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Resumo

Os receptores acoplados a proteina G (GPCR) sdo cruciais para muitos processos fisiologicos
vitais, incluindo controle da divisdo e proliferag¢do celular, regulacio do transporte de ions, modu-
lacdo sinapse nervosa, homeostase, modulacao e modificacdo da morfologia celular. Eles também
estdo envolvidos em muitos processos patolégicos, como Alzheimer e Parkinson, distirbios
cardiovasculares, asma, depressdo e diabete. Dada a sua importancia biolégica, mais de um
terco dos medicamentos aprovados pela FDA tém como alvo esses receptores. No entanto, o
desenvolvimento de fairmacos para GPCRs passa por altas taxas de fracasso, com baixa eficicia
in vivo sendo o principal contribuinte nesse processo. Isso resulta em apenas 7% de todos
os medicamentos (incluindo outros receptores) em estudos de fase I sendo comercializados.
Esta tese se concentrou no desenvolvimento de modelos de aprendizado de maquina capazes
de prever a bioatividade de pequenas moléculas ao interagir com GPCRs. Pretendemos com
essas ferramentas apoiar a descoberta de novos farmacos. Os modelos desenvolvidos (compde o
servidor web pdCSM-GPCR) baseiam-se em derivar uma série de assinaturas moleculares de
ligantes conhecidos, associando essas assinaturas a bioatividade e modelando essas questdes
como problemas de regressdo, sem a necessidade de informacdo estrutural do receptor. Devido a
esta caracteristica, a mesma abordagem pode ser usada para quaisquer GPCRs que ji tenham
sido avaliadas através triagem para ligantes, e também para outros alvos importantes, incluindo
quinases e canais i0nicos controlados por ligantes. Nossos modelos compdem o recurso computa-
cional mais abrangente para previsdo da bioatividade de GPCR até o momento, e inclui também
suporte para o desenvolvimento de medicamentos para GPCRs 6rfaos. Nossa abordagem al-
cancgou correlagdes de Pearson de até 0,89, por meio de validagdo cruzada de 10 vezes e em testes
cegos. Superamos significativamente os métodos anteriores. O pdCSM-GPCR foi disponibilizado
gratuitamente por meio um servidor web http://biosig.unimelb.edu.au/pdcsm_gpcr. Também
investigamos as propriedades de pequenas moléculas com alta afinidade por GPCRs a fim de
identificar determinantes moleculares de reconhecimento. Em geral, ligantes potentes possuem
fragmentos contendo nitrogé€nio e anéis aromdticos, caracteristicas comuns em ligantes em todas
as classes de GPCRs. Os resultados desta pesquisa fornecem ferramentas poderosas para a
descoberta de farmacos e informagdes bioldgicas valiosas sobre as caracteristicas que compdem
os ligantes de GPCR.

Palavras-chave: aprendizado de méquinas, receptor acoplado a proteina G, descoberta de

farmacos.



Abstract

GPCRs are crucial receptors for many vital physiological processes including control of cell
division and proliferation, regulation of ion transport, modulation of neuronal firing, homeostasis,
modulation, and modification of cell morphology. They are also involved in many pathological
processes, such as in Alzheimer’s and Parkinson’s disease, cardiovascular disorder, asthma,
depression, and diabetes. Given their biological importance, over a third of FDA approved drugs
target GPCRs. Nonetheless, GPCRs lead compound development suffers from high attrition rates,
with poor in vivo efficacy being the primary contributor, resulting in only 7% of all drugs (for
other receptors as well) in phase I studies being marketed. This thesis focused on the development
of machine learning models capable of predicting bioactivity of small molecules when interacting
with GPCRs as means to support the discovery of novel leads through ranking compounds on
drug discovery investigations, which would enable enriching screening libraries with compounds
more likely to be active. The developed models (composing the pdCSM-GPCR tool) rely on
deriving a range of molecular signatures from known ligands, associating them to bioactivities,
and modelling them as regression problems, making them independent of receptor structural
information. Because of this characteristic, the same approach can be used for any GPCRs
which already had been screened for ligands, and also other important targets, including kinases,
and ligand-gated ion channels. Our models make up the most comprehensive computational
resource for prediction of GPCR bioactivity to date, including support for drug development for
orphan GPCRs. Our approach achieved Pearson’s correlations of up to 0.89, across 10-fold cross-
validation and blind tests. We significantly outperformed previous methods. pdCSM-GPCR was
made freely available via a user-friendly web server at http://biosig.unimelb.edu.au/pdcsm_gpcr.
We also investigated the properties of small molecules with high affinity for GPCRs in order
to identify molecular determinants of recognition. Overall, potent ligands possess nitrogen-
containing fragments and aromatic rings, features common in ligands across all classes of
GPCRs. The outcomes of this research provide powerful tools for GPCR drug discovery and
valuable biological insights into the characteristics that make up GPCR ligands.

Keywords: machine learning, G protein-coupled receptors, drug discovery



List of Figures

Figure 1 — GPCR phylogenetic tree with all solved GPCR structures . . . . . ... .. 18
Figure 2 — General GPCR structure . . . . . . . . ... ... .. ... ... 19
Figure 3 — GPCR structures . . . . . . . . . . . . . i it 20

Figure 4 — GPCR mechanism. Schematic representation of the GPCR signalling pathway 23
Figure 5 — Depth of ligand binding in the transmembrane pocket for the GPCR classes

A,B,CandF . .. ... .. 25
Figure 6 — pdCSM-GPCR workflow . . . . ... ... .. .. ... ... ...... 33
Figure 7 — Modelling small molecule activity using graph-based signatures . . . . . . . 39
Figure 8 — Feature Selection. . . . . . . . . . ... ... .. 45
Figure 9 — Value of activity distributions . . . . . . . ... .. ... ... ..., 49
Figure 10 — Distribution of the top ten most frequent substructures . . . . . . . . .. .. 51
Figure 11 — Distribution of top potent ligands . . . . . . . . .. .. .. ... .. .... 52
Figure 12 — Scatter plots- Regression analysis considering cross-validation schemes . . . 56

Figure 13 — Histograms considering molecular activity distribution for training and low-

redundancy independent blind tests datasets . . . . . ... ... ... ... 60
Figure 14 — Similarity matrix for the 93 molecules present in the "Mas-related G protein-
coupled receptor X1" dataset . . . . . . . .. .. ... ... ..., 62
Figure 15 — SHAPbarplots . . . . ... .. ... .. . . 65
Figure 16 — Distribution of the top ten features selected via forward Greedy approach for
Class Aonly receptors. . . . . . . . . v v v v v i vt 66
Figure 17 — Scatter plots - Regression analysis for training with a bioactivity and testing
withanother . . . . . . . .. .. L L L 68
Figure 18 — Histograms considering molecular activity distribution for training with a
bioactivity and testing with another. . . . . . . .. ... ... .. ... ... 69
Figure 19 — Performance comparison between pdCSM-GPCR and (WU et al., 2018)
(WDL-RF) through Pearson correlation. . . . .. .. ... ......... 70
Figure 20 — Scatter plots - Regression analysis for pdCSM-GPCR when testing with
WDL-RF datasets. . . . . . . . . . . .. . 72
Figure 21 — Scatter plots - Regression analysis for WDL-RF when testing with WDL-RF
datasets . . . ... 73
Figure 22 — Histogram - comparing the activity outputs predicted by the two servers . . 74

Figure 23 — Performance comparison between pdCSM-GPCR with and without decoys. 76
Figure 24 — pdCSM-GPCR web server. . . . . . . . . . . . ... 78



Table 1 —

Table 2 —

Table 3 —

Table 4 —

Table 5 —
Table 6 —

Table 7 —

Table 8 —

Table 9 —

Table 10 —

Table 11 —

List of Tables

G-proteins and effectors, T=increase, |=decrease, (Hermans [2003]). . . . . .
ML methods applied for developments of tools to support GPCR ligand
discovery JABEEN; RANGANATHAN, 2019). . ... ... ... .. ...
Description of GPCRs considered in this work, with their respective families
and subfamilies (class A receptors are coloured in blue, class B in green, class
Cinredandclass Finpurple). . . . . . ... ... ... ... ........
Description of GPCRs considered in this work: Medical importance and num-
ber of compounds with available bioactivity (class A receptors are coloured in
blue, class B in green, class C in red and class Fin purple). . . . . . ... ..
Auxiliary features. . . . . . .. ... L
Characteristics of the GPCRs datasets before and after filtering, and also the
number of molecules in the group used for machine learning training and
testing purposes (blind test validation) (class A receptors are coloured in blue,
class B in green, class C in red and class F in purple. Lig collec= Number of
collected ligands, Total aft. filt.= Total number of molecules after filtering,
Train = Training set of ligands, Test= Test set of ligands). . . . . . ... ...
Predictors performance: first column represents performance using all graph-
based signatures, second column, using all auxiliary features, third column,
all graph signature combineed with all auxiliary features, and last column
performance after feature selection (Pearson correlation coefficient on 10-fold
cross-validation) (class A receptors are coloured in blue, class B in green,
classCinredandclass Finpurple). . . . . ... ... ... ... .. ....
Final Predictors’ performance on 10-fold cross-validation. The values out of
the parentheses mean all data, and the values in parentheses mean after 10%
outlier removal (class A receptors are coloured in blue, class B in green, class
CinredandclassFinpurple). . . . . . ... ... ... ... .. ......
Final Predictors cross-validation results using Pearson correlations on 5, 10
and 20-fold(class A receptors are coloured in blue, class B in green, class C in
redand class Finpurple). . . ... ... ... ... ... .. ... ...
Blind test results, using all features and for the final models (class A receptors
are coloured in blue, class B in green, class C in red and class F in purple).
Molecules for training pdCSM-GPCR that overlapped with datasets from
WDL-RF. Second column represents number of molecules in pdCSMS-GPCR
and the third the number in WDL-RF(class A receptors are coloured in blue,

class B in green, class C inred and class Fin purple). . . . . . . ... .. ..



Table 12 — Performance comparison between pdCSM-GPCR with and without decoys
through Pearson’s correlation. Green means that the model had a higher per-
formance when using decoys (at least 0.01 higher or more) (class A receptors

are coloured in blue, class B in green, class C in red and class F in purple). . 75



List of abbreviations and acronyms

7™ Seven-transmembrane

AC Adenylyl cyclase

ADMET Absorption, Distribution, Metabolism, Excretion and Toxicity
CID Compound ID number

CSM Cutoff scanning matrix

ECFP Extended-Connectivity Fingerprints
ECL Extracellular

FDA Food and Drug Administration
GABA Gamma-aminobutyric acid

GDP Guanosine diphosphate

GEFs Guanine nucleotide exchange factors
GIRK G protein-regulated inward-rectifier K+ channels
GPCRs G protein-coupled receptors

GRKs G protein-coupled receptor kinases
GTP Guanosine triphosphate

ICL Intracellular

LogP Lipophilicity

mGIuR Metabotropic glutamate receptors
ML Machine Learning

MoSS Molecular Substructure Miner
NAMs Negative allosteric modulators
PAMs positive allosteric modulators

PDB Protein data bank



PI-PLC

RMSE

SBDD

SMARTS

SMILES

™

Phosphoinositide-specific phospholipase C

Root Mean Square Error

Structure-Based Drug Discovery

SMILES arbitrary target specification

Simplified Molecular Input Line Entry Specification

Transmembrane



1.1
1.1.1
1.1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2

2.1
2.2

3.1
3.2
3.3
3.3.1
3.3.2
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

4.6
4.7

Contents

INTRODUCTION . .. ... . ittt e et e e e e 16
G protein-coupledreceptors . . . . . ... ... ... 16
Structure of G protein-coupled receptors . . . . . ... ... ... ... 19
Computational prediction of GPCR structures . . . . . . .. ... ... .. 21
Mechanics of receptor activation . . . . . ... ... ... ... .. ... 22
Bindingsites . . . ... .. ... 24
G protein-coupled receptorligands . . . . .. ... ... ... ..... 25
Targeting G protein-coupled receptors . . . . . .. ... ... ... .. 27
Justification . . . . . ... ... oL 31
AIMS . . ... e e e e e e e e e 32
General Aim . . . . . . ... 32
Specific Aims . . . . . ... 32
METHODS . . . . . . . .t e e e e e e e e e e 33
Data set acquisition . . .. ... ... ... ... . ..., .. ... 33
Substructuremining . . . . . ... ... 35
Feature engineering . . . . . . ... ... .. ... ... .. ... 35
Graph-based and auxiliary signatures . . . . . .. ... ... ... ... 35
Auxiliary features . . . . . . . . ... 38
Machine Learning Algorithms . . . . . . ... ... ... ... .... 40
Performancemetrics . . . . . ... ... ... ... ........... 42
Model validation . . .. ... ... ... ... ... ........ 43
Featureselection . . . . . . . ... ... ... . 44
Performance comparison with alternative methods . . . . . . . .. 44
Website Design and Implementation . . . . ... ... ........ 45
RESULTS ... ... . . ittt e i e et e e e a 46
Datasets . . . . .. ... ... . ... ... 46
Analysis of molecular properties: what makes a GPCR ligand? . 50
Developing GPCR ligand predictors . . . . . .. ... ........ 53
Feature importance . ... ... ... ... .. .. ... ........ 63
Impacts of using different bioactivity measurements on perfor-

MaNCe . . . . . . . . . 64
Comparative performance . . . . ... ... ... ... ... ..... 67

pdCSM-GPCR Web Server Design and Implementation . . . . . . 77



5

CONCLUDING REMARKS AND CONCLUSION . ..........

BIBLIOGRAPHY

APPENDIX



16

1 Introduction

1.1 G protein-coupled receptors

Every human cell, in order to maintain its inner machinery homeostasis, needs to be able
to receive information from the outside and from other cells. This information can be hormone
levels, odour molecules, neurotransmitters, among others. This wide transmembrane communi-
cation system is supported by G protein-coupled receptors (GPCRs), enzyme-linked hormones,
and ligand-gated ion channels. GPCRs comprehend the largest family of transmembrane recep-
tors. They are seven-transmembrane domain proteins located in the plasma membrane and are
pivotal as signal transducers for many essential physiological processes such as control of cell
division/proliferation, modulation of neuronal firing, homeostasis, regulation of ion transport
across the plasma membrane, and modification of cell morphology (NEW; WONG, 2007). Other
common names for these receptors include: serpentine receptors, seven-(pass)-transmembrane
domain receptors, heptahelical receptors, and G protein-linked receptors. These receptors are
responsible for responding to approximately two-thirds of hormones and neurotransmitters
(FOSTER et al., 2019) and account for 4% of human genes (KOOISTRA et al., 2020). Such as
their importance in biology that they are conserved from excavates to animals and constitute one
of the major eukaryotic signalling pathways (MENDOZA ; SEBE-PEDROS; RUIZ-TRILLO,
2014). Related to their key role in physiology, it is expected that they are associated with many
human diseases, including Alzheimer’s and Parkinson’s, cardiovascular diseases, asthma, strokes,
diabetes insipidus (SALON; LODOWSKI; PALCZEWSKI, 2011). As a result of the previous
statements, GPCRs are largely studied as drug targets (ZHANG; XIE, 2012). It is estimated that
drugs targeting GPCRs accounts for more than one third of all authorised drugs by the United
States Food and Drug Administration (FDA) (HAUSER et al., 2017).

When GPCRs bind to natural ligands or drugs, their transmembrane (TM) disposi-
tion permit the transformation of extracellular messages into intracellular responses (SALON;
LODOWSKI; PALCZEWSKI, 2011), allowing them to selectively bind to many types of ligands,
ranging from light-sensitive compounds, ions, amino acids, peptides, neurotransmitters, hor-
mones, pheromones and odorants, and send signals from the outside of the cell to its intracellular
side. This passage of information is accomplished through regulation of coupling and decoupling

of heterotrimeric G proteins or arrestins. The message is magnified and regulates cell physiology.

These receptors have been studied for more than 100 years. John Newport Langley, a
British physiologist, was the first to mention them in 1905, in a classic paper, in which he talked
about “receptive substance”. He proposed that in all cells at least two components are to be
differentiated, a “chief substance” which is related to a function and a “receptive substance” that

is capable of regulating cell behaviour (MAEHLE, 2004). Sir Henry Dale, who was Langley’s
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student, kept working with GPCRs and suggested that variation of the binding affinities of
adrenaline to “receptive substance” could cause the difference in how cells were affected. Five
years later an American pharmacologist, Raymond Perry Ahlquist, put forward the idea of the
existence of two types of adrenaline-receptors, alfa and beta (MAEHLE, 2009). These pioneering
studies provided perspectives to differentiate GPCRs.

GPCRs form a multigene family consisting of around 800 genes in humans (NIIMURA,
2009). Despite the common transmembrane topology, GPCR tertiary structures are also very
diverse, they differ in the sizing of cytoplasmic loops, extracellular amino-terminal tails, and
carboxy-terminal tails. Considering these structural differences, GPCRs are grouped into five
families: rhodopsin-like (class A), secretin-receptor-like (class B1), metabotropic glutamate re-
ceptor (class C), adhesion receptor (class B2), frizzled/taste2 receptor (class F) (FREDRIKSSON
et al., 2003) (see Figure 1). Among these classes it is important to mention that there are some
receptors called orphan GPCRs, whose endogenous ligands remain unidentified, leaving their

natural functions in doubt, and can be a great source of drug targets

Class A comprehends most of the GPCRs. There are 719 members in this family. It
is divided into subfamilies such as: melatonin, nucleotide, aminergic, peptide, protein, lipid,
steroid, alicarboxylic acid and sensory (YANG et al., 2021a). Most drug discovery research
involving GPCRs focus on this class. Currently, there are over 500 drugs targeting it. These
aforementioned drugs are used for cancer treatment, allergies, migraine, pulmonary diseases,
hypertension, depression, cardiovascular diseases, glaucoma, Parkinson’s disease, schizophrenia
and as analgesics (YANG et al., 2021a).

Class B is split up into two subfamilies: secretin (B1) and adhesion (B2). While the former
contains 15, the latter contains 33 members (ALEXANDER et al., 2019). Secretin subfamily
members interact with vasoactive intestinal peptide, calcitonin gene-related peptide, corticotropin-
releasing factor, glucagon, pituitary adenylate cyclase-activating peptide, parathyroid peptide
hormone, growth hormone-releasing hormone, and glucagon-like peptides (ALEXANDER et al.,
2019). Adhesion subfamily are differentiated from other GPCRs due to their functions in cell
adhesion and migration (BHUDIA et al., 2020). In this class, glucagon family peptides receptors,
calcitonin gene-related peptide, parathyroid peptide hormone, corticotropin-releasing factor,
vasoactive intestinal peptide, growth hormone-releasing hormone, and pituitary adenylate cyclase-
activating peptide, are the major therapeutic targets. They were developed as treatments for
obesity, type 2 diabetes mellitus, osteoporosis, migraine, depression, and anxiety (ALEXANDER
et al., 2019).

Class C, which are also called glutamate receptors, have their activation linked to in-
direct metabotropic processes. A distinctive feature of this class is that these receptors are
obligated constitutive dimers for receptor activation (PIN et al., 2005). This class contains
22 receptors, which are categorized into 5 subfamilies: calcium-sensing receptor (1 receptor),

gamma-aminobutyric acid (GABA) type B receptors (2 receptors), taste 1 receptors (TS1R1-3,
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Figure 1 — GPCR phylogenetic tree with all solved GPCR structures available at GPCRdb (2021).
Class A are represented by the colour blue and are predominant, class B1 by orange,
class B2 by green, class C by red and class F by purple. The tree was calculated using
10 replicas of Bootstrapping, and the distance calculation method was Neighbour-
joining. Sequence segment selection: Structurally conserved (generic) positions. This
phylogenetic tree was built using GPCRdb website

3 receptors), metabotropic glutamate receptors (mGluR1-8, 8 receptors) and 8 orphan GPCRs
(which are proteins that that have not yet been thoroughly characterised or classified) (NISWEN-
DER; CONN, 2010). Up to now, 16 drugs have been approved by the FDA targeting 8 class C
GPCRs and are used for cancer treatment, schizophrenia, depression, and movement disorders
(ALEXANDER et al., 2019).

The smaller class of all is F, which includes only 10 different types of Frizzled and one

smoothened receptor. The former is involved in the Wnt signalling pathway, and the latter in
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the Hedgehog signalling pathway. The smoothed receptor is a validated target for antineoplastic
agents (RUAT et al., 2014).

1.1.1  Structure of G protein-coupled receptors

As previously mentioned, GPCRs represent the largest protein family in the human
genome (CHEN et al., 2019), with great diversity in terms of their amino acids sequences.
Despite that, all of them possess common structural features, including a domain comprising
seven-transmembrane (7TM) helices linked by three extracellular (ECL) and three intracellular
(ICL) loops (see Figure 2 (CIANCETTA et al., 2015)). The TM component exhibits great
identity between all proteins of this family. The most variable portions of GPCRs are the

carboxyl terminus, the intracellular loop spanning TMS and TM6, and the amino terminus.

Figure 2 — General GPCR structure. The seven-transmembrane Adenosine receptor A2 structure,
PDB template 2YDO. These membrane proteins comprise seven transmembrane
helices connected by ICL and ECL loops. Their amino part faces outside the cell and
their carboxyl part the inside of the cell (CIANCETTA et al., 2015).

Besides the high structural similarity on 7TM regions among all GPCRs, there are a
series of conserved sequence motifs (micro-switches) typical for each class (see Figure 3). For
example, in class A, it is found in TM helix 3, a highly conserved "DRY" motif, located at the
bottom of the 7TM. This motif springs an intra-helical salt bridge between D/E** and R>*° (the
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two numbers in superscript represent residue numbering by (BALLESTEROS; WEINSTEIN,
1995), where the first denotes the helix, 1-7, and the second the residue position relative to the
most conserved residue, defined as number 50 (arbitrary). In the first case, 3.49 denotes a residue
located in TM3, one residue before the most conserved residue), and it is known to stabilise
receptors in an inactive state. The binding of agonists triggers a rotameric switch of W%, in an
also highly conserved motif known as “CWxP”. Another common microswitch is the “NPxxY”.
When the receptor is activated, the residue Y= of this motif alters its rotamer conformation and
points toward TM3, making new contact formation between Y’->* and residues in TM3 (ZHOU
et al., 2019). Changes in the hydrogen bonding network in this microswitch indicates a possible
mechanism of enhanced thermal stability (WHITE et al., 2018). At last, in class A, it is worth
mentioning the motifs PIF and the Na+ pocket residues (an allosteric site where sodium ions
bind, an example is the residue Asp**® (SELENT et al., 2010)), which suffer rearrangements
during receptor activation. All these cited conserved motifs are critical for the activation of class
A GPCRs (YANG et al., 2021b).

In Class B receptors, the binding of a peptide causes destabilisation of the TM6 helix,
and hence it initiates a sharp kink shaping at the conserved motif P*4’bxxG®°b (YANG et al.,
2021b). Class C are distinguished by a large extracellular domain that forms an obligate dimer.
It also contains conserved motifs, the motif ‘F/Y/HxPKxXxY’ on TM7 and ‘Fx WxP’ on TM6
(DORE et al., 2014). Class F GPCRs possess the conserved ‘KTxxxW’ motif. These common
motifs, during activation, go through considerable conformational change (BERTALOVITZ et
al., 2016).

Class A Class B Class C Class F

Rhodopsin (PDB:2HPY) Glucagon receptor (PDB:5EE7) Calcineurin receptor (PDB:40RC) Smoothened receptor (PDB:4QIN)

Figure 3 — GPCR structures. Crystal structures of representative GPCRs from classes A, B, C,
and F with their respective conserved sequence motifs (micro-switches)(YANG et al.,
2021b; DORE et al., 2014; BERTALOVITZ et al., 2016).

In 2000, the first crystal structure of a GPCR was elucidated. It was a rhodopsin purified
from bovine eyes, in an inactive state (PALCZEWSKI et al., 2000), a naturally abundant and
highly stable GPCR, characteristics that enabled this discovery. Nonetheless, usually it is chal-
lenging to obtain GPCR diffraction-quality crystals for high-resolution structure determination
(KOBILKA; DEUPI, 2007), mostly due to their intrinsic conformational complexity and low
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expression yield. In order to obtain high-resolution crystals, engineering is often required to
minimise conformational heterogeneity and maximise crystal contacts and stability (CHUN et al.,
2012; MAGNANTI et al., 2008; SCOTT et al., 2013; BILL et al., 2011; THAL et al., 2018). In the
last decades, several methods have been developed in this sense, which include recombinant over
expression, purification strategies (ERREY; FIEZ-VANDAL, 2020), crystallisation platforms
(PARKER; NEWSTEAD, 2012) and detergent studies (LEE et al., 2020). During 2007, the
first human GPCR structure was elucidated, the 52-adrenergic receptor bound to an antagonist
(CHEREZOQV et al., 2007). This breakthrough was reached thanks to innovative methods, which
include incorporation of a soluble fusion partner and lipidic cubic phase crystallisation and

enhancements in protein expression and purification.

Recent advances in cryo-EM is now turning the wind in favour of this technology and, in
2019, the number of membrane protein structures solved by cryo-EM became higher than by
X-ray crystallography. This happened mainly because the former does not require crystallisation
and microgram amounts of protein and the latter, besides crystallisation, requires milligram
amounts. Another point is that cryo-EM can tolerate certain degree of sample impurity and
heterogeneity and can also reach resolutions below 3A (similar to resolutions obtained through
X-ray crystallography) (GARCIA-NAFRIA; TATE, 2021).

1.1.1.1 Computational prediction of GPCR structures

In the lack of experimentally determined structures, computational tools are an alternative
for elucidating GPCRs structures (ZHANG et al., 2015; WORTH et al., 2011; LAUNAY et al.,
2012; SANDAL et al., 2013; ESGUERRA et al., 2016; COSTANZI et al., 2016). One example
of such strategy is homology modelling. For employing this method, it is necessary the existence
of another protein, a close homologue (called template), with an experimentally determined
structure (WEBB; SALI, 2016). The unknown structure is predicted taking into account the
sequence identity between the target and the template and the structure of the latter. This process
is based on the fact that protein structures are more conserved than protein sequences amongst
homologue proteins (CHOTHIA; LESK, 1986). One problem with these predictions for GPCRs is
that although GPCRs shares the seven TM architecture, the loops, on the other hand, exhibit huge
structural diversity and low sequence conservation, especially in the ECL2 portion (KATRITCH;
CHEREZOV; STEVENS, 2012; WOOLLEY; CONNER, 2017). This lack of sequence identity
information hinders accurate structure prediction of some GPCR loops (BUSATO; GIORGETTI,
2016). In this context, some studies tried using ab initio methods (FISER; DO; SALL, 2000:;
JACOBSON et al., 2004; SPASSOV; FLOOK; YAN, 2008). These approaches search for the loop
conformational space on the energy landscape without using of known structures data (WON
et al., 2018). Nevertheless, ab initio can be deployed only for small segments (100 residues),
because it demands vast computational resources (LEE; FREDDOLINO; ZHANG, 2017).

Latterly, machine learning (ML) is revolutionising structure prediction. Examples of
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new ML tools are called AlphaFold2 (JUMPER et al., 2021) and RoseTTAFold (BAEK et
al., 2021). These ML models are able to generate accurate structure prediction for basically
almost any sequence, even when homologue proteins are not available. The aforementioned
methods were built using neural network models that have learned how to infer inter-residue
interactions and protein structure using knowledge abstracted from various known experimental
structures. Nevertheless, it i1s important to note, that even for these novel methods, there are some
incongruities in the prediction for GPCRs. One example is ECL2 (regarded to play a critical
role in ligand recognition) is often indicated as a low or very low confidence region on the
predicted structure (NICOLI et al., 2022). Another limitation regards to representing structural
dynamics that can lead to multiple conformations. GPCRs exists in multiple conformational
states, essential for their signalling roles. Even so, these prediction methods are trained to predict
a solo, native state for a given sequence. For GPCRs, the state predicted is usually the inactive.

This probably is a reflection of overrepresentativeness of inactive states in structural data banks
(HEO; FEIG, 2021).

1.1.2 Mechanics of receptor activation

The mechanics of receptor activation, in summary, involve three steps: 1) ligand binding,
2) generation of signalling, and 3) transduction of signalling throughout the cell. In step one, the
binding of a ligand induces GPCRs to act as guanine nucleotide exchange factors (GEFs). GEFs
are protein domains or proteins that activate monomeric GTPases by inducing the release of
guanosine diphosphate (GDP) to permit binding of guanosine triphosphate (GTP) (CHERFILS;
ZEGHOUF, 2013). This change triggers step two, in which the ligand-bound GPCRs causes an
exchange of GDP to GTP (MCCUDDEN et al., 2005) in the protein G. This exchange causes
the dissociation of the Ga subunit from the dimer G~ dimer and from the receptor. Both the
Ga and the dimer interact with other intracellular components, causing cascades of events and
continuation of the transduction signalling, which constitutes step three. After a while, the GTP
is hydrolysed to GDP, and it allows the reassociation of its heterotrimeric portion (DIGBY et al.,
2006) (Figure 4).

GPCRs not only activate heterotrimeric G proteins, but also promote receptor phosphory-
lation by G protein-coupled receptor kinases (GRKs) and subsequent binding of beta-arrestins
that induces additional signalling cascades (LEFKOWITZ, 2013). Beta-arrestins are also impor-
tant for the GPCR desensitisation, endocytosis and signalling control (RANKOVIC; BRUST;
BOHN, 2016). Besides the mentioned GPCR protein signalling system, there are alternative
upstream and downstream molecules, such as RGS and GoLoco which can regulate G protein
heterotrimeric signalling. Ric 8 (resistance to inhibitors of cholinesterase 8) can cause activation

of GPCR-independent and phosducins, which can also regulate beta/gamma subunits (Figure 4).

The complexity and speciality of GPCR signalling relies on, to a certain extent, the
existence of different types of G-protein subunits (HERMANS, 2003). For instance, Ga effectors
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Figure 4 — GPCR mechanism. Schematic representation of the GPCR signalling pathway
(adapted from de Mendoza et al., 20). During inactivation, GPCRs (in blue) in-
teract with a G alpha (gray oval shape) bound to GDP, G beta-gamma (purple and red
circles). Upon receptor stimulation by agonist, an exchange of the GDP bound to the
G alpha for a GTP, causes G alpha to dissociate from the receptor and G beta-gamma,
which causes G alpha activation. G alpha then goes on to trigger other molecules in
the cell. Besides the mentioned GPCR protein signalling system, there are alternative
upstream and downstream molecules. For instance, RGS and GoLoco can regulate G
protein heterotrimeric signalling. Ric 8 (resistance to inhibitors of cholinesterase 8)
can cause activation GPCR-independent, beta/gamma subunits are also regulated via
phosducins. GPCRs can perform downstream signalling independently of G proteins
by GRKSs and Arrestins (MENDOZA ; SEBE-PEDROS; RUIZ-TRILLO, 2014).
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can be classified in classes, Gas, when it stimulates adenylyl cyclase (AC), Gai, when inhibits
AC and thus opposes the action of Gas, Gagust and Gaolf when it acts as tastant and odorant
receptors, respectively. The Ga involved in vision is termed as Gat and regulates a cyclic
GMP-gated Na+/Ca2+ channel through its effector. There are G-protein subunits termed as Gaq
class (this class also includes, Ga11, Ga14 and Ga16) which activates phosphoinositide-specific
phospholipase C (PI-PLC) isozymes and also Ga12/13, which can regulate the small G-protein
RhoA (MCCUDDEN et al., 2005). On the other side, G/3y dimer that was once thought to only
help coupling of G heterotrimers to GPCRs and act as a Ga inhibitor, now also is known to
interact with numerous effectors, after dissociation of Ga-GTP. The first G5+ effectors identified
were the G-protein-regulated inward-rectifier K+ channels (GIRK). Afterwards, it was discovered
that G~ subunits can also regulate many kinases and small G-proteins (MCCUDDEN et al.,
2005).

Another interesting fact regarding G proteins is that GPCRs can couple with discrete G-
proteins, which one leading to the activation of multiple intracellular effectors. This mechanism
increases the complexity and specificity of GPCR signalling. Just as an example, a study found
that a single receptor can at the same time activate members of four classes of G-proteins (Gs,
Gi/o, Gg/11, and G12) (LAUGWITZ et al., 1996) (see Table 1).

Table 1 — G-proteins and effectors, T=increase, |=decrease, (Hermans [2003]).

Subunit | Family Main subtypes Primary effector
as Gas, Gaol f Adenylate cyclase T
Gt —1,Gat — 2,Gat — 3 Adenylate cyclase |
@i o GaoA, GaoB K+ channels 1
Q Gatl, Gat2 Ca2+ channels |
Gaz Cyclic GMP phosphodiesterase 1

aq/11 | Gaq,Gall, Gald, Gals, Gal6 | Phospholipase C 1
al2 Gal2,Gal3

Adenylate cyclase 1/]

o] B175 Phospholipases 7
Phosphatidylinositol 3-kinase 7
Protein kinase C 7

Protein kinase D 1

GPCR kinases 7

Ca2+, K+ (and Na+) channels

v ~v1711

1.1.3 Binding sites

In the last years, GPCR structure elucidation has greatly demanded stabilisation using
ligands (ZHANG et al., 2015). To date, the binding of small molecules to elucidate structures
covers all activity types, from agonism to antagonism, although the latter is most frequently
employed, mainly because the inactive state of GPCRs tends to be more stable and easier to
crystallise (CONGREVE et al., 2020). This ligand-data availability subsidised the discovery
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Figure 5 — Depth of ligand binding in the transmembrane pocket for the GPCR classes A, B,
C and F. The histamine H receptor (class A: CXCR4-vMIP-1II, green ligand, PDB:
3RZE) is displayed as transparent white cartoon, and was used for the superposition
with other structure complexes, class B: CRFIR-CP-376395 (blue, PDB: 4K5Y),
class C: mGlul-FITM (pink, PDB: 40R2) and class F: smoothened receptor-SANT-1
(yellow, PDB: 4N4W) (adapted from (MUNK et al., 2016).

of many ligand binding sites. Most of the ligands have traditionally been acknowledged to
interact with orthosteric sites in the upper region within the transmembrane domains. However,
there are variations involving the depth of penetration into the transmembrane pocket (Figure
5), shows one ligand for each class). For class A, the most superficial ligand found is in the
histamine receptor (SHIMAMURA et al., 2011) and the deepest in the chemokine CXCR4
receptor (WU et al., 2010). In Class B, CRF1 receptor has the deepest ligand binding site found
co-crystallized with ligand CP376395 (HOLLENSTEIN et al., 2013). Class C mGlul negative
allosteric modulator FITM largely overlaps with class A ligands (WU et al., 2014). Class F
receptor, smoothened (SMO), has been crystallised with multiple ligands, some very close to
the extracellular surface (WANG et al., 2013), and others covering much deeper areas in the
transmembrane region (WANG et al., 2014).

1.1.4 G protein-coupled receptor ligands

Considering GPCRs key role in many biological processes and diseases, and their
distribution across nearly all organs and tissues (HAUSER et al., 2017), their great importance in
drug development is inherent (ZHANG; XIE, 2012). Nevertheless, there are only 134 GPCRs
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that are a target of current approved drugs (SRIRAM; INSEL, 2018). This corresponds to
approximately 16% of the GPCRs universe (800 in humans) (including olfactory receptors)
(SRIRAM; INSEL, 2018). The remainder of GPCRs could be involved in fundamental parts of
the immune system, genetic, neurological and metabolic disorders (HAUSER et al., 2017), and
may prove to be interesting novel drug targets (DIAZ; ANGELLOZ-NICOUD; PIHAN, 2017).
Following this assumption, it is evident that there is much space for improvement in this domain,
and elucidation of new GPCRs structures and discovery of new GPCRs ligands are of paramount

importance.

According to Mason et al. 2012 (MASON et al., 2012), the evolution of many GPCR
receptors culminated in the binding of low molecular weight, fragment-like ligands, such as
acetylcholine and dopamine. It is also common that drugs that interact with this receptor are
normally analogues of natural ligands. They estimated that 70% of the drugs that target GPCRs
are natural ligand-related. Therefore, the discovery of new ligands can be based on molecules
that are known to bind these receptors. It is also mentioned by these researchers that 15% of
GPCRs drugs already on the market were targeted serendipitously, which means that they were
discovered using phenotypic assays and without the knowledge of their mechanism of action.
Later, many mechanisms of action belonging to these drugs were elucidated and these pieces
of information are of great interest for the optimisation of identified ligands and discovery
of new ones. Some examples of important drugs targeting GPCRs include: opioid analgesics,
antihistamines, anticholinergics, typical and atypical antipsychotics antimigraine drugs, (52-
agonists for asthma and antihypertensives (WACKER; STEVENS; ROTH, 2017).

GPCR modulators can be divided into full agonists, partial agonists, antagonists, and
inverse agonists. Full agonists can induce maximal GPCR activity, partial agonists, on the other
hand, cannot cause maximum activation of receptors and can act as an antagonist if competing
by the binding site with a full agonist. Antagonists are agonist blockers and can be classified
as neutral antagonists and inverse agonists. The former binds to GPCRs but does not affect the
receptor’s constitutive activity, the latter induces a pharmacological response opposite to that of
the agonist, by suppressing spontaneous receptor signalling (when present). All these modulators
interact with orthosteric binding sites of GPCRs (WACKER; STEVENS; ROTH, 2017). While,
as already mentioned, TM regions in GPCRs are very conserved, ECL and ICL regions possess
remarkable diversity. The ECL region, more specifically in ECL2 is regarded to play a critical
role in ligand recognition, access, and selectivity (DROR et al., 2011; KRUSE et al., 2012;
ZHANG et al., 2015). This region connects TM4 and TMS5 and contains a highly conserved
cysteine which forms a disulphide bridge with TM3. As mentioned, ECL2 is contiguous with
TMS, whose motion is determinant for GPCR activation. (NICOLI et al., 2022) analysed the
number of covalent and non-covalent contacts between ECL2 and TMS for all structures solved
in active and inactive conformations. They found that, in most cases, the number of contacts
between these two regions decreases in the inactive conformation. Also, according to them, if

this observation is confirmed when more structures are available, can be of great importance for
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implementing GPCR structure-based drug design workflows.

Besides looking for orthosteric site ligands when studying GPCRs, allosteric modulators
provide a great advantage, as they can confer greater selectivity, because these molecules
tend to be less well conserved between related receptors compared to orthosteric sites, and
can even distinguish between closely related receptor subtypes (FOSTER et al., 2019), thus
inducing less side effects. This tendency of less conservation, is due to the fact that they have not
confronted the same evolutionary pressure as orthosteric sites to fit an endogenous ligand, so
that drug specificity is more feasible to be achieved (CHRISTOPOULOS et al., 2004). When
these modulators bind GPCRs they cause changes in receptor conformation, so that it interferes
with their interaction with orthosteric ligands. These modulators can be divided into several
distinct types: negative allosteric modulators (NAMs), which act inhibiting receptor activation via
negative cooperativity reducing the affinity and/or efficacy of orthosteric agonists; partial NAM,
which does not completely block receptor activation; positive allosteric modulators (PAMs),
which increases agonist affinity and, consequently, increases the potency and/or efficacy of
orthosteric agonists; and Ago-PAM which can work as PAMs or can induce receptor activation
even in the absence of orthosteric ligands (BASITH et al., 2018; FOSTER; CONN, 2017). A
classical example of positive allosteric modulators of GABA receptors is Benzodiazepines,
an effective and safe approach to the treatment of anxiety and sleep disorders (MOHLER;
FRITSCHY; RUDOLPH, 2002). Allosteric modulators of GPCRs are now being evaluated
as potential drug candidates for Parkinson’s disease, schizophrenia, Alzheimer’s disease and
dystonia (CONN; CHRISTOPOULOS; LINDSLEY, 2009; KRUSE et al., 2014).

1.1.5 Targeting G protein-coupled receptors

GPCRs have enormous physiological and biomedical importance, being the primary
site of action of approximately 34% of prescribed drugs (HAUSER et al., 2017). As already
mentioned, the current drugs target only a few GPCRs and thus there is a unique opportunity to

design new treatment exploring these receptors.

One key factor that complicates drug design for these proteins is that GPCRs exist,
according to molecular dynamics simulations, in several “intermediate” conformational states
between the crystallographic active and inactive states. In molecular dynamics states, there is
a notable intermediate where TM7 adopts an inactive conformation while TM6 remains in an
active state (LATORRACA; VENKATAKRISHNAN; DROR, 2016). Besides this noteworthy
intermediate state, there are many others and the transition between active and inactive conforma-
tional states can take different routes to be achieved (LATORRACA; VENKATAKRISHNAN;
DROR, 2016). Further indications of the diversity of conformational states are found in crystal
structures of different GPCRs. Even when these receptors are bound to their agonists, a great
part of GPCRs crystals are not in a fully active conformation capable of signalling (LEBON;
WARNE; TATE, 2012). The importance of this conformational diversity is related to the biassed
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signalling observed in GPCRs. On the active state, GPCRs typically couple to both G protein
and also arrestins, and both downstream signalling pathways are activated. Nonetheless, some
ligands favours one downstream pathway in detriment to the other and, as a result, we have
some small molecules with a molecular response based on G protein signalling and others on
arrestin signalling. This biassed signalling is related to these different ligands selecting not just
one type of active and one type of inactive conformational state but capable of selecting among
multiple conformational states with different abilities to couple to different downstream partners
(STRACHAN et al., 2014; VIOLIN et al., 2014). The study of biassed agonism can render safer
GPCR drugs due to their potential to exclusively activate desired signalling pathways instead of
activating a pathway which leads to side effects (NAGI; ONARAN, 2021; BOCK; BERMUDEZ,
2021). Besides, it is important to mention that being able to bind to a GPCR does not necessarily
mean that the ligand will induce the desired effect, given that some disease treatments involve
targeting the inactive state (such as beta blockers (KOBILKA, 2011)) and others the active states
(salbutamol, for example (BHATTACHARYA et al., 2008).

Given the conformational complexity of ligand-activated GPCRs, and also that most of
their surface is buried inside the membrane, it is not surprising that many structural modifications
are required in order to obtain high quality three-dimensional crystal structures. Recently, the
development of ingenious engineering techniques, such as stabilisation of TMS5/TM6 region
through T4-lysozyme insertion, stabilisation of TM5/TM6 region through binding to fragment
antigen-binding region (Fab region)(ROSENBAUM; RASMUSSEN; KOBILKA, 2009; MILIC;
VEPRINTSEYV, 2015), mutations to increase thermal stability and functional expression, have
rendered crystallographic structures for a broad range of GPCRs. These structural discoveries
coupled with the evolution of computational methods (molecular dynamics, integrative modeling
and machine learning (ZHU et al., 2021)) led to the development of high-quality models which
are now freely available in dedicated repositories such as the GPCRdb (PANDY-SZEKERES et
al., 2017) and GPCR-EXP. For instance, (PANDY-SZEKERES et al., 2017) and (LANGMEAD
et al., 2012) demonstrated effective lead identification targeting adenosine A2A receptor apply-
ing Structure-Based Drug Discovery (SBDD) and disclosed candidates for possible treatment
of Parkinson’s disease using biophysical mapping and co-crystallised receptors with ligands.
(LANGMEAD et al., 2012) carried out an in silico screening of, over half a million compounds,
using the homology model of the 31 adrenergic receptor (based on the crystal structure of
the turkey 1 adrenergic receptor complexed with cyanopindolol). The outcome of this study
was 20 confirmed hits in vitro. (CHRISTOPHER et al., 2015) did a fragment screening of a
thermostabilised mGlu5 receptor and, after this procedure, he used a SBDD approach to optimise
potential candidates and developed a high potent series of negative allosteric modulators for this
metabotropic GPCR. Besides these studies, it is important to mention some reviews that focused
on identification of ligands for orphan GPCRs. (NGO et al., 2016) evaluated methods used to
establish the appropriate signalling assays to test orphan receptor activity; they also studied cases
of structure-based methods for targeting orphan GPCRs. In 2015 Huang et al. (HUANG et al.,
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2015), used a yeast-based screening against the understudied orphan GPCR, GPR68, and also
SBDD and identified the benzodiazepine drug lorazepam as a non-selective GPR68 positive
allosteric modulator. Jiménez-Rosés et al., 2021 (JIMENEZ—ROSES et al., 2021) assembled a
database of around 2,700 known [ 2AR agonists and antagonist ligands and computationally
docked them to multiple experimentally determined 3 2AR structures. For each one of 75,000
docking poses, they identified specific interactions and correlated them with agonist or antagonist
activity. Afterwards, they were capable of developing machine learning (ML)-based predic-
tors of agonist/antagonist activity with up to 90% accuracy (JIMENEZ-ROSES et al., 2021),

demonstrating that it is possible to use ML and current data in GPCRs ligand discovery.

It is important to state that the absence of structures for numerous GPCRs has restrained
the ability to apply rational structure-based drug development for some receptors (HEIFETZ
et al., 2015). An alternative when there is lack of structural information on specific GPCRs
are ligand-based approaches combined to machine learning (JABEEN; RANGANATHAN,
2019). This strategy is supported by the existence of large datasets of molecules known to bind
GPCRs, (PANDY—SZEKERES et al., 2017), Drugbank (WISHART et al., 2017), PubChem
(KIM et al., 2018), ZINC (STERLING; IRWIN, 2015), CHEMBL (GAULTON et al., 2016)
and BINDINGDB (GILSON et al., 2015). These datasets are used to derive pharmacophore
models based on the physicochemical characteristics and atom patterns of known ligands without
prior knowledge of the protein structure. The derived pharmacophore models are then used
to predict new molecular entities that can interact with the target. These relevant endeavors,
however, are usually limited to one receptor type. Some examples of these efforts includes all
sorts of GPCRs, from Cannabinoid receptor to Olfactory receptors. In 2016 three interesting
studies were published involving "Three-Dimensional Biologically Relevant Spectrum" (a
three-dimensional similarity array based on shape overlap with known ligands and property
similarity) as descriptors for development of predictiors: one for a Cannabinoid receptor (HU
et al., 2016), one for an Adenosine receptor (HE et al., 2016) and also one for a Dopamine
receptor (KUANG et al., 2016). These works demonstrate that it is possible to effectively
extract molecular features that describe GPCR ligands. Other two studies also successfully
developed predictors, but for Serotonin receptors. They applied different ligand descriptors
from the previous methods: one involving 5-HT7R and 5-HT1AR (KURCZAB et al., 2016),
used molecular and structural fingerprints and, the other involving selectivity prediction of
5-HT2BR versus 5-HT1BR (RATAJ et al., 2018), using Neighbouring Substructures Fingerprint.
Throughout these two studies, it was possible to identify specific binding interactions between
ligand and receptors. Contemplating Olfactory receptors, (BUSHDID et al., 2018) screened
ligands using 4,884 chemical descriptors. According to their findings, a support vector machine
algorithm accurately predicted the activity of compounds, a fact that was confirmed during in
vitro experiments. Using Extended-Connectivity Fingerprints (ECFP) and deep neural networks
(KOUTSOUKAS et al., 2017) developed predictors of ligands for Dopamine D4 receptor, among
other classes of proteins and achieved good classification performance. These case examples
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demonstrated that a range of molecular properties and fingerprints can be exploited to effectively
identify GPCR ligands.

In the last years, a couple of studies have endeavored to produce general workflows to
support ligand discovery for multiple GPCRs classes (WU et al., 2018). Of note, Wu2018 used
weighted deep learning and random forest to develop the WDL-RF method. This tool comprising
predictions for 26 types of GPCRs (classes A, B, C, and F). In 2019, they launched an iteration of
their method (SED) (WU et al., 2019). It couples long ECFPs with deep neural network training
using a data set of 16 types of GPCRs (covering classes A, B, C and F). Recently, (SAKAI
et al., 2021) used graph convolutional neural networks for encoding ligands features and used
this information to design models to predict bioactivity of small molecules against 127 diverse
targets, further confirming the effectiveness of graph-based methods for ligand discovery. Table 2

summarises relevant applications of ML for the prediction of GPCR ligands.

Table 2 — ML methods applied for developments of tools to support GPCR ligand discovery
(JABEEN; RANGANATHAN, 2019).

GPCR Dataset Descriptor calculation Ref

Cannabinoid receptor ChEMBL | BRS-3D (HU et al., 2016)

Adenosine receptor ChEMBL | BRS-3D (HE et al., 2016)

Serotonin receptors: 5S-HT7R Hashed FP, Klekota-Roth FP, MACCS FP, .

and 5-HT1AR ChEMBL Structural Interaction Fingerprint profiles (KURCZAB etal., 2016)

Serotonin receptors: 5S-HT1BR Klekota—Roth fingerprint

and 5-HT2BR MCule (KRFP) substructure keys (RATAT et al., 2018)

Olfactory receptors: ORS1E1, OR1AI, .

OR2W1 and MOR256-3 Literature | Dragon software (BUSHDID et al., 2018)

Metabotropic glutamate Literature | DISCOVERY STUDIO 3.1 (JANG et al., 2015)

receptor: mGluR1

26 different GPCRs ChEMBL | Fingerprint generation . (WU et al., 2018)

through novel weighted deep learning

Dopamine D4 receptor, Extended-Connectivity )

Cannabinoid CB1 receptor ChEMBL Fingerprints (ECFP) (KOUTSOUKAS etal,, 2017)
. Extended-Connectivity

16 different GPCRs ChEMBL Fingerprints (ECFP) (WU et al., 2019)

It is also important to cite the high attrition rates in drug development, a fact that is not
exclusive for GPCRs. It is estimated that about 10%-20% of the molecules in the beginning of the
clinical trial reaches market approval. And this fact has been happening in the past few decades.
Moreover, cutting down this attrition rates is a key challenge for all pharmaceutical industry
(YAMAGUCHI; KANEKO; NARUKAWA, 2021; WARING et al., 2015). Chemioinformatics
can be of great support for this task, because it allows transformation of data into knowledge in a
faster pace than most of experimental procedures, enabling the making of better decisions in the

drug development area, cutting costs and time of the process (ENGEL, 2006).

In the light of the aforementioned advances in the field of cheminformatics, this thesis
focused on the investigation of graph-based signatures, known as Cutoff Scanning Matrix (CSM),
combined to various molecular properties to model GPCR ligand activity. These combined fea-
tures were then applied in the development of predictive models capable of inferring bioactivity
of small molecules when interacting with GPCRs. CSM signatures were employed in many cases
of success for discovery of small molecule interactions (PIRES; ASCHER; BLUNDELL, 2014;
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PIRES; ASCHER, 2016b; PIRES; BLUNDELL; ASCHER, 2015; PIRES et al., 2013; PIRES;
ASCHER, 2016a; PIRES; ASCHER, 2017). They use the concept of graph-based signatures,
in which the geometry and physicochemical characteristics of the structural environment of a
molecule are represented as a network or graph. This characterisation is composed of a series of
nodes (which represent atoms) and edges (which describe the distances between the atoms). It
is hypothesised that molecules with similar graph-based signatures have similar chemical and
biological properties. These signatures were combined to various molecular properties and used
as evidence to train and test machine learning models to accurately identify potential GPCR
ligands, by developing a computational dedicated platform, pdCSM-GPCR. Our models are
capable of quantitatively predicting ligand bioactivity for the most comprehensive set of GPCR
types and classes (A, B1, C, and F) to date.

1.2 Justification

GPCRs are essential membrane receptors, involved in a wide range of signalling path-
ways, along with great involvement in human pathophysiology. GPCRs form the largest human
membrane protein family and are the most studied drug targets. Despite the great effort applied
to the study of this protein family, structure determination of GPCRs face high failure rates,
since the receptors are very unstable and have intrinsic plasticity. Due to that, there are many
GPCRs without structure elucidated, including many orphans receptors that can be involved
in key biological aspects and disorder conditions. This lack of structural information hinders
ligand discovery based solely on the receptor. A good alternative is a ligand-based strategy.
Nevertheless, to date, much improvement is essential to allow more reliable in silico screening

using this strategy.

This thesis is, therefore, timely and of great relevance as it proposes ligand-based
prediction models for the development of novel computational tools and approaches capable of
effectively predicting GPCRs ligands and supporting ranking of compounds on drug discovery
investigations, which can be implemented and made freely available as user-friendly web servers.
The development of new in silico GPCR ligand discovery methods will also provide important
knowledge related to the link of chemical and biological aspects of this family of protein and its

ligands, essential for the development of novel therapeutic options.
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2 Aims

2.1 General Aim

The overall goal of this thesis was to develop a web-based platform (pdCSM-GPCR) that
will provide support for the discovery of new active compounds for a comprehensive number
of GPCRs using a ligand-based lead discovery approach. Besides, this study aimed to gather
information about GPCRs ligand discovery and to gain a better understanding about the use of

machine learning in the context of predicting bioactivity of small molecules.

2.2 Specific Aims

* Build up a database containing resourceful and curated of experimentally determined
binding affinities for 36 different GPCRs, covering classes A, B1, C and F;

* Investigate molecular properties that compose known GPCR ligands to identify what
makes up GPCR ligands;

* Develop predictive models capable of predicting bioactivity of small molecules when
interacting with GPCRs;

* Design a user-friendly web-server containing all information derived from this thesis
to support the discovery of novel leads through ranking compounds on drug discovery
investigations, which would enable enriching screening libraries with compounds more

likely to be active.
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3 Methods

In this chapter, we describe the development of bioactivity predictive models for small
molecules, aiming to target GPCRs (pdCSM-GPCR). We used the concept of applying graph-
based structural signatures combined to auxiliary features as evidence for training machine
learning algorithms. The combined features are correlated to the bioactivity values of actual
molecule ligands and non-ligands (information obtained from PubChem) which produces predic-
tors capable of inferring reliable bioactivity values on diverse molecules which were not used for
training. The general pdCSM-GPCR workflow is depicted in Figure 6. It is composed of three

main steps, including: (i) data set acquisition; (ii) feature engineering, and (iii) machine learning.
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Figure 6 — pdCSM-GPCR workflow. Initially, we collected ligand data for 36 different GPCRs
from PubChem (KIM et al., 2018), then we derived from them two types of features:
compound auxiliary features (including molecular properties, toxicophores, and
pharmacophores) and distance-based graph signatures. Afterwards, we used this
information as the basis for the development of machine learning models for predicting
bioactivity for GPCRs. This predictive models compose the web-based platform
(pdCSM-GPCR) that enable ranking compounds on GPCRS drug discovery studies.
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3.1 Data set acquisition

The collections were made by searching on the PubChem server, for the UniProt IDs
belonging to GPCRs receptors of medical interest, according to the literature (see Table 4). We
retrieved molecules binding affinities for 36 different GPCR receptors from PubChem, available

in the section “Tested compounds” of the target (GPCR receptor) webpage. The PubChem CID
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(Compound ID number) information available in the datasets was used to retrieve the SMILES
(Simplified Molecular Input Line Entry Specification), also from PubChem. We choose to use
CID, because different substance records (called SID in the PubChem) may contain different
kinds of information for the same molecule, in order to place together this information there is
a process called ‘standardisation’ that aggregates and stores them in the Compound database
under the same identifier, CID (KIM et al., 2018).

SMILES is a chemical notation that allows representation of a chemical structure
(WEININGER, 1988). They can represent using simple vocabulary (atom and bond sym-
bols), and few grammar rules. 2-Propanol would be “CC(O)C” and 2-Methylbutanal would be
“CC(C)CC(=0)”. Using a type of SMILES called ISOMERIC SMILES it is even possible to
represent specific isotopism, configuration about double bonds, and chirality. We applied the
isomeric version to this thesis. Also regarding the SMILES, it is possible to represent the same
molecule using different SMILES. We treated this cases using RDKit modules to generate the

same SMILES string for a given molecule and avoid redundancy.

Subsequently, we filtered these datasets to be composed only by two columns, one
comprising molecules represented as SMILES and a second column with their respective experi-
mental bioactivity measurement in uM, which were converted to logarithmic scale for training
(—log[Molar])(see script A.1, Appendices). In pharmacology, bioactivity of compounds refers to
a measure of potency (inhibition or activation) of a drug when interacting with a biological target.
We only considered Ki, Kd, IC50, and EC50 for GPCRs as bioactivities as done in previous
works (WU et al., 2018; WU et al., 2019; BURGGRAAFF et al., 2020; LIANG et al., 2019;
KRUGER et al., 2014; ZIN; WILLIAMS; EKINS, 2020). We also filtered out repeated and
dubious molecules (ligands with active and inactive status) for each bioactivity measure. These

measures are detailed below.

Ki means inhibition constant, while Kd indicates dissociation constant. Both terms are
used in biochemistry and pharmacology to report which binding affinity a small molecule or
enzyme has for a receptor, enzyme, or other biomolecule. Kd possesses a more general meaning,
since it quantifies the equilibrium between any type of ligand being free in solution and bound to
a site in a protein, whereas Ki, necessarily, comprehends the binding equilibrium of an inhibitor
to a biomolecule. IC50, in turn, means how much of a particular inhibitory drug is needed to
inhibit a given biological process or biological component by 50%. Because it does not directly
measure a binding equilibrium, IC50 is less precise than the previously mentioned bioactivities.
Finally, EC50 stands for effective concentration at 50%. Which refers to the concentration of any
type of drug at which 50% of its maximum effect is achieved, being a more general metric than
IC50. These measurements are made through analytic procedures, which relies on the binding of
ligand molecules to receptors. A signalling detection is used to determine the presence and extent
of the ligand-receptor complexes formed. Usually, this signalling is determined electrochemically

or through fluorescence detection.
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The GPCRs classes covered by this work include four families (A, B1, C, and F) and 9
subfamilies, also including two receptors described as orphans. A complete view of the datasets
used in this work can be obtained in Tables 3 and 4. In the next tables, class A receptors are

coloured in blue, class B in green, class C in red and class F in purple.

3.2 Substructure mining

We evaluated which substructures of potent GPCR ligands were more frequent and
absent in non-ligands molecules. For this task, the top 300 most potent ligands per receptor
were selected or those with bioactivity greater than 5 (meaning potency of 10uM or higher
potency - for receptor Q96LB2, only 87 molecules were selected). Molecular Substructure Miner
(MoSS)(BORGELT; MEINL; BERTHOLD, 2005) was used to identify molecular substructures
that were enriched in the group of potent ligands in comparison with the remainder of the data

set.

MoSS finds molecular fragments that are frequent in a target part of the database, but rare
in the complement part. For the GPCR ligand discovery task, we specified a support of 10% as
minimum frequency for the group of potent ligands and a support of 2% as maximum frequency
non-potent ligands of the data set. This means we are looking for fragments that appear with at
least 10% in the group of potent ligands (and do not have super-structures that occur with the
same frequency), but with no more than 2% as maximum frequency in the non-potent counterpart
of the data set. The SMILES strings were input into the MoSS algorithm, for both potent GPCR
ligands and the remainder molecules. Afterwards, we evaluated just molecular substructures

exclusive for the potent ligands.

3.3 Feature engineering

Two main sets of molecular descriptors have been calculated based on the SMILES
representation of the molecules and used in combination as evidence to train, test and validate
machine learning methods for predicting GPCR ligands: (i) a distance-based graph signature and

(i1) general features (general molecule chemical and topological property descriptors).

3.3.1 Graph-based and auxiliary signatures

Graph-based signatures compose a general representation of biological entities, their
topology and chemical composition. They are a valuable representation for modelling biological
entities, such as small molecules. In this thesis we used CSM, which are signatures modelled
as unweighted, undirected graphs, where nodes represent atoms and edges represent covalent
bonds.
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Table 3 — Description of GPCRs considered in this work, with their respective families and
subfamilies (class A receptors are coloured in blue, class B in green, class C in red and

class F in purple).
Protein name UniProt ID | Family | Subfamily
Muscarinic acetylcholine receptor M4 | P08173 A Aminergic
5-hydroxytryptamine receptor 1A P08908 A Aminergic
Muscarinic acetylcholine receptor M5 | P08912 A Aminergic
Muscarinic acetylcholine receptor M5 | PODMSS8 A Aminergic
Muscarinic acetylcholine receptor M3 | P20309 A Aminergic
Substance-K receptor P21452 A Peptide
D(4) dopamine receptor P21917 A Aminergic
Endothelin receptor type B P24530 A Peptide
5-hydroxytryptamine receptor 2C P28335 A Aminergic
Adenosine receptor A2b P29275 A Nucleotide
Adenosine receptor Al P30542 A Nucleotide
Gonadotropin-releasing hormone P30968 A il
(type 1) receptor 1
Prostaglandin E2 receptor . .
EP) < fbtype P P34995 A Lipid
Somatostatin receptor type 5 P35346 A Peptide
Alpha-1A adrenergic receptor P35348 A Aminergic
Mu-type opioid receptor P35372 A Peptide
B1 bradykinin receptor P46663 A Peptide
P2 purinoceptor subtype Y1 P47900 A Nucleotide
Melatonin receptor type 1A P48039 A Peptide
5-Hydroxytryptamine receptor 6 P50406 A Aminergic
C-C chemokine receptor type 3 P51677 A Protein
Hydroxycarboxylic acid receptor 2 Q8TDS4 A Alicarboxylic acid
G protein-coupled bile acid receptor 1 | Q8TDU6 A Steroid
Mas-related G protein-coupled
B p P Q96LB2 | A Orphan
Sphingosine 1-phosphate receptor 3 Q99500 A Lipid
Melanin-concentrating hormone 1 Q99705 A Peptide
Sphingosine 1-phosphate receptor 5 Q9H228 A Lipid
G protein-coupled receptor 35 QI9HCI97 A Orphan
Histamine H3 receptor QI9YS5N1 A Aminergic
Prostaglandin D2 receptor 2 QoY5Y4 A Lipid
Glucagon receptor P47871 B1 Peptide
Calc'itonin gene-related 016602 B1 Paptide
peptide type 1 receptor
Extracellular calcium-sensing receptor | P41180 C Ion
Metabotropic glutamate receptor 2 Q14416 C Amino acid
Metabotropic glutamate receptor 4 Q14833 C Amino acid
Smoothened homolog Q99835 F Protein
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Table 4 — Description of GPCRs considered in this work: Medical importance and number of

compounds with available bioactivity (class A receptors are coloured in blue, class B
in green, class C in red and class F in purple).

(10.1016/j.prostaglandins.2003.12.002).

Protein name Medical interest #Ligands collected
. . Parkinson’s disease

Muscarinic acetylcholine receptor M4 | - 1 1o 1461 ora/10.1016/j.pharmthera.2007.09.009). 22

5-hydroxytryptamine receptor 1A EI:;?SE?g;?;?:;ﬁiﬁifgﬁ;;fh B EnIERE 135544

Muscarinic acetylcholine Tobacco and cannabis dependence 1097830

receptor M5 (10.1186/1471-2156-8-46 ).

Muscarinic acetylcholine Rheumatoid arthritis. 10929

receptor M5

Muscarinic acetylcholine Type 2 diabetes 6786

receptor M3 (https://doi.org/10.1016/j.cmet.2006.04.009)
Inflammatory and pain responses

PIEEETTER T T (https://doi.g};g/lOEOI6/j,riulet.2005.06.01 1. )
Parkinson’s disease, schizophrenia, mania,

D(4) dopamine receptor depression, substance abuse, 6251
and eating disorders (https://doi.org/10.1021/cr050263h).

Endothelin receptor type B ggsfgsgzttg;glslzaienm) 1805

Shispanine oo 2C | petEee e s
Asthma and

Adenosine receptor A2b gastrointestinal disorders 6714
(https://doi.org/10.1016/B978-0-12-803724-9.00001-6).

Adenosine receptor Al Lzt 1s.chem1a, strpke, 13364
hypertension, and epilepsy.

Gonadotropin-releasing Hypogonadotropic hypogonadism 3017

hormone (type 1) receptor 1 (https://doi.org/10.1038/ng0198-14).

Prostaglandin E2 Treatment of neuropathic pain 1631

receptor EP1 subtype (10.1097/00000539-200110000-00043).
Inhibit the release of many hormones

Somatostatin receptor type 5 and other secretory proteins 1361
(10.1159/000054651).
Noradrenergic modulation

Alpha-1A adrenergic receptor of olfactory driven behaviours 4034
(10.1113/jphysiol.2012.248591).

.. Morphine-induced analgesia

ML andrﬁch (10.1016/j.cell.g201 1.08.043 ). Il
Inflammatory injuries that

B1 bradykinin receptor follow ischaemia and reperfusion 1491
(10.4049/jimmunol.172.4.2542 ).

. Platelet shape and
NIy T platelet aggfegation (10.1042/bj3360513). 2L
. Circadian and neuroendocrine
R s disorders (0.1006/geno.1995.1056 ). S
. Learning process and

3-Hydroxytryptamine receptor 6 memoryg(II))ttps://doi.org/l0.1016/B978—0-12—800836-2.0001 1-8). | 8230
Binds and responds to a variety of chemokines,

C-C chemokine receptor type 3 HIV infection 1675
(10.1016/50092-8674(00)81313-6 0).

Hydroxycarboxylic acid receptor 2 B}(])Slzlg ;(;é;pr)ngls.l 5.79). 1664

G protein-coupled bile acid Immune and inflammatory 1014

receptor 1 liver diseases (10.1002/hep.24525 ).

Mas-related G protein-coupled Modulation of nociception 936090

receptor X1 (https://doi.org/10.1096/£j.202001667RR).

Sphingosine 1-phosphate Glioblastoma 232193

receptor 3 (10.1016/j.freeradbiomed.2005.09.015).

Melanin-concentrating hormone Obesity 3628

receptors 1 (10.2174/092986708784049621).

Sphingosine 1-phosphate receptor 5 gl(l)nil(;lgg;%lr;g%f;s 23 ). 782
Albright hereditary

G protein-coupled receptor 35 osteodystrophy-like phenotype 293497
(10.1111/1.1399-0004.2004.00363.x ).
Attention deficit hyperactivity disorder,

Histamine H3 receptor Alzheimer’s disease and schizophrenia 6873
(10.1038/bjp.2008.147).
Inflammatory disease

Prostaglandin D2 receptor 2 of the upper airways 5017
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Protein name Medical interest #Ligands collected
Glucagon receptor Type 2 diabetes (10.1038/ng0395-299 ). 2053
Calcitonin gene-related peptide type 1 receptor | Migraine (10.1177/1756285610388343). 1663
Extracellular calcium-sensing receptor Ischemic brain injury (10.1002/acn3.118). 718
Metabotropic elutamate r tor 2 Pain mechanisms and behavioral modulation 2475

ctabotropic glutamate recepto (https://doi.org/10.3389/fnmol.2018.00383).
. Parkinson Disease
Metabotropic glutamate receptor 4 (10.1007/511481-016-9655-2). 3457
Carcinogenesis
Eocsheis Lot (https://doi.org/10.1016/j.1£5.2020.117302). | 1360

In order to calculate them, firstly, the shortest distance between all atom pairs (nodes) are
calculated. These distances are measurements of the shortest paths between two atoms, according
to the covalent bonds between them, one of distance meaning one covalent bond. Following
this step, according to a defined range of distances (called cutoffs and defined by the sum of the
bonds between the pair of atoms) and a distance step, the molecule is scanned through these
distances, computing the frequency of type of atom pairs (categorised by pharmacophore type),
that are close according to this distance threshold. CSM generates feature vectors that represent
distance patterns between atoms. The motivation for using those signatures lies in the fact that
diferent molecules will generate different distributions of distances between their atoms and,
consequently, pharmacophoric groups. This information is captured by the CSM and can be used
as evidence for ML models. This mentioned step was already successfully employed at pkCSM
(predicting small-molecule pharmacokinetic properties- (PIRES; BLUNDELL; ASCHER, 2015),
DUET (predicting effects of mutations on protein stability- (PIRES; ASCHER; BLUNDELL,
2014), mCSM (predicting the effect of mutations in proteins- (PIRES; ASCHER, 2017), aCSM
(receptor-based ligand prediction- (PIRES et al., 2013), CSM-Lig (assessing and comparing
protein—small molecule affinities- (PIRES; ASCHER, 2016a).

In this work, we vary the distance threshold from 5 bonds to 20 bonds, with “one bond”
as a distance step. We scanned through these distance thresholds, computing the frequency of
atom pairs that are close according to the mentioned distance threshold. Together, these vectors
compose the CSM signature. Each line of the matrix represents one molecule, and each column
represents the frequency of pharmacophoric atom pairs within a certain distance (see Figure 7)

for details about distance-based graph signatures).

3.3.2 Auxiliary features

Auxiliary signatures refer to various molecular properties describing the general physic-
ochemical properties of compounds (TODESCHINI; CONSONNI, 2009). These signatures
include toxicophore fingerprints proposed by (KAZIUS; MCGUIRE; BURSI, 2004), atomic
pharmacophore frequency count, and general molecular properties including lipophilicity (log P),
molecular weight, surface area, number of rotatable bonds. The toxicophore fingerprint was cal-
culated based on substructure matching from SMILES arbitrary target specification (SMARTS)
queries published by (KAZIUS; MCGUIRE; BURSI, 2004), and the other auxiliary signatures
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Figure 7 — Modelling small molecule activity using graph-based signatures. We picture on the
image a small molecule being scanned for two types of pharmacophores, hydrogen
bond acceptor and donor. We started with a distance cut off of 6 bonds, and found two
pairs of pharmacophores, donor-acceptor and acceptor-acceptor. Following a distance
step of 2, we then used a distance cutoff of 4 and found also two pharmacophores,
donor-acceptor, donor-donor. At last, we used a cut-off of 2 and found also two pairs
of pharmacophores, acceptor-donor, donor-donor (bottom panel). The small molecule
is then represented as cumulative distributions of the pair of pharmacophores (top-
right panel).



Chapter 3. Methods 40

were calculated using the RDKit cheminformatics toolkit' . A complete list of auxiliary features

used in this thesis is described in Table 5.

3.4 Machine Learning Algorithms

Prediction of compound bioactivities was framed as a regression task for predicting
bioactivities (Ki, Kd, IC50, and EC50), with a range of different supervised learning algorithms
being assessed, including Extra Trees (GEURTS; ERNST; WEHENKEL, 2006), Random Forest
(BREIMAN, 2001), Gradient Boost (FRIEDMAN, 2001) and XGBoost (CHEN; GUESTRIN,
2016) regressors. All these four algorithms belong to the class of ensembles of decision trees.
These methods combine multiple ML models to create more powerful models. And, all of them
use decision trees as building blocks. In essence, decision trees are composed of if/else questions
disposed in a hierarchical manner, following these questions the model is capable of reaching a
decision (GUIDO; MUELLER, 2016). In the case of our question, the actual output is a numeric
value of the bioactivity. The decision to reach prediction is based on the features (graph based

signatures and auxiliary features) we used as input for the ML algorithm.

Random Forest implements many decision trees, each one is different from the others,
the trees are built at random, considering different features (and also samples). Each tree is
capable of doing proper predictions, but tends to overfit on part of the data. When many trees are
combined, overfitting will be reduced by averaging the tree results. The randomness from this
algorithm comes from the fact that the trees are built in a randomised way: by the selection of
different data points and different features in each split test (GUIDO; MUELLER, 2016).

The Gradient Boost, in contrast to the Random Forest approach, creates serialised trees,
where each tree tries to correct the mistakes of the previous one. The trees created on this
algorithm are shallow and present low depth so that the models are capable of providing good
predictions on part of the data. The combination of these simple models can generate models
capable of predicting with great reliability (FRIEDMAN, 2001; GUIDO; MUELLER, 2016).

Extra trees are very similar to Random Forest, the main difference lies in the fact
that instead of computing the locally optimal feature/split combination, for each feature under
consideration, this algorithm selects its cut-point fully at random, independently of the target
variable (GEURTS; ERNST; WEHENKEL, 2006).

XGBoost stands for eXtreme Gradient Boosting. It follows the principle of gradient
boosting, however, uses a more regularised model formalisation to control over-fitting (CHEN;
GUESTRIN, 2016).

The best performing models were selected based on Pearson’s, Spearman’s and Kendall’s

correlation coefficients and Root Mean Square Error (RMSE). The Scikit-learn library (version

I "RDKit." https://www.rdkit.org/.
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Table 5 — Auxiliary features.

Name Description Reference
HeavyAtomCount Number of Non-Hydrogen atoms in a given molecule
Particular ratio of the solute concentrations between
LogP the two solvents (a biphase of liquid phases), (Wildman and
one of the solvents is water and the other Crippen, 1999)
is a non-polar solvent
NumHeteroatoms Number of heavy atoms a molecule. (Non-hydrogens)
NumRotatableBonds Number of Rotatable Bonds
RingCount Number of rings.
Topological polar surface area (TPSA) of a molecule is
defined as the surface sum over all polar atoms,
TPSA primarily oxygen (Ertl et al., 2000)
and nitrogen, also including their attached
hydrogen atom.
LabuteASA Labute’s Approximate Surface Area (Labute, 2000)
MolWt Molecular Weight
Fcount
Tox Toxicophores (Kazius et al., 2005)
Balaban]: Balaban’s connectivity topological index (Balaban, 1982)
A topological index meant to quantify
“complexity” of molecules.
BertzCT Consists 9f a sum of two Ferms, one (Bertz, 1981)
representing the complexity
of the bonding, the other representing
the complexity of the distribution of heteroatoms.
Atomic connectivity index (order 0) .
Chi0, Chil This is calculated as the sum of 1/sqrt(di) overall (Hall and Kier, 2007)

heavy atoms i with di >0.

ChiOn - Chi4n

(Hall and Kier, 2007)

ChiOv - Chi4v

Atomic connectivity index (order 1).
This is calculated as the sum of
1/sqrt(didj) overall bonds between
heavy atoms i and j where i <j.

(Hall and Kier, 2007)

chiOv_C, chilv_C

Carbon valence connectivity index (order 0).
This is calculated as
the sum of 1/sqrt(vi) overall carbon atoms i with vi >0.

(Hall and Kier, 2007)

HallKierAlpha

(Hall and Kier, 2007)

Kappal- Kappa3

(Hall and Kier, 2007)

PEOE_VSALI - PEOE_VSA14

MOE-type descriptors using partial charges and
area contributions

SMR_VSAI1 - SMR_VSA10

MOE-type descriptors using MR contributions and
surface area contributions

SlogP_VSAL1 - SlogP_VSA12

MOE-type descriptors using SLogP contributions and
surface area contributions

EState_VSAL1 - EState_VSAI11

MOE-type descriptors using EState indices and
surface area contributions

VSA_EStatel - VSA_EState10

MOE-type descriptors using surface area
contributions and Estate indices

Organic functions

Al_COO, Al_OH, Al_OH_noTert, ArN, Ar_COO,
Ar_N, Ar_NH, Ar_OH, COO,

C002, C_0O, C_0_noCOO, C_S, HOCCN, Imine,
NHO, NH1, NH2,

N_O, Ndealkylation1, Ndealkylation2, Nhpyrrole,
SH, aldehyde, alkyl_carbamate, alkyl_halide,
allylic_oxid, amide, amidine,

aniline, aryl_methyl, azide, azo,

barbitur, benzene, benzodiazepine, bicyclic,f_diazo,
dihydropyridine, epoxide, ester,

ether, furan, guanido, halogen,

hdrzine, hdrzone, imidazole, imide,

isocyan, isothiocyan, ketone, ketone_Topliss,
lactam, lactone, methoxy, morpholine, nitrile, nitro,
nitro_arom, nitro_arom_nonortho, nitroso, oxazole,
oxime, para_hydroxylation, phenol,
phenol_noOrthoHbond, phos_acid,

phos_ester, piperdine, piperzine, priamide,
prisulfonamd, pyridine, quatN,

sulfide, sulfonamd, sulfone, term_acetylene,
tetrazole, thiazole, thiocyan, thiophene,
unbrch_alkane, urea
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0.20.3) for Python (version 2.7) (PEDREGOSA et al., 2011) was used for training and testing
the models. For all ML algorithms, the parameter “random_state” was set to 0. This parameter
controls the random seed given to each Tree estimator at each boosting iteration. Random seed
is a number (or a vector) used to initialise a pseudorandom number generator. When keeping
the same one, we guaranteed that we get the same training and validation data set through all
machine learning experiments. All other parameters were kept as default and no hyperparameter

tuning was performed.

3.5 Performance metrics

In order to check the statistical relevance of our results, we used the Pearson correlation.
Pearson correlation is a measure of the linear correlation between two variables X and Y. It ranges
from -1 to 1. Correlations of -1 or +1 indicate a perfect linear correlation. Positive correlations
point that as X increases, so does Y. Negative correlations point that as X increases, Y decreases.
A value of 0 implies that there is no linear correlation between X and Y (experimental molecular
bioactivity vs. predicted bioactivity). In our case, one variable is the molecular bioactivity
obtained experimentally, and the other variable is the predicted bioactivity. The larger the r-value

is, the better the model performance will be. The formula for the Pearson correlation is:

Sz = my )y —my)

=
v (@ —me)? Xy —my )

Where mx is the mean of the x (predicted bioactivity) vector and my is the mean of the

vector y (experimental bioactivity).

Additionally, we used Spearman’s correlation coefficient, Kendall’s correlation coef-
ficient, and Root Mean Square Error. Spearman’s correlation coefficient is a nonparametric
measure of rank correlation. It assesses how well the relationship between two variables can be
described using a monotonic (whether linear or not) function. The formula for the Spearman’s

correlation is:

cov(R(X), R(Y))

Ts = PR(X)R(Y) = OR(X)TR(Y)

P denotes the usual Pearson correlation coefficient, but applied to the rank variables.
cov(R(X),R(Y)) s the covariance of the rank variables, and “R(X)  and “BY) are the standard

deviations of the rank variables.

Kendall’s correlation coefficient is also a nonparametric measure of the strength and

direction of association that exists between two variables. The Kendall coefficient is defined as:
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(number of concordant pairs) — (number of discordant pairs)

()

T =

n n(n—1)
Where (3) 2 is the binomial coefficient for the number of ways to choose two

items from n items.

RMSE is a measure of the differences between actual and predicted values. It represents

a square root of the differences between predicted values and observed values:

,. N _
_' Z ( Predicted,— Actual, 3
RMSE :\ fed

N

where, Predicted:, means the predicted values, Actuali, means the observed (actual)

values, and N, means total number of observations.

3.6 Model validation

In order to test and validate our models internally, we used cross-validation. Through
the model validation step, it is possible to estimate how accurately a predictive model will
perform in practice, and avoid overfitting, which is when a model function is too closely fit the
training dataset only and is not reliable in predicting unseen data during the training. In this
approach, called k-fold cross-validation, the training set is split into k smaller sets. Then for
each of the k “folds”: the model is trained using k - 1 folds as training data and the resulting
model is validated on the remaining part of the data. The performance is defined as the average
of the results computed in the loop. For each model, we employed stratified 5-, 10- and 20-fold
cross-validation on the training set. It enabled us to evaluate how the results of the ML models
were capable of being generalised to an independent dataset. Performance was also assessed on
90% of the data, after removing 10% of the worst predicted data point, to evaluate the effects of
outliers in model prediction capabilities. This removal of 10% of outliers was done just for the
sake of performance analysis, in the end we used all molecules for generating the final models.

The Scikit-Learn toolkit was used in all ML procedures.

We also tested our models using low-redundancy independent blind test sets. For this
purpose, datasets per GPCR were split into training (90%) and blind tests (10%). The split
between test and training data was done using a Python algorithm (see script A.2, Appendices)
that first clusters by similarity all the data according to Morgan fingerprints. In the clustering
step, we used the Butina clustering algorithm (BUTINA, 1999) from RDKit and a cutoff of

80% of similarity, meaning that the molecules inside a cluster had at least 80% of similarity.
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For similarity comparison, we used Tanimoto coefficient, which is defined as the ratio of the
intersection of the two sets over the union of the two sets (sets in this case, meaning fingerprints
generated for each SMILE). After the generation of clusters, they were randomly selected, and
grouped to form the test group with approximately 10% of the molecules, the other part was

used as a training set.

3.7 Feature selection

As a means of finding the most relevant features for the regression of GPCR ligand
problems and removing the irrelevant features, we performed a feature selection using all features
(distance-based graph signatures and auxiliary features). Feature selection is an automatic
procedure of reducing the number of features when developing a machine learning predictive
model. It is desirable because it both reduces the computational cost of modelling and, also
enables in many cases, the improvement of the predictive performance of the model, avoiding
overfitting. For this task, we used a greedy feature selection algorithm (see Figure 8) which is
a heuristic algorithm that aims to reach a global optimum solution by making locally optimal
choices at each stage. The adopted algorithm employs a forward selection. At its first step, greedy
feature selection tries all features individually, fixing the one with the best score. At the second
step, all features that are left are tested with the fixed one and then, the second-best feature is
fixed. Subsequently, these steps happen as long as the performance improves (Pearson correlation
meliorates at any value, not cutoff was applied in this step). Concerning the feature selection, we
used 10-fold cross validation for selecting the best case, choosing the higher Pearson correlation

coefficient.

3.8 Performance comparison with alternative methods

We compared our predictive model’s performances with WDL-RF (WU et al., 2018).
The comparison was done using the data sets provided by the authors while training their
models available online. Initially, SMILES for each data set were submitted to the WDL-RF
web server. The web server outputs a table containing a column with SMILES and another with
the predicted bioactivity in nanoMolar. Predictions were converted to a standard value using
—log10(bioactivity in nanoMolar), consistent with what was performed by (WU et al., 2018).

The same procedure was employed using our web server.

WDL-RF predictors were built using weighted deep learning and random forest, to model
the bioactivity. They consisted of two consecutive rounds: (1) generation of fingerprints using a
weighted deep learning method, followed by (ii) bioactivity calculations using random forest

models. These predictors comprehend 26 GPCRs.

We also checked the performance of our models, using "control ligands", as reported by
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Figure 8 — Feature Selection. All features are tried individually, then the best one is fixed. At the
second stage test, all features that are left are tested again combined with the fixed one
and afterwards, the second-best feature is fixed. Subsequently, it continues iteratively
to happen as long as the performance improves.

VSAL + Log P + MolWt

(WU et al., 2018). For this, we included a ‘non-ligand’ set, in order to check if the presence of
these control ligands would increase performance of our models. The small molecules for these
‘non-ligand’ sets were obtained through DUD-E (MYSINGER et al., 2012), a tool that generates
decoys (non-ligands molecules) using active compounds. For this purpose, we used top potent
ligands from our datasets, the same we selected in the section “Substructure mining”. We added

to our datasets 20% of decoys and the bioactivity of these were set to -1 (10 molar).

3.9 Website Design and Implementation

The pdCSM-GPCR web server was designed to provide a user-friendly, reliable and
scalable web interface to predict bioactivity for GPCR ligands (<http://biosig.unimelb.edu.au/
pdcsm_gper/>). It was implemented using Bootstrap 3.3.7 and Flask framework, version 1.1.2.

The 2D chemical structure depictions on the web server are generated with RDKit.


http://biosig.unimelb.edu.au/pdcsm_gpcr/
http://biosig.unimelb.edu.au/pdcsm_gpcr/
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4 Results

In this chapter, we present new bioactivity predictors for the study of 36 different GPCRs
belonging to four classes (A, B1, C, and F). We devised a range of experiments in order to
better understand and contrast the molecular properties of ligands targeting different GPCRs,
demonstrate the accuracy of pdCSM-GPCR models and compare their performance with other

available methods.

4.1 Data sets

Initially we retrieved small-molecule bioactivities for 26 different GPCRs, covering four
mayjor classes, from PubChem (KIM et al., 2018). These were done for the sake of performing
a direct comparison with a previous method, WDL-RF (WU et al., 2018). We, however, have
further expanded this set by curating more data from the literature to include seven new datasets
for class A, a new predictor for the B1 class (UniProt ID: Q16602), one for class C (UniProt ID:
Q14833) and one for an orphan GPCR (UniProt ID:Q96LB2). In total, bioactivity data for 36
different GPCRs were collected, making this the most comprehensive dataset to date. Most part
of the data set comprises class A receptors. This is due to the fact that the most targeted GPCR
class has historically been class A and also this class accounts for nearly 80% of GPCR genes
(Davies et al., 2007 (DAVIES et al., 2007).

We analysed and curated the retrieved data sets (see Table 6). These datasets included
in most of the cases a range of different experimental studies. Because of that, some ligands
presented duplicated results and also discrepancies. In case of two or more entries for the same
molecule, only the first one to appear in the dataset was kept (neither bioactivity value nor class
were considered for this step). In order to improve our training, we remove these inconsistencies

using a Python script (see script A.1, Appendices).

Some receptors, such as Muscarinic acetylcholine receptor M4-(P08173), had a signifi-
cant cutback in the amount of data after the curation step. These happened because great part
of the data was actually qualitative, without the actual value of bioactivity, what is essential for
regression models. Usually during the screening experiments, many compounds are screened

using assays that are qualitative. Then the promising ones are tested quantitatively.

Figure 9 depict activity distributions on all datasets after filtering. It is important to point
out that for most of the receptors, the bioactivity distribution range spans from four to more or
less 15, where bioactivity is defined by -log10(activity in Molar). The majority of the molecules
have a bioactivity between 6 and 8, according to the average and the median. (ZHANG et al.,

2015), who performed a rigorous evaluation of ligands bound to elucidated structures of GPCREs,
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Table 6 — Characteristics of the GPCRs datasets before and after filtering, and also the number of
molecules in the group used for machine learning training and testing purposes (blind
test validation) (class A receptors are coloured in blue, class B in green, class C in red
and class F in purple. Lig collec= Number of collected ligands, Total aft. filt.= Total
number of molecules after filtering, Train = Training set of ligands, Test= Test set of

ligands).

Protein name UniProt ID | #Lig collec. | #Total aft. filt. | #Train | #Test
Muscarinic acetylcholine receptor M4 P08173 1097720 978 837 141
5-hydroxytryptamine receptor 1A P08908 135544 3790 3370 420
Muscarinic acetylcholine receptor M5 P08912 1097830 959 820 139
Muscarinic acetylcholine receptor M5 PODMS8 10929 3513 3100 413
Muscarinic acetylcholine receptor M3 P20309 6786 2008 1698 310
Substance-K receptor P21452 3153 922 762 160
D(4) dopamine receptor P21917 6251 2335 2059 276
Endothelin receptor type B P24530 1805 987 815 172
5-hydroxytryptamine receptor 2C P28335 8179 3118 2765 353
Adenosine receptor A2b P29275 6714 2109 1835 274
Adenosine receptor Al P30542 13364 3833 3409 424
Gonadotropin-releasing hor. t1 receptor 1 P30968 3017 1373 1097 276
Prostaglandin E2 receptor EP1 subtype P34995 1631 741 640 101
Somatostatin receptor type 5 P35346 1361 747 576 171
Alpha-1A adrenergic receptor P35348 4034 1898 1645 253
Mu-type opioid receptor P35372 691466 5275 4651 624
B1 bradykinin receptor P46663 1491 756 608 148
P2 purinoceptor subtype Y1 P47900 1200 568 461 107
Melatonin receptor type 1A P48039 3003 1043 891 152
5-Hydroxytryptamine receptor 6 P50406 8230 3044 2699 345
C-C chemokine receptor type 3 P51677 1675 1131 947 184
Hydroxycarboxylic acid receptor 2 Q8TDS4 1664 504 434 70
G protein-coupled bile acid receptor 1 QS8TDU6 1014 443 372 71
Mas-related G protein-coupled receptor X1 | Q96LB2 936090 93 70 23
Sphingosine 1-phosphate receptor 3 Q99500 232193 1088 939 149
Melanin-concentrating hormone receptors 1 | Q99705 8628 3721 3286 435
Sphingosine 1-phosphate receptor 5 Q9H228 782 417 349 68
G protein-coupled receptor 35 Q9HC97 293497 480 408 72
Histamine H3 receptor QI9Y5N1 6873 3597 3133 464
Prostaglandin D2 receptor 2 Q9Y5Y4 5017 2749 2407 342
Glucagon receptor P47871 2053 1006 843 163
Calcitonin gene-related peptide t1 receptor Q16602 1663 757 612 145
Extracellular calcium-sensing receptor P41180 718 535 439 96
Metabotropic glutamate receptor 2 Q14416 2475 1168 1025 143
Metabotropic glutamate receptor 4 Q14833 3457 579 504 75
Smoothened homolog Q99835 1366 718 603 115

stated that ligand affinity in solved GPCR structures, generally is a single-digit nM range value.
When we convert a single-digit nM (1e-9 Molar) values using -log10(activity in Molar), we got
a value of 9 approximately. According to this assumption, a bioactivity (logarithmized value,
higher means higher potency) between 6 or 8 would imply no or lower activity, meaning that

datasets covered ligands and non-ligands.

One interesting case was the G protein-coupled receptor 35 (Q9HC97), which displayed
a very different activity distribution. Most of the dataset molecules from this data set featured
a bioactivity (-logl0(activity in Molar)) equal four, which represents a very low affinity value.
This receptor was first identified in 2000 and has been extensively studied for treatment of
inflammatory bowel disease. However, it officially remains defined as an “orphan” GPCR
(QUON et al., 2020). This hardship in discovering natural ligands could be linked to the fact that
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this receptor would need different ligands to be activated, one orthosteric and other allosteric.

Thus, high throughput essays, with one type of molecules per time, would indicate low affinity.
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Figure 9 — Value of activity distributions - Datasets - At the x-axis the bioactivity is represented
as -log[concentration], concentration in molar value. And, at the y-axis, the number
of molecules is represented. The red line represents the median and the black line
represents the average.
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4.2 Analysis of molecular properties: what makes a GPCR
ligand?

The top 300 most potent molecules (the average of 15% of all datasets) per receptor
were selected or those with bioactivity greater than 5 (meaning potency of 10uM or higher).
Using this data, we evaluated common molecular substructures of potent GPCR ligands. MoSS
(BORGELT; MEINL; BERTHOLD, 2005) was used to identify molecular substructures that were
enriched in the group of potent ligands in comparison with the remainder of the data set (Figure
10). Aromatic rings and nitrogen containing substructures were amongst the most enriched
substructures in potent GPCR ligands across all classes. Similar results were found by (HORST
et al., 2009). Applying substructure mining of GPCR ligands, they found that alkane amine
substructures were enriched in the pool of substructures when comparing to non ligands, they
also stated that these substructures are often linked to an aromatic system. Two other studies also
contemplated the importance of amine substructures. One of these studies was (STRADER et al.,
1988), they studied a beta-adrenergic receptor. They stated that a salt bridge between the ligands’
protonated amino group and a negatively charged aspartic acid residue in transmembrane 3 is
essential for the interaction happens. The other study, from (KOOISTRA et al., 2013), also stated
that a negative charge in the residue D> in opioid receptors plays an important role in binding
of positively ionised ligands via ionic interactions. These substructures could be correlated with
key interactions between ligand and transmembrane parts of GPCRs and should be considered
during ligand screening of large compound libraries and also for lead optimisation. They can be
used to do a pre-screening of molecules in larger datasets or for evaluation of potential leads. On
the other hand, it is also critical to note that, as these ligands characteristics were common for
different types of GPCRs, they can bind more than one target. Thus, they should be carefully
evaluated during drug discovery for GPCRs, for avoiding multiple GPCRs activation and drug

collateral effects.

Besides looking for molecular substructures, we also found a limited number of potent
molecules being shared among at least different GPCRs (see Figure 11) (no control regarding
other family of receptors was made). The 21 ligands identified were shared between class A
receptors and, in general, their properties (substructures) were consistent with what we observed
for the most potent ligands across different receptors. They all possessed aromatic rings and

substructures with nitrogens.

We also assessed common physicochemical properties of these potent ligands (Figures
Al to A8 of Appendices). We found that most potent ligands possessed between 20 and 40 heavy
atoms, had a molecular weight between 200-500 daltons, less than 10 rotatable bonds, a polar
surface area no greater than 140 A?and a logP between 0-6 range (GHOSE; VISWANADHAN;
WENDOLOSKI, 1998). The most potent compounds also possess between 2 and 12 heteroatoms,
between 2 and 6 rings and a LabuteASA in the range of 150 to 200 A2. This is largely con-
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Figure 10 — Distribution of the top ten most frequent substructures present on the most active
ligands- This distribution comprise the data sets of all receptors. The number below
the fragment refers to how many receptors (data sets) had that fragment enriched in
the most potent molecules.
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Chapter 4. Results 53

sistent with Lipinski’s Rule of 5. Similarly, (MORPHY; RANKOVIC, 2006), evaluated the
physicochemical properties for GPCRs ligands. They found that GPCRs ligands possess: median
of 8 rotatable bonds, median molecular weight of 450 (mean=503), median logP value of 4.4
(mean=4.2) and a median for polar surface area of 67 A2. These common physicochemical
properties of potent ligands illustrates some characteristics that should be considered during
evaluation of datasets for screening new GPCRs drugs. Applying them in a curation step could
reduce data to be evaluated, trimming time and computational power without losing potential
ligands molecules. It is also important to note that these characteristics were agreeable with
Lipinski’s Rule of 5 and may indicate a bias in the original screening libraries applied in the
discovery of these ligands. It is also important to note that some ligands were shared among
GPCRs. This characteristic should be carefully studied during drug development in order to

avoid off target activity.

4.3 Developing GPCR ligand predictors

The first ML step in the development of our predictors was looking for the most mean-
ingful features. We applied feature selection through 10-fold cross validation. For this task,
we used a stepwise greedy feature selection algorithm. Table 7 present more details about our

performance through 10-fold cross-validation before and after feature selection.

Final predictors models achieved Pearson’s, Spearman’s and Kendall’s correlations of up
to 0.89, 0.88 and 0.70 (median values, 0.78, 0.76, 0.59), respectively on 10-fold cross-validation
(see Table 8, which are depicted as scatter plots (Figure 12)). We also assessed our models using
Mean Square Error (MSE) to check how close our predictions were to the actual values. We
reached a minimum of 0.24 and a maximum of 1.02. After 10% outlier removal, predictions
improved substantially. For all receptors, the predictions reached a Pearson’s correlation above
0.74 and considering the MSE values they decreased on average 40% for all receptors. We
searched for outliers in common and found one, Clotrimazole, shared between four different
receptors, D (4) dopamine receptor (P21917), 5-hydroxytryptamine receptor 2C (P28335),
adenosine receptor Al (P30542) and 5-hydroxytryptamine 9 receptor 6 (P50406). This finding
reflects general properties of outliers, (outliers, meaning the 10% of molecules which presented
the predictive value more distant from the regression curve) (see Figure A9 to Figure A22,
Appendices) that tend to have less hydrogen bonds acceptors, hydrogen bonds donor, and
negative ionisable atoms. We additionally found that other outliers tend to have also less positive

ionisable atoms.

We also assessed the model under different cross validation schemes stratified 5- and
20-fold cross-validation (see Table 9) obtaining consistent results and demonstrating robustness
and consistency of the models. Considering the supervised learning algorithms employed, 21

of the final models employed Random Forest and 10 Extra Trees, with the remaining 5 using
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Table 7 — Predictors performance: first column represents performance using all graph-based sig-
natures, second column, using all auxiliary features, third column, all graph signature
combineed with all auxiliary features, and last column performance after feature selec-
tion (Pearson correlation coefficient on 10-fold cross-validation) (class A receptors are
coloured in blue, class B in green, class C in red and class F in purple).

Graph Auxiliary | Graph +

Rl Signatures | Features Auxiliary Features Lefmel
Muscarinic acetylcholine receptor M4-(P08173) 0.71 0.75 0.77 0.77
5-hydroxytryptamine receptor 1A-(P0O8908) 0.71 0.74 0.75 0.75
Muscarinic acetylcholine receptor M5-(P08912) 0.74 0.76 0.77 0.76
Muscarinic acetylcholine receptor M5-(PODMS8) | 0.75 0.78 0.79 0.79
Muscarinic acetylcholine receptor M3-(P20309) 0.82 0.85 0.85 0.85
Substance-K receptor-(P21452) 0.82 0.84 0.85 0.85
D(4) dopamine receptor-(P21917) 0.67 0.68 0.69 0.69
Endothelin receptor type B-(P24530) 0.86 0.88 0.88 0.89
5-hydroxytryptamine receptor 2C-(P28335) 0.69 0.71 0.72 0.72
Adenosine receptor A2b-(P29275) 0.77 0.79 0.79 0.79
Adenosine receptor A1-(P30542) 0.72 0.75 0.76 0.76
Gonadotropin-releasing hormone

(type 1) receptor 1-(P30968) e o o e
Prostaglandin E2 rec EP1 sub-(P34995) 0.78 0.76 0.78 0.78
Somatostatin receptor type 5-(P35346) 0.83 0.83 0.83 0.84
Alpha-1A adrenergic receptor-(P35348) 0.74 0.77 0.78 0.78
Mu-type opioid receptor-(P35372) 0.84 0.87 0.87 0.87
B1 bradykinin receptor-(P46663) 0.74 0.76 0.75 0.77
P2 purinoceptor subtype Y 1-(P47900) 0.72 0.73 0.73 0.73
Melatonin receptor type 1A-(P48039) 0.69 0.70 0.73 0.73
5-Hydroxytryptamine receptor 6-(P50406) 0.76 0.79 0.79 0.79
C-C chemokine receptor type 3-(P51677) 0.82 0.84 0.84 0.84
Hydroxycarboxylic acid receptor 2-(Q8TDS4) 0.67 0.67 0.68 0.67
G protein-coupled bile acid receptor 1-(Q8TDU6) | 0.68 0.69 0.70 0.70
Mas-related G pro-coup rec X1-(Q96LB2) 0.72 0.42 0.53 0.69
Sphingosine 1-phosphate receptor 3-(Q99500) 0.74 0.78 0.78 0.78
Melanin-concentrating hormone

receptors 1-(Q99705) 0.74 0.76 0.77 0.77
Sphingosine 1-phosphate receptor 5-(Q9H228) 0.83 0.86 0.86 0.86
G protein-coupled receptor 35-(QIHC97) 0.80 0.84 0.84 0.84
Histamine H3 receptor-(Q9YSN1) 0.75 0.78 0.79 0.79
Prostaglandin D2 receptor 2-(Q9Y5Y4) 0.72 0.71 0.74 0.74
Glucagon receptor-(P47871) 0.81 0.82 0.82 0.83
Calcitonin gene-related peptide

type 1 receptor-(Q16602) 0.82 0.83 0.83 0.83
Extracellular calcium-sensing receptor-(P41180) 0.69 0.74 0.74 0.74
Metabotropic glutamate receptor 2-(Q14416) 0.81 0.84 0.84 0.84
Metabotropic glutamate receptor 4-(Q14833) 0.74 0.85 0.82 0.80
Smoothened homolog-(Q99835) 0.70 0.72 0.74 0.74
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Figure 12 — Scatter plots, Regression analysis considering cross-validation schemes. Pearson’s
correlation coefficients are also shown in the top-left corner. These plots show the
correlation between experimental (y-axis) and predicted values (x-axis).
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Table 8 — Final Predictors’ performance on 10-fold cross-validation. The values out of the
parentheses mean all data, and the values in parentheses mean after 10% outlier
removal (class A receptors are coloured in blue, class B in green, class C in red and
class F in purple).

Receptor Pearson Spearman | Kendall MSE
Muscarinic acetylcholine receptor M4-(P08173) 0.77(0.87) | 0.75(0.83) | 0.57(0.65) | 0.59(0.29)
5-hydroxytryptamine receptor 1A-(P08908) 0.75 (0.85) | 0.74(0.83) | 0.56(0.64) | 0.60(0.31)
Muscarinic acetylcholine receptor M5-(P08912) 0.76(0.87) | 0.75(0.82) | 0.56(0.63) | 0.52(0.23)
Muscarinic acetylcholine receptor M5-(PODMS8) 0.79(0.91) | 0.80(0.90) | 0.62(0.72) | 0.55(0.23)
Muscarinic acetylcholine receptor M3-(P20309) 0.85(0.94) | 0.85(0.94) | 0.68(0.77) | 0.70(0.31)
Substance-K receptor-(P21452) 0.85(0.92) | 0.85(0.92) | 0.67(0.75) | 0.52(0.26)
D(4) dopamine receptor-(P21917) 0.69(0.83) | 0.70(0.82) | 0.52(0.63) | 0.53(0.27)
Endothelin receptor type B-(P24530) 0.89(0.94) | 0.86(0.92) | 0.68(0.75) | 0.34(0.18)
5-hydroxytryptamine receptor 2C-(P28335) 0.72(0.83) | 0.71(0.82) | 0.53(0.62) | 0.52(0.29)
Adenosine receptor A2b-(P29275) 0.79(0.91) | 0.80(0.90) | 0.63(0.73) | 0.46(0.20)
Adenosine receptor A1-(P30542) 0.76(0.87) | 0.75(0.84) | 0.57(0.65) | 0.50(0.23)
Gonadotropin-releasing hormone

(type 1) receptor 1-(P30968) 0.80(0.88) | 0.79(0.88) | 0.60(0.69) | 0.52(0.29)
Prostaglandin E2 receptor EP1 subtype-(P34995) 0.78(0.88) | 0.77(0.85) | 0.59(0.69) | 0.51(0.27)
Somatostatin receptor type 5-(P35346) 0.84(0.91) | 0.82(0.89) | 0.63(0.71) | 0.45(0.25)
Alpha-1A adrenergic receptor-(P35348) 0.78(0.87) 0.78(0.87) 0.59(0.68) | 0.63(0.35)
Mu-type opioid receptor-(P35372) 0.87(0.94) | 0.88(0.94) | 0.70(0.78) | 0.62(0.29)
B1 bradykinin receptor-(P46663) 0.77(.87) 0.74(0.84) | 0.55(0.64) | 0.55(0.38)
P2 purinoceptor subtype Y 1-(P47900) 0.73(0.86) | 0.75(0.84) | 0.56(0.65) | 0.56(0.25)
Melatonin receptor type 1A-(P48039) 0.73(0.82) | 0.73(0.80) | 0.54(0.60) | 1.02(0.62)
5-Hydroxytryptamine receptor 6-(P50406) 0.79(0.89) | 0.78(0.88) | 0.60(0.69) | 0.53(0.28)
C-C chemokine receptor type 3-(P51677) 0.84(0.90) | 0.83(.90) 0.65(0.71) | 0.49(0.27)
Hydroxycarboxylic acid receptor 2-(Q8TDS4) 0.67(0.78) | 0.67(0.78) | 0.48(0.58) | 0.52(0.32)
G protein-coupled bile acid receptor 1-(Q8TDU6) 0.70(0.80) | 0.70(0.79) | 0.50(0.58) | 0.70(0.44)
Mas-related G protein-coupled receptor X1-(Q96LB2) | 0.69(0.74) | 0.49(0.70) | 0.36(0.52) | 0.47(0.25)
Sphingosine 1-phosphate receptor 3-(Q99500) 0.78(0.89) | 0.77(0.87) | 0.59(0.68) | 0.43(0.21)
Melanin-concentrating hormone receptors 1-(Q99705) | 0.77(0.88) | 0.74(0.85) | 0.57(0.66) | 0.50(0.25)
Sphingosine 1-phosphate receptor 5-(Q9H228) 0.86(0.93) | 0.85(0.91) | 0.67(0.75) | 0.44(0.21)
G protein-coupled receptor 35-(Q9HC97) 0.84(0.92) | 0.76(0.81) | 0.59(0.64) | 0.24(0.11)
Histamine H3 receptor-(Q9Y5N1) 0.79(0.89) | 0.79(0.87) | 0.61(0.69) | 0.47(0.23)
Prostaglandin D2 receptor 2-(Q9Y5Y4) 0.74(0.84) | 0.73(0.82) | 0.54(0.62) | 0.54(0.30)
Glucagon receptor-(P47871) 0.83(.90) 0.80(0.87) | 0.61(0.69) | 0.38(0.20)
Calcitonin gene-related peptide

type 1 receptor-(Q16602) 0.83(0.91) | 0.83(0.91) | 0.64(0.73) | 0.83(0.43)
Extracellular calcium-sensing receptor-(P41180) 0.74(0.85) | 0.74(0.83) | 0.55(0.64) | 0.50(0.25)
Metabotropic glutamate receptor 2-(Q14416) 0.84(0.91) | 0.85(0.91) | 0.67(0.73) | 0.26(0.12)
Metabotropic glutamate receptor 4-(Q14833) 0.80(0.91) | 0.58(0.67) | 0.43(0.50) | 1.07(0.24
Smoothened homolog-(Q99835) 0.74(0.85) | 0.73(0.84) | 0.55(0.65) | 0.27(0.13)
Median 0.78(0.88) | 0.76 (0.85) | 0.59(0.66) | 0.52(0.25)

XGBoost. Intriguingly, Gradient Boost was not selected for any of the receptors.

Moreover, we tested our models using low-redundancy independent blind test sets. His-
tograms were built to provide the distributions of the bioactivity labels for both the training and
the low-redundancy independent blind tests datasets (Figure 13). The bioactivity is represented
as -log[concentration] at the x-axis, concentration in molar value. And in the y-axis we have
represented the frequency of molecules. Despite the low level of similarity between them, their
bioactivity distributions were similar, and ranged from 4.5 to 9.5, and most of the molecules pre-
sented a bioactivity between 6 and 7. As already mentioned, (ZHANG et al., 2015) summarised
ligand affinity data in solved GPCR structures, and found that Ki from ligands were generally
values in the single-digit nM range, when we convert a single-digit nM (1nM, for example)

using -log10(activity), we got a value of 9 (meaning our datasets covered active and inactive
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Table 9 — Final Predictors cross-validation results using Pearson correlations on 5, 10 and 20-
fold(class A receptors are coloured in blue, class B in green, class C in red and class F

in purple).
Receptor Final algorithm | 5-Fold | 10-Fold | 20-Fold
Muscarinic acetylcholine receptor M4-(P08173) Extra Trees 0.76 0.77 0.76
5-hydroxytryptamine receptor 1A-(P0O8908) Random Forest | 0.76 0.75 0.76
Muscarinic acetylcholine receptor M5-(P08912) Extra Trees 0.77 0.76 0.77
Muscarinic acetylcholine receptor M5-(PODMS8) | Random Forest | 0.79 0.79 0.79
Muscarinic acetylcholine receptor M3-(P20309) Extra Trees 0.85 0.85 0.85
Substance-K receptor-(P21452) Random Forest | 0.84 0.85 0.85
D(4) dopamine receptor-(P21917) Random Forest | 0.71 0.69 0.71
Endothelin receptor type B-(P24530) Extra Trees 0.87 0.89 0.88
5-hydroxytryptamine receptor 2C-(P28335) Random Forest | 0.74 0.72 0.73
Adenosine receptor A2b-(P29275) Random Forest | 0.81 0.79 0.82
Adenosine receptor A1-(P30542) Random Forest | 0.77 0.76 0.77
Gonadotropin-releasin
P (f; e 1) rooe fmr 1-(P30968) Random Forest | 0.80 | 0.80 0.80
E;;)IS t:f];?;gg(ll;? 4r9€9c§§)tor Random Forest | 0.79 0.78 0.80
Somatostatin receptor type 5-(P35346) Extra Trees 0.85 0.84 0.84
Alpha-1A adrenergic receptor-(P35348) Extra Trees 0.78 0.78 0.79
Mu-type opioid receptor-(P35372) Extra Trees 0.87 0.87 0.87
B1 bradykinin receptor-(P46663) XGBoost 0.75 0.77 0.76
P2 purinoceptor subtype Y 1-(P47900) Random Forest | 0.71 0.73 0.74
Melatonin receptor type 1A-(P48039) Random Forest | 0.76 0.73 0.76
5-Hydroxytryptamine receptor 6-(P50406) Random Forest | 0.80 0.79 0.80
C-C chemokine receptor type 3-(P51677) Random Forest | 0.86 0.84 0.86
Hydroxycarboxylic acid receptor 2-(Q8TDS4) XGBoost 0.67 0.67 0.67
G protein-coupled bile acid
reg;ptor 1_(Q§’TDU6) XGBoost 0.70 | 0.70 0.70
Mas-related G protein-coupled
receptor X1- (Q% 6LB2) P XGBoost 0.68 | 0.69 0.69
?gi;rtlgr:cﬁ ?chgngn;e;)tgr;g hormone Random Forest | 0.78 0.77 0.78
Smoothened homolog-(Q99835) Random Forest | 0.73 0.74 0.73
Sphingosine 1-phosphate receptor 5-(Q9H228) Extra Trees 0.86 0.86 0.86
G protein-coupled receptor 35-(QOHC97) Random Forest | 0.85 0.84 0.84
Histamine H3 receptor-(Q9Y5N1) Extra Trees 0.80 0.79 0.80
Prostaglandin D2 receptor 2-(Q9Y5Y4) Random Forest | 0.76 0.74 0.75
Glucagon receptor-(P47871) Extra Trees 0.84 0.83 0.83
Calcitonin gene-related peptide
ype 1 recegtor_(Ql 66021’) P Random Forest | 0.84 | 0.83 0.84
Extracellular calcium-sensing receptor-(P41180) XGBoost 0.75 0.74 0.75
Metabotropic glutamate receptor 2-(Q14416) Random Forest | 0.85 0.84 0.85
Metabotropic glutamate receptor 4-(Q14833) Random Forest | 0.74 0.80 0.72
Sphingosine 1-phosphate receptor 3-(Q99500) Random Forest | 0.76 0.78 0.77
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small molecules). Considering the built histograms it is possible to visualise that even after the
selection of the training set and test set trough clusterisation, activity (-log[Molar]) ranged from
4.5 t0 9.5 (micro to nanomolar) in train and test distributions for most data sets. This step was
done to avoid overfitting, a major problem in ML tasks. It is possible to verify that we achieved
our goal in attempting to provide more generalised models, by virtue of the results obtained by

our models.
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Figure 13 — Histograms considering molecular activity distribution for training and low-
redundancy independent blind tests datasets. In x-axis the bioactivity is represented
as -log[concentration], concentration in molar value. And in the y-axis, the frequency
of molecules is represented. The histogram in red colour represents training and
the histogram in grey colour represents testing datasets. The red line represents the
median of the training set and the black line represents the median of the testintg set.
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Predictive models for the 36 different GPCRs achieved Pearson’s correlations up to 0.89,
further demonstrating reliable predictive capabilities (see Table 10). Almost all final models had
an increase in performance in the blind test after feature selection (28/36, the average increase in
performance was 13.55%). The model developed to predict bioactivity for the "Mas-related G
protein-coupled receptor X1" increased from 0.20 to 0.77. This receptor is an orphan GPCR, and
we could use only 93 molecules. This result highlights the possibility of developing models even
for targets with small datasets. Trying to understand better this fact, we generated a similarity
matrix for the 93 molecules, using also Tanimoto index, comparing pairwise all the data (Figure
14). According to the similarity matrix, the dataset is very diverse in structures. We hypothesised
that this data set characteristic together with the feature selection could explain the performance
reached by this ML model. It was also intriguing to check that we had good performance not
only for Family A GPCRs, but for all families evaluated. Family A is the more studied family,
which reflects in the availability of data for the receptors of this family, and one could expect

better results for them because of this fact.
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Figure 14 — Similarity matrix for the 93 molecules present in the Mas-related G protein-coupled
receptor X1 data set. Each square means the Tanimoto score between two molecules.
Blue colour means less similarity, red colour more similarity between the two
compared smiles.
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Table 10 — Blind test results, using all features and for the final models (class A receptors are
coloured in blue, class B in green, class C in red and class F in purple).

Receptor Using all Features (r) | Final Models (r)
Muscarinic acetylcholine receptor M4-(P08173) 0.59 0.59
5-hydroxytryptamine receptor 1A-(P0O8908) 0.63 0.67
Muscarinic acetylcholine receptor M5-(P08912) 0.63 0.69
Muscarinic acetylcholine receptor M5-(PODMS8) | 0.76 0.78
Muscarinic acetylcholine receptor M3-(P20309) 0.85 0.86
Substance-K receptor-(P21452) 0.83 0.86
D(4) dopamine receptor-(P21917) 0.54 0.62
Endothelin receptor type B-(P24530) 0.85 0.85
5-hydroxytryptamine receptor 2C-(P28335) 0.70 0.72
Adenosine receptor A2b-(P29275) 0.73 0.76
Adenosine receptor A1-(P30542) 0.71 0.72
Gonadotropin-releasing hormone

(type 1) receptor 1-(P30968) 032 L
Prostaglandin E2 receptor EP1

subtype-(P34995) ez b
Somatostatin receptor type 5-(P35346) 0.71 0.75
Alpha-1A adrenergic receptor-(P35348) 0.77 0.77
Mu-type opioid receptor-(P35372) 0.80 0.80
B1 bradykinin receptor-(P46663) 0.79 0.81
P2 purinoceptor subtype Y 1-(P47900) 0.75 0.77
Melatonin receptor type 1A-(P48039) 0.60 0.68
5-Hydroxytryptamine receptor 6-(P50406) 0.77 0.78
C-C chemokine receptor type 3-(P51677) 0.82 0.84
Hydroxycarboxylic acid

receptor 2-(Q8TDS4) 0.54 0.63
G protein-coupled bile acid

receptor 1-(Q8TDUG) 0.76 W2
Mas-related G protein-coupled

receptor X1-(Q96L.B2) L2l U5y
Sphingosine 1-phosphate receptor 3-(Q99500) 0.52 0.68
Melanin-concentrating hormone

receptors 1-(Q99705) e Dk
Sphingosine 1-phosphate receptor 5-(Q9H228) 0.80 0.86
G protein-coupled receptor 35-(Q9HC97) 0.74 0.84
Histamine H3 receptor-(Q9Y5N1) 0.70 0.70
Prostaglandin D2 receptor 2-(Q9Y5Y4) 0.71 0.71
Glucagon receptor-(P47871) 0.59 0.69
Calcitonin gene-related peptide

type 1 receptor-(Q16602) Lrfe G
Extracellular calcium-sensing receptor-(P41180) 0.65 0.73
Metabotropic glutamate receptor 2-(Q14416) 0.79 0.82
Metabotropic glutamate receptor 4-(Q14833) 0.89 0.89
Smoothened homolog-(Q99835) 0.84 0.84

4.4 Feature importance

Furthermore, we evaluated feature usage after feature selection per predictor. We used
SHAP (SHapley Additive exPlanations) summary plots to illustrate feature importance (Figure
15 below and, Figure A23 to A26, Appendices, for the remaining receptors). SHAP assigns each
feature an importance value for a particular prediction (LUNDBERG; LEE, 2017). The features
are ordered by how much they influenced the model’s prediction. The x-axis stands for the
average of the absolute SHAP value of each feature. And the y-axis has the twenty more important
features for each model. In the first plot, ML model for "Muscarinic acetylcholine receptor M4",

it is possible to conclude that the most important feature for this model is SlogP_VSAS, followed
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by SlogP_VSAG6. These descriptors represent Subdivided logP Surface Areas, they are based on
an approximate accessible van der Waals surface area calculation for each atom along with its
contribution to logP (LABUTE, 2000). Checking SHAP bar plots for other models, it is possible
to verify that these descriptors in addition to many graph-based signatures involving aromaticity,
or hydrogen bond acceptors, stood out as influential features for the models. Through these
findings it is possible to argue that the combination of conventional descriptors, such as logP,
pKa, VSA, which are already established as relevant for drug transport or pharmacokinetics
(PEARLMAN; SMITH, 1999), with graph based signatures can be of great support for drug
screening. We postulate that this synergy between these two classes of features are due to the
fact that these traditional descriptors are capable of describing whole molecule properties, and
that the graph based signatures can account for substructural features. Furthermore, it is not
surprising that we have various surface area descriptors selected as important, as was already
cited by (LABUTE, 2000) that these descriptors weakly correlated with each other.

We also filtered the top ten features selected via the Forward Greedy Feature Selection
approach for each of the machine learning models and calculated commonly used features. When
considering only Class A receptors (Figure 16), two features were selected for 9 types of receptors
(out of 31 class A receptors). The common features were topological polar surface area (TPSA)
and also the presence of Bicyclic substructures on the molecule (fr_bicyclic), which is consistent
with the most commonly found substructures in potent GPCR ligands. Five molecular surface
area descriptors also stand out: SMR_VSA3, SMR_VSAT7 (refers to Molecular refractivity
combined with accessible van der Waals surface area contribution), SlogP_VSA2, SlogP_VSAS,
SlogP_VSA3 (refers to Log of the aqueous solubility combined with accessible van der Waals
surface area contribution), PEOE_VSALI (refers to partial charges combined with accessible van
der Waals surface area contribution). SMR_VSA3 was used on 8 receptor predictors, and the
remaining on 7. Besides, 4 features encoding distance patterns were important, all involving
pairs of aromatic atoms. These imply that the presence of aromatic rings on molecules are critical
aspects of GPCR class A ligands. These selected features were consistent with considering all

receptor types (Figure A27, Appendices). The results were consistent with SHAP bar plots.

4.5 Impacts of using different bioactivity measurements on
performance

During the development of our models, we were concerned about mixing bioactivities as
the done for previous methods (WU et al., 2018; WU et al., 2019; BURGGRAAFF et al., 2020;
LIANG et al., 2019; KRUGER et al., 2014; ZIN; WILLIAMS; EKINS, 2020). We were worried,
that even upon normalisation (-log[Molar]), that this could cause some noise in our predictions.
Mainly because, for obtaining these different bioactivity values, different measurements are

applied. Nevertheless, because of data availability, not mixing them were not feasible for many
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Figure 15 — SHAP bar plots - Feature importance for 8 class A receptors, the bars represent how
strongly different input features affect the output of the respective model. Features
are listed in descending order of importance.
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Figure 16 — Distribution of the top ten features selected via forward Greedy approach for Class
A only receptors.

receptors, and adding to that, we wanted to compare the performance of our models against
already published methods (WU et al., 2018), that mixed all the bioactivity. In order to clarify
the impact of this aspect in our models, we have carried out a set of experiments training models
using Ki+Kd values and testing them using IC50+EC50 (and vice-versa), depending on the
number of molecules available in each case. The largest subset of activity types was assigned
as the training set. Given data availability, this was performed for 13 different receptors, the
remaining data did not enough data to test. The results showed a decrease in performance when
predictors are trained and tested with different activity measures (Figure 17 for performance
information and Figure 18 for molecular activity distribution). The worst performers on this
scenario were Alpha-1A adrenergic receptor-(P35348), and 5-Hydroxytryptamine receptor
6-(P50406), Pearson’s correlation of 0.06,and 0.09 respectively. These performance values
indicate no correlation among training with Kd+Ki and testing EC50+IC50 for these receptors.
It is a huge decrease of performance considering the final model performance 0.77, and 0.78,
respectively. The best performers on this scenario were Melatonin receptor type 1A-(P48039),
and Gonadotropin-releasing hormone (type 1) receptor 1-(P30968), Pearson’s correlation of 0.50,
and 0.54 respectively. These performance values indicate some correlation among training with
Kd+Ki and testing EC50+IC50 for these receptors. Considering the final model performance of
0.68, and 0.80, respectively, the decreases in performance were approximately 30%. We assume
that these decreases be due to inherent differences between bioactivity measurements, as already
stated. And we acknowledge that, when possible, models should be trained and tested using only

one type of bioactivity. Nonetheless, we also presume that these lower performances can be, as
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Table 11 — Molecules for training pdCSM-GPCR that overlapped with datasets from WDL-RF.
Second column represents number of molecules in pdCSMS-GPCR and the third the
number in WDL-RF(class A receptors are coloured in blue, class B in green, class C
in red and class F in purple).

Receptor # pdCSMS-GPCR | # WDL-RF | Overlap (%)
5-hydroxytryptamine receptor 1A-(P08908) 3790 2294 43
Muscarinic acetylcholine receptor M5-(P08912) 959 369 27
Substance-K receptor-(P21452) 922 696 44
D(4) dopamine receptor-(P21917) 2335 1679 53
Endothelin receptor type B-(P24530) 987 1019 80
Adenosine receptor A1-(P30542) 3833 3016 50
Gonadotropin-releasing hormone

(type 1) receptor 1-(P30968) 1373 s 69
Prostaglandin E2 receptor EP1 subtype-(P34995) | 741 236 17
Somatostatin receptor type 5-(P35346) 747 689 49
Alpha-1A adrenergic receptor-(P35348) 1898 1027 42
Mu-type opioid receptor-(P35372) 5275 3828 41
B1 bradykinin receptor-(P46663) 756 452 49
Melatonin receptor type 1A-(P48039) 1043 683 56
5-Hydroxytryptamine receptor 6-(P50406) 3044 1421 33
C-C chemokine receptor type 3-(P51677) 1131 781 61
Hydroxycarboxylic acid receptor 2-(Q8TDS4) 504 271 45
G protein-coupled bile acid receptor 1-(Q8TDU6) | 443 1153 85
Sphingosine 1-phosphate receptor 3-(Q99500) 1088 317 20
Melanin-concentrating

hormone receptors 1-(Q99705) Szl e .
G protein-coupled receptor 35-(Q9HC97) 480 1579 76
Histamine H3 receptor-(Q9Y5N1) 3597 2092 45
Prostaglandin D2 receptor 2-(Q9Y5Y4) 2749 641 20
Glucagon receptor-(P47871) 1006 1129 72
Extracellular calcium-sensing

receptor-(P41180) 535 940 a0
Metabotropic glutamate

receptor 2-(Q14416) Ll o e
Smoothened homolog-(Q99835) 718 1523 67

well, due to biases in data set distributions (unbalanced data), and limited dataset sizes.

4.6 Comparative performance

In order to put our results into context, we compared the performance of our predictors
with methods previously published (WU et al., 2018) (see Table 11) for information regarding
overlap between molecules used in pdCSM-GPCR and WDL-RF).

The results are indicated in Figure 19, which shows that our predictors outperformed
the alternative methods on almost all GPCR data sets, with statistically significant differences,
except for the receptor Q14416 in which performances were very similar. The performances
obtained in our models were comparable to the cross-validation performances, increasing our

confidence in the method’s generalisation capabilities.

We also plotted scatter plots for this step (Figure 20 for our models performance and
Figure 21 for WDL-RF performance), and also a histogram which compares the activity outputs
generated by the two servers, Figure 22. It was observed very high MSE measures for some WDL-

RF models, which indicates high distance (discrepancy) between predicted and experimental
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Figure 19 — Performance comparison between pdCSM-GPCR and (WU et al., 2018) (WDL-RF)

ficantly outper-

igni

through Pearson correlation. *Indicates that the pdCSM-GPCR s

forms (p-value <0.001 using a Fisher’s Z transformation). ** Pearson Correlation

values were 0.75 for pdCSM-GPCR and 0.77 for WDL-RF.
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values. We have also included Spearman and Kendall metrics, results obtained with them are

consistent with our previous findings.

Interestingly, when carrying out this comparative analysis, we found that our models
performed significantly better. This was unexpected because we adopted for these comparisons
the datasets which were used for WDL-RF models training, and we expected at least values
closer to the ones mentioned by them in the paper (WU et al., 2018). One possibility for this
disparity, as already mentioned, might be the use of "control molecules". For doing this step,
they use, for training, ligands that do not interact with the target GPCR. Because of that, they
had hard set their bioactivity (-log10(activity in nM)) to -10, which could have increased their
performance artificially. The control molecules were not available at the WDL-RF web server,
and we could not use them for further testing. We, however, have also executed blind tests using a
‘non-ligand’ set. The small molecules for these ‘non-ligand’ sets were obtained through DUD-E
(MYSINGER et al., 2012), a tool that generates decoys (non-ligands molecules) using active
compounds. For this purpose, we used top potent ligands from our datasets. We added to our
datasets 20% of decoys and the bioactivity of these were set to -1 (10 molar) (see Table 12 and
Figure 23 to check the performance before and after adding decoys). The results we obtained
demonstrated an increase in performance in 22 models out of 36 and for four occurred very little
variation in performance. This demonstrates the robustness of our approach, but also shows how

including decoys might overestimate performance of newly developed methods.
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Figure 20 — Scatter plots - Regression analysis for pdCSM-GPCR when testing with WDL-RF
datasets. Pearson’s correlation coefficients and MSE are also shown in the top-left
corner. The graphs show the correlation between experimental and predicted values.
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Figure 21 — Scatter plots - Regression analysis for WDL-RF when testing with WDL-RF datasets.
Pearson’s correlation coefficients and MSE are also shown in the top-left corner.
The graphs show the correlation between experimental and predicted values.
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Table 12 — Performance comparison between pdCSM-GPCR with and without decoys through
Pearson’s correlation. Green means that the model had a higher performance when
using decoys (at least 0.01 higher or more) (class A receptors are coloured in blue,
class B in green, class C in red and class F in purple).

Receptor Without Decoys (r) | With Decoys (r)
Muscarinic acetylcholine receptor M4-(P08173) 0.59 0.66
5-hydroxytryptamine receptor 1A-(P08908) 0.67 0.93
Muscarinic acetylcholine receptor M5-(P08912) 0.69 0.72
Muscarinic acetylcholine receptor M5-(PODMS8) 0.78 0.5
Muscarinic acetylcholine receptor M3-(P20309) 0.86 0.84
Substance-K receptor-(P21452) 0.86 0.92
D(4) dopamine receptor-(P21917) 0.62 0.79
Endothelin receptor type B-(P24530) 0.85 0.92
5-hydroxytryptamine receptor 2C-(P28335) 0.72 0.79
Adenosine receptor A2b-(P29275) 0.76 0.69
Adenosine receptor A1-(P30542) 0.72 0.59
Gonadotropin-releasing hormone (type 1) receptor 1-(P30968) | 0.80 0.61
Prostaglandin E2 receptor EP1 subtype-(P34995) 0.71 0.9
Somatostatin receptor type 5-(P35346) 0.75 0.79
Alpha-1A adrenergic receptor-(P35348) 0.77 0.44
Mu-type opioid receptor-(P35372) 0.80 0.92
B1 bradykinin receptor-(P46663) 0.81 0.65
P2 purinoceptor subtype Y 1-(P47900) 0.77 0.95
Melatonin receptor type 1A-(P48039) 0.68 0.44
5-Hydroxytryptamine receptor 6-(P50406) 0.78 0.88
C-C chemokine receptor type 3-(P51677) 0.84 0.98
Metabotropic glutamate receptor 4-(Q14833) 0.89 0.52
Calcitonin gene-related peptide type 1 receptor-(Q16602) 0.80 0.78
Hydroxycarboxylic acid receptor 2-(Q8TDS4) 0.63 0.9
G protein-coupled bile acid receptor 1-(Q8TDU6) 0.82 0.26
Mas-related G protein-coupled receptor X1-(Q96LB2) 0.77 0.54
Sphingosine 1-phosphate receptor 3-(Q99500) 0.68 0.78
Melanin-concentrating hormone receptors 1-(Q99705) 0.68 0.92
Sphingosine 1-phosphate receptor 5-(Q9H228) 0.86 0.81
G protein-coupled receptor 35-(QOHC97) 0.84 0.84
Histamine H3 receptor-(Q9YS5N1) 0.70 0.89
Prostaglandin D2 receptor 2-(Q9Y5Y4) 0.71 0.97
Glucagon receptor-(P47871) 0.69 0.93
Extracellular calcium-sensing receptor-(P41180) 0.73 0.75
Metabotropic glutamate receptor 2-(Q14416) 0.82 0.88
Smoothened homolog-(Q99835) 0.84 0.89

As the last experiment, we submitted the decoys generated in the previous step to our
servers. We then compared the predicted bioactivity for the decoys with the actual bioactivity of
the potent molecules used originally for creating the decoys through DUD-E (MYSINGER et al.,
2012). For this purpose, we generated the histograms of Figure A28 (Appendices). For most of
the receptors, the decoys’ bioactivity predictions distribution were very similar to the distribution
of bioactivity among potent ligands. Through this finding, we postulate that some of our models
don’t have features that enable them to distinguish between decoys and potent ligands. This
finding could be related to the fact that decoys are computed based on similar physical properties
but with different chemical structures (topology), and the models don’t have features capable of

describing differences in topology among decoys and potent ligands (MYSINGER et al., 2012).

According to the results, there are three receptors in which the mentioned difference in
distribution are very small, Metabotropic glutamate receptor 4-(Q14833), G protein-coupled
receptor 35-(Q9HC97), G protein-coupled bile acid receptor 1-(Q8TDU6). The models from



76

Chapter 4. Results

(4) sA0d3p In0YIIM 3533 pullg
(1) sAkoda@ buisn 3593 pullg

san|eA Uolje[alio) uosiead
0T 60 80 L0 90 S0 70 €0 20 10 00

68°0 78 0 I (5€8660)-bojowoy pauayioows

880
88°0 [Z80 NI (9T P TO)- Jo3dedau sjeweln|b didonoqeidiy
0 AR 081 17q)403d@2u Buisuas-winidjed Jejnjf3e.3x3

2670 T 0 Y (PASA6D)-C 10308381 ¢Q uIPUe[beIsoid

€6°0 G0 0 I (1481 d)-103de@da1 uobednio

6870 0 O I, (INS ABO)-10yd @02l € BuiwedsiH
P80 s (160He0)-g € J0yd@dad pajdnod-uieiold o
98°0 T80 M - (8zezHe0)-s doydedal jeydsoyd-1 suisobulyds
I, (90 L660) 1 sU0adi@021a BUOWIOY BunieauedU0d-UIURIB N
gL OIS I (005660)-€ 10yd@das eeydsoyd-T auisobulyds
L2700 pSO M (291960)-1x J0adedai pajdnod-uieioid o paje|ai-sep
Z8°0 . oo (9nalsod)-t Joadedad pioe 2jiq pajdnod-uiiold o
06°0 e 0 M (7sa180)-z d03dadal pioe d1jAxoqledAxo1pAH
860 7 O IR AL L9TGd)-€ °dAy Jo3d@dad BujOWRYd DD
88°0 G0 IR (90t705d)-9 10yd@dad sulweidAnnAxolpAH-g
890  pr ol (6£081d)-vT 2dAy soydedal uiuoiejaiy
G6°0 O i, (006 Lvd)-tA edAagns soydedounind zd
O IR (2999 vd)-0yd@dau utuniApelq 19
2670 0 0 , (zLesed)~10adedai proido adAy-ni
LLO L p o e (svesed)-oadadal oibisuaipe y1-eydiy
IR, (9 gEd)- @dAy uoydeoal uneysojewos
060 T 0 I, (g6 Ed)-edAaans 1d3 d0adedaa 73 ulpue|belsold
080" TOONI i (8960€d)-T J0yd@dau (T 2dA3) suowlioy bulsesjal-uidoljopeuon
ZL00 ASTONII i (zrS0€d) -1y Joadedal suisouspy
9/°0 " G970 M (g zeed)-azy doydedal suisouspy
6£°0 L0 (e £82d)-0T 40yd@nal sulweydAnAxolpAy-g
26°0 G0 I e rzd)-a @dAy Jodedau ulay3opus
6L°0 N ZO0 M (L1612d)-0ydedaa sutwedop (4)a
26°0 980 I, (zevTzd)-aoydenal y-eoueisans
SR, (60 €0zd) € 0ad@oaa auijoydiAyeoe dluliedsniy
840 oSO (8s1naod)-sia 40yd@dal autjoydjAyede dluedsniy
P (z1680d)-S 1 a0adeoau autjoyd|A3ade djuliedsniy

]

€6°0 I 200 M (80680d)-vT J03d@das suiwerdAnAxoipAy-g
990 FEST0 A (£L180d) v W 403331 BuljoydiAiade djuLiedsniy

S101do094

Figure 23 — Performance comparison between pdCSM-GPCR with and without decoys.



Chapter 4. Results 77

these receptors were the ones in which the performance using decoys decreased or kept the same
(see Table 12). On these models, the decoys are being predicted as very potent ligands. The three
receptors models in which the mentioned difference is higher, 5-hydroxytryptamine receptor
1A-(P08908), Histamine H3 receptor-(Q9Y5N1), Prostaglandin D2 receptor 2-(Q9Y5Y4), had
an increase in performance when we added decoys (see Table 12). These models are capable
of distinguishing decoys from ligands. According to this information, is evident the need of
including features capable of distinguishing differences in topology. Another possibility is
including docking approaches in the workflow. Throughout docking, this topological differences,
potentially, would be identifiable.

4.7 pdCSM-GPCR Web Server Design and Implementation

The pdCSM-GPCR web server was designed to provide a user-friendly and quick web
interface to predict bioactivity for GPCR ligands. The web server allows users to submit a
single compound SMILES, or upload a list of them. Users can then choose which classes of
receptor they want to generate bioactivity predictions for. When just a single compound is
submitted, in addition to the bioactivity prediction result (in pMolar), the result’s page also
includes a molecule depiction and general molecular properties of the compound. When multiple
compounds are submitted, the prediction results are displayed in an interactive table. All results

can be downloaded as a comma-separated values (CSV) file (Figure 24).
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Figure 24 — pdCSM-GPCR web server. (A) depicts the landing page for the resource. By clicking

on “Prediction” (1) at the top menu, users are directed to the job submission page (B).

Users have the options to either provide a set of molecules as a SMILES file (2) or
individual molecules as a SMILES string (3). Users can select the type of prediction
(4). After selecting the type of prediction, and once calculations are complete, users
are redirected to a results page (C) where predictions for GPCRs bioactivity are
presented (5). Users have the option to download the results (6).
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5 Concluding Remarks and Conclusion

GPCRs are the most strenuously evaluated protein as a drug target. This happens, mainly
because of their massive involvement in human pathophysiology. Despite the recent and signifi-
cant progress in tools for GPCR drug discovery, these approaches are always challenged by their
significant system resources or time requirements. Consequently, there will always be demand
for better and faster computational models that can help identify potential drugs. Furthermore, to
date, most tools available are restricted to one receptor type or presented limited performance
(RASTELLI; PINZI, 2015).

Here, we presented a computational platform dedicated to GPCR ligand design, pd CSM-
GPCR, comprehending 36 different GPCRs ligands belonging to four families (A, B1, C, and
F). Our models are capable of quantitatively predicting ligand bioactivity for the most com-
prehensive set of GPCR types and classes (A, B, C, and F) to date. Our approach relies on
graph-based signatures, which in other biological questions demonstrated success in outperform-
ing earlier methods (PIRES; ASCHER; BLUNDELL, 2014; PIRES; ASCHER, 2016b; PIRES;
BLUNDELL; ASCHER, 2015; PIRES et al., 2013; PIRES; ASCHER, 2016a; PIRES; ASCHER,
2017). We additionally relied on different auxiliary signatures capable of describing the general
physicochemical properties of compounds. We provided, through this, thesis models capable
of scalability, being up to handling large data sets, an important requirement for screening
initiatives.

Furthermore, our predictors are all regression models with actual numeric outputs. This
is of great importance during drug development due to the fact it allows the prioritisation of
ligands. Through prioritisation, the process of finding new molecules can be faster and less costly
(SCHUFFENHAUER; JACOBY, 2004). Another primal aspect of our tools is that they can
guide repurposing opportunities within known drugs, and support screen compound databases
for potential GPCR ligands.

The results obtained here, support the idea that the lack of elucidated structure for
receptors is not a constraint for the development of ligand predictors. And, the same procedure
could be used for the development of any other receptor which already had been screened for
new ligands, such as kinases, which also composes a great family of proteins super important
for human biochemistry (MANNING et al., 2002). According to (AHMED et al., 2021), ligand-
based models have the clear advantage over target-based models, because they applicable to any

target with at least some reasonable number of known ligands present.

One observed limitation during our study is that good models are inherently linked to
the availability of good data sets. In the direction of guaranteeing it, we carefully curated all our
data, removing all repeated molecules and also with incoherent results. For example, molecules
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that are marked as positive and negative activity. Because of that, we ended up with a great
reduction in our final dataset. We are aware that we could have used less stringent parameters for
this step, for example, checked the incoherent results and removed just the one less frequent or
used the average of bioactivity, but because of the great number of datasets, this was infeasible.
Nonetheless, our final results demonstrated good reliability and even for targets with low number
of ligands. For example, Mas-related G protein-coupled receptor X1 (Q96LB2), our model
performed with a Pearson correlation of 0.69, on cross-validation 10-fold.

Another critical point was regarding the mixing up of bioactivities. We were mindful
that this could cause some noise in our predictions. In order to clarify that, we ran some tests
and observed that indeed a decrease in performance occurs when predictors are trained and
tested with different activity measures, a practice that was deployed by us and others (WU et al.,
2018; WU et al., 2019; BURGGRAAFF et al., 2020; LIANG et al., 2019; KRUGER et al., 2014;
ZIN; WILLIAMS; EKINS, 2020), and applied in some databases to allow comparable measures
between different types of bioactivities (OVERINGTON; AL-LAZIKANI; HOPKINS, 2006),
such as the pPChEMBL value (—log10 (molar IC50, XC50, EC50, AC50, Ki, Kd or Potency))
(BENTO et al., 2013). We presume that this might be due to biases in data set distributions,
limited dataset sizes, as well as inherent differences between bioactivity measurements. Because
of this, we acknowledge that, when possible, models should be trained and tested using only one

type of bioactivity.

Moreover, as overfitting is also considered a major limitation in machine learning tasks,
we tried to avoid that through clustering molecules and selecting test and training sets with some
degree of dissimilarity. This would show us the real predictive capabilities of our models when
facing unrelated molecules to the training set. Nonetheless, it is important to point out that the
activities (measured within —log10[Molar]) usually ranged from 4.5 to 9.5 (micro to nanomolar)
and were consistent between train and test distributions for most data sets. Through, this approach,

we verified that our predictors are really capable of good performance on previously unseen data.

We compared our predictive model’s performances with WDL-RF (WU et al., 2018).
The comparison was done using the data sets provided by the authors while training their models
available online. WDL-RF makes use of control molecules, molecules which do not interact
with the target GPCR and because of it, they set their bioactivity (—log10[nM]) to -10. Also,
according to them, this step was done to obtain more robust regression models. The control
molecules they used were not available at their web server. In order to check the influence of
these control molecules, we used DUD-E (MYSINGER et al., 2012), a tool that generates decoys
using active compounds. According to our results, we concluded that the use of decoys is not
trustful, we postulate that it happens because arbitrarily for a considerable part of the data set the

bioactivity is set to only one value, which inserts bias and induces overestimated performance.

We also improved our understanding of the molecular properties of GPCRs ligands.

According to our findings, aromatic rings and nitrogen containing fragments were most common
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in GPCR potent ligands across all classes. Our findings corroborate with (HORST et al., 2009).
This study also used frequent substructure mining to analyse the structural features of GPCR
ligands. They found that the best discriminating substructures (they are more frequent in active
than inactive molecules) have a symmetrical organisation of lipophilicity (aliphatic carbon atoms)
around a Nitrogen. (STRADER et al., 1988) identified, using mutagenesis, a negatively charged
aspartic acid residue in transmembrane domain 3 of the 3 -adrenoceptor. This residue is found
to form a salt bridge with the ligands’ protonated amino group. The presence of the nitrogen
containing fragments also could be correlated to the importance of hydrogen donors in the

interactions with their target.

In future work, we would like to focus on developing more assertive predictors using
more layers of knowledge, such as GPCRs structural data (including information of the binding
sites of GPCRS) coupled with interaction fingerprints. These fingerprints are binary 1D represen-
tations that encode information of the 3D structure of protein—ligand complexes (VASS et al.,
2016). Combining this information with machine learning methods, more relationships between
bioactivity and features can be learned, creating support for the development of new ligands that
can have a specific role in the signalling such as allostery or capable of inducing a specific effect
in GPCRs (inducing one of the many conformations that exist in the large spectrum of GPCRs
states). In addition, we would like to further expand our predictions, including information on
absorption, distribution, metabolism, excretion and toxicity data specific for GPCRs, developing
methods for optimising small molecules tailored for GPCRs. This task would have a transforma-
tive effect on the drug development process, reducing the high attrition rates that exists in drug
development (WARING et al., 2015).

All models developed and described in this thesis were made freely available via easy-
to-use web server. We strongly believe these represent invaluable resources that can help to

accelerate GPCR’s ligand discovery.
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Table A.1: Programming and Scripting tools used in this work.
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Task Tool Description

Scripting Python An interpreted high-level
programming used for general
purposes.

Data Numpy Is a library for Python which

Manipulation provides support for large, multi-
dimensional arrays, matrices, and
high-
level mathematical functions.

Data Analysis Pandas It is a library for Python which
allows data manipulation and
analysis, such as merging,
reshaping, selecting, data cleaning
and many others.

Data Analysis Scikit-Learn It is a free software machine
learning library for Python. It
features various classification,
regression and clustering
algorithms.

Web Flask Python framework used for the

Framework development of web servers.

Web HTML HyperText Markup Language is the

Development standard markup language for
creating websites.

Web CSS It is a style sheet language used for

Development describing the presentation of a
document written in HTML.

Web JavaScript JavaScript is used for controlling

Development the behaviour of elements on an
HTML page.

Containers Anaconda Anaconda is a distribution of

Python and R that aims to simplify
package management and
deployment.
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Script A.1: Script used for data set curation.

import pandas as pd
import numpy as np

#lmport data set
ds_df = pd.read_csv("Data set to be curated file")

#Drop entries which smiles could not be recovered
ds_df_smilesFull=ds_df.dropna(subset=['smiles'])

#Sort entries according to CID
ds_df_sorted = ds_df_smilesFull.sort_values(by=["cid"])

#Select only entries with activity information:
ds_df class_available_pre=ds_df sorted[ds_df sorted['activity'].str.match('Active|lnactive')]

#Take out dubious entries:

#Select entries with Active and Inactive classification and keep only one entry for each:
ds_controversy=(ds_df class_available_pre.groupby(['cid'])['activity'].nunique()==2)
list_of contoversy = ds_controversy[ds_controversy].index.values
ds_df class available =

ds_df class_available_pre[~ds_df class_available_pre.cid.isin(list_of contoversy)]

#Prepare data set for regression:
#Delete entries without activity values:
ds_df acvalueFull= ds_df class_available.dropna(subset=['acvalue')

#Select entries with type of activity = Ki, Kd, IC50 or EC50:
ds_df _regre_pre= ds_df acvalueFull[ds_df acvalueFull['achname'].str.match('Ki|Kd|IC50|EC50",
na=False)]

#Select repeated entries and keep just one:

ds_df _acvalueFull_sorted = ds_df _regre_pre.sort_values(['cid’, 'acname'], ascending=[True,
False])

ds_df regression_without repeats = ds_df acvalueFull_sorted.drop_duplicates(subset='"cid’,
keep="first')

ds_df _regression_without_repeats_all=

ds_df regression_without repeats[ds_df regression_without_repeats['acname'].str.match('IC50|
EC50|Ki|Kd"][['smiles','acvalue']]

#Convert activity values for -log[Molar]:

ds_df regression_without repeats_all['minuslog_acvalue'l =
(-1*np.log10(ds_df regression_without repeats_all.acvalue))
del ds_df regression_without_repeats_all['acvalue']

#Save final dataset
ds_df regression_without repeats_all.to_csv('Output data set file”, index=False, sep="\t")




Script A.2: Script used for generating blind test
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#import modules

from rdkit import Chem

from rdkit.Chem import AllChem
from rdkit import DataStructs
import pandas as pd

from rdkit.ML.Cluster import Butina
from random import sample
import itertools

import seaborn as sns

from scipy.stats import ks_2samp
import matplotlib.pyplot as plt
#import numpy as np

import sys

inputfile1 = sys.argv[1] #input file with smiles
receptor_id = sys.argv[2]

out_test df=inputfile1+"_test df.csv"
out_train_df= inputfile1+"_train_df.csv"
out_graph= inputfile1+"_graph.png"

def generate_dataset_for_training():

def ClusterFps(fps,cutoff=0.2):

# first generate the distance matrix:
dists =[]

nfps = len(fps)

for i in range(1,nfps):

#Convert similarity for 1-similarity
dists.extend([1-x for x in sims])

# now cluster the data:

#print(cs)
return cs
#HH#HENd of the function

#0pen the input as pandas dataframe

#Select only smiles column
df_smiles = smiles_df['SMILES']

c_smiles =]

#Appending smiles to the previous list
for ds in df_smiles:
c_smiles.append(ds)

#Function which receives fingerprints from the smiles and clusters the data:

#compare all smiles with all smiles and generate a smilarity matrix:
sims = DataStructs.BulkTanimotoSimilarity(fpsli],fpsl[:i])

cs = Butina.ClusterData(dists,nfps,cutoff,isDistData=True)

smiles_df = pd.read_csv(inputfile1, sep =",")

#Create an empty list which will receive the smiles

#Estimating how many smiles will be necessary to the blind test (10%)
number_smiles_blind_test = (Ilen(c_smiles))/10
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# make a list of mols using the list of smiles for fingerprint generation
ms = [Chem.MolFromSmiles(x) for x in ¢c_smiles]

# make a list of fingerprints (fp), Morgan fingerprints
fps = [AllChem.GetMorganFingerprintAsBitVect(m, 2) for m in ms]

#Clustering data, the results are multiples tuples containing the index of the mols
clusters=ClusterFps(fps,cutoff=0.25)

#Create an empty tuple and an empty lists which will receive the mols indexd for the
blind test, at last only the list will be used

smiles_for blind_test id =[] #tuple

smiles_for_blind_test id2 =[] #list

#Sort the clusters in crescent order using the number of smiles inside:

clusters = (sorted(clusters, key=len))

#lterates over the tuples to append some of them in order to get 10% for blind test

for x in clusters:

#Before appending check if the number of smiles (id) reached 10% plus a tolerance in
order to avoid infinite running

if (len(smiles_for_blind_test id2))<(number_smiles_blind_test+(2*len(x)+1)):

#append clusters for the blind test

smiles_for_blind_test id.append(x)

#Convert tuple for list

smiles_for_blind_test id2 = list(itertools.chain(*smiles_for_blind_test id))

#Create an empty list which will receive the smiles for the blind test
smiles_for_blind_test ori =]

#Using the list of index, extract the smiles from the original list of smiles extract from the
dataset('c_smiles') and append it

for x in smiles_for_blind_test_id2:

smiles_for_blind_test ori.append(c_smiles|[x])

#calculates de the number of smiles and clusters
number_of smiles=("Number of smiles: " +str(len(c_smiles)))
number_of clusters=("Number of clusters: " +str(len(clusters)))

#Using the selceted smiles extract row from orignal data spliting the train and the test
dataset

df_train = smiles_df[~smiles_df [[SMILES'].isin(smiles_for_blind_test_ori)]

df_test = smiles_df[smiles_df [[SMILES'].isin(smiles_for_blind_test_ori)]

#save both datasets
df_train.to_csv(out_train_df, index=False, encoding="utf-8', sep ="\t')
df test.to_csv(out_test df, index=False, encoding='utf-8', sep ="\t')

#calculates the number of smiles for the test and train dataset:
number_of_smiles4blind = ("Number for blind test: " +str(len(smiles_for_blind_test_id2)))
number_of_smiles4test = ("Number for train test: " +str(len(df_train)))

#Calculates Kolmogorov-Smirnov statistic and its respective p-value
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ks =

ks_2samp(df_train['minuslog_acvalue_minuslog_molar'],df test['minuslog_acvalue_minuslog_m

olar)

pvalue=(ks[1])
pvalueText= ("p-value=" + str(pvalue))
#Generates the figures

plt.figure(figsize=(12, 7))
sns.distplot(df_train['minuslog_acvalue_minuslog_molar'], color="red', label="Train', kde=

True, hist = True)

sns.distplot(df_test['minuslog_acvalue_minuslog_molar'], color="blue’, label="Test', kde=

True, hist = True)

plt.title("Datasets - Train x Test - "+ receptor_id )
plt.xlabel('Activity- (-log)")

plt.ylabel('Percentage of molecules')

plt.legend()

plt.text(3.4, 0.25, pvalueText, fontsize=10)

plt.text(8, 0.2, (number_of smiles) + "\n"+ (number_of clusters)+

"\n"+number_of_smiles4dtest+ "\n"+number_of smiles4blind, style='italic',

bbox={'facecolor": 'white', 'alpha': 0.5, 'pad': 10})

plt.savefig(out_graph)
#plt.show()

plt.close()

#return pvalue
return(pvalue)

#run the function for the first time
p_value = float(generate_dataset_for_training())

#keeps running the function until the distributions are satisfactory
while (p_value) <= (0.0):

p_value = generate_dataset_for_training()
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Figure A1: Potent ligands - Histograms considering heavy atoms count distribution for all

datasets.
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all datasets.
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hormone rec. 1 (Q99705)

40

20

EN
o
o

Histamine H3 rec. (Q9Y5N1)

104

Muscarinic acetylcholine rec. M5 (PODMS8)
50

25

0 4 6

Endothelin rec. type B (P24530)

Mu-type opioid rec. (P35372)

0 5 10

50
25
%9 5
P2 purinoceptor subtype Y1 (P47900)

50

r__

N P
0

-10 1

o

Metabotropic glutamate rec. 2 (Q14416)
50

25

. -
0 0

2 4

o

G protein-coupled bile acid rec. 1 (Q8TDU6)

40

20

N
S
o
0o

ol

Smoothened homolog (Q99835)

40

20

o
N
EN
o
o

Prostaglandin D2 rec. 2 (Q9Y5Y4)

40

20

o
w
EN
(&
o



105

Muscarinic acetylcholine rec. M4 (P08173) 5-hydroxytry ine rec. 1A ( Muscarinic acetylcholine rec. M5 (P08912) Muscarinic acetylcholine rec. M5 (PODMS8)
100 50
50 50
50 25
. BN . I | |8
0 10 20 30 0 10 20 30 0 10 20
Muscarinic acetylcholine rec. M3 (P20309) Substance-K rec. (P21452) D(4) dopamine rec. (P21917) Endothelin rec. type B (P24530)
50 50 ‘ I 50
: : 1 I ,
5 10 15 20 10 20 30 . 10.0 0 25 50 75 100
5-hydroxytryptamine rec. 2C (P28335) Adenosine rec. A2b (P29275) Adenosine rec. Al (P30542) ZOOG°"ad° -releas. horm.(1) rec.1 (P30968)
50
50
50
: I 1| | [ TH . B
0 5 10 0 10 20 0 5 10 15 20
Prostaglandin E2 rec. EP1 subtype (P34995) Somatostatin rec. type 5 (P35346) Alpha-1A adrenergic rec. (P35348) Mu-type opioid rec. (P35372)
100 50 50 50
‘ I I i
ol el o 0 - ,-1 me _ P B
5 10 15 0 20 40 60 5 10 15 0 20 40
" Extracel. calcium-sensing rec. (P41180) B1 bradykinin rec. (P46663) Glucagon rec. (P47871) P2 purinoceptor subtype Y1 (P47900)
2 100
£ a0 100
43 100
= 50 50
| | I
EN o A, _a .
5 10 10 20 30 0 50 100 4 6 8 10 12
Melatonin rec. type 1A (P48039) rec. 6 (| ) C-C chemokine rec. type 3 (P51677) Metabotroplc glutamate rec. 2 (Q14416)
100
50
50
J Imm_w__ - _ I Il--_, . OJ H e lI I
5 10 15 6 8 10 12
Metabotropic glutamate rec. 4 (Q14833) Calcit. gene-rel. pep.type 1 rec. (Q16602) Hydroxycarboxylic acid rec. 2 (Q8TDS4) G protein-coupled bile acid rec. 1 (Q8TDU6)
100
50 50 50
; I l
0 . e 0 . __ N 0 0 — - il
2 4 6 8 0 50 100 0 2 4 6 8 2.5 5.0 7.5 10.0
Mas-rel. G prot.-coup. rec. X1 (Q96LB2) i i 1 rec. 3 (C in-concen. hormone rec. 1 (Q99705) Smoothened homolog (Q99835)
50 100
50
20 25 50 I I
0 - Sy 0 0 o 0 I
25 50 75 100 5 10 15 20 2.5 5.0 7.5 10.0 12.5 2 4 6
Sphingosine 1-phosph. rec. 5 (Q9H228) G protein-coupled rec. 35 (Q9HC97) Histamine H3 rec. (Q9Y5N1) Prostaglandin D2 rec. 2 (Q9Y5Y4)
50 20 50 50
L — h - . | I I
0 s 0 15 20 %9 5 10 s 0 5 10 s 0 4 6 8

NumRotatableBonds

Figure A4: Potent ligands - Histograms considering number of rotatable bonds distribution
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Figure A10: Histograms considering count of hydrogen bonds donor distribution for
datasets without outliers (from cross-validation schemes) in red and considering only

outliers in blue.
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Figure A12: Histograms considering count of heavy atoms distribution for datasets without
outliers (from cross-validation schemes) in red and considering only outliers in blue.
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Figure A13: Histograms considering hydrophobicity distribution for datasets without
outliers (from cross-validation schemes) in red and considering only outliers in blue.
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datasets without outliers (from cross-validation schemes) in red and considering only
outliers in blue.
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Figure A15: Histograms considering log P distribution for datasets without outliers (from
cross-validation schemes) in red and considering only outliers in blue.
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Figure A16: Histograms considering molecular weight distribution for datasets without
outliers (from cross-validation schemes) in red and considering only outliers in blue.
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Figure A17: Histograms considering count of negative ionizable atoms for datasets without
outliers (from cross-validation schemes) in red and considering only outliers in blue.
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Figure A18: Histograms considering count of positive ionizable atoms for datasets without
outliers (from cross-validation schemes) in red and considering only outliers in blue.
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Figure A20: Histograms considering count of heteroatoms for datasets without outliers
(from cross-validation schemes) in red and considering only outliers in blue.
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Figure A21: Histograms considering count of rings for datasets without outliers (from
cross-validation schemes) in red and considering only outliers in blue.
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Figure A22: Histograms considering topological polar surface distribution for datasets
without outliers (from cross-validation schemes) in red and considering only outliers in
blue.
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Figure A23: SHAP bar plots - Feature importance plots, the bars represent how strongly

different input features affect the output of the respective model. Features are listed in

descending order of importance.
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Figure A24: SHAP bar plots - Feature importance plots, the bars represent how strongly

different input features affect the output of the respective model. Features are listed in

descending order of importance.
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Figure A25: SHAP bar plots - Feature importance plots, the bars represent how strongly

different input features affect the output of the respective model. Features are listed in

descending order of importance.
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Figure A26: SHAP bar plots - Feature importance plots, the bars represent how strongly

different input features affect the output of the respective model. Features are listed in

descending order of importance.
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Figure A28: Histograms considering activity predicted for decoys (blue) and actual activity
of the potent ligand used for generating the decoys (red). Dashed lines are the medians,

decoys (black), potent ligands (red).
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