-

sult, 79 refactorings were considered true positives and 9 refactorings were classified as

false positives. Figure 4.6 shows an example of a refactoring identified by RefDiff that

both validators classified as true positive. In this case, a developer extracted method

createPrepareRpcOptions from method prepareOnAffectedNodes .

In total, after completing the manual validation, 217 new refactorings instances

were classified as true positives and therefore included in the oracle. The expanded oracle

includes 3,248 refactoring instances (7.19% more than the initial one) and it is publicly

available at RefDiff’s GitHub repository.5

Figure 4.6: Illustrative diff of an Extract Method refactoring considered as true positive
by the validators, taken from commit ce4f629 from infinispan project.

4.4. Evaluation with Java Projects 80

Table 4.4: Java precision and recall results

RefDiff 1.0 RefDiff 2.0 RMiner 1.0

Refactoring Type # Precision Recall Precision Recall Precision Recall

Move Class 1,100 0.999 0.881 0.999 0.970 1.000 0.925

Move Method 319 0.322 0.746 0.871 0.803 0.955 0.658

Move and Rename/Rename Class 95 0.897 0.642 0.922 0.874 0.983 0.621

Rename Method 350 0.855 0.811 0.946 0.694 0.978 0.771

Extract Interface 24 0.769 0.417 0.875 0.875 1.000 0.833

Extract Superclass 70 1.000 0.157 1.000 0.743 0.958 0.971

Pull Up Method 91 0.806 0.593 0.974 0.824 1.000 0.791

Push Down Method 40 0.950 0.475 0.950 0.950 1.000 0.825

Extract/Extract and Move Method 1,037 0.904 0.833 0.962 0.663 0.985 0.768

Inline Method 122 0.842 0.787 0.957 0.721 0.990 0.795

Total 3,248 0.792 0.802 0.964 0.804 0.988 0.813

4.4.2 Results

Table 4.4 shows the precision and recall results for RefDiff 2.0 and RMiner using

the oracle described in the previous section. The overall precision and recall of RefDiff 2.0

is 96.4% and 80.4%, respectively. Precision ranges from 87.1% (Move Method) to 100.0%

(Extract Superclass), and it is above 90% for 8 out of 10 refactoring types. Recall ranges

from 66.3% (Extract Method) to 97.0% (Move Class), and it is above 80% for 6 out of 10

refactoring types.

4.4.2.1 Comparison with RefDiff 1.0

We also show in Table 4.4 the results obtained with RefDiff 1.0 in this oracle. Note

that overall precision is significantly improved (from 79.2% to 96.4%). Moreover, RefD-

iff 2.0 has less variation on recall across refactoring types. We can list five improvements

over RefDiff 1.0 that justify such results.

• In RefDiff 2.0, we find moved/renamed types (e.g., classes) based on matched mem-

bers (step 3 of our algorithm). This heuristic was introduced aiming to reduce the

number of false negatives for class moves/renames, which also reduces the number

of false positives for Move Method.

5https://github.com/aserg-ufmg/RefDiff

https://github.com/aserg-ufmg/RefDiff

4.4. Evaluation with Java Projects 81

• We compute the removed and added code using set operations to improve Extract

and Inline similarity functions. For example, our Extract similarity function com-

pares the body of an extracted method with the code removed from the original

method, strengthening the preconditions to detect Extract relationships. Similarly,

our Inline similarity function compares the body of an inlined method with the code

added to its destination.

• Ignoring parameters/arguments and return keyword (Section 4.3.3.4) is also an im-

provement over RefDiff 1.0, making Extract and Inline similarity less sensitive to

code changes related to the mechanics of the refactoring.

• Pull Up and Push Down rules no longer include body similarity comparison. Ad-

ditionally, Extract Supertype also drops similarity comparison and it was rewritten

based on Pull Up rule. These changes improved both precision and recall of these

refactoring types.

• While RefDiff 1.0 relied on a set of thresholds, which were calibrated for each refac-

toring type, in RefDiff 2.0 we use a single similarity threshold, defined as 0.5 by

default. We acknowledged that relying on user-defined thresholds or thresholds cal-

ibration is not ideal, as advocated by [59]. Thus, in RefDiff 2.0 we emphasized

the aforementioned improvements to our algorithm, making it is less sensitive to

similarity thresholds. In fact, we achieved better precision for all refactoring types,

even without calibration. We only lost recall for Rename Method, Extract Method

and Inline Method. We attribute this fact to the very low thresholds set for these

refactoring types (between 0.1 and 0.3).

4.4.2.2 Comparison with RMiner

Table 4.4 also shows the results of RMiner, which achieves 98.8% of overall precision

(ranging from 95.5% to 100.0%) and 81.3% of overall recall (ranging from 64.1% to 97.1%).

When we analyze individual refactoring types, RefDiff’s precision is lower in all but one

refactoring type (Extract Superclass). However, recall is higher in 6 refactoring types.

In summary, both tools have very similar total recall, but RMiner’s precision is slightly

higher. We can list at least three differences between RefDiff and RMiner that might

explain the differences in the results.

• Unlike RefDiff, we believe RMiner does not account for methods moved to added

classes, nor methods moved from deleted classes, as RMiner’s detection rule for

4.4. Evaluation with Java Projects 82

Move Method includes the clauses (tda, td
′
a) ∈ TD= and (td b, td

′
b) ∈ TD= [59].

Many of the false negatives for Move Method involve such scenarios, which explains

the lower recall for RMiner.

• Both approaches find moved/renamed types (e.g., classes) based on matched mem-

bers (step 3 of our algorithm). However, ReffDiff’s detection rule requires that a pair

of candidate types (t1, t2) have more than one children in common, while RMiner’s

rule is more strict, requiring that either all members of t1 are in t2, or all members

of t2 are in t1. Additionally, RefDiff also finds moved/renamed types by similarity.

These might be the reasons for RMiner’s lower recall for Move and Rename/Rename

Class.

• They use very different approaches for computing code similarity. While RefDiff

relies on tokenized code and a TF-IDF based similarity function, RMiner relies on a

statement matching algorithm and syntax-aware replacement of AST nodes. Such

difference potentially impacts precision and recall for several refactoring types, and

might be an advantage factor for RMiner.

Despite the aforementioned differences, we emphasize that RefDiff and RMiner

have much in common:

• Both approaches match elements by full name/signature in their first step.

• Many of the refactoring detection rules are similar.

• Both approaches enforce an order of detection between refactoring types and use a

best match strategy to choose between conflicting refactoring candidates.

• RefDiff 2.0 included an heuristic to find moved/renamed types (e.g., classes) based

on matched members, which is similar to RMiner’s detection rule.

• Ignoring parameters/arguments and return keyword (Section 4.3.3.4) serves a simi-

lar purpose to the argumentization and abstraction techniques proposed by RMiner.

4.4.3 Execution time

Besides comparing precision and recall, we also compared the execution time of

both RefDiff and RMiner. For this purpose, we ran both tools using the same computer

(an Intel Core i5-750 with 8GB of RAM and a 7200 RPM HDD) and measured the time

4.4. Evaluation with Java Projects 83

spent in the analysis of each of the 538 commits from our oracle.6 Figure 4.7 shows a

violin plot of the execution time per commit for both tools, using a log-10 scale. We

can note that the median is lower for RMiner (109 ms vs. 157 ms), but RefDiff has less

variation in the execution times. For example, the maximum execution time for RMiner

was 85s, at commit ab98bca from java-algorithms-implementation, whilst RefDiff spent

10s at maximum, in commit 4baf0a4 from aws-sdk-java. Nevertheless, both tools analyze

the majority of the commits in less than one second and are viable for practical use.

It is worth noting that we executed both RefDiff and RMiner using their file-based API,

which reads a list of files directly from disk. This means that the time to clone or checkout

revisions from git repositories is not included in our measurements. However, we do not

expect significant differences between both tools when using their git-based API, which

includes services from mining refactorings directly from git repositories. The reason is

that both tools retrieve only the necessary files using the jgit library, therefore avoiding

checking out the entire project on disk.

●

●

●

●

●

●

●

●
●

●

●

●

●●●●
●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

157
109

10

100

1000

10000

100000

RefDiff RMiner

E
xe

cu
tio

n
tim

e
pe

r
co

m
m

it
(m

s)

Figure 4.7: Violin plot of execution time per commit in log-10 scale

6We repeated the experiment three times and discarded the times collected in the first run, which
was considered as a warm up.

4.5. Evaluation with JavaScript and C 84

4.4.4 Threats to Validity

There are at least two threats to the validity of the evaluation with Java projects.

The first one is the subjectivity inherent to the manual classification of the reported refac-

torings as true/false positives, which directly impact the computed precision. Different

validators may have a different interpretation of the code change under analysis, which is

demonstrated by the fact that in 34% of the cases the validators initially disagreed. We

mitigated this threat by having each refactoring assessed by two validators independently.

Moreover, there are not precise and consensual definitions of the mechanics of each refac-

toring type. In fact, [39] shows that developers and IDE refactoring tools use different

mechanics for most refactoring types. Second, as discussed in Section 4.4.1, our oracle can

not be granted as complete, i.e., there might exist refactorings in the analyzed revisions

that are not detected by any of the tools. Thus, the actual recall might be lower than

the computed recall. Unfortunately, it is not feasible to assure the completeness of an

oracle at this scale with manual inspection. A single commit usually contains hundreds

of changed lines of code, making such task extremely time consuming and error prone.

Nevertheless, the computed recall serves the purpose of comparison between tools, and it

should also be a fair approximation of actual recall, as our oracle is based on refactorings

found by three tools: RMiner 1.0, RefDiff 1.0, and RefDiff 2.0.

4.5 Evaluation with JavaScript and C

Besides the Java evaluation, we also evaluated precision and recall of RefDiff in

JavaScript and C. Unfortunately, we did not find a dataset with detailed information about

real refactorings performed in these languages that we could use as an oracle. Therefore,

we had to adopt a different strategy. To evaluate precision, we manually validated the

refactorings detected by RefDiff in a set of GitHub repositories, in both languages (Sec-

tion 4.5.1). Then, to evaluate recall, we searched for documented refactoring operations

in commit messages of the same set of repositories (Section 4.5.2). After that, in Sec-

tion 4.5.3, we report the precision and recall achieved by RefDiff. We are not aware of

any other tool for detecting refactorings in these languages. Therefore, in this second

evaluation, it was not possible to compare RefDiff’s results with competitor tools.

4.5. Evaluation with JavaScript and C 85

Table 4.5: JavaScript and C repositories used in the evaluation

Repository Description Commits

react A declarative, efficient, and flexible JavaScript library for building user
interfaces.

10,964

vue Vue.js is a progressive, incrementally-adoptable JavaScript framework for
building UI on the web.

3,014

d3 Bring data to life with SVG, Canvas and HTML. 4,148

react-native A framework for building native apps with React. 16,875

angular.js AngularJS - HTML enhanced for web apps. 8,963

create-react-app Set up a modern web app by running one command. 2,233

jquery A fast, small, and feature-rich JavaScript library. 6,403

atom The hackable text editor. 36,752

axios Promise based HTTP client for the browser and node.js. 847

three.js JavaScript 3D library. 27,762

socket.io Realtime application framework (Node.JS server). 1,715

redux Predictable state container for JavaScript apps. 2,819

webpack A bundler for javascript and friends. 7,852

Semantic-UI Semantic is a UI component framework based around useful principles
from natural language.

6,684

reveal.js The HTML Presentation Framework. 2,341

meteor Meteor, the JavaScript App Platform. 21,966

express Fast, unopinionated, minimalist web framework for node. 5,555

material-ui React components for faster and easier web development. 9,449

Chart.js Simple HTML5 Charts using the canvas tag. 2,739

linux Linux kernel source tree. 839,761

netdata Real-time performance monitoring, done right! 8,338

redis Redis is an in-memory database that persists on disk. 8,158

git Git is a free and open-source distributed version control system. 55,723

ijkplayer Android/iOS video player based on FFmpeg n3.4, with MediaCodec,
VideoToolbox support.

2,584

php-src The PHP Interpreter. 112,847

wrk Modern HTTP benchmarking tool. 76

the silver searcher A code-searching tool similar to ack, but faster. 2,016

emscripten Emscripten: An LLVM-to-Web Compiler. 19,468

vim The ubiquitous text editor. 9,875

jq Command-line JSON processor. 1,287

FFmpeg A complete, cross-platform solution to record, convert and stream audio
and video.

93,898

tmux A terminal multiplexer: it enables a number of terminals to controlled
from a single screen.

7,618

nuklear A single-header ANSI C gui library. 1,646

obs-studio Free and open-source software for live streaming and screen recording. 6,727

libuv Cross-platform asynchronous I/O. 4,319

swoole-src Coroutine-based concurrency library for PHP (like Golang). 9,938

curl A command line tool and library for transferring data with URL syntax. 24,339

toxcore The future of online communications. 3,771

darknet Convolutional Neural Networks. 436

4.5. Evaluation with JavaScript and C 86

4.5.1 Evaluation Design: Precision

To compute RefDiff’s precision when detecting refactorings in JavaScript and C,

we followed these steps:

1. We selected the 20 most popular GitHub repositories of each language. For this, we

queried the GitHub API for repositories, sorting by stars count—which is a reliable

indicator of popularity in GitHub [8, 50] —and filtering by programming language.

The resulting list of repositories was manually inspected to discard the ones that are

not actual software projects, e.g., tutorials or code samples. Then, we forked each

selected repository, to preserve their version histories from future changes pushed

to the original project. Table 4.5 shows the name, short description, and number of

commits of each selected repository, both for JavaScript and C.

2. We ran RefDiff in the version history of each repository. To select the commits,

we navigate the commit graph backwards, starting from the most recent commit

in the master branch. We also discarded merge commits, i.e., commits which have

two predecessors. The rationale is that comparing a merge commit with their pre-

decessors results in duplicated reports of refactorings applied in the commits prior

to the merge operation. Moreover, to avoid over-representing projects with longer

histories, we established a limit of 500 commits per repository. For each selected

commit, we compared its source code with its predecessor using RefDiff, to detect

refactoring operations.

3. Given the list of refactorings detected by RefDiff, we randomly selected 10 instances

of each refactoring type to manually assess whether they correspond to actual refac-

torings (true positives), or incorrect reports (false positives). When applying the

random selection, we enforced the constraint that we should not select two refactor-

ing instances performed in the same commit. In this way, we avoid selecting similar

refactorings which were performed in batch, e.g., multiple classes or functions moved

together. To confirm each refactoring operation, we manually inspected the diff of

the code changes in the corresponding commit.

After following the three steps, we compute precision as P = TP/(TP + FP),

where TP is the number of true positives and FP is the number of false positives.

4.5. Evaluation with JavaScript and C 87

4.5.2 Evaluation Design: Recall

To compute RefDiff’s recall when detecting refactorings in JavaScript and C, we

followed three steps:

1. We used GitHub API to find refactorings documented in commits from the reposito-

ries selected for evaluating precision (Section 4.5.1). Such queries consist in search-

ing for keywords denoting a particular type of refactoring in the commit message, as

described in Table 4.6. For example, when looking for Rename Function refactor-

ing instances, we built a query that looks for commits which contain the keywords

rename and function in their messages, among other combinations.

2. Given the list of results of a query, we manually inspected each item to assess

whether it really contains a refactoring. We started by analyzing the commit mes-

sage. In many cases, the keywords are found in the text, but they are not referring

to a refactoring operation. For example, one of the messages was: “The route-

ToRegExp() function, introduced by 840b5f0, could not extract path params if the

path contained question mark or hash.” This message contains the keywords extract

and function, but clearly does not describe an Extract Function refactoring. In these

situations, we discarded the commit with no further analysis. When the commit

message described a refactoring, we checked the code diff to confirm it. Each con-

firmed refactoring was recorded in a normalized textual format compatible with the

output of RefDiff. Inspecting the code diff is also necessary to locate the code ele-

ments involved in the operation. For example, the message “Extract commit phase

passes into separate functions” documents a Extract Function refactoring, but does

not specify the name of the extracted functions. We repeated this procedure until

he found 10 instances of each refactoring type or when there were no more results to

inspect. We found less than 10 instances when looking for Move and Rename File,

Move and Rename Function, and Inline Function for JavaScript. Additionally, al-

though modern JavaScript contains classes, we did not find documented refactorings

instances of Move and/or Rename Class.

3. We ran RefDiff in the commits that contain documented and manually-validated

refactorings to assess whether they are reported (true positives) or missed (false

negatives).

After following these steps, we compute recall as R = TP/(TP + FN), where TP

is the number of true positives and FN is the number of false negatives.

4.5. Evaluation with JavaScript and C 88

Table 4.6: Search queries for each refactoring type

Change Signature add parameter, remove parameter, add argu-
ment

Move/Rename File move file, rename file, move folder, move re-
name file, move rename

Move/Rename Function move function, rename function, move and re-
name

Extract Function extract, duplicate, extract function, factor out

Inline Function inline, inline into, remove indirection, indirect
functions, remove wrapper

4.5.3 Results for JavaScript and C

Table 4.7 shows the precision and recall results for JavaScript. The overall precision

is 91%. There are three refactorings with precision of 80%: Rename Function, Move and

Rename Function, and Inline Function. For the remaining refactoring types, RefDiff has

a precision of 90% (two refactoring types) or a precision of 100% (five refactoring types).

Table 4.7 also shows the recall results, which reach 88% when all refactoring types are

considered together. Inline function has the lowest recall (40%); however, our dataset

has only five instances of this operation. There are three refactoring types with recall

of 100%: Move File, Move Function, Move and Rename File. For the other ones, recall

ranges between 80% and 90%.

Table 4.7: JavaScript precision and recall results

Refactoring Type # Precision # Recall

Move File 10 1.00 10 1.00

Move Class 2 1.00 0

Move Function 10 0.90 10 1.00

Rename File 10 1.00 10 0.80

Rename Class 5 1.00 0

Rename Function 10 0.80 10 0.90

Move and Rename File 10 1.00 3 1.00

Move and Rename Function 10 0.80 7 0.86

Extract Function 10 0.90 10 0.90

Inline Function 10 0.80 5 0.40

Total 87 0.91 65 0.88

Table 4.8 shows the precision and recall results for C. The overall precision is 88%.

Inline Function is the refatoring for which precision is lower (50%). Besides, there are

two refactorings with precision of 80%: Move Function and Move and Rename Function.

4.5. Evaluation with JavaScript and C 89

For the remaining refactoring types, RefDiff has a precision of 90% (one refactoring type)

or a precision of 100% (four refactoring types). We did not find any instance of Move and

Rename File, thus we could not compute precision for this refactoring type. Table 4.8 also

shows the recall results, which is 91% overall. Extract Function (70%) and Move Function

(80%) are the ones with lowest recall. For the remaining refactoring types, RefDiff has a

recall of 90% (three refactoring types) or a recall of 100% (four refactoring types).

Table 4.8: C precision and recall results

Refactoring Type # Precision # Recall

Change Signature 10 1.00 10 0.90

Move File 10 1.00 10 1.00

Move Function 10 0.80 10 0.80

Rename File 10 1.00 10 1.00

Rename Function 10 0.90 10 1.00

Move and Rename File 0 10 1.00

Move and Rename Function 10 0.80 10 0.90

Extract Function 10 1.00 10 0.70

Inline Function 10 0.50 10 0.90

Total 80 0.88 90 0.91

4.5.4 Threats to Validity

One threat to validity of the evaluation with JavaScript and C projects is its smaller

scale. For example, we computed precision for JavaScript using 87 refactorings, and recall

using 65 refactorings, while the evaluation in Java used an oracle with 3,249 refactorings.

Particularly, we restricted the analysis to 10 instances per refactoring type. First, we

acknowledge this limit does not express the frequency of each refactoring in practice.

Second, as a result of this decision, our evaluation dataset for JavaScript and C is not

complete with respect to true positives. In fact, the evaluation with JavaScript and C is a

complement to the evaluation with Java aiming to show that RefDiff 2.0 provides similar

results when used to detect refactorings in other programming languages. Last, we should

also note that, similarly to the evaluation with Java projects, the subjectivity inherent to

the manual classification of the reported refactorings is also a threat to validity.

4.6. Challenges and limitations 90

4.6 Challenges and limitations

Low-level refactorings: RefDiff does not detect local refactorings, such as re-

name, extract or inline a local variable, because the syntactical structure of the source

code within a CST node is not represented. While it is theoretically possible to extend

the CST to include finer-grained code elements such as statements, local variables, and

others, this would also make it harder to port RefDiff to other programming languages.

Generating call graphs: In our modular architecture, the generation of the CST,

which includes information from a call graph and a type hierarchy graph, is delegated

to a language-specific plugin. For languages such as Java, there are reliable parsers and

static analyzers that aid in this task (e.g., Eclipse JDT). However, we acknowledge that

generating precise call graphs for untyped languages, such as JavaScript, might be a

challenging problem. Nevertheless, we provided evidences that our approach works well

even when the information encoded in the CST is not completely precise. For example, in

our JavaScript implementation—which contains only 689 lines of code in total—we used

a simple strategy in which we assume a node n1 uses n2 if n1 contains a function call

with the same identifier as n2 and both are defined in the same file. However, to detect a

Extract relationship between n1 and n2, we need two other conditions: (i) n2 should be a

new method and (ii) the body of n2 should be similar to the code removed from n1 between

revisions. In other words, an incorrect edge in the call graph only leads to an incorrect

Extract relationship in the unlikely scenario in which a function n2 is introduced, the

content of such function is similar to code removed from n1 and n1 calls a function with

the same identifier of n2 after the change, but that function is not actually n2. A similar

reasoning applies to Inline relationships, which also depends on information from call

graphs. In summary, although generating precise call graphs is non trivial for untyped

languages, we argue that it is not needed in practice to achieve acceptable precision,

specially in the light of the results of our evaluation using JavaScript systems (91% of

precision).

JavaScript class syntax: Our JavaScript implementation only considers classes defined

with the new ES6 syntax, i.e., classes emulated by functions definitions and prototype-

based inheritance are just treated like regular functions when generating the CST.

Field-related refactorings: As our refactoring detection algorithm is centered around

code similarity and fields do not have a body, we did not implement the detection of

Move/Pull Up/Push Down Field in RefDiff 2.0. Unrestricted detection of Move Field

based solely on fields’ types and names is prone to find many false positives. However, we

plan to add support for field-related refactorings in future work by using stricter detection

rules, similarly to RMiner (e.g., requiring a dependency between their source/destination

classes).

4.7. Conclusion 91

4.7 Conclusion

To the best of our knowledge, RefDiff 2.0 is the first refactoring detection ap-

proach that supports multiple programming languages. We made this possible with two

main design decisions. First, our refactoring detection algorithm relies only on informa-

tion encoded in CSTs, a data structure that represents the source code but abstracts

the specificities of each programming language. Second, we compute code similarity at

the level of the tokenized source code, using techniques from information retrieval. In

summary, RefDiff is loosely coupled to the syntax of the target programming language,

which makes it easier to extend it to other languages. Our evaluation using a dataset

of real refactorings in Java showed that RefDiff’s precision is 96.4% and recall is 80.4%.

Although we were not able to surpass RMiner’s precision of 98.8%, we argue that we

achieved satisfactory results for a language-neutral approach. In one hand, specialized

tools can use more advanced techniques to improve refactoring detection. On the other

hand, the higher the coupling with the syntax of a particular language, the harder it

becomes to port the approach to other programming languages. Last, our evaluation in

JavaScript and C also showed promising results. RefDiff’s precision and recall are re-

spectively 91% and 88% for JavaScript, and 88% and 91% for C. These results show the

viability our approach for languages other than Java. Thus, we claim that RefDiff 2.0

can pave the way for important advances in refactoring studies in JavaScript, C, and

other languages in the future. Moreover, it can be employed in practical tasks, such as

improving diff visualization, automatically documenting refactorings in commits, keeping

track of the history of refactored code elements, and others.

92

Chapter 5

Practical Applications of Refactoring

Detection

Throughout this thesis we discussed tools to mine refactorings from version histories and

empirical studies that benefit from such techniques. In this chapter, we discuss three

practical applications of such tools. We do not intend to thoroughly discuss all possible

applications, but rather to exemplify that some relevant problems faced by development

teams can be tackled with the help of such tools. Particularly, RefDiff’s multi-language

design is an important advantage for the practical applications described in this chapter,

as software projects are developed using different programming languages.

5.1 Refactoring-aware Diff

One of the challenges developers face when refactoring, as reported in an in-depth

study by [31], is the difficulty of reviewing code after refactoring. This is illustrated by

the following comment from one of the developers interviewed by Kim et al.:

“It (refactoring) typically increases the number of lines/files involved in a check-in. That

burdens code reviewers and increases the odds that your change will collide with someone

else’s change.”

In fact, version control systems are usually sensitive to rename and move refac-

toring, which makes it hard for developers to understand code changes, specially when

refactorings are applied interleaved with other modifications in the system.

As a concrete example, consider the code changes presented in Figure 5.1, which are

taken from the intellij-community repository. In this figure, we present the code diff

between two changed files. In the first one, RunContentManagerImpl.java, a large

code block was removed, whilst in the second file (ExecutionUtil.java) a large code

block was added. With a thoroughly analysis, we can note that the code removed from

intellij-community

5.1. Refactoring-aware Diff 93

Figure 5.1: Typical diff visualization of a code change containing a moved method

RunContentManagerImpl.java was actually moved to ExecutionUtil.java, i.e.,

the method getLiveIndicator was moved. However, this is not immediately obvious

to a developer reviewing these changes, specially considering that there might be many

other changed files in the commit. Moreover, although one can identify with some effort

that the method getLiveIndicator has been moved, it will be much more difficult to

identify small changes made to its body in this visualization.

In contrast, consider the diff visualization presented in Figure 5.2. In this case,

the diff is focused in the method that was moved, getLiveIndicator, before and af-

ter the change. We can clearly see that some changes have been made to the body of

getLiveIndicator. Specifically, the annotations @Nullable and @SuppressWarnings

were introduced, a new local variable iSize was declared, and the expression passed

5.2. Tracking changes of a code element 94

as the first argument to the Ellipse2D.Double constructor was changed. All these

changes are very hard to note in a traditional diff visualization, such as the one from

Figure 5.1, but are easily discernible when we present the moved method compared with

its counterpart. Other refactoring types might benefit from such idea as well. As a second

example, it would also be convenient to highlight the differences between an extracted

method and its originating code. This way, it would become easier to identify new state-

ments added. A similar reasoning can be applied to Move Class, Inline Method, and other

refactoring types.

Thus, we can improve diff visualization using the information about the refactorings

detected in commits, using a tool such as RefDiff. We expect that such refactoring-aware

diff visualization solution would improve developers’ ability to discern and understand

code changes in the presence of refactorings, enabling them to concentrate on behavioral

changes rather than on code modifications resulting from refactorings.

5.2 Tracking changes of a code element

Although refactoring is very important to maintain a software system, it can make

it harder to track code changes in the history, specially at the method/function level.

For example, consider the getReactRootElementInContainer function from Re-

act project, depicted in Figure 5.3. Suppose one is investigating the history of that

function to find out who introduced the conditional statement in lines 85–89. Devel-

opers typically use the git-blame tool for such tasks, as it shows what revision and au-

thor last modified each line of code of a file. However, although the git-blame output

Figure 5.2: Diff visualization focused on the moved method

5.2. Tracking changes of a code element 95

shows that Developer A was the last developer who modified the lines of code within

getReactRootElementInContainer, this information may mislead one to think

that he is the author of the function. In fact, a deeper analysis of the history reveals that

Developer A actually moved the function from file getReactRootElementInContainer.js

to ReactMount.js. Thus, to find the actual author of those lines of code, one should

inspect the history of changes of the original file of the function. Figure 5.4 shows that

the conditional in lines 85–89 was actually introduced by Developer B.

In summary, in the example above, the Move Function refactoring split the history

of getReactRootElementInContainer, making it harder to trace back the author

of each line of code. The frequency in which such situations occur makes this problem

even more important. [24] studied the extent in which MSR approaches that relies on

tracking the changes along all versions of each individual methods (or classes) are affected

by refactorings, i.e., a method rename or move can be misinterpreted as the disappearance

of a method and the appearance of a brand new one. The authors found that between 10%

and 21% of method-level changes and 2% and 15% of class-level changes may introduce

a discontinuity in their histories. Moreover, 25% of the code elements have at least one

discontinuity in their histories.

For these reasons, this problem is a potential application of refactoring detection

techniques. If we know the refactorings applied in the system, we can keep track of all

moves/renames applied to each code element and reconstruct its full history. Moreover,

this would enable us to provide an improved git-blame that shows the last modification

of each line of code but is not susceptible to code movement.

Figure 5.3: git-blame visualization of the ReactMount.js file from React project, showing
that function getReactRootElementInContainer was last modified by Developer A

5.3. Resolving merge conflicts 96

Figure 5.4: Diff visualization of the commit in witch the conditional inside function get-

ReactRootElementInContainer was introduced, showing that the actual author is De-
veloper B

5.3 Resolving merge conflicts

Another challenge developers face when refactoring, also reported by [31], is the

difficulty of merging code. In software projects, usually several developers work in parallel

fixing bugs and adding features to the system. Thus, the different changes introduced by

each developer should be integrated together in the same code base, in a process called

as merging code. In many cases, merging can be done automatically by version control

systems, which provide algorithms for such task. However, when different changes are

made to the same lines of code, these algorithms report a conflict, and merge must be

done manually. High-level refactoring operations amplify the odds that merge conflict

occurs, because they usually involve movement of large chunks of code. In fact, a recent

study on the relationship between refactoring and merge conflicts shows that refactoring

operations are involved in at least 22% of merge conflicts [32].

We can illustrate such issues with the following scenario. Consider the example

code diff in Figure 5.5, in which a first developer modified method median from class

Main, adding a clause that throws an exception when length is zero. Now, suppose that

a second developer, working in parallel, decides to move method median from class Main

to a new class Statistics, such as depicted in Figure 5.6. Note that the first developer

modified line 10 from file Main.java, while the second developer modified/deleted lines

5–17 from the same file. Thus, when we merge both changes, we will get a conflict, as

depicted in Figure 5.7. In this case, to resolve the merge conflict, one must apply the

5.3. Resolving merge conflicts 97

Figure 5.5: Hypotetical change made by first developer: Test if length is zero

Figure 5.6: Hypotetical change made by second developer: Move method median from
class Main to class Statistics

Figure 5.7: When we merge the changes from figures 5.5 and 5.6 we get a conflict

5.3. Resolving merge conflicts 98

same logic introduced by the first developer to the median method that is now in class

Statistics, and accept the left side of the code from Figure 5.7 in Main.java. Note

that, even in that small hypothetical example, resolving merge conflicts is tricky and

error-prone. Thus, large-scale refactorings have the potential to make merging changes

extremely complicated.

However, we can improve merging algorithms if we know the refactorings applied

to the code. For example, [16] proposed a refactoring-aware version control system that

is able to resolve merge conflicts caused by refactorings using the following strategy: it

identifies the refactorings applied between revisions, undo the refactorings, apply regular

textual merge algorithms, and finally apply the refactorings again. As another example,

[9] propose an improvement in semistructured merge algorithms that relies on the Lev-

enshtein distance to find renamed code elements. This way, it avoids reporting merge

conflicts when a developer renames a method whose body is changed by other developer

in parallel. [46] also propose a refactoring-aware merging technique based on a semistruc-

tured representation of the source code. Their tool, called IntelliMerge, first transforms

the source code of each revision involved in the merge process into Program Element

Graphs (PEGs). Then, nodes from these graphs are matched with their base version, i.e.,

in this step refactorings such as Move and Rename are found. Finally, textual merge is

applied individually for each node, considering the matchings found in the previous step.

The aforementioned tools depend on finding refactorings applied between revision. Thus,

they are another direct application of refactoring detection approaches such as RefDiff.

99

Chapter 6

Conclusion

This chapter concludes the thesis by listing the main contributions of this work. Next,

we present directions for future research.

6.1 Contributions

We summarize our main contributions as follows:

1. In Study 1, we found that code reuse is one of the main motivations for applying

Extract Method refactoring (56.9% of the cases). This was an important finding for

two main reasons. First, the relationship between Extract Method and code reuse,

using actual refactorings mined from code repositories, had not been studied before.

Second, although refactoring literature emphasizes the removal of code smells as

motivations for refactorings, such finding reveals that it is incorrect to assume that

this is the sole reason to refactor source code.

2. In Study 2, we compiled a catalogue of 44 distinct motivations for 12 well-known

refactoring types, based on the actual explanations of developers on specific refactor-

ings they have recently applied. Some of the motivations we found are the resolution

of well-known code smells, but many others are related to code evolution, facilitat-

ing the implementation of a feature or a bug fix. We also investigated the frequency

of each refactoring type and the usage of refactoring tools, confirming previous find-

ings, and how the IDE affects refactoring tools usage. The findings of this study

increased our knowledge about refactoring practice and offered important insights

to researchers, practitioners, and refactoring tools builders.

3. We proposed RefDiff, a novel refactoring detection approach suitable to mine refac-

toring in version histories in large scale with high precision and recall, with the ad-

vantage of supporting multiple programming languages. When initially proposed,

6.2. Future Work 100

our approach improved precision and recall over existing approaches. Later, we ex-

tended RefDiff introducing a language agnostic core algorithm and improved its

precision to be on par with RMiner, the current state-of-the-art in Java refac-

toring detection. Taking advantage of RefDiff’s extensible architecture, we im-

plemented plugins for three programming languages (Java, JavaScript, and C),

and evaluated our approach in each of them. Our tool is publicly available at

GitHub (https://github.com/aserg-ufmg/RefDiff), along with usage in-

structions.

4. We contributed to the creation of the largest refactoring dataset to date, which keeps

record of 3,248 refactorings mined from 538 commits of 185 Java repositories. Such

dataset initially contained the data we collected in Study 2, and was later extended

by [59], while evaluating RMiner. Finally, in our evaluation of RefDiff, we extended

it once again with additional refactorings. This dataset serves as a reliable oracle

that can be used to evaluate precision and recall of refactoring detection approaches,

facilitating future research. The data is also publicly available at RefDiff’s GitHub

repository.

6.2 Future Work

The work developed throughout this thesis opens different research paths. First,

there is still room for empirical studies on refactoring practice. Given the availability

of reliable refactoring mining techniques, larger scale studies can be conducted to con-

firm previous findings and to investigate other research questions. In particular, there is

much to learn about refactoring in programming languages other than Java. For example,

JavaScript is an interesting case study because of its distinct characteristics. We suspect

that refactoring practice in a dynamically-typed, interpreted language, might differ sig-

nificantly from compiled languages, because developers should carefully consider the risk

of introducing defects. Without compile-time type checking, renaming a function that is

used across several files is much more dangerous. Thus, developers may avoid broader

refactorings in favor of more localized modifications.

Besides empirical studies, there are potential practical problems worth exploring,

such as the ones already discussed em Chapter 5. In particular, refactoring-aware diff

visualizations are little explored by the current literature. We believe that such kind of

tool might increase developers’ productivity, specially in the context of code reviewing. It

is worth noting that the three problems discussed in Chapter 5—Refactoring-aware diff,

https://github.com/aserg-ufmg/RefDiff

6.2. Future Work 101

Tracking changes of a code element, and Resolving merge conflicts—affect any program-

ming language. Thus, the multi-language support provided by RefDiff is an important

advantage for these applications.

Last, refactoring detection approaches can be further improved. In particular,

although RefDiff was thoroughly evaluated for Java, the JavaScript and C evaluation

have a much smaller scale, due to the lack of refactoring oracles in these languages. Thus,

a larger scale JavaScript and C evaluation could be conducted, which would also open

margin for improvements in precision and recall. The evaluation data could also be used

as a starting refactoring oracle for future competing tools. Additionally, RefDiff could be

extended to support popular programming languages such as Python, C#, and others.

102

References

[1] Gabriele Bavota, Bernardino Carluccio, Andrea Lucia, Massimiliano Penta, Rocco

Oliveto, and Orazio Strollo. When does a refactoring induce bugs? an empirical

study. In 12th International Conference on Source Code Analysis and Manipulation

(SCAM), pages 104–113, 2012.

[2] Gabriele Bavota, Andrea Lucia, Andrian Marcus, and Rocco Oliveto. Recommend-

ing refactoring operations in large software systems. In Martin P. Robillard, Walid

Maalej, Robert J. Walker, and Thomas Zimmermann, editors, Recommendation Sys-

tems in Software Engineering, pages 387–419. Springer Berlin Heidelberg, 2014.

[3] Gabriele Bavota, Andrea Lucia, and Rocco Oliveto. Identifying Extract Class refac-

toring opportunities using structural and semantic cohesion measures. Journal of

Systems and Software, 84(3):397–414, 2011.

[4] Gabriele Bavota, Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea

Lucia. Methodbook: Recommending Move Method refactorings via relational topic

models. IEEE Transactions on Software Engineering, 40(7):671–694, 2014.

[5] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

2000.

[6] Kent Beck. Test-driven development: by example. Addison-Wesley Professional,

2003.

[7] Bart Bois, Serge Demeyer, and Jan Verelst. Does the ”refactor to understand” reverse

engineering pattern improve program comprehension? In 9th European Conference

on Software Maintenance and Reengineering (CSMR), pages 334–343, 2005.

[8] Hudson Borges, Andre Hora, and Marco Tulio Valente. Understanding the factors

that impact the popularity of GitHub repositories. In 32nd IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 334–344, 2016.

[9] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. Evaluating and improving

semistructured merge. Proceedings of the ACM on Programming Languages, pages

1–27, 2017.

[10] Oscar Chaparro, Gabriele Bavota, Andrian Marcus, and Massimiliano Penta. On the

impact of refactoring operations on code quality metrics. In 30th IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 456–460, 2014.

References 103

[11] Flavio Chierichetti, Ravi Kumar, Sandeep Pandey, and Sergei Vassilvitskii. Finding

the jaccard median. In 21st annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 293–311, 2010.

[12] Daniela S Cruzes and Tore Dyba. Recommended steps for thematic synthesis in soft-

ware engineering. In 5th International Symposium on Empirical Software Engineering

and Measurement (ESEM), pages 275–284, 2011.

[13] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via

change metrics. In 2000 ACM SIGPLAN Conference on Object-Oriented Program-

ming Systems, Languages & Applications (OOPSLA), pages 166–177, 2000.

[14] Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane

Ducasse. Untangling fine-grained code changes. In 22nd IEEE International Confer-

ence on Software Analysis, Evolution, and Reengineering (SANER), pages 341–350,

2015.

[15] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated de-

tection of refactorings in evolving components. In 20th European Conference on

Object-Oriented Programming (ECOOP), pages 404–428, 2006.

[16] Danny Dig, Kashif Manzoor, Ralph E Johnson, and Tien N Nguyen. Effective soft-

ware merging in the presence of object-oriented refactorings. IEEE Transactions on

Software Engineering, 34(3):321–335, 2008.

[17] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature

location in source code: a taxonomy and survey. Journal of Software: Evolution and

Process, 25(1):53–95, 2013.

[18] Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, Anderson Uchôa, Ana Carla

Bibiano, Alessandro Garcia, João Lucas Correia, Filipe Santos, Gabriel Nunes, Caio

Barbosa, et al. The buggy side of code refactoring: Understanding the relation-

ship between refactorings and bugs. In 40th International Conference on Software

Engineering (ICSE): Companion Proceeedings, pages 406–407, 2018.

[19] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1999.

[20] Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refactorings

to support API evolution. In 27th International Conference on Software Engineering

(ICSE), pages 274–283, 2005.

[21] E Hill, T Zimmermann, C Bird, and N Nagappan. The design space of bug fixes and

how developers navigate it. IEEE Transactions on Software Engineering, 41(1):65–

81, 2015.

References 104

[22] Emerson Hill and Andrew P Black. Breaking the barriers to successful refactoring:

Observations and tools for Extract Method. In 30th International Conference on

Software Engineering (ICSE), pages 421–430, 2008.

[23] Jerry L Hintze and Ray D Nelson. Violin plots: A box plot-density trace synergism.

The American Statistician, 52(2):181–184, 1998.

[24] Andre Hora, Danilo Silva, Romain Robbes, and Marco Tulio Valente. Assessing the

threat of untracked changes in software evolution. In 40th International Conference

on Software Engineering (ICSE), pages 1102–1113, 2018.

[25] Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Identifying, tailoring, and sug-

gesting Form Template Method refactoring opportunities with program dependence

graph. In 16th European Conference on Software Maintenance and Reengineering

(CSMR), pages 53–62, 2012.

[26] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German,

and Daniela Damian. The promises and perils of mining GitHub. In 11th Working

Conference on Mining Software Repositories (MSR), pages 92–101, 2014.

[27] David Kawrykow and Martin P Robillard. Non-essential changes in version histories.

In 33rd International Conference on Software Engineering (ICSE), pages 351–360,

2011.

[28] Miryung Kim, Dongxiang Cai, and Sunghun Kim. An empirical investigation into

the role of API-level refactorings during software evolution. In 33rd International

Conference on Software Engineering (ICSE), pages 151–160, 2011.

[29] Miryung Kim, Matthew Gee, Alex Loh, and Napol Rachatasumrit. Ref-Finder:

A refactoring reconstruction tool based on logic query templates. In 18th ACM

SIGSOFT International Symposium on Foundations of Software Engineering (FSE),

pages 371–372, 2010.

[30] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A field study of

refactoring challenges and benefits. In 20th International Symposium on the Foun-

dations of Software Engineering (FSE), pages 50:1–50:11, 2012.

[31] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. An empirical

study of refactoring challenges and benefits at Microsoft. IEEE Transactions on

Software Engineering, 40(7):633–649, 2014.

[32] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. Are refactorings to blame?

an empirical study of refactorings in merge conflicts. In 26th International Conference

on Software Analysis, Evolution and Reengineering (SANER), pages 151–162, 2019.

References 105

[33] Na Meng, Lisa Hua, Miryung Kim, and Kathryn S. McKinley. Does automated

refactoring obviate systematic editing? In 37th International Conference on Software

Engineering (ICSE), pages 392–402, 2015.

[34] T Mens and T Tourwe. A survey of software refactoring. IEEE Transactions on

Software Engineering, 30(2):126–139, 2004.

[35] Gail C Murphy, Mik Kersten, and Leah Findlater. How are Java software developers

using the Eclipse IDE? IEEE Software, 23(4):76–83, 2006.

[36] Emerson R. Murphy-Hill, Chris Parnin, and Andrew P. Black. How we refactor, and

how we know it. IEEE Transactions on Software Engineering, 38(1):5–18, 2012.

[37] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig.

A comparative study of manual and automated refactorings. In 27th European Con-

ference on Object-Oriented Programming (ECOOP), pages 552–576, 2013.

[38] Stas Negara, Mihai Codoban, Danny Dig, and Ralph E Johnson. Mining fine-grained

code changes to detect unknown change patterns. In 36th International Conference

on Software Engineering (ICSE), pages 803–813, 2014.

[39] Jonhnanthan Oliveira, Rohit Gheyi, Melina Mongiovi, Gustavo Soares, Márcio

Ribeiro, and Alessandro Garcia. Revisiting the refactoring mechanics. Information

and Software Technology, 110:136–138, 2019.

[40] William F Opdyke. Refactoring object-oriented frameworks. PhD thesis, University

of Illinois at Urbana-Champaign, IL, USA, 1992.

[41] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung Kim. Template-based

reconstruction of complex refactorings. In 26th International Conference on Software

Maintenance (ICSM), pages 1–10, 2010.

[42] N Rachatasumrit and Miryung Kim. An empirical investigation into the impact of

refactoring on regression testing. In 28th IEEE International Conference on Software

Maintenance (ICSM), pages 357–366, 2012.

[43] Jacek Ratzinger, Thomas Sigmund, and Harald C Gall. On the relation of refactorings

and software defect prediction. In 5th International Working Conference on Mining

Software Repositories (MSR), pages 35–38, 2008.

[44] V Sales, R Terra, L Miranda, and M Valente. Recommending Move Method refac-

torings using dependency sets. In 20th Working Conference on Reverse Engineering

(WCRE), pages 232–241, 2013.

References 106

[45] Gerard Salton and Michael McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, 1984.

[46] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang Wang.

Intellimerge: a refactoring-aware software merging technique. Proceedings of the

ACM on Programming Languages, 3(OOPSLA):170, 2019.

[47] Danilo Silva, Ricardo Terra, and Marco Tulio Valente. Recommending automated

Extract Method refactorings. In 22nd International Conference on Program Com-

prehension (ICPC), pages 146–156, 2014.

[48] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why we refactor? confes-

sions of GitHub contributors. In 24th International Symposium on the Foundations

of Software Engineering (FSE), pages 858–870, 2016.

[49] Danilo Silva and Marco Tulio Valente. RefDiff: Detecting refactorings in version

histories. In 14th International Conference on Mining Software Repositories (MSR),

pages 1–11, 2017.

[50] Hudson Silva and Marco Tulio Valente. What’s in a GitHub star? understanding

repository starring practices in a social coding platform. Journal of Systems and

Software, 146:112–129, 2018.

[51] Janice Singer, Susan E Sim, and Timothy C Lethbridge. Guide to Advanced Em-

pirical Software Engineering, chapter Software Engineering Data Collection for Field

Studies, pages 9–34. Springer London, London, 2008.

[52] Gustavo Soares, Rohit Gheyi, Emerson Hill, and Brittany Johnson. Comparing ap-

proaches to analyze refactoring activity on software repositories. Journal of Systems

and Software, 86(4):1006–1022, 2013.

[53] Gustavo Soares, Rohit Gheyi, Dalton Serey, and Tiago Massoni. Making program

refactoring safer. IEEE Software, 27(4):52–57, 2010.

[54] Robert Tairas and Jeff Gray. Increasing clone maintenance support by unifying

clone detection and refactoring activities. Information and Software Technology,

54(12):1297–1307, 2012.

[55] N Tsantalis, D Mazinanian, and G Krishnan. Assessing the refactorability of software

clones. IEEE Transactions on Software Engineering, 41(11):1055–1090, 2015.

[56] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of Move Method

refactoring opportunities. IEEE Transactions on Software Engineering, 35(3):347–

367, 2009.

References 107

[57] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of Extract Method

refactoring opportunities for the decomposition of methods. Journal of Systems and

Software, 84(10):1757–1782, 2011.

[58] Nikolaos Tsantalis, Victor Guana, Eleni Stroulia, and Abram Hindle. A multidimen-

sional empirical study on refactoring activity. In 2013 Conference of the Center for

Advanced Studies on Collaborative Research (CASCON), pages 132–146, 2013.

[59] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian, and

Danny Dig. Accurate and efficient refactoring detection in commit history. In 40th

International Conference on Software Engineering (ICSE), pages 483–494, 2018.

[60] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P

Bailey, and Ralph E Johnson. Use, disuse, and misuse of automated refactorings.

In 34th International Conference on Software Engineering (ICSE), pages 233–243,

2012.

[61] Yi Wang. What motivate software engineers to refactor source code? evidences

from professional developers. In 25th IEEE International Conference on Software

Maintenance (ICSM), pages 413–416, 2009.

[62] Peter Weißgerber and Stephan Diehl. Are refactorings less error-prone than other

changes? In 3rd Workshop on Mining Software Repositories (MSR), pages 112–118,

2006.

[63] Peter Weißgerber and Stephan Diehl. Identifying refactorings from source-code

changes. In 21st International Conference on Automated Software Engineering

(ASE), pages 231–240, 2006.

[64] Zhenchang Xing and Eleni Stroulia. UMLDiff: An algorithm for object-oriented

design differencing. In 20th International Conference on Automated Software Engi-

neering (ASE), pages 54–65, 2005.

[65] Zhenchang Xing and Eleni Stroulia. The JDEvAn tool suite in support of object-

oriented evolutionary development. In 30th International Conference on Software

Engineering (ICSE), pages 951–952, 2008.

	Introduction
	Problem and Motivation
	Proposed Thesis
	Outline

	Investigating Extract Method Refactoring Associated with Code Reuse
	Introduction
	Methodology
	Selection of the Java repositories
	Detecting refactorings
	Counting the method invocations

	Results
	RQ1: How often is Extract Method motivated by code reuse?
	RQ2: How often is Extract Method motivated by removing duplicate code?
	RQ3: How often does Extract Method favor code reuse?

	Reuse patterns related to Extract Method
	Threats to Validity
	Conclusion

	An Empirical Study on Refactoring Motivations
	Introduction
	Related Work
	Research Methodology
	Selection of GitHub Repositories
	RefactoringMiner Tool
	RefactoringMiner Precision and Recall

	Study Design
	Examined Refactorings

	Why do Developers Refactor?
	Motivations for Extract Method
	Motivations for Other Refactorings

	Refactoring Automation
	Are refactoring tools underused?
	Why do developers refactor manually?
	What IDEs developers use for refactoring?

	Discussion
	Threats to Validity
	Conclusions
	Artifact Description
	License
	How to contribute?

	Detecting Refactoring in Version Histories
	Introduction
	Background
	RefDiff 1.0
	Refactoring Miner/RMiner
	Refactoring Crawler
	Ref-Finder

	Proposed Approach
	Phase 1: Source Code Analysis
	Phase 2: Relationship Analysis
	General algorithm to find relationships
	Dependent and conflicting relationships

	Code Similarity
	Name similarity
	Extract similarity
	Inline similarity
	Ignoring parameters and return keywords

	Implementation details

	Evaluation with Java Projects
	Evaluation Design
	Results
	Comparison with RefDiff 1.0
	Comparison with RMiner

	Execution time
	Threats to Validity

	Evaluation with JavaScript and C
	Evaluation Design: Precision
	Evaluation Design: Recall
	Results for JavaScript and C
	Threats to Validity

	Challenges and limitations
	Conclusion

	Practical Applications of Refactoring Detection
	Refactoring-aware Diff
	Tracking changes of a code element
	Resolving merge conflicts

	Conclusion
	Contributions
	Future Work

	References

