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Resumo
Essa tese consiste de alguns resultados acerca de superfícies diferenciáveis, orientáveis,
compactas, conexas, com bordo não vazio e curvatura média constante (CMC).

Na primeira parte, nós usamos o Método de Reflexão de Alexandrov para obter uma
caracterização para anéis CMC, capilares, mergulhados na bola euclideana B3. Em
especial, usando uma nova estratégia, nós apresentamos uma nova caracterização para
o catenóide crítico. Precisamente, nós mostramos que sendo Σ ⊂ B3 um anel CMC,
capilar, mergulhado em B3, tal que ∂Σ é invariante sob reflexões através dos planos
coordenados, então Σ deve ser rotacionalmente simétrico. Por fim, apresentamos uma
nova demonstração para o Teorema de Pyo, no caso mergulhado.

Na segunda parte, nós estudamos imersões φ com curvatura média anisotrópica cons-
tante (CAMC), de uma variedade orientada, conexa, compacta, e com bordo não
vazio, Σ, em uma região Ω cujo bordo é uma superfície de revolução. Percebemos que,
diferentemente do caso clássico, as imersões CAMC, φ, não são necessariamente free
boundaries. Assim, nos perguntamos quais seriam essas. Primeiramente, nós encon-
tramos condições sobre o bordo, em seguida provamos que φ(Σ) deve ser um disco flat
e, por fim, determinamos sob quais condições ele é estável.

Palavras-chave: Imersões capilares. Mergulhos capilares. Imersões anisotrópicas capi-
lares.





Abstract
This thesis consists of some results about an orientable connected compact differentiable
surface with boundary and constant mean curvature (CMC).

In the first part, we used the Alexandrov Reflection Method to obtain a characterization
to embedded CMC capillary annulus in B3. In especial, using a new strategy, we present
a new characterization to the critical catenoid. Precisely, we show that Σ ⊂ B3 being an
embedded minimal free boundary annulus, such that ∂Σ is invariant under reflection
through of the coordinated planes, then Σ is the critical catenoid. Finally, in the case
embedded, we presented a new proof for one Pyo’s theorem.

In the second part we studied immersions with constant anisotropic mean curvature
(CAMC) φ of a smooth oriented connected and compact surface Σ, such that ∂Σ 6= ∅,
in a region Ω whose boundary is a revolution surface. Unlike the classic case, if φ is a
CAMC immersion, it is not possible to state that φ is free boundary. Thus, we asked
ourselves what should be the CAMC free boundaries immersions. First, we found one
condition on the boundary, then we prove that φ(Σ) should be a flat disk and under
what conditions it is stable.

Keywords: Capillary embedded. Capillary Immersion. Free boundary anisotropic Im-
mersion.
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Introduction

In this work, we studied the behavior of surfaces, Σ, with constant mean curva-
ture (CMC) and boundary ∂Σ 6= ∅, properly immersed in B3, i.e.,

intΣ ⊂ intB3 (1)

∂Σ ⊂ ∂B3 (2)

and we suppose that ∂Σ meet ∂B3 with a constant contact angle. For example, consider
the disks

Dk = {(x, y, z) ∈ R3 ; z = k} ∩ B3, k ∈ (−1, 1), (3)

each one of this is an example from CMC surfaces, minimal surface when k = 0, properly
immerse in B3 and such that ∂Dk meet ∂B3 with a constant contact angle θk = arccosK.

D0

Dk
θk

NDk

NS2

Figure 1 – To each flat disk Dk, ∂Dk meet ∂B3 with a constant contact angle θk.

Related issues to CMC surfaces, Σ, with ∂Σ 6= ∅, immersed in a ball, with others
additional hypotheses, have been subject of study for a long time. In a classical result,
due to Nitsche [1], he claims that the flat disk D0 is the only immersed CMC disk,
free boundary in a ball B3. Ros and Souam [2] considered an embedded CMC surface,
capillary in an euclidean ball, such that ∂Σ is contained in an open hemisphere of ∂B
and they concluded that Σ must be of disk type.

Immersions φ : Σn → B ⊂ Rn+1, such that ∂Σ 6= ∅, with constant mean curvature
and constant contact angle θ = π

2 , called free boundary CMC surface, are known as
solutions to the variational problem given by the area functional

A(ε) =
�

Σ
dΣε. (4)

Precisely, consider Φ : (−ε0, ε0)× Σn → B a smooth variation of immersion φ, i.e., Φε(p) :=
Φ(ε, p) is a smooth immersion of φ, ∀ ε ∈ (−ε0, ε0), and Φ0 = φ. In (4), dΣε is the area
element of Σ in the induced metric by Φε.
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A variation Φ is called admissible if

Φε(intΣ) ⊂ intB (5)

Φε(∂Σ) ⊂ ∂B (6)

for all ε ∈ (−ε0, ε0). Also consider the volume function given by

V (ε) =
�

[0,ε]×Σ
Φ∗dV (7)

where Φ∗dV is the pull back of canonical volume element dV . We called that the variation
Φ is volume preserving if, V (ε) = V (0), ∀ ε ∈ (−ε0, ε0).

Now, we can formalize what was said above about the relationship between free
boundary CMC surfaces with non-empty boundary and the functional area shown in
(4): these are critical points of the area functional, A, for volume preserving admissible
variations, is that,

A′(0) := dA
dε

∣∣∣∣∣
ε=0

= 0, (8)

for all variation, Φ, volume preserving admissible.

In [3], Ros and Vergasta partially classified, between the free boundary CMC
immersions in a ball Bn, those that are stable, i.e., the free boundary CMC immersions
such that

A′′(0) ≥ 0, (9)

for all variation, Φ, normal volume preserving admissible, where normal means that
the variation vector, dΦ

dε

∣∣∣
ε=0
∈ T⊥p Σ, ∀ p ∈ Σ. Their results were improved by [4], [5], and

this problem was definitely solved by [6]. Other authors studied immersions in others
ambient manifolds, as Pyo in [7] and Koiso in [8]. Below is a conjecture that motivated
part of the our work and that recently received a response, but this response still needs
confirmation.

Conjecture - Fraser and Li [9]: The critical catenoid is the unique properly em-
bedded free boundary minimal annulus in B3, up to rotations.

There exist a parallel between the above conjecture and the

Conjecture - Lawson [9]: The Clifford Torus is the only embedded minimal torus
in S3, up to rotations.

The Lawson’s conjecture was definitively solved by Brendle in [10]. However,
there was previously a partial demonstration due to Ros [11]:

Theorem 0.0.1 (Ros) Let Σ ⊂ S3 be an embedded minimal torus, symmetric with respect to
the coordinate hyperplanes of R4. Then Σ is the Clifford torus.
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In the case of the conjecture of Fraser and Li, there is an analogous result obtained
by Ros, due to McGrath [9]:

Theorem 0.0.2 (McGrath) Let Σ ⊂ Bn, n ≥ 3, be an embedded free boundary
minimal annulus. If Σ is invariant under reflection through three orthogonal hyperplanes
Πi, i = 1, 2, 3, then Σ is the critical catenoid, up to rotation.

It is well known that, if Σ is a minimal surface, free boundary in B3, then its
coordinated functions are solutions for the Steklov Problem with respect to Σ,

∆u = 0, on Σ,
∂u

∂η
= σu, along ∂Σ,

(10)

for σ = 1, where η is the unit normal vector outward of S2. In (10), σ ≥ 0 is known as
eigenvalue for the Steklov Problem and u is called eigenfunction of Steklov associated with σ.
The smallest eigenvalue, 0 < σ1 ≤ 1, is the first eigenvalue of Steklov and the functions
associated with σ1 are the first eigenfunctions of Steklov. Thus, when Σ is a free boundary
minimal surface in B3, σ = 1 is a eigenvalue for Steklov Problem associated with Σ and
0 < σ1 ≤ 1. McGrath used the assumptions of symmetry for prove that the coordinated
functions are first eigenfunctions of Steklov problem and, to conclude the proof, he
used the below result, that can be found in [12].

Theorem (Fraser and Schoen): Suppose Σ is a free boundary annulus in Bn such
that the coordinated functions are first Steklov eigenfunctions. Then n = 3 and Σ is
congruent to the critical catenoid.

In this work we presented, in the case n = 2, an improvement for the McGrath
Theorem, as consequence of the following result:

Theorem 2.3.1 Let Σ2 ⊂ B3 be an embedded CMC capillary annulus, such that ∂Σ is
symmetrical with respect to the coordinated planes, then Σ is rotationally symmetric.

This theorem improved significantly compared to those found in the literature. In
their hypotheses, we consider cmc capillary surfaces instead of free boundary minimal
surfaces. Compared to McGrath’s results, we assume that ∂Σ is invariant under reflec-
tion through three orthogonal hyperplanes, in contrast, he assumes such a propriety
for Σ. Thus, when n = 2, the following corollary is an improvement that we give to
McGrath’s theorem, in addition to using another strategy.

Corollary 2.3.1 Let Σ2 ⊂ B3 be an embedded annulus minimal free boundary. If ∂Σ is
symmetrical with respect to the coordinated planes, then Σ is the critical catenoid.

We also present a new version, in the embedded case, of the proof from following
result, that can be found in [7], due to Juncheo Pyo.
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Theorem 2.3.2 [Pyo] Let Σ2 be an embedded minimal surface in R3 with two boundary
components and let Γ be one component of ∂Σ. If Γ is a circle and Σ meets a plane along
Γ at a constant angle, then Σ is part of the catenoid.

In chapter three, we considered a new concept of curvature, the anisotropic mean
curvature, denoted by Λ, that will be defined below and is a generalization of the mean
curvature H . Analogously to the classical case, associated to area functional, A, given
in (4), the immersion φ : Σ→ Ω have constant anisotropic mean curvature (CAMC) if
and only if φ is solution of variational problem with respect to functional

F(ε) =
�

Σ
F (ν(ε, p)) dΣε (11)

where F : Sn → R+ is a smooth function and ν(ε, p) is the unit normal vector from Σε,
at point p. The anisotropic mean curvature is defined by

Λ(p) := nH(p)F (ν(0, p))− divΣDF (ν(0, p)). (12)

where H(p) is the mean curvature from Σ at point p and DF is the gradient from F

on S2. In this work, as well as in the consulted literature, we will consider the matrix
A := D2F + F1 positive definite.

In [13] it was proved that being Σ complete with respect to the induced metric
and under other assumptions, a CAMC stable immersion is a Wulff Shape , up to a
translation and homothety. In [14], they considered free boundary variations in a slab
and classed the CAMC stable immersions.

In this work, we considered the generalized area functional F , where F will have
the form F = f(ν3), and free boundary variations of immersions

φ : (Σ2, ∂Σ)→ (Ω, ∂Ω), (13)

where (Σ2, ∂Σ) is an oriented connected compact surface, such that ∂Σ 6= ∅, as well as [3]
and [14]. Besides that, we considered Ω ⊂ R3 a region whose boundary is a revolution
surface with profile curve α and axis e such that J∂Ω := {t ∈ I | α′(t)//e} is a discrete set.

Unlike the classic case, if φ is a critical immersion, it is not possible to say that φ
is free boundary, that is, that φ(∂Σ) meets ∂Ω orthogonally. In this work, classified the
free boundary critical immersions φ, where Ω is a revolution surface.

In this context, we asked ourselves about the properties of φ(Σ). First, we found
some features about φ(∂Σ).

Proposition 3.2.2 Let F = f(ν3) and f a smooth function such that f ′ 6= 0. Consider
φ : (Σ, ∂Σ)→ (Ω, ∂Ω) a critical immersion to the functional F , where J∂Ω is a discrete
set. Then ∂Σ intersect ∂Ω orthogonally if, and only if, each connected component of ∂Σ
lies in a parallel of ∂Ω, where N ⊥ e3 along it.
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So, we obtained the following characterization regarding the CAMC immersions:

Theorem 3.2.3 Let F = f(ν3), where f is a smooth function such that f ′ 6= 0. Consider
φ : (Σ, ∂Σ)→ (Ω, ∂Ω) a critical immersion to the F such that Λ ≤ 0 and J∂Ω a discrete
set. Then, φ ∈ I⊥F (∂Σ, ∂Ω) if, and only if, φ(Σ) is a totally geodesic disk whose boundary
is a parallel of ∂Ω, where N̄ ⊥ e3 along it.

Then, of course, a question arises: as in the classic case, are the free boundary
disks in the unit sphere stable, for any function F fixed? Or does it depend on the F
function? The first step in answering that question was to obtain the second variation of
F for all volume-preserving normal admissible variation:

∂2
εεF

∣∣∣
ε=0

= −
�

Σ
uΛ̇ dΣ +

�
∂Σ
u〈A∇u, η〉 ds−

�
∂Σ

II(ν, ν)u2F ds (14)

where II is the second fundamental form of ∂Ω into Rn+1, with respect to the inwards
pointing unit normal direction and

Λ̇ = L[u] = divΣA∇u+ 〈Adν, dν〉u (15)

is the Jacobi Operator of F .

Throughout this text, the diagonal matrix associated with A = D2F + F1 will be
denoted by diag(µ−1

1 , µ−1
2 ) and its eigenvalues will help answer the question above.

Theorem 3.3.1 Let φ ∈ I⊥F (∂Σ, ∂Ω) and Ω = B3. The disk, D = φ(Σ), is stable with
respect to F if, and only if, f(1) ≤ µ−1

1 = µ−1
2 .
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1 Preliminary

In this chapter, we present our objects of study and some results about these.

1.1 Capillary Immersions

Let Σ be a smooth manifold, Σ̄ a Riemannian manifold, ∇ the Levi-Civita con-
nection of Σ̄ and φ : Σn → Σn+m, k := n + m, an isometric immersion. The difference
k − n = m is called co-dimension of the immersion φ. This way, we have m normal
directions to Σ, namely, ν1, ..., νm. The connection

∇XY := (∇XY )T (1.1)

is the Levi-Civita connection of Σ in the induced metric by φ. Note that, ∇XY is the
tangent part of the connection from ambient manifold∇XY . On the other hand, being
X, Y local fields in Σ, consider

B(X, Y ) = ∇XY −∇XY = (∇XY )⊥ (1.2)

the normal part from ∇XY . For each point p ∈ Σ and normal direction ν ∈ {ν1, ..., νm},
consider the symmetric bilinear form Hν : TpΣ× TpΣ→ R given by

Hν(x, y) := 〈B(x, y), ν〉, x, y ∈ TpΣ. (1.3)

The quadratic form, defined on TPΣ, by

IIν(x) := Hν(x, x) (1.4)

is called second fundamental form of φ, in the ν direction, at point p. Now, we have conditions
to define an important concept in geometry, the mean curvature. Consider p ∈ Σ, x ∈
TpΣ, ν ∈ T⊥p Σ and N a local extension of ν, normal to Σ. We define the Weingarten map,
Sν : TpM → TpM , as

Sν(x) := −(∇̄xN)T (1.5)

Its trace is defined by

traceSν =
n∑
i=1
〈Sν(ei), ei〉 =

n∑
i=1
〈B(ei, ei), ν〉 =

n∑
i=1

Hν(ei, ei) =
n∑
i=1

IIν(ei) (1.6)

where {e1, ..., en} is an orthonormal base for TpΣ. The mean curvature vector of φ is defined
by

−→
H = 1

n

m∑
i=1

(traceSi)νi = 1
n

m∑
i=1

 n∑
j=1

IIν(ej)
νi ; Si := Sνi . (1.7)
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In the case m = 1,

n
−→
H = (traceSi)ν =

 n∑
j=1

IIν(ej)
ν ; 〈ν〉 = T⊥p Σ, (1.8)

and H := |−→H | = 1
n
· (traceSν) is called the mean curvature of Σ. From now on, consid-

ered m = 1. In the especial case Σ = Rn+1,

Sν(x) = −dν(x) (1.9)

where ν is the Gauss Map of Σ, for more details see [15].

Definition 1.1.1 Let φ : Σn → Σn+1 be an immersion, the number H(p) = 1
n
trace (dνp) is

called mean curvature of φ at p. An immersion is called constant mean curvature (CMC) if,

H(p) = constant, ∀ p ∈ Σ. (1.10)

In the special case, H(p) = 0, ∀ p ∈ Σ, the immersion φ is called minimal.

Planes and spheres, as well as its pieces, are trivial examples from hypersurfaces
with constant mean curvature. A plane is a minimal surface and a sphere with radius r,
Sr, have constant mean curvature H(p) = 1

r
, for all point p on Sr. A cylinder of radius r

is an example also of CMC surface, in this case, H = 2r−1.

Definition 1.1.2 A hypersurface Σn is called symmetrical rotationally or axially symmetric if,
there is a line, l (axis), such that any nonempty intersection of Σ with a hyperplane, orthogonal
to l, is an open disk whose center lies on l. When n = 2, Σ also is called revolution surface.

Example 1.1.1 (The first non-trivial example) Let α : R→ R3 be a curve parametrized by
α(t) = (a cosh

(
t
a

)
, 0, t), where a is a non null constant, this curve is known by Catenary.

Consider the Catenoid, which is a surface obtained by revolution from α around z-axis, whose
parametrization is given by

X(t, θ) = (a cos θ cosh
(
t

a

)
, a sin θ cosh

(
t

a

)
, t), θ ∈ (0, 2π). (1.11)

The Catenoid is a symmetrical rotationally surface; α is called the profile curve and z the rotation
axis of Catenoid. The Catenoid is an example of minimal surface, namely, the first non-trivial
example.

The genus g(Σ), of a surface Σ, corresponds to the number of torus present in it. The
Euler characteristic of a surface Σ, with r connected components of the boundary, is the
number given by

χ(Σ) = 2− 2g(Σ)− r. (1.12)

Planes, Spheres, Catenoids and its pieces have genus zero. Follows below, an example
of minimal surface with genus one.
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Figure 2 – The Catenoid. Credit: Matthias Weber, www.indiana.edu/∼minimal.

Example 1.1.2 (The Costa-Hoffman-Meeks surface [16]) Discovered in 1984 by Costa,
this is a minimal surface with genus one and Euler characteristic zero.

Figure 3 – The Costa-Hoffman-Meeks surface.
Credit: Matthias Weber, www.indiana.edu/∼minimal.

In [16] there exist many examples of minimal surfaces. The Catenoid, it cited in the
below example, is an example of Delaunay surfaces: revolution surfaces with constant
mean curvature. This surfaces were classified by Delaunay in [17]:
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Theorem 1.1.1 (Delaunay’s Theorem) A surface of revolution CMC is locally congruent
(i.e., up to rotations and translations) to exactly one of these: plane, circular cylinder, sphere,
catenoid, unduloid, or nodoid.

Example 1.1.3 Undulary and nodary are the curves obtained by roullete of ellipse and hyperbole,
respectively. Unduloid and nodoid, revolution surface obtained from rotation of undulary and
nodary, respectively, are examples of non-zero constant mean curvature surface. Figures 4 and 5
can be found in [18].

Figure 4 – A cut Unduloid. Figure 5 – A cut Nodoid.

Let B be a compact smooth region in Σ̄ such that B is diffeomorphic to an euclidean
ball and N̄ the unit outward normal to ∂B. Consider also η the unit outward normal to
∂Σ tangent to Σ and η̄ be the unit normal to ∂Σ tangent to ∂B such that the orthonormal
frames to normal bundle {η, ν} and {η̄, N̄} have the same orientation, see Figure 6.

B

Σ
N
_

υ

−υ η

η
_

−η
_

γ

γ

Figure 6 – The fields ν, η, η̄ and N̄ .
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Thus, we called that ∂Σ meets ∂B in a constant contact angle if,

〈ν, N̄〉 = 〈η, η̄〉 ≡ constant, along ∂Σ. (1.13)

In especial, this intersection is called orthogonal when 〈ν, N̄〉 = 〈η, η̄〉 ≡ 0, i.e., when γ = π
2 .

We are now able to enter an important definition.

Definition 1.1.3 Let Σ be a manifold with boundary, ∂Σ 6= ∅, and let φ : Σ → B be an
immersion into B ⊂ Σ. The immersion φ is called capillary if, φ(∂Σ) meets ∂B with a con-
stant contact angle. If φ(∂Σ) intersects ∂B orthogonally, we called that the immersion is free
boundary. Namely, the contact angle is those defined between the normal vectors of φ(Σ) and
∂B, respectively.

Remark 1.1.1 From now on, we will only say that a capillary immersion is one in which ∂Σ
meets ∂B at a constant angle.

Remark 1.1.2 It is common to find in the literature that an immersion φ : Σ→ B, ∂Σ 6= ∅, is
capillary if, φ is CMC and ∂Σ meets ∂B in a constant angle γ and, in particular, also is found
that an immersion φ is free boundary if, φ is minimal and γ = π

2 . This is due to the existence
of another characterization of the CMC immersions, φ : Σ→ B, with constant contact angle.
However, throughout this text we will consider the definition 1.1.3.

When φ is capillary, we have the following equations in the normal bundle (see
Figure 6):

η = cosγ η̄ + sinγ N̄

ν = sinγ η̄ + cosγ N̄ (1.14)

and

η̄ = cosγ η + sinγ ν

N̄ = sinγ η + cosγ ν (1.15)

Example 1.1.4 (Trivial examples) The disks Dk = {(x, y, z) ∈ R3 ; z = k} ∩ B3, k ∈
(−1, 1), are trivial examples of capillary surfaces (minimal) in the ball B3, see Figure 7.

The below lemma that, can be found in [19] and will be add here for completeness,
will enable us to construction more one example of capillary surface.

Lemma 1.1.1 Let β(s) = (x(s), 0, z(s)), s ∈ [a, b], a smooth curve in R3. Consider the function
g : [a, b] \ {s ∈ [a, b]; z′(s) = 0} → R given by

g(s) = x(s)− x′(s)
z′(s)z(s). (1.16)

If, there exist s1 < s2 ∈ [a, b] such that
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Dk

D0

NDk
γ

NS2

Figure 7 – In the left side, the disk D0 minimal free boundary in B3; in the right side, the
disk Dk minimal capillary in B3, with constant contact angle γ = arccos k.

(i) g(s1) = g(s2) = 0;

(ii) ||β(s1)|| = ||β(s2)|| =: r;

(iii) ||β(s)|| < r, ∀ s ∈ (s1, s2);

Then, Σ, the surface obtained by rotation of β([s1, s2]) around the z-axis, satisfies: Σ ⊂ B(r, 0)
and ∂Σ intersects ∂B(r, 0) orthogonally, where B(r, 0) is the origin-centered ball whose radius
is r.

Proof of Lemma 1.1.1: Let Σ the surface obtained by rotation of β([s1, s2]) around the
z-axis. Follows from (ii) and (iii) that, ∂Σ ⊂ ∂B(r, 0) and intΣ ⊂ B(r, 0), respectively.
As β is profile curve of Σ, β′(s) ∈ Tβ(s)Σ, ∀ s ∈ [s1, s2]. Once Σ is a revolution surface,
and β([s1, s2]) ⊂ {y = 0}, so t = (0, 1, 0) ∈ Tβ(s)Σ and t ⊥ β′(s), ∀ s ∈ [s1, s2]. Thus,
ν(s) = β′(s) ∧ t = (−z′(s), 0, x′(s)), ∀ s ∈ [s1, s2].

Follows from (i) that,

x(s1)− x′(s1)
z′(s1)z(s1) = x(s2)− x′(s2)

z′(s2)z(s2) = 0

i.e.

x′(s)z(s)− x(s)z′(s) = 0, s ∈ {s1, s2} ⇔ (1.17)

〈β(s), ν(s)〉 = 0, s ∈ {s1, s2} ⇔ (1.18)

〈rN̄ , ν(s)〉 = 0, s ∈ {s1, s2} ⇔ (1.19)

〈N̄ , ν(s)〉 = 0, s ∈ {s1, s2} (1.20)

Therefore, ∂Σ intersects ∂B(r, 0) orthogonally, because Σ is a revolution surface con-
tained in a ball.

�
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Example 1.1.5 Consider the catenary given by β(s) = (a cosh(s/a), 0, s), a > 0, s ∈ R. As
cosh is an even function, the catenary is symmetric with respect to x axis. Note that, if a→ 0,
p = (a, 0, 0) = β(0)→ (0, 0, 0) and the catenary closes around x axis, see Figure 8.

11 22 33 44 55 66 77 88 99

-2-2

-1-1

11

22

00

a = 1/4a = 1/4

a = 1/2a = 1/2

a = 2/3a = 2/3

Figure 8 – Red catenary: a = 1
4 and −1 ≤ s ≤ 1; green catenary: a = 1

2 and −1, 65 ≤ s ≤
1, 65; blue catenary: a = 2

3 and −2 ≤ s ≤ 2.

Let’s check for zeros of the g. Thus,

0 = x′(s)z(s)− x(s)z′(s) ⇔ (1.21)

0 = s sinh
(
s

a

)
− a cosh

(
s

a

)
⇔ (1.22)

a

s
= tanh

(
s

a

)
(1.23)

Then, with a suitable software we can calculate | s
a
| = ρ = 1, 19968... ≈ 1, 2 and define

s1 := −aρ and s2 := aρ. As cosh is an even function, ||β(s1)|| = ||β(s2)|| := r; as cosh
have a global minimal point at s = 0, see Figure 8, then ||β(s)|| < ||β(s1)|| = ||β(s2)||, s ∈
(s1, s2). Therefore, follows from Lemma 1.1.1 that, Σ, the surface obtained by rotation of
β([s1, s2]) around the z axis, the catenoid, satisfies

intΣ ⊂ B(r, 0), (1.24)

∂Σ ⊂ ∂B(r, 0), (1.25)

∂Σ ⊥ ∂B(r, 0). (1.26)

Therefore, this part of catenoid is an example of capillary surface in a ball.

Each a > 0, determines from (ii), a single value for r. For a = 1/4, a = 1/2 and
a = 2/3, we have r ≈ 0, 54, r ≈ 1, 09 and r ≈ 1, 45, respectively, see Figures 9, 10 and 11.

Fixing r = 1 in (ii) we obtain a∗ = 0, 46048 ≈ 0, 46. The surface Σ∗, obtained by
rotation of β∗(s) = (a∗ cosh( s

a∗ ), 0, s) around z axis, is called Critical Catenoid.

Example 1.1.6 There exist a piece of sphere, called spherical cap, free boundary in B3. Indeed,
∂B3 = S2 = {(x1, x2, x3) ; x2

1 +x2
2 +x2

3 = 1}, Πθ = {(x1, x2, x3) ; (cos θ)x1 + (sin θ)x2 = 0},
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Figure 9 – Red catenary: a = 1
4 and the ball B(r, O), r ≈ 0, 54; the intersect point are

B = (0, 45, 0, 0, 3) and C = (0, 45, 0,−0, 3), approximately.
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Figure 10 – Green catenary: a = 1
2 and and the ball B(r, O), r ≈ 1, 09; the intersect point

are B = (0, 91, 0, 0, 6) and C = (0, 91, 0,−0, 6), approximately.
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Figure 11 – Blue catenary: a = 2
3 and and the ball B(r, O), r ≈ 1, 45; the intersect point

are B = (1, 21, 0, 0, 8) and C = (1, 21, 0,−0, 8), approximately.

θ ∈ [0, π], and S1
θ := S3∩Πθ. Consider the identification S1

θ ←→ S1 and x, ν : [0, π2 ]→ S1
θ given

by x(t) = (cos t, sin t), the position vector of S3 restricted to S1
θ, and ν(t) = (− cos t, sin t), the

unit normal vector to S2 restricted to S1
θ, see Figure 13.
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Figure 12 – The Critical Catenoid.

x(0) 
υ(0)

N

S

υ(0)

Figure 13 – The vectors x(0) and ν(0).

Observe that, while t varies in [0, π2 ], x(t) rotates, with its end point about S1
θ, anticlock-

wise until its end point reaches N . In the other hand, ν(t) rotates in the clockwise until its end
point reaches N . Consider the function f : [0, π2 ]× [0, π2 ]→ R given by f(s, t) := 〈x(s), ν(t)〉;
note that f(0, 0) = −1, f(π2 ,

π
2 ) = 1, and

0 = f(s, t) = 〈x(s), ν(t)〉 = − cos s · cos t+ sin s · sin t (1.27)

= − cos(s+ t), (1.28)

so

0 ≡ f(s, t) ⇔ s+ t = π

2 , (1.29)
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i.e.,

x(s) ⊥ ν
(
π

2 − s
)
, ∀ s ∈

[
0, π2

]
, (1.30)

see Figure 14.

x(s) υ(π/2 − s)

N

S

Figure 14 – The vectors x(s) and ν(π2 − s) are orthogonal.

Consider ν(π2 − s) with end point in the center of S1
θ; by the spherical geometry, the initial point

P = (p1, p2, p3) of ν(π2 − s) will also belong to S1
θ. The plane {x3 = p3} divide S2 in two pieces,

define by Sθ,s the spherical cap below {x3 = p3}, i.e.,

Sθ,s = S2 ∩ {x3 ≤ p3}; −p3 =
〈
ν
(
π

2 − s
)
, e3

〉
. (1.31)

Note that, 1.30 does not depend of θ, thus it has validity on Sθ,s = ∪θ∈[0,π]S1
θ. Hence, the unit

normal vector to Sθ,s along ∂Sθ,s is constant and equal to ν(π2 − s) and the unit normal vector
to S2 along S2 ∩ {x3 = 〈x(s), e3〉} is constant and equal to x(s), for all s ∈ [0, π2 ]. Thus, for the
values of s ∈ [0, π2 ], such that ∂Sθ,s has the same radius as S2 ∩ {x3 = 〈x(s), e3〉}, we have Sθ,s
free boundary in B3 along S2 ∩ {x3 = 〈x(s), e3〉}, and this happens only s = π

4 = t, see Figure
15.

Example 1.1.7 In [19] there are more examples of surfaces CMC free boundary in B3. Moreover,
was proved that there exist a free boundary piece of unduloid.

In definition of the Euler characteristic of a surface Σ, we mention the torus which
is a topological space homeomorphic to the product of two circles.

Example 1.1.8 There exist a minimal immersion φ : R2 → R4 such that φ(R2) ⊂ S3 is a torus
T , the Clifford Torus. Observe that,

φ(u, v) = 1√
2

(cosu, sin u, cos v, sin v) = (cosu, sin u, 0, 0) + (0, 0, cos v, sin v) (1.32)
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x(s) 

υ(π/2 − s)

Figure 15 – The spherical cap CMC free boundary.

Figure 16 – A revolution torus.

is such that, ||φ(u, v)|| = 1 and

dφ(u, v) =


− sin u 0
cosu 0

0 − sin v
0 cos v

 (1.33)

is injective, i.e., φ(R2) is an immersed torus T 2 ⊂ S3. Also note that, considering for T 2 the
induced metric from R4, {e1 = (− sin u, cosu, 0, 0), e2 = (0, 0,− sin v, cos v)} is a orthonormal
frame for TpT 2, ∀ (u, v) ∈ R2. From this frame, {e1, e2}, we can construct a frame for normal
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space at p, namely,

{ν1 = 1√
2

(cosu, sin u, cos v, sin v), ν2 = 1√
2

(− cosu,− sin u, cos v, sin v)}. (1.34)

The field ν = ν2 is tangent to TpT 2, unlike ν1. Considering in S3 the Levi-Civita connection,
associated to induced metric, we have

[Sν ] =
 1√

2 0
0 − 1√

2

 . (1.35)

Then, trace(Sν) = 0 and T 2 is a minimal immersion in S3.

The generalization of this torus is the so-called H-Torus, a non-zero constant
mean curvature torus, more precisely,

(i) consider the canonical immersions from Sn−1(r) in Rn and S1(
√

1− r2) in R2, for
r ∈ (0, 1);

(ii) and take the product manifold Sn−1(r)× S1(
√

1− r2) immersed in Rn × R2.

The manifold obtained this way, is called an H-Torus, a n-manifold contained in Sn+1

with non-zero constant mean curvature equal to r. More details can be found at [20].

It is possible to characterize free boundary CMC immersions φ in variational
viewpoint as follows (for more details see [3] and [21]). Precisely, let Φ : (−ε0, ε0)×Σ→
Σ be a smooth variation of φ, i.e., for each ε ∈ (−ε0, ε0), Φε := Φ(ε, p) is a smooth immersion
of Σ; Φ0 = φ, see Figure 17, in the case B = Bn+1.

Bn+1

Φt(Σ)
φ(Σ)

Figure 17 – Smooth variation Φε(Σ) of immersion φ(Σ) in the ball B = Bn+1.

A smooth variation is called admissible if

Φε(intΣ) ⊂ intB and Φε(∂Σ) ⊂ ∂B, ∀ ε ∈ (−ε0, ε0). (1.36)

Being Φ a smooth variation, define an area functional A : (−ε0, ε0)→ R, given by

A(ε) =
�

Σ
dΣε (1.37)
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where dΣε is the area element of Σ in the metric induced by Φε and a volume functional
V : (−ε0, ε0)→ R

V (ε) =
�

[0,ε]×Σ
Φ∗dV (1.38)

where Φ∗dV is the pull back from the volume element of Σ̄. Geometrically, V (ε) is
the volume (oriented) encompassed by B, Φε(Σ) and φ(Σ). The variation Φ is volume-
preserving if, V (ε) = V (0) = 0, ∀ ε ∈ (−ε0, ε0), see Figure 18.

Bn+1

Φt(Σ)
φ(Σ)

+

-

N

Figure 18 – Variation Φ volume-preserving, in the case B = Bn+1 and the unit normal
vector of Σ pointing to for north pole N .

Consider

Φ̇ = ∂Φ
∂ε

(p)
∣∣∣∣∣
ε=0

(1.39)

the variation vector of Φ. Note that, if a variation is admissible then

〈Φ̇, N̄〉 ≡ 0 sobre ∂Σ. (1.40)

where N̄ is the unit outward normal of ∂B. It is said that Φ is normal if,

∂Φ
∂ε

(p)
∣∣∣∣∣
ε=0

= f · ν (1.41)

where f = 〈Φ̇, ν〉.
Note that, φ(Σ) divide B in two connected regions B1 and B2. So, ∂Bi is the union

of φ(Σ) and a domain Di on ∂B, such that ∂Di = φ(∂Σ), i ∈ {1, 2}. Define D, between
D1 and D2, those whose normal exterior is η̄. Define, T : (−ε0, ε0) → R such that T (ε)
is the area of D(ε) in the metric induced by Φε. Fix an angle γ ∈ (0, π) and consider a
variation Φε, as defined above. Then, we can define the energy functional

E(ε) = A(ε)− cosγ T (ε) (1.42)

Below, we present the first variation for the functional A, V , T and E . However,
before we state the following lemma:
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Lemma 1.1.2 Let v ∈ C∞(Σ).

(i)
�

Σ uv dΣ = 0, ∀ u ∈ C∞(Σ) ⇒ v ≡ 0;

(ii)
�

Σ uv dΣ = 0, ∀ u ∈ C∞(Σ) ;
�

Σ u dΣ = 0 ⇒ v ≡ constant;

Proof of Lemma 1.1.2:

(i) If v 6≡ 0, then, choosing u = v ∈ C∞(Σ), we have
�

Σ v
2 dΣ 6= 0.

(ii) Consider V,W open subsets of Σ and g ∈ C∞(Σ) such that
�
V
g dΣ =

�
W
g dΣ and

|V | = |W |. Define

v(p) =

 c, on Σ \ V,
g, on V,

(1.43)

where c is a constant such that c < g on intV and c = g along ∂V . Define also

ū(p) =


0, on Σ \ (V ∪W ),

g − c, on V,

−(g − c), on W,

(1.44)

and note that ū > 0 on V , ū ≡ 0 along ∂V , ū < 0 on W , ū ≡ 0 along ∂W , and
�

Σ
ū dΣ =

�
V

g − c dΣ−
�
W

g − c dΣ (1.45)

=
�
V

g dΣ−
�
V

c dΣ−
�
W

g dΣ +
�
W

c dΣ (1.46)

= −c|V |+ c|W | (1.47)

= 0. (1.48)

Hereafter,
�

Σ
ūv dΣ =

�
V

g(g − c) dΣ−
�
W

c(g − c) dΣ (1.49)

=
�
V

g2 dΣ− c
�
V

g dΣ− c
�
W

g dΣ + c2
�
W

dΣ (1.50)

=
�
V

g2 dΣ− c
�
V

g dΣ− c
�
V

g dΣ + c2
�
V

dΣ (1.51)

=
�
V

g2 − 2cg + c2 dΣ (1.52)

=
�
V

(g − c)2 dΣ (1.53)

> 0. (1.54)

�
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Proposition 1.1.1 The first variation of area functional A is given by

A′(0) = −
�

Σ
nHf dΣ +

�
∂Σ
〈Φ̇, η〉 ds

where η is the unit exterior normal along ∂Σ and ds is the area element of ∂Σ.

Proof of Proposition 1.1.1: Initially, consider a local coordinate system ϕ in p ∈ Σ. As
we are considering an isometric immersion,

∂ϕ

∂xi
(p)↔ dφp

∂ϕ

∂xi
(1.55)

and
〈
∂ϕ

∂xi
(p), ∂ϕ

∂xj
(p)
〉

=
〈
dφp

∂ϕ

∂xi
, dφp

∂ϕ

∂xj

〉
. Without loss of generality, consider ϕ a

normal coordinate system at p ∈ Σ, i.e.,
{
∂ϕ

∂x1
, ...,

∂ϕ

∂xn

}
p

is an orthonormal frame in

TpM . Deriving the area functional in t, follows

dA
dt

∣∣∣∣∣
t=0

=
�

Σ

d

dt

∣∣∣∣∣
t=0

dΣt (1.56)

where dΣt =
√

det(gij(t)). Thus,

d

dt

∣∣∣∣∣
t=0

dΣt = 1
2

1√
det(gij(0))

n∑
i=1

det



g11(t) · · · g1n(t)
... . . . ...

g′i1(t) · · · g′in(t)
... . . . ...

gn1(t) · · · gnn(t)


t=0

. (1.57)

So,

d

dt

∣∣∣∣∣
t=0

dΣt = 1
2

n∑
i=1

g′ii(t) = 1
2

n∑
i=1

d

dt

〈
∂ϕ

∂xi
,
∂ϕ

∂xi

〉
p

(1.58)

= 1
2

n∑
i=1

2
〈
∇Φ̇

∂ϕ

∂xi
,
∂ϕ

∂xi

〉
p

(1.59)

= 1
2

n∑
i=1

2
〈
∇ ∂ϕ

∂xi

Φ̇, ∂ϕ
∂xi

〉
p

(1.60)

= divΣΦ̇. (1.61)

On another hand,

divΣΦ̇ = divΣΦ̇> + divΣΦ̇⊥ = divΣΦ̇> − 〈Φ̇⊥, n−→H 〉 (1.62)

= −nH〈Φ̇, ν〉+ divΣΦ̇> (1.63)

and follows from divergence theorem that

dA
dt

∣∣∣∣∣
t=0

= −
�

Σ
nHf dΣ +

�
∂Σ
〈Φ̇, η〉 ds. (1.64)
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�

When Σ̄ = Rn+1 and B = Bn+1, the euclidean ball, analogously, we can to prove
that T ′(0) =

�
∂D
〈Φ̇, η̄〉 ds, where η̄ is the unit normal exterior to D. Thus, the first

variation of the energy functional is given by

E ′(ε) = A′(ε)− cos γ · T ′(ε) (1.65)

= −
�

Σ
nHf dΣ +

�
∂Σ
〈Φ̇, η − (cosγ)η̄〉 ds (1.66)

Proposition 1.1.2 The first variation of volume functional is given by

V ′(0) =
�

Σ
f dΣ (1.67)

Proof of Proposition 1.1.2: The pull back Φ∗dV is a (n + 1)-differential form on M̃ :=
[0, t]×M , thus

Φ∗dV = b · dt ∧ dx1 ∧ ... ∧ dxn ; b : M̃ → R, (1.68)

where dx1∧ ...∧dxn = dA. Follows from duality between
{

∂
∂x1
, ..., ∂

∂xn

}
and {dx1, ..., dxn}

that

b(s, p) = (Φ∗dV )(s, p)
(
∂

∂t
,
∂

∂x1
, ...,

∂

∂xn

)
(1.69)

(1.70)

and by pull back definition,

b(s, p) = V ol

[
∂Φ
∂t

∣∣∣∣∣
t=s

, dΦs

(
∂

∂x1

)
, ..., dΦs

(
∂

∂xn

)]
p

(1.71)

= det

[
∂Φ
∂t

∣∣∣∣∣
t=s

, dΦs

(
∂

∂x1

)
, ..., dΦs

(
∂

∂xn

)]
p

(1.72)

=
〈

Φ̇
∣∣∣
t=s

, ν(s, p)
〉
. (1.73)

Then,

V ′(t0) = d

dt

� t0

0

�
Σ

〈
Φ̇
∣∣∣
t=s

, ν(s, p)
〉
dΣt =

�
Σ

〈
Φ̇
∣∣∣
t=t0

, ν(t0, p)
〉
dΣt0 . (1.74)

Hence,

V ′(0) =
�

Σ

〈
Φ̇, ν(0, p)

〉
dΣ =

�
Σ
f dΣ. (1.75)

�

Proposition 1.1.3 An immersion φ : Σn → Bn+1 ⊂ Σ̄ is capillary if and only if φ is a critical
point of energy functional E . In particular, φ is called free boundary if and only if φ is a critical
point of area functional A.
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Proof of Proposition 1.1.3: Suppose φ capillary, i.e., φ is CMC and φ(∂Σ) meets ∂B in a
constant contact angle. Thus, follows from (1.13) that

〈ν, N̄〉 = 〈η, η̄〉 ≡ constant, along ∂Σ. (1.76)

Consider Φ an admissible volume-preserving smooth variation, so

〈Φ̇, η − cosγ η̄〉 = 〈Φ̇, η〉 − cosγ 〈Φ̇, η̄〉

= 〈Φ̇, η̄〉〈η, η̄〉+ 〈Φ̇, N̄〉〈η, N̄〉 − cosγ 〈Φ̇, η̄〉

= cosγ〈Φ̇, η̄〉+ 〈Φ̇, N̄〉〈η, N̄〉 − cosγ 〈Φ̇, η̄〉

= 〈Φ̇, N̄〉〈η, N̄〉

= 0, (1.77)

because of (1.14) and of the admissibility from Φ. Hereafter, follows from (1.65) and
(1.77) that

E ′(0) = −
�

Σ
nHf dΣ +

�
∂Σ
〈Φ̇, η − (cosγ)η̄〉 ds = −

�
Σ
nHf dΣ. (1.78)

As φ is CMC and Φ volume-preserving, then E ′(0) = 0.

Reciprocally, we suppose that φ is a critical point of energy functional E .

Let Φ be an admissible volume-preserving variation with compact support, such
that f = 〈Φ̇, ν〉. Thus,

0 = E ′(0) = −
�

Σ
nHf dΣ, ∀ f ∈ H1(Σ);

�
Σ
f dΣ = 0, (1.79)

where H1(Σ) denotes the Sobolev space of Σ, then, follows from Lemma 1.1.2 that

φ is CMC . (1.80)

Now, consider the variation define by Φ̇ = g〈η, η̄〉η̄, where g ∈ C∞(∂Σ). Observe
that, 0 = 〈η̄, N̄〉, so Φ is admissible. And yet, f = 〈Φ̇, ν〉 ≡ 0, i.e., Φ is volume-preserving.
Then, follows from (1.80) and (1.65) that

0 = E ′(0) =
�
∂Σ
g〈Φ̇, η − cosγ η̄〉 ds (1.81)

=
�
∂Σ
g〈η, η̄〉2 − g cosγ 〈η, η̄〉 ds (1.82)

=
�
∂Σ
g〈η, η̄〉(〈η, η̄〉 − cosγ) ds, ∀ g ∈ C∞(∂Σ). (1.83)

Hence, follows from Lemma 1.1.2 that, 〈η, η̄〉(〈η, η̄〉 − cosγ) = 0.

If γ = π
2 , so we have 〈η, η̄〉 = 0 and η = N̄ , along ∂Σ, i.e., φ is free boundary. If

γ 6= π
2 , 〈η, η̄〉 6= 0 and cosγ = 〈η, η̄〉, along ∂Σ, i.e., φ is capillary.
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�

A CMC immersion is called CMC capillary stable if, E ′′(0) ≥ 0 for all volume-
preserving admissible variations of φ. In [6], definitive classification was made about
CMC capillary immersions in the Euclidean ball and in balls in other ambient manifolds.

In the chapter three, we studied an analogous variational problem with respect
to functional

F(ε) =
�

Σ
F (ν(ε, p)) dΣε, (1.84)

where F : Sn → R+ is a smooth function and ν(ε, p) is the normal unit vector of Σε, at
point p. We consider immersions φ : Σ2 → Ω ⊂ R3, where ∂Ω is a revolution surface,
and admissible variation, Φε := Φ(ε, p) = φ(p) + ε(uν + ξ), i.e.,

Φε(int(Σ)) ⊂ int(Ω), (1.85)

Φε(∂Σ) ⊂ ∂Ω, (1.86)

where ξ is the tangent part of variation vector, Φ̇ = uν + ξ. The variation Φ will also be
considered volume preserving for

V (ε) =
�

[0,ε]×Σ
Φ∗dV. (1.87)

where Φ∗dV is the pullback of canonical volume element of R3.

The first variation of F is given by

∂εF|ε = −
�

Σ
uΛ dΣε +

�
∂Σ
〈χ× Φ̇, dΦ〉 (1.88)

where χ(ν) = DF (ν) + F (ν)ν, Φ̇ = uν + ξ, dΦ := tds, t := t(ε, p) = ν(ε, p)× η(ε, p) and
ηε := η(ε, p) is the exterior normal along ∂Σε.

An immersion φ is called critical if and only if F ′(0) = ∂εF|ε=0 = 0, for all
admissible volume preserving variation, i.e., for all variation Φ = φ+ ε(u · ν + ξ) such
that

�
Σ
u dΣ = 0 and 〈Φ̇, N〉

∣∣∣
∂Σ
≡ 0 (1.89)

where N is the exterior unit normal to ∂Ω. In special, if Φ is compact supported, we
conclude that

Λ(p) := nH(p)F (ν(0, p))− divΣDF (ν(0, p)) ≡ constante, (1.90)

where H is the mean curvature of Σ, DF is the gradient of F on S2 and the number Λ(p)
is called anisotropic mean curvature of Σ, at point p.
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Example 1.1.9 A plane Π (or a piece of it) is a CAMC surface with Λ ≡ 0. Indeed, let p ∈ Π,
so

Λ(p) = nH(p)F (ν(p))− divΣDF (ν(p)) = 0, (1.91)

because H ≡ 0, as well as

divΣDF (ν(p)) = 0, (1.92)

once dν = 0, because ν is constant on Π.

Considering compact supported variations, in [13], Koiso and Palmer found,
under some conditions, examples of CAMC surfaces.

Figure 19 – Superellipsoid, an example of Wulff Shape [22].

Example 1.1.10 The Wulff Shape of F , see Figure 19, defined by

WF := ∂
⋂
ν∈S2

{
y ∈ R3 | 〈y, ν〉 ≤ F (ν)

}
(1.93)

have constant anisotropic mean curvature Λ < 0 (note that, when F ≡ 1, WF is the S2).

Associated to above Wulff Shape, we can construct the Anisotropic Delaunay: anisotropic
catenoid, nodoid and unduloid, examples of CAMC surfaces. In Figure 20, the anisotropic
catenoide associated to above superelipsoide.

We will not be long on this subject due to the similarity with the classic case, for more
details see [23], [13], [14], [22] and [24].
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Figure 20 – Anisotropic catenoid with respect to superellipsoid presented above [22],
Λ ≡ 0.

1.2 Maximum Principles

Let A ⊂ Rn an open set and

L(w) =
∑
i,j

aij(x)wij +
∑
i

bi(x)wi + c(x)w (1.94)

where wi := ∂w

∂xi
, wij := ∂w

∂xi∂xj
and the functions aij, bi and c are continuous on Ā, a

differential elliptic operator on A, i.e., the matrix [aij(x)] is positive definite for all x ∈ A,
that is,

0 <
n∑

i,j=1
aijξiξj, ∀ x ∈ A, ∀ ξ ∈ Rn \ {0}. (1.95)

We called L uniformly elliptic on A if, there exist a constant κ such that

κ|ξ|2 ≤
n∑

i,j=1
aijξiξj, ∀ x ∈ A, ∀ ξ ∈ Rn \ {0}. (1.96)

Now, we will present three maximum principles that we use during this work,
especially in one step of the Alexandrov Reflection Method - ARM, and can be found in
[25]. The first of them, for points x ∈ intA:

Lemma 1.2.1 Let L be an elliptic operator as in (1.94) and w ∈ C2(A) a function such that

L(w) ≥ 0, on A. (1.97)

If exist x0 ∈ A such that w(x0) = 0 and w ≤ 0 on A, then w ≡ 0 on A.
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The second, for points x ∈ ∂A such that ∂A is of class C1.

Lemma 1.2.2 Let L be an uniformly elliptic operator as in (1.94), let A be a region in R2 and
suppose that in a neighborhood of x0 ∈ ∂A, ∂A is of class C1. If

L(w) ≥ 0, on A, (1.98)

w(x0) = 0, w(x) ≤ 0, ∀ x ∈ Ā, and ∂w
∂ν

= 0, where ν is the inward normal derivative, then
w ≡ 0, on Ā.

Finally, the third, for points x ∈ ∂A, at a corner.

Lemma 1.2.3 (Serrin’s Boundary Point Lemma at a Corner [26]) LetA ⊂ R2 be a bounded
region which has a C2 boundary in a neighborhood of x0 ∈ ∂A. Consider T be a normal plane to
∂A at x0 and A+ be that component of A lying on one side of T which contains x0 in its closure.
Let L be an uniformly elliptic operator on A+. Suppose also that

|
∑
i,j

aij(x)ξiνj| ≤ K · [|(ξ · ν)|+ |ξ|d] (1.99)

for some constant K > 0, all x ∈ A+, any ξ = (ξ1, ..., ξn), where ν = (ν1, ..., νn) is an unit
normal to T , and where d is the distance from x to T .

Let w ∈ C2(A+) satisfy L(w) ≥ 0 on A+ and suppose that w(x0) = 0, w(x) ≤ 0, for all
x ∈ A+, and that ∂w/∂s = ∂2w/∂s2 = 0, in any direction which enters A+ non-tangentially
at x0.
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2 A classification for the critical catenoid

In this chapter, we present results that classify surfaces with boundary by means
of its mean curvature, topology and boundary properties. In the first section, we present
some classification results of embedded surfaces; in the second section we show the
path travelled by McGrath in [9] to obtain a classification for the embedded critical
catenoid in an euclidean ball. Finally, in the third section we will present a classification
for embedded annulus capillary in an euclidean ball. In special, as well as McGrath, we
give our classification for the critical catenoid in an euclidean ball.

2.1 Classification of embedded CMC surfaces

Let Σ be an orientable compact connected immersed surface with constant mean
curvature such that ∂Σ 6= ∅. In this section, we present the classical result due to Nitsche
[1] and other similar results due to Ros and Souam [2], Koiso [8] and Wente [25]. They
classified Σ from its topology and properties of the boundary.

Nitsche supposed that Σ is an immersed CMC topological disk such that ∂Σ
meets orthogonally S2 and proof the below result, see [1]:

Theorem 2.1.1 (Nitsche) Let Σ2 be an immersed minimal surface of disc type and free bound-
ary in the euclidean ball B3. Then, Σ is the flat disk and ∂Σ is an equator.

Juncheol Pyo, in his work [7], considered an immersed minimal annulus and
made different suppositions about ∂Σ. First, he supposed that ∂Σ consists of two C2,α

planar Jordan curves Γ1 and Γ2, where Σ makes a constant contact angle with a plane
Πi along Γi, i ∈ {1, 2}, Π1 6= Π2. More precisely, to prove the

Theorem 2.1.2 (Pyo) Let Σ be an immersed minimal annulus such that ∂Σ consists of two
C2,α planar Jordan curves Γ1 and Γ2. If Σ makes a constant contact angle with a plane Πi along
Γi, i = 1, 2, Π1 6= Π2, then Σ is part of the catenoid.

In a second moment, he supposed that Γ, one component of ∂Σ, is a circle and Σ
meets a plane along Γ at a constant angle and he showed:

Theorem 2.1.3 (Pyo) Let Σ be an immersed minimal surface with boundary and let Γ be one
of the components of ∂Σ. If Γ is a circle and Σ meets a plane along Γ at a constant angle, then Σ
is part of the catenoid.

Two proofs can be found in [7] and will not be included here. Ros and Souam [2]
considered the euclidean ball as ambient space and classed:
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Proposition 2.1.1 Let ϕ : Σn → Bn+1 be a capillary embedding in an euclidean ball. Assume
that ϕ(∂Σ) is contained in an open hemisphere of ∂B, then ϕ(Σ) is a totally geodesic disk or a
spherical cap.

Ros and Souam used ARM (below, we explain this strategy better) to prove their
proposition, as well as we will do. Other authors who also used the ARM were Miyuki
Koiso [8] and Henry C. Wente [25].

Suppose that Γn is a compact connected topological sub-manifold without bound-
ary of Rn+1. Then, see [8], Rn+1 \Γ is the union of two regions one bounded and another
unbounded which we will define inside of Γ and outside of Γ, respectively. In [8] there
are the following results:

Theorem 2.1.4 (Koiso) Let Γ0 be a (n-1)-dimensional sphere in some hyperplane π ⊂ Rn+1

and Σ ⊂ Rn+1 a compact C2-hypersurface with Γ0 as its boundary. Assume that Σ does not
intersect the outside of Γ0 in π. Then, if Σ is of non-zero constant mean curvature, Σ must be a
spherical cap.

And

Theorem 2.1.5 (Koiso) Let E be a (n− 1)-dimensional linear subspace of Rn+1, and let e1, e2

be two unit vectors which are both perpendicular to E and perpendicular to each other. Suppose
that Γ is an (n−1)-dimensional C2 sub-manifold of Rn+1 which satisfies the following condition:
There exist a bounded domain A ⊂ E and a real-valued C1 function f on Ā such that f is
positive in A, identically zero on ∂A, and

Γ = {x+ f(x) · e1 ; x ∈ A} ∪ {x− f(x) · e1 ; x ∈ A} (2.1)

Suppose that Σ is a compact C2 hypersurface with Γ as its boundary and that Σ does not
intersect with the outside of Γ in the hyperplane π1 = E + R · e1. Then Σ is orientable, and if
Σ is of non-zero constant mean curvature, then Σ is symmetric with respect to the hyperplane
π2 = E + R · e2.

Note that, in Theorem 2.1.5, by assuming the symmetry of Γ we got a gift: the symmetry
for Σ. Talking about symmetries, in [25], in the case n = 2, for example, under some
assumptions, it is proved that a liquid-air interface Σ, is an axially symmetric surface,
in the sense that there is an axis such that any nonempty intersection of Σ with an
horizontal hyperplane is an open disk whose center lies on the vertical axis. Besides
that, [25] as well as [8], are nice references for the ARM.

2.2 Classification of embedded CMC annulus capillary in a

ball.

In [27], we can find the question that motivates this section.
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Conjecture 2.2.1 (Fraser and Li) The critical catenoid is the unique properly embedded free
boundary minimal annulus in B3, up to rotations.

Philosophically, there exists a parallel between the conjecture 2.2.1 and

Conjecture 2.2.2 (Lawson) The Clifford Torus is the only embedded minimal torus in S3, up
to rotations.

The Lawson’s conjecture was definitively resolved by Brendle in [10]. However,
there was previously a partial demonstration due to Ros, in [11]:

Theorem 2.2.1 (Ros) Let Σ ⊂ S3 be an embedded minimal torus, symmetric with respect to
the coordinated hyperplanes of R4. Then Σ is the Clifford torus.

In the case of the conjecture (2.2.1), there is an analogous result to that obtained
by Ros, due to McGrath [9]:

Theorem 2.2.2 (McGrath) Let Σ2 ⊂ Bn, n ≥ 3, be an embedded free boundary minimal
annulus. If Σ is invariant under reflection through three orthogonal hyperplanes Πi, i = 1, 2, 3,
then Σ is the critical catenoid, up to rotation.

Is well known that, if Σ is a minimal free boundary surface in B3, then its
coordinated functions are solutions for the Steklov Problem


∆u = 0, on Σ.
∂u

∂η
= u, along ∂Σ.

(2.2)

where η is the unit normal vector outward of S2, see [16]. In his proof, McGrath uses the
result below, that can be found in [12].

Theorem 2.2.3 (Fraser and Schoen) Suppose Σ is a free boundary annulus in Bn such that
the coordinated functions are first Steklov eigenfunctions. Then n = 3 and Σ is congruent to the
critical catenoid.

Still needing confirmation, we have the recent result [28]:

Theorem 2.2.4 (Liu and Yu) An immersed minimal free boundary annulus in unit ball B3 ⊂
R3 is congruent to the critical catenoid.

In this work, we take another path - ARM.
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2.3 ARM and our results

Let Σ ⊂ B3 an orientable compact connected embedded annulus minimal free-
boundary, such that

int(Σ) ⊂ int(B3) (2.3)

∂Σ = Γ ∪ Γ′ ⊂ ∂B3 (2.4)

where Γ and Γ′ are the connected components of the boundary of Σ.

Consider a hyperplane Π ⊂ R3 and RΠ the map such that RΠ(x) is the orthogonal
reflection of x through Π. If RΠ(Σ) = Σ, we say that Σ is Π-invariant. Note that, the map
RΠ : Σ → Σ is an isometry such that ∂Σ 7→ ∂Σ and int(Σ) 7→ int(Σ). From now on,
consider

Πi := {(x1, x2, x3) | xi = 0} , (2.5)

Let G = {RΠ1 , RΠ2 , RΠ3} be the group of reflection with respect to the
coordinated planes. We say that Σ is G− invariant if, RΠi(Σ) = Σ, for all i ∈ {1, 2, 3}. In
this work, we considered ∂Σ = Γ ∪ Γ′ G-invariant.

Then, we will prove that the property G-invariant of ∂Σ implies
that it intersects each of the eight octants and there exists a plane such that Γ′ is the
reflection of Γ through it.

Lemma 2.3.1 Let Σ2 ⊂ B3 an embedded annulus such that ∂Σ is G-invariant. Then,

(i) there exist i, j ∈ {1, 2, 3}, i 6= j, such that

Γ = RΠi(Γ) = RΠj(Γ), (2.6)

Γ′ = RΠi(Γ′) = RΠj(Γ′), (2.7)

and

(ii) there exists k ∈ {1, 2, 3}, k /∈ {i, j}, such that

Γ′ = RΠk(Γ) and Γ = RΠk(Γ′) (2.8)

Proof of Lemma 2.3.1: Let ∂Σ = Γ ∪ Γ′, where Γ and Γ′ are the connected compo-
nents of the boundary of Σ, and Γ ∩ O =: γ : [0, 1] → ∂Σ, where O = {(x1, x2, x3) ∈
R3; x1, x2, x3 ≥ 0}. As ∂Σ isG-invariant, we can find it by joining the possible reflections
of γ, i.e., there are i, j, k ∈ {1, 2, 3}, different from each other, such that

∂Σ = γ ∪ γ̃ ∪RΠk(γ̃) (2.9)
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where

γ̃ := γ ∪RΠi(γ) ∪RΠj(γ) ∪ (RΠi◦RΠj)(γ) ⊂ ∂Σ (2.10)

As Σ is embedded, γ(0, 1) does not intersect Πi, i ∈ {1, 2, 3}, since ∂Σ is G-
invariant, otherwise Γ would have self intersections. Once Γ and Γ′ are closed curves,
γ(0) ∈ Πi and γ(1) ∈ Πj , i 6= j, because ∂Σ is G-invariant. Indeed, if γ(1) 6∈ Πj , then
there exist pj ∈ Πj such that d(γ(1), pj) = d > 0 and follows from (2.9) and (2.10) that,
∂Σ would not be the union of closed curves and this would be a contradiction, see
Figure 21.

Πj

Πi

γ(0)
γ(1)pj

d γ

Figure 21 – γ(1) 6∈ Πj .

Πj

γγ(0)

γ(1)

Figure 22 – γ(0), γ(1) ∈ Πi = Πj .

In the other hand, if γ(0), γ(1) ∈ Πi = Πj , see Figure 22, then the curve γ ∪
RΠi(γ) := β : [a, b]→ ∂Σ would be a closed curve contained in ∂Σ. Thus, the curves β,
RΠj(β), RΠk(β) and (RΠj ◦RΠk)(β) would be closed curves contained in ∂Σ, but this is
also a contradiction, since Σ is a topological annulus.

Then, if we define Γ := γ̃, we have (i) and (ii).

�

Let Pλ, λ ∈ R, be a family of planes parallel to each other. We call moving planes,
the process of changing the parameter λ, from the geometric view point, we have a
movement between this parallel planes.

Soon, we will present the main result of this chapter, obtained from ARM. This
method can be divided into the following steps:

(1) Consider a subsidiary plane P and an arbitrary family, Pλ, λ ∈ R, of parallel planes
each other and orthogonal to P (in our case, P will be the plane Πk provided by
Lemma 2.3.1).
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Πk

Γ

Γ‘ = RΠk
(Γ)

Πi (or Πj)

Figure 23 – Γ′ = RΠk(Γ); k ∈ {1, 2, 3} \ {i, j}.

(2) Varying the parameter λ, a moving planes process is started by means of family Pλ.
For some λ ∈ R, Pλ ∩ Σ 6= ∅ and can be considered the reflection, through Pλ, of
the part of Σ surpassed by Pλ.

(3) For a critical parameter, λ∗, it is considered the reflection through Pλ∗ of the part of
Σ surpassed by Pλ∗ , see Figure 24.

Pλ∗

Σ Σ

Pλ

Figure 24 – In red, the reflection, through Pλ∗ , of the part of Σ surpassed by Pλ∗ .

(4) Considering an appropriate coordinated system, we use a suitable maximum princi-
ple and it is concluded that the reflection, through Pλ∗ , of the part of Σ surpassed
by Pλ∗ coincide, locally, with the part of Σ non surpassed by Pλ∗ .

(5) The single continuation principle is used and it is concluded that the reflection,
through Pλ∗ , of the part of Σ surpassed by Pλ∗ coincide with the part of Σ non
surpassed by Pλ∗ .

(6) Finally, from arbitrariness of Pλ, it is concluded that Σ is symmetrical rotationally.

A natural question around the steps above:
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Question 2.3.1 How to determine the critical parameter λ∗?

Consider

Λ the region bounded by C+ ∪ Σ ∪ C− ⊂ B3, (2.11)

Γ

Γ‘

C+

C-

Σ

Figure 25 – Λ is the connected region bounded by C+ ∪ Σ ∪ C− ⊂ B3.

where C+ is the upper portion of S2 such that ∂C+ = Γ; C− is the lower portion of S2

such that ∂C− = Γ′. As Σ is embedded, Λ is connected (Figure 25).

Define

λ− = min {λ ∈ R ; Pλ ∩ Σ 6= ∅}, (2.12)

λ+ = max {λ ∈ R ; Pλ ∩ Σ 6= ∅}, (2.13)

and observe that, as Σ ⊂ B3, so −1 ≤ λ− < λ+ ≤ 1. To better organize the text, consider
the following definition:

(i) Σλ being the part of Σ between Pλ− and Pλ, λ ∈ (λ−, λ+), is that, the part of Σ surpassed
by Pλ;

(ii) Σ̃λ being the reflection of Σλ through Pλ;

(iii) Σ\Σλ being the part of Σ between Pλ and Pλ+ , λ ∈ (λ−, λ+), is that, the part of Σ non
surpassed by Pλ.

For some value of parameter λ, called λ∗, we say that the reflected part, Σ̃λ,
definitely extrapolates Λ if,

∃ x∗ ∈ Σ̃λ ; x∗ + µ ·NP 6∈ Λ, ∀ µ > 0, (2.14)
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where NP is the unit normal vector to family Pλ, pointing in the sense of increasing
λ. Thus, it is defined the critical parameter of moving planes process with respect to
family Pλ, see Figure 26. Note that, we should not worry with the possibility of Σ̃θ,λ

definitively extrapolates Λ by C+ or C− and also in the possibility of a point along ∂Σ̃θ,λ

definitively extrapolates Λ, at a point p ∈ intΛ, because ∂Σ is G-invariant and due to
spherical geometry (this is other relevance of ∂Σ to be G-invariant).

Σλ

x

NP

Σ\Σλ
Σ

Pλ 

∼

x + µ.NP

∗∗

x*

Pλ Pλ 

Σλ
∼ Σ\Σλ

Figure 26 – The moving planes process in two moments, λ and λ∗.

Observation 2.3.1 We created and adopted the concept definitively extrapolates instead of
touching, the latter already existing in the literature, to avoid the possibility of a boundary point
of Σ̃λ intersects a interior point of Σ\Σλ.

Note that, being P⊥ be the plane containing the origin and orthogonal to Π3 and
to family Pλ, there exist p, q ∈ P⊥ ∩ Γ such that

<p, e3> = <q, e3>, (2.15)

because ∂Σ is G-invariant, where {e1, e2, e3} is the canonical base in R3. Define σp, σq the
connected component of P⊥ ∩ Σ that contain p and q, respectively. As Σ is embedded,
either σp = σq or σp ∩ σq = ∅, for an illustration see Figure 27.

This extrapolation may occur in the following ways:

(P1) At a point x∗ on int(Σ̃λ∗)∩ int(Σ\Σλ∗).

(P2) At a point x∗ ∈ ∂Σ̃λ∗∩ ∂(Σ\Σλ∗).

(P3) At a point x∗ such that Tx∗Σ ⊥ Pλ∗ .

(P4) At a point x∗ such that Tp∂Σ ⊥ Pλ∗ .

Now that the ARM was presented, we can state our main result:
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p σθ
p

θ
qσ

q
σθ

p

RΠ3
(q)RΠ3

(p)

RΠ3
(p) RΠ3

(q)

=
θ
qσ p σθ

p q

RΠ3
(q)RΠ3

(p)

θ
qσ

Πk Πk Πk

p q

Figure 27 – σp, σq and the other connected components of P⊥ ∩ Σ. On the right side
figure σp ∩ σq = ∅.

Theorem 2.3.1 Let Σ2 ⊂ B3 be an embedded CMC capillary annulus, such that ∂Σ is
symmetrical with respect to the coordinated planes, then Σ is rotationally symmetric.

Proof of Theorem 2.3.1: Let Σ ⊂ B3 an embedded annulus capillary such that ∂Σ =
Γ ∪ Γ′ is G-invariant and

int(Σ) ⊂ int(B3) (2.16)

∂Σ = Γ ∪ Γ′ ⊂ ∂B3 (2.17)

As ∂Σ is G-invariant, follows from Lemma 2.3.1 that there exists a coordinated
plane, without loss of generality, let’s say Π3, such that

Γ′ = RΠ3(Γ) and Γ = RΠ3(Γ′) (2.18)

and

Γ = RΠ1(Γ) = RΠ2(Γ) and Γ′ = RΠ1(Γ′) = RΠ2(Γ′). (2.19)

Consider the family Tθ of orthogonal planes to Π3 and parallels to each other,
such that

Tθ,λ = {(x1, x2, x3) ∈ R3; cos θ · x1 + sin θ · x2 = λ} ∈ Tθ, (2.20)

where θ ∈ [0, π) and λ ∈ R. Let

λ−θ = min {λ ∈ R ; Tθ,λ ∩ Σ 6= ∅}, (2.21)

λ+
θ = max {λ ∈ R ; Tθ,λ ∩ Σ 6= ∅}, (2.22)

Define Σθ,λ as the part of Σ between Tθ,λ−
θ

and Tθ,λ, λ ∈ (λ−θ , λ+
θ ), precisely

Σθ,λ := {x ∈ Σ ; λ−θ ≤ cos θ · x1 + sin θ · x2 ≤ λ}. (2.23)
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We will call Σ̃θ,λ the reflection of Σθ,λ through Tθ,λ, i.e.,

Σ̃θ,λ := {x ∈ Σ ; λ ≤ cos θ · x1 + sin θ · x2 ≤ λ+ λ−θ }, (2.24)

and Σ\Σθ,λ the part of Σ between Tθ,λ and Tθ,λ+
θ

, λ ∈ (λ−θ , λ+
θ ), see Figure 28.

Tθ,λ

Σ

Tθ,λ

Σθ,λ Σθ,λ

Tθ,λθ

~
Σ\Σθ,λ

__

Figure 28 – Σθ,λ, Σ̃θ,λ and Σ\Σθ,λ.

For example, note that for θ = λ = 0, T0,0 = Π1 and for θ = π
2 and λ = 0, Tπ

2 ,0 = Π2.
In these cases, ∂Σ̃θ,λ = ∂ (Σ \ Σθ,λ), see Figure 29.

Τ0

Πk

Figure 29 – ∂Σ̃θ,0 = ∂(Σ\Σθ,0), for θ ∈ {0, π2}.

Now, we start the moving planes process from λ = λ−θ until λ = λ∗θ, by means the
family Tθ.

Let x∗ the extrapolation point, for some of the possibilities (P1) ∼ (P2). Consider
a coordinate system such that x∗ = (0, 0, 0) and smooth functions u, v : Ā→ R, where A
is an open in R2 such that (0, 0) ∈ Ā, such that

u(0, 0) = v(0, 0) = 0 (2.25)

and Σ\Σθ,λ∗
θ

= graph(u) and Σ̃θ,λ∗
θ

= graph(v) in a neighborhood of (0, 0). Note that,
as Σ\Σθ,λ∗

θ
and Σ̃θ,λ∗

θ
are CMC (for the same constant), u and v satisfy the same CMC
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equation. Hence, the function w = v − u satisfy an homogeneous linear elliptic pde, see
[25].

In the possibility (P1), define a coordinate system such that Tx∗Σ = {z = 0},
where the axis z pointing to Tθ,λ∗

θ
and use the Lemma 1.2.1 to conclude that w = 0 in a

neighborhood of (0, 0), i.e., Σ̃θ,λ∗
θ

= Σ\Σθ,λ∗
θ

in a neighborhood of x∗.

In (P2), define a coordinate system such that Tx∗∂Σ = {x = z = 0} and
Tx∗Σ = {z = 0}, where the axis z pointing to Tθ,λ∗

θ
and axis x point to intA. So, use the

Lemma 1.2.2 to conclude that w = 0 in a neighborhood of (0, 0), i.e., Σ̃θ,λ∗
θ

= Σ\Σθ,λ∗
θ

in a
neighborhood of x∗.

For the case (P3), define a coordinate system such that Tx∗Σ = {z = 0}, the
plane Tθ,λ∗

θ
coincide with {x = 0}, where the axis z pointing to Tθ,λ∗

θ
and axis x point to

intA. So, use the Lemma 1.2.2 to conclude that w = 0 in a neighborhood of (0, 0), i.e.,
Σ̃θ,λ∗

θ
= Σ\Σθ,λ∗

θ
in a neighborhood of x∗.

In (P4), define a coordinate system such that x∗ is the origin of a coordinate
system (x, y, z), Tx∗∂Σ = {x = z = 0} and Tx∗Σ = {z = 0}, where the axis z points
into Σ and axis x pointing to Σ̃θ,λ∗

θ
. So, use the Lemma 1.2.3 and the capillarity of Σ for

conclude that w = 0 in a neighborhood of (0, 0), i.e., Σ̃θ,λ∗
θ

= Σ\Σθ,λ∗
θ

in a neighborhood
of x∗.

Using the unique continuation we concluded that Σ̃θ,λ∗
θ

= Σ\Σθ,λ∗
θ
.

Affirmation: λ∗θ = 0, ∀ θ ∈ [0, π).

Indeed, suppose absurdly, that λ∗θ < 0.

Hereafter, as ∂Σθ,λ∗
θ
⊂ S2, then Σ is a surface whose boundary satisfy

∂Σ = ∂Σθ,λ∗
θ
∪ ∂Σ̃θ,λ∗

θ
, (2.26)

i.e., ∂Σ does not contained in S2. Contradiction, because φ is admissible! Then, the
affirmation is true.

Finally, as λ∗θ = 0 and Σ̃θ,0 = Σ\Σθ,0, ∀ θ ∈ [0, π), because θ was taken arbitrarily,
if Π is a plane parallel to Π3, the straight line rθ := Π∩ Tθ,0 intersects Σ∩Π orthogonally,
for all θ ∈ [0, π). Besides that, as λ∗θ = 0, ∀ θ ∈ [0, π), all these straight lines intersects
each other at point p0 ∈ Π ∩ eixox3, ∀ θ ∈ [0, π), i.e., Σ ∩ Π is a circle.

Therefore, as θ was taken arbitrarily, Σ is symmetrical rotationally.

�

Observation 2.3.2 Follows from above affirmation that, for example, (P3) does not occur for
λ < 0. So, the curve defined by intersection T⊥θ ∩Σ, where T⊥θ is the plane containing the origin
and orthogonal to Π3 and Tθ, can be represented, globally, as the graphic of a smooth function
f(z), where z ∈ I ⊂ T⊥θ ∩Tθ,0, see Figure 30. Thus, not exist the possibility of a boundary point
of Σ̃λ intersects Σ\Σλ, i.e., we could considered the concept touching from the start.
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cannot 
occur

Figure 30 – As (P3) does not occur for λ < 0, the circled part does not occur either.

In Theorem 2.2.2, McGrath assume that an embedded annulus minimal free
boundary, Σ ⊂ Bn, is G-invariant, to prove that Σ is the critical catenoid. From Theorem
2.3.1, we improved the result of McGrath [9], to n = 2, because we assume only that ∂Σ
is G-invariant.

Corollary 2.3.1 Let Σ2 ⊂ B3 be an embedded annulus minimal free boundary. If ∂Σ is G-
invariant, then Σ is the critical catenoid.

Proof of Corollary 2.3.1: Follows directly of proof from Theorem (2.3.1) and of fact that
the critical catenoid is the only minimal surface rotationally symmetric free boundary
in B3.

�

With this methodology, we also get a new demonstration for

Theorem 2.3.2 (Pyo) Let Σ2 be an embedded minimal surface in R3 with two boundary com-
ponents and let Γ be one component of ∂Σ. If Γ is a circle and Σ meets a plane along Γ at a
constant angle, then Σ is part of the catenoid.

Proof of Theorem 2.3.2: Let Π the plane that contain Γ and Tθ be a family of parallel
planes with each other and orthogonal to Π.

As Γ is a circle, during the moving plane process, for some value of the parameter
λ, Σ̃θ,λ definitively extrapolates Σ\Σ̃θ,λ, of some of the forms (P1) ∼ (P4). As we have
no information about Γ′, another component connected of ∂Σ, we cannot say anything
about the occurrence of the cases (P2) and (P4). If the cases (P1) or (P3) occur for some
λ∗θ ≤ 0, we have by ARM that

Σ̃θ,λ∗
θ

coincide to Σ\Σ̃θ,λ∗
θ

(2.27)
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in the neighborhood of the some point p ∈ intΣ, because Σ is capillary. Repeatedly
applying the maximum principle until we get to Γ, we get

Γ = Γθ,λ∗
θ
∪ Γ̃θ,λ∗

θ
, (2.28)

But since Γ is a circle, it follows of the circular geometry of Γ, which λ∗θ = 0.

Consider r the orthogonal straight line to Tθ,0 passing through the center of Γ
and let p the point given by the intersection between Γ, r and Σ\Σ̃θ,0. Once Γ is a circle
and (P1) and (P3) do not occur for λ < 0, we have Σ̃θ,0 stays above Σ\Σ̃θ,0, relative to ν̃,
normal vector for Σ̃θ,0 at the point p.

Consider a coordinated system such that {x3 = 0} = Tx∗Σ̃θ,0. Thus, using the
ARM, the unique continuation principle, the arbitrariness in choosing θ, as well as in
the proof of Theorem 2.3.1, we conclude that Σ is the critical catenoid.

�
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3 Surfaces of constant anisotropic
mean curvature with free-boundary in
revolution surfaces

In this chapter we consider immersions φ, with constant anisotropic mean curva-
ture (CAMC), of a smooth oriented connected and compact surface Σ, such that ∂Σ 6= ∅,
in a region Ω whose boundary is a revolution surface. First, we find one condition on
the boundary of CAMC free boundaries immersions, then we prove that φ(Σ) should
be a flat disk and under what conditions it is stable.

3.1 Anisotropic Introduction

Let Σ be a smooth oriented connected and compact surface, Ω ⊂ R3 a region
such that ∂Ω is a revolution surface and φ : Σ → Ω a smooth immersion. Consider
Φ : (−ε0, ε0)×Σ→ Ω a smooth variation of φ, i.e., Φε : Σ→ Ω, defined by Φε(p) := Φ(ε, p),
ε ∈ (−ε0, ε0), is a smooth immersion, and Φ0 = φ.

The study of CAMC immersions is a generalization of classical case about CMC
immersions. Is well known that CMC hypersurfaces are solutions of a variation problem
associated to area functional

A(ε) =
�

Σ
dΣε (3.1)

and we say that Σ is CMC stable, roughly, when it minimizes area up to second order.
Important contribuitions for the classical case were made in [21] and [3], where they
classified the stable immersions in cases ∂Σ = ∅ and free boundary in an euclidean ball,
respectively:

Theorem 3.1.1 (Barbosa and Do Carmo) Let Σn be compact orientable manifold and let
φ : Σ→ Rn+1 be an immersion with nonzero constant mean curvature. Then φ is stable if and
only if φ(Σ) ⊂ Rn+1 is a (round) sphere Sn ⊂ Rn+1.

Theorem 3.1.2 (Ros and Vergasta) Let φ : Σ2 → B ⊂ R3, where B is an euclidean ball, an
immersion CMC stable. Then the only possibilities are

i φ(Σ) is a totally geodesic disk,

ii φ(Σ) is a spherical cap,

iii g = 1 and r = 1 or 2.
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However, this result of Ros and Vergasta is just partial and it was complemented
by the work of Nunes [4] and Barbosa [5], discarding the third possibility. Recently,
Wang and Xia [6] definitely classified the CMC stable immersions free boundary in the
euclidean ball Bn+1.

The study of CAMC immersions is a generalization of CMC case, adding a
function F in the area functional:

F(ε) =
�

Σ
F (ν(ε, p)) dΣε (3.2)

where F : Sn → R+ is a smooth function and ν(ε, p) is the unit normal vector from Σε,
at point p. In [13], to compactly supported variations, they proved that Euler-Lagrange
equation of F is

Λ(p) := nH(p)F (ν(0, p))− divΣDF (ν(0, p)) ≡ constant, (3.3)

where H(p) is the mean curvature from Σ at point p, DF is the gradient from F on
S2 and the number Λ(p) is called anisotropic mean curvature of Σ at point p. They also
proved that, under some assumptions, a CAMC stable immersion φ : Σ2 → R3 is an
Wulff Shape, up to a translation and homothety. In [14], they considered free boundary
variations and classified the CAMC stable immersions in a slab.

In this work, we consider the generalized area functional F with some conditions
under F and free boundary variations of immersions φ : (Σ2, ∂Σ) → (Ω, ∂Ω), where
(Σ2, ∂Σ) is an oriented connected compact surface, such that ∂Σ 6= ∅, as well as [3] and
[14], and Ω ⊂ R3 is a region whose boundary is a revolution surface with profile curve
α and axis e such that J∂Ω := {t ∈ I | α′(t)//e} is a discrete set. In this context we ask
ourselves about the properties of φ(Σ). First, we found some features about φ(∂Σ).

3.2 About the orthogonality of ∂Σ in relation to ∂Ω

Let (Σ2, ∂Σ) be an oriented connected compact hypersurface with boundary ∂Σ 6=
∅. Consider a free boundary admissible variation Φ = Φ(ε, p) of a smooth immersion
φ : (Σ2, ∂Σ) → (Ω, ∂Ω), where Ω ⊂ R3 is a region such that ∂Ω is a revolution surface.
Consider the generalized area functional

F(ε) =
�

Σ
F (ν(ε)) dΣε (3.4)

and the volume function

V (ε) =
�

[0,ε]×Σ
Φ∗dV. (3.5)
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where Φ∗dV is the pullback of the canonical volume element of R3.

The first variation of functional F can be find in [14] and is given by

∂εF|ε = −
�

Σ
uΛ dΣε +

�
∂Σ
〈χ× Φ̇, dΦ〉 (3.6)

where χ(ν) = DF (ν) + F (ν)ν, Φ̇ = uν + ξ, dΦ := tds and

t := t(ε, p) = ν(ε, p)× η(ε, p) (3.7)

where ηε := η(ε, p) is the unit exterior normal along ∂Σε and η := η(0, p) is the unit
exterior normal along ∂Σ.

An immersion φ is called critical if and only if F ′(0) = ∂εF|ε=0 = 0, for all
volume-preserving admissible variation, i.e., for all variation Φ = φ+ ε(u · ν + ξ) such
that

�
Σ
u dΣ = 0 (3.8)

and

〈Φ̇, N〉 ≡ 0 along ∂Σ, (3.9)

where ξ is a field tangent to Σ and N is the unit outward normal along ∂Ω.

Example 3.2.1 A plane Π (or a piece of it) is a CAMC surface with Λ ≡ 0. Indeed, let p on Π,
so

Λ(p) = nH(p)F (ν(p))− divΣDF (ν(p)) = 0,

since the mean curvature H(p) = 0, as well as

divΣDF (ν(p)) = 0,

once that dν = 0, since ν is constant along Π.

For more examples of CAMC surfaces see [13], and [14] to find the following

Proposition 3.2.1 An immersion φ is critical if and only if
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Λ ≡ Λ0, on Σ, (3.10)

for some constant Λ0 and

〈χ(ν), N〉 = 0, along ∂Σ. (3.11)

Remark 3.2.1 Although φ is critical, we do not obtain the orthogonality of ∂Σ in relation
to ∂Ω, unlike the classical case (CMC), where F ≡ 1 and the above proposition reduces to
H ≡ constant on Σ and 〈ν,N〉 = 0 along ∂Σ.

In this work, as well as in [13] and [14], we will consider F = f(ν3), i.e.,

F = f ◦ x3

where ν = (ν1, ν2, ν3), x3 is the projection in the third component and f : [−1, 1]→ R+

is a smooth function such that f ′ 6= 0. In addition, we will demand that the matrix
A = D2F + F1 is positive definite, where D2F is the Hessian matrix of F and 1 is the
identity on TνS2, whose eigenvalues, that were determined in [14], are given by

1
µ1

= (1− ν2
3)f ′′ + 1

µ2
and

1
µ2

= f − ν3f
′ (3.12)

Example 3.2.2 Consider the following family of functions

f : [−1, 1] → R+

ν3 7→ aν2
3 + bν3 + c

(3.13)

where a > 0 and ∆ = b2 − 4ac < 0, is such that, c > b2/4a. In this case, f > 0 and
f ′ = 2aν3 + b.

0 6= f ′ ⇔ −b2a < −1 or
−b
2a > 1 (3.14)

⇔ 0 < 2a < b or b < 0 < 2a < −b. (3.15)

The matrix A = D2F +F1 must be positive definite, i.e., we should have 1
µ2
> 0, because

f ′′(ν3) = 2a > 0. So,

0 < 1
µ2

= f − ν3f
′ = aν2

3 + bν3 + c− 2aν2
3 − bν3 = c− aν2

3 , ∀ ν3 ∈ [−1, 1].
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Since the right side of the above inequality reaches its lower value when ν3 = ±1, we should
request a < c in (3.13). However, as f ′ 6= 0, b2/4a > a. Hence, we should only have c > b2/4a.

Therefore, the functions of the family (3.13) such that

0 < 2a < b and c >
b2

4a or b < 0 < 2a < −b and c >
b2

4a (3.16)

meets the conditions requested. In addition, when a = b = 0 we return to the classical case.

The divergent of F on S2 is

DF (ν) = f ′(ν3)(e3 − ν3ν), ∀ ν on S2, (3.17)

where e3 = (0, 0, 1). In possession of the previous proposition we will classify the critical
immersions φ : (Σ2, ∂Σ)→ (Ω, ∂Ω) that intersect orthogonally ∂Ω, i.e., the immersions
such that

η = N, along ∂Σ. (3.18)

Let α : I → R3 and e, be a profile curve of and the axis of rotation of ∂Ω,
respectively (note that all parallel of ∂Ω is a circle in a plane orthogonal to the axis e).
Let’s also define J∂Ω := {t ∈ I | α′(t) // e}.

Unlike the classic case, as seen in Proposition 3.2.1, if φ is a critical immersion
for the functional F , it is not possible to say that φ is free boundary, that is, that φ(∂Σ)
meets ∂Ω orthogonally. In this work, we asked ourselves about the properties of CAMC
free boundaries immersions. Below, our first result.

Proposition 3.2.2 Let F = f(ν3) and f a smooth function such that f ′ 6= 0. Consider φ :
(Σ, ∂Σ)→ (Ω, ∂Ω) a critical immersion to the functional F , where J∂Ω is a discrete set. Then
∂Σ intersect ∂Ω orthogonally if and only if each connected component of ∂Σ lies in a parallel of
∂Ω, where N ⊥ e3 along it.

Proof of Proposition 3.2.2: Consider an orthonormal frame {e1, e2, e3} ∈ R3 such that
e3 be the director vector of axis e of ∂Ω. As φ is a critical immersion, is a consequence of
Proposition 3.2.1 and equation (3.17) that

〈χ(ν(p)), N(p)〉 = 0, ∀ p ∈ ∂Σ.

〈DF + Fν,N〉 = 0, ∀ p ∈ ∂Σ.

f ′〈e3, N〉 − ν3f
′〈ν,N〉+ f〈ν,N〉 = 0, ∀ p ∈ ∂Σ. (3.19)

Suppose φ(Σ) intersect ∂Ω orthogonally, then 〈ν,N〉 |∂Σ ≡ 0, and follows from
(3.19) that

f ′〈e3, N〉 = 0, ∀ p ∈ ∂Σ. (3.20)
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that is,

〈e3, N〉 = 0, ∀ p ∈ ∂Σ. (3.21)

Because J∂Ω is a discrete set, so each component of ∂Σ lies in a parallel of ∂Ω andN ⊥ e3

along ∂Σ.

In return, let ν = ν(p), p ∈ ∂Σ, and suppose ∂Σ lies in a parallel of ∂Ω such that
N ⊥ e3 along this. Then, follows from (3.19) that

(f − ν3f
′)〈ν,N〉 = 0, along ∂Σ. (3.22)

However, if ν ∦ e3, then (f − ν3f
′) = µ−1

2 > 0, because µ−1
2 is an eigenvalue of positive

definite matrix A = D2F + F1. So, 〈ν,N〉 = 0, along ∂Σ. If ν(p)//e3, follows from (3.17)
that DF (ν) = 0 and using (3.19) follows the result. Therefore,

〈ν,N〉 ≡ 0, on ∂Σ. (3.23)

�

Henceforth, we will denote by I⊥F (∂Σ, ∂Ω) the family of critical immersions of
(Σ, ∂Σ), with respect to the function F = f ◦ x3, f ′ 6= 0, such that ∂Σ 6= ∅ intersect ∂Ω
orthogonally.

Example 3.2.3 Consider φ ∈ I⊥F (∂Σ,S2), where f(ν3) = ν2
3 + 1 and note that f ′(0) = 0.

Then, in this case, follows from (3.20) that each connected component of ∂Σ can lies in a plane
containing the the axis e.

Corollary 3.2.1 Under the assumptions of Proposition 3.2.2, we have:

(i) If J∂Ω = ∅, then I⊥F (∂Σ, ∂Ω) = ∅.

(ii) If J∂Ω is an unit set, then φ(Σ) has an unique connected boundary component.

Corollary 3.2.2 Towards the above assumptions, if φ ∈ I⊥F (∂Σ, ∂Ω), then ν//e3 along ∂Σ.

Example 3.2.4 If ∂Ω is a right circular cone (with one leaf), then does not exist critical immer-
sion such that ∂Σ intersect ∂Ω orthogonally, because J∂Ω = ∅.

Example 3.2.5 If ∂Ω is a catenoid and φ a critical immersion such that ∂Σ intersect ∂Ω
orthogonally, then ∂Σ should lies in catenoid neck, see Figure 31.

If p = α(t0) on ∂Ω and α′(t0)//e, then the parallel, generated by the revolution of
p, is a geodesic of ∂Ω, see [29], so

Corollary 3.2.3 If φ ∈ I⊥F (∂Σ, ∂Ω) and J∂Ω is a discrete set, then ∂Σ is the union of closed
geodesics of ∂Ω.
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e

φ(Σ)

Figure 31 – Critical immersion φ in a catenoid, whose boundary ∂Σ intersect the
catenoid orthogonally.

In the classical case, proven by M. Koiso [8] that, being Σn a compact non-zero
CMC hypersurface such that ∂Σ is a (n − 1)-sphere Γ0 in some hyperplane Π ⊂ Rn+1

and such that int(Σ) does not intersect the outside of Γ0 in Π, then Σ must be a spherical
cap. In this work, precisely when J∂Ω is an unit set, we already know that if Σ is CAMC,
then ∂Σ is a 1-sphere lying in a plane orthogonal to axis of rotation of ∂Ω and that
int(Σ) does not intersect the outside of this 1-sphere. Will this also allow us to conclude
something about Σ?

Example 3.2.6 Let φ ∈ I⊥F (∂Σ, ∂Ω) and J∂Ω an unit set, so follows from Proposition 3.2.2
that ∂Σ lies in the unique parallel of ∂Ω such that N ⊥ e3 and ν = e3 = (0, 0, 1) (without loss
of generality) along of ∂Σ. Consider F = f ◦ x3, where f(ν3) = aν3 + b and 0 < a < b. In this
case,

divΣDF = f ′′(ν3)〈∇ν3,∇x3〉+ 2Hν3f
′ (3.24)

and

Λ = 2HF − divΣDF = 2Hb (3.25)

i.e.,

H = Λ
2b ≡ constant. (3.26)

Then, follows from Theorem 2.1.4 that, Σ is a flat disk.

A natural question: will we have the same result for other functions f?

Adapting the tangency principle for boundary points, theorem 1.2 found in [30],
for anisotropic case and when r = 1, we have:
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Theorem 3.2.1 (Tangency Principle) Let Σn and Σn be hypersurfaces of Rn+1 with
not empty boundaries ∂Σn and ∂Σn, respectively. Suppose Σn and Σn are tangent at
p ∈ ∂Σn ∩ ∂Σn and let ν(p) be normal to Σn at p. Suppose Σn remains above Σn and Λ ≤ Λ in
a neighborhood of p with respect to ν(p). Then, Σn and Σn coincide in a neighborhood of p.

Proof of Theorem 3.2.1: Only remember that A is positive defined and follow the proof
in [30] analogously.

�

In [31] we find the following result.

Theorem 3.2.2 (Unique Continuation for Elliptic Equations) Let L be a second-order el-
liptic linear operator. If Lv = 0 on a convex domain D and v vanish on an open subset of D,
then v ≡ 0 on D.

Now we can present our next result and classify the critical immersions of
I⊥F (∂Σ, ∂Ω). Without loss of generality, we consider the unit outwards normal vector ν
on Σ.

Theorem 3.2.3 Let F = f(ν3), where f is a smooth function such that f ′ 6= 0. Consider
φ : (Σ, ∂Σ) → (Ω, ∂Ω) a critical immersion to the F such that Λ ≤ 0 and J∂Ω a discrete set.
Then, φ ∈ I⊥F (∂Σ, ∂Ω) if and only if φ(Σ) is a totally geodesic disk whose boundary is a parallel
of ∂Ω, where N̄ ⊥ e3 along it.

Proof of Theorem 3.2.3: If φ(Σ) is a totally geodesic disk whose boundary is a closed
geodesic in ∂Ω, nothing to do. That being said, suppose ∂Σ intersect ∂Ω orthogonally.
Follows from Proposition 3.2.2, with each connected component of ∂Σ lies in a plane
perpendicular the rotation axis, which means, ∂Σ = ∂D1∪ ...∪∂Dn, whereDi is a totally
geodesic disk, i = 1, ..., n, and still, ν//e3 along ∂Σ.

Let p ∈ ∂Σ∩∂Di, for some i ∈ {1, ..., n}, and consider, no loss generality, ∂Di ⊂ Π3,
where Π3 = {(x1, x2, x3) ; x3 = 0}.

Affirmation: There exist a point p ∈ ∂Σ and a neighborhood Vp ⊂ Σ, at p, such
that g(x) = 〈x, e3〉 does not change signal (g ≥ 0).

Absurdly, suppose that:

∀ p ∈ ∂Σ and ∀ Vp 3 p ∈ ∂Σ, Vp ⊂ Σ, g+(Vp) 6= ∅ 6= g−(Vp), (3.27)

where g+(Vp) = {x ∈ Vp | g(x) > 0} and g−(Vp) = {x ∈ Vp | g(x) < 0}.
Henceforth, for all p ∈ ∂Σ there are sequences in Σ,

x+
n → p; g(x+

n ) > 0, ∀ n ∈ N; (3.28)

x−n → p; g(x−n ) < 0, ∀ n ∈ N; (3.29)
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By continuity of g, also there exist a sequence such that

xn → p; g(xn) = 0, ∀ n ∈ N. (3.30)

Let αp : [a, b] → Σ be a curve such that αp(a) = p and xn ∈ αp([a, b]), n ≥ n0, that is,
the curve αp connect the points of sequence (xn), for n ≥ n0. So, follows from (3.30)
that, there exist δp > 0 such that (g ◦ αp)([a, δp)) = {0}, because (g ◦ αp)−1(0) is a closed
subset of the compact set [a, b]. Thus, αp([a, δp)) ⊂ Vp ∩Di. Analogously, we can define
the curves α+

p , α
−
p : [a, b]→ Σ, i.e., α±p ([a, δp)) ⊂ g±(Vp) (Figure 32).

p
α−p

αp

αp+

Figure 32 – We have g = 0, g > 0 and g < 0 along αp, α+
p and α−p , respectively.

Let p1, p2 ∈ Vp ∩ ∂Σ. Consider arc(p1, p2) the smallest arc of circle containing
p, p1, p2 ∈ Vp ∩ ∂Σ and Wp ⊂ Vp a neighborhood in p ∈ ∂Σ (Figure 33), such that

(w1) Wp ∩ ∂Σ = arc(p1, p2);

(w2) α±p1([a, b]) ∩Wp = αp1([a, b]) ∩Wp = {p1}; α±p2([a, b]) ∩Wp = αp2([a, b]) ∩Wp = {p2};

(w3) ∀ p ∈ arc(p1, p2), ∃ t, t± ∈ [a, δp);αp(t) 6∈ Wp and α±p (t±) 6∈ Wp.

Let γ : [c, d] → Wp be a curve such that γ(d) = p1 and γ([c, d]) ∩ ∂Σ = {p1}. In a
neighborhood of p1, the trace of curve γ intersect αp([a, δp)) to an infinite p ∈ ∂Σ (the
same happens with respect to curves α±p ([a, δp)), as a consequence of (w2) and (w3)).
Then, the closed subset g−1(0) ⊂ [c, d] have infinity points. Contradiction! Therefore, the
affirmation is true.

Henceforth, there exist a point p ∈ ∂Σ and a neighborhood Vp ⊂ Σ, such that
g(x) = 〈x, e3〉 does not change signal (g ≥ 0). So, as ν//e3 along ∂Σ, Σ andDi are tangents
at p ∈ ∂Σ; as g ≥ 0, Σ ∩ Vp remains above Di with respect to νΣ; and ΛΣ ≤ 0 = ΛDi with
respect to νΣ. So, follows from Theorem 3.2.1 that, there exist a neighborhood Vp ⊂ Σ,
p ∈ ∂Σ, such that Vp ⊂ Di. This way, being ν = (ν1, ν2, ν3), we have

ν1 ≡ ν2 ≡ 0, and ν3 ≡ 1 on Σ ∩ Vp. (3.31)
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p

p1

p2

Wp

γ

Figure 33 – The neighborhood Wp and the curve γ.

On the other hand, see [13], to j = 1, 2 and 3, νj verify

L[νj] = 0, on Σ, (3.32)

where L is the second-order elliptic differential operator

L[u] = divΣ (A∇u) + 〈Adν, dν〉u. (3.33)

Then, follows from (3.32) and Theorem 3.2.2 that ν1 ≡ ν2 ≡ 0, in Σ. Therefore, φ(Σ) is a
totally geodesic disk.

�

Example 3.2.7 If ∂Ω = S2 and φ is a critical immersion such that ∂Σ intersect ∂Ω
orthogonally, then Σ is the totally geodesic disk whose boundary must be an equator contained
in an orthogonal plane to the axis e of S2 [Figura 34].

Σ

e₃

Figure 34 – Critical immersion φ ∈ I⊥F (∂Σ,S2).
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In the next example, we show the relevance of hypothesis f ′ 6= 0 in the Theorem
3.2.3.

Example 3.2.8 Let φ ∈ I⊥F (∂Σ,S2) such that f ′(k) = 0, where −1 < k < 0 (for example,
f(ν3) = ν2

3 + ν3 + 3). Fixed the function f , we can define the Wulff Shape of F

WF = ∂
⋂
ν∈S2

{y ∈ R3|〈y, ν〉 ≤ f(ν3)} (3.34)

Figure 35 – The Wulff Shape with respect to the function f(ν3) = ν2
3 + ν3 + 3.

whose normal vector νW = (ν1, ν2, ν3), without loss of generality, we choose outward pointing.
As F = f(ν3), so W is a rotation surface around the axis e//e3.

Consider the following steps:

1. Define W− the lower hemisphere of WF .

2. Let Wk be the Wulff Shape Cap of WF such that it normal vector ν̄ = (ν̄1, ν̄2, ν̄3) satisfy
ν̄3 = ν3 ≡ k along ∂Wk; and consider p, q ∈ ∂Wk ∩ plano e2e3.

3. Move Wk to the upper half-space of R3, along of the axis e and in the sense of e3, until the
straight containing the origin and p̃ (p̃ being a translation of p) become orthogonal to ν̄(p̃)
(the same will occur with respect to the straight containing the origin and q̃, where q̃ is a
translation of q, by symmetry), see Figure 38.

4. Finally, consider the sphere S2
r , where r = d(p̃, 0) = d(q̃, 0). So, this translation of Wk is

free boundary in S2
r .

Then, this Wulff Shape Cap Wk is critical free boundary, with respect to the functional
defined by f , in S2

r . That is, if we with draw the assumption f ′ 6= 0, so appear other immersions
CAMC free boundary in B3.
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Figure 36 – An Wulff Shape Cap with respect to the function f(ν3) = ν2
3 + ν3 + 3.

e₂

e₃

r r

p~q~

Figure 37 – The Wulff Shape Cap
before translation.

e₂

e₃

r r

p~q~

Figure 38 – The Wulff Shape Cap after
translation.

3.3 About the stability of totally geodesic disk

Following the same steps of the classical case, we must verify the stability of the
critical immersions φ ∈ I⊥F (∂Σ, ∂Ω). However, is necessary that φ(Σ) be CAMC to be
stable. So, for each F , we must just verify the stability of the totally geodesic disk whose
boundary is a parallel of ∂Ω contained in a plane Π that intersect the axis e orthogonally.

Proposition 3.3.1 Let F = f(ν3), where f ′ 6= 0. Consider φ ∈ I⊥F (∂Σ, ∂Ω) and J∂Ω a discrete
set. Then, for all volume-preserving normal admissible variation, the second variation of F is

∂2
εεF

∣∣∣
ε=0

= −
�

Σ
uΛ̇ dΣ +

�
∂Σ
u〈A∇u, η〉 ds−

�
∂Σ

II(ν, ν)u2F ds (3.35)

where II is the second fundamental form of ∂Ω into Rn+1, with respect to the inwards pointing
unit normal direction and

Λ̇ = L[u] = divΣA∇u+ 〈Adν, dν〉u (3.36)



3.3. About the stability of totally geodesic disk 75

is the Jacobi Operator of F .

Proof of Proposition 3.3.1: Follows from (3.6)

∂εF|ε = −
�

Σ
uΛ dΣε +

�
∂Σ
〈χ× Φ̇, dΦ〉 (3.37)

so

∂2
εεF

∣∣∣
ε=0

= −
�

Σ
uΛ̇ dΣ−

�
Σ
uΛ0 ∂εdΣε|ε=0 +

�
∂Σ
∂ε〈χ× Φ̇, dΦ〉

∣∣∣
ε=0

(3.38)

In [13] and [14] we find,

Λ̇ = L[u] = divΣA∇u+ 〈Adν, dν〉u, on Σ. (3.39)

As φ is critical, Λ0 is constant, hence
�

Σ
uΛ0 ∂εdΣε|ε=0 = Λ0∂ε

(�
Σ
u dΣε

)∣∣∣∣∣
ε=0

= Λ0 ∂εV
′(ε)|ε=0 = 0, (3.40)

because V is constant. The integral along ∂Σ takes the following form
�
∂Σ
〈χ̇× Φ̇, t〉 ds+

�
∂Σ
〈χ× Φ̈, t〉 ds+

�
∂Σ
〈χ× Φ̇, ˙(dΦ)〉, (3.41)

where

χ = χ(ν(p)) = DF (ν(p)) + F (ν(p))ν(p) = F (ν(p))ν(p). (3.42)

As φ ∈ I⊥F (∂Σ, ∂Ω), so ν//e along ∂Σ. Then DF ≡ 0 along ∂Σ (3.17). We also have

χ̇ = dχ|ν(p) (−∇u)p = −A|ν(p) (∇u)p (3.43)

hence

〈χ̇× Φ̇, t〉ds = −〈t× uν, χ̇〉ds = −u〈η, χ̇〉ds = u〈η, A∇u〉, on ∂Σ. (3.44)

Follows from second integral, using (3.42), that

〈χ× Φ̈, t〉ds = F 〈η, Φ̈〉ds, along ∂Σ. (3.45)

On the other hand,

0 = ∂ε〈η, Φ̇〉 = 〈η̇, Φ̇〉+ 〈η, Φ̈〉 = 〈∇̄Φ̇η, Φ̇〉+ 〈η, Φ̈〉 = u2〈∇̄νη, ν〉+ 〈η, Φ̈〉 (3.46)

= u2〈dη(ν), ν〉+ 〈η, Φ̈〉 = −u2〈dη(−ν), ν〉+ 〈η, Φ̈〉 = u2II∂Ω
−η(ν, ν) + 〈η, Φ̈〉 (3.47)

=: u2II(ν, ν) + 〈η, Φ̈〉, along ∂Σ, (3.48)

so

〈η, Φ̈〉 = −u2II(ν, ν), along ∂Σ. (3.49)
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Then,

〈χ× Φ̈, t〉ds = −u2F II(ν, ν)ds, along ∂Σ. (3.50)

Once more, as φ ∈ I⊥F (∂Σ, ∂Ω) so DF ≡ 0 along ∂Σ. Hence,

〈χ× Φ̇, ˙(dΦ)〉 = 0, along ∂Σ. (3.51)

Therefore,

∂2
εε

∣∣∣
ε=0

= −
�

Σ
uΛ̇ dΣ +

�
∂Σ
u〈A∇u, η〉 ds−

�
∂Σ

II(ν, ν)u2F ds (3.52)

�

With the second variation of F , we can discuss the stability of the immersions of
I⊥F (∂Σ, ∂Ω). As in the classical case, we define the stability of the follows form:

Definition 3.3.1 An immersion φ ∈ I⊥F (∂Σ, ∂Ω) is stable with respect to F if and only if

0 ≤ ∂2
εεF |ε=0 , for all volume-preserving normal admissible variation. (3.53)

or, equivalently,

0 ≤ ∂2
εεF |ε=0 , ∀ u ∈ C∞(Σ) ;

�
Σ
u dΣ = 0 . (3.54)

We can associate to ∂2
εεF |ε=0 the symmetrical bilinear form onH = {g ∈ H1(Σ);�

Σ g dΣ = 0},

IF (f, g) = −
�

Σ
gL[f ] dΣ +

�
∂Σ
g〈A∇f, η〉 ds−

�
∂Σ

II(ν, ν)fgF ds (3.55)

=
�

Σ
(〈A∇f,∇g〉 − 〈Adν, dν〉fg) dΣ−

�
∂Σ

II(ν, ν)fgF ds (3.56)

where∇ is the gradient of the metric induced by φ. Note that, φ is stable with respect to
F if and only if I(f, f) ≥ 0, ∀ f ∈ H.

Example 3.3.1 The totally geodesic disk D is stable with respect to functions of the family
(3.13) such that b < 0 < 2a < −b and c > b2

4a , indeed

IF (u, u) = (c− a)
�
D

|∇u|2 dA− (a+ b+ c)
�
∂D

u2 ds (3.57)

= (c− a)I(u, u)− (2a+ b)
�
∂D

u2 ds ≥ 0, ∀ u ∈ H, (3.58)

since D is CMC stable and then I(u, u) ≥ 0.

Then, of course, a question arises: as in the classic case, are the free boundary
disks in the unit sphere stable, for any function F fixed? Or does it depend on the F
function? Our next result answers that question.
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Theorem 3.3.1 Let φ ∈ I⊥F (∂Σ, ∂Ω) and Ω = B3. The disk D = φ(Σ) is stable with respect to
F if and only if f(1) ≤ µ−1

1 = µ−1
2 .

Proof of Theorem 3.3.1: Suppose than f(1) ≤ µ−1
1 = µ−1

2 and let u ∈ H.

IF (u, u) =
�
D

(〈A∇u,∇u〉 − 〈Adν, dν〉u) dΣ−
�
∂D

II(ν, ν)u2F ds (3.59)

= µ−1
�
D

|∇u|2 dΣ− f(1) ·
�
∂D

u2 ds (3.60)

As D is a totally geodesic disk, then dν ≡ 0, ν3 ≡ 1, A = µ−1 · 1 and II(ν, ν) = 1,
where µ−1 = µ−1

1 = µ−1
2 . Henceforth,

IF (u, u) = µ−1 I(u, u) + (µ−1 − f(1))
�
∂D

u2 ds (3.61)

Then, as A is positive definite and D is CMC stable, follows the result. Recipro-
cally, suppose f(1) > µ−1

1 = µ−1
2 .

IF (u, u) = µ−1 · I(u, u) + (µ−1 − f(1)) ·
�
∂D

u2 ds (3.62)

where µ−1 := µ−1
1 = µ−1

2 . Consider the function x2 : Σ→ R; x2(x) = 〈x, e2〉.

D is minimal ⇒ x2∆x2 = 0 (3.63)

⇒
�
∂D

x2
∂x2

∂η
ds−

�
D

|∇x2|2 dA = 0 (3.64)

However,

∂x2

∂η
= η〈x, e2〉 = 〈∇̄ηx, e2〉 = 〈dx · η, e2〉 (3.65)

= 〈1 · η, e2〉 = 〈η, e2〉 = 〈x, e2〉 = x2 (3.66)

because φ is free boundary. Is that, I(x2, x2) = 0. As
�
∂D

x2
2 ds > 0 (3.67)

follows from (3.62) that D is no stable.

�
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