
ANÁLISE DE FLUXOS DE DADOS

ECONOMICAMENTE EFICIENTES





ROBERTO LOURENÇO DE OLIVEIRA JÚNIOR

ANÁLISE DE FLUXOS DE DADOS

ECONOMICAMENTE EFICIENTES

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais - Departa-
mento de Ciência da Computação como re-
quisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Adriano Veloso

Coorientador: Wagner Meira Jr.

Belo Horizonte

Abril de 2014





ROBERTO LOURENÇO DE OLIVEIRA JÚNIOR

ECONOMICALLY-EFFICIENT DATA STREAM

ANALYSIS

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais - Depar-
tamento de Ciência da Computação in par-
tial fulfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Adriano Veloso

Co-Advisor: Wagner Meira Jr.

Belo Horizonte

April 2014



c© 2014, Roberto Lourenço de Oliveira Júnior.
Todos os direitos reservados.

Oliveira Júnior, Roberto Lourenço de

O48e Economically-Efficient Data Stream Analysis /
Roberto Lourenço de Oliveira Júnior. — Belo Horizonte,
2014

xxiv, 45 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais - Departamento de Ciência da Computação

Orientador: Adriano Veloso Coorientador: Wagner
Meira Jr.

1. Computação - Teses. 2. Aprendizado do
computador. I. Título.

CDU 519.6*82(043)







Eu dedico este trabalho a minha Vó Tina pelo amor incontestável, imensurável e

incondicional. Fique em paz Vó, te amo.

ix





Acknowledgments

I had during my MSc the pleasure of live together with several persons, each

one unique on their essence. All of them contributed in some way to completion of

this work. They caused alteration in the space-time that created sequences of random

events that conducted me to complete this work. This space is reserved to express my

sincere thanks to of them.

I would like to first thank four women that are fundamental in all of my achieve-

ments. My Mom, Aline and Ameline, my sisters, and Isabella. They always supported

me. They are an inexhaustible knowledge source that helps me maintain the critical

look at the world and allows me go further. My Mom and Aline and Ameline, you

are my example and my motivation. Isabella, my partner of all moments, you are

responsible to push me to face the unknown and give me strengths to win. These 4

women are the pillars of this achievement, then I would like to sincerely express my

gratitude for all the support.

An achievement like this is not complete without friendship. I would like to

acknowledge my faithful comrades CambeLOL, for helped me see beyond algorithms.

To my housemates, Cristiano and Daniel, thank you very much for the great friendship.

Colleagues from MSc program and SPEED Lab, thank you so much for sharing their

knowledge with me.

This work would not be possible without an advisement, due to this, I would like

to express my sincerely gratitude to Dr. Adriano Veloso. His guidance was determining

to the success of this work. I also would like to thank my co-advisor Dr. Wagner Meira

Jr and this thesis committee: Dr. Adriano Cesar, Dr. Renato Ferreira e Dr. Srinivasan

Parthasarathy.

I have to specially acknowledge Dr. Srinivasan Parthasarathy, Dr. Wagner Meira

Jr and Dr. Adriano Veloso by the opportunity of visit the Data Mining and Research

Lab. This visit was one of the most exciting experiences of my life. I extend my

acknowledgments to all my friends of Data Mining and Research Lab, for the friendship

and knowledge sharing.

xi



During my staying at Columbus I had the opportunity to meet people from

all parts of the globe. For all of them, Brazilians, Americans, Colombians, Chinese,

Korean, Italian, Spanish, and Chileans thank you all for helped me face the language

challenges, the extreme weather and homesickness.

Thank everyone that believes in my capacity to complete this work and offered

their shoulders to allow me see further.

xii



“What would be the importance in differentiate among the order of tea’s ingredients?”

(David Salsburg, The Lady Tasting Tea)

xiii





Resumo

Processar dados na forma de fluxo tem se tornado um interessante modelo para

extrair informação de grandes conjuntos de dados. Entretanto, tal modelo de proces-

samento impõe restrições em termos de memória e tempo. No caso de algoritmos de

aprendizado de máquina, tais como classificação e agrupamento, há outra restrição

chamada Mudança de Conceito, em que consiste de mudanças nos dados causadas por

falhas ou aparecimento de outras fontes de dados, evolução natural dos dados, entre

outras razões. Neste trabalho nós atacamos os desafios de fluxos de dados propondo

nosso método Amostragem Seletiva Economicamente Eficiente, que seleciona instân-

cias de treinamento relevantes a cada passo, mantendo assim o conjunto de treinamento

pequeno enquanto provê ao modelo preditivo duas capacidades: Adaptação e Memo-

rização. Adaptação é a capacidade do modelo preditivo adequar-se ao novo conceito,

enquanto memorização é a capacidade do modelo preditivo recuperar-se da mudança

de conceito. Prover ambas as capacidades simultaneamente ao modelo preditivo leva

a um problema de conflito de objetivos, e nosso método aplica noções da economia

para achar o melhor balanceamento entre adaptação e memorização. Nós realizamos

análises do nosso método em várias aplicações contra algoritmos representativos do

estado da arte. As avaliações revelam que nosso método superou os outros métodos

em termos de redução de erro (acima de 14%) e redução de recursos de treinamento

(ordens de magnitude). Palavras-chave: Fluxos de Dados Evolutivos, Aprendizado

de Máquina, Amostragem Seletiva, Eficiência Econômica.
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Abstract

Process data in streaming has becoming an interesting model to extract informa-

tion from large data sets. However, such processing model poses restrictions in terms of

memory and time. In case of learning algorithms, such as classification and clustering

algorithms, there exists an another issue called Concept Drift, which consist of changes

in the data caused by failures or appearance of new data sources, natural evolution

of data, among others reasons. In this work we address data stream challenges by

proposing our method Economically-Efficient Selective Sampling, which selects rele-

vant training instances at each time step, so that training sets are kept small while

providing to the predictive model two capabilities: adaptiveness and memorability.

Adaptiveness is the capability to the predictive model suit itself to concept drift, while

memorability is the capability to recover itself from concept drifts. Provide simultane-

ously both capabilities to the predictive model lead to a conflicting-objective problem,

and our method employ notions of Economics in order to find a proper balance among

adaptiveness and memorability. We performed the analysis of our method in several

applications against representative state-of-the-art algorithms. Evaluation reveals im-

provements in terms of error reduction (up to 14%) and reduction of training resources

(by orders of magnitude).

Palavras-chave: Evolving Data Streams, Machine Learning, Selective Sampling, Eco-

nomic Efficiency.
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Chapter 1

Introduction

In the last years data generated has growing rapidly exceeding 2.8 zetabytes

(2.8 trillion gigabytes) in 2012 as reported in the IDC surveyReinsel and Gantz [2012].

This growing data is a potential source of interesting and useful knowledge hidden

in patterns not explicit, and discover such patterns represents a task that is impos-

sible to be manually performed. In this context, data mining, machine learning and

knowledge discovery methods have been proposed to automatically acquire interesting,

non-trivial, previously unknown and ultimately understandable patterns from large

data setsBramer [2007].

However, as the data grows rapidly, traditional methods of data analysis are

unable to scale on huge amounts of data. Furthermore, store all generated data has

becoming challenging, in particular for a class of applications that produces data in data

streams Gaber et al. [2005]. Data streams can be seen as a sequence of data, possible

unbound, that arrives continuously at time-varying. Applications that produces data

as stream include network monitoring, security, telecommunication data management,

Web applications, and sensor networks.

Traditional data mining methods focus on static environments, where patterns

hidden in data are fixed and each register can be accessed more than once. In data

mining, as well as machine learning, a popular task is classification, which is a process

that automatically builds a classification model by learning from a set of previously

labeled data with predefined classes (i.e., the training-set) the underlying characteristics

that distinguish one class from another. The success of classification methods relies

on their ability to relate non obvious patterns in data to each class. However, these

methods frequently fail to successfully process data streams because of two factors:

overwhelming data volume and changes of data’s nature. Changes of data’s nature

receive a special name, Concept Drift, and consists of the changes caused by failures

1



2 Chapter 1. Introduction

on the data source, natural data’s evolution, appearance of new data source, among

others. This phenomena leads usual learning algorithms to a drastic drop in prediction

accuracy. The data stream environment and its constraints motivated researchers to

develop new approaches to face such challenges.

Approaches to face concept drift basically divide into forgetting and adaptation

methods. Forgetting methods, such as sliding-windows, allows to limit the number of

processed data and to react to changes. Adaptation methods include identification of

concept drifts, model manipulation and prediction model ensembles. Such methods

consist to adapt the prediction model as soon as a concept drift is identified.

Another possible way to cope with data stream challenges is to employ selective

sampling approaches in order to focus only on the most relevant training examples.

Such set of examples (e.g. training set) are kept as small as possible to ensure fast

learning. Also, examples should be selected so that the resulting training set provides

sufficient resources to enable the corresponding classifier, adaptiveness (capability to

suit itself to concept drifts) and memorability (capability to recover itself from momen-

taneous drifts)

1.1 Goals

In this work we propose a wrapping for learning algorithms called Economically-

Efficient Selective Sampling (EESS). EESS aims to select training examples taking

into account two important properties, which we define as adaptiveness and mem-

orability. Informally, adaptiveness enables the classifier to adapt itself to concept

drifts, and thus, improving adaptiveness involves incorporating fresh examples into the

training-set, while discarding obsolete ones. Memorability, on the other hand, involves

retaining examples belonging to pre-drift distributions, therefore enabling the classifier

to recover itself from concept drifts.

We hypothesize that adaptiveness and memorability are both necessary to make

classifiers robust to concept drifts. However, given their antagonistic natures, improv-

ing both properties may lead to a conflicting-objective problem, in which the attempt

to improve memorability further may result in worsening adaptiveness. Thus, we tackle

the problem by proposing selective sampling algorithms based on multi-objective opti-

mization, that is, we propose to select training instances so that the resulting classifier

achieves a proper balance between memorability and adaptiveness. Our algorithms are

based on central concepts in Economics, namely Pareto and Kaldor-Hicks efficiency

criteria [Palda, 2011; Kaldor, 1939; Hicks, 1939]. The Pareto Efficiency criterion infor-
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mally states that “when some action could be done to make someone better off without

hurting anyone else, then it should be done.” This action is called Pareto improve-

ment, and a system is said to be Pareto-Efficient if no such improvement is possible.

The Kaldor-Hicks criterion is less stringent and states that “when some action could

be done to make someone better off, and this could compensate those that are made

worse off, then it should be done.”

This work aims to present our approach of selective sampling EESS and evaluate

it over a set of experiments against state-of-the-arts algorithms. In this experiments

we validate our hypothesis about the requirement of adaptiveness and memorability as

well as our model using economic efficiency criteria.

1.2 Contributions

The main contribution of this work is to exploit the intuition behind the afore-

mentioned concepts for devising new algorithms for data stream analysis. In practice,

we claim the following benefits and contributions:

• We formulate simple-to-compute yet effective utility measures that capture the

notions of adaptiveness and memorability. For instance, the similarity between

instances that are candidate to compose the current training set and the target

message, as well as the freshness of the candidate instances, are measures that

tend to privilege adaptiveness. In contrast, candidate instances are also ran-

domly shuffled, thus privileging memorability. These utility measures result in

a utility space, and the extent to which each candidate message contributes to

adaptiveness and memorability depends on where it is placed in this space.

• We exploit the concept of Pareto Efficiency by separating instances (viewed as

points in the utility space) that are not dominated by any other message. These

instances compose the Pareto frontier [Palda, 2011], and instances lying in this

frontier correspond to cases for which no Pareto improvement is possible. These

instances privilege either adaptiveness or memorability, and thus they are selected

to compose the current training set from which the classifier is built.

• We exploit the concept of Kaldor-Hicks Efficiency by selecting an additional set of

instances that, although not lying in the Pareto frontier, correspond to a positive

trade-off between adaptiveness and memorability. These instances are selected

to compose the current training set from which the classifier is built.
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• Our algorithms operate either on an instance-basis or in batch-mode, by employ-

ing classification models based on sentiment rules that are kept incrementally as

the stream evolves and training sets are modified.

• We implemented our framework in MOA system and provide the implementation

in Machine Learning Repository of UFMG [Veloso and Dafe, 2012] as well as all

datasets;

The main contributions of this work were accepted to Symposium of Special

Interest Group On Information Retrieval 2014 (SIGIR.) [Lourenco Jr. et al., 2014].

1.3 Text Organization

The remains of this work are organized as follows: Chapter 2 presents the basics

of data stream mining. In particular, definitions of data streams, concept drift, as well

as types of stream learners and their applications are shown. In Chapter 3 we describe

Economically-Efficient Selective Sampling (EESS) algorithm. Chapter 4 presents the

experimental results of our approach compared to representative of the state-of-the-art

in four different scenarios. Finally, Chapter 5 concludes this works with a discussion

on completed work and potential future investigations.



Chapter 2

Data Streams Learning

In this chapter we define data stream learning concepts and present existent

approaches to deal with concept drifts. In Section 2.1 we define the learning processes as

a machine learning task, the data stream environment and its issues, focusing in concept

drift phenomena. In Section 2.2 we present a summarization of learning techniques on

data streams. Section 2.3 is reserved to present some relevant recent works in data

stream learning.

2.1 Machine Learning, Data Stream and Concept

Drifts

Machine learning aims to use computers to find patterns in data and infer over fu-

ture data, even when the process that generated the data is a priori unknown [Alpaydin,

2004]. Applications of machine learning comes from classification of customers credit to

sentiment analysis in textual data, from patterns recognition in images to identification

of spams in email, etc.

There are exist different methodologies to learn from data. The two most known

are supervised and unsupervised learning. However, another machine learning ap-

proaches are not limited to these methodologies, others approaches are active learning,

semi-supervised learning, among others. In this work we focus in supervised learning

for classification. The goal is predict a target categorical variable (a.k.a. class label)

y ∈ Y given a set of input features X ∈ Rn. A instance or example is one pair of

(X, y) and a set of examples is the training set. By inspecting the training set, classi-

fication algorithms induce a classification model that can be represented by a function

f : X 7→ Y , i.e., f maps input features to target classes Y . This model find underlying

5



6 Chapter 2. Data Streams Learning

characteristic in the input features that are related to each class. Then the function

f is used to predict the class label for all data in the test set, which is composed by

instances in the form (X, ?).

The most common use of supervised learning is offline setup. In that way, the

classification algorithms requires the whole training set to induce the model. When the

training set is not completely available the process of learning is called online learning.

In this model the learning algorithm must update its model on-the-fly as the training

instances arrives, while in the same time must be ready to perform predictions.

A particular case of online setup is the data stream model where data arrives in

unbounded sequence of high-speed from one or more data sources. This characteristic

pose the following constraints [Bifet, 2009]:

1. It is impossible to store all data from the data stream. Only small summaries

of data stream can be computed and stored, and the rest of the information is

thrown away;

2. The arrival rate of data stream tuples forces each particular element be processed

essentially once, in real time, and then discarded;

3. The data nature or the distribution that generate the items may change over

time. Thus, data from the past may become irrelevant or even harmful for the

current procedure. This phenomena receives the name of Concept Drift.

Constraints (1) and (2) restricts the amount of memory available and the process-

ing time. Constraint (3) require that learning algorithms react as quickly as possible

to the changing of the data nature or distribution to avoid lose accuracy in the predic-

tions. Data streams where Constraint (3) happens are called Evolving Data Stream and

represents an important challenge to machine learning and data mining communities.

Figure 2.1 shows the typical learning cycle of a learning algorithm in the data stream

model. Each step has a related requirement [Bifet et al., 2010a]:

Requirement 1 The algorithm is passed the next available example from the stream;

Requirement 2 The algorithm processes the example, and then decides whether to

upgrade or not its model. In the case where the update is needed it must be done

without exceeding the memory bounds, and as quickly as possible;

Requirement 3 The algorithm is ready to accept the next example. On request it is

able to supply a model that can be used to predict the class of unseen examples.
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Training

Examples

1 - Input

requirement 1

2 - Learning

requirement 2

3 - Prediction
requirement 3

Test Examples Predictions

Figure 2.1. The data stream classification cycle [Bifet et al., 2010a].

In evolving data stream, requirement 2 is more challenging due to the presence

of concept drifts. A concept drift is an unforeseen substitution of one data source S1

with another source S2. Each data source has an underlying probability distribution

that generate its data (generator process). The source change can be seen as an event

in the current data source that causes change of the data’s nature. The most popular

example to present the problem of concept drift is that of detecting and filtering out

spam e-mail. The distinction between unwanted and legitimate emails is user-specific

and evolves over time. Another example is the monitoring of events on Twitter once the

tweets are closely related to real world and [Tumasjan et al., 2010]. While real world

events happen that may generate concept drifts in the twitter stream. Some events

that have been studied are: health issues [Gomide et al., 2011; Paul and Dredze, 2011],

traffic conditions [Ribeiro et al., 2012], political analysis [Guerra et al., 2011], among

others.

The main assumption about concept drift is uncertainty about the future. It can

be estimated or predicted, but there is not certainty [Žliobaitė, 2010a]. Kelly et al.

[1999] presented three ways in which concept drift may occur:

• Proportion of classes, i.e., prior probabilities P (c1), ..., P (ck), may change over

time;

• class-conditional probability distribution, P (X|ci), i = 1, .., k might change;



8 Chapter 2. Data Streams Learning

• posterior probabilities P (ci|X), i = 1, ..., k might change as well.

The change of P (X|ci) represents that the features related to a class can change,

disappear or new ones may raise. However, that does not imply the concept itself.

That is why this kind of drift is referred as a virtual drift and the change of P (ci|X)

as real drift. The distinction between both drifts is important from a practical point

of view, however we do not do that in this work.

This phenomena may appear in different patterns over time: sudden, incremen-

tal, gradual and recurrent. Figure 2.2 presents those patterns, where the horizontal

axis is time and the vertical is the data mean. A drift may happen suddenly/abruptly

by switching from one concept to another (e.g.,monitoring a soccer match on twitter

when some team scores a goal), incrementally consisting on many intermediate con-

cepts in between (e.g.,a sensor slowly wears off and becomes less accurate), gradually

(e.g.,relevant news topics change from dwelling to holiday homes, while the user does

not switch abruptly, but rather keeps going back to the previous interest for some time)

or be recurrent (e.g.,someone without political polarization may post comments about

two opposite candidates depending on the results of opinion surveys).

b b b b b

b b b b b

sudden/abrupt

b b b b b
b b
b
b b
b
b b b b b

incremental

b b b

b

b

b b

b

b b b

gradual

b b b b

b b b b

b b b b

recurrent

Figure 2.2. Patterns of changes over time [Gama et al., 2014].

According to Gama et al. [2014] most of adaptive learning techniques implicitly

or explicitly assume and specialize in some subset of concept drifts. Many of them

assume sudden non-reoccurring drifts. But in reality, mixtures of many types can be

observed.

2.2 Adaptive Supervised Learning Methodologies

Many techniques have been proposed to allow classification of evolving data

streams. Figure 2.3 is a taxonomy proposed by Žliobaitė [2010b], which groups the

learning methods. This taxonomy is based on two dimensions "When" and "How" the

algorithms learn and forget.
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Adaptive ensembles

Adaptive 

decision 

trees and 

forests

SVM
Dynamic

integration

Change 

detection 

based 

algorithms

Training

windows

Instance

selection

Instance

weighting

When

How

Trigger

based

Evolving

Training set

formation

Model manipulation,

parametrization

Figure 2.3. Adaptive supervised learning techniques[Žliobaitė, 2010b].

The “When” dimension ranges from gradually evolving to trigger based learners.

Trigger based methods implements event detectors, usually drift detector, that indi-

cates a need for model update. Such methods work well in data streams with sudden

drift as the signal can be used to rebuild the whole model, instead of just updating it.

On the other hand, evolving methods update the model gradually and usually react to

changes without any drift detection mechanism. By manipulating ensemble weights or

substituting models they try to adapt to changing environment without rebuilding the

whole model.

The “How” dimension groups learners based on how they adapt. The adaptation

mechanisms mainly involve example selection or parametrization of the base learner.

Some mechanisms attempt to better forget outdated data. This strategy adjusts models

to changing concepts. Next we highlight the usual adaptive strategies for evolving data

streams.

Adaptive Ensemble: Consists of combine or select the classification output of several

models. The combination or selection rules are often called fusion rules.

The ensemble techniques for concept drift may or not be dependent of base learn-

ers.In both cases, adaptivity is achieved by fusion rules, i.e., how weight each model

prediction at each time step. The weight indicates the competence of the base learner

expected to the current stream’s moment.

Instance Weighting: Assigns weight to each example in training set in order to

reduce the impact of examples from old concepts in the current model. This technique

may be employed with a single learning algorithm or with an ensemble. The adaptivity
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is achieved by systematic reformulation of the training set by assigning weights to

each examples. Decay functions based on time or feature’s space are used to weight

examples.

Feature Space: Consists in manipulate the feature space to achieve adaptation. In

evolving data streams features may disappear and new ones appear, thus, select the

most relevant features to the current stream’s status is mandatory.

Base Model Specific: Some traditional classification algorithms (Decision Trees,

Support Vector Machines, etc.) may be modified to adapt in evolving scenarios. In

case of decision trees, a simple approach is maintain a variable training window via

adjusting its internal structures. In case of Support Vector Machines old support

vectors are transfered and combined with recent training data.

Change Detectors: Change Detectors methods implements event detectors that in-

dicates a need for model update. Such methods work well in data streams with sudden

drift as the signal can be used to rebuild the whole model instead of just updating it.

The detection methods usually cut the training window at change point.

Training Windows Consists to provide a limited amount of examples introduced

to learner, thus eliminating those data points that come from an old concept. Each

example updates the window and later the classifier is updated by that window. The

key part of this algorithm lies in the definition of the window. In the simplest approach,

sliding windows have fixed size and include only the most recent examples from the

data stream. With each new data point the oldest example that does not fit in the

window is thrown away. When using windows of fixed size, the user is caught in a

trade-off. If it is chosen a small window size, the classifier will react quickly to changes,

but may loose on accuracy in periods of stability. If it is chosen a large window size,

may result in increasing accuracy in periods of stability, but to fail to adapt to rapidly

changing concepts.

Adaptive Sampling The listed trigger based methods were using training windows.

Another group of trigger based methods use instance selection. The incoming testing

instances (unlabeled) are inspected and then, based on the relation between the testing

instance and predefined prototypes or historical training instances, a set of training

instances is selected to be the new training set. This work lies on this category of

adaptive methodologies for evolving data streams.
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In the next section we present some relevant and recent works in data stream

learning.

2.3 Related Work

Núñez et al. [2007] proposed a method for keeping a variable training window

by adjusting internal structures of decision trees. An ensemble of Hoeffding trees have

been proposed in [Bifet et al., 2012], each tree is limited to a small subset of attributes.

Gama et al.Gama et al. [2009] proposed a mechanism to discard old information based

on a sliding window over time. Bifet and Gavaldà [2007]; Bifet and Gavaldà [2009]

present an adaptive sliding window algorithm, called ADWIN, suitable for data streams

with sudden drift. The main idea of ADWIN is whenever two sub-windows of W ex-

hibit ”distinct enough“ averages, one can conclude that the corresponding expected

values are different, and the older portion of the window is dropped out. The approach

presented in [Koychev, 2000] suggests that the introduction of a time-based forgetting

function, which makes the last observations more significant for the learning algorithms

than the old ones, thus providing adaptiveness to the classifier. Klinkenberg [2004] com-

pares example selection, often used in windowing approaches, versus example weights.

Experiments with simulated concept drift scenarios show that both approaches can ef-

fectively select appropriate training-sets. In [Santana et al., 2011] the authors proposed

an approach based on a training augmentation procedure, which takes as input a small

training seed and then automatically incorporates new relevant training messages to

the training-set. Classification models are produced on-the-fly using association rules,

which are kept up-to-date in an incremental fashion, so that at any given time the

model properly reflects the sentiments in the event being analyzed.

Some works have focused on feature similarity, such as Torres et al. [2011] that

studied different methods for data stream classification and proposed a new way of

keeping the representative data models based on similarity. Feng et al. [2013] extracted

the concept from each data block using conditional and feature similarity probabilities.

Žliobaitė [2011] proposed a family of algorithms called FISH, which uses time and space

similarities between training examples as a way of dynamically fitting the training-set

to the stream. It is proposed an unified view of the training-set formation, which is

flexible with respect to the actual changes.

Masud et al. [2008] proposed a novel technique to overcome the lack of labeled

examples by building a classification model from a training-set having both unlabeled

and a small amount of labeled instances. Zhu et al. [2010] employed active learning
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to produce a classifier ensemble that selects labeled instances from data streams to

build an accurate classifier. In [Žliobaitė et al., 2013] and [Žliobaitė et al., 2011] active

learning strategies are presented for data streaming that explicitly handle concept drift.

They are based on uncertainty, dynamic allocation of labeling efforts over time, and

randomization of the search space. Žliobaitė et al. [2010] propose a software system

that implements active learning strategies, extending the MOA framework [Bifet et al.,

2010a].

FISH algorithms proposed in [Žliobaitė, 2011] are the most close to our proposed

approaches. However, FISH algorithms focus just on adaptiveness, by combing distance

on time and space dimensions. A ranking function is employed to weight each exam-

ple and select the ones with weight greater than an arbitrary or dynamic threshold.

Another issue about FISH algorithms is that finding the optimal combination factor is

an open problem and is solved by cross validation, which is a expensive process. On

other hand, our proposed approach provides both memorability and adaptiveness to the

classifier by selecting instances that improve both properties in the training-window.

Also, we combine both aspects in a dynamic, multi-objective way, which makes our

approach suitable for different types of concept drift: gradual, sudden, incremental and

recurrent.



Chapter 3

Economically-Efficient Selective

Sampling

In this chapter we present our selective sampling algorithm named Economically-

Efficient Selective Sampling (EESS) which, aims to deal with different types of concept

drifts. However, as discussed above, there exist other challenges in data stream envi-

ronment. Addressing to such challenges, we added EESS inside a framework containing

components that face those issues. An overview of this framework can be seen in Figure

3.1.

Figure 3.1. Data Stream Framework that wraps EESS.

The framework is composed by three main parts: A learning algorithm, our se-

lective sampling approach EESS and, an active sampling strategy. As the learning task

generally requires considerable computational resources, we chose an efficient classifi-

cation model, capable to operate under time and memory restrictions. Also addressing

to reduce computational resources, EESS is able to provide small training sets to the

13
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learning algorithm reducing memory consumption as well as processing time. Training

sets provided by EESS also provides two basic features: Adaptiveness and Memorabil-

ity. We hypothesized that both features are essential to a learning model to be robust

to concept drifts. The active sampling strategy aims to reduce labeling efforts as the

data stream evolves. This is a challenging task, considered by Žliobaitė et al. [2012],

one of the next challenges that machine learning researchers will focus for adaptive

systems. We used a simple algorithm to choose streaming instances to be labeled with

a budget control.

Thus, we treat limited resources with an efficient learning algorithm plus small

training sets. Labeling efforts are reduced applying an active sampling algorithm and,

concept drifts are deal by our Economically-Efficient Selective Sampling algorithm.

The remaining of this chapter we describe each part of the framework and the

Economically-Efficient Selective Sampling algorithm. In Section 3.1 we present the

learning algorithm chosen. In Section 3.2 we show the active sampling approach.

Finally, the last two Sections are reserved to describe our approach. Section 3.3 is

destined to present the concepts of adaptiveness and memorability. In Section 3.4

we show the Utility Space built from adaptiveness and memorability measures and

introduce economic efficient criteria used to balance adaptiveness and memorability.

3.1 Association Rules and Classification Model

Next we describe classifiers composed of specific association rules, and how

these rules are used for label-scoring. Such classifiers are built on-the-fly in an in-

cremental fashion, being thus well-suited for data stream classification, as shown

in [Santana et al., 2011].

Definition 1. A association rule is X −→ si, where the antecedent X is a set of features,

and the consequent si is the predicted label. The domain for X is the features of the

training set Dn. The cardinality of rule X −→ si is given by the number of features in

the antecedent, that is |X |. The support of X is denoted as σ(X ), and is the number

of instances in Dn having X as a subset. The confidence of rule X −→ si is denoted as

θ(X −→ si), and is the conditional probability of class si given the features in X , that

is, θ(X −→ si) =
σ(X∪si)
σ(X )

.

We denote as R(tn) the classifier obtained at time step n, which is composed of a

set of rules {X −→ si} extracted from Dn. Rules in R(tn) are collectively used to score

class in instance tn ∈ T . Basically, the classifier is interpreted as a poll, in which each
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rule {X −→ si} ∈ R(tn) is a vote given by X for class si. Given instance tn ∈ T , a rule

X −→ si is only considered as a valid vote if this rule is applicable to tn.

Definition 2. A rule {X −→ si} ∈ R(tn) is said to be applicable to instance tn ∈ T if

X ⊆ tn. That is, if all features in X are present in tn.

We denote as Ra(tn) the set of all rules in R(tn) that are applicable to tn. Thus,

only and all the rules in Ra(tn) are considered as valid votes when scoring class labels

in instance tn. Further, we denote as Rsi
a (tn) the subset of R(tn) containing only

rules predicting class si. Votes in Rsi
a (tn) have different weights, depending on the

confidence of the corresponding rules. The weighted votes for class si are averaged,

giving the score for class si with regard to instance tn, as shown in Equation 3.1:

s(tn, si) =
∑ θ(X −→ si)

|Rsi
a (tn)|

(3.1)

Finally, the scores are normalized, as expressed by the scoring function p̂(si|tn),

shown in Equation 3.2. The scoring function estimates the likelihood of class si being

the implicit the underlying features in instance tn.

p̂(si|tn) =
s(tn, si)
k∑

j=0

s(tn, sj)

(3.2)

3.2 Random Active Sampling

Žliobaitė et al. [2011] presents strategies to evaluate whether a streaming instance

tn must be labeled. Among those strategies we chose the simplest, Random Sampling.

The Random strategy is naive in the sense that it labels the incoming instances at

random instead of actively deciding which label would be more useful. The labeling

decision does not depend on the actual incoming instance tn. For any instance the true

label is requested with a probability B, where B is the given budget that represents

how many resources are available to labeling. Algorithm 1 gives a formal description.

3.3 Utility Measures

Our approach to data stream classification is based on selecting the most appro-

priate instances to compose the training set at each time step. Our hypothesis is that
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Algorithm 1 Random Active Sampling

Input: Labeling budget B
Output: labeling ∈ {True, False} indicates whether to request the true label yn for

tn

1: if z < B, z ∼ U(0, 1) then

2: return labeling ← True

3: else

4: return labeling ← False

the training set must provide adaptiveness and memorability to the resulting classifier,

and thus instances should be selected properly in order to provide both properties to the

resulting classifier. This is challenging, however, because improving adaptiveness and

memorability simultaneously may lead to a conflicting-objective problem. Instead, our

selective sampling approaches form training sets that provide a proper balance between

adaptiveness and memorability. Specifically, at each time step, candidate instances are

placed into a n-dimensional space, in which each dimension corresponds to a utility

measure which is either related to adaptiveness or memorability. Next we discuss the

utility measures we investigate.

At each time step, the classifier must score classes in a particular target instance.

Some of the utility measures we are going to discuss next are based on the distance

to the target instance. By minimizing such distance we are essentially maximizing

adaptiveness, since the selected instances are more likely to belong to the same distri-

bution of the target instance (i.e., the selected instances are more similar to the target

instance), as shown in [Žliobaitė, 2010a].

Distance in space The similarity between the target instance tn and an arbitrary

instance tj is given by the number of rules in the classifierRa(tn) that are also applicable

to tj. Differently from traditional measures such as cosine and Jaccard, the rule-based

similarity considers not only isolated terms, but also combination of terms. Thus, the

utility of instance tj is given as:

Us(tj) =
|{r ∈ Ra(tn) such that r is applicable to tj}|

|{Ra(tn)}|
(3.3)

Distance in time Let γ(tj) be a function that returns the time in which instance tj

arrived. The utility of instance tj is given as:

Ut(tj) =
γ(tj)

γ(tn)
(3.4)
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Figure 3.2. Illustrative example. (Left) The dominance operator: neither a or
b dominates each other, but b dominates c. (Middle) Points lying in the Pareto
frontier. (Right) Points inside the Kaldor-Hicks region.

As for memorability, we are going to discuss a utility measure based on randomly

shuffling candidate instances:

Memorability In order to provide memorability, the training set must contain in-

stance posted in different time periods. A simple way to force this is to generate a

random permutation of the candidate instances, that is, randomly shuffling the candi-

date instances [Durstenfeld, 1964]. Let α(tj) be a function that returns the position of

instance tj in the shuffle. The utility of instance tj is given as:

Ur(tj) =
α(tj)

|Dn|
(3.5)

3.4 Economic Efficiency

In economics, the term economic efficiency refers to the use of resources so as

to maximize the production of goods and services to the society [Marshall, 2001]. An

economic system is said to be more efficient than another if it can provide more goods

and services for society without using more resources.

The economic efficiency criteria has been used in several fields beyond economics,

such as marketing and optimization. One of the most known economic efficiency criteria

used is Pareto Efficiency. This criteria follow the proper concept of Economic Efficiency.

The same intuition could be exploited for the sake of selecting instances to com-

pose the training set at each time step. In this case, a training set is economically

efficient if it is only possible to improve memorability at the cost of adaptiveness, and

vice-versa.
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There is an alternative, less stringent notion of efficiency, which is based on the

principle of compensation [Chipman, 2008]. Under new arrangements in the society,

some may be better off while others may be worse off. Compensation holds if those

made better off under the new set of conditions could compensate those made worse

off. Next we discuss algorithms that exploit these two notions of economic efficiency

in order to select instances to compose the training sets.

Pareto Frontier

Instances that are candidate to compose the training set at time step nare

placed in a 3-dimensional space, according to their utility instances, as shown in

Figure 3.2. Thus, each instance a is a point in such utility space, and is given as

< Us(a), Ut(a), Ur(a) >.

Definition 3. Instance a is said to dominate instance b iff both of the following con-

ditions are hold:

• Us(a) ≥ Us(b) and Ut(a) ≥ Ut(b) and Ur(a) ≥ Ur(b)

• Us(a) > Us(b) or Ut(a) > Ut(b) or Ur(a) > Ur(b)

Therefore, the dominance operator relates two instances so that the result of the

operation has two possibilities as shown in Figure 3.2 (Left): (i) one instance dominates

another or (ii) the two instances do not dominate each other.

Definition 4. Window Pn = {d1, d2, . . . , dm} is said to be Pareto-efficient at time step

n, if Pn ⊆ Dn and there is no pair of instances (di, dj) ∈ Pn for which di dominates

dj.

Instances that are not dominated by any other instances, lie on the Pareto fron-

tier [Palda, 2011]. Therefore, by definition, the Pareto-efficient training set at time

step n, Pn, is composed by all the instances lying in the Pareto frontier that is built

from Dn. There are efficient algorithms for building and maintaining the Pareto fron-

tier, and we employed the algorithm proposed in [Börzsönyi et al., 2001] which ensures

O(|Dn|) complexity. We denote the process of exploiting Pareto-efficient training sets

as Pareto-Efficient Selective Sampling, or simply PESS. Figure 3.2 (Middle) shows an

illustrative example of a Pareto frontier built from arbitrary points in the utility space.

Algorithm 2 shows the Pareto-Efficient Selective Sampling procedure.
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Algorithm 2 Pareto-Efficient Selective Sampling

Input: Instances in Dn

1: Pn ← ∅
2: for all instances d ∈ Dn do

3: notDominated← True

4: for all instances p ∈ Pn do

5: if d dominates p then

6: Remove p from Pn

7: else if p dominates d then

8: insert p into Pn

9: notDominated← False

10: break

11: if notDominated then

12: insert d into Pn

13: Dn ← Pn

14: return Pn

Kaldor-Hicks Region

The PESS strategy follows a stringent criterion, which tends to select only few

instances to compose the training sets. As a result, the training sets may become exces-

sively small and prone to noise. The Kaldor-Hicks criterion, on the other hand, follows

a benefit-cost analysis and circumvents the small-training set problem by stating that

efficiency is achieved if those that are made better off could in theory compensate those

that are made worse off. Thus, under the Kaldor-Hicks criterion an utility measure can

compensate other utility measures, and therefore, this criterion selects instances that

are located inside a region which is below the Pareto frontier. To define this region we

must first define the overall utility of a instance.

Definition 5. Assuming that all measures are equally important, the overall utility of

an arbitrary instance di ∈ Dn is:

U(di) = Us(di) + Ut(di) + Ur(di) (3.6)

That is, the overall utility of a instance is given as the sum of its utility measures.

Also, the baseline instance, which is denoted as d∗, is defined as:

d∗ = {di ∈ Pn|∀dj ∈ Pn : U(di) ≤ U(dj)} (3.7)

That is, the baseline is the instance lying in the frontier for which the overall

utility assumes its lowest value.
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The Kaldor-Hicks region is composed of instances for which the overall utility

is not smaller than the baseline overall utility. Such baseline utility is the utility

associated with the instance lying in the Pareto frontier for which the overall utility is

the lowest.

Algorithm 3 Kaldor-Hicks-Efficient Selective Sampling

Input: Instances in Dn and instances in Pn

1: Kn ← ∅
2: d∗ ← {di ∈ Pn|∀dj ∈ Pn : U(di) ≤ U(dj)}
3: for all instances d ∈ {Dn − Pn} do

4: if U(d) ≥ U(d∗) then

5: insert d into Kn

6: Dn ← Kn

7: return Kn

Definition 6. Window Kn = {d1, d2, . . . , dm} is said to be Kaldor-Hicks-efficient

at time step n, if Pn ⊆ Kn ⊆ Dn, and there is no instance di ∈ Kn such that

U(d∗) > U(di).

We denote the process of exploiting Kaldor-Hicks-efficient training sets as Kaldor-

Hicks-Efficient Selective Sampling, or simply KHSS. Figure 3.2 (Right) shows an illus-

trative example of a Kaldor-Hicks region built from arbitrary points in the utility space.

Algorithm 3 shows the Kaldor-Hicks-Efficient Selective Sampling procedure.



Chapter 4

Data Stream Classification

In this Chapter we empirically evaluate our EESS algorithms. In Section 4.1

we describe the experimental evaluation: evaluation metrics, baselines and experiment

setup. The remaining sections are case of study in different applications. In Section 4.2

we show the results on sentiment analysis datasets collected from Twitter. In Section

4.3 contains results of experiments performed in forest cover types dataset. In Section

4.4 we show the results in a email spam datasets. In Section 4.5 we show the results

in a poker game dataset. Finally, in Section 4.6 we discuss about the results.

4.1 Experimental Evaluation

In this section we detail experimental evaluation. First, we show metrics used

to evaluate our approach and compare it against stat-of-the-art data stream learning

algorithm (Section 4.1.1). Then, we shortly discuss about each baseline (Section 4.1.2),

followed by parameters setup for each algorithm (Section 4.1.3).

4.1.1 Evaluation Metrics

We select a set of metrics to evaluate the performance of our algorithm against

state-of-the-art algorithms. The experiments were conducted to evaluate the perfor-

mance in terms of prediction performance, computational resources and labeling efforts.

We used Mean Squared Error (MSE) to evaluate the prediction performance

through class scoring. Equation 3.2 formalize MSE concept, where si is the correct

class associated with instance ti ∈ T , and p̂(si|ti) is the class score assigned by the

classifier to instance ti ∈ T .

21
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MSE =
1

|T |

∑

∀ti∈T

(1− p̂(si|ti))
2 (4.1)

In terms of computing resources we employ RAM-Hours measure [Bifet et al.,

2010b], where every RAM-Hour is equals a GB of RAM deployed for 1 hour of execu-

tion. Also, we evaluate the amount of training resources used over time, as the number

of instances labeled during the process.

Finally, to evaluate labeling efforts we ranged the labeling budget control and

correlated it with the overall MSE.

4.1.2 Baselines

As baselines, we used Hoeffding Adaptive Trees [Bifet and Frank, 2010;

Bifet et al., 2011] (abbreviated as HAT), Active Classifier [Žliobaitė et al., 2013, 2011]

(abbreviated as AC), and Incremental Lazy Associative Classifier [Santana et al., 2011]

(abbreviated as ILAC). Next we briefly describe the main characteristics of each of these

algorithms.

Hoeffding Adaptive Trees is the mixture between Hoeffding Trees (a.k.a. Very Fast

Decision Tree) and ADWIN algorithms. Hoeffding Trees is an incremental, anytime

decision tree induction algorithm that is capable of learning from massive data streams,

assuming that the distribution generating examples does not change over time. Ho-

effding trees exploit the fact that a small sample can often be enough to choose an

optimal splitting attribute. This idea is supported mathematically by the Hoeffding

bound, which quantifies the number of observations needed to estimate some statistics

within a prescribed precision. The Hoeffding Adaptive Trees uses ADWIN to monitor

the performance of branches on the tree and to replace them with new branches when

their accuracy decreases if the new branches are more accurate. ADWIN is a change

detector and estimator that keeps a variable-length window of recently seen items, with

the property that the window has the maximal length statistically consistent with the

hypothesis “there has been no change in the average value inside the window”.

Active Classifier is a theoretically supported framework for active learning from

drifting data streams and develops three active learning strategies for streaming data

that explicitly handle concept drift. They are based on uncertainty, dynamic allocation

of labeling efforts over time and randomization of the search space.
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Incremental Lazy Associative Classifier is an incremental streaming algorithm,

which produces classification models using association rules. The classification model

is kept up-to-date in an incremental fashion, so that at any given time the model

properly reflects the current concept. In order to track concept drift, ILAC projects

training examples on a demand driven basis, according to the content of the instance

being classified. Projecting the training data offers a series of advantages, including

the ability to quickly detect trending information emerging in the stream.

4.1.3 Experiments Setup

All experiments were performed on a 1.93 GHz Core i7 machines with 8GB of

memory, using the MOA system [Bifet et al., 2010a], an environment for running ex-

periments with data streams.

Our evaluation follows the Test-Then-Train methodology, in which each individ-

ual instance in T is used to test the classifier and then it becomes available for training.

In order to simulate a real situation of data stream analysis where, it is not possible to

create large training sets, we provided a small training seed containing 1% of all data

set for each classifier.

We ranged labeling budget parameter between 0.01 and 1 for our approaches and

AC. To AC we set Random Variance Uncertainty [Žliobaitė et al., 2013, 2011] strategy

to sampling from the stream. HAT algorithm we found that the default parameters

achieved the best results and ILAC we setup the confidence and support thresholds as

0.01, and maximum size of rules as 3.

4.2 Sentiment Analysis

There is a growing trend in performing sentiment analysis using classification-

related techniques, where the classification model is built from a labeled sentiment

training set by learning the underlying characteristics that distinguish one sentiment

from another (i.e., happiness, madness, surprise, suspicion). The success of these clas-

sifiers rests on their ability to judge attitude by means of textual-patterns present in

the data, which usually appear in the form of (idiomatic) expressions and combinations

of words.

Sentiment analysis have been used for different purposes such as, product [Turney,

2002], movie [Pang et al., 2002] and restaurant [Snyder and Barzilay, 2007] reviews. As

result the information obtained from the analysis of the customers reviews is becoming
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a strategy key on e-commerce systems, recommendation systems, content providers,

and search engines.

Recently social networks have attracted attention to application of sentiment

analysis given the ubiquitous reach, easy communication and collection of data. Often

social media sites offers Application Programming Interfaces (API’s) which enables

easily crawl public data from them users. Also these sites are responsible for more than

two-thirds of all Internet users[nie, 2009]. Besides, the content collected from these

social media sites have been used to advertising on-the-fly by recognizing customer

sentiment in real-time being a potential technology breakthrough[Hof, 2013].

A success case was demonstrated in 2013’s National Football League’s Superbowl

(a premier sporting event in the USA) where a well known manufacturer of Oreo

cookies took advantage of a third quarter blackout (and associated Twitter sentiment)

to embed a contextual advertisement. Another example at the same event was the

advertisement for a Hollywood movie, where, based on the initial advertisement which

happened before the start of the first quarter (and associated Twitter sentiment), the

decision on which of several possible advertisements to run later on in the program was

apparently taken as a runtime decision.

In particular, Twitter has proven itself to be an authoritative source of breaking

news, some of which concerning important topics and events of huge impact world

wide [Jansen et al., 2009]. Lightweight and easy communication mechanisms within

Twitter, such as microblogging, make users eager to express and share their opinions.

As a result, sensitive information is created almost in the same time the event is

happening in the real world, and it becomes available shortly after it is created.

However, sentiment analysis over Twitter real-time instances is particularly chal-

lenging, because:

1. As mentioned above, Twitter (and other social media channels) follows the data

stream model1 restricting memory and time of processing;

2. The training-set is potential noisy, since training instances may be (incorrectly)

labeled using either the current classifier [Santana et al., 2011] or author- provider

sentiment indicators (i.e., emoticons and hash tags [Barbosa et al., 2012]);

3. Either sentiment distribution or the characteristics related to certain sentiments

may change over time in almost unforeseen ways (i.e., sentiment drifts);
1 There are three main source streams in Twitter. The Firehose provides all status updates from

everyone in real-time, which corresponds to more than 140 million tweets daily (on average). Spritzer
and Gardenhose are two subsamples of the Firehose. The sampling rates are 5% and 15%, respectively.
Also, specific subsamples may be created by inspecting specific events or topics.



4.2. Sentiment Analysis 25

Given the challenges of real-time sentiment analysis over Twitter we performed

a systematic set of experiments using sentiment-rich Twitter data collected from three

important events in 2010. We employed different sentiments expressed in different

languages.

4.2.1 Sentiment Stream Analysis

In our context, the task of learning sentiment streams is defined as follows. At

time step n, we have as input a training window referred to as Dn, which consists of

a set of records of the form < d, si >, where d is a instance (represented as a list of

terms), and si is the sentiment implicit in d. Messages in Dn are uniquely identified

and the sentiment variable s draws its values from a pare-defined and discrete set

of possibilities (e.g., s1, s2, . . ., sk). The training window is used to build a classifier

relating textual patterns in the instances to their corresponding sentiments. A sequence

of future instances referred to as T = {tn, tn+1, . . .}, consists of instances for which only

their terms are known, while the corresponding sentiments are unknown. The classifier

obtained from Dn is used to score the sentiments for instance tn in T . Once processed,

instance tn is included into Dn+1, so that another classifier is built.

There are countless strategies for devising a classifier for sentiment analy-

sis. The majority of these classification strategies, however, are not well-suited to

deal with real-time data coming on streams. Some strategies [Breiman et al., 1984;

Cortes and Vapnik, 1995] are specifically devised for offline classification, and this

is problematic because producing classifiers on-the-fly would be unacceptably costly.

Even updating the models in scenarios with high-speed streams would be excessively

lengthy. In such hard circumstances, alternate classification strategies may become

more convenient.

4.2.1.1 Brazilian Presidential Elections

The presidential election campaigns were held from June to October 2010. The

candidate Dilma Rousseff launched a Twitter page during a public announcement, and

she used Twitter as one of the main sources of information for her voters. The campaign

attracted more than 500,000 followers and as a result Dilma was the second most cited

person on Twitter in 2010. The election came to a second round vote, and Dilma

Rousseff won the runoff with 56% of the votes.

Dilma Rousseff Election Campaign We collected 66,643 messages in Portuguese

referencing Dilma Rousseff in Twitter during her campaign. The dataset contains
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62,089 distinct terms, and a message is posted every 50 seconds, on average. We

labeled these messages in order to track the population sentiment of approval during

this period. As shown in Figure 4.1 (a), approval varied significantly over the time due

to several polemic statements and political attacks, and our goal is to score approval

during her campaign.
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(a) Approval over Dilma Rousseff’s cam-
paign. Approval sentiment varied greatly
from 05/2010 to 11/2010.
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Figure 4.1. Brazilian Presidential Elections. Tweets are in Portuguese.

Figure 4.1 (b) shows the results in terms of MSE obtained for the evaluation

of the classifiers in this dataset. The x-axis represents different time steps (i.e., each

instance that passes in the stream), while the y-axis shows the MSE so far. As it can

be seen, our proposed algorithms provide a comparable approximation in comparison
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with the baselines as the stream evolves.Both, PESS and KHSS, started much bet-

ter than the other competing algorithms, but after a point (around 0.3) the models

deteriorate. Although PESS and KHSS increases the approximation errors, the total

approximation error in the stream is close to AC and ILAC. Figure 4.1 (c) shows a

scatter-plot correlating labeling efforts and area under error curve. PESS, KHSS and

AC have labeling effort control through labeling budget parameter whereas ILAC as

well as HAT requires that every streaming instance to be labeled in order to update

their models. As can be seen MSE decreases for PESS, KHSS and AC as more efforts

are spent in labeling. With a labeling budget of 0.25 PESS, KHSS and AC outper-

form ILAC. HAT has the worst performance even requiring that every instance being

labeled. PESS and KHSS are comparable to AC but AC achieves lower MSE for all

labeling budget values.

Figure 4.1 (d) shows how size of training varies as the stream evoltes. We assume

that HAT requires only the target instance for updating its tree model, and thus

we consider that the training set is composed only by the target instance. The AC

algorithm requires much more instances within each training set. An abrupt decrease

in the number of training messages is always observed after drifts. Although ILAC

performs a data projection strategy that filters irrelevant instances at each time step,

it is clear that the number of training instances still increases as the stream evolves.

The proposed algorithms requires very small training sets, since the Pareto frontier

at each time step is composed by few instances, but these instances are still able to

make the classifier robust to drifts as the stream evolves. Further, despite being less

stringent than PESS, the proposed KHSS algorithm also requires small training sets.

Figure 4.1 (e) shows RAM-Hours numbers for the algorithms. AC, as well as

PESS and KHSS, are clearly the best performers in terms of amount of computing

resources required. ILAC is the worst performer.

4.2.1.2 TIME’s Person of the Year

Every year, TIME magazine selects the person (or a group of persons) that has

mostly influenced during the year. The chosen person for 2010 was Mark Zuckerberg.

The reader choice, however, was Julian Assange, with an overwhelming superiority of

votes.

Zuckerberg and Assange We collected 5,616 instances in English referencing Julian

Assange and Mark Zuckerberg from 1-15-2010 to 12-21-2010. The dataset contains

7,294 distinct terms, and a message is posted every 45 seconds, on average. We labeled
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them in order to track diverse sentiments regarding the magazine’s decision. Senti-

ments include (dis)approval, surprise (since the reader choice was pointing to Julian

Assange), and even fury. As shown in Figure 4.2 (a), furry about Julian Assange var-

ied significantly over the time. Furthermore, between 01-15-2010 and 04-01-2010 there

were a mixture of feelings on the choice of Person of the Year, what causes sudden

drifts. In this period adaptation is more required than memorability.
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Figure 4.2. Person of the Year. Tweets are in English.

Figure 4.2 (b) shows the results in terms of MSE. As it can be seen, a better

approximation is obtained by HAT and ILAC. For this dataset, AC achieved MSE

numbers close to HAT and ILAC. At the end of the process, both PESS and KHSS

algorithms reduced the approximation errors but, still worst than other algorithms.

Figure 4.2 (c) shows the trade-off between labeling budget and MSE. Again, MSE

numbers decrease as more resources are available for labeling. AC achieves better MSE

numbers when is available 0.5 of labeling budget, being extremely competitive against

HAT and ILAC that require all the stream labeled.

Finally, Figure 4.2 (d) shows RAM-Hours numbers for the evaluated algorithms.

The AC algorithm, as well as PESS and KHSS are, again, extremely competitive in

terms of amount of computing resources required. ILAC is the worst performer.
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4.2.1.3 FIFA World Cup

The 2010 Soccer World Cup involved 32 teams. The Brazilian team was defeated

by the Dutch team on 07-02-2010, after a controversial match. The Brazilian team

scored first, but soon after the Dutch team scored twice and won the match. A specific

player, Felipe Melo, had decisive participation (for better and worse) in all three goals.

Specifically, Figure 4.3 (a) shows how the appreciation for Felipe Melo expressed by

Brazilian Twitter varied during the match.

The Brazilian Defeat We collected 1,020 messages referencing Felipe Melo. We

randomly selected 4,646 of these messages, and we annotated them in order to track

the sentiment of appreciation for the participation of Felipe Melo. This resulted in

two datasets, the first one containing 3,214 annotated messages in Portuguese (8,101

distinct terms), and the second one containing 1,432 annotated messages in English

(4,962 distinct terms). For these datasets, messages in the stream come in at a rate of

1.1 messages/sec.

We start by analyzing the dataset in Portuguese. Figure 4.3 (b) shows the results

in terms of MSE. We assume that these messages expose the sentiment expressed

by Brazilian Twitter users during the match. As it can be seen, all algorithms were

impacted by sudden drifts (as shown in Figure 4.3 (a)) that occurs during the match.

ILAC achieved better MSE numbers in beginning, however, it delays to adapt after the

concept drift and achieved worst MSE numbers. AC and HAT algorithms starts with

worst MSE numbers and adapt their models reducing approximation errors. In the last

moments of the stream, when Felipe Melo was excluded from the match and causes

another drift, HAT had a sudden worsening in the MSE numbers. On the other hand,

PESS and KHSS had shown extremely competitive with ILAC in the first moments,

keeping a better approximation after the drift and reducing the MSE numbers. For

this dataset, memorability is not mandatory (as the data distribution never returns to

a pre-drift distribution), and thus PESS and KHSS were not able to provide significant

improvements, although being the best performers overall.

The trade-off between labeling budget and MSE is shown in Figure 4.3 (c). PESS

and KHSS achieved better MSE numbers than other algorithms with labeling budget

equals to 0.1 and 0.25, being outperformed by AC after 0.5.

Figure 4.3 (d) shows the number of instances composing the training set at each

time step. As in previous cases, AC and ILAC require much more training resources

than other competing algorithms. PESS as well as KHSS require much less training

instances, again, showing that the selective sampling strategy is effective in producing
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Figure 4.3. The Brazilian Defeat. Tweets are in Portuguese.
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small and effective sets at each time step.

Finally, Figure 4.3 (f) shows RAM-Hours numbers. In this case, AC, as well as

PESS and KHSS, are clearly the best performers in terms of amount of computing

resources required. ILAC is the worst performer.
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Figure 4.4. The Brazilian Defeat. Tweets are in English.

The last set of experiments of sentiment data streams concerns the evaluation of

the same event, but using the dataset composed of messages in English. Figure 4.4 (a)

shows the appreciation regarding Felipe Melo. By inspecting the dataset, we confirmed

that most of the messages were posted by people in Europe, specially German, English

and Dutch users. Such users showed conflicting or mixed sentiments as the match
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goes. As a consequence, drifts occur, but eventually the sentiment distribution returns

to a pre-drift distribution, making memorability an important property while scoring

sentiments in this dataset.

Figure 4.4 (b) shows MSE numbers as the stream evolves for each classifier. As

can be seen, AC is the worst performer at beginning, but achieves a performance close

to HAT and ILAC. PESS and KHSS had the best approximation.

The trade-off between labeling budget and MSE is shown in Figure 4.4 (c). PESS

and KHSS are clearly better other algorithms. AC achieve its better result with labeling

budget equals to 0.5, outperforming ILAC and HAT.

Figure 4.4 (d) shows the number of instances composing the training set at each

time step. AC and ILAC require much more training instances than the other algo-

rithms. PESS as well as KHSS requires much less training instances.

The computational resources, measured by RAM-Hours metric, required by each

algorithm can be seen in Figure 4.4 (e). HAT is the best performer in terms of RAM-

Hours. AC, as well as PESS and KHSS achieved close numbers in this data set. ILAC

is the worst performer.

4.3 Forest Cover Type

In this section we evaluate our approaches in the Forest Cover Type dataset from

the UCI KDD archive. The goal is to predict the forest cover type from cartographic

variables. The problem is defined by 54 variables of different types: continuous and

categorical. The dataset contains 581.102 examples. We generated a stream from

the temporal sort of the original dataset. This dataset contains 7 classes and Figure

4.5 shows the distribution of each cover type over the stream. As can be seen, this

dataset contains sudden and recurrent drifts being a scenario where memorability can

be essential. For this dataset we used AC and HAT as baselines.

Figure 4.6 (a) shows MSE numbers over the stream. PESS as well as KHSS

starts with the worst MSE numbers, however, after 20% of the stream has passed,

both ones reduce the approximation errors being very competitive to HAT. After that

point, memorability becomes an important requirement and our approaches shown

able to balance adaptation to the sudden drifts and recurrent concepts that appears

as the stream evolves. As can be seen, HAT and AC have increasing MSE numbers

while PESS as well as KHSS keeps the error rates constants. Although, HAT achieves

better approximation, it requires the true label for every instance after the prediction

(labeling budget equals to 1.0), while, our algorithms require only 20% to provide an
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Figure 4.5. Cover type distribution over the stream.

approximation competitive with HAT. When PESS and KHSS operates with labeling

budget of 1.0 achieves better results than HAT, as can be seen in Figure 4.6 (b). For

an smaller labeling budget equals to 0.1 AC is better than PESS and KHSS, however,

as more labeling budget is provided, our approaches outperform AC and HAT.

We also measure the amount of resources required for each algorithm. Figure 4.6

(c) shows the amount of training instances required for each algorithm. AC requires

much more examples than PESS and KHSS. This result also shows that our selective

sampling approaches are able to keep small training sets that provides enough informa-

tion to a classifier predict over the stream. However, Figure 4.6 (d) shows that PESS

as well as KHSS requires more RAM-Hours resources than others algorithms. Under

this aspect AC performed better.

4.4 Spam Filtering Dataset

In this dataset we investigate the performance of our approaches in the spam

filtering scenario. This dataset was used by Katakis et al. [2010] which proposed a
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Figure 4.6. Forest Cover Type

general framework for classifying data streams by exploiting stream clustering in order

to dynamically build and update an ensemble of incremental classifiers. This dataset

uses English email messages from the Spam Assassin Collection2. The task of this

problem is discriminate between spam and legitimate messages. The spam ratio of

the Spam Assassin collection is approximately 20%. The collection was sorted by the

date and time that the mail was sent. The boolean bag-of-words approach was used

for representing emails. This dataset consists of 9,324 instances, 500 attributes (words

derived after applying feature selection with the χ2 measure). This dataset contains

gradual concept drift as mentioned by authors in [Katakis et al., 2010]. Figure 4.7

(a) shows the distribution of legitimate emails over the stream. As can be seen, the

proportion of legitimate emails gradually grows, alternating with some local sudden

and recurrent drifts.

Figure 4.7 (b) shows the MSE numbers over the stream. PESS as well as KHSS

are very competitive against HAT algorithm in the first 20% of the stream, while

AC achieves higher MSE numbers, being the worst one. However, in the rest of the

stream AC reduces the approximation errors achieving competitive values in relation

2The Apache SpamAssasin Project - http://spamassassin.apache.org/
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Figure 4.7. Spam Filtering Dataset. Email messages are in English.

to HAT. PESS and KHSS slightly vary the approximation errors. Figure 4.7 (c) show

correlation between labeling effort and MSE numbers. As can be seen HAT achieves

better results than other algorithms, howver, AC achieves comparable results using

less labeling efforts. PESS and KHSS decreases MSE numbers as more labeling budget

is provided. In other hand, AC is irregular with different values of labeling budget.

PESS as well as KHSS outperform AC for labeling budget greater than 0.25.

Figure 4.7 (d) shows the training set as the stream evolves. As in previous cases,

PESS as well as KHSS keep small training sets and AC requires much more examples.

In terms of RAM-Hours, AC and HAT are the best performers, as shown in Figure 4.7
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(e).

4.5 Poker Hand Prediction

In this dataset we experimental evaluate our algorithms in the poker hand pre-

diction task. The Poker Hand dataset is from UCI KDD repository and consists of

1,000,000 instances and 11 attributes. Each record of the Poker-Hand dataset is an

example of a hand consisting of five playing cards drawn from a standard deck of 52.

Each card is described using two attributes (suit and rank), for a total of 10 predictive

attributes. There is one class attribute that describes the 11 poker hands. Figure 4.8

(a) shows the distribution of the One Pair hand as the stream evolves.

This stream contains a natural unbalance between the classes once some poker

hands are more likely to appear than others. During the stream this feature causes

gradual and recurrent drifts. That makes the balance between memorability and adap-

tation an important requirement. Figure 4.8 (b) shows the MSE number over the

stream. The beginning of the stream (first 20%) has only two predominant classes well

balanced. HAT and PESS as well as KHSS have a slightly approximation error de-

creases in contrast with AC that commit more errors. After this point, a scenario with

gradual and recurrent drifts appears. At this point the algorithms must be prepared

to adapts to new concepts and remember previous ones. Under this requirement our

approaches achieves the lower MSE numbers, being the best performers. AC achieves

the higher approximation errors.

Figure 4.8 (c) shows the correlation between labeling budget β and MSE num-

bers for PESS and KHSS. As in previous cases, the performance, in terms of MSE,

improves as more labeling budget is available. For all labeling budget PESS and KHSS

outperform AC as well as HAT. AC achieves better results at 0.5 of labeling budget,

outperforming HAT.

Figure 4.8 (d) shows that PESS as well as KHSS are able to keep small training

sets that provide good generalization through the balance between adaptation and

memorability obtained from our multi-objective model. In terms of RAM-Hours, our

approaches require much more computational resources than AC and HAT, as can be

seen in Figure 4.8 (e).
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Figure 4.8. Poker hand prediction.

4.6 Discussions

In this chapter we presented an extensive experimental evaluation of our algo-

rithms. We deal with different problems modeled as data streams, such as sentiment

analysis, forest cover type prediction, spam filtering, and poker hand prediction. Each

of those datasets contains different types of concept drifts. Table 4.1 summaries types

of concept drift found in each dataset. As can be seen, all datasets are combination of

two or more concept drift types, what requires capabilities hypothesized in this work:

Adaptation and Memorability.

When sudden concept drifts raise from the stream, the algorithm needs to quickly
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Table 4.1. Concept Drift patterns for each dataset (X - Concept Drift type
present).

Concept Drift Type
Dataset Sudden Incremental Gradual Recurrent
Presidential Elections - X X -
Person of the Year - X X -
FIFA World Cup - EN X - - -
FIFA World Cup - PT X - - -
Cover Type X - X X
Spam Filtering X - X X
Poker Hand - - X X

adapts to new concept, in other hand, when incremental or gradual concept drifts hap-

pen the algorithm have to change the concept learning in the same rate of the stream.

Datasets highlighted in Table 4.1 are the ones where our algorithms outperformed the

baselines. This results support our hypothesis that learning algorithms need Adapta-

tion and Memorability capabilities. Furthermore, our algorithms were able to provide

a proper balance between both capabilities to the classifier in different situations where

mixtures between drift types are present.

The evaluation of correlation between labeling budget β and MSE numbers shown

that, in general, as higher labeling budget better is class approximation. In terms of

computing resources, PESS as well as KHSS were able to produce small training sets,

capable to provide the proper balance between adaptation and memorability. How-

ever, even with small training sets, our approaches still requires more computational

resources than HAT and AC in most cases.

By analyzing above results, our approaches had shown to be competitive in sce-

narios with recurrent and gradual drifts as well as with sudden drifts without recurrent

concepts (Brazilian Defeat Portuguese). Further, about economic criteria, both criteria

achieved very similar results and there is not significant difference between them.
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Conclusions

In this work we addressed the problem of learning on evolving data streams. We

defined the main characteristics of data stream and discussed different types of changes

that occur in streaming data. We focus on concept drifts that are a non-random class

for changes on data. We presented some methodologies for learning on data streams,

such as training windows, adaptive ensembles of classifiers, contextual classifiers, etc.

Our analysis lead to the development of a new algorithm called Economic-Efficient

Selective Sampling (EESS), which model the requirements to learn on data streams in

two capabilities: Adaptiveness and Memorability. Our algorithm select examples that

optimize both capabilities applying the concept economic efficiency. We used this

concept to simultaneously improving adaptiveness and memorability.

EESS may be instantiated using any efficiency criteria. In this work we employ

Pareto criteria, which we called as PESS, and Kaldor-Hicks criteria, which we called

as KHSS. In order to reduce the amount of labeling required we employed Random

Sampling strategy labeling budget control.

We implemented EESS in MOA system and extensively evaluated PESS and

KHSS in several scenarios and applications against three representatives of state-of-

the-arts: Hoeffding Adaptive Trees, Active Classifier and ILAC. PESS as well as KHSS

performed with similar results and shown to be robust to recurrent and gradual drifts.

Also, in scenarios with sudden drift followed by a constant concept PESS as well as

KHSS outperformed the baselines. Our strategies shown be very competitive against

the baselines, outperforming or achieving similar results in almost all experiments in

terms of class approximation.

Although this work achieved good results, it has some limitations. One of then

is the fact that EESS was unable to achieve good result in Time’s Person of the Year

dataset. The achieved results was due heavily unbalance among the classes and se-

39
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quential concept drifts. In this situation EESS strategy becomes incapable to provide

a good balance between adaptiveness and memorability. In order to make EESS strat-

egy robust in this scenario we intent to explore other dimensions to be inserted in the

Utility Space. As the scenario in this dataset contains recurrent drifts we have to build

a measure to emphasis memorability. Contextual information may be a good dimen-

sion for this issue once such information is robust to drifts as shown by Guerra et al.

[2011].

Further add explore other source of information to create new dimensions, explore

other learning algorithms may help to face scenarios as above commented. EESS is a

wrapper for learning algorithms, so, we can plug any classifier to it and explore the

features of both: the classifier and EESS. In addition to this, other learning method-

ologies, such as semi-supervised learning and reinforce learning may be also applied

inside EESS.

EESS has a great potential as shown in this work. As future works we intent,

in addition to create new dimensions and use other learning algorithms and method-

ologies, apply our algorithms in other data stream applications, such as advertising,

recommendation and summarization.
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Žliobaitė, I., Bifet, A., Holmes, G., and Pfahringer, B. (2010). MOA concept drift active

learning strategies for streaming data. The Journal of Machine Learning Research,

11:1601--1604.
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