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Resumo

Deslocamentos são tarefas rotineiras das pessoas que vivem em áreas urbanas. Os serviços
de mobilidade compartilhada visam oferecer diferentes opções a essa rotina, proporcio-
nando melhor conforto e viagens mais rápidas que os meios de transporte público con-
vencionais, além de evitar os custos dos clientes de possuírem um veículo particular. Um
serviço de carsharing devidamente planejado pode ser atraente inclusive para quem pos-
sui e dirige um veículo particular mas consideraria deixar de possuí-lo se um meio de
transporte mais barato e sustentável estivesse disponível. Um aluguel de carsharing de
baixo custo pode ser alcançado posicionando adequadamente a frota ao longo da cidade
e aproveitando ao máximo os veículos compartilhados de acordo com uma seleção prévia
de qual subconjunto de demandas de viagens podem ser atendidas. Esta seleção prévia
escolheria quais demandas têm origem e destino combinando, o que permite que esses
clientes utilizem um mesmo veículo mas em momentos distintos, não exigindo que a em-
presa carsharing realoque a frota entre as estações devido às diferentes demandas ao longo
do dia e da semana. Este trabalho contextualiza os desafios operacionais e computacionais
do planejamento de um serviço de carsharing; prova a NP-Completude de otimizar os lo-
cais para estações de mobilidade compartilhada; propõe uma formulação de Programação
Linear Inteira-Mista para este problema original e uma outra formulação de Programação
Linear Inteira-Mista que produz boas localizações para estações; e aplica uma formulação
linear de tempo polinomial para simular e comparar o desempenho de três diferentes mod-
elos de negócio de carsharing de acordo com dados históricos de mobilidade da Região
Metropolitana de São Paulo. Resultados mostram que é possível oferecer um serviço de
carsharing de baixo custo e lucrativo sem realizar relocações de veículos. Porém, somente
um subconjunto das viagens são atendidas e é necessário que clientes sejam flexíveis para
caminhar até algum veículo disponível na região. Resultados também demonstram que
as viagens selecionadas para serem servidas são similares entre os diferentes modelos de
negócios; estão concentradas na região central de São Paulo; são mais curtas que a média
das viagens, mas tem padrões similares ao restante das viagens; e a falta de vagas de
estacionamento pode ser um risco para empresas de carsharing.

Palavras-chave: Mobilidade de Baixo Custo, Programação Linear Inteira-Mista, Simu-
lação



Abstract

Commuting is a routine task of people living in urban areas. Shared mobility services
aim to offer different options to this routine by providing better comfort and faster trips
than conventional public transport means, along with avoiding the clients’ costs of own-
ing a private vehicle. A properly planned carsharing service can be attractive even for
who owns and drives a private vehicle but would consider not owning it anymore if a
cheaper and more sustainable transport mean is available. Low-cost carsharing rentals
can be achieved by suitably positioning the fleet along the city and by making the most
of the shared vehicles according with a previous selection of which subset of trip demands
can be served. This previous selection would choose which demands have a combining
origin and destination, allowing these clients to use a same vehicle but in different mo-
ments, not requiring the carsharing company to relocate the fleet among stations due to
different demands along the day and week. This work contextualizes the operational and
computational challenges in planning a carsharing service; proves the NP-Completeness
of optimizing the locations for shared mobility stations; proposes a Mixed-Integer Linear
Programming formulation for this original problem, and another Mixed-Integer Linear
Programming formulation which yields good locations for stations; and applies a polyno-
mial time linear formulation to simulate and compare the performance of three different
carsharing business models according with historical mobility data from the São Paulo
Metropolitan Area. Results show that it is possible to offer a profitable low-cost carshar-
ing service without performing vehicle relocations. However, only a subset of trips are
served and clients must be flexible enough to walk to get to an available vehicle nearby.
Results also demonstrate that trips selected to be served are similar among the different
business models; are concentrated on São Paulo’s downtown region; are shorter than the
average trip, but otherwise behave in a similar way as compared to the complete set of
trips; and the lack of parking slots may be a risk to the carsharing company.

Keywords: Low-cost Mobility, Mixed-Integer Linear Programming, Simulation
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Chapter 1

Introduction

Daily commuting is among the main routines of people living in urban areas. People
commute to work, to school, for shopping or for leisure purposes, and thus spend part
of their day by moving around in the city. Even though the bus and subway lines are
often the cheapest transportation services, these services can show drawbacks to their
passengers, such as:

• few options (or inexistence of) bus and subway lines in certain regions;

• low supply of buses at certain times;

• need to transfer among bus and subway lines;

• lengthy walks to get to a bus stop or subway station;

• uncomfortable trips (in certain city regions and/or peak times).

These drawbacks, together with long periods spent in commuting, intensified by
the urban population1 increase2, have motivated studies to improve the transportation ser-
vices. Among these studies are: identifying transport-related social exclusion [Logiodice
et al., 2015], suggesting new transportation services [Jorge et al., 2015], building applica-
tions to integrate, visualize, and analyze data of public transportation [Alic et al., 2018],
improving the accessibility for public transportation [Monteiro et al., 2018], understand-
ing job inaccessibility inequalities [Tomasiello et al., 2020], optimizing the assignment of
buses to travels [Veloso-Poblete et al., 2018], reducing energy consumption costs of elec-
tric buses [Bartłomiejczyk, 2018], reducing transportation time and costs by integrating
ride-sharing to public transportation [Stiglic et al., 2018].

Alternative transportation services can reduce those drawbacks without substan-
tially increasing the involved costs. Shared mobility modalities have grown in urban areas
by providing more sustainable [Cohen and Kietzmann, 2014; Machado et al., 2018] and af-
fordable transportation services [Benetti, 2019; Violin, 2021], reducing the urban emissions
of polluting gases [Martin and Shaheen, 2011], diminishing parking needs [Tchervenkov

1https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
2https://data.worldbank.org/indicator/SP.URB.TOTL

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
https://data.worldbank.org/indicator/SP.URB.TOTL
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et al., 2018], and relieving traffic jams [Luan et al., 2018]. Among the shared mobil-
ity modalities, on-demand transport services, together with sustainable awareness and
low-cost requirements, are shaping the emergent transportation modes3 in the cities [Roy
et al., 2018; Machado et al., 2018; Benetti, 2019; Aguilera-García et al., 2020].

Amid these on-demand transport services is the sharing of vehicles, usually named
as carsharing. Carsharing consists in offering vehicles in an “as-needed” basis. Clients can
rent cars for periods as little as some minutes, avoiding the costs of owning a vehicle or
of renting it for a whole day [Jorge et al., 2015; Machado et al., 2018]. Since the client is
also the driver, there is no need to pay a taxi driver. Therefore, carsharing fares tend to
be lower than the fares from taxi or similar services, like Transport Network Companies
(TNC) such as Uber and Lyft [Schwieterman and Bieszczat, 2017].

Carsharing services can be classified into three modes: round-trip, one-way, and
free-floating. The round-trip and one-way are station-based modes, therefore, the rentals
must start and end in the carsharing company’s stations. On the round-trip, clients must
return the rented car at the same station where the rental has started. On the one-way
mode, clients can return the vehicle in a different station. On the free-floating mode there
are no stations: vehicles are picked-up or dropped-off in any place within the area of
operations [Machado et al., 2018].

Next section presents the motivation involved in the research on shared mobility,
more specifically on the carsharing topic.

1.1 Motivation

According to the S.E.U. [2003] from the United Kingdom, transport problems can
hamper people’s access to services and opportunities, reinforcing their status of social
exclusion. The lack of transportation services can also bring difficulties to build social
networks and reduce family recreational day trips, being harmful to well-being and men-
tal health. Few mobility options can also restrict people to walking to locally accessible
grocery stores, being subject to higher grocery prices and having fewer healthy food op-
tions. Besides, the absence of mobility options can hamper opportunities of employment,
education, and training that could increase income [Mackett and Thoreau, 2015].

The authors from S.E.U. [2003] defined transport accessibility as people being able
to get to key services at a reasonable cost, in reasonable time and with reasonable ease.
Also, accessible transport should be reliable, passengers should feel safe using it and
people should be financially and physically able to access the transport. Low-accessibility

3https://silvio.meira.com/silvio/olha-um-carro-compartilhado-autonomo/

https://silvio.meira.com/silvio/olha-um-carro-compartilhado-autonomo/
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transportation can cause problems for work, learning, healthcare, shopping, social, and
sporting activities.

Transport-related social exclusion is often more properly explained by non-transport
factors and issues such as economic power, accessibility, and choice. For example, while
people with money, time and good health to drive can choose to enjoy driving to an
attractive rural environment, inhabitants of these rural areas (lacking services such as
healthcare and shopping) can be “forced” to own and maintain a vehicle in order to have
access to essential services. Therefore, being “forced” to have a vehicle is a factor of ex-
periencing transport-related social exclusion, differently from choosing to own a vehicle
while having other reasonable options of mobility [Pooley, 2016].

Shared mobility modes represent a promising set of solutions for vulnerable groups
that are neither properly served by public transport nor can comfortably afford a private
vehicle [Viegas and Martinez, 2017]. People who are able to drive may prefer using
carsharing instead of ridesourcing services, such as from Uber and Lyft, to either avoid
the costs of paying a driver for the trip or not depending on the availability of a driver
to perform the trip4,5. This latter situation includes Brazil due to the increase in gas
prices, demotivating the ridesourcing supply of drivers6,7,8. If low-cost carsharing services
are available, drivers who own cars may become motivated to become carsharing clients.
To do so, low-cost carsharing services must be properly planned to ensure low-cost prices
and wide coverage [Correia and Antunes, 2012; Jorge et al., 2014, 2015; Genikomsakis
et al., 2017; Lage et al., 2019, 2021]. However, planning such services is not an easy task.
The following section discusses the computational challenges on planning and optimizing
carsharing services.

1.2 Computational Challenges of Carsharing

Essential efforts of carsharing planning are within the class of the hardest problems
in Computer Science. This class is known as NP-Hard [Garey and Johnson, 1979; Cormen
et al., 2009] and includes tasks such as selecting places that should have electric vehicle

4https://www.washingtonpost.com/technology/2021/05/07/uber-lyft-drivers/
5https://www.dailymail.co.uk/news/article-9883145/Struggling-Uber-Pay-row-driver-

shortages-multi-apping-causing-nightmare-users.html
6https://www.uol.com.br/carros/noticias/redacao/2021/10/04/por-que-os-motoristas-

de-aplicativo-estao-cancelando-tantas-corridas.htm
7https://www.istoedinheiro.com.br/entenda-porque-motoristas-de-aplicativos-estao-

cancelando-corridas/
8https://www1.folha.uol.com.br/mercado/2021/12/taxi-fica-mais-vantajoso-com-apagao-

de-uber-em-sao-paulo.shtml

https://www.washingtonpost.com/technology/2021/05/07/uber-lyft-drivers/
https://www.dailymail.co.uk/news/article-9883145/Struggling-Uber-Pay-row-driver-shortages-multi-apping-causing-nightmare-users.html
https://www.dailymail.co.uk/news/article-9883145/Struggling-Uber-Pay-row-driver-shortages-multi-apping-causing-nightmare-users.html
https://www.uol.com.br/carros/noticias/redacao/2021/10/04/por-que-os-motoristas-de-aplicativo-estao-cancelando-tantas-corridas.htm
https://www.uol.com.br/carros/noticias/redacao/2021/10/04/por-que-os-motoristas-de-aplicativo-estao-cancelando-tantas-corridas.htm
https://www.istoedinheiro.com.br/entenda-porque-motoristas-de-aplicativos-estao-cancelando-corridas/
https://www.istoedinheiro.com.br/entenda-porque-motoristas-de-aplicativos-estao-cancelando-corridas/
https://www1.folha.uol.com.br/mercado/2021/12/taxi-fica-mais-vantajoso-com-apagao-de-uber-em-sao-paulo.shtml
https://www1.folha.uol.com.br/mercado/2021/12/taxi-fica-mais-vantajoso-com-apagao-de-uber-em-sao-paulo.shtml
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chargers [Lam et al., 2014], and organizing routes for multiple workers to relocate shared
vehicles between stations [Albinski, 2015].

Solving such problems efficiently is a challenge for carsharing companies, which
may constantly depend on such simulation or optimization tasks, since their prices are
constrained by the prices of competitors. As an example, potential carsharing clients
may prefer using ridesourcing services if the difference of prices is not significant. This
is expected because ridesourcing clients neither need to drive, nor to walk to get to
an available vehicle or walk from where the vehicle was parked at the end of rental
to get to their actual destination. In recent years, the competition between carsharing
and ridesourcing prices increased due to the ridesplitting modality [Schwieterman and
Bieszczat, 2017]. In this modality, a ridesourcing client may serve other clients during a
trip if their trips have overlapping routes. By doing so, ridesplitting clients have their
fares split, reducing their costs [Schwieterman and Bieszczat, 2017; Machado et al., 2018].
As a broader example of low-cost competitor, Silva Jr et al. [2018] showed that it is
possible to find interesting trade-offs between price and trip duration by integrating public
transportation with a possible ridesplitting taxi service in New York.

Therefore, luring clients for carsharing includes ensuring low prices and offering
available services nearby their clients’ departure and destination places. Although the
availability can be achieved by increasing the number of vehicles, stations and covered
area, the more resources are included, the more expensive it becomes to the carsharing
company. The trade-off between improving accessibility and profits of the service can
also be dealt through simulation and optimization techniques. For example, Correia
et al. [2014] and Boyacı and Zografos [2019] evaluated how the flexibility of one-way
clients on walking short distances to get an available vehicle may improve carsharing
dynamics. It is expected that a carsharing client will be flexible to walk short distances
because competitors such as public transportation and ridesplitting services may also
require it, and even if he/she owns a private car, sometimes he/she will also have to walk
hundreds of meters between where the car finally could be parked and his/her actual
destination [van der Waerden et al., 2017].

Nevertheless, the more business rules are included in the simulation or optimization
techniques, the harder it may become for a computer to run it and obtain optimal solutions
in a viable time [Cristian et al., 2019; Mellou et al., 2020]. In this scenario, methods with
no optimality guarantee are often used, since they produce good solutions and run faster
(usually in polynomial-time) [Ritzinger et al., 2016; Mourad et al., 2019; Murray et al.,
2020].

A problem is solved in polynomial-time if, for all applicable instances, the time
required to solve it can be expressed by a polynomial in function of the instance size.
It differs from NP-Hard problems since, at least so far, the time required to solve them
is expressed only by exponential functions regarding the instance size. Therefore, as the
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instance size increases, the time required to solve a NP-Hard problem increases much
more (in an exponential pace) than the time required to solve another problem but in
polynomial-time (increases in a polynomial pace) [Garey and Johnson, 1979; Cormen
et al., 2009].

Although carsharing simulation and optimization have been extensively studied in
the recent years, the computational aspects of such techniques were not widely researched
yet. The following section presents the research questions to be answered in this work.

1.3 Research Questions and Objectives

The major research question of this work is:
Is it possible to computationally plan and simulate, for a region as wide as the São

Paulo Metropolitan Area, a profitable low-cost one-way carsharing service without vehicle
relocation operations and considering the clients’ flexibility to walk?

By answering that major research question, minor research questions are also ap-
proached:

• How do the profits of a carsharing company vary between the round-trip and one-
way modes?

• How does the computational performance improve by changing the optimizing for-
mulation for fleet-sizing?

• How is the vehicle and parking slots availability impaired in an one-way carsharing
service without vehicle relocation operations?

• How much flexibility in walking to nearby stations is needed to improve carsharing
dynamics?

• Is spacing the location of stations an NP-Hard problem?

• Is it possible to select, in polynomial-time, a subset of drivers whose routine trips
match among themselves, allowing an one-way carsharing service without relocation
operations?

• Where should stations be located to maximize the possible origin and destination
locations for the expected demand?

• Which operational challenges will a carsharing service face?
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The main objective of this dissertation is:
Propose useful optimization methods for planning a profitable low-cost one-way

carsharing service without relocation operations.
In order to fulfill this main objective and to answer those research questions, some

specific objectives must be accomplished:

1. Compare the expected profits of round-trip and one-way modes;

2. Compare the time spent on solving different fleet-sizing Mixed-Integer Linear Pro-
gramming (MILP) formulations;

3. Evaluate different scenarios of supply and demand to analyze how the vehicle and
parking slots availability decreases in an one-way carsharing service when no vehicle
relocation operations are performed;

4. Evaluate the increase in clients served when they are flexible to walk to nearby
stations to get an available vehicle or parking slot;

5. Prove that optimizing the location of stations is an NP-Hard problem;

6. Propose a Linear Programming (LP) formulation for selecting a subset of drivers
whose routine trips match among themselves, allowing an one-way carsharing service
without relocation operations;

7. Design and implement a database describing the expected demand of trips and
identifying which stations are nearby each drivers’ trip demand;

8. Compare the computational performance of solving MILP formulations to find good
locations for stations;

9. Use the location of stations obtained on the previous objective to select drivers
matching their demand and simulate the one-way carsharing service;

10. Analyze the risks of the one-way carsharing service without relocation operations
having an outage of available vehicles or parking slots due to clients occasionally
being not able to use the service, disrupting the expected carsharing flow.

The analyses presented here can be immediately useful for carsharing decision-
makers, mainly for those operating (or planning to operate) in São Paulo, Brazil, due to
the dataset of trip demands used in this work. The next section presents an overview of
the remaining chapters of this work.
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1.4 Structure of this Work

The next chapter discusses related works and presents our contributions to the
literature. Chapter 3 presents the initial and already published results, which inspired
the carsharing business model proposed in Section 3.4 and the development of the other
chapters. Chapter 4 presents the proposed linear formulations for optimizing the locations
of carsharing stations and for simulating the one-way carsharing service; and describes the
algorithm for calculating the shortest distances in the pedestrian ways network. Chapter 5
describes the software and hardware resources used, the diagram of the spatial database
used, and the algorithm used to prepare the instances for solving the optimization prob-
lems. Chapter 6 presents and discusses the simulations made for different carsharing
business models. Finally, Chapter 7 concludes this thesis and suggests future works.
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Chapter 2

Related Work

Complex transportation problems have recently been solved using simulation and opti-
mization approaches. These approaches are useful since they enable the evaluation of
parameter changes, being useful to support “what-if” analyses for the decision-making
process [Jorge et al., 2015; Genikomsakis et al., 2017; Cristian et al., 2019; Boyacı and
Zografos, 2019; Mellou et al., 2020; Schiffer et al., 2021]. The following works made
contributions related to the main subject of this work.

A MILP model is proposed in Correia and Antunes [2012] to maximize the profits
of a carsharing company considering all the revenues and costs involved. Since the one-
way mode allows clients to deliver the vehicle in another station, the number of vehicles
in each station will change along the day due to their different demands. The work aims
to optimize the locations for carsharing stations, avoiding fleet unbalancing among the
stations on the one-way mode. The authors showed, in a case study in Lisbon, Portugal,
the impact of the location of stations for the system performance and considered different
scenarios of client behavior.

That work was extended in Correia et al. [2014] to evaluate the impact of one-way
clients being flexible to walk to the closest or second closest station to get an available
vehicle or parking slot. The authors simulated the walking time between stations rather
than the walking distance. Results show that flexible clients knowing which stations have
available resources would have to walk about eight minutes to get to those stations. How-
ever, scenarios with clients that are flexible to walk can serve twice as many clients than
scenarios with clients inflexible to walk. Therefore, the location of stations plays an im-
portant role on the carsharing dynamics. The same happens with the spatial distribution
of chargers for electric vehicles.

Lam et al. [2014] showed that the problem of optimizing the location of chargers
for electric vehicles is NP-Hard. The authors proposed four different methods for solving
this problem: two MILP formulations, one greedy heuristic, and a meta-heuristic nature-
inspired on Chemical Reaction Optimization. These four methods were applied to five
different problem instance sizes and had their run times and solutions assessed. Numerical
results based on Hong Kong, China, showed that the methods producing better solutions
also required more run time, being suitable to different situations.
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Different optimization methods were also evaluated for optimizing the carsharing
service. Jorge et al. [2014] compare two methods for the relocation of carsharing vehicles
to fix the unbalancing among stations on the one-way mode, in Lisbon, Portugal. The
method based on MILP overcame the method built using the AnyLogic1 environment for
simulation, mainly while considering vehicle relocation.

Vehicle relocations are common for one-way mode, since they address two issues:

1. stations unable to serve clients because earlier clients rented all available vehicles
and delivered them to other stations;

2. clients unable to deliver the vehicle in the desired station because all existing parking
slots are occupied.

Issue (2) can be even more restrictive to the one-way dynamics, because it can
happen on the first rentals of the day. In addition, that issue can happen even when
the fleet is balanced, with vehicles distributed to all stations. If one-way stations have a
low number of parking slots, and the stations are far apart, relocation operations can be
expensive and unable to solve issue (2) quickly enough. That happens because stations
with a low number of parking slots will more often be subject to issue (2), and due to
the fact that the vehicle cannot be used while being relocated. Even with relocations, a
necessary approach to avoid issue (2) consists in the carsharing company holding more
parking slots than vehicles to rent.

Repoux et al. [2014] optimizes the fleet size of a carsharing service in Nice, France
using relocation operations. The authors have considered a carsharing mode where clients
can park the rented vehicles somewhere close to the station if no parking slots are available.
This carsharing mode was named partial floating. Although partial floating could solve
issue (2), it depends on available public parking area nearby the stations. Besides, if
the carsharing service is based on electric vehicles and if these vehicles need to be often
recharged, partial floating will only be effective if there are chargers available in the public
parking areas nearby, in order to recharge the idle vehicles. Results showed that relocation
operations could reduce the problems caused by issue (2) and avoid high accumulation of
vehicles outside stations.

Jorge et al. [2015] propose a MILP model to optimize the design of a carsharing
service based on round-trip to also offer one-way rentals in Boston, USA. The results show
that adding an optimized one-way mode to the service could increase the earned profit.
Even though the one-way mode can support more clients, many carsharing companies do
not offer one-way mode due to the effort and costs involved on relocation operations. The
vehicle relocation problem was proved to be NP-Hard by Albinski [2015]. The author
also showed that this problem is NP-Complete and evaluated branch-and-cut methods for
solving it faster.

1https://www.anylogic.com/

https://www.anylogic.com/
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Böhmová et al. [2016] showed that the carsharing fleet-sizing problem with no relo-
cation operations varies from polynomial-time to NP-Hard depending on which objective
is being optimized and how the service works. If the objective is to minimize the num-
ber of vehicles used, and clients are served only if all their demands are satisfied, then
this problem is solvable in polynomial-time. However, if the objective is to maximize the
number of satisfied clients and each client has two demands (move from one station to
another and afterwards move back to the initial station), this problem becomes NP-Hard.

Hara and Hato [2017] proposed an one-way carsharing system in which instead
of workers performing relocation operations, clients trade a permit to use the vehicle
whose price is defined by the market. Therefore, renting prices would vary depending
on demand, and these prices could even become negative (people earn to use the cars)
when the trip to be made is infrequent and would help the carsharing dynamics similarly
to a relocation operation. Fleet-sizing under this business model is said to be NP-Hard,
and the authors proposed a polynomial-time LP model for instances in which every client
only trade for one permit to use the vehicle. Experimental results were evaluated using
randomly generated data.

Du et al. [2018] proved that optimizing the location of chargers for electric vehicles
finding a balance between coverage of points of interest and local demand is also NP-Hard.
The authors also proposed a greedy approximation algorithm with a ratio 1 − 1

e
and a

time complexity of O(m2n), where e stands for the amount of candidate locations, m is
the number of charging stations, and n is the number of points of interest. Experimental
results based on a carsharing dataset from Beijing, China were also presented.

Bruglieri et al. [2018] proposed a Multi-Objective MILP model for the one-way
mode in Milan, Italy. The proposed model has three objectives: minimizing the number
of workers needed to relocate vehicles; maximizing the number of vehicle relocations to
increase the number of served clients; and minimizing the lengthiest relocation route. Ap-
proximate heuristic solutions were compared with exact MILP ones observing the compu-
tational time spent for both methods. Results show the benefits of using the approximate
heuristic methods instead of waiting for the exact optimal solution.

Lu et al. [2018] proposed a stochastic MILP based on Benders decomposition to
analyze the number of necessary vehicles, fleet used percentage, vehicle relocation costs,
and metrics on the quality of the carsharing service in the Boston-Cambridge area in
Massachusetts, USA. The results showed that companies offering both round-trip and
one-way modes can have their profits for one-way decreased if the demand of clients is
generated by pricing and strategic customer behavior instead of natural market penetra-
tion and user adoption. That happens because if the one-way demand is driven by pricing,
for example, round-trip clients could prefer making two one-way rentals since it could be
cheaper. Therefore, instead of increasing the demand, pricing could rather reduce the
company’s profit margin since one-way relocations can be costly.
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Although relocation is important for balancing the fleet, it may not significantly
increase the carsharing company’s profit. As simulated in [Santos and Correia, 2019] for a
demand of 25% of all potential clients in the city of Lisbon, Portugal, and considering that
all relocations would result in new clients served, relocations would increase the company’s
profit by only 3.2%. It is possible that both issues (1) and (2), mentioned earlier, regarding
one-way unbalancing in stations, are better avoided by approaches other than vehicle
relocations. If the carsharing investment is complemented by more vehicles and parking
slots, carsharing companies can also avoid both issues (1) and (2). Furthermore, the
management of one-way rentals can be as simple as the round-trip ones, operation costs
can be reduced and the rental prices can be cheaper. Lower rental prices can attract more
clients, and also motivate them to walk to another station to get an available vehicle or
parking slot.

Similar collaborations among clients were already evaluated in the literature for
one-way carsharing with electric vehicles [Cocca et al., 2019; Boyacı and Zografos, 2019;
Ströhle et al., 2019]. Cocca et al. [2019] presented benefits derived from clients driving
free-floating electric vehicles up to nearby charging stations, instead of parking them in any
other place. Simulations based on the cities of Turin, Italy; Milan, Italy; Berlin, Germany;
and Vancouver, Canada were applied to define locations to place electric chargers to avoid
carsharing vehicles running out of battery. Among the results, it was found that it is better
to place chargers in popular areas, such as downtown, instead of in areas where vehicles
tend to be parked for long periods.

Boyacı and Zografos [2019] evaluated the collaboration of clients regarding their
spatial flexibility (being available to walk to another station) and temporal flexibility
(being available to start their rental earlier or later than expected) over a carsharing
dataset from Nice, France. Among other results, authors found that spatial flexibility
could increase the number of clients served in up to 25%, having a stronger effect on
the system’s performance than temporal flexibility, which increased the number of clients
served by less than 5%.

Ströhle et al. [2019] evaluated the potential benefits of the spatial and temporal
flexibility of one-way carsharing clients. Similarly to Boyacı and Zografos [2019], the au-
thors have found that temporal flexibility has a low potential in improving the carsharing
dynamics. Even if clients are flexible to postpone their trips by up to four hours, the fleet
size could only be reduced by 4%. However, if clients are flexible to walk up to 1 kilo-
meter, the fleet size could be reduced by 12%. This reduction could reach almost 20% if
the spatial and temporal flexibility are combined: clients being flexible to walk up to 750
meters and postpone their trips by up to three hours. These results were obtained after
optimizing the carsharing system using as input a real dataset with more than 50,000
carsharing reservations from a mid-sized German city. The authors also conducted an
online survey to assess the willingness of clients in being flexible. Among the obtained
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results, the study found that clients agree to be more flexible, in exchange for not hav-
ing to pay more to be served, if they will perform “long trips”. In the survey, the term
“long trips” was used to ask about supposed carsharing rentals with driving distance of
37,5 kilometers, in contrast to “short trips”, whose considered driving distance was 15
kilometers. The implemented fleet sizing MILP is said to solve an NP-Hard problem.

Deza et al. [2020] optimized the locations of chargers for electric vehicles of a
carsharing service. The optimization was performed using data from Toronto, Canada,
and its surrounding area. The authors proposed a LP formulation which can be solved
in polynomial-time. However, in the worst case it may require an exponential number of
potential charger locations.

Brandstätter et al. [2020] proved that the problem of optimizing the locations of
chargers for electric carsharing vehicles with budget constraints (costs for opening a station
and costs per electric charger) and battery capacity constraints is NP-Hard. Besides, the
authors showed that if neither budget nor battery capacity constraints are included, the
problem can be solved in polynomial-time by modeling it as a minimum-cost flow. The
battery levels of each car were explicitly tracked in the proposed MILP formulations,
whose computational performance were evaluated over instances from Vienna, Austria.
Similarly to Lam et al. [2014], Du et al. [2018] and Deza et al. [2020], the problem proposed
in Brandstätter et al. [2020] optimizes the location of stations by selecting candidate
points, instead of defining locations directly along the road network.

Schiffer et al. [2021] optimized a carsharing service based in Vancouver, Canada,
considering that the relocation operations would be performed by the clients themselves.
According to the authors, this problem equals to the k-disjoint Shortest Paths Problem
with negative weights. The computational time complexity in the worst case is O(|A|(|V|+
k) + k|V|log|V|) where |A| stands for the number of arcs (trips being served) in the
network, |V| is the number of vertices (possible vehicle situations after moving by serving
trips) and k is the number of vehicles. Results indicate that, after optimized, the number
of served requests can increase by 21% and the company’s revenue can increase by 10%.

Another polynomial-time method for carsharing fleet-sizing is proposed by Liu
et al. [2022]. The authors evaluated the performance of autonomous vehicles used for
carsharing and the ridesplitting modality of ridesourcing using data from Langfang, China.
Since the vehicles are autonomous, no staff was considered to perform relocations. In that
work, trips were modeled as vertices and the trips’ temporal order and similarity were
modeled as edges. The matching of client pairs to be served together (ridesplitting)
was performed by solving the Maximum Weighted Matching Problem. The minimum
fleet size for serving the trips was found by solving the Minimum Path Cover Problem
on the directed acyclic graph formed by the trips’ order. Since the carsharing service
works in the free-floating modality and the cars can relocate themselves, the stations’
locations were simply defined as areas of high demand. Results showed that one shared
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autonomous vehicle can replace 7.84 private conventional vehicles if all evaluated clients
use the service alone, and replace 15.52 private conventional vehicles if all clients are
flexible to split his/her trip with other client. However, the total distance traveled by the
shared autonomous vehicles in the scenarios without ridesplitting is expected to be higher
than the total distance traveled by private vehicles.

The fleet-sizing problem was also approached by Zhang et al. [2022] with simula-
tions based on Beijing, China. The authors proposed a MILP formulation to optimize the
size of a heterogeneous electric fleet. This problem considers vehicle relocations and is
said to be NP-Hard. The authors applied Dantzig–Wolfe decomposition to the proposed
MILP model and used ant colony optimization into the column generation framework to
speed-up the pricing subproblems optimization. It was found that the proposed method
is faster than solving the MILP using CPLEX, and usually finds solutions with better ob-
jective values when considering large instances. The authors also noticed that not serving
some rental requests would be more economically beneficial than serving every demand.

Lai et al. [2022] dealt with the problem of dynamically optimizing the relocation
of electric carsharing vehicles. This work was based on Beijing, China; all trips are on-
demand (without any scheduling); and it assumes that clients are flexible to walk to be
served. The clients’ flexibility was used to offer discounts to clients who may walk to
another station with available resources. This same rationale was applied into heuristics
to avoid using staff to relocate vehicles in all situations. The authors compared three
operational methods to organize the relocations: a greedy policy based on using resources
to always serve the first trip demands; a proposed Iterated Local Search heuristic; and a
version of Particle Swarm Optimization. The Iterated Local Search heuristic outperforms
the other two methods evaluated.

Although carsharing planning may resemble traditional combinatorial optimization
problems such as Facility Location Problem and Vehicle Routing Problem, the carsharing
problems differ from those traditional problems due to the business specific constraints
imposed. Therefore, analyses of time complexity are important to better control the efforts
spent on optimizing a carsharing service. Table 2.1 indicates how this work’s contribution
fits in the literature among the related works that evaluate the clients’ flexibility or discuss
their models’ computational time complexity.

This thesis differs from the related works by proposing a MILP formulation to
optimize the exact location of shared mobility stations instead of selecting candidate
locations, proving it to be NP-Complete, proposing a polynomial-time fleet-sizing LP
formulation for carsharing without relocation operations, and considering different levels
of spatial flexibility by clients.

Every mark in Table 2.1 indicates that the work of that line approached the feature
2Although Deza et al. [2020] proposed an LP model solvable in polynomial-time, it requires an

exponential number of variables in the worst case.
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Table 2.1: Contributions of this work compared to the related works

Clients’ Flexibility Stations Location Fleet-sizing
Related Works

Spatial Temporal NP-Hard P cases NP-Hard P cases

Correia et al. [2014] ✕

Lam et al. [2014] ✕

Albinski [2015] ✕

Böhmová et al. [2016] ✕ ✕

Hara and Hato [2017] ✕ ✕

Du et al. [2018] ✕ ✕

Cocca et al. [2019] ✕

Boyacı and Zografos [2019] ✕ ✕

Ströhle et al. [2019] ✕ ✕ ✕

Brandstätter et al. [2020] ✕ ✕

Deza et al. [2020] ✻2

Schiffer et al. [2021] ✕

Liu et al. [2022] ✕ ✕

Zhang et al. [2022] ✕

Lai et al. [2022] ✕

This work ✕ ✕ ✕

mentioned in the column header. Marks regarding the “Client’s Flexibility” topic mean
that the work analyzed either the spatial or temporal flexibility of carsharing. In this
work, only the spatial flexibility is analyzed due to the weak results found by Boyacı and
Zografos [2019] and Ströhle et al. [2019] when assessing the benefits of temporal flexibility.

Marks regarding the “Stations Location” and “Fleet-sizing” topic mean that the
work approached at least one problem regarding the topic and defined whether the prob-
lem is NP-Hard. Some works approached more than one problem about the same topic,
and thus, proposed different algorithms with different time complexities for solving them.
When the same work approaches an NP-Hard problem and a polynomial-time algorithm
(for different problems) the Table 2.1 presents it with two marks in the same topic, one
for NP-Hard and another for “P cases”.

In this work, only NP-Hard problems are approached for locating stations to assure
good stations’ locations to the simulated carsharing system. Since the stations are not
expected to change their locations frequently, it is reasonable to spend more time looking
for better combinations of stations’ locations when it is needed. However, it does not
apply for the fleet-sizing task. The demand of each station may change more frequently,
requiring a faster method for adjusting the supply of vehicles. Therefore, this work do
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not deal with a NP-Hard fleet-sizing problem, but proposes a polynomial-time fleet-sizing
method.

The next chapter presents the initial results of this work, which provided essential
insights for developing the following chapters.
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Chapter 3

Insights from Initial Results

This chapter presents the initial and already published results about the simulation of
carsharing services in the city of São Paulo, and proposes a carsharing business model
that fits the local demands.

Section 3.1 aims to maximize profits by choosing between round-trip or one-way
modalities. Section 3.2 compares the computational performance of two MILP formu-
lations for maximizing the profits of a carsharing company offering round-trip services.
Section 3.3 approaches the fleet-sizing by maximizing the number of clients served. Next,
Section 3.4 explains the proposed low-cost carsharing business models.

The three first sections do not directly tackle the research problem of this thesis.
These sections focus on simulating the carsharing service by applying different objective
functions and constraints to better comprehend their rental dynamics and define the
business model. Besides, the results obtained were useful for building a linear formulation
for fleet-sizing presented on the next chapter, at section 4.3, which is suitable for the
proposed business model.

3.1 Maximizing Carsharing Profits

This section presents a MILP formulation to optimize the fleet size of one-way and
round-trip modes in order to maximize the company’s profit and uses this formulation to
simulate the carsharing performance on the city of São Paulo1. This results were useful
to estimate how profitable a carsharing business model can be.

Different scenarios are analyzed for the one-way and round-trip settings, varying
service costs, rental prices, number of clients, rental duration and driven distance. The
location of stations used in this simulation are real vehicle dealerships in São Paulo.
Figure 3.1 presents the location of stations. Black lines in Figure 3.1 indicate city districts
with at least one simulated carsharing station. A São Paulo district is the smallest official

1This section has been published as Monteiro et al. [2019a].
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spatial unit adopted by the local government. The thinner gray lines are the city’s road
network. The neighborhoods with at least one carsharing station are “Jardim América”,
“Indianópolis”, “Ipiranga”, “Moema”, “Perdizes”, “Santo Amaro”, “Vila Cordeiro” and “Vila
Mariana”.

Figure 3.1: Vehicle dealerships used as carsharing stations

3.1.1 MILP Formulation

The proposed formulation can be used for both round-trip and one-way carsharing
modes. Following Nourinejad et al. [2015], it does not split the operating day in time
intervals. By doing so, carsharing dynamics are simulated through a continuous time span,
representing the flow of clients and vehicles more realistically. The time is represented as
events of clients starting and finishing rentals.

Before starting the optimization, clients are generated to simulate the demand for
carsharing. In this simulation, clients can be served or not. Each client is assigned to an
origin station and to a destination station. When the simulated scenario is based on round-
trip, the origin and the destination stations must be the same. On the one-way scenarios,
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the origin and destination stations may be different. The number of clients starting and
ending a rental in each station is proportional to the number daily trips made in the São
Paulo’s district where the station is located. Thus, the demand is divided throughout the
city, simulating more clients in regions with higher mobility occurrence and vice-versa.

Tables 3.1, 3.2 and 3.3 define, respectively, the indices, variables and model param-
eters of this MILP formulation. Stations are indicated by indices s, r and l. The times
when trips have started and ended are represented by the pairs (i, j), and (p, q). Those
times were generated within the range 8:00 AM to 8:00 PM, according with the operating
hours of dealerships. This formulation considers that clients may not go straight from
origin station to his/her destination station following the shortest path. It is possible
that some clients prefer doing multiple smaller trips during the same rental, taking the
most of the car by making longer rentals. This was considered by randomly generating
an additional time spent and driven distance for each rental. Both additional time and
distance follow a uniform distribution, and the total time spent and driven distance per
rental were limited by parameters set in the evaluated scenarios.

Each trip demand is represented by a binary variable x indexed by four indices:
two indicating the time when it has started and finished, and other two indicating the
origin and destination stations. By doing so, variable xi,j

s,r represents a trip demand from
station s at time i, going to station r at time j. This variable will have value 1 whether
the client was served and 0 otherwise.

Table 3.1: Indices of the Maximizing Profits MILP

Index Description
s, r, k, l ∈ S Station indicating the trip origin or destination
(i, j) ∈ T Time i indicating when trip xi,j

s,r started and time j about when it finished

Table 3.2: Variables of the Maximizing Profits MILP

Variable Description
ns Number of vehicles to be allocated in station s

xi,j
s,r Trip demand from station s at time i, to station r at time j

Model Parameter di,js,r represents the distance driven by trip demand xi,j
s,r. In this

simulation, the rental price is calculated according to two different formulas, each of
them used by one carsharing company from São Paulo. Equation 3.1 presents the prices
charged by the Turbi2 company, and Equation 3.2 presents the prices applied by the
Zazcar3 company. The formula used by Turbi charged4 R$8 per rented hour (represented

2https://turbi.com.br/
3This company does not exist anymore
4Brazilian currency: Reais (R$)

https://turbi.com.br/
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Table 3.3: Model Parameters of the Maximizing Profits MILP

Parameter Description
ri,j1,s,r Revenue obtained by Turbi for serving trip demand xi,j

s,r

ri,j2,s,r Revenue obtained by Zazcar for serving trip demand xi,j
s,r

di,js,r Distance driven by client xi,j
s,r

ci,j1,s,r Cost for serving xi,j
s,r with vehicles not exclusive for carsharing

ci,j2,s,r Cost for serving xi,j
s,r with vehicles dedicated to carsharing

cs Cost for maintaining a vehicle at station s

ps Number of parking slots in station s

in Equation 3.1 from the subtraction between the ending time and the starting time),
and R$0.50 per driven kilometer. The formula used by Zazcar charged R$10 per hour,
R$0.90 per kilometer and has a minimum price per rental of R$20. These formulas are
from March 10, 2019. As a matter of comparison, at that date 1 US Dollar was equivalent
to about R$3.87.

ri,j1,s,r = (j − i) + 0.50di,js,r (3.1)

ri,j2,s,r = max
(
20, 10(j − i) + 0.90di,js,r

)
(3.2)

Trip costs are therefore calculated using the distance driven, rental duration and
a fixed cost per vehicle. Along with the two pricing models presented in Equation 3.1
and Equation 3.2, two cost models are applied in the simulations. Those cost models are
presented in Equation 3.3 and Equation 3.4. In both models, the distance cost is set as
the same: R$0.50 per km. That value was chosen because it is the lowest charged price
per distance between the companies’ price models, and considering that the gas price in
São Paulo on March 10, 2019 was R$4.144 on average5. With that gas price, a vehicle
with a consumption of 11 km per liter would spend about R$0.35 per km for the fuel costs
only. In this simulation, the remaining R$0.15 per km is associated to vehicle maintenance
costs.

cs,r1,i,j = 1.1(j − i) + 0.50di,js,r (3.3)

cs,r2,i,j = 0.50di,js,r (3.4)

The rental duration cost and the fixed cost per vehicle are different on the two price
models. The cost formula from Equation 3.3 assumes that vehicles are not exclusively used
for carsharing. In this scenario, the vehicle cost only applies when the vehicle is rented.

5https://precodoscombustiveis.com.br/pt-br/city/brasil/sao-paulo/sao-paulo/3830

https://precodoscombustiveis.com.br/pt-br/city/brasil/sao-paulo/sao-paulo/3830
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When the vehicle is idle, the company can use it for other purposes, not generating costs
for the carsharing operation itself. Therefore, instead of defining a fixed value for the
vehicle use, this model defines a cost per rented hour. This cost must compensate for
vehicle depreciation on the first year of use, including taxes. Vehicle depreciation is about
12% per year da Silva and de Oliveira [2018], and the annual circulation tax is 4%, both
in relation to its value6. Adding these rates, a cost of 16% per year is then applied to
the vehicle’s value. Considering a market price of R$30,000, the vehicle’s cost per year is
about R$4,800. From this value, the cost per day is about R$13 and the cost per hour
(considering the 12 working hours per day on the stations) is about R$1.10, represented
by the 1.1 in the Equation 3.3. When using this Cost Model, the fixed cost per vehicle cs

is not assessed by the objective function. Equation 3.4 presents Cost Model 2, which does
not include a vehicle cost per hour. However, when calculating the objective function for
the Cost Model 2, each vehicle has a daily fixed cost cs = R$13.

The optimization’s objective function is presented by Equation 3.5 when using
Cost Model 1 and by Equation 3.6 when using Cost Model 2. The objective function
aims to maximize the carsharing company’s profits by taking the rental revenue, and
subtracting from it the sum of costs for serving the trip demands and maintaining the
vehicles. Equations from 3.7 to 3.10 define the MILP constraints.

arg max
xi,j
s,r

∑
s,r∈S

∑
i,j∈T

xi,j
s,r(r

i,j
1,s,r − ci,j1,s,r) (3.5)

or
arg max
xi,j
s,r, ns

∑
s,r∈S

∑
i,j∈T

xi,j
s,r(r

i,j
2,s,r − ci,j2,s,r)−

∑
s∈S

csns (3.6)

Subject to:

xi,j
s,r ≤ ns +

∑
k∈S

∑
p,q∈T
q<i

xp,q
k,s −

∑
l∈S

∑
p,q∈T
p<i

xp,q
s,l ∀i, j ∈ T, ∀s, r ∈ S (3.7)

ns ≤ ps ∀s ∈ S (3.8)

xi,j
s,r ∈ {0, 1} ∀i, j ∈ T, ∀s, r ∈ S (3.9)

ns ∈ N0 (3.10)

Equation 3.7 ensures that a trip demand xi,j
s,r will only be served if there is at least

one vehicle available at station s. The number of available vehicles at the station s is
the original number of vehicles allocated to that station (ns), added to the sum of other
trip demands xp,q

k,s that have already rented and delivered a vehicle to that station before
trip xi,j

s,r has been served. Since it is possible that other trips xp,q
s,l used a vehicle from

the same station s before the trip demand xi,j
s,r was served, vehicles rented by the trip

6https://portal.fazenda.sp.gov.br/servicos/ipva/Paginas/mi-aliquota.aspx

https://portal.fazenda.sp.gov.br/servicos/ipva/Paginas/mi-aliquota.aspx
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demands xp,q
s,l are subtracted from the available ones at station s. Equation 3.8 limits the

number of allocated vehicles in each station to the number of parking slots in the station.
Equation 3.9 defines the trip demand variables as binaries, and Equation 3.10 defines the
number of allocated vehicles as an integer and positive number, including zero.

The maximum of vehicles to be simulated is 27, due to limits of the vehicle deal-
erships considered. Simulations were performed varying the number of clients, the rental
duration and the distance traveled. The simulated number of clients were 100 and 300.
As the users were generated randomly, their rental durations and driven distances varied
inside minimum and maximum intervals. Two levels of duration and driven distance in-
tervals were evaluated for one-way and for round-trip modes. For the one-way mode, the
duration intervals were from a minimum of 22 minutes and 30 seconds to a maximum of
2 hours per rental, and twice that: going from 45 minutes to 4 hours per rental. One
distance interval for one-way trips started from 2.5 km and ended at 25 km, and the other
distance interval is twice that: starting from 5 km and up to 50 km. As the round-trip
mode consists in the client having to drive back to the origin station, the expected dura-
tion and distance on round-trip should be greater than those expected for one-way. By
doing so, the intervals set to the round-trip mode are twice the ones set for one-way mode.
The following subsection presents the simulation results using the proposed MILP model
and these chosen parameters.

3.1.2 Simulation Results

All simulation results are presented on Table 3.4. Since six different factors were
assessed (carsharing mode, number of clients, duration interval, distance interval, cost
model, and Price Model) each one with two possible values, Table 3.4 has 26 = 64 lines.
The results are sorted in ascending order by daily profit. Besides the profit, the table also
shows the optimal number of vehicles to be allocated and the total cost (adding client
and vehicle costs) for each scenario.

Figure 3.2 summarizes the scenarios presented in Table 3.4 by indicating them in a
graph. It is possible to identify a leap made between scenario 55, with a profit of R$3,075,
to scenario 57, with a profit of R$3,743. From scenario 57 onward, every scenario is in the
round-trip mode, with 300 clients, long duration and long distance, using Price Model 2
and using all the 27 vehicles.

We observe that the number of clients served is a strong contributor to the profit.
All the first 10 scenarios (with less profit) have only 100 clients, while the last 9 scenarios
(with more profit) have 300 clients. The carsharing mode also has a big influence on the
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Figure 3.2: Summary of patterns found on the simulated scenarios

profits. However, the highest profits with round-trip correspond to large values for the
duration and distance interval parameters. Therefore, a naive analysis comparing only
the carsharing modes should be avoided. Nevertheless, all scenarios with one-way and
100 clients are in the first half of the Table 3.4, and all the scenarios with round-trip
and 300 clients are in the second half of the Table 3.4. The first 8 scenarios and the last
8 scenarios on the Table 3.4 are uniform as to the carsharing mode and the number of
clients. Those scenarios only vary on the cost model, indicating that it does not influence
as much as the mode and the number of clients. Even though there is overlapping among
the modes and parameters, the extreme profit cases tend to be well separated.

In general, the round-trip mode is more profitable than one-way because the price
models assign more value to the rental duration than to the distance driven. Thus, even
when a one-way scenario serves more clients than the round-trip, if the one-way vehicles
stay idler than the round-trip ones, probably the one-way profits will be lower than the
round-trip ones. However, this situation can reverse as the one-way mode gets more
clients, causing the vehicles to be more frequently used.

The extreme lower and higher profits are strongly different. The scenario with
the smallest profits makes R$223 a day, and the scenario with the highest profits makes
R$4,373 a day, about 19.61 times greater than the smallest profit. The cost and price
models cause a big difference in profits. The first 8 scenarios used Price Model 1, and
the last 24 scenarios used Price Model 2. Although the Cost Models 1 and 2 appeared
throughout the table, all the scenarios with less than 27 vehicles appeared only with
Cost Model 2. That happened because, in Cost Model 2, the vehicles are considered
to be exclusively used for carsharing. Therefore, if some of the 27 vehicles will not be
used at least enough to cover their fixed cost, it is more profitable to remove those idle
vehicles from the carsharing operation than to keep them, else costs outweighs profits.
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All the scenarios that did not use all the 27 vehicles appear among the first 20 scenarios
in Table 3.4. Most of them use the one-way mode, have only 100 clients, trips have short
durations and involve short distances, and use Price Model 1, as expected, since there
would be idle vehicles.

Table 3.4 is presented in the following pages. Columns about number of clients,
number of needed vehicles, cost and profit are colored to facilitate the comparison of
values. The more clients are simulated, the greener the cell color is. The same pattern
is applied on the profit column. However, columns regarding needed vehicles and costs
involved have an inverse pattern of colors: the lesser the number, the greener the cell
is. This difference of color pattern was applied to illustrate that costs (including the
investment of acquiring vehicles) are usually avoided by a for-profit company.

Although these evaluated scenarios provide insightful analysis about the manage-
rial dynamics of a carsharing service, these results neither assure that this MILP will be
solved in tractable time for large-scale instances, nor define the location for carsharing sta-
tions. Next section presents the computation performance comparison of two round-trip
fleet-sizing MILP formulations.
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Table 3.4: Simulation of carsharing profits on São Paulo, sorted by daily profit

# Mode Clients Duration Distance (km) Cost Model Price Model Needed Vehicles Cost (R$) Profit (R$)
1 one-way 100 22m:30s - 2h 5 - 50 2 1 15 601 223

2 one-way 100 22m:30s - 2h 2.5 - 25 2 1 14 510 256

3 one-way 100 45m - 4h 2.5 - 25 2 1 16 552 309

4 one-way 100 45m - 4h 5 - 50 2 1 21 818 490

5 one-way 100 22m:30s - 2h 5 - 50 1 1 27 642 563

6 one-way 100 22m:30s - 2h 2.5 - 25 1 1 27 537 580

7 one-way 100 45m - 4h 2.5 - 25 1 1 27 566 647

8 one-way 100 45m - 4h 5 - 50 1 1 27 853 815

9 one-way 100 22m:30s - 2h 2.5 - 25 2 2 20 597 849

10 one-way 100 22m:30s - 2h 5 - 50 2 2 23 686 863

11 one-way 300 22m:30s - 2h 2.5 - 25 2 1 27 1,416 878

12 one-way 300 22m:30s - 2h 5 - 50 2 1 27 1,671 888

13 one-way 100 45m - 4h 2.5 - 25 2 2 22 611 974

14 one-way 300 45m - 4h 2.5 - 25 2 1 27 1,359 1,026

15 round-trip 100 45m - 4h 5 - 50 2 1 27 1,257 1,090

16 round-trip 100 45m - 4h 10 - 100 2 1 26 1,608 1,204

17 one-way 300 45m - 4h 5 - 50 2 1 27 1,821 1,217

18 one-way 100 22m:30s - 2h 2.5 - 25 1 2 27 539 1,226

19 one-way 100 22m:30s - 2h 5 - 50 1 2 27 634 1,278

20 one-way 100 45m - 4h 5 - 50 2 2 25 874 1,331

21 round-trip 100 45m - 4h 5 - 50 1 1 27 1,350 1,337

22 one-way 300 22m:30s - 2h 2.5 - 25 1 1 27 1,300 1,350

23 one-way 100 45m - 4h 2.5 - 25 1 2 27 555 1,354
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# Mode Clients Duration Distance (km) Cost Model Price Model Needed Vehicles Cost (R$) Profit (R$)
24 one-way 300 22m:30s - 2h 5 - 50 1 1 27 1,549 1,367

25 round-trip 100 1h:30m - 8h 10 - 100 2 1 27 1,363 1,382

26 round-trip 100 1h:30m - 8h 5 - 50 2 1 27 1,257 1,404

27 round-trip 100 45m - 4h 10 - 100 1 1 27 1,739 1,439

28 one-way 300 45m - 4h 2.5 - 25 1 1 27 1,282 1,459

29 round-trip 100 1h:30m - 8h 10 - 100 1 1 27 1,527 1,568

30 round-trip 100 1h:30m - 8h 5 - 50 1 1 27 1,408 1,604

31 one-way 300 45m - 4h 5 - 50 1 1 27 1,756 1,640

32 one-way 100 45m - 4h 5 - 50 1 2 27 851 1,677

33 round-trip 300 45m - 4h 10 - 100 2 1 27 2,292 1,809

34 round-trip 300 45m - 4h 5 - 50 2 1 27 1,908 1,840

35 round-trip 300 1h:30m - 8h 5 - 50 2 1 27 1,629 1,992

36 round-trip 300 45m - 4h 10 - 100 1 1 27 2,469 1,998

37 round-trip 300 45m - 4h 5 - 50 1 1 27 2,045 2,035

38 round-trip 300 1h:30m - 8h 10 - 100 2 1 27 1,891 2,067

39 round-trip 300 1h:30m - 8h 5 - 50 1 1 27 1,835 2,138

40 round-trip 300 1h:30m - 8h 10 - 100 1 1 27 2,123 2,179

41 one-way 300 22m:30s - 2h 2.5 - 25 2 2 27 1,442 2,337

42 round-trip 100 45m - 4h 5 - 50 2 2 27 1,286 2,355

43 one-way 300 45m - 4h 2.5 - 25 2 2 27 1,372 2,447

44 one-way 300 22m:30s - 2h 5 - 50 2 2 27 1,739 2,546

45 round-trip 100 45m - 4h 5 - 50 1 2 27 1,392 2,605

46 round-trip 100 1h:30m - 8h 5 - 50 2 2 27 1,286 2,734

47 round-trip 100 1h:30m - 8h 10 - 100 2 2 27 1,388 2,801
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# Mode Clients Duration Distance (km) Cost Model Price Model Needed Vehicles Cost (R$) Profit (R$)
48 round-trip 100 45m - 4h 10 - 100 2 2 27 1,743 2,831

49 one-way 300 22m:30s - 2h 2.5 - 25 1 2 27 1,282 2,838

50 one-way 300 45m - 4h 2.5 - 25 1 2 27 1,256 2,916

51 round-trip 100 1h:30m - 8h 5 - 50 1 2 27 1,446 2,938

52 round-trip 100 1h:30m - 8h 10 - 100 1 2 27 1,551 2,989

53 one-way 300 45m - 4h 5 - 50 2 2 27 1,824 2,997

54 one-way 300 22m:30s - 2h 5 - 50 1 2 27 1,588 3,040

55 round-trip 100 45m - 4h 10 - 100 1 2 27 1,851 3,075

56 one-way 300 45m - 4h 5 - 50 1 2 27 1,727 3,437

57 round-trip 300 1h:30m - 8h 5 - 50 2 2 27 1,708 3,743

58 round-trip 300 45m - 4h 5 - 50 2 2 27 2,016 3,776

59 round-trip 300 1h:30m - 8h 5 - 50 1 2 27 1,919 3,896

60 round-trip 300 45m - 4h 5 - 50 1 2 27 2,173 3,977

61 round-trip 300 1h:30m - 8h 10 - 100 2 2 27 2,030 4,104

62 round-trip 300 45m - 4h 10 - 100 2 2 27 2,570 4,174

63 round-trip 300 1h:30m - 8h 10 - 100 1 2 27 2,290 4,224

64 round-trip 300 45m - 4h 10 - 100 1 2 27 2,725 4,373
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3.2 Computational Performance

This section presents two MILP formulations for simulating the round-trip carshar-
ing profits, compares their computational performance and describes the optimal solution
found7. Both formulations aim to solve the same problem and were evaluated under the
same data, and therefore, generate the same global optimal results. The analysis made
in this section were useful to understand how large are the instances that can be solved
using the computational resources available for this PhD thesis.

Figure 3.3 presents the location of 100 stations used in the experiments. Differently
from the last section, these stations were randomly generated onto positions of street
lengths in São Paulo. Therefore, regions with larger total street length are more likely to
receive a carsharing station. That procedure also avoids locating stations on regions with
only water, woods or no driving access.

Figure 3.3: Generated locations for the carsharing stations

As in the former section, the number of generated clients varies according to the
number of trips made in the district where the station is located. Thus, there are more
simulated trips in regions with more demand for trips. This simulation also considers that

7This section has been published as Monteiro et al. [2019b]
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clients may not go straight from origin station to his/her destination station following the
shortest path. The possibility of clients doing multiple smaller trips during the same rental
was also included by randomly generating an additional time spent and driven distance
for each rental. Both additional time and distance also follow a uniform distribution. The
total rental duration varied from 45 minutes to four hours, and the total driven distance
varied from five kilometers to 50 kilometers.

Subsection 3.2.1 describes the formulation based on the Big-M method. The Big-M
method consists in defining big enough constants and multiply them by specific variables
on the objective function or constraints in order to ensure the feasibility of some solu-
tions [Camm et al., 1990; Bazaraa et al., 2010; Klotz and Newman, 2013]. The formulation
presented in the following subsection uses the Big-M method to guarantee that earlier
clients arriving at the stations will have priority on being served.

3.2.1 MILP Formulation with Big-M

The indices, variables and model parameters used in this formulation are presented,
respectively, by Tables 3.5, 3.6 and 3.7.

Table 3.5: Indices of the Formulation with Big-M

Index Description
s ∈ S Station s indicating the trip origin of xi,j

s

(i, j) ∈ T Time i indicating when trip xi,j
s started and time j about when it finished

Table 3.6: Variables of the Formulation with Big-M

Variable Description
ns Number of vehicles to be allocated in station s

xi,j
s Trip demand from station s at time i to the same station s at time j

Revenue and costs are calculated using the Price Model 2 and the Cost Model 2
presented in the last section. By doing so, vehicles are assumed to be exclusively used
for carsharing and the prices are the same as those the Zazcar company used to charge.
The revenue from each rental is determined at8 R$10 per hour plus R$0.90 per driven
kilometer, with a minimum fare of R$20.

8Brazilian currency: Reais (R$). In comparison, the exchange rate on August 13, 2019, was of R$3.96
per US dollar
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Table 3.7: Model Parameters of the Formulation with Big-M

Parameter Description
ri,js Revenue obtained for serving trip demand xi,j

s

di,js Distance driven on trip demand xi,j
s

ci,js Cost yielded by trip demand xi,j
s

cs Cost for maintaining a vehicle at station s

ps Number of parking slots in station s

M i,j
s “Big-M ” used as maximum number of trips that station s can serve

Equation 3.11 defines the revenue ri,js . Since this section only considers round-trip
carsharing, the trip demand xi,j

s is indicated by only one station index s. The cost ci,js is
calculated as R$0.90 per driven kilometer, and cost cs is defined as R$13 per day and per
vehicle, indicating the vehicle’s depreciation along the time of use.

ri,js = max
(
20, 10(j − i) + 0.90dxi,j

s

)
(3.11)

Equation 3.12 presents the objective function, with the goal to maximize the dif-
ference between total revenue and total cost, generating the profits. The constraints are
expressed from Inequality 3.13 to Equation 3.17.

arg max
xi,j
s , ns

∑
s∈S

∑
i,j∈T

xi,j
s (ri,js − ci,js )−

∑
s∈S

csns (3.12)

Subject to:

xi,j
s ≤ ns +

∑
p,q∈T
q<i

xp,q
s −

∑
m,n∈T
m<i

xm,n
s ∀i, j ∈ T, ∀s ∈ S (3.13)

M i,j
s xi,j

s ≥ ns +
∑
p,q∈T
q<i

xp,q
s −

∑
m,n∈T
m<i

xm,n
s ∀i, j ∈ T, ∀s ∈ S (3.14)

ns ≤ ps ∀s ∈ S (3.15)

xi,j
s ∈ {0, 1} ∀i, j ∈ T, ∀s ∈ S (3.16)

ns ∈ N0 (3.17)

Inequality 3.13 limits trip demand xi,j
s to only be served if there is at least one

available vehicle. Inequality 3.14 ensures that trip demand xi,j
s will be served if there is at

least one available vehicle. This inequality guarantees that the carsharing company will
not refuse to serve a client in order to “reserve” a vehicle for another client that would
be more profitable for the company. By doing so, this formulation maintains a property
of first-come-first-serve. Inequality 3.15 limits the number of vehicles to be allocated in
station s to the number of existent parking slots ps. Inequality 3.16 defines the trip’s
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variables as binaries. Finally, constraint 3.17 defines variables ns as positive integers
including zero.

The Big-M method applied on Inequality 3.14 is important for balancing both
sides of that inequality. If Big-M was not used, the binary variable xi,j

s would also limit
the inequality’s right hand side to one. The Big-M multiplying the xi,j

s makes the left
hand side have a value greater than one when variable xi,j

s is equal to one, and makes the
left hand side equal to zero when variable xi,j

s is zero.
Although this formulation is relatively short and simple, constraint 3.14 can reduce

the computational performance of the formulation. That happens because the Big-M
method may cause numerical errors or increase the gap between the linear relaxation and
an optimal integral solution [Camm et al., 1990; Klotz and Newman, 2013]. Next section
presents an alternative version of this formulation avoiding the use of the Big-M method.

3.2.2 MILP Formulation without Big-M

Avoiding to use the Big-M implies the need of creating additional variables and
constraints. Table 3.8 defines the indices, Table 3.9 presents the variables and Table 3.10
defines the model parameters used in this formulation.

Table 3.8: Indices of the Formulation without Big-M

Index Description
s ∈ S Station s indicating the trip origin of xi,j

s

(i, j) ∈ T Time i indicating when trip xi,j
s started and time j about when it finished

(i, s) ∈ V Vehicle of station s indexed by the time i of its first trip
i− 1 Starting time of the trip demand just before i

j − 1 Ending time of the trip demand just before j

i+ 1 Starting time of the trip demand just after i

Table 3.9: Variables of the Formulation without Big-M

Variable Description
xi,j
s Trip demand from station s at time i to the same station at time j

vis Vehicle of station s. It is indexed by the start time i of its first trip

The change in variables consists in splitting the number of allocated vehicles in
each station ns into several binary variables vis, one for each possible vehicle. Therefore,



3.2. Computational Performance 47

Table 3.10: Model Parameters of the Formulation without Big-M

Parameter Description
ri,js Revenue obtained for serving trip xi,j

s

di,js Distance driven by trip demand xi,j
s

cs Cost for maintaining a vehicle
ci,js Cost yielded by trip xi,j

s

one vis is defined for each parking slot at station s ∈ S. This change allows constraints
relating the vehicle variables directly to the trip demand variables, since now both are
binaries. The variables vis are indexed by the same time i used by the first trip that vehicle
serves. By doing so, it possible to assure the property of first-come-first-serve of the first
trips by constraining their variables directly to the station vehicles. After all first trips
are served, the other trips are decided to be served or not according with the vehicles
being delivered back to the station.

Equation 3.18 presents the objective function, whose rationale was kept the same
as in Equation 3.12. Constraint 3.19 ensures that the first trips on station s will be served
by the allocated vehicles in that station. Constraint 3.20 forces the vehicles’ variables to
maintain an order of priority. Since each vehicle variable is associated to a trip demand,
it will assure that the vehicle for an initial trip will not be ignored for saving resources to
a later trip. Constraint 3.21 limits trip xi,j

s to be served only if there is at least one vehicle
available after considering the trips already made. Constraint 3.22 ensures that a trip
with no “reserved” vehicle vi,js will only be served if its earlier trip was served or another
trip was just finished, yielding an available vehicle to the same station. Constraint 3.23
defines the trip variables as binaries. Finally, constraint 3.24 defines the vehicle variables
as binaries.

arg max
xi,j
s , vis

∑
s∈S

∑
i,j∈T

xi,j
s (ri,js − ci,js )− cs

∑
i,s∈V

vis (3.18)

Subject to:

vis ≤ xi,j
s ∀(i, s) ∈ V (3.19)

vi+1
s ≤ vis ∀(i, s) ∈ V | ∃i+ 1 (3.20)

xi,j
s ≤

∑
i,s∈V

vis +
∑
p,q∈T
q<i

xp,q
s −

∑
m,n∈T
m<i

xm,n
s ∀i, j ∈ T, ∀s ∈ S | (i, s) /∈ V (3.21)

xi,j
s ≤ xi−1,j−1

s +
∑
p,q∈T
q<i

q>j−1

xp,q
s ∀i, j ∈ T, ∀s ∈ S | (i, s) /∈ V (3.22)

xi,j
s ∈ {0, 1} ∀i, j ∈ T,∀s ∈ S (3.23)
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vis ∈ {0, 1} ∀(i, s) ∈ V (3.24)

Both formulations were experimentally run using the previously described data for
the city of São Paulo. Next section presents the experimental results.

3.2.3 Simulation Results

This section presents the experimental results of run time and number of served
trips, number of vehicles needed and profits that a carsharing company would earn. The
evaluated scenarios have 1,000, 2,000, 4,000, 8,000, 16,000, 32,000 and 64,000 trips. The
maximum number of vehicles and parking slots simulated were 1,000 and 5,000.

The simulations were performed on a Mac Mini Server (Late 2012) with S.O.
MacOS Mojave 10.14.6, processor Intel Core i7 2.3 GHz, and RAM of 16 GB. The models
were implemented using Python 3.7, with the wrapper PuLP9 version 1.6.0 and the solver
CBC10 version 2.10.0. No swap operations between main and secondary memories were
needed.

Figure 3.4 presents boxplots of the optimization run times for all scenarios. A
maximum time limit of 30 minutes per run was set, however, even with this time limit the
solver spent more than 30 minutes in some runs. Each boxplot represents 40 runs for each
evaluated scenario. The axis “Time (seconds)” is shown in logarithmic scale to make the
visual comparison easier. Boxplots in red were simulated using the proposed formulation
with Big-M and with at maximum 1,000 vehicles. Boxplots in blue and green use the
proposed formulation without the Big-M method; blue shows results for a fleet of 1,000
vehicles, and green corresponds to 5,000 vehicles available.

Even in logarithmic scale, the boxes representing 50% of the data (between the
first quartile, Q1, and the third quartile, Q3) cannot be seen in Figure 3.4 for the blue
and green boxplots. However, the red boxplots (regarding the formulations with the Big-
M method) usually showed that variation more clearly. That pattern indicates that run
times vary more widely in the formulation with Big-M . That higher variation can be
verified in Tables 3.11 and 3.12. Besides, the simulations with Big-M and 8,000 trips
exceeded the time limit of 30 minutes in some runs. All scenarios with Big-M and more
than 8,000 trips also exceeded that time limit. In those cases, the solution obtained is
not guaranteed to be the optimal.

All the scenarios using the formulation without Big-M (blue and green boxplots)
were solved with optimality guarantee. Among scenarios with the same number of trips

9https://pythonhosted.org/PuLP/
10https://projects.coin-or.org/Cbc

https://pythonhosted.org/PuLP/
https://projects.coin-or.org/Cbc
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Figure 3.4: Time spent by the evaluated formulations

and except for the outliers (dots above the boxplots), no boxplot shared the same range of
values. Therefore, there is significant difference between the run time of all the scenarios
evaluated [Krzywinski and Altman, 2014]. Thus, it can be asserted that the formulation
without Big-M achieves faster run times than the formulation with Big-M . Besides,
starting from 2,000 trips, the formulation without Big-M but with 5,000 vehicles is even
faster than the formulation with Big-M but only with 1,000 vehicles.

Tables 3.11 and 3.12 present the basic statistics for the simulations. In both tables,
the symbol M i,j

s indicates results regarding the formulation with Big-M , and the symbol V
indicates results from the formulation without Big-M . As shown by Table 3.11, the stan-
dard deviation for the scenarios with 4,000 and 8,000 trips raised quickly, when compared
to the standard deviation from other scenarios. This higher variation is expected because
formulations with Big-M usually yield a larger gap between the linear relaxation and the
optimal integral solution; and because the used MILP solver applies a non-deterministic
algorithm. Therefore, the time spent by reducing the gap between the linear relaxation
and the optimal integral solution is expected to vary more. That difference was strongly
reduced in Table 3.12, probably due to the time limit imposed.

Table 3.13 compares the run times of the scenario with 5,000 vehicles (green box-
plots), to the run times from the scenario with 1,000 vehicles and also without the use
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Table 3.11: Time Spent by Running the Optimization for Low-Demand (seconds)

Number of Trips
1,000 2,000 4,000 8,000

Statistics M i,j
s V M i,j

s V M i,j
s V M i,j

s V
Minimum 0.87 0.53 7.95 1.02 92.84 1.94 574.96 4.24

Q1 0.88 0.54 7.99 1.02 99.60 1.96 665.10 4.27
Median 0.88 0.54 8.00 1.03 111.90 1.97 742.23 4.29

Mean 0.91 0.57 8.02 1.04 138.45 1.99 905.03 4.32
Q3 0.89 0.55 8.03 1.04 126.90 1.98 868.45 4.31

Maximum 1.18 1.07 8.45 1.28 568.70 2.20 2212.52 5.29
Standard Deviation 0.08 0.10 0.08 0.04 88.40 0.06 446.04 0.16

Table 3.12: Time Spent by Running the Optimization for High-Demand (seconds)

Number of Trips
16,000 32,000 64,000

Statistics M i,j
s V M i,j

s V M i,j
s V

Minimum 2055.03 12.90 2153.38 47.48 2124.38 188.99
Q1 2141.20 13.00 2226.37 47.71 2207.79 189.74

Median 2146.41 13.05 2511.32 47.79 2519.39 190.40
Mean 2144.21 13.12 2433.02 47.93 2489.02 190.76

Q3 2152.84 13.10 2538.97 48.03 2599.07 191.55
Maximum 2186.84 14.14 2661.79 49.22 2735.89 196.31

Standard Deviation 22.71 0.29 150.40 0.43 189.35 1.40

of Big-M (blue boxplots) for low-demand scenarios. Since 5,000 vehicles is 5 times 1,000
vehicles, it was expected that the rate of run time would be about 5 times longer. That
proportional response can be observed up to the scenario with 8,000 trips. After that,
the optimization with up to 5,000 vehicles started to be not so much slower than the
optimization with up to 1,000 vehicles. These results are presented on Table 3.14.

Tables 3.15 and 3.16 compare the optimal solutions found. The numbers of served
trips, earned profits and used vehicles used tended to increase together in similar rates
through the scenarios. However, that increase seemed to saturate in the scenarios with
a high-demand of trips. Up to the scenario with 8,000 trips, as the demand doubled,
the percentage of increase more than doubled. But starting from the demand of 16,000
trips, as the demand doubles, the percentage of increase did not change significantly.
That saturation indicates that more than 5,000 vehicles and parking slots are needed to
significantly raise profits and increase the number of trips served when the demand is of
at least 16,000 trips. However, it is possible that only offering the round-trip modality
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Table 3.13: Time Comparison Varying to 5,000 Vehicles for Low-Demand (seconds and
proportion)

Number of Trips
1,000 2,000 4,000 8,000

Statistics Time Rate Time Rate Time Rate Time Rate
Minimum 2.82 5.28 4.87 4.79 11.61 6.00 21.57 5.09

Q1 2.84 5.27 4.89 4.78 11.66 5.96 21.66 5.07
Median 2.85 5.24 4.91 4.77 11.69 5.95 21.70 5.06

Mean 2.87 5.01 4.92 4.74 11.74 5.92 21.79 5.04
Q3 2.87 5.20 4.94 4.75 11.73 5.92 21.75 5.05

Maximum 2.99 2.79 5.08 3.96 12.61 5.72 22.98 4.34
Standard Deviation 0.04 0.04 0.04 0.03 0.20 0.09 0.30 0.06

Table 3.14: Time Comparison Varying to 5,000 Vehicles for High-Demand (seconds
and proportion)

Number of Trips
16,000 32,000 64,000

Statistics Time Rate Time Rate Time Rate
Minimum 39.19 3.04 83.46 1.76 234.89 1.24

Q1 39.30 3.02 83.79 1.76 235.95 1.24
Median 39.40 3.02 84.15 1.76 236.56 1.24

Mean 39.53 3.01 84.31 1.76 237.70 1.25
Q3 39.51 3.02 84.62 1.76 237.46 1.24

Maximum 40.87 2.89 87.94 1.79 256.58 1.31
Standard Deviation 0.37 0.03 0.85 0.02 4.24 0.02

would not attract a high demand of trips in all days, maybe making it worthy for the
carsharing company to also offer less restrictive modalities.

Next section presents a proposed MILP formulation and results for optimizing the
fleet size of a carsharing company that also offers one-way modality and considers that
clients may be willing to walk to nearby stations to get an available vehicle or parking
slot.
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Table 3.15: Optimal Solutions for Low-Demand

Number of Trips
1,000 2,000 4,000 8,000

Number of Vehicles 1,000 5,000 1,000 5,000 1,000 5,000 1,000 5,000
Served Trips 931 1,000 1,518 2,000 2,053 3,912 2,388 6,883
Increase in Served 7.41% 31.75% 90.55% 188.23%
Profit (R$) 79,308 84,661 133,877 172,360 182,993 338,187 217,231 605,970
Increase in Profits 6.75% 28.75% 84.81% 178.95%
Needed Vehicles 543 600 779 1,093 907 1,971 972 3,251
Increase in Vehicles 10.50% 40.31% 117.31% 234.47%

Table 3.16: Optimal Solutions for High-Demand

Number of Trips
16,000 32,000 64,000

Number of Vehicles 1,000 5,000 1,000 5,000 1,000 5,000
Served Trips 2,596 9,972 2,664 11,812 2,729 12,897
Increase in Served 284.13% 343.39% 372.59%
Profit (R$) 237,779 886,743 248,519 1,067,651 254,744 1,189,949
Increase in Profits 272.93% 329.61% 367.12%
Needed Vehicles 987 4,205 989 4,685 999 4,915
Increase in Vehicles 326.04% 373.71% 391.99%

3.3 Maximizing Clients Served

This section presents the carsharing simulations considering the client’s flexibility
to walk to nearby stations and imposing operational constraints that emerge when offering
a one-way carshaing service11. Simulated scenarios and parameters were drawn from real
carsharing company and vehicle dealerships from the city of São Paulo, Brazil. Since those
companies neither work with electric vehicles nor with free-floating carsharing, constraints
regarding charging vehicle batteries and street parking availability are not included in this
formulation.

Besides, it was assumed that the vehicle dealership stores will work as stations
for this evaluated carsharing service, which will operate within the dealerships working
hours, i.e. from 8 a.m. to 6 p.m.. Vehicle maintenance tasks are expected to happen
after the dealerships opening hours, when the carsharing service is not working anymore
at that day. Therefore, maintenance tasks were not included in the formulation. Further

11This section has been published as Monteiro et al. [2021a]
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explanations about the data and evaluated scenarios are presented in the Section 3.3.2.
The next subsection presents the MILP formulation.

3.3.1 MILP Formulation

The indices, variables and model parameters used in this formulation are presented,
respectively, by Tables 3.17, 3.18 and 3.19.

Table 3.17: Indices of the Maximizing Served Clients MILP

Index Description
s, r, k, l ∈ S Station indicating the trip origin or destination
(i, j) ∈ T Time i indicating when trip xi,j

s,r started and time j about when it finished

Table 3.18: Variables of the Maximizing Served Clients MILP

Variable Description
ns Number of vehicles allocated to station s ∈ S
γ Greatest ns value among all station s ∈ S
xi,j
s,r Client demand from station s at time i to station r at time j

xi,j
k,l Replica of xi,j

s,r from nearby origin station k to nearby destination station l

Table 3.19: Model Parameters of the Maximizing Served Clients MILP

Parameter Description
V Maximum total number of vehicles
W Weight for γ not to yield a value greater than one
ϵ Limits the number of vehicles through the Pareto Front
Ps Number of parking slots in station s

Ms = Ps Big-M with the max. clients the station s can serve at same time
D Maximum distance clients are flexible to walk
δ(s, k) Shortest path distance between stations s and k

The MILP model is formulated using the epsilon-constraint programming as in Bruglieri
et al. [2018]. The epsilon-constraint method was also applied. It consists in solving the
model multiple times but varying an ϵ threshold of one constraint in each time. By doing
so, the set of optimal solutions found after varying the constraint can be put together,
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forming the Pareto Front [Mavrotas, 2009]. In this work, the ϵ threshold was defined for
limiting the total number of allocated vehicles in each simulation run. By doing so, every
scenario was simulated up to V times (maximum total number of vehicles), varying the
threshold ϵ from 1 to V .

This formulation also focuses on minimizing the highest number of vehicles to be
allocated to a station in order to avoid fleet size discrepancies among stations. Therefore,
the variable γ is used to penalize solutions with high fleet size in the same station. In order
to prioritize the optimal solution for maximum number of clients served, the subtracted
penalty γ must be smaller than one. Otherwise, the optimized function can avoid serving
some clients not to being penalized. To solve that, the subtracted penalty γ is adjusted
to always be smaller than one due to the weight W multiplying it. Equation 3.26 defines
the W value based on the optimization parameters. The rationale of Equation 3.26 is
based on the upper bound for γ, defined by the Inequality 3.25.

Since W multiplied by γ must yield a value lower than one, the greater the γ,
the lower the value of W . A naive approach would set W as the lowest fraction allowed
by the computer. However, that can lead to numerical errors during the optimization
computations. Therefore, a safer way to set a small enough W consists in first defining
an upper bound to γ. As γ stands for the greatest number of allocated vehicles in the
same station, its value is limited to the highest number of parking slots (Ps) among all
stations, as shown in Inequality 3.25.

max(Ps)
∀s ∈ S

≥ γ

Wmax(Ps)
∀s ∈ S

≥ Wγ

(3.25)

Therefore, if W times the highest number of parking slots is equalled to a value
smaller than one, for example 0.1, it is possible to define a constant value for W that
works as a good multiplier to ensure that the multiplication Wγ will always be lower
than one. Equation 3.26 shows that rationale.

Wmax(Ps)
∀s ∈ S

= 0.1

W =
0.1

max(Ps)
∀s ∈ S

(3.26)

The whole MILP model is defined as follows. Equation 3.27 presents the objective
function, and Inequalities from 3.28 to 3.36 compose the MILP’s constraints.

arg max
xi,j
s,r, γ

∑
s ∈ S

∑
r ∈ S

∑
i,j ∈ T

xi,j
s,r −Wγ (3.27)
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Subject to:

xi,j
s,r +

∑
k ∈ S
k ̸= s

δ(k,s) ≤ D

∑
l ∈ S
l ̸= r

δ(l,r) ≤ D

xi,j
k,l ≤ 1 ∀i, j ∈ T, ∀s, r ∈ S (3.28)

xi,j
s,r ≤ ns +

∑
k∈S

∑
p,q∈T
q<i

xp,q
k,s −

∑
l∈S

∑
p,q∈T
p<i

xp,q
s,l ∀i, j ∈ T, ∀s, r ∈ S (3.29)

Msx
i,j
s,r ≥ ns +

∑
k∈S

∑
p,q∈T
q<i

xp,q
k,s −

∑
l∈S

∑
p,q∈T
p<i

xp,q
s,l ∀i, j ∈ T, ∀s, r ∈ S (3.30)

Ps ≥ ns +
∑
k∈S

∑
p,q∈T
q<i

xp,q
k,s −

∑
l∈S

∑
p,q∈T
p<i

xp,q
s,l ∀i, j ∈ T, ∀s, r ∈ S (3.31)

ns ≤ γ ∀s ∈ S (3.32)∑
s ∈ S

ns ≤ ϵ (3.33)

ns ≤ Ps ∀s ∈ S (3.34)

xi,j
s,r ∈ {0, 1} ∀i, j ∈ T, ∀s, r ∈ S (3.35)

ns ∈ N0 (3.36)

Replicas of client variables were created to simulate scenarios where clients are
willing to walk to get an available vehicle or to drive further to find an available parking
slot. Each replica represents the original client starting from a different station, or going
to a different station. Replicas are also binary variables and work normally as they were
trip demands from other client. The only difference is only one trip demand may be served
among the original demand and all replicas made from it. That constraint is presented
by Inequality 3.28.

Inequalities 3.29 to 3.31 organize the flow of vehicles and clients through the sta-
tions. Inequality 3.29 limits client servicing if no vehicles are available in his/her starting
station at the time when he/she looked for the service. There is an available vehicle in
a station if the difference between the number of clients who earlier delivered a vehicle
to that station, and the number of clients who earlier rented a vehicle from that station
yields a result greater than zero. Since a station s can start the day with some vehicles
already allocated, the variable ns is also added to Inequality 3.29 to represent the first
served clients of the day, before any other rental delivers a vehicle to that station. There-
fore, if even after adding the variable ns to that calculation the result is zero, client xs

r,
in his/her original variable, cannot be served.

However, Inequality 3.29 does not guarantee the cases in which vehicles are avail-
able. Even if that calculation results in a value greater than zero, the optimization could
prefer not to serve client xi,j

s,r in order to serve a next client, who would return the rented
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vehicle in less time or deliver it to a more demanding station, for example. Aiming to
make the optimization more realistic by giving priority to clients who have arrived first
and found an available vehicle, the Inequality 3.30 uses the Big-M method to ensure
servicing xi,j

s,r.
By applying the Big-M in Inequality 3.30, if there is at least one available vehicle

in starting station s, the variable xi,j
s,r will necessarily go up to one due to the ≥ inequality.

And if there is more than one available vehicle, the binary variable xs
r will not limit the

constraint’s right side, since xs
r multiplied by the Big-M constant Ms will yield a result

always greater the constraint’s right side. Therefore, the Inequality 3.30 assures the
priority to clients who arrived first, without preventing other clients to be served since
their station has available vehicles and parking slots. This rationale is similar to the used
on MILP formulation with Big-M from the last section.

Inequality 3.31 imposes the issue (2) mentioned in Chapter 2. In this constraint,
a client xi,j

s,r cannot be served if the destination station r has no available parking slot.
Inequality 3.31 has no effect on the round-trip mode, since every vehicle on the round-trip
mode starts the day in its parking slot at the starting station and, after each rental, the
vehicle must be returned to the same station.

Inequality 3.32 ensures that γ will hold the greatest number of vehicles allocated
in the same station. Inequality 3.33 limits the total number of vehicles to the current
ϵ value, which varies to generate the Pareto Front solutions. Inequality 3.34 limits the
number of vehicles in a station to its number of parking slots. Equation 3.35 defines the
trip demands xi,j

s,r as binary, and Equation 3.36 defines the variable ns as integer positive
value, including zero.

Next subsection presents how the clients and replicas were generated for this opti-
mization model.

3.3.2 Data and Parameters

This section presents the data and parameters used in the optimization. When
the optimization starts, all the client and replica variables are already defined for the
solver to optimize using the formulation presented in Section 3.3.1. Table 3.20 shows the
simulation’s parameters.

The simulations represent one day of carsharing and were performed varying the
demand of clients, stations, parking slots and maximum distance walked by the clients to
be served. As shown in Table 3.20, the simulated number of clients were 100, 300 and 500.
These parameters are consistent with the ones used in Boyacı and Zografos [2019], being
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Table 3.20: Simulation’s Parameters

Parameter Value
Clients 100, 300 and 500 per day
Max. walking distance 0m, 250m, 500m, 750m and 1 km
Min. and Max. one-way trip duration 45 min to 4 hours
Min. and Max. round-trip duration 1.5 hours to 8 hours
Number of original parking slots 27
Number of additional parking slots 4
Number of partner parking slots 22 or 66

reasonable for the analysis of a local carsharing service. After client generation, properties
such as starting and ending stations were maintained for every simulation. Using the same
client setup allows for fairer comparisons as the other parameters vary.

The range between minimum and maximum round-trip duration (from 1.5 hours
to 8 hours) was provided by a carsharing company which operates the round-trip mode in
São Paulo. Although the company does not set those minimum and maximum durations
for rentals, clients commonly follow that duration range since shorter trips will probably
be cheaper or easier if made by on-demand ride services (such as from TNC), and longer
trips will probably be cheaper if made using a common rental car for a full day.

As the carsharing company does not offer one-way rentals, the expected duration
range for one-way in the simulations was based on the round-trip duration range. Since
the round-trip mode consists in the client having to drive back to the origin station,
the duration on round-trip is expected to be longer than in the one-way mode. In this
simulation, one-way rental duration was simulated as half of the round-trip duration:
varying from 45 minutes to 4 hours per rental.

The locations of stations are based on real vehicle dealerships in São Paulo, Brazil.
The number of clients generated who start or end a rental in each station is proportional
to the total number of trips made using an individual mean of transport (such as taxi
or private vehicle) in the São Paulo district where the station is located. A São Paulo
district is the smallest official spatial unit adopted by the local government, and was the
spatial unit used in the dataset from which the demand was drawn. This dataset used is
part of the Metrô (Companhia do Metropolitano de São Paulo) origin-destination survey,
the same one used by Tomasiello et al. [2020] to generate agents to their simulation.
Therefore, the simulated demand was divided throughout the city’s districts, simulating
more clients in regions with more individual trips and vice versa.

The carsharing company which provided the round-trip duration range reported
that the usual carsharing client in São Paulo used the vehicle to go to more than one
destination before finishing the rental. Probably this fact is related to the client preferring
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to use another transportation service instead of carsharing when he/she has only one
destination. Therefore, the carsharing demand in São Paulo does not follow conventional
patterns of commuting, being expected to neither cause a demand peak exactly when
people are going to work nor cause only other demand peak exactly when people are
coming back to home. Thus, rental start and end times were generated randomly between
the vehicle dealerships opening hours, and the start and end times follow a uniform
distribution. An additional time spent by the client going to multiple destinations before
finishing the rental was also included in the simulation. The additional times also followed
and uniform distribution and the total rental time do not surpassed the duration range
set as parameter.

The original parking slots mentioned in Table 3.20 are the same used in Section 3.1,
regarding the stations based on real vehicle dealerships from São Paulo. The 27 original
parking slots are distributed throughout 11 stations, in which the number of parking slots
varies from one to four. Additional parking slots are available at two vehicle dealerships
that are not used for carsharing. Each of those parking locations would have 2 additional
parking slots. Since the total number of parking slots (27 + 4 = 31) is still low for a
metropolis such as São Paulo, partner parking slots were also included.

Partner parking slots are alternative stations for the carsharing service, available at
commercial establishments such as parking garages, hotels, colleges and shopping malls,
selected using a “Location-Allocation” model as proposed in Lage et al. [2019]. The
addition of partner parking slots yielded a set of 22 stations. Simulations were performed
varying from 1 to 3 parking slots in each partner station (thus, from 22 to 66 parking
slots).

Combining the original number of parking slots to the others mentioned in Ta-
ble 3.20, we used six settings of parking slots:

• Only the original parking slots: total of 27

• Original + additional parking slots: 27 + 4 = 31

• Original + partner stations with one parking slot available: 27 + 22 ∗ 1 = 49

• Original + additional parking slots + partner stations with one parking slot: 27 +

4 + 22 ∗ 1 = 53

• Original + partner stations with three parking slots available: 27 + 22 ∗ 3 = 93

• Original + additional parking slots + partner stations with three parking slots:
27 + 4 + 22 ∗ 3 = 97

The Figure 3.5 illustrates the distribution of simulated stations on the involved
districts of São Paulo. Original, additional and partner stations are represented, respec-
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tively, by red, orange and yellow points. The ten regions indicate the São Paulo districts
which have at least one simulated station.

Figure 3.5: Locations of all carsharing stations simulated

Simulations also considered the possibility that clients would be flexible to walk
for some distance to reach a viable station. The maximum walking distances used in
simulations were 0 meters (where the clients are not flexible to walk), 250 meters, 500
meters, 750 meters and 1 km. As the number of clients, the parameters for walking
distance are consistent with the ones used in Boyacı and Zografos [2019]. The walking
distance is measured as the shortest distance on the São Paulo road network from the
desired station to another station with an available vehicle or parking slot to deliver the
shared vehicle. The shortest distance did not consider driving right-of-way constraints,
since clients would walk between the stations instead of driving. Next subsection presents
experimental results.
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3.3.3 Simulation Results

The simulations were performed using the same hardware and software than used
and described in subsection 3.2.3. No swap operations between main and secondary
memories were needed.

The time limit set for each CBC solver run was 20 minutes. All other parameters
follow CBC’s defaults. Therefore, the linear objective and constraints were handled using
the Simplex algorithm and the integrality of integer variables was dealt using the Branch-
and-Cut algorithm. The constraint represented by Equation 3.33 was updated before
every CBC run to increase the constant ϵ and to build the Pareto Front. That update
was made directly in the PuLP model from the previous solution of the Pareto Front.
By doing so, it was possible to avoid reloading the simulated data, and also to avoid
rebuilding the constraints for each ϵ value.

Figures 3.6 to 3.13 present results. Each graph shows the variation of the number
of served clients in relation to the number of needed vehicles. The number of parking
slots is indicated by the color bar. Figure 3.6 shows round-trip scenarios considering
that clients would not walk to another station to rent a vehicle. It shows the number of
served clients considering a demand of 100, 300 or 500 potential clients, i.e., clients who
seek the service, but will not necessarily be served. In this scenario, all results reached
guaranteed optimality. In other words, it is assured that the result shown is the best
possible combination of vehicles and parking slots to serve as many customers as possible.
In this work, the solutions with optimality guarantee are indicated on the legend by “O.
G.”.
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Figure 3.6: Round-trip scenarios
with no walking
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Figure 3.7: Round-trip scenarios with
500m walking

The scenarios with higher client demand present lower saturation while increasing
the number of served clients. This indicates that increasing the number of vehicles and
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the number of available parking slots to more than 100 each can be beneficial. Consider
the scenarios with 100 and 500 potential clients, and with 97 available parking slots. The
scenario with 500 potential clients can serve 138% more clients than the scenario with 100
clients, using only 27% more vehicles.

Figure 3.7 shows round-trip scenarios where the clients are flexible to walk up
to 500 meters between stations while looking for an available vehicle to rent. Results
follow the same patterns as in Figure 3.6, and the number of served clients does not
increase significantly. The maximum number of clients served increased from 228 to 235,
a variation of only seven clients, equivalent to 3.1%. Such small increment probably
happened because the round-trip modality does not cause imbalances in the number of
vehicles among stations along the day as the one-way modality does. Therefore, there is
no big room for improvement by clients walking. The summary of the variation for all
walking distances simulated is presented in Table 3.21.

As round-trip clients must deliver the vehicle at the same station from which it
was rented, every vehicle on round-trip can have a dedicated parking slot. Thus, the one-
way issue (2) mentioned earlier does not affect the round-trip performance. That pattern
appears on Figures 3.6 and 3.7, where, in all simulated scenarios, there is no need to use
more parking slots than offered vehicles.

Figure 3.8 presents the results for one-way rentals with no walking between stations
and without constraints regarding issue (2). This scenario is equivalent to the “partial-
floating” case defined by Repoux et al. [2014], where clients can park the vehicle outside
the station, but nearby it, when there are no available parking slots in the station. The
number of clients served is greater than in the round-trip mode, because one-way rentals
tend to be shorter. However, having more clients served does not necessarily result in
higher revenue or profit, nor even in more idle vehicles. The increase in the number of
served clients shows signs of saturation even for the demand of 500 clients.
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Figure 3.8: One-way scenarios with no
issue 2) constraints and no walking
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Figure 3.9: One-way scenarios with no
issue 2) constraints and 500m walking
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Figure 3.9 shows the one-way results also without issue (2) constraints, but con-
sidering that the clients are flexible to walk up to 500 meters to find an available vehicle.
Some simulations using demand of 500 clients did not obtain optimality guarantee due to
the higher complexity of the one-way optimization. Therefore, there is no guarantee that
the results with the “+” sign indicated in the legend are the solution with best possible
combination for that number of vehicles and parking slots. Each point shown on the graph
without optimality guarantee used up to three attempts of 20 minute processing to find
an optimal solution. New simulations using a longer run time can achieve the optimal
solutions. However, since the non-optimal solutions maintained the same pattern as the
optimal solutions, we expect that the optimal solutions are not significantly different from
the solutions shown in Figure 3.9.

Even though the number of served clients increased only from 285 to 289 (four more
clients, 1.4%), the number of vehicles required to serve those 289 clients was reduced from
89 to 87 (two fewer vehicles, 2.2%). Thus, the walking distance thresholds caused not
only an increase in the number of served clients, but also a reduction in the number of
vehicles needed to serve that many clients.

Figures 3.10 and 3.11 present the effect of clients walking to be served, but in
scenarios with the one-way issue (2) applied only on the partner stations. In practical
terms, it is as if the original and additional stations (owned by the carsharing company)
can always find enough space to park the one-way delivered vehicles (i.e., parking on the
street, or elsewhere), but partner stations are limited to the preset parking slots.
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Figure 3.10: One-way with partners
subject to issue (2) and no walking
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Figure 3.11: One-way with partners
subject to issue (2) and 500m walking

Differently from Figure 3.9, in which the clients are flexible to walk and the issue
(2) constraints are not applied, all solutions shown on the Figure 3.10 have optimality
guarantee. That pattern also occurs on the next figures, indicating that, for the proposed
MILP, adding the client walking distance thresholds makes the optimization problem
harder to solve than when adding issue (2) constraints.
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Figure 3.12: One-way with all parking
slots subject to issue (2) and no walking
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Figure 3.13: One-way with all parking
slots under issue (2) and 500m walking

Regarding the carsharing performance, adding issue (2) constraints reduces the
maximum number of served clients. This number was reduced from 285 to 219 (66 fewer
clients, 23.2%), and the number of needed vehicles drops from 89 to 55 (34 fewer vehicles,
38.2%). Therefore, although issue (2) reduces the number of clients and consequently the
revenue obtained, the investment on vehicles can also be reduced.

Besides, Figure 3.10 shows the scenario with 31 parking slots overcoming even the
one with 93 parking slots. That happens because solutions using 27 and 31 parking slots
are not affected by the one-way issue (2), since those parking slots are not from partners.
After applying issue (2) constraints on the partners’ parking slots, the difference between
the maximum number of served clients using 31 and 97 parking slots dropped from 80 to
only 14 clients. This relative difference dropped from 28.1% to only 6.4%.

Figure 3.11 shows how clients walking up to 500 meters can overcome issue (2)
on the partner stations. The maximum number of served clients increased from 219 to
278 (up 59 clients, 26.9%) and the number of required vehicles increased from 55 to 69
(up 14 vehicles, 25.5%). Differently from the scenarios shown in Figure 3.9, where the
clients walked and the parking slots were not subject to issue (2) constraints, the number
of served clients increased together with the number of needed vehicles. This indicates
that, as the clients are flexible to walk to other stations seeking for available vehicles and
parking slots, the drawbacks from issue (2) are reduced.

Figures 3.12 and 3.13 present the results of applying issue (2) constraints on all
parking slots. The performance of these scenarios with only original and additional park-
ing slots (27 and 31 slots respectively) were also impaired. However, Figures 3.12 and 3.13
show the greatest increase in the number of clients served due to the flexibility to walk.
The maximum number of served clients increased from 192 to 252 (an increase of 31.3%),
using only five more vehicles (a 12.12% increase). Nevertheless, those performance benefits
are only possible if a higher number of clients are flexible to walk to another station.
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Table 3.21 presents simulation results regarding walking distances, inclusion of
issue (2) constraints, maximum number of served clients, vehicles required, and clients
who walked to be served. Each line shows the percent increase in the maximum number of
served clients, and in the maximum number of needed vehicles if compared to the results
from the line above it. The percentage of served clients who had to walk is also shown.
The better the value, the greener the cell’s background color is.

In general, the greatest increase in percentages either of served clients or needed
vehicles happened on the scenarios with 500 or 750 meters of walking. The increasing
percentages of one-way served clients were higher than those obtained by Boyacı and
Zografos [2019], in which the cumulative increasing along the scenarios barely surpassed
25%. In this simulation, the increase of served clients by walking up to 500 meters instead
of 250 meters was up to 30.6% when considering all constraints. A possible reason for
the increase of percentages in this simulation being higher than the observed in Boyacı
and Zografos [2019] is due to different distances between the simulated stations, since the
stations in both works are not equally distanced between themselves.

The number of clients who had to walk to be served always increased as the walk-
ing distance increases. Therefore, the walking distance is certainly useful to replace or
strengthen the one-way relocation results for maximizing the number of served clients.
However, in real situations it is likely that requiring clients to walk lengthy distances
would decrease the demand. Furthermore, the benefits of client walking starts to saturate
for lengthier walking distances, depending on the distances among stations.

Table 3.22 presents the rate of the number of parking slots divided by the number
of needed vehicles, considering the demand of 500 clients per day. The greater the result,
the more parking slots are needed per vehicle and the cell’s background is illustrated
redder. Round-trip mode is not shown in Table 3.22 since their rates would always be 1.
That happens for round-trip because all vehicles must be returned to their starting station
after the rentals, and the starting station has available parking slots for their allocated
vehicles.

The highest rates occur on the scenarios where issue (2) constraints apply to all
stations, with the shortest (or nonexistent) walking distance, and using 49 and 53 parking
slots. On those scenarios, there are 22 partner stations with only one parking slot each,
making issue (2) even more restrictive. Table 3.22 also presents reddish cells near such
high rate scenarios, but their value diminish as they indicate scenarios with more parking
slots and vehicles in the same stations, and with clients flexible to walk further. Thus,
besides the walking distance, having more parking slots in the same station helps to reduce
the effects of issue (2). If not being able to include more parking slots in the same station,
the additional parking slots should be nearby other stations. By doing so, if a client could
not park the rented vehicle in the desired location, the client could easily find and park
it in another nearby parking slot, intensifying the sharing dynamics.
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Table 3.21: Maximum Clients Served, Vehicles and Walking Percentage

Scenario Max.
Clients

Raise
(%)

Max.
Vehicles

Raise
(%)

Walking
Clients (%)

round-trip no walking 228 - 97 - -

round-trip 250 meters 232 1.8 97 0 1

round-trip 500 meters 235 1.3 97 0 5

round-trip 750 meters 238 1.3 97 0 16

round-trip 1 km 248 4.2 97 0 32

one-way no walking
no constraints 285 - 89 - -

one-way 250 meters
no constraints 287 0.7 89 0 1

one-way 500 meters
no constraints 289 0.7 87 −2.2 5

one-way 750 meters
no constraints 326 12.8 87 0 24

one-way 1 km
no constraints 378 16 88 1.1 44

one-way no walking
cstr. on partners 219 - 55 - -

one-way 250 meters
cstr. on partners 230 5 62 12.7 3

one-way 500 meters
cstr. on partners 278 20.9 79 27.4 8

one-way 750 meters
cstr. on partners 309 11.2 74 −6.3 20

one-way 1 km
cstr. on partners 357 15.5 69 −6.8 35

one-way no walking
all constraints 192 - 46 - -

one-way 250 meters
all constraints 193 0.5 43 −6.5 3

one-way 500 meters
all constraints 252 30.6 51 18.6 4

one-way 750 meters
all constraints 292 15.9 68 33.3 20

one-way 1 km
all constraints 329 12.7 69 1.5 35

In a real environment, generic unexpected events as car crashes or unscheduled
vehicle maintenance can interfere on the vehicles availability. Besides, external events
such as traffic and rainfall can slow down the sharing dynamics, hampering the flow of
clients between stations. In these cases, increasing the number of vehicles and parking
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Table 3.22: Rates of One-Way Vehicles per Parking Slot

Parking Slots

Scenario 27 31 49 53 93 97

one-way no walking
no constraints 1 1 1.09 1.13 1.48 1.09

one-way 250 meters
no constraints 1 1 1.04 1.02 1.16 1.09

one-way 500 meters
no constraints 1.04 1.07 1.09 1.02 1.16 1.15

one-way 750 meters
no constraints 1 1 1 1.02 1.12 1.17

one-way 1 km
no constraints 1 1 1.02 1 1.13 1.10

one-way no walking
cstr. on partners 1 1 1.63 1.77 2.38 1.76

one-way 250 meters
cstr. on partners 1 1.03 1.75 1.67 1.79 1.56

one-way 500 meters
cstr. on partners 1.04 1.11 1.75 2.04 1.39 1.41

one-way 750 meters
cstr. on partners 1 1 1.20 1.13 1.39 1.31

one-way 1 km
cstr. on partners 1 1 1.09 1.08 1.37 1.23

one-way no walking
all constraints 2.08 1.94 3.77 3.53 2.33 2.11

one-way 250 meters
all constraints 1.69 2.07 3.50 3.31 2.33 2.26

one-way 500 meters
all constraints 1.17 1.30 3.50 3.12 1.98 1.90

one-way 750 meters
all constraints 1.17 1.30 1.48 1.47 1.50 1.42

one-way 1 km
all constraints 1.25 1.30 1.29 1.47 1.45 1.41

slots would help the carsharing service to be more resilient and reliable for its clients.
In summary, the insights obtained from section 3.1 to this section are:

• computational performance is essential to offer a scalable and optimized service;

• it is unlikely that all trips demand will be served due to the constrained number of
vehicles and parking slots;

• it is better to have multiple parking slots in the same station, than having multiple
stations but with fewer parking slots each.
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The next section presents the proposed general business model for a low-cost car-
sharing service in São Paulo after considering those insights.

3.4 Proposed Carsharing Business Models

Taking into consideration the insights obtained from analyzing carsharing company
profits for round-trip and one-way modalities, differences of computational performance
by changing the mathematical formulation to be solved, and benefits for the carsharing
dynamics when clients are flexible to be served in nearby stations, this section proposes
a general business model that aims to provide low-cost carsharing rentals and can be
simulated in an efficient computational time.

It is mentioned as a general business model because different service structures and
carsharing modes can be applied to it. This general business model is comprised by the
following rules:

• the carsharing company monthly rents, instead of buying, the required vehicles and
parking slots;

• clients are flexible to walk to get to available vehicles or parking spaces nearby;

• there is no staff performing vehicle relocations. The supply of vehicles is balanced
by the own demand of trips;

• scheduled trips selected to be served have lower rental prices.

The following subsection elaborates how the results from former sections produced
insights for this general carsharing business model.

3.4.1 Reasons for Proposing this General Business Model

As mentioned in section 1.3, the research questions of this work consist in compu-
tationally plan and simulate an one-way carsharing service so that:

1. a carsharing company is able to profit by offering the service;

2. there are algorithms able to solve big instances of planning and simulation for such
carsharing service;
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3. the service is low-cost.

The results obtained from section 3.1 indicate that it is possible to make prof-
its with a carsharing service in São Paulo. Also, the MILP models were solved quickly
for the evaluated instances. However, the experiments from section 3.1 are sustained
by the assumption that no vehicle relocation is needed between carsharing rentals. In-
deed, if vehicle relocations are included, operation costs will increase [Jorge et al., 2015;
Bruglieri et al., 2018] and it may remove the feature of being a low-cost service. Besides,
vehicle relocation operations turn the carsharing fleet-sizing problem into an NP-Hard
problem [Albinski, 2015].

Section 3.2 shows that a profitable carsharing service in São Paulo may be op-
timized in reasonable time if the MILP formulation generates a linear relaxation close
to the optimal integral solution. In this case, formulations with no Big-M stand out,
although they may require a higher number of constraints or variables. Thus, optimiza-
tion problems that can be solved in polynomial-time and do not require an exponential
number of variables represent an ideal way to plan and simulate such carsharing service.
However, since vehicle relocations will not be included, the business model must rely on
characteristics that enable the clients, by themselves, to take the most from the fleet, and
consequently avoiding idle vehicles.

Results from section 3.3 showed that it is possible to increase the number of served
clients by placing more vehicles in the same station instead of creating more stations
with fewer vehicles each. Together with clients being flexible to walk to get an available
vehicle, the carsharing service can mitigate the issues caused by the unbalanced supply
and demand for vehicles along the day and stations. Such business model is possible
because it does not have employees dedicated to relocating vehicles between stations. By
doing so, it is possible to avoid personnel costs and reduce the time complexity of the
problem being solved during the simulations.

Nevertheless, the business model depends either on a previous scheduling of its
clients or in a trustful demand of clients. In both of these scenarios, some interested
clients may not be served. This general business model is mainly based on scheduled
trips. By doing so, the company can organize its fleet before the service starts, making
the most from the available resources and trips demand. The following subsections explain
how this carsharing service was planned.
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3.4.2 Planning the location of stations

Carsharing rentals may have patterns that differ from the common trips made
using other transportation services. As analyzed in Ampudia-Renuncio et al. [2020], free-
floating rentals have patterns different than expected probably due to the necessity of
parking. Since the client is also his/her driver, and thus is responsible to park the vehicle
properly, areas with parking limitations may demotivate free-floating clients to use the
service. In fact, parking limitations can be a part of policies to hinder individual transport,
motivating people to use public transit [Lamour et al., 2019].

Although station-based clients do not suffer from this issue since stations provide
parking slots for their clients, it is not possible to ensure that there will be a station with
an available parking slot exactly at every client’s desired origin and destination. However,
it is possible to have stations positioned near the clients origin and destination points so
that clients can reach them by walking. This trade-off between location of stations and
the origin and destination of trips must be evaluated since carsharing clients may prefer
not to use the service if they have to walk for 10 minutes to be served [Hahn et al., 2020].

Two methods of positioning shared mobility stations (also applicable to the car-
sharing ones) are presented in Section 4.1 and Section 4.2. The objective of both methods
is to maximize the sum of utility values by placing stations along the city. In this proposed
business model, the utility value varies based on where each station is placed. Along all
the studied area, utility values are discretized by street segment, each one valuated as
the number of possible trips starting or finishing nearby that street segment. By doing
so, places that concentrate more possible clients are provided with stations. After defin-
ing the station locations according with this expected demand of clients, the number of
parking slots to be placed in each station is defined by another optimization method.

This whole procedure is split into two stages because if the selection of clients and
prices are made together with the definition of location for stations, it is possible that
some stations keep having their location changed even if they already have a stable and
profitable set of clients. In this case, these unnecessary changes may either bother the
clients or delay the flow of vehicles between clients if they are not used to the driving right-
of-way of the new location where the vehicle should be delivered. Indeed, the convenience
of use is pointed by Violin [2021] as a clients’ motivator for using vehicle sharing services
on demand in Brazil and abroad.

The stage regarding the clients and prices selection is explained in the following
subsection.
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3.4.3 Selecting clients and prices

This proposed general business model aims to offer carsharing services at the lowest
possible price. Therefore, it must reduce operational costs as much as possible. Provided
that carsharing prices are expected to be cheaper than ridesourcing services [Schwieterman
and Bieszczat, 2017; Benetti, 2019], rental prices should also be limited to the prices
charged by TNC companies. A way to achieve that is not to perform vehicle relocation
operations, avoiding the associated costs. This is possible if the carsharing company selects
in advance which demands will be served given the rental prices defined by the carsharing
company itself. Therefore, the served clients will only be the ones whose trips’ origin and
destination match among themselves, ensuring a low-cost service to these drivers.

To do so, interested drivers must inform their commuting demands to the carshar-
ing company and, according with the matching demands from other drivers, the company
decides which demands will be served. Figure 3.14 illustrates this demand selection.
Figure 3.14 (a) shows drivers who applied for using the carsharing service. Every arc rep-
resents a trip demand, going from its origin place to its destination. Figure 3.14 (b) shows
in green the trip demands that were selected by the carsharing service. The selection fo-
cused in maximizing the profits of the carsharing company, considering the associated
costs and reasonable prices that clients would allow to pay. Therefore, trips to or from
low-demand places probably will not be selected, as represented by the trip demand (with
a gray arc) going to the building r at the bottom of Figure 3.14 (b).
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(b) Demands selected to be served

Figure 3.14: Illustration of the trips selection

The selected trips will start and finish exactly at carsharing stations, represented
by location markers +, or near these stations. These stations are placed near the origin
and destination of trip demands and assume that drivers will be flexible to walk to it to
get a car, or walk from it to reach their destination. The walking routes are expressed
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by the blue edges in Figure 3.14 (b). By grouping trips origin or destination to a nearby
station, cars are able to be more reused than if they were spread along the area and
sometimes too far from some interested clients. By doing so, the number of idle cars is
diminished and costs are reduced.

After the selection, drivers with selected trips will be able to define a contract with
the carsharing company assuring that their predefined and selected trip demands will be
served. In this general business model, it is assumed that all interested clients are aiming
to use carsharing in a weekly routine. Although this assumption does not fit the car-
sharing clients’ profile observed by Hahn et al. [2020], such clients may emerge if stations
with available vehicles are near their usual trips origin and destination, and carsharing
prices are attractive and fixed. These assumptions corroborate with the Brazilian people’s
motivators for using vehicle sharing services on demand [Violin, 2021].

Since the demand is well known, the carsharing company does not need to have
spare vehicles because no sudden increases in demand are expected. Changes in demand
will usually happen when clients change their weekly routines, such as by start working
in a different place, or by finishing an academic period. The seasonal patterns, such
as academic periods, may justify the carsharing company in not owning the vehicles,
since the demand probably will not keep at the same level throughout the whole year.
Therefore, in this proposed general business model, the carsharing company may rent its
vehicles from a long-term car rental agency instead of owning them and hiring staff to do
their maintenance. By doing so, the carsharing company can focus on serving as many
drivers as possible, delegating these operational tasks to third-party companies.

Provided that vehicle relocation operations will not be performed, the served trip
demands must also ensure that the number of vehicles in each station at the end of the
week will be equal to the number of vehicles which started the week at that station.
However, imbalances in the fleet along the day and inside the same week may happen
since rentals must not finish at the same station where they have started. Also, even with
trips being scheduled, eventual fleet imbalances may happen and disrupt the expected flow
of vehicles. This may be caused by unforeseen situations such as flat tire, car crashes,
selected clients not been able to drive at that day, or simply vehicles arriving late in the
destination station due to traffic jams. In these cases, the company may offer on-demand
carsharing with allowed destinations to relocate vehicles and rebalance the fleet again
along the stations.

This proposed general carsharing business model may work in different versions.
The following subsection defines the three versions of this general business model that are
compared in this work.
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3.4.4 Evaluated Business Models

This work simulates the performance of three business models:

1. Scheduled Free-Floating;

2. Mixed Free-Floating;

3. Mixed Partial-Floating.

On the Scheduled Free-Floating business model, clients previously inform all their
routine commuting demands to the carsharing company, and the carsharing company
selects which demands will be served. In this work, the carsharing company monthly
rents one parking slot per vehicle. Although these free-floating vehicles may be parked
in public spaces within the working area, this decision of renting some parking slots was
made for reducing the dependence on public parking spaces; and reducing the risks of
thefts, vandalism, hail and flood that may damage vehicles parked outdoors.

The Mixed Free-Floating business model differs from the Scheduled Free-Floating
by also serving trips not previously scheduled. However, the carsharing company also
selects which of the on-demand trips will be served, based on the idle resources from the
selected scheduled clients. By doing so, it is possible to avoid new supply and demand
imbalances along the fleet and even fix fleet imbalances caused by unexpected issues such
as flat tire and traffic jams delaying the flow of vehicles.

And finally, the Mixed Partial-Floating business model is similar to the Mixed
Free-Floating but it will work in the modality named as “partial-floating” by Repoux
et al. [2014]. In practical terms, it is the same modality as the scenario of one-way
without issue (2) constraints discussed in Section 3.3. Thus, vehicles can be delivered in a
station different than the one at the start of the rental, and vehicles can be parked outside
the station but close to it if at that time the station has no more available parking slots.

Section 4.3 presents an LP formulation to select the best subset of clients that
maximizes the company’s profits. This formulation considers the stations positioned as
in subsection 3.4.2, contemplating all rules of the business models suggested in this sub-
section, and also assessing the flexibility of clients to walk to nearby stations to get to a
vehicle or to find an available parking space.

The next chapter formalizes the evaluated problems, discuss their computational
time complexities, and presents their proposed mathematical formulations.
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Chapter 4

Computational Complexity and MILP
Formulations

This chapter discusses the computational complexity of the proposed problems and presents
MILP formulations to solve them. The following section defines the Spacing Shared Mo-
bility Stations problem, proves its NP-Completeness and presents a MILP formulation
to solve it. Section 4.2 defines the Stations Allocation in Street Segments problem and
presents a formulation to solve it. Section 4.3 presents a polynomial-time formulation
to simulate the carsharing system performance. Section 4.4 describes the shortest path
algorithm used to calculate the shortest distances in the network of pedestrian ways.

4.1 Spacing Shared Mobility Stations

The Spacing Shared Mobility Stations (SSMS) problem aims to maximize the total
utility obtained by placing shared mobility stations along a network of pedestrian ways,
considering that all stations must be spaced by a minimum distance threshold between
themselves. These stations can be any facility of a shared mobility service, such as carshar-
ing stations, chargers for electric vehicles or racks for bike sharing, which are important
for the service but it is impracticable to spread them throughout all the streets. Solving
the SSMS helps companies to offer their shared mobility services along all the studied
area without needing to invest in more facilities than necessary. The SSMS is defined as
follows.

Problem 4.1.1. Given a network of pedestrian ways G (non-directed graph) composed by
a set V (vertices) of street intersections, a set E (edges) of street segments which can have
different lengths, and different utility value yielded per street segments and intersections
by placing stations on them, what is the maximum total utility that can be obtained by
placing stations along the streets (edges) or over the intersections (vertices) so that each
station keep spaced of, at least, a distance D from the others?
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SSMS is based on the following assumptions:

• The utility values yielded per station placed are constants;

• The distance between two street segments or street intersections are constants, cal-
culated as the shortest path distance between their street intersections. In this
shortest path calculation, the weight of each street segment is its length.

A decision version for this problem used hereafter is similar to the definition of
Problem 4.1.1, changing only the question to “is it possible to obtain a total utility of
at least k′ by placing stations in the graph G and spacing them by at least D meters? ”.
Theorem 4.1.1 and the following subsections shows the NP-Completeness of this problem.

Theorem 4.1.1. The decision version of Spacing Shared Mobility Stations (SSMS) is
NP-Complete.

In order to prove that the decision version of SSMS is NP-Complete, one must show
that the problem belongs to NP and is NP-Hard. The following subsection demonstrates
that this problem belongs to NP and the subsection 4.1.2 proves its NP-Hardness.

4.1.1 The Decision Version of SSMS Belongs to NP

A problem belongs to NP if it is possible to verify in polynomial-time a certificate of
an “YES” answer for a decision version of this problem [Garey and Johnson, 1979; Cormen
et al., 2009]. Considering a certificate composed by the network of pedestrian ways being
a graph G (built with the street segments as edges e ∈ E and the street intersections as
vertices v ∈ V) with all placed station s ∈ S attached to G in its respective locations on
the network of pedestrian ways, the utility earned by each placed station, the minimum
total number of stations k′, and a distance threshold for spacing D, an algorithm for
verifying an answer in polynomial-time can be:

1. check if the total utility is at least k′. If the total utility is fewer than k′, the
certificate must be verified as “NO”. However, if the total utility is at least k′, run
the step two as follows.

2. run a shortest path algorithm starting from every station in |S|. If another station is
found at a distance shorter than D meters, the certificate must be verified as “NO”.
However, if no station is found at a distance shorter than D meters from any other
station, the certificate must be verified as “YES”.
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Considering the Dijkstra’s algorithm with Fibonacci heap to calculate the shortest
paths [Cormen et al., 2009], the complexity time for each station run is O(|V|log|V|+
|E|). Therefore, the complexity time for this whole procedure is O(|S|(|V|log|V| +
|E|)).

The total time complexity of checking the certificate, after running these two steps,
is O(|S|+ |S|(|V|log|V|+ |E|)) = O(|S||V|log|V|+ |S||E|). Therefore, the final time com-
plexity order is polynomial and the problem belongs to NP. The following subsection
proves that this problem is NP-Hard, and consequently, shows that the decision version
of SSMS is NP-Complete.

4.1.2 The Decision Version of SSMS Is NP-Complete

A problem Π is NP-Hard if there is a transformation in polynomial-time which
converts an instance of an already known NP-Hard problem into an instance of Π. An
instance I1 of a decision problem Π1 is converted to an instance I2 of another decision
problem Π2 if their answers are the same. In other words, it is converted if the answer
of any I1 for Π1 is “YES” if and only if the answer of I2 for Π2 is also “YES” [Garey and
Johnson, 1979; Cormen et al., 2009].

A transformation in polynomial-time of instances from the Maximum Independent
Set problem is proposed in this work to prove that the decision version of the problem
SSMS is NP-Hard. The Maximum Independent Set (MIS) problem consists in finding
the maximum subset M of vertices from a graph so that there is no edge connecting any
pair of vertices contained in M [Garey and Johnson, 1979; Cormen et al., 2009; Fleischner
et al., 2010]. Given a positive integer threshold k, a decision version for the MIS problem
can be: is it possible to find an independent set with size |M| ≥ k?

A polynomial-time transformation from a MIS instance I1 into a SSMS instance
I2 consists in:

1. creating for I2 a graph G′ with (initially) the same structure of vertices and edges
as the graph G from I1. The set of vertices and edges of G′ will be represented
by V′ and E′, respectively. All edges in E′ will have length equal to one, the same
for the utility value of all vertices and edges. This procedure can be performed in
O(|V|+ |E|) time and does not cause loss of generality for the MIS problem, since
it does not consider length or utility value on edges.

2. including a gadget (subset of edges and vertices useful to the proof) at the middle
of every edge in E′. These gadgets are comprised by one red vertex connected to
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two new paths of two other vertices each, as represented by Figure 4.1. All the red
edges included will also have weight and utility value equal to one. This procedure
can be performed in O(|E|) time.

Figure 4.1: Polynomial Transformation of graph G for MIS into G′ for SSMS

3. creating the threshold for total utility k′ ← k + 2|E| and setting the minimum
distance between stations D ← 3. This procedure can be performed in O(1) time,
considering that the number of edges |E| is known beforehand.

This transformation can be performed in O(|V| + |E| + |E| + 1) time, which has
polynomial complexity of time O(|V|+ |E|). Provided that all I2 generated instances will
have edges length and utility value equal to one, the I2 instances represent a more specific
problem of SSMS in which all edges have the same length and utility value. Together
with the parameters k′ and D, every instance I2 for SSMS will yield the same answer as
the instance I1 for MIS.

The following equations and lemma formalize the MIS and SSMS spacing con-
straints before proving that SSMS is NP-Hard. Table 4.1 and Table 4.2 define, respec-
tively, the sets and values used in this proof of NP-Hardness.

Table 4.1: Sets used in the SSMS NP-Hardness proof

Element Description
u, v ∈M ⊂ V Vertices u and v belonging to the independent set M
s, a, b ∈ S Stations s, a and b placed along an edge or at a vertex

Table 4.2: Values used in the SSMS NP-Hardness proof

Constant Description
D Minimum distance allowed between stations
k Minimum threshold for yielding “YES” in the MIS problem
k′ Minimum threshold for yielding “YES” in the SSMS problem

δ(u, v) Shortest distance between vertices u and v
δ(a, b) Shortest distance between stations a and b
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In a connected unweighted graph G, the shortest path between any two vertices u
and v belonging the independent set M must have distance greater than or equal to two.
This happens because if the shortest distance between a pair of different vertices u and
v were shorter than two, u and v would be adjacent, and thus, would not belong to the
same independent set. The following relation presents this independent set constraint,
using δ(u, v) to indicate the shortest path distance between vertices u and v.

∄ δ(u, v) < 2 ∀u, v ∈M ⊂ V | u ̸= v (4.1)

Similarly, a formal definition for the spacing constraint of SSMS is presented by
Equation 4.2, where δ(a, b) is the shortest path distance between the stations a and b,
and D is the distance threshold. Since every station must be spaced by at least distance
D = 3 from the others, and all edges on I2 instances have length equal to one, the closest
any pair of stations can be from each other is three edges distant.

∄ δ(a, b) < D ∀a, b ∈ S | a ̸= b,D = 3 (4.2)

An optimal solution for I2 instances of SSMS will not have a station on any edge
originated from I1 instance (black edges). Figure 4.2 illustrates this pattern with a non-
optimal solution where a single station (green square) on Figure 4.2 (a) have already
fulfilled all available length from the graph fragment due to the parameter D = 3, not
allowing additional stations on that graph fragment. However, the Figure 4.2 (b) presents
an optimal solution for the same graph fragment by placing a station on a black vertex
(original from an I2 instance) and, consequently, having enough space to include two more
stations on the pendant red vertices.

......

(a) Non-optimal solution with no remaining
space for additional stations

......

(b) Optimal solution with no remaining
space for additional stations

Figure 4.2: Pattern of optimal solutions for I2 instances of SSMS

Given the gadgets in I2, no optimal solution for SSMS will place any station along
black edges. This happens because moving a station s from along a black edge to a black
vertex will enable the allocation of two additional stations on any gadget, as shown in
Figure 4.2. Since the utility value obtained for placing stations in any vertex or edge of
I2 is the same, these two additional stations will provide greater total utility value than
allocating s anywhere along a black edge. This pattern will be present in all optimal
solutions for the I2 instances of SSMS, assuring that no station will be placed on black
edges. Figure 4.3 (b) illustrates it by presenting an optimal solution for the graph G′

previously shown in Figure 4.1.
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(a) Optimal solution for G with k = 3
stations

(b) Optimal solution for G′ with
k′ = k + 2|E|

Figure 4.3: Optimal solution for the G and G′ example

Regardless of the instance, every gadget will have two stations. Provided that
the gadgets have stations on their pendant vertices, the red vertices connected to the
black ones are not spaced enough to have an additional station. Since the polynomial
transformation places gadgets at the middle of every black edge from I1, the shortest
distance between any pair of black vertices on I2 is an even number: one hop to reach
the red vertex from a gadget and an additional hop to reach other black vertex, always
performing sequences of two hops between black vertices. The following assertion clarifies
the pattern of distance between stations on black vertices.

Assertion 4.1.1. Every pair of black vertices with stations are spaced by a distance of
four or greater even number.

The proof that SSMS is NP-Hard consists in showing that every transformed in-
stance I2 for SSMS will yield the same answer of an original instance I1 for MIS. This can
be proved by showing that for all instance I1 whose decision version of the MIS problem
yields “YES”, a transformed instance I2 for a decision version of SSMS will also yield
“YES”; and also showing the inverse: for every instance I2 for SSMS yielding “YES”, its
original instance I1 for MIS will also yield “YES”. The proof is shown as follows.

Proof. Suppose, for the sake of contradiction, that the MIS instance I1 would yield an
answer “YES” while its transformed SSMS instance I2 would yield an answer “NO”. This
would mean that MIS could arrange a set M from G with at least k vertices while SSMS
could not place at least k′ = k+2|E| stations on G′. That is false because the polynomial
transformation doubled the shortest distance between two black vertices by including the
gadgets at the middle of every black edge. Therefore, all equivalent vertices of M in V′

are at least four edges spaced from each other.
Provided that three edges of distance between every station is enough, as presented

by Equation 4.2, the graph G′ will have at least as many stations on black vertices as
the entire M has of vertices. Furthermore, every gadget in G′ will yield two stations



4.1. Spacing Shared Mobility Stations 79

regardless of which black vertices also have stations. Since there is one gadget in G′ for
every edge from G, and there will be at least k stations on black vertices from G′, if an
I1 instance can arrange a set M with at least k vertices, every instance I2 will place at
least k′ = k + 2|E| stations. Therefore, if an I1 instance for MIS yield an answer “YES”,
its transformed I2 instance for SSMS will also yield an answer “YES”.

Now suppose, for the sake of contradiction, that the SSMS instance I2 would yield
an answer “YES” while the MIS instance I1 would yield an answer “NO”. This would mean
that SSMS could place at least k′ = k + 2|E| stations on G′ while MIS could not arrange
a set M from G with at least k vertices. This is false because as stated by Assertion 4.1.1,
the black vertices with stations are spaced from each other by a distance of four or greater
even number. Since the black vertices from I2 are equivalent to the vertices from I1 spaced
by the double of the distance (due to the gadgets included), and a distance equal to two
between vertices in M is enough (as defined by Equation 4.1), the number of vertices in
M will be at least as much as the number of black vertices with a station in G′.

Now considering the two stations placed in every gadget of G′, if I2 can place
k′ = k + 2|E| stations, I1 will arrange a set M with k vertices, as shown by the example
in Figure 4.3. Therefore, if an instance I2 for SSMS yield an answer “YES”, its original
instance I1 for MIS will also yield an answer “YES”. ■

Since the decision version of the SSMS problem is in NP and is NP-Hard, the
decision version of the SSMS problem is NP-Complete. Consequently, the optimization
version of the SSMS problem is NP-Hard. Given the NP-Hardness of the MIS problem,
this proof still holds even for simple SSMS instances when:

• the utility value got per station placed is the same for all the network of pedestrian
ways (edges and vertices);

• street segments have the same length;

• the graph obtained by the network of pedestrian ways is planar with maximum
degree equal to four [Fleischner et al., 2010].

Therefore, this proof is applicable to the majority of networks of pedestrian ways,
including the assessed Metropolitan Region of São Paulo. Besides, it applies to any other
optimization problem that consists in selecting places along edges of a graph, having a
minimum space between these places. The next section proposes a MILP formulation to
solve the SSMS problem.
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4.1.3 MILP Formulation

This formulation considers the following assumptions:

1. the network of pedestrian ways is expressed as a non-directed graph;

2. every edge length is shorter than the maximum allowed spacing distance between
stations;

3. every edge has some information distinguishing which of its connected vertices is at
the start and which vertex is at the end of the edge;

4. placing a station in a vertex yields the greatest utility value among its adjacent
edges.

Although these assumptions may not be promptly satisfied by a graph representing
a road network, the four assumptions can be easily implemented in the graph by removing
specific directions of edges, splitting long edges, arbitrarily defining in which vertices
the edge starts and ends, and creating artificial edges to hold a different vertex utility
value. The first assumption is needed because SSMS focuses in the distance walked by
pedestrians, which are not restricted to walk in only one direction along the sidewalks.
The second assumption assures that there will be at maximum one station per edge. The
third assumption simplifies the position calculation of the placed stations. And the fourth
assumption simplifies the formulation to avoid dealing with stations on vertices.

Table 4.3 defines the sets used to deal with edges in the MILP formulation, Ta-
ble 4.4 presents the indices used to identify variables, Table 4.5 presents the variables,
and Table 4.6 presents the model parameters of the formulation.

Table 4.3: Sets of the SSMS MILP Formulation

Set Description
Ae ⊆ E Edges entirely within distance D/2 from edge e
Ωe ⊂ E Edges that do not belong to Ae, but are within distance D from edge e

Table 4.4: Indices of the SSMS MILP Formulation

Index Description
e1, e2 ∈ V Vertices of the network. Edge e begins at e1 and ends at e2

e = 1, 2, 3, ...,m Edge identifier. The same pair of vertices e1, e2 may have multiple edges

Figure 4.4 illustrates the formulation’s symbols. Figure 4.4 (a) clarifies the differ-
ence between the sets Ae and Ωe. Edge e is at the graph’s bottom, represented in green.
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Table 4.5: Variables of the SSMS MILP Formulation

Variable Description
xe Boolean variable indicating if edge e have one station along it
pe Continuous variable with the station’s position (if it exists) in edge e

Table 4.6: Values of the SSMS MILP Formulation

Model Parameter Description
ue Utility value obtained by placing a station in edge e
Le Length of edge e

δ(i, u) Shortest distance between vertices i and u
D Minimum distance allowed between stations

Regardless of where a station is placed in e, the edges in red will not be able to have
another station due to the minimum distance threshold of D = 4. Therefore, if e has a
station, edges f and h, must not have another one because they belong to Ae. In this
case, edges e, f and h are so close to each other that it is not even needed to check the pe,
pf and ph values to discover that these edges together may have at maximum one station.

A threshold D/2 is used as distance to assure that even edges in the opposite
direction from e, but also in Ae, are nearby each other. An edge is in Ae if its entire
length is distanced by at most D/2 from the entire length of e. In this case, any two
edges in Ae reach each other by distance smaller than or equal to D by passing through e

(a path with maximum distance D/2+D/2). Therefore, if one edge in Ae has one station,
neither e nor other edge in Ae may have another station because they are nearby each
other.

e

l

j ∈ Ωe

k ∈ Ωe
h ∈ Aef ∈ Ae

i ∈ Ωeg ∈ Ωe

(a) D = 4
Ae = {f, h}

Ωe = {g, i, j, k}

k

j

ig

e

l
hf

(b) D = 1.53
xf = xh = xk = 0

xe = xg = xj = xi = xl = 1

j

ig

e

hf
k

l

(c) D = 1.53
pe = 0.5, pi = 0.72

pg = 0.81, pj = 1, pl = 0

Figure 4.4: Illustration of SSMS sets, variables and model parameters

Every edge in all three graphs have length equal to one. Figure (a) distinguishes edges in Ae and Ωe by
colors red and yellow, respectively. Figure (b) shows the binary variables of each edge indicating whether
it has or not a station on it. And Figure (c) illustrates each station position’s value, ranging from zero
to one. The bluish part of the edge is its start, and the reddish part is where the edge ends.

However, edges g, i, j and k, represented in yellow at Figure 4.4 (a), are not that
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close to e and the decision of placing more than one station on them may require analysing
their position values pe, pg, pi, pj and pk. Since edges g, i, j k do not belong to Ae and
they are within distance D from e, they belong to Ωe. Nevertheless, edge l is far enough
from edge e, not being affected by any station that could be placed in e. Thus, edge l is
neither in Ae nor in Ωe.

The Ae set is useful for reducing the number of constraints and simplifying them
in the MILP formulation. Preventing e and all edges in Ae to have together more than
one station can be expressed using only one linear constraint, and without needing to
apply a Big–M . Therefore, using constraints based on Ae will probaly make this MILP
formulation lighter and faster to be solved than dealing with the exact position of any
possible station nearby edge e, as it is needed to be made for edges in Ωe.

Figure 4.4 (b) and Figure 4.4 (c) illustrate, respectively, variables x and p in an
optimal solution considering D = 1.53. The binary variables x have value equal to 1 if
there is a station in that edge, otherwise the variables will have value equal to 0. The
variables p have the station position along the edge. The position is actually the distance
between start of the edge and the station location. Figure 4.4 (c) represents the start of
the edge as blue and the end of the edge as red. Since the edges on this figure have length
equal to 1, the station at the middle of edge e has set pe to 0.5, the stations at almost the
end of the edges i and g have positions respectively of 0.72 and 0.81, the station at the
extreme end of edge j made the pj have value equal to 1, and the station at the extreme
beginning of edge l made pl have value equal to 0.

The distance between stations can be calculated using the positions p and the in-
formation of which vertex an edge starts or ends at. If the shortest path from a station
to another one includes the segment between the start of the edge and the station loca-
tion, that edge segment length is equal to edge’s p. Taking as example the stations in
Figure 4.4 (c), the shortest distance from the station in edge g to the station in edge i

can be calculated by simply summing pg + pi = 0.81 + 0.72 = 1.53. The same happens
for calculating the shortest distance between any pair of stations in the edges g, j and i.

However, if the shortest path from a station to another one includes the segment
between the station location and the edge end, that edge segment length is equal to the
total edge’s length minus the edge’s p. The reason of this subtraction is not to consider
the segment between the start of the edge up to the station, represented as the bluish
part of the edge, which is not present in this shortest distance. As an example also
from Figure 4.4 (c), the shortest distance from edge i to edge e can be calculated by
(Li − pi) + Lh + pe = (1− 0.72) + 1 + 0.5 = 1.78, where (Li − pi) is the length of edge i

minus the start segment of edge i. The other terms Lh+pe are the next steps of the path,
composed by the whole length of edge h plus the beginning of edge e up to its station.

This rationale of distance calculation is used in the proposed SSMS MILP for-
mulation. This formulation is presented by Equations 4.3 to 4.10. Equation 4.3 defines
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the objective function of maximizing the total utility obtained by placing the stations.
Inequality 4.4 assures that at most one station can be placed in either edge e or in any
edge in Ae. Inequalities 4.5 to 4.8 assure the spacing between edges in Ωe. Inequality 4.9
and Equation 4.10 define, respectively, the domains for pe and xe.

arg max
xe

m∑
e=1

uexe (4.3)

Subject to:

xe +
m∑

f=1

xf ≤ 1 ∀e ∈ E | f ∈ Ae (4.4)

pe + δ(e1, f1) + pf ≥ D −D(2− xe − xf )

∀e ∈ E,∀f ∈ E | f ∈ Ωe ∧ e > f
(4.5)

(Le − pe) + δ(e2, f1) + pf ≥ D −D(2− xe − xf )

∀e ∈ E,∀f ∈ E | f ∈ Ωe ∧ e > f
(4.6)

pe + δ(e1, f2) + (Lf − pf ) ≥ D −D(2− xe − xf )

∀e ∈ E,∀f ∈ E | f ∈ Ωe ∧ e > f
(4.7)

(Le − pe) + δ(e2, f2) + (Lf − pf ) ≥ D −D(2− xe − xf )

∀e ∈ E,∀f ∈ E | f ∈ Ωe ∧ e > f
(4.8)

0 ≤ pe ≤ Le ∀e ∈ E (4.9)

xe ∈ {0, 1} ∀e ∈ E (4.10)

Inequalities from 4.5 to 4.8 mean that the distance between the position of a station
in edge e and the position of another station in edge f must not be shorter than D, if
such stations exist. Constraints from Inequality 4.5 are regarding pairs of edges whose
shortest path includes the segment between the station and the start of the edges e and
f , being calculated using directly its pe and pf values. Therefore, the left-hand side of
Inequality 4.5, composed by the expression pe + δ(e1, f1) + pf , represents the distance
inside edge e from its station, plus the shortest distance between vertices e1 and f1, plus
the distance inside edge f up to its station. Inequalities 4.6, 4.7 and 4.8 calculate the
same, but for situations where the shortest distance includes the edge segment between
the station and end of the edge, indicated by (Le − pe) and (Lf − pf ). Since the network
of pedestrian ways is a non-directed graph, the shortest distance from e to f is the same
as from f to e. Therefore, there is no reason to repeat the same constraint inverting edges
e and f . The e > f condition in the constraints’ domain from Inequality 4.5 to 4.8 avoids
this repetition.

The Big–M method was used to relax the right-hand side of the constraints from
Inequality 4.5 to Inequality 4.8 if the edge has no station on it. In this case, the Big–M
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method consisted in subtracting the D threshold if edges e or f do not have a station
on them. By doing so, if at least one edge of these do not have a station, the constraint
will not bring any effects to the optimization. However, if both edges e and f have a
station, the right-hand side will not be relaxed because it will be subtracted by zero:
D −D(2− xe − xf ) → D −D(2− 1− 1) = D −D × (0) = D.

The following section presents the Stations Allocation in Streets Segments problem,
proves it to be NP-Complete and proposes a MILP formulation to solve it.

4.2 Stations Allocation in Street Segments

The Stations Allocation in Street Segments (SASS) problem also aims to maxi-
mize the total utility got by selecting where stations should be allocated in a network of
pedestrian ways. However, although SSMS defines the exact locations to place stations,
SASS defines which street segments should have a station.

The main drawback of using SASS instead of SSMS is the lower precision on the
stations’ location. Provided that this problem only selects street segments, the location
precision to allocate stations becomes highly influenced by the street segments length,
which vary and can be long. However, this issue may not be severe in urban populated
areas, since city blocks usually are not longer than a maximum distance pedestrians are
flexible to walk. Besides, long street segments can be split in two or more smaller segments,
mitigating this lower precision issue.

Nevertheless, it is expected that in a real-world scenario many locations suggested
by an optimal solution for SSMS will not end up being used as stations. Provided that not
all addresses in the assessed city might be available for renting or buying, shared mobility
companies may be forced to use sub-optimal locations by choosing nearby available ad-
dresses to become stations. Therefore, the endeavor invested in solving the SSMS problem
may not worth it since there is a faster MILP formulation that reasonably approaches the
same real-world task.

Similarly to SSMS, SASS decides where to allocate stations without placing them
near each other. The SASS problem is defined as follows.

Problem 4.2.1. Given a network of pedestrian ways G (non-directed graph) composed
by a set V (vertices) of street intersections, and a set E (edges) of street segments which
can have different lengths and yield different utility value by allocating stations on them,
what is the maximum total utility that can be obtained by allocating at most one station
per street segment so that all supplied street segments keep spaced of, at least, a distance
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D from the others?

SASS is based on the following assumptions:

• The utility values yielded per station placed are constants;

• The distance between two street segments are constants calculated as the shortest
path distance between their street intersections. In this shortest path calculation,
the weight of each street segment is its length.

In order to simplify the descriptions, hereafter in this work two street segments
are described as edges nearby or edges nearby each other if the shortest distance between
their vertices is lower than or equal to D. Similarly, if a street segment e can be reached
within distance D from a street intersection v, it will be described as an edge e being
nearby a vertex v.

Considering the instance of Figure 4.5 and D = 2, the only pair of edges that are
not nearby each other are the edge connected to the pendant vertex, and the edge at
the bottom of the graph. Therefore, the only optimal solution for SASS on this instance
consists in placing one station in both of these edges. In comparison with the optimal
solution for the SSMS problem, as shown by Figure 4.5 (a) using the same input (graph
G and D = 2), the SASS problem obtained one station less. This happens because SASS
is more restrictive than SSMS, neither allowing stations on vertices nor considering the
distance inside the supplied edges while calculating the spaced distance. This rationale
leads to the following assertion.

(a) Optimal solution for SSMS (b) Optimal solution for SASS

Figure 4.5: Optimal solutions with parameter D = 2

Assertion 4.2.1. The objective function value from an optimal solution for SASS is a
lower bound for the objective function value from an optimal solution for SSMS, when
considered the same instance for both problems.

Assertion 4.2.1 is important for a company interested in solving the SASS problem
since it can be assured that no investment would be wasted by allocating more stations
than needed. Companies can also solve the SASS problem after splitting lengthy edges
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into smaller ones, reducing the effect of parameter D on the optimal solution. However,
the more edges are split, the larger the graph becomes. Thus, holding the graph in memory
and solving this new SASS instance will demand more computational efforts than solving
the original SASS instance.

Although SASS is simpler than SSMS, a decision version of SASS is also NP-
Complete. The decision version for SASS used hereafter is similar to the definition of
Problem 4.2.1, changing only the question to “is it possible to obtain a total utility of
at least k′ by selecting edges to have one station each, and only selecting edges spaced
by at least distance D from each other? ”. Theorem 4.2.1 and the following subsections
demonstrates the NP-Completeness of this problem.

Theorem 4.2.1. The decision version of Stations Allocation in Street Segments (SASS)
is NP-Complete.

As made for SSMS in section 4.1, proving that a decision version of SASS is NP-
Complete consists in showing that it belongs to NP and is NP-Hard. The following
subsection demonstrates that this problem belongs to NP and the subsection 4.2.2 proves
its NP-Hardness.

4.2.1 The Decision Version of SASS Belongs to NP

It is possible to verify in polynomial-time an answer for this decision version
of SASS similarly to the algorithm proposed for SSMS. The total time complexity of
checking the certificate, after running those two steps, is O(|S| + |S|(|V|log|V| + |E|)) =
O(|S||V|log|V|+ |S||E|). Therefore, the final time complexity order is polynomial and the
problem belongs to NP. The following subsection proves that this problem is NP-Hard,
and consequently, shows that a decision version of SASS is NP-Complete.

4.2.2 The Decision Version of SASS Is NP-Complete

A transformation in polynomial-time of instances from the Maximum Induced
Matching problem is proposed in this work to prove that a decision version of SASS
is NP-Hard. The Maximum Induced Matching (MIM) problem consists in finding the
maximum subset M of edges from a graph G so that:
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• no edges in M share any vertex (it is a matching);

• and no edges in M are connected by any other edge in G (so all vertices from edges
in M are at least two hops distant).

By doing so, every pair of vertices in M is already connected to their edges from
G. Thus, it forms an induced subgraph of G [Cameron, 1989; Ko and Shepherd, 2003].
Given a positive integer threshold k, a decision version for the MIM problem can be: is
it possible to find an induced matching with size |M| ≥ k?

A polynomial-time transformation from a MIM instance I1 into a SASS instance
I2 consists in:

1. creating for I2 a graph G′ with the same structure of vertices V and edges E as the
graph G from I1. The set of vertices and edges of G′ will be represented by V′ and
E′, respectively. Every edge in E′ will have length and utility value equal to one.
This procedure can be performed in O(|V|+ |E|) time and does not cause loss of
generality for the MIM problem, since it does not consider length or utility value
on edges.

2. setting the parameter D ← 2. This procedure can be performed in O(1) time.

This transformation can be performed in O(|V|+|E|+1) time, which has polynomial
complexity of time O(|V|+ |E|). Together with the parameters k′ and D, every instance
I2 for SASS will yield the same answer as the instance I1 for MIM. Table 4.7 presents the
values used in this NP-Hardness proof.

Table 4.7: Values used in the SASS NP-Hardness proof

Constant Description
D Minimum distance allowed between edges with stations
k Minimum threshold for yielding “YES” in the MIM problem
k′ Minimum threshold for yielding “YES” in the SASS problem

As made for SSMS, the proof that SASS is NP-Hard consists in showing that for
all instance I1 whose decision version of the MIM problem yields “YES”, a transformed
instance I2 for a decision version of SASS will also yield “YES”; and also showing the
inverse: for every instance I2 for SASS yielding “YES”, its original instance I1 for MIM
will also yield “YES”. The proof that SASS is NP-Hard is shorter and simpler than the
SSMS’s proof and is shown as follows.

Proof. Suppose, for the sake of contradiction, that the MIM instance I1 would yield an
answer “YES” while its transformed SASS instance I2 would yield an answer “NO”. This
would mean that MIM could arrange a set M from G with at least k edges while SASS
could not select at least k′ edges for having stations on G′. That is false because every
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two edges in the induced matching M are neither incident nor share any incident edge
in G, thus, all edges in M are at least two hops distant from each other in G. Since the
polynomial transformation set every edge length to one and D = 2, the SASS instance I2

is enabled to select edges spaced by two or more hops of distance. Therefore, for every
MIM instance I1 that yields “YES”, its transformation I2 for SASS will also yields “YES”.

Now suppose, for the sake of contradiction, that the SASS instance I2 would yield
an answer “YES” while the MIM instance I1 would yield an answer “NO”. This would
mean that SASS could select at least k′ edges for having stations on G′ while MIM could
not arrange a set M from G with at least k edges. This is false because any combination
of selected edges SASS can arrange using D = 2 is also an induced matching for its
equivalent instance I1 for MIM. This happens because a first hop spaced between every
two selected edges is enough to define these selected edges as a matching, and a second
spacing hop among those edges is enough for having at least one vertex, outside the
matching, separating every two selected edges in the matching. These separating vertices
assure that the matching is already an induced subgraph, because the vertices in the
matching are not connected by any other edges of the graph G′. Since the matching is an
induced subgraph, the matching is induced. Therefore, if an instance I2 for SASS yield
an answer “YES”, its original instance I1 for MIM will also yield an answer “YES”. ■

Since the decision version of SASS is in NP and is NP-Hard, the decision version of
SASS is also NP-Complete. Consequently, the optimization version of the SASS problem
is NP-Hard. Given the NP-Hardness of the MIM problem, this proof still holds even for
simple SASS instances when:

• the utility value got per station allocated is the same for all the network of pedestrian
ways (edges and vertices);

• street segments have the same length;

• the graph obtained by the network of pedestrian ways is planar with maximum
degree equal to four [Ko and Shepherd, 2003].

Similarly to SSMS, this proof is applicable to the majority of networks of pedestrian
ways, including the assessed Metropolitan Region of São Paulo. Also, it applies to any
other optimization problem of selecting a subset of edges with a minimum space between
them. The next subsection explains the proposed MILP formulation for solving SASS.
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4.2.3 MILP Formulation

Table 4.8 and Table 4.9 describe, respectively, the variables and model parameters
defined in this MILP formulation.

Table 4.8: Variables of the SASS MILP Formulation

Variable Description
xi Boolean variable indicating if edge i ∈ E has one station

Table 4.9: Values used in the SASS MILP Formulation

Model Parameter Description
ui Utility value obtained by allocating a station in edge i
m Number of edges, equivalent to |E|

δ(i, j) Shortest distance from any vertex of edge i to any vertex of edge j
D Minimum distance allowed between stations

The following equations define this MILP formulation. Equation 4.11 defines the
objective function and Inequalities from 4.12 to Equation 4.14 define the constraints.
The objective function maximizes the sum of utility values obtained by placing stations
on edges. Inequality 4.12 assures that at most one station can be placed in either edge i

or in any edge j distanced up to D/2 from i. This constraint has a rationale similar to the
set Ae and Inequality 4.4 from the SSMS MILP formulation, being also used for making
this MILP formulation lighter and faster to be solved. Inequality 4.13 avoids edge i and
any edge in j distanced up to D to have, together, more than one station. And finally,
Equation 4.14 defines xi as binary variables.

arg max
xi

m∑
i = 1

uixi (4.11)

Subject to:

xi +
m∑

j = 1
j ̸= i

δ(i,j) < D/2

xj ≤ 1 ∀i = 1, 2, ...,m (4.12)

xi + xj ≤ 1 ∀i = 1, 2, ...,m; ∀j = i, ...,m | D/2 ≤ δ(i, j) ≤ D (4.13)

xi ∈ {0, 1} ∀i = 1, 2, ...,m (4.14)

The next section defines the Carsharing Flow Network problem.
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4.3 Carsharing Flow Network

The Carsharing Flow Network problem (CFN) consists in solving a LP to simulate
the performance of the carsharing business models proposed at subsection 3.4.4. This
LP is formulated as a flow network problem, similarly to the Min-Cost Flow described
in Wolsey [1998] and Bazaraa et al. [2010]. The CFN problem is defined as follows.

Problem 4.3.1. Let G be a flow network composed by vertices indicating stations and
clients, and edges indicating costs and profits of a carsharing service. Considering that
clients are flexible to be served in different nearby stations, all vehicles must be returned
to their initial stations at the end of the simulated period, and stations have a minimum
and maximum number of parking slots allowed, what is the flow over G that maximizes
the company’s total profit?

Regarding the operational details, the CFN is based on the following assumptions:

• Clients are flexible not to have all of their trip demands served by this carsharing
service;

• Clients are flexible to walk to or from any station located within a predefined max-
imum walking distance;

• Clients do not have an option to wait for being served. Each trip demand is promptly
served or not served;

• If electric vehicles are used, the time they stay idle at stations is enough for recharg-
ing them;

• If combustion engine vehicles are used, some clients will be flexible to take the rented
vehicle to a gas station for refueling (the carsharing company will pay for the gas)
in return for some benefits, such as price discount.

Figure 4.6 presents an example of a flow network G for CFN. From left to right,
the flow network represents the time passing along a routine period. Each row of nodes
and arcs represents the evolution over time of each station, from when it receives its
resources (vehicles and parking slots), up to when the simulated period finishes. In the
simulated scenarios of this work, the period represents the weekly routine of trips made
by the possible clients.

The gray nodes A, B and C represent three carsharing stations either at the start
of the week, or at the end of the week. White nodes with numbers indicate trip profiles
to be served. When the same trip may start or finish in different stations, its white nodes
appear more than once in the flow network. That is the case of both trips 1 and 2. Trip
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Figure 4.6: Example of Flow Network G

1 may start either at station A or at station B, and may finish at station B or station C.
In both stations B and C, the following trip to be served is trip 2. Although the origin
of trip 2 is near stations B or C, its destination is near station A only, being the last trip
of the period made at that station.

In this flow network, arcs can represent flows with values that are greater than one.
Thus, each arc represent a mobility profile of various similar people instead of only one
specific person. This allows the LP formulation to be more computationally scalable than
other formulations having one variable per client. Since each trip profile may indicate trips
starting or finishing in different stations, the CFN must assure that the same individual
served trip is not counted multiple times. Therefore, for every set of white nodes there
will be two green nodes used to filter the served trips. By doing so, the served trips are
funneled through the blue arc, assuring that the correct number of served trips will flow
through the network.

Green arcs indicate revenue obtained by serving trips; thus, they yield positive
utility values. Blue arcs only assure the funneling of the flow of vehicles, without yielding
revenue or cost, and thus, they have utility value equal to zero. The flow that passes by
green and blue arcs is constrained by the demand of each trip as an upper bound, avoiding
unrealistically profitable scenarios. Black arcs only direct the flow of vehicles after a blue
arc, or indicate idle vehicles in the stations. They have utility values equal to zero and do
not have a predefined upper bound, since their flow is already constrained by the other
arcs.

There is no staff relocating vehicles. All fleet movements are made by the clients,
while performing their own trips along the period. Red arcs do not indicate a movement
of vehicles. They indicate the costs involved in having vehicles to rent in each station;
therefore, red arcs have negative utility values. Red arcs also ensure that the initial
number of vehicles at each station will be available at the beginning of every period. It is
assured because the red arcs tie the end to the beginning of the period, forming a “cycle”
for each station. Red arcs have upper and lower bounds that depends on the business
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model being evaluated. The CFN network does not describes the exact time when a trip
was finished. However, as showed in Figure 4.6, it is possible to notice that every trip
certainly has finished before its arc reaches the next node.

Although the CFN problem may also represent the dynamics of an electric fleet
when the assumptions mentioned earlier are obeyed, this research does not include sce-
narios regarding electric vehicles. The decision of not simulating electric vehicles is due
to lack of charging infrastructure in Brazil at present, and the high costs of having an
electric vehicle in Brazil when compared to combustion engine ones [Yamamura et al.,
2022].

Besides, recharging electric vehicles is slower than refueling combustion engine
vehicles, and current vehicle batteries have a range of driven distance smaller than the
range of gas vehicles with a full tank [Yamamura et al., 2022; Turoń et al., 2022]. It was
simulated in Turoń et al. [2022] that using electric vehicles for carsharing may be worse
than using combustion engine vehicles. This result was obtained due to the recharging
time and high costs for purchasing a fleet of electric vehicles. As discussed in the work,
additional vehicles would be needed to replace the electric vehicles while recharging. In
this case, electric vehicles will not be shared enough to become the optimal fleet choice.

The next subsection presents the LP formulation to solve the CFN problem.

4.3.1 LP Formulation

Tables 4.10, and 4.11 present, respectively, the variables and model parameters
used in this LP formulation. The objective function and constraints are described from
Equation 4.15 to Inequality 4.18.

Table 4.10: Variables of the LP Formulation

Variable Description
xi,j ∈ A Arc (i, j) indicating the flow from node i to node j

Table 4.11: Model Parameters of the LP Formulation

Model Parameter Description
n Number of nodes
ui,j Utility value of the arc (i, j)

⌊bi,j⌋ Upper bound of the arc (i, j), if applicable
li,j Lower bound of the arc (i, j), if applicable
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Equation 4.15 defines the objective function of this LP. In summary, this function
sums up all profits obtained by serving clients (fuelling costs are already deducted) in-
cluding the vehicle costs (negative utility values from red arcs, which also comprehend
the rental of parking slots). Equation 4.16 represents the constraints of flow conservation.
These constraints ensure that the total flow incoming to the node is equal to the total flow
outgoing this node. By doing so, the rationale of the network is guaranteed, since there
is no “leakage” of flow along the network. Equation 4.17, in the case of blue and green
arcs, defines the upper bound of the expected number of clients that want to make that
trip. Regarding red arcs, that same constraint defines the maximum number of parking
slots available to rent in each station. In turn, Equation 4.18 ensures that those scheduled
clients previously selected will be served in the mixed-demand business models, namely
Mixed Free-Floating and Mixed Partial-Floating; and ensures that all other arcs will not
have negative flow.

arg max
xi,j

n∑
i=1

n∑
j=1

ui,jxi,j (4.15)

Subject to:

n∑
j=1

xi,j −
n∑

j=1

xj,i = 0 ∀i = 1, 2, ..., n (4.16)

xi,j ≤ ⌊bi,j⌋ ∀(i, j) ∈ A | ∃ bi,j (4.17)

xi,j ≥

li,j, if business model of mixed-demand

0, otherwise.
(4.18)

This formulation is suitable for optimizing the fleet of the three carsharing business
models defined in subsection 3.4.4. They only differ on the values of the right-hand side of
the constraints, and if it is necessary to solve the LP twice. Solving the LP model twice is
required for the business models of mixed-demand. Since these business models serve on-
demand carsharing clients using idle vehicles and parking slots from the scheduled clients,
it is only possible to optimize the fleet of such mixed-demand business models after the
scenario with scheduled clients is already optimized. By doing so, the constants li,j are
obtained from the first optimization run, and used in the second (final) optimization run.

This LP formulation does not consider maintenance operations. These tasks are
expected to be made by third parties or by some clients rewarded with benefits such as
price discounts. The following subsection demonstrates that this LP is Totally Unimod-
ular, and consequently, the CFN problem belongs to P, the class of problems solvable in
polynomial-time.
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4.3.2 CFN belongs to P

The simple structure of the proposed LP allowed its matrix of constraints to be
Totally Unimodular (TU), making it possible to solve the CFN problem in polynomial-
time. That happens because as the matrix of constraints is TU and the vector of constants
b of all constraints have an integer value, all optimal solutions found by the LP will have
only integer variable values. Therefore, it is not necessary to run algorithms like Branch-
and-Bound to make the solutions integral [Tamir, 1976; Wolsey, 1998; Bazaraa et al.,
2010].

A matrix of constraints is TU if all determinants of its square sub-matrices are -1,
0 or 1. It can be assured that, regardless of the instance, the matrix of constraints for
this LP will only have such determinants because it follows sufficient conditions presented
in Wolsey [1998]. These conditions are:

• every coefficient of the matrix is one of these elements: {−1, 0, 1};

• every column contains at most two nonzero coefficients;

• the matrix can be divided in two sets of lines L1 and L2 so that the column-based
sum of L1, subtracted by the column-based sum of L2, results in a line composed
by only zeros. Equation 4.19 formalizes this condition.∑

i ∈ L1

ai,j −
∑

i ∈ L2

ai,j = 0 ∀j ∈ {1, 2, ...,m} (4.19)

The flow conservation constraints defined by Equation 4.16 satisfy these conditions
because every arc appear twice: one time with value 1 and another time with value −1.
Therefore, every coefficient belongs to {−1, 0, 1}, there are no more than two nonzero
coefficients in each row, and the sum of them results in zero.

The last two constraints, represented by Inequalities 4.17 and 4.18, maintains the
total unimodularity of this LP because they are equivalent to identity matrices. Since
one matrix TU concatenated to an identity matrix results in another matrix TU [Wolsey,
1998], the LP including Inequalities 4.17 and 4.18 is also TU. Consequently, if the right-
hand side (vector b) has only constants, this proposed LP can be solved in polynomial-
time, and the CFN problem belongs to P. Next subsection presents the algorithm used to
discover which street intersections are nearby each other and which stations are close to
the places visited by the possible clients.
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4.4 Shortest Distance Algorithm

The SSMS, SASS and CFN problems depends on the shortest distance between
street intersections or stations to build their optimization models. A reasonable method
for discovering which locations are nearby each other consists in calculating the shortest
distance between all pairs of vertices from the road network and selecting only those with
distance shorter than D.

One option consists in running the Floyd-Warshal algorithm, with time complexity
order of O(V3) [Cormen et al., 2009], and then filtering the pairs of vertices with distance
up to D, spending an additional time complexity of O(V2). This will result in a total
complexity time of O(V3+V2). Another option consists in running the Dijkstra algorithm
for all vertices, having total time complexity order of O(V2logV + EV) [Cormen et al.,
2009], and discovering which pairs have distance shorter than D while the shortest distance
is calculated.

In this case, the Dijkstra algorithm for all vertices is expected to perform faster than
the Floyd-Warshal algorithm. That is expected because vertices in pedestrian ways and
road networks usually have low degree, and the D threshold can be applied to interrupt
iterations of search in the graph. Algorithm 1 presents this modification of the Dijkstra’s
shortest path algorithm by halting the search in the graph depending on the distance
reached so far, checked at line 19. An array L is also used to avoid re-initializing all
distances to infinity. Provided that only a small subset of vertices are expected to be
reached due to the threshold D, L stores the vertices reached so far, allowing the “for”
loop at line 3 to only iterate over vertices reached by the last source vertex.

The first lines of Algorithm 1 initialize L, the array distances and the heap Q.
Dijkstra’s shortest path search goes from line line 9 to line 20. Edges are included in
graph D, at line 24, after the search have been finished for each source. The edges’ length
are set at line 25. The time complexity of this algorithm keeps being O(V2logV + EV),
the same as simply running the Dijkstra’s shortest path for each vertex.

After running Algorithm 1, the data on the returned graph D is stored in tables
“VerticesPairsNearby” and “StationsNearbyPlaces”, presented in section 5.2. Shortest dis-
tance calculations are also useful to define the utility value of edges in SSMS and SASS
and to estimate the monthly parking costs for solving the CFN problem. Next chapter
explains how this work was planned to be developed.
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Algorithm 1: AllPairsNearby(G: graph, D: real)
Input: Network of pedestrian ways and the places of trip composing the graph

G, and minimum distance allowed between edges D
Output: Graph D in which vertices nearby each other are adjacent, and edges’

lengths are the shortest distances between vertices
1 L← V;
2 for each source in V do
3 for each v in L do
4 distances[v]←∞;

5 distances[source]← 0;
6 L← {source};
7 Q← ∅;
8 Insert(Q, ⟨0, source⟩);
9 while Q ̸= ∅ do

10 u← ExtractMin(Q);
11 for each e← (u, v) in G.Adj[u] do
12 if distances[v] > distances[u] + e.length then
13 distances[v]← distances[u] + e.length;
14 if v /∈ L then
15 L← L ∪ v;
16 Insert(Q, ⟨distances[v], v⟩);
17 else
18 DecreaseKey(Q, ⟨distances[v], v⟩);

19 if distances[u] ≥ D then
20 break;

21 D.V← D.V ∪ source;
22 for each v in L do
23 D.V← D.V ∪ v;
24 D.E← D.E ∪ ⟨source, v⟩;
25 D.E.⟨source, v⟩.length← distances[v];

26 return D;
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Chapter 5

Resources and Methods

This chapter describes the computational resources and models used to solve the problems
described in the last chapter. The hardware and software specifications are described in
the following section, the conceptual schema of the spatial database used is presented in
section 5.2 and the data preprocessing tasks are described in 5.3.

5.1 Computational Resources

The optimization problems and the simulations run in a computer with the speci-
fications described in Table 5.1, and using software listed in Table 5.2.

Table 5.1: Hardware Specifications

Resource Specification

Model Apple Mac mini (Late 2012)
Processor Intel Core i7 2.3 GHz, 4 cores
RAM 16 GB, DDR3 1666 MHz
Hard Disk 1 TB, 5400 RPM

The next section presents the diagram of the spatial database used in the experi-
ments, and summarizes the trips dataset used in this work.

5.2 Conceptual Schema

The conceptual schema of the database used in this work was created following the
Object Modeling Technique for Geographic Applications (OMT-G), proposed by Borges
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Table 5.2: Software Specifications

Resource Specification

Operational System macOS Catalina 10.15.6
Database Management System PostgreSQL 13.2
Spatial Database Extension PostGIS 3.1
Scripting Language Python 3.7.4
Graph Algorithms Library NetworkX 2.5
Parallel Data Analysis Library Koalas 1.8.0
Optimization solver Gurobi 9.1.2, Individual Academic License

et al. [2001]. The diagram was materialized using the OMT-G Designer tool, proposed
by Lizardo and Davis Jr. [2014, 2017] and available online1. The data definition and data
integrity statements were also generated by OMT-G Designer.

The road network data was obtained from OpenStreetMap2 on August 8, 2021 and
the transport demand was obtained from the Origin-Destination Survey of São Paulo3,
performed along the years of 2017 and 2018. This survey has produced a dataset composed
by 183,092 rows and 126 columns. Each row indicates a trip made by a family member
of the interviewed person. Each column indicates attributes about the family, about the
person in the trip, or about the trip itself. The metadata about these 126 attributes is
presented in the Annex, at Table A.1.

In summary, this dataset presents attributes regarding the socioeconomic situation
of families and characteristics of their trips. The data about trips are: their purpose,
mode of transport, parking cost (if applicable), location and timestamp of origin and
destination, and identification within the same dataset of which persons of the family
shared the vehicle during the trip (if applicable). Some visualizations and queries using
this dataset can be made on the Ciclocidade’s public dashboard4.

Figure 5.1 shows the OMT-G class diagram. Classes “StreetIntersection” and
“StreetSegment” compose the network of pedestrian ways of the São Paulo Metropoli-
tan Area. The attributes on “StreetSegment” indicate an id for each street segment, its
origin and destination vertices, its length in meters, a textual flag from OpenStreetMap
describing the driving right-of-way of this street segment, the utility value used in SSMS
and SASS problems, and the estimated monthly parking costs for one vehicle in this street
segment. The “idEdge” attribute is needed instead of using the origin and destination ver-
tices as a primary key because some pairs of vertices in the road network have more than
one edge between them.

1http://aqui.io/omtg-designer/
2https://www.openstreetmap.org/relation/2661855
3http://www.metro.sp.gov.br/pesquisa-od/
4https://public.tableau.com/profile/ciclocidade#!/vizhome/OD2017/MAPA

http://aqui.io/omtg-designer/
https://www.openstreetmap.org/relation/2661855
http://www.metro.sp.gov.br/pesquisa-od/
https://public.tableau.com/profile/ciclocidade#!/vizhome/OD2017/MAPA
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aqui.io/omtg-designer/# 1/1

StreetIntersection

idVertex: INTEGER

StreetSegment

idEdge: INTEGER
idVertexOrig_fk: INTEGER
idVertexDest_fk: INTEGER
length: REAL
oneway: VARCHAR(10)
utilityValue: REAL
parkingExpenses: REAL

VerticesPairsNearby

idVertex1_fk: INTEGER
idVertex2_fk: INTEGER
walkingDistance: REAL

Station

idStation: INTEGER
nParkingSlots: INTEGER
idSetting_fk: INTEGER
idEdge_fk: INTEGER
positionInEdge: REAL

StationsNearbyPlaces

idTrip_fk: INTEGER
idStation_fk: INTEGER
walkingDistance: REAL

SettingOfSimulation

idSetting: INTEGER
stationsMILP: VARCHAR(20)
spacingOfStations: REAL
walkingDistance: REAL
carMonthlyRentalCost: REAL
timeRentalCost: REAL
distanceRentalCost: REAL

PeopleServed

idTrip_fk: INTEGER
idSetting_fk: INTEGER
amountServed: INTEGER

Trip

idTrip: INTEGER
idDriver: INTEGER
tripExpansionFactor: REAL
idPlaceDeparture: INTEGER
idPlaceDestination: INTEGER
reasonDeparture: INTEGER
reasonDestination: INTEGER
mode1: INTEGER
mode2: INTEGER
mode3: INTEGER
mode4: INTEGER
mainMode: INTEGER
timestampDeparture: DATE
timestampArrival: DATE
drivingDistance: REAL
drivingDuration: REAL
walkingDistance: REAL
parkingExpenses: REAL
isMonthlyParking: BOOLEAN

Place

idPlace: INTEGER
idEdge_fk: INTEGER
positionInEdge: REAL

Municipality

idMunicipality: INTEGER
description: VARCHAR(60)
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Figure 5.1: OMT-G Diagram

Class “VerticesPairsNearby” indicates which pairs of street intersections are nearby
each other. Having this information materialized in the database instead of calculated
dynamically makes it easier and faster to preprocess the input data for solving the
SSMS problem. In this work, pairs of street intersections for which the streetwise short-
est distance between them is larger than 500 meters are not included in the “Vertices-
PairsNearby” class, because they are not considered to be spatially close. Since this class
is about walking distances, the driving right-of-way is not considered while calculating the
shortest distance between the pairs of vertices. Class “Municipality” defines the frontiers
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of the municipalities within the São Paulo Metropolitan Area.
Class “Station” maintains the data about the stations generated by SMSS or SASS

and their attributes used in the simulations of CFN. Its attributes are, respectively: the
station identification, the number of needed parking slots calculated by the CFN simula-
tion, the id of the simulation setting which generated that station with such properties,
the id of the edge in which this station is positioned, and the position of this station at
the edge. This position is a real number varying from zero to one, where zero means that
the station is placed exactly at the edge’s origin vertex, one means that the station is
placed exactly at the edge’s destination vertex, and any intermediate value means that
the station is positioned at that proportion of the edge length.

All drivers included in the dataset have their origin and destination places stored
in the “Place” class. The places are stored regardless of which transport mode that person
used for that trip in the day of the interview. In this case, we assume that if some person
is able to drive and is the driver of at least one of his/her trip demands, this person may
also be flexible to drive in his/her other trip demands. The “Place” class includes the
place identification, the id of the closest street segment, and also stores what position in
this street segment is the closest to the stored place, similarly to the “positionInEdge”
attribute of the “Station” class described previously.

Class “StationNearbyPlaces” references the stations near the origin and destina-
tion trip locations stored in the “Place” relation. Similarly to the “VerticesPairsNearby”
relation, the threshold for two locations to be considered nearby is 500 meters. By doing
so, every place will be at most about 250 meters away from a station (250 meters of street
segments to its left and another 250 meters of street segments to its right). This relation
makes it easier to load data for the CFN simulation. Using this relation, it is possible to
easily obtain the generated stations that are close to each origin or destination place.

The important data about each trip of the dataset is stored in the “Trip” class.
This class holds the identification of the trip, identification of the driver, the expansion
factor of the trip, the reference to the places of departure and destination, the purpose
of the driver attending the origin and the destination places (such as going from home
to work), up to four transport mode used by the person to get to his/her destination,
the main transport mode used in this trip, the time of departure and arrival, the driving
distance calculated as the shortest distance according with the driving right-of-way, the
duration of that trip considering the average speed of other trips on the same weekday
and hour, the walking distance as the shortest path not considering the driving right-of-
way, the driver’s expenses with parking, and a flag indicating if the parking expenses are
regarding fixed monthly or other parking costs.

Except for the attributes “drivingDistance”, “drivingDuration”, and “walkingDis-
tance”, the data used in the “Trip” class comes from the dataset used, whose metadata
is presented on Table A.1, in the Annex. The identification of the driver was obtained
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from the column 44, after selecting only people who drive a car. This selection is made by
removing all people from the dataset which do not have at least one line with column 107
having value 9, indicating that this person drives an automobile. The trip’s expansion fac-
tor, extracted from column 80, indicates how many trips from the general population are
represented by this sample trip. This trip’s expansion factor is used in Inequality 4.17 as
the upper bound for the number of similar clients that can be served, and in the objective
function of SSMS and SASS formulations as the utility value of the street segments.

Since clients are expected to be flexible to walk short distances before or after their
trips, the utility value used when stations are allocated in SSMS or SASS is calculated
according with the demand nearby a street segment. To do so, the utility value of a
street segment is calculated as the sum of expansion factors from trips that have started
or finished in that street segment or in nearby segments. In this case, a street segment
is considered near a place of origin or destination if it can be entirely traversed in 500
meters of walk from the place of origin or destination. Considering as nearby only those
street segments entirely traversed in 500 meters avoids setting utility values for lengthy
street segments with no demand of trips. By doing so, the utility values are concentrated
either on the exact street segment of the trip, or on the specific surroundings of the trip
origin or destination.

The estimated monthly parking expenses are calculated as the average of monthly
parking costs in nearby street segments. The concept of nearby street segments here is
the same as in the utility value calculation, considering only street segments that can
be entirely traversed in 500 meters. If a street segment has an utility value but there
is no data on monthly parking costs nearby, its estimated monthly parking expenses is
set as the same as the closest street segment with an average monthly parking expense
calculated.

In the “Trip” class, the coordinates (x and y) of places where trips started were
obtained from columns 85 and 86, and the coordinates (x and y) where trips finished were
obtained from columns 89 and 90. The transport modes was extracted from columns 107
to 110, and the main transport mode was obtained from column 118. The departure
times (hours and minutes) come from columns 111 and 112, and the arrival times (hours
and minutes) were obtained from columns 114 and 115. The parking expenses value was
extracted from column 122 and the flag indicating if the parking was paid as a fixed
monthly fee was obtained from column 121.

Class “SettingOfSimulation” records the parameters used in the generation of sta-
tions and the CFN simulation. Similarly to the other relations, an id column is also
defined for each setting. The parameters used to generate stations are a brief description
of the MILP formulation used, and which distance threshold D was used. The CFN pa-
rameters were the maximum distance clients are flexible to walk to get to a carsharing
station (first-mile) or to get to their destination (last-mile), the expected cost the carshar-
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ing company will have per monthly rented car, how much the carsharing clients will be
charged per minute, and how much they will be charged per driven kilometer while using
the carsharing service. Trips that can be served according to some simulation setting are
stored in the “PeopleServed” class. In this class, the attribute “amountServed” holds the
number of similar trips, limited by the person’s expansion factor, that could be served
according with the parameters defined in the “SettingOfSimulation” class.

A physical schema is generated from the conceptual schema in OMT-G by OMT-
G Designer for PostGIS. The tool automatically produces data definition statements in
SQL, along with assertions and triggers that implement all spatial integrity constraints
contained in the class diagram. Primary and foreign key constraints are also created, fol-
lowing the indications in the OMT-G class diagram. Additionally, a GiST spatial index
was generated for every spatial column defined, and a B-Tree index was generated for
every primary key. In the tables created from classes “VerticesPairsNearby” and “Station-
sNearbyPlaces”, the B-Tree indices were generated as multi-columns, composed by the
first column of the primary key and the “walkingDistance” column. By doing so, queries
using both columns, such as loading stations nearby a specific place but up to x meters
distant, can benefit from the multi-column index5.

Next section describes the preprocessing tasks performed before running the opti-
mization methods and the instance of pedestrian ways network.

5.3 Data Preprocessing

The first database tables to be populated were “StreetIntersection” and “StreetSeg-
ment”. The data of both tables had to be preprocessed in order to avoid redundancy or
wrong shortest path distance calculations. The following subsection describes the prepro-
cessing tasks applied.

5.3.1 Data Cleaning

The network of pedestrian ways obtained from OpenStreetMap contains subsets
of vertices that cannot be reached from any other edges and vertices of the rest of the
network, even when considering undirected edges for walking distances. After manually

5https://www.postgresql.org/docs/13/indexes-multicolumn.html
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analyzing some samples of such vertices, we verified that these are streets inside gated
communities, private properties or anomalies caused by missing street segments missing on
OpenStreetMap. These cases generated smaller unconnected components in the network
of pedestrian ways, making it impossible to find paths and distances between locations in
disconnected components of the graph.

The total number of street intersections is 364,521. The largest component of the
network of pedestrian ways has 323,736 street intersections, equivalent to 88.81% of the
total amount. The other 40,785 street intersections compose 6,521 smaller graphs. Among
these smaller components, the largest one (which is the second largest if considering all
components) had 2,142 street intersections, equivalent to 0.59% of the total amount. After
a manual analysis using Google Maps6, it was found that this component (second largest
among all) was located in the Terra Preta district, inside the municipality of Mairiporã,
about 50 km to the North from São Paulo’s downtown. Most of the street segments in this
component are not paved. The second largest component had 828 street intersections,
equivalent to only 0.23% of the total, and was located in an urban area inside the São
Paulo’s municipality, in the Jardim Gaivotas neighborhood. This neighborhood is in an
opposite direction of the Terra Preta district, being 30 km to the South from downtown
São Paulo, and about 80 km distant to Terra Preta. The other 6,519 smaller components
are also spread along the São Paulo Metropolitan Area.

As mentioned before, these smaller components are streets inside gated commu-
nities, private properties or were caused by missing street segments on OpenStreetMap.
Due to their private nature, street segments inside gated communities and other private
properties are not realistic locations for having shared mobility services publicly available
for anyone nearby. Therefore, those street segments are not expected to receive shared
mobility stations and thus should be skipped from the optimization tasks of this work.
Regarding the missing street segments in OpenStreetMap, their absence will likewise not
cause significant impact to the data. That happens because the origin and destination
locations occur either on the largest component of the graph, or close to an edge that
belongs to the largest component of the graph. Therefore, deleting every street segment
and street intersection that do not belong to the largest component will not significant
impact the overall graph since other nearby streets that belong to the largest component
can be used instead.

Besides deleting the smaller components, other four preprocessing tasks were ap-
plied to the graph of pedestrian ways. These tasks were: deleting street segments with
length equal to zero, skipping segments not nearby any origin or destination of trips in
order to reduce the number of variables in the optimization of stations location, splitting
lengthy street segments into shorter ones for solving the SSMS MILP (assumption men-
tioned in subsection 4.1.3), and splitting lengthy street segments for increasing the SASS

6https://google.com/maps
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precision. Table 5.3 presents the variation of the number of street segments after each
preprocessing task.

Table 5.3: Number of Vertices and Edges After Preprocessing Tasks

Vertices Edges
Preprocessing Task

Number Variation Number Variation

Original Number 364,521 - 454,680 -
Deleting Smaller Components 323,736 -11.19% 414,234 -8.90%

Deleting Edges with Length = 0 323,736 0% 414,188 -0.01%
Skipping Far Vertices and Edges 240,874 -25.60% 285,186 -31.15%

Splitting Edges for SSMS 252,348 +4.76% 296,660 +4.02%
Splitting Edges for SASS 2,807,548 +1,012.57% 2,850,186 +861.32%

The task of splitting lengthy street segments into smaller ones was performed using
Algorithm 2. The following subsection discusses this algorithm and presents statistics of
its use on the network of pedestrian ways.

5.3.2 Splitting Lengthy Street Segments

Algorithm 2 was applied to split edges for both problems SSMS and SASS. The
algorithm takes as arguments the G graph to have its edges split, and the distance D

(optional) for limiting the splits when the maximum length of the graph reaches the D

threshold. The D parameter is useful to avoid unnecessary splits for SSMS instances,
since the SSMS problem does not benefit from edge lengths that are much shorter than
the maximum allowed distance between stations. Algorithm 2 can be divided into three
major steps:

1. initializing a priority queue using the length of edges in G, from line 1 to 3;

2. iteratively decreasing the maximum value in the heap by dividing it at maximum
nIterations times, from line 4 to 10;

3. changing G by removing the lengthy edges and replacing them with shorter ones,
from line 11 to 23.

Since the number of new edges is limited to nine times the number of edges,
as defined in line 4, and it is possible to perform the operations Insert, FindMax and
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DecreaseKey in O(1) time by using a Fibonacci Heap, Algorithm 2 has time-complexity
of O(E).

Algorithm 2: SplitStreetSegments(G: graph, D = 0: real)
Input: Network of pedestrian ways G, and minimum distance allowed between

edges D
Output: Graph G with lengthy edges split into shorter ones

1 Q← InitializeMaxHeap();
2 for each e in G.E do
3 Insert(Q, ⟨e.length, 1, e⟩);
4 nIterations← 9× |G.E|;
5 for i← 1 to nIterations do
6 ⟨oldLength, nSplits, e⟩ ← FindMax(Q);
7 if oldLength ≤ D then
8 break;

9 nSplits← nSplits+ 1;
10 DecreaseKey(Q, ⟨e.length/nSplits, nSplits, e⟩);
11 for each tuple in Q do
12 ⟨lengthSplit, nSplit, e⟩ ← tuple;
13 if nSplit ≥ 2 then
14 ⟨source, destination⟩ ← e;
15 G.E← G.E− e;
16 for i← 1 to nSplit− 1 do
17 newV ← createV ertex();
18 G.V← G.V ∪ newV ;
19 G.E← G.E ∪ ⟨source, newV ⟩;
20 G.E.⟨source, newV ⟩.length← lengthSplit;
21 source← newV ;

22 G.E← G.E ∪ ⟨newV, destination⟩;
23 G.E.⟨newV, destination⟩.length← lengthSplit;

24 return G;

Table 5.4 presents the results of applying the Algorithm 2 on the graph of pedes-
trian ways in São Paulo. The second column describes the initial distribution of edge
lengths. The third column describes the edge lengths after running Algorithm 2 with
D = 200, for solving the SSMS problem. The fourth column presents the edge lengths
when only |E| splitting iterations were run, making the total number of edges become the
double of the initial amount. The fifth column describes the edge lengths when 4×|E| split-
ting iterations were run, making the total number of edges become five times the initial.
And the last column describes the edge lengths distribution when all nIterations = 9×|E|
were run, making the number of edges become ten times the initial.

Next chapter presents the experimental results of this work.
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Table 5.4: Distribution of Edges’ Length (in meters) After Splitting

Number of Splits
Statistics Initial D = 200 1× |E| 4× |E| 9× |E|
Minimum 0.02 0.02 0.02 0.02 0.02

Q1 28.04 28.04 25.67 12.43 6.64
Median 58.42 58.42 34.32 14.07 7.08

Mean 71.22 65.93 31.91 13.22 6.78
Q3 96.56 96.56 41.05 14.99 7.30

Maximum 6,703.57 200.00 49.08 15.82 7.50
Standard Deviation 66.79 45.73 11.86 2.59 0.85

Number of Edges 285,186 296,660 570,372 1,425,930 2,851,860
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Chapter 6

Experimental Results

This chapter presents the experimental results from optimizing the stations location, and
simulating the carsharing business models. The following section discusses the solutions
and run times for solving the SSMS and SASS problems.

6.1 Optimization of Stations Location

As defined in Chapter 4, the objective function of both SSMS and SASS is simply
the sum of the utility values got by placing stations on the street segments. In this
work, the utility value of a street segment is the expected number of trips that starts or
finishes nearby that street segment. This demand of trips was obtained from the Origin-
Destination Survey of São Paulo, considering only the trips taken by someone who drives.
And it was considered that two street segments are nearby each other if the shortest
distance between them is shorter than or equal to the maximum distance carsharing
clients are flexible to walk.

In this work, that maximum distance was set to 200 meters. By doing so, the more
trips are nearby a street segment, the greater is its utility value. The following subsection
presents the best solutions found for both SSMS and SASS problems.

6.1.1 Best Solutions Found

Figures 6.1 (a) and (b), shows respectively, the difference between the objective
values and number of stations obtained by optimizing the SSMS and SASS problems.
Both ordinate axis presents values in scientific notation due to high values expressed.
Regarding Figure 6.1 (a), the red line indicates the objective value of the best solution
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found by optimizing the SSMS problem. This objective value is 2.1912 e+08, about 9.61%
higher than the optimum solution for SASS with 9×|E| splits made. A similar patter was
found on Figure 6.1 (b), where SSMS obtained 71,585 stations while SASS with 9 × |E|
splits got 64,669 stations, that is about 9,66% fewer stations.
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Figure 6.1: Objective Values and Number of Stations by solving the MILP models

This similarity was present not only between the SSMS solution and the greatest
SASS solution, but also along all optimum solutions got from SASS. Such pattern was
expected since all presented SASS solutions has optimality guarantee, and thus, they
are already the best combination of edges for the given instance. Thus, increasing the
precision of SASS with more splits will allow SASS to avoid wasting space, and then, allow
selecting more edges to have stations, increasing its objective value. Although the SASS
solutions have optimality guarantee, with a gap of 1e-4 (0.0001), the SSMS optimization
was interrupted with a gap of 14% from the upper bound. Therefore, it is possible that
the SSMS problem can achieve even better solutions. The following subsection discusses
the run times of these optimizations.

6.1.2 Run times

Both SSMS and SASS with 9×|E| splits took about one week of computer process-
ing to obtain the solutions presented in Figure 6.1. The fact that all evaluated scenarios
of SASS were solved to optimality, including the scenario with 9 × |E| splits (ten times
more edges than original), was expected since the SASS’s formulation is simpler than the
SSMS’s formulation and do not uses Big-M in the constraints. Although the more splits
are made the better solutions SASS finds, the objective value gained by increasing the
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number of splits reduces as new splits are made. Besides, as increasing the splits also in-
creases the instance size, solving SASS with a high number of splits becomes cumbersome
due to the amount of memory needed to hold the model.

Figure 6.2 and Table 6.1 presents, respectively, the boxplots and descriptive statis-
tics of the time spent by solving the SASS MILP model with multiplier of splits up to 2.5.
This multiplier threshold of 2.5 was chosen empirically as the highest multiplier yielding
an instance that fits in the 16 GB of RAM of the computer used, without requiring swap
operations. Every presented boxplot comprises 40 run times. These run times had a low
standard variation, making the boxes of Figure 6.2 (b) very narrow.
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Figure 6.2: Run time for SASS

Table 6.1: Statistics of time spent (in seconds) for solving the SASS

Multiplier
Statistics 0.0 0.5 1.0 1.5 2.0 2.5

Min. 28.484 58.458 103.145 490.095 276.287 2298.301
Q1 28.572 62.770 103.335 490.645 276.541 2301.350

Median 28.603 62.884 103.457 491.078 276.666 2303.406
Mean 28.621 62.557 103.443 491.074 276.743 2304.276
Q3 28.637 62.956 103.534 491.352 276.844 2305.101

Max. 28.955 63.065 103.680 492.678 277.465 2348.290
S. D. 0.085 1.175 0.140 0.518 0.248 7.496

No boxplot among the evaluated scenarios shared the same range of values. There-
fore, there is significant difference between the run time of the scenarios evaluated [Krzy-
winski and Altman, 2014]. This difference is maintained even considering multiplier values
close each other, such as 0.0 and 0.5. Thus, varying the multiplier parameter impacts the
solver run time.
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The following section presents the carsharing simulations for the whole Metropoli-
tan Region of São Paulo.

6.2 Large-Scale Simulations

This section presents the large-scale simulations of rental prices and maximum
distances that clients would be willing to walk. All results shown correspond to the global
optimum solution for the applied parameters setting. Therefore, the optimization model
made the most from the available vehicles, parking slots, allowed walking distances and
expected demand to maximize the company’s profits.

Figure 6.3 and 6.4 are regarding the Scheduled Free-Floating. This business model
was chosen because it is the simplest among the evaluated ones. Therefore, it will allow
assessing the business viability with the lowest possible rental prices. Figure 6.3 presents
the monthly expected profits of a carsharing company. These profits are based on differ-
ent proportions of the Uber base price used to define the rental, and varying maximum
distances walked by clients.
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Figure 6.3: Expected profits on the Scheduled Free-Floating

Even on Scheduled Free-Floating, no scenario was profitable considering a maxi-
mum walking distance of 100 meters, and prices lower or equal to the Uber base price.
The profitable scenario with cheapest prices considered up to 500 meters of walking and
60% of the Uber base price. This scenario is expected to yield R$16,457.24 per month
for operating a fleet of 102 vehicles. Even if all clients are willing to deliver the rented
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vehicles to gas stations for refueling without requiring additional benefits, the monthly
profit of only R$16,457.24 provides a small margin for covering other eventual costs, such
as cleaning and maintaining the 102 vehicles.

Therefore, this scenario was not the chosen one for the more detailed analyses pre-
sented in this work. The more detailed analyses regarding the Scheduled Free-Floating
were based on the scenario with also up to 500 meters of walking distance, but charg-
ing 70% of the Uber base price. This scenario is expected to yield a monthly profit of
R$304,801.88 for operating 720 vehicles. Although the number of vehicles in this scenario
increased by 7.06 times, the monthly profit increased by 18.52 times. Thus, the com-
pany will have a profit margin to cover eventual costs and clients will pay 30% less when
compared to the Uber base price.

Figure 6.4 presents the percentage of trips that would be served by each carsharing
rental price evaluated. The chosen scenario for Scheduled Free-Floating is expected to
serve about 0.92% of the possible trips. No scenario, even considering the ones charging
higher prices, could serve more than 28% of the possible trips. Although the percentage
of served demand is small, the subset of trips selected to be served represents well the
population of possible carsharing clients.
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Figure 6.4: Percentage of served trips on the Scheduled Free-Floating

Figure 6.5 and Figure 6.6 illustrate, respectively, the location of stations and the
locations where trips start in the chosen Scheduled Free-Floating scenario. The number
of places where trips start is higher than the number of stations because these simulations
are based on free-floating mode. Therefore, although every vehicle has its parking slot
and comes back to it when the week ends, any vehicle is free to be used in any trip at any
place within the studied area along the week.

The colors used in both Figure 6.5 and Figure 6.6 indicate ranges of the number of
occurrences at that location. Each class has about the same number of occurrences. There
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Figure 6.5: Parking slots in the Scheduled
Free-Floating

Figure 6.6: Locations of trips starting in
the Scheduled Free-Floating

Figure 6.7: Parking slots in the Mixed
Partial-Floating

Figure 6.8: Locations of trips starting in
the Mixed Free-Floating

is no clear pattern of colors found exclusively in specific regions of the map. However,
classes depicted in red are more frequent in São Paulo’s central zone. This is expected due
to the higher demand of short trips in that region. Another pattern shown in Figures 6.5
and 6.6 is the concentration of selected trips near downtown. Such pattern happens
because of the short-term nature of carsharing rentals, that is associated to trips that are
more frequent in areas close to downtown. Thus, offering the service in regions with a
lower flow of vehicles requires higher rental prices to make the service profitable.

Figure 6.7 and 6.8 illustrate the locations of trips starting in the two mixed-demand
business models. In these both scenarios, the scheduled trips were also charged 70% of the
Uber base price, but the on-demand trips were charged 90% of Uber base price. Therefore,
all these three scenarios charged less than what Uber would usually charge. Except for the
pattern of higher concentration of trips in the São Paulo’s central zone, all other patterns
from Figures 6.5 and 6.6 are also observed in Figures 6.7 and 6.8. Besides, it is clearer on
Figure 6.8 that small clusters of locations for starting trips are formed in cities far from
São Paulo’s downtown.

As matter of comparison, Figures from 6.9 to 6.12 present the location of every
trip demand (served and not served) grouped by quarter of the year. Although the
quarters have different number of trip demands, any quarter has more trip demands than
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Figure 6.8, which has trip demand of all quarters together.

Figure 6.9: Locations of trips starting on
the first quarter of the year

Figure 6.10: Locations of trips starting
on the second quarter of the year

Figure 6.11: Locations of trips starting
on the third quarter of the year

Figure 6.12: Locations of trips starting
on the fourth quarter of the year

The following subsection compares the evaluated business models.

6.2.1 Business models comparison

Although carsharing rentals are expected to be cheaper than ridesourcing [Schwi-
eterman and Bieszczat, 2017; Monteiro et al., 2021a], it is possible that carsharing clients
allow paying more than the Uber base price in some situations:

1. the clients demand for trips is higher than the local supply of Transport Network
Companies (TNC) drivers at that moment;

2. the client demand for trips in a region is so low that there are no TNC drivers
nearby;

3. carsharing clients are not flexible to wait for a driver from a TNC company to accept
the trip;
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4. carsharing clients feel safer or more comfortable when driving by themselves than
having a stranger as driver.

The increase in prices mentioned in situation (1) is usually the same as used in
this work to represent price proportions higher than 1.0. By doing so, TNC companies
increase the charged price in levels of 10% to incentive drivers to accept that trip. The
same happens for situation (2), when TNC companies increase the base price to attract
other drivers in order to serve trips from that region. In these four situations, carsharing
clients may either decide to pay higher prices because they have no cheap competing
option, or because they do not have other shared mobility option to choose.

The following analysis compares the performance of the chosen scenario for Sched-
uled Free-Floating, to a scenario with the same business model but considering 200% of
Uber base price, and the other two business models. Figures 6.13 and 6.14 show that the
actual share of demand, indicated by the points in both figures, does not differ much from
its share among the served trips. Therefore, the profile of served trips is similar to the
common profile of trips made by people who usually drive in the Metropolitan Region of
São Paulo.
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Figure 6.13: Share of served demand per mode

The actual demands of departure and destination are similar, since the green and
red points in Figure 6.14 are close to perfectly overlapping. This happens due to the
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Figure 6.14: Share of served demand per purpose

“round-trip” nature of the day-to-day commuting. Regarding the trip profiles, although
the scenario with 200% of Uber base price would serve almost 30 times more trips than
the scenario with 70%, as shown by Figure 6.4, all business models are similar. However,
the scenario with 200% tends to follow the actual demand of the trips more closely, while
the other scenarios are more prone to serve short-term trips, such as those made by foot
and for having a meal. As matter of comparison, while the average distance travelled
by all possible trips is 12.5 kilometers, the scheduled served trips with 70% of Uber base
price had an average of 7 kilometers.

Figure 6.15 shows this pattern by comparing the percentage of possible trips that
were served. The trips’ main mode of transportation that had the highest served per-
centage were trips made by taxi, ridesourcing services and on foot. Neither of these three
modes are usual for long trips, due to the costs involved or walking effort. Besides, the
mode “Driving Automobile” that represented more than 90% of all possible trips (actual
demand shown in Figure 6.13) had a participation that is even lower than the trips made
by foot in Figure 6.15. The scenario with 200% of Uber base price does not stand out for
trips that were made by ridesourcing or taxi.

Figure 6.16 compares the departure and destination shares of trips’ purposes. All
evaluated scenarios had a pattern of more trips served for departure than destination about
“Personal Matters”, but the inverse when the purpose is “Shopping”. Such situations are
expected due to the spatial and temporal imbalance in demand along different parts of
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Figure 6.15: Percentage of served trips per mode

any city.
Although these results showed improvements in the carsharing performance by

including on-demand trips into the business model, the more clients are served, the more
resources are required to keep the service. The following subsection discusses the challenge
of assuring enough parking slots to shelter the increasing number of vehicles.

6.2.2 The parking space issue

As mentioned in 3.4.4, this work also considers some parking slots for free-floating
vehicles. Figures from 6.17 to 6.20 present the variation of the number of parked carsharing
vehicles along the week, considering the Scheduled Free-Floating.

The points indicate any place where carsharing trips start and finish. The blue
points are partially transparent to make it easier to notice which parts of the graph
concentrate more points. Therefore, the bluer an area is, the more points exist in that
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Figure 6.16: Percentage of served trips per purpose

area of the graph. Each point indicates the number of vehicles parking at some place
minus the number of carsharing parking slots at that same place. Therefore, positive
values indicate places with carsharing vehicles parked on the street because there are not
enough parking slots. Negative values indicate parking slots that are rented but not used
at that time. Points at zero mean that there are exactly as many vehicles as there are
parking slots. Red points indicate the highest or lowest surplus of vehicles expected at
that day.

The high positive values on Figure 6.17 represents a risk to the carsharing operators
since it may be unrealistic to expect that there will be public spaces enough to park more
than 100 free-floating vehicles in a same area. Although part of the profits may be used
for renting additional parking slots, this solution will not scale well because that issue
is generalized to multiple areas of the Metropolitan Region of São Paulo. As examples,
Figure 6.18 shows the same business model as Figure 6.17 but reinvesting 5% of the
profits for renting additional parking slots to critical areas. This would reduce the highest
red point of Figure 6.17 from 153 to 115, a reduction of 25%. However, as shown by
Figures 6.19 and 6.20, reinvesting 50% of the profits for renting additional parking slots
would reduce the highest point to 80, a reduction of 48%; and reinvesting 100% of the
profits would reduce the highest point to 66, a reduction of only 57%.

Nevertheless, negative surpluses are rare. Thus, the carsharing service will be
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Figure 6.17: Balance of vehicles in the
Scheduled Free-Floating
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Figure 6.18: Balance of vehicles after 5%
of reinvestment in parking slots

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Su
n

Beginning of Each Day

100
70
40
10
20
50
80

110
140
170

Su
rp

lu
s o

f V
eh

icl
es

Surplus of vehicles
Extreme daily surplus

Figure 6.19: Balance of vehicles after 50%
of reinvestment in parking slots
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Figure 6.20: Balance of vehicles after
100% of reinvestment in parking slots

robust against unexpected events on the fleet, such as car crashes, that could disrupt the
carsharing flow.
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Chapter 7

Conclusion and Future Works

This section presents the final remarks for this PhD thesis. The following list summarizes
the accomplishments of this work:

1. the carsharing fleet-sizing and shared mobility siting problems were contextualized;

2. analyses of the expected carsharing costs and profits;

3. discussion of benefits in clients being flexible to walk to nearby stations to get an
available vehicle or station;

4. evaluation of the computational performance of carsharing fleet-sizing using different
MILP formulations;

5. the NP-Completeness of optimizing the exact location of shared mobility facilities
was proved;

6. the NP-Completeness of selecting an optimal subset of street segments to settle
shared mobility facilities was proved;

7. three profitable carsharing business models solvable in polynomial-time by linear
optimization were proposed;

8. comparison of performance and discussion of challenges faced by the low-cost car-
sharing service simulated for the whole Metropolitan Region of São Paulo.

The outcomes of this PhD thesis include eight works. The following list presents
the already published ones:

1. Cristiano Martins Monteiro, Cláudia Aparecida Soares Machado, Mariana de Oliveira
Lage, Fernando Tobal Berssaneti, Clodoveu Augusto Davis Jr., and José Alberto
Quintanilha. Maximizing Carsharing Profits: An Optimization Model to Support
the Carsharing Planning. In 25th International Conference on Production Research
2019 (ICPR 2019), volume 39, pages 1968–1976, Chicago, USA, aug 2019a. Elsevier
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2. Mariana de Oliveira Lage, Claudia Aparecida Soares Machado, Cristiano Martins
Monteiro, Fernando Tobal Berssaneti, and José Alberto Quintanilha. Location Suit-
able for the Implementation of Carsharing in the City of São Paulo. In 25th Inter-
national Conference on Production Research 2019 (ICPR 2019), volume 39, pages
1962–1967, Chicago, USA, aug 2019. Elsevier

3. Cristiano Martins Monteiro, Geraldo Robson Mateus, and Clodoveu Augusto Davis Jr.
Computational Performance of Carsharing Fleet-Sizing Optimization. In XX Brazil-
ian Symposium on GeoInformatics (GEOINFO), pages 111–122, 2019b

4. Cristiano Martins Monteiro, Cláudia Aparecida Soares Machado, Mariana de Oliveira
Lage, Fernando Tobal Berssaneti, Clodoveu Augusto Davis Jr., and José Alberto
Quintanilha. Optimization of carsharing fleet size to maximize the number of clients
served. Computers, Environment and Urban Systems, 87:101623, 2021a

5. Cristiano Martins Monteiro, Cláudia Aparecida Soares Machado, Adelaide Cassia
Nardocci, Fernando Tobal Berssaneti, José Alberto Quintanilha, and Clodoveu Au-
gusto Davis Jr. Shared Mobility Opportunities and Their Computational Challenges
for Improving Health-Related Quality of Life. In Roger Vickerman, editor, Interna-
tional Encyclopedia of Transportation, pages 376–383. Elsevier, Oxford, 2021b. ISBN
978-0-08-102672-4. doi: https://doi.org/10.1016/B978-0-08-102671-7.10754-7. URL
https://www.sciencedirect.com/science/article/pii/B9780081026717107547

6. Mariana de Oliveira Lage, Cláudia Aparecida Soares Machado, Cristiano Martins
Monteiro, Clodoveu Augusto Davis Jr., Charles Lincoln Kenji Yamamura, Fer-
nando Tobal Berssaneti, and José Alberto Quintanilha. Using Hierarchical Facility
Location, Single Facility Approach, and GIS in Carsharing Services. Sustainability,
13(22):12704, 2021

7. Cristiano Martins Monteiro and Clodoveu A Davis. Polynomial-Time Carsharing
Optimization: Linear Formulation and Large-Scale Simulations. IEEE Transactions
on Intelligent Transportation Systems, 24(4):4428–4437, 2023. doi: 10.1109/TITS.
2022.3232149

Except for the second and sixth publications, the author of this PhD thesis was
the first author of the mentioned publications. Another work comprising the results from
Chapter 4 is expected to be published in an international journal.

The following section concludes this work and section 7.2 suggests future works.

https://www.sciencedirect.com/science/article/pii/B9780081026717107547
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7.1 Conclusion

The large-scale simulations made represent more than 2.5 millions inhabitants
of São Paulo who are able to drive. Together, they make close to 9 million trips per
day, indicating an average of less than four trips per person per day. This reflects how
inefficient owning private vehicles can be if no shared mobility modes are used. Besides,
private vehicles that keep parked most of the time may also hamper the performance of
emerging shared mobility services that could use those parking spaces to serve much more
clients and trips per day.

Better and cheaper shared mobility services are benefiting more people with each
passing day. Indeed, the more clients carsharing companies have, the more resources those
companies get to share and widen their services to even more people. However, providing
good services to multiple clients for low prices requires significant efforts of planning and
operation. Although it was shown in Chapter 6 that it is possible to offer a profitable low-
cost carsharing service without fleet relocations, such service will be restricted to niches
of demand. A broader carsharing will either depend on fleet relocations or charging fees
higher than ridesourcing services to serve high percentages of demand.

Distance walked by the clients was shown to contribute to reduce the impact of
lacking parking slots and the need of relocation operations. However, as the maximum
distance that clients are flexible to walk increases, the percentage of clients who would
need to walk to be served also increases. In real situations, it is likely that requiring
clients to walk lengthy distances would decrease the demand. Also, unexpected events
as car crashes or external events such as traffic and rainfall can slow down the sharing
dynamics, hampering the flow of clients between stations.

However, results showed that the proposed business models are resilient against
small unavailability of vehicles, because often there are more vehicles than parking slots
in the stations. But the challenge in the number of required parking slots still remains.
It is possible that few workers focused in relocating parked vehicles may diminish critical
situations of having more vehicles than public parking spaces, and reduce the longest
distance walked by clients. However, the optimization of this task is not guaranteed to
be solved in polynomial-time.

The polynomial-time formulation proposed in this work was important for enabling
the simulation of large-scale scenarios. In a real-world environment, carsharing companies
using such efficient formulation are able to re-optimize their fleet often, since the fleet-
sizing problem will not be another challenge to be solved. Also, different formulations have
a significant impact in time required to solve a problem when it is not solved in polynomial-
time. As shown in section 3.2, the formulation without Big-M not only reduced the
computational time to solve the model but also had more stable run times than the
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formulation using the Big-M . Therefore, a carsharing company could properly plan that
its operation tasks will start after the solver finish running, since the optimization problem
will not take too long to be solved.

However, other problems may not justify intensive efforts of solving them to the
global optimum. In the case of SMSS and SASS defined in Chapter 4, because they are
NP-Hard and their instance is large, the gap of 14% between the best solution found and
the upper bound was considered good enough to interrupt the optimization. Indeed, the
solution found without optimality guarantee was suitable for the analysis and performance
comparison of carsharing business models. The following section presents the suggested
future works.

7.2 Future Work

The suggested future work includes:

1. proposing a real-time model, making trips completely on-demand and with dynamic
pricing (rare events of demand, weather);

2. including price discounts into the optimization to reward clients who agree to walk.
Also, analyzing the expected profits after applying such discounts;

3. comparing investment requirements and expected profits on buying vehicles instead
of renting them. This includes considering the vehicle depreciation along multiple
years and additional maintenance costs;

4. evaluating if it is possible for on-demand shared mobility services to replace mass
public transportation;

5. comparing with autonomous vehicles;

6. evaluating formulations based on the duration of recharging electric vehicles;

7. assessing the impact of time spent on recharging batteries for partial or free-floating
carsharing services. In those cases, charging batteries can become an issue since
clients can finish their rentals in places without a charging spot, not recharging the
vehicle for the next client;

8. evaluating longer trips and the battery range of electric vehicles;
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9. solving SSMS and SASS problems considering locations with parking slots currently
available for renting;

10. evaluating different functions to generate utility values for both SSMS and SASS
problems;

11. applying additional preprocessing tasks to reduce the instance size for both SSMS
and SASS problems;

12. optimizing the location of stations in the same optimization phase of fleet-sizing and
profit maximization;

13. including non-deterministic situations on the objective function and constraint set,
such as inclusion of on-demand trips, traffic, weather conditions, and adversities
along the trip, such as flat tire, broken windshield, accident or mechanical problem;

14. considering different client profiles, such as allowing different price limits, being
flexible to use public transport in part of the trip, being flexible to split the ride
with strangers or other people that are almost strange (e.g., another student from
the same university);

15. adjusting parameters according to the data publicly available by competing compa-
nies, such as the data shared on the Uber Movement website1;

16. predicting operational issues that might emerge when offering a cheap carsharing
service that, ocasionally, will not have all of its assumptions satisfied;

17. assessing how a small number of staff dedicated to relocating the fleet can reduce
critical scenarios of lacking available parking slots, vehicles, or even electric chargers,
that could force clients to walk lengthy distances to be served;

18. evaluating the use of meta-heuristics to solve the relocation problem to avoid critical
scenarios of parking slots in real-time;

19. proposing novel algorithms and formulations for solving both SSMS and SASS prob-
lems;

20. comparing the computational performance of different parameter settings of Gurobi,
while solving instances of SSMS and SASS problems with different sizes and topolo-
gies;

21. evaluating parallelism and distributed processing techniques during the optimiza-
tion.

1https://movement.uber.com/
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Appendix A

Dataset’s Metadata of the São Paulo’s
OD Survey

Table A.1 describes the columns of the dataset sourced from the Origin-Destination Survey
of São Paulo1 in the years of 2017 and 2018. This data was drawn from the file “LAYOUT
OD2017.xlsx”, which is written in portuguese.

Since the relation “OD_2017” presented in the Figure 5.1 represents the data
Origin-Destination dataset, every line in the Table A.1 indicates one attribute in the
relation “OD_2017”.

The specifications of the coordinates are:

• Coordinates system: UTM - SAD69

• Horizontal datum: Córrego Alegre (23) [EPSG:22523]

• Digitizing: Planimetric

• Allowable error: up to 10 (ten) meters

1http://www.metro.sp.gov.br/pesquisa-od/
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Table A.1: LAYOUT PESQUISA ORIGEM DESTINO 2017

Variável Conteúdo Início Fim Compr Códigos
1 ZONA Zona do Domicílio 1 3 3 1 a 517
2 MUNI_DOM Município de Domicílio 4 5 2 1 a 39
3 CO_DOM_X Coordenada X Domicílio 6 17 12 12 dígitos
4 CO_DOM_Y Coordenada Y Domicílio 18 29 12 12 dígitos
5 ID_DOM Identifica Domicílio 30 37 8
6 F_DOM Identifica Primeiro Registro do Domicílio 38 38 1 0 - Demais Registros

1 - Primeiro Registro
do Domicílio

7 FE_DOM Fator de Expansão do Domicílio 39 49 11 11 dígitos 6 casas decimais
8 DOM Número do Domicílio 50 53 4
9 CD_ENTRE Código de Entrevista 54 54 1 1 - Completa com Viagem

2 - Completa sem Viagem
10 DATA Data da Entrevista 55 62 8
11 TIPO_DOM Tipo de Domicílio 63 63 1 1 - Particular

2 - Coletivo
12 AGUA Possui água encanada? 64 64 1 0 - Não

1 - Sim
13 RUA_PAVI A rua é pavimentada? 65 65 1 0 - Não

1 - Sim
14 NO_MORAD Total de Moradores no Domicílio 66 67 2
15 TOT_FAM Total de Familias no Domicílio 68 68 1
16 ID_FAM Identifica Família 69 77 9
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Variável Conteúdo Início Fim Compr Códigos
17 F_FAM Identifica Primeiro Registro da Família 78 78 1 0 - Demais Registros

1 - Primeiro Registro da
Família

18 FE_FAM Fator de Expansão da Família 79 89 11 11 dígitos 6 casas decimais
19 FAMILIA Número da Família 90 90 1
20 NO_MORAF Total de Moradores na Família 91 92 2
21 CONDMORA Condição de Moradia 93 93 1 1 - Alugada

2 - Própria
3 - Cedida
4 - Outros
5 - Não Respondeu

22 QT_BANHO Banheiros 94 94 1
23 QT_EMPRE Empregados Domésticos 95 95 1
24 QT_AUTO Automóveis 96 96 1
25 QT_MICRO Microcomputadores 97 97 1
26 QT_LAVALOU Máquinas de Lava louça 98 98 1
27 QT_GEL1 Geladeiras de 1 porta 99 99 1
28 QT_GEL2 Geladeiras de 2 portas 100 100 1
29 QT_FREEZ Freezer 101 101 1
30 QT_MLAVA Máquinas de Lavar 102 102 1
31 QT_DVD DVDs 103 103 1
32 QT_MICROON Microondas 104 104 1
33 QT_MOTO Motos 105 105 1
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Variável Conteúdo Início Fim Compr Códigos
34 QT_SECAROU Secadora de roupas 106 106 1
35 QT_BICICLE Bicicletas 107 107 1

36 NAO_DCL_IT Código de Declaração de Itens de Conforto 108 108 1
0 - Não Declarou Itens de
Conforto
1 - Declarou Itens de
Conforto

37 CRITERIOBR Critério de Classificação Econômica Brasil 109 109 1 1 - A
2 - B1
3 - B2
4 - C1
5 - C2
6 - D - E

38 PONTO_BR Pontos Critério Brasil 110 111 2
39 ANO_AUTO1 Ano Fabricação - Auto 1 112 115 4
40 ANO_AUTO2 Ano Fabricação - Auto 2 116 119 4
41 ANO_AUTO3 Ano Fabricação - Auto 3 120 123 4
42 RENDA_FA Renda Familiar Mensal 124 132 9 9 dígitos 2 casa decimais

43 CD_RENFA Código de Renda Familiar 133 133 1
1 - Renda Familiar
Declarada e Maior que Zero
2 - Renda Familiar
Declarada como Zero
3 - Renda Atribuída pelo
Critério Brasil
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Variável Conteúdo Início Fim Compr Códigos
4 - Renda Atribuída pela
Média da Zona

44 ID_PESS Identifica Pessoa 134 144 11
45 F_PESS Identifica Primeiro Registro da Pessoa 145 145 1 0 - Demais registros

1 - Primeiro registro da
pessoa

46 FE_PESS Fator de Expansão da Pessoa 146 156 11 11 dígitos 6 casas decimais
47 PESSOA Número da Pessoa 157 158 2
48 SIT_FAM Situação Familiar 159 159 1 1 - Pessoa Responsável

2 - Cônjuge/Companheiro(a)
3 - Filho(a)/Enteado(a)
4 - Outro Parente
5 - Agregado
6 - Empregado Residente
7 - Parente do Empregado
Residente

49 IDADE Idade 160 161 2 (anos)
50 SEXO Gênero 162 162 1 1 - Masculino

2 - Feminino
51 ESTUDA Estuda Atualmente? 163 163 1 1 - Não

2 - Creche/Pré-Escola
3 - 1º Grau /Fundamental
4 - 2º Grau/Médio



137

Variável Conteúdo Início Fim Compr Códigos
5 – Superior/Universitário
6 - Outros

52 GRAU_INS Grau de Instrução 164 164 1
1 - Não-Alfabetizado/
Fundamental I Incompleto
2 - Fundamental I Completo/
Fundamental II Incompleto
3 - Fundamental II Completo/
Médio Incompleto
4 - Médio Completo/
Superior Incompleto
5 - Superior Completo

53 CD_ATIVI Condição de Atividade 165 165 1 1 - Tem trabalho regular
2 - Faz bico
3 - Em Licença Médica
4 - Aposentado/Pensionista
5 - Sem Trabalho
6 - Nunca Trabalhou
7 - Dona de Casa
8 - Estudante

54 CO_REN_I Condição de Renda Individual 166 166 1 1 - Tem Renda
2 - Não Tem Renda
3 - Não Respondeu

55 VL_REN_I Renda Individual 167 175 9 9 dígitos 2 casa decimais
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Variável Conteúdo Início Fim Compr Códigos

56 ZONA_ESC Zona da Escola 176 178 3
1 a 517 ou 999 quando for
zona externa

57 MUNIESC Município da Escola 179 180 2
1 a 39 ou 99 quando for
município externo

58 CO_ESC_X Coordenada X Escola 181 192 12 12 dígitos
59 CO_ESC_Y Coordenada Y Escola 193 204 12 12 dígitos
60 TIPO_ESC Tipo de Escola 205 205 1 1 - Pública

2 - Particular

61 ZONATRA1 Zona do Primeiro Trabalho 206 208 3
1 a 517 ou 999 quando for
zona externa

62 MUNITRA1 Município do Primeiro Trabalho 209 210 2
1 a 39 ou 99 quando for
município externo

63 CO_TR1_X Coordenada X 1º Trabalho 211 222 12 12 dígitos
64 CO_TR1_Y Coordenada Y 1º Trabalho 223 234 12 12 dígitos
65 TRAB1_RE Primeiro Trabalho é igual a Residência ? 235 235 1 1 - Sim

2 - Não
3 – Sem endereço fixo

66 TRABEXT1 Realiza Trabalho Externo-1º Trabalho 236 236 1 1 - Sim
2 - Não
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Variável Conteúdo Início Fim Compr Códigos

67 OCUP1 Ocupação do 1º Trabalho 237 238 2

1 - Membros superiores do
poder público, dirigentes
de organizações de
interesse público e de
empresas e gerentes
2 - Profissionais das ciências
e das artes
3 - Técnicos de nível médio
4 - Trabalhadores de serviços
administrativos
5 - Trabalhadores dos serviços
6 - Vendedores do comércio
em lojas e mercados
7 - Trabalhadores
agropecuários, florestais e da
pesca
8 - Trabalhadores da produção
de bens e serviços industriais
9 - Trabalhadores em serviços
de reparação e manutenção
10 - Membros das Forças
Armadas, Policiais e
Bombeiros Militares
11 - Outras ocupações
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Variável Conteúdo Início Fim Compr Códigos
68 SETOR1 Setor de Atividade do 1º Trabalho 239 240 2 1 - Agrícola

2 - Construção Civil
3 - Indústria
4 - Comércio
5 - Serviço de Transporte de
Carga
6 - Serviço de Transporte de
Passageiros
7 - Serviço
Creditício-financeiro
8 - Serviço Pessoal
9 - Serviço de Alimentação
10 - Serviço de Saúde
11 - Serviço de Educação
12 - Serviço Especializado
13 - Serviço de Administração
Pública
14 - Outros Serviços

69 VINC1 Vínculo Empregatício do 1º Trabalho 241 241 1 1 - Assalariado com carteira
2 - Assalariado sem carteira
3 - Funcionário público
4 - Autônomo
5 - Empregador
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Variável Conteúdo Início Fim Compr Códigos
6 - Profissional Liberal
7 - Dono de negócio familiar
8 - Trabalhor familiar

70 ZONATRA2 Zona do Segundo Trabalho 242 244 3
1 a 517 ou 999 quando for
zona externa

71 MUNITRA2 Município do Segundo Trabalho 245 246 2
1 a 39 ou 99 quando for
município externo

72 CO_TR2_X Coordenada X 2º Trabalho 247 258 12 12 dígitos
73 CO_TR2_Y Coordenada Y 2º Trabalho 259 270 12 12 dígitos
74 TRAB2_RE Segundo Trabalho é igual a Residência ? 271 271 1 1 - Sim

2 - Não
3 – Sem endereço fixo

75 TRABEXT2 Realiza Trabalho Externo-2º Trabalho 272 272 1 1 - Sim
2 - Não

76 OCUP2 Ocupação do 2º Trabalho 273 274 2 idem à 1º Ocupação
77 SETOR2 Setor de Atividade do 2º Trabalho 275 276 2 idem ao 1º Setor de Atividade

78 VINC2 Vínculo Empregatício do 2º Trabalho 277 277 1
idem ao 1º Vínculo
Empregatício

79 N_VIAG Número da Viagem 278 279 2
80 FE_VIA Fator de Expansão da Viagem 280 290 11 11 dígitos 6 casas decimais
81 DIA_SEM Dia da Semana 291 291 1 2 - Segunda-feira

3 - Terça-feira
4 - Quarta-feira
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Variável Conteúdo Início Fim Compr Códigos
5 - Quinta-feira
6 - Sexta-feira

82 TOT_VIAG Total de Viagens da Pessoa 292 293 2
83 ZONA_O Zona de Origem 294 296 3 1 a 517
84 MUNI_O Município de Origem 297 298 2 1 a 39
85 CO_O_X Coordenada X Origem 299 310 12 12 dígitos
86 CO_O_Y Coordenada Y Origem 311 322 12 12 dígitos
87 ZONA_D Zona de Destino 323 325 3 1 a 517
88 MUNI_D Município de Destino 326 327 2 1 a 39
89 CO_D_X Coordenada X Destino 328 339 12 12 dígitos
90 CO_D_Y Coordenada Y Destino 340 351 12 12 dígitos
91 ZONA_T1 Zona da 1ª Transferência 352 354 3 1 a 517
92 MUNI_T1 Município 1ª Transferência 355 356 2 1 a 39
93 CO_T1_X Coordenada X 1ª Transferência 357 368 12 12 dígitos
94 CO_T1_Y Coordenada Y 1ª Transferência 369 380 12 12 dígitos
95 ZONA_T2 Zona da 2ª Transferência 381 383 3 1 a 517
96 MUNI_T2 Município 2ª Transferência 384 385 2 1 a 39
97 CO_T2_X Coordenada X 2ª Transferência 386 397 12 12 dígitos
98 CO_T2_Y Coordenada Y 2ª Transferência 398 409 12 12 dígitos
99 ZONA_T3 Zona da 3ª Transferência 410 412 3 1 a 517
100 MUNI_T3 Município 3ª Transferência 413 414 2 1 a 39
101 CO_T3_X Coordenada X 3ª Transferência 415 426 12 12 dígitos
102 CO_T3_Y Coordenada Y 3ª Transferência 427 438 12 12 dígitos
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Variável Conteúdo Início Fim Compr Códigos
103 MOTIVO_O Motivo na Origem 439 440 2 1 - Trabalho Indústria

2 - Trabalho Comércio
3 - Trabalho Serviços
4 - Escola/Educação
5 - Compras
6 - Médico/Dentista/Saúde
7 - Recreação/Visitas/Lazer
8 - Residência
9 - Procurar Emprego
10 - Assuntos Pessoais
11 - Refeição

104 MOTIVO_D Motivo no Destino 441 442 2 idem ao anterior
105 SERVIR_O Servir Passageiro na Origem 443 443 1 1 - Sim

2 - Não
106 SERVIR_D Servir Passageiro no Destino 444 444 1 1 - Sim

2 - Não
107 MODO1 Modo 1 445 446 2 01 - Metrô

02 - Trem
03 - Monotrilho
04 - Ônibus/micro-ônibus/
perua do município de
São Paulo
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Variável Conteúdo Início Fim Compr Códigos
05 - Ônibus/micro-ônibus/
perua de outros municípios
06 - Ônibus/micro-ônibus/
perua metropolitano
07 - Transporte Fretado
08 - Transporte Escolar
09 - Dirigindo Automóvel
10 - Passageiro de Automóvel
11 - Táxi Convencional
12 - Táxi não Convencional
13 - Dirigindo Moto
14 - Passageiro de Moto
15 - Bicicleta
16 - A Pé
17 - Outros

108 MODO2 Modo 2 447 448 2 idem ao anterior
109 MODO3 Modo 3 449 450 2 idem ao anterior
110 MODO4 Modo 4 451 452 2 idem ao anterior
111 H_SAIDA Hora Saída 453 454 2 Hora de Saída
112 MIN_SAIDA Minuto Saída 455 456 2 Minuto de Saída
113 ANDA_O Tempo Andando na Origem 457 458 2 Em minutos
114 H_CHEG Hora Chegada 459 460 2 Hora de Chegada
115 MIN_CHEG Minuto Chegada 461 462 2 Minuto de Chegada
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Variável Conteúdo Início Fim Compr Códigos
116 ANDA_D Tempo Andando no Destino 463 464 2 Em minutos
117 DURACAO Duração da Viagem (em minutos) 465 467 3
118 MODOPRIN Modo Principal 468 469 2 idem ao MODO1
119 TIPOVG Tipo de Viagem 470 470 1 1 - Coletivo

2 - Individual
3 - A pé
4 - Bicicleta

120 PAG_VIAG Quem Pagou a Viagem 471 471 1 1 - Você/Sua família
2 - Empregador
3 - Isento
4 - Outros
5 - Não respondeu

121 TP_ESAUTO
Tipo de Estacionamento do Automóvel
ou Moto

472 472 1 1 - Não estacionou

2 - Zona azul
3 - Patrocinado
4 - Proprio
5 - Meio-fio
6 - Avulso
7 - Mensal
8 - E-fácil
9 - Não respondeu
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Variável Conteúdo Início Fim Compr Códigos

122 VL_EST
Valor do Estacionamento do Automóvel
ou Moto

473 478 6 6 dígitos, 2 casas decimais

123 PE_BICI Por Que Viajou A Pé ou Bicicleta 479 479 1 1 - Pequena distância
2 - Condução cara
3 - Ponto/Estação distante
4 - Condução demora para
passar
5 - Viagem demorada
6 - Condução lotada
7 - Atividade física
8 - Outros motivos

124 VIA_BICI Se viajou de bicicleta, usou via segregada? 480 480 1 1 - Sim
2 - Não

125 TP_ESBICI Estacionamento Bicicleta 481 481 1 1 - Bicicletário gratuito
2 - Bicicletário pago
3 - Local privado
4 - Rua/Local público
5 - Guardador de rua
6 - Estação de bicicleta
7 - Paraciclo público
8 - Outros

126 ID_ORDEM Número de Ordem do Registro 482 487 6 De 1 a 183.092


	Introduction
	Motivation
	Computational Challenges of Carsharing
	Research Questions and Objectives
	Structure of this Work

	Related Work
	Insights from Initial Results
	Maximizing Carsharing Profits
	MILP Formulation
	Simulation Results

	Computational Performance
	MILP Formulation with Big-M
	MILP Formulation without Big-M
	Simulation Results

	Maximizing Clients Served
	MILP Formulation
	Data and Parameters
	Simulation Results

	Proposed Carsharing Business Models
	Reasons for Proposing this General Business Model
	Planning the location of stations
	Selecting clients and prices
	Evaluated Business Models


	Computational Complexity and MILP Formulations
	Spacing Shared Mobility Stations
	The Decision Version of SSMS Belongs to NP
	The Decision Version of SSMS Is NP-Complete
	MILP Formulation

	Stations Allocation in Street Segments
	The Decision Version of SASS Belongs to NP
	The Decision Version of SASS Is NP-Complete
	MILP Formulation

	Carsharing Flow Network
	LP Formulation
	CFN belongs to P

	Shortest Distance Algorithm

	Resources and Methods
	Computational Resources
	Conceptual Schema
	Data Preprocessing
	Data Cleaning
	Splitting Lengthy Street Segments


	Experimental Results
	Optimization of Stations Location
	Best Solutions Found
	Run times

	Large-Scale Simulations
	Business models comparison
	The parking space issue


	Conclusion and Future Works
	Conclusion
	Future Work

	Bibliography
	Dataset's Metadata of the São Paulo's OD Survey

