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Abstract: Assisted reproductive technologies (ART) may increase risk for abnormal placental devel-

opment, preterm delivery and low birthweight. We investigated placental morphology, transporter

expression and paired maternal/umbilical fasting blood nutrient levels in human term pregnancies

conceived naturally (n = 10) or by intracytoplasmic sperm injection (ICSI; n = 11). Maternal and

umbilical vein blood from singleton term (>37 weeks) C-section pregnancies were assessed for levels

of free amino acids, glucose, free fatty acids (FFA), cholesterol, high density lipoprotein (HDL), low

density lipoprotein (LDL), very low-density lipoprotein (VLDL) and triglycerides. We quantified

placental expression of GLUT1 (glucose), SNAT2 (amino acids), P-glycoprotein (P-gp) and breast

cancer resistance protein (BCRP) (drug) transporters, and placental morphology and pathology.

Following ICSI, placental SNAT2 protein expression was downregulated and umbilical cord blood

levels of citrulline were increased, while FFA levels were decreased at term (p < 0.05). Placental

proliferation and apoptotic rates were increased in ICSI placentae (p < 0.05). No changes in maternal

blood nutrient levels, placental GLUT1, P-gp and BCRP expression, or placental histopathology

were observed. In term pregnancies, ICSI impairs placental SNAT2 transporter expression and cell

turnover, and alters umbilical vein levels of specific nutrients without changing placental morphology.

These may represent mechanisms through which ICSI impacts pregnancy outcomes and programs

disease risk trajectories in offspring across the life course.

Nutrients 2021, 13, 2587. https://doi.org/10.3390/nu13082587 https://www.mdpi.com/journal/nutrients
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1. Introduction

The advance of assisted reproductive technology (ART) allows the birth of thou-
sands of children every year for individuals otherwise unable to conceive naturally [1,2].
However, several reports indicate that ART pregnancies may potentially be at higher risk
for preterm birth, placenta praevia, placenta accreta, retained placenta, villous edema,
abnormal placental growth, altered placental weight and having babies with low birth-
weight [3,4]. The mechanisms by which ART affect pregnancy outcomes may originate
from maternal ovarian stimulation procedures; gamete/embryo manipulation and in vitro
culture conditions, such as culture medium composition, culture substrate stiffness/rigidity,
oxygen tension, pH, embryo culture duration; and embryo transfer methodologies, among
others. In response to these stressors the embryo may adapt its growth kinetics, leading to
altered fetoplacental growth and subsequent phenotypes [2].

Ultrastructural assessment of the human placenta following conception with ART
revealed a thicker placental barrier and fewer microvilli at the apical membrane of syn-
cytiotrophoblasts [5], suggesting compromised placental transport function. Placental
transport efficiency may indirectly be assessed by calculating the fetal:placental (F:P)
weight ratio [6]. Reduced F:P weight ratio has been observed in animal models and hu-
man population-based studies with in vitro fertilization (IVF) or intracytoplasmic sperm
injection (ICSI) techniques [2,7–10]. An altered F:P ratio may be a marker of a suboptimal
intrauterine environment, which is known to increase risk for cardiovascular and metabolic
diseases in offspring during adult life [11].

The placenta supplies nutrients to the fetus by simple diffusion, facilitated or active
transporter-mediated processes and by endocytosis/exocytosis [12,13]. Transplacental
glucose transport is predominantly mediated by GLUT1 and GLUT3 transporters [14–16],
whereas neutral amino acids are transported into the fetal circulation via the sodium-
dependent neutral amino acid transporters (SNATs), isoforms I, II and IV [16,17]. Glucose
and amino acid transport efficiency depend upon placental size and F:P weight ratio [7,18].
Term newborns from mouse pregnancies conceived by IVF have lower birthweight but
exhibit higher placental weight and reduced F:P weight ratio. Additionally, mouse placen-
tae following IVF are less efficient in transporting amino acids [7], and exhibit decreased
mRNA expression of Glut and Snat transporters [7,10]. Further, impaired nutrient delivery
to the fetus may contribute to the low birthweight commonly reported in ART newborns [2],
and is likely to program postnatal developmental trajectories and life-long disease risk.
However, less is known about the effects of specific ARTs, such as ICSI, on placental devel-
opment and nutrient transport efficiency in human pregnancy, including whether changes
in placental development and function influence fetal nutrient levels.

Placental efflux transport has also been shown to vary according to placental size.
Activity of the transporter P-glycoprotein (P-gp) was inversely correlated with placental
size in mouse pregnancy, since larger placentae within a litter were more efficient in efflux-
ing P-gp substrates compared to smaller placentae [19]. P-gp belongs to the ATP-binding
cassette (ABC) superfamily of efflux transporters and, with the efflux transporter breast
cancer resistance protein (BCRP), comprise the best investigated of the ABC transporters
in the placenta, namely the multidrug resistance (MDR) transporters. MDR transporters
are localized to the apical membrane of the syncytiotrophoblast and prevent the entry of a
number of drugs and toxicants from the maternal circulation into the fetal compartment,
therefore functioning as major placental efflux gatekeepers against fetal exposure to po-
tentially teratogenic compounds [20]. Despite their key roles in fetal protection, placental
P-gp and BCRP have not been previously investigated in the context of ICSI. In this context,
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since placental size may vary after ART [2,4,9], it is possible that placental expression of
P-gp and BCRP in ICSI pregnancies may be impacted.

Given the evidence from animal models and human studies showing differences in
placental size and F:P weight ratio in pregnancies conceived by ART [9], and the importance
of both nutrient and efflux transporters in supporting optimal fetal development and
protection during pregnancy, we hypothesized that ICSI placentae would have reduced
nutrient transport efficiency, and that ICSI may result in increased risk of fetal exposure to
drugs and toxins in utero via altered placental MDR transport.

2. Materials and Methods

2.1. Patients

Two groups of healthy patients (control naturally conceived (CON)) and ICSI) were
recruited by the medical staff of the “Maternidade Escola” from the Universidade Federal
do Rio de Janeiro—Hospital system, in Rio de Janeiro city, Brazil. The study was approved
by the Research Ethics Board from “Maternidade Escola”—Universidade Federal do Rio de
Janeiro (project number CAAE: 30214214.0.0000.5275). In Brazil, the ICSI procedure prevails
over IVF regardless of the male infertility factor, therefore we recruited ICSI rather than
IVF conceived pregnancies in our study. Inclusion criteria comprised singleton pregnancies
naturally conceived (>37 weeks’ gestation; CON, n = 10) or conceived by ICSI with fresh
embryo transfer (>37 weeks’ gestation; ICSI, n = 11; n = 9 primary infertility and n = 2 tubal
factor infertility), delivered by elective C-section without signs of labor, recruited from
June 2015 until December 2017. Informed written consent was obtained from each patient
prior to inclusion in the study. Clinical data were collected during patient enrollment and
interviews. Exclusion criteria comprised vaginal delivery, spontaneous onset of term labor,
smoking, congenital uterine anomalies, cervical incompetence, uterine malformations,
polyhydramnios, multiple gestations and fetal–maternal complications (infectious diseases,
thyroid disease, asthma, cardiovascular diseases, diabetes, hypertension, preeclampsia,
abruption placentae, and fetal malformation). There were no other complications or
comorbidities documented in the cohort at the time of recruitment.

2.2. Blood Sampling and Placental Tissue Collection

Paired maternal/umbilical fasting blood (8 h prior to C-section) and placental tissues
were collected from women undergoing elective C-sections (with no labor). Maternal
blood was collected from a peripheral vein immediately before the C-section procedure.
Umbilical cord venous blood sampling was performed by an experienced OB-GYN, under
sterile conditions, in a single clamped segment on the neonatal side of the umbilical cord
immediately after birth, following neonatal separation from the cord and prior to placental
delivery. Blood samples were harvested in heparinized sterile vacuum blood collection
tubes and centrifuged at 3000 rpm for 15 min at 4 ◦C. The harvested plasma was then
aliquoted and stored at −80 ◦C until analysis.

Placental villous tissue collection was performed as previously described [21]. In
brief, placental core sampling was performed using cuts made to a core depth to avoid
the maternal decidua, the chorionic plate or any area of thrombosis, infarcts or other
abnormalities. Therefore, only placental villous tissue from term placentae was selected.
Placental fragments were washed in 0.9% sterile saline, quickly dried and immediately
placed in RNALater (Thermo Fischer Scientific, São Paulo, Brazil) for downstream mRNA
expression analysis, or fixed overnight in buffered 4% paraformaldehyde (Sigma-Aldrich,
São Paulo, Brazil), for histopathological, TUNEL and immunohistochemistry analyses.

2.3. Analysis of Maternal and Umbilical Venous Blood Nutrient Contents

Assessment of nutrient concentrations in the umbilical venous blood and matched
maternal blood was performed according to routine protocols by a commercial laboratory
specialized in conducting genetic, biochemical, and metabolic analyses of neonates, (DLE®

Genética Humana e Doenças Raras, located in Rio de Janeiro, Brazil).
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Free amino acid levels of aspartic acid, glutamic acid, alanine, arginine, phenylalanine,
glycine, methionine, ornithine, serine, tyrosine, threonine, tryptophan, valine, asparagine,
isoleucine, leucine, lysine, taurine, citrulline and histidine, were measured by Liquid
Chromatography/Tandem Mass Spectrometry (LC-MS/MS) method. Serum glucose,
cholesterol, HDL, LDL, VLDL and triglyceride levels were measured by the enzymatic col-
orimetric method. Free fatty acids (FFA) were quantified by the kinetic spectrophotometry
method, according to the DLE laboratory specifications for each test.

2.4. Quantitative Real-Time PCR (qPCR)

qPCR was performed as described previously [21–23]. Total RNA was isolated from
placental villous tissue (~30 mg) using TRIzol Reagent (TRIzol Reagent; Life Technologies,
USA). RNA concentration and purity were assessed with Implen NanoPhotometer (Implen
GmbH, Munich, DE, Germany). Only samples with a 260 nm/280 nm absorbance ratio
higher than 1.8 were included in the study. For cDNA synthesis, 1000 ng of total RNA
were reverse-transcribed into cDNA using a High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, San Francisco, CA, USA). mRNA levels of genes of interest were
assessed with intron-spanning primers (Table 1) by qPCR using HOT FIREPol Evagreen
qPCR Supermix (Solis, Denmark) and the Master Cycler Realplex system (Eppendorf, Ger-
many). The following cycling conditions were performed: combined initial denaturation at
50 ◦C (2 min) and 95 ◦C (10 min), followed by 40 cycles of denaturation at 95 ◦C (15 s), an-
nealing at 60 ◦C (30 s) and extension at 72 ◦C (45 s). Assay efficiency ranged from 95–105%.
Genomic DNA contamination was ruled out using reverse transcriptase-negative samples
and melting curve analysis extracted from each reaction. Gene expression was normalized
to the geometric mean of three stably expressed reference genes: peptidyl-propyl isomerase
B (PPIB), 14-3-3 protein zeta/delta (YWHAZ) and TATA-binding protein (TBP) (Table 1).
Relative gene expression was calculated according to LinReg method, qPCR efficiency was
100 ± 10%.

Table 1. List of Primer sequences used in this study.

Gene Primer Sequences Reference

SLC38A1 (SNAT1)
F: 5′-GTGTATGCTTTACCCACCATTGC-3′

R: 5′-GCACGTTGTCATAGAATGTCAAGT-3”
[24]

SLC38A2 (SNAT2)
F: 5′-AGATCAGAATTGGCACAGCATA-3′

R: 5′-ACGAAACAATAAACACCACCTTAA-3′
[24]

SLC38A4 (SNAT4)
F: 5′-GAGGACAATGGGCACAGTTAGT-3′

R: 5′-TTGCCGCCCTCTTTGGTTAC-3′
[24]

SLC2A1 (GLUT1)
F: 5′-ATCAACCGCAACGAGGAGAAC-3′

R: 5′-CACCACAAACAGCGACACGAC-3′
[25]

SLC2A3 (GLUT3)
F: 5′-TCAGGCTCCACCCTTTGCGGA-3′

R: 5′-TGGGGTGACCTTCTGTGTCCCC-3′
[26]

ABCB1 (P-gp)
F: 5′-AGCAGAGGCCGCTGTTCGTT-3′

R: 5′-CCATTCCGACCTCGCGCTCC-3′
[27]

ABCG2 (BCRP)
F: 5′-TGGAATCCAGAACAGAGCTGGGGT-3′

R: 5′-AGAGTTCCACGGCTGAAACACTGC-3′
[27]

PPIB
F: 5′ GAGACTTCACCAGGGG -3′

R: 5′- CTGTCTGTCTTGGTGCTCTCC-3′
[28]

YWHAZ
F: 5′-ACTTTTGGTACATTGTGGCTTCAA-3′

R: 5′-CCGCCAGGACAAACCAGTAT-3′
[28]

TBP
F: 5′-TGCACAGGAGCCAAGAGTGAA-3′

R: 5′-CACATCACAGCTCCCCACCA-3′
[28]
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2.5. Histopathological, Immunohistochemistry and TUNEL Assessment of CON and ICSI Placentae

Paraffin-embedded placental tissue was cut into 5-µm stepped serial cross-sections,
and every sixth section was stained with either hematoxylin and eosin (H&E) for histopatho-
logical analysis or subjected to immunohistochemical or TUNEL analysis.

Morphometric analysis consisted of evaluating the volumetric proportions of the
cellular components of the placentae as well as the presence of trophoblast pathologies that
could be attributed to the method of conception. The volumetric proportion analysis in
CON and ICSI placentae was undertaken by two separate examiners blinded to groups
estimating the following histological components: syncytiotrophoblasts, syncytial knots,
cytotrophoblasts, connective tissue, and blood vessel. Captured images were superimposed
with a grid of equidistant points (25 µm). 1000 points were counted per placenta; equivalent
to an area of, on average, 655,288.7 µm2. The volumetric ratio (VR) of each component
was calculated as VR = NP × 100/1000, where NP = number of equivalent points for each
histological component [22,23]. Analysis and image acquisition were performed in a Zeiss
Axiolab 1 photomicroscope (Carl Zeiss, White Plains, NY, EUA), coupled to a CCD camera
(Leica DFC345FX). Morphometric analysis was performed using the Fiji ImageJ 1.0 (ImageJ,
Madison, WI, USA) program.

Histopathological analysis was undertaken by a single experienced pathologist blinded
to groups, in three random placental sections per patient. Placental pathological features
investigated were: villous edema, microcalcification, chronic villitis (presence of inflamma-
tory cells infiltrating the villous stroma), ischemic or infarction changes (defined by the
presence of localized dead or devitalized chorionic villi and noticeable villous agglutination
or early infarction), avascular villi, increased peri-villous fibrin (accumulation of fibrin
or fibrinoid material in the intervillous space), and intervillous thrombi (laminated clots
within the intervillous space) [29–31]. These pathological features were deemed either
present or absent in CON and ICSI placentae [30].

For immunohistochemistry, following deparaffinization in three xylene immersions
and rehydration in descending gradients of ethanol, endogenous peroxidase activity was
blocked with 3% H2O2 in methanol for 10 min and washed in PBS. Antigen retrieval was
performed by preheating sections in 10 mmol/L sodium citrate (pH 6.0). Sections were
again washed in PBS before blocking in 3% PBS/BSA for 1 h. Sections were incubated
overnight at 40 ◦C, with the following primary antibodies: anti-Ki67 antibody (Spring
Bioscience, Pleasanton, CA, USA), anti-GLUT1 (1: 100—ab652, Abcam, SP, Brasil), anti-
SNAT 2 (1: 200—LS-C179270, LSBio, Seattle, WA, EUA), anti-P-gp (1:500—Mdr1[sc-55510];
Santa Cruz Biotechnology, Dallas, TX, USA) and anti-Bcrp (1:100—Bcrp [MAB4146]; Merck
Millipore, Burlington, MA, USA). Followed by slide washing and incubation with biotin-
conjugated secondary antibody (SPD-060-Spring Bioscience, Pleasanton, CA, USA) for 1 h.
Sections were then re-washed in PBS (3× for 10 min each time), incubated with streptavidin-
HRP (30 min; SPD-060-Spring Bioscience, Pleasanton, CA, USA) and submitted to chro-
mogenic detection of horseradish peroxidase (HRP) activity by 3,3′-diaminobenzidine
(DAB) reagent (DAB peroxidase substrate kit, SPD-060-Spring Bioscience, Pleasanton, CA,
USA). The immune reaction was also performed in the absence of the primary antibody
(negative control) to monitor nonspecific binding of the secondary antibody.

The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis
was undertaken to assess apoptotic nuclei ratio, using the ApopTag® In Situ Peroxidase
Detection Kit (S7100—Merck Millipore, Danvers, MA, USA), according to the manufac-
turer’s instructions. TUNEL reaction was also performed omitting TdT as negative control.
Slides were counterstained with hematoxylin, dehydrated in ascending grades of ethanol,
clarified in three xylene immersions and cover-slipped. Slides were visualized with a
high-resolution Olympus DP72 (Olympus Corporation, Tokyo, Japan) camera coupled to
the Olympus BX53 light microscope (Olympus Corporation, Tokyo, Japan). Scoring of
immunosignals was performed as previously described with adaptations [32–34], using
STEPanizer software [35]. A total of 30 digital images were captured per placental fragment
of each patient. In each image, Ki-67 and TUNEL nuclei immunostaining were quantified
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and the resulting value was divided by the area of the total image, which yielded an
estimate for the number of proliferative or apoptotic nuclei present in the whole tissue
(number of nuclei/area of tissue). Quantification of GLUT 1, SNAT2, P-gp and BCRP
immunostaining was performed using the Image Pro Plus 5.0 software (Media Cybernetics,
Maryland, Rockville, MD, USA) mask tool, where immunostaining of the percentage area
of viable tissue was quantified (with negative/empty spaces excluded) [32–34].

2.6. Statistical Analysis

Outliers were identified using the ROUT method (GraphPad Prism 7.0 software).
Differences between conception groups for clinical data, immunohistochemistry, qPCR and
morphological comparisons were determined by normality test using D’Agostino-Pearson
normality test followed by unpaired t-test or non-parametric Mann-Whitney test. Data are
presented as means ± standard deviation (SD) or median and interquartile range (IQR).
Nutrient outcome measures in maternal and cord blood were tested for normality and
unequal variances (Levene test, JMP v14.3). Data that were non-normal were transformed
to achieve normality, where possible. Differences between conception groups for outcome
measures were determined by t-test, or Welch ANOVA, or Wilcoxon test for non-parametric
data (p < 0.05, JMP v14.3). Nutrient data are presented as means ± SD or median and
IQR. Data transformed for analyses are presented as untransformed values. There were
no sex differences in any nutrients investigated in the cord blood (data not shown), thus
analyses between CON and ICSI groups are inclusive of newborn sex. There was a total
of 10 CON and 11 ICSI participants who had nutrient levels measured in maternal blood
and umbilical vein blood. Some participants did not have a measured value for a nutrient,
and/or statistical outliers were removed, resulting in lower final n-numbers for specific
nutrient measures (which are reported for each nutrient in the tables). Fisher’s exact test
was performed to evaluate placental histopathological findings between groups (GraphPad
Prism 7.0 software). Correlations between maternal pre-pregnancy BMI and levels of
nutrients in maternal circulation, or between levels of nutrients in maternal circulation and
umbilical vein circulation, were determined by Pearson or Spearman correlation analyses.
Data are presented as Pearson’s correlation coefficient or Spearman’s rho. Statistical
differences were set at p < 0.05.

3. Results

3.1. Clinical Data

There were no differences in maternal age, initial (first trimester) and final (term) body
mass index (BMI), maternal weight gain across pregnancy, gestational age at delivery, birth
weight, placental weight or F:P weight ratio between conception groups (Table 2).

Table 2. Clinical and biometric profile of the pregnancies enrolled in the study.

Parameter CON (n = 10) ICSI (n = 11) p-Value

Maternal age (years) 32.50 ± 7.71 35.36 ± 6.61 NS
Gestational age at delivery (days) 271.6 ± 2.37 272.0 ± 3.79 NS
Weight gain (kg; 12 weeks-birth) 10.31 ± 4.44 14.30 ± 5.90 NS

Initial maternal BMI (kg/m2) 25.62 ± (19.0–29.4) 23.58 ± (21.7–28.3) NS

Final maternal BMI (kg/m2) 29.57 ± 3.17 28.59 ± 2.53 NS
Newborn sex M (4); F (6) M (6); F (5)

Birthweight (g) 3365 ± 318 3199 ± 194 NS
Placental weight (g) 592.6 ± (359–689) 547.8 ± 22.21 (438–655) NS

Newborn head circumference (cm) 35.00 ± 0.97 34.41 ± 1.36 NS
Newborn length (cm) 48.20 ± 1.69 48.77 ± 1.65 NS

Fetal/Placental Weight ratio 5.81 ± 0.98 5.94 ± 0.91 NS
Apgar 1′/Apgar 5′ 9/10 9/10 NS

Data are mean ± SD or median (IQR). Groups were analyzed using Unpaired t-test or Mann-Whitney Test. newborn. CON = naturally
conceived, ICSI = intracytoplasmic sperm injection. NS = not significant.
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3.2. ICSI Impairs Placental SNAT 2 Immunostaining

We determined the placental mRNA expression of major transporter systems. We did
not detect statistical differences in the mRNA expression levels of the neutral amino acid
transporters, SLC38A1 (encoding SNAT1), SLC38A2 (SNAT2) and SLC38A4 (SNAT 4); in the
glucose transporters, SLC2A1 (GLUT1) and SLC2A3 (GLUT3); and in the MDR transporters
ABCB1 (P-gp) and ABCG2 (BCRP) (Supplementary Figure S1). GLUT1 and SNAT2 are two
major placental glucose and amino acid transporters, and their immunostaining was de-
tected in the membrane and cytoplasm of syncytiotrophoblasts, in endothelial cells of fetal
blood vessels and in the cytoplasm of placental connective tissue (to a lesser extent). SNAT2
immunostaining was decreased in ICSI placentae (p < 0.05) and there were no changes
in the semiquantitative expression levels of placental GLUT1 transporter (Figure 1A–H).
P-gp and BCRP were immunolocalized in the apical membrane and cytoplasm of sync-
tiotrophoblasts, whereas BCRP was also localized in endothelial cells of fetal blood vessels
and in placental connective tissue. There were no changes in immunostaining of P-gp and
BCRP between groups (Figure 1I–P).

 

μ

Figure 1. The amino acid transporter SNAT2 is downregulated in the human ICSI placenta. Semiquantitative staining scores

(A,E,I,M) and corresponding representative immunostaining photomicrographies of placental GLUT1 (B,C), SNAT2 (F,G),

P-gp (J,K) and BCRP (N,O) in control naturally conceived (CON; n = 10/group) and ICSI (n = 11/group) term placentae.

All transporters were predominantly localized to the membrane and cytoplasm of syncytiotrophoblasts. Staining of GLUT1,

SNAT2 and BCRP were also detected, to a lesser extent, in endothelial cells of fetal blood vessels and in the cytoplasm of

placental connective tissue. (D,H,L,P) negative controls. Data are presented as media ± SD. (A,E,I,M) statistical differences

were analyzed using Unpaired t-test. * p < 0.05. Arrows indicate the syncytium; arrow heads indicate fetal blood cells. Scale

bar = 50 µm.
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3.3. Venous umbilical Cord Blood from ICSI Term Pregnancies Exhibit Specific Changes in
Nutrient Levels

We next evaluated maternal and umbilical cord blood levels of free amino acids in
CON and ICSI pregnancies to identify possible changes that could be attributed to the
method of conception. Levels of aspartic acid, glutamic acid, alanine, arginine, phenylala-
nine, glycine, methionine, ornithine, serine, tyrosine, threonine, tryptophan and valine
were consistently detected in the maternal and venous umbilical cord blood in CON and
ICSI pregnancies, whereas citrulline and histidine were not detected in some participants
(Figure 2).

Figure 2. Heatmap of free amino acid levels in maternal circulation and umbilical vein in control, naturally conceived

(CON; n = 10) and ICSI (n = 11) term pregnancies. Each column represents the nutrient profile of an individual pregnancy

(maternal and umbilical vein). Darker colors indicate higher biomarker concentrations whereas lighter colors indicate lower

biomarker concentrations. X = no value measured. Refer to Supplementary Tables S1 and S2 for values.

Levels of asparagine, isoleucine, leucine, lysine and taurine, were not detected in most
participants and were therefore not analyzed for statistical differences (Supplementary
Tables S1 and S2). Overall, there were more CON mothers with blood levels of free amino
acids within the reference ranges than ICSI mothers, despite that the majority of the subjects
had amino acid levels below the reference ranges (Supplementary Figure S2). There were no
differences in the levels of free amino acids in maternal circulation between CON and ICSI
(Table 3 and Supplementary Table S1), however, citrulline concentration was increased in
venous cord blood of ICSI-conceived newborns compared to newborns conceived naturally
(p < 0.05, Table 3). Umbilical cord levels of the other amino acids measured (aspartic acid,
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glutamic acid, alanine, arginine, phenylalanine, glycine, methionine, ornithine, serine,
tyrosine, threonine, tryptophan, valine and histidine) did not differ between CON and ICSI
(Supplementary Table S2).

Table 3. Citruline and free fatty acid concentrations in maternal and umbilical vein circulations with

natural conception and ICSI.

Nutrient CON ICSI p-Value

Maternal circulation
Citrulline (µmol/L) 8.2 ± 3.0 (6) 10.7 ± 3.1 (10) NS

Free fatty acids (mmol/L) 0.89 ± 0.19 (9) 0.75 ± 0.28 (10) NS
Umbilical Vein Circulation

Citrulline (µmol/L) 6.5 ± 1.6 (6) 8.5 ± 1.9 (10) 0.0385
Free fatty acids (mmol/L) 0.24 ± 0.05 (10) 0.14 ± 0.08 (10) 0.0057

Data are mean ± SD. n for each variable indicated in parentheses. NS = not significant. CON = naturally
conceived; ICSI = intracytoplasmic sperm injection.

We observed higher maternal blood levels of FFA, lipids and lipoproteins in the mater-
nal circulation compared to umbilical cord blood in CON and ICSI pregnancies (Figure 3).
Overall, both CON and ICSI mothers demonstrated normal blood levels of HDL cholesterol,
but both groups overall exhibited high levels of all other lipids/lipoproteins (Supplemen-
tary Figure S3). There were no differences in the levels of FFA (Table 3), glucose, lipids or
lipoproteins in maternal blood between CON and ICSI groups (Supplementary Table S1).
However, FFA levels were lower in cord blood of ICSI-conceived newborns compared to
newborns conceived naturally (p < 0.01, Table 3), whereas levels of other lipids/lipoproteins
and glucose did not differ between groups (Supplementary Table S2).

Figure 3. Heatmap of free fatty acids, glucose and lipid biomarker levels in maternal circulation and umbilical vein in

control naturally conceived (CON; n = 10) and ICSI (n = 11). Each column represents the nutrient profile of an individual

pregnancy (maternal and umbilical vein). Darker colors indicate higher biomarker concentrations and lighter colors indicate

lower biomarker concentrations. X = no value measured. Refer to supplementary Tables S1 and S2 for values. m = maternal

circulation. u = umbilical vein.
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Next, we explored relationships between key clinical variables and outcome measures
in our cohort. Maternal pre-pregnancy BMI was not correlated with circulating mater-
nal nutrient levels, except a slight negative correlation between pre-pregnancy BMI and
glutamic acid levels (r = −0.439, p = 0.046). Second, we observed significant positive corre-
lations between all circulating nutrient levels in mothers with their levels in the umbilical
vein, with the exception of triglycerides, HDL, VLDL and methionine (Table 4).

Table 4. Correlations between maternal circulating nutrient levels and the same nutrient level in

umbilical vein from CON and ICSI pregnancies.

Nutrient Spearman’s Rho p-Value

Free fatty acids (mmol/L) 0.6757 0.002
Glucose (mg/dL) 0.5271 0.02

Triglycerides (mg/dL) 0.2182 NS
Cholesterol (mg/dL) 0.4717 0.03

HDL (mg/dL) 0.0095 NS
LDL (mg/dL) 0.5436 0.01

VLDL (mg/dL) −0.0250 NS
Aspartic acid (µmol/L) 0.6824 0.0007
Glutamic acid (µmol/L) 0.5143 0.02

Alanine (µmol/L) 0.5896 0.005
Arginine (µmol/L) 0.6998 0.0004

Phenylalanine (µmol/L) 0.5055 0.02
Glycine (µmol/L) 0.7351 0.0001

Methionine (µmol/L) 0.4297 NS
Ornithine (µmol/L) 0.6701 0.0009

Serine (µmol/L) 0.7165 0.0003
Tyrosine (µmol/L) 0.7545 <0.0001

Threonine (µmol/L) 0.8078 <0.0001
Tryptophan (µmol/L) 0.6359 0.002

Valine (µmol/L) 0.9299 <0.0001
Citrulline (µmol/L) 0.7900 0.0003
Histidine (µmol/L) 0.6461 0.007

NS = not significant. p < 0.05 (Spearman’s rho (ρ)).

We also explored potential relationships between umbilical vein FFA and citrulline
levels. We did not find any relationship between levels of these nutrients (r = −0.362,
p = 0.18) for the whole cohort, or when exploring relationships within each of the CON
(p = −0.529, p = 0.28) and ICSI groups (p = 0.185, p = 0.63).

3.4. Placental Proliferation and Apoptosis Are Increased in the Human ICSI Placenta

Since altered proliferation and apoptosis have been previously described in the mouse
IVF placenta [7,36], we investigated whether the human ICSI placenta would exhibit
differences in parameters related to cellular proliferation (placental staining of the Ki67
proliferation marker) and apoptosis (TUNEL staining). Increased Ki67 staining (p < 0.0001)
was detected in the nuclei of cytotrophoblasts and connective tissue (to a lesser extent),
whereas increased apoptotic immunosignals (p < 0.0001) were visible in the nuclei of syncy-
tiotrophoblasts, cytotrophoblasts and connective tissue of ICSI placentae (Figure 4). Next,
to evaluate whether these changes would be associated with any specific placental patholo-
gies, we undertook histopathological analyses. We did not detect any placental pathologies
that could be specifically attributed to the method of conception (Supplementary Table S3).
Further, we also investigated the impact of ICSI in the number of placental histological
components by performing a volumetric proportion analyses. No changes in the number of
syncytiotrophoblasts, cytotrophoblasts, connective tissue, blood vessels or syncytial knots
were observed between groups (Figure 5).



Nutrients 2021, 13, 2587 11 of 18

μ

μ

Figure 4. Placental proliferation and apoptosis are increased in the human ICSI placenta. Semiquantitative staining scores

(A,E) and corresponding representative immunostaining photomicrographies of Ki67 (B,C) and TUNEL (F,G) obtained

from term human naturally (CON; n = 10) conceived and ICSI (n = 11) placentae. (D,H) negative controls. (A,E) data

are presented as mean ± SD. Statistical differences were analyzed using Unpaired t-test. **** p < 0.0001. Arrows indicate

syncytium nuclear staining; arrowheads indicate cytotrophoblastic nuclear staining. Scale bar = 50 µm.μ

 

μ

Figure 5. ICSI does not alter placental volumetric proportion. Representative histological photo-

micrographies of control naturally conceived (CON; n = 10) and ICSI (n = 11) placentae and corre-

spondent volumetric proportion analyses of the number of syncytiotrophoblasts, cytotrophoblasts,

connective tissue, blood vessels, and syncytial knots. Data presented as mean ± SD. p < 0.05. Arrows

indicate the syncytium, arrow heads indicate cytotrophoblasts, indicate the syncytium knots and

BV= blood vessels (fetal). Scale bar = 50 µm.
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4. Discussion

This is the first study to comprehensively quantify placental nutrient and MDR trans-
porters and maternal and umbilical nutrient levels, in ICSI compared to naturally conceived
pregnancies, to better understand the mechanisms that may explain poor pregnancy out-
comes in pregnancies conceived with ICSI. Using a cohort from Brazil, we found that
ICSI pregnancies had placentae with decreased SNAT2 protein expression, had signifi-
cant increase in venous umbilical cord citrulline and decreased FFA levels at term. We
also observed increased markers of proliferation and apoptosis in ICSI placentae. These
alterations may potentially disrupt placental development and transport potential.

In our study, contrary to our hypothesis, there were no changes in placental or birth
weights or F:P weight ratio, suggesting that alterations in these parameters may not be
common findings in pregnancies conceived by ICSI (vs. other forms of ART), or, alterna-
tively, that other comorbidities often associated with sub- and infertility, but controlled for
or absent in our study (e.g., maternal complications, elevated maternal BMI), explain more
of the differences seen in fetoplacental weights following ART procedures [2,37]. This is
consistent with the lack of differences between ICSI and CON participants in our study
for maternal age, weight gain and BMI, amongst other clinical data. Further, although
greater placental weight and lower F:P ratio were reported in pregnancies conceived by
ART (ICSI and IVF) in a large Scandinavian based-population study [9], these differences
in findings may also be attributed to sample size and/or to population ethnicity and other
demographics (Scandinavian vs. Brazilian). Our findings are also in contrast with those
described in mice conceived by IVF, which exhibited lower fetal weight, higher placental
weight and lower F:P ratio [7,10]. It is important to note that there have been reports
showing species-specific placental and fetal phenotypic adaptations in response to ART [2].

We detected lower protein expression levels of the neutral amino acid transporter
SNAT2 in ICSI placentae, whereas GLUT1 (glucose) and P-gp/BCRP (drug) immunos-
taining remained unchanged. mRNA levels of SLC38A2 (encoding SNAT2) and other
transporter systems were not different between ICSI and CON groups, suggesting that
ICSI alters placental protein levels of SNAT2 without changing its corresponding mRNA
levels, at least in term no labor C-section placentae. Placental SNAT2 has been reported to
be highly regulated by a variety of environmental factors including in vitro culture condi-
tions [7], hormones (glucocorticoid exposure) [24,38,39], pH, oxygen tension [40], high fat
diet [41], maternal protein restriction [42] and in obstetric conditions such as intrauterine
growth restriction (IUGR) [43,44]. SNAT2 transports neutral amino acids such as alanine,
asparagine, cysteine, glutamine, glycine, histidine, methionine, proline and serine and its
activity is upregulated when cell growth and increased protein synthesis is required [17].
This is consistent with our finding of increased rates of cell proliferation and apoptosis in
ICSI placentae, which may explain, at least in part, the altered placental SNAT2 expression
levels observed.

Despite altered SNAT2 protein levels, there were no changes in SNAT2 amino acid
substrates in the venous umbilical cord blood of ICSI pregnancies. However, we did find
higher cord blood citrulline levels with ICSI. Citrulline was detected in 6 out of 10 CON
pregnancies and 9 out of 11 ICSI pregnancies. This is the first report to show alterations in
citrulline levels that could be attributed to ICSI procedures. Citrulline can originate from
ornithine by actions of the ornithine carbamyl/carbamoyl transferase (OTC) or be released
as by-product resulted from enzymatic nitric oxide synthesis from arginine by endothelial
nitric oxide synthase (eNOS), inflammatory (iNOS) or neuronal NOS (nNOS) [45–47]. Of
interest, placental citrulline synthesis and transport is not well understood, but may occur
via distinct transporter systems as reported in other cell types [44,46]. Enterocytes may
uptake citrulline using B (0,+), L, and b (0,+) amino acid transport systems [48], whereas
in human umbilical vein cells (HUVECs), citrulline, along with arginine, is transported
via the cationic amino acid transporter system y+/CATs [49]. Citrulline transmembrane
transport occurring via Na+-dependent systems in rat small intestine and proximal tubular
kidney cells have also been documented [47,50,51]. Of importance, citrulline levels in
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fetal plasma were increased in nutrient restricted (70% of control diet) pregnant baboons
at mid-pregnancy, with no alterations in fetal and placental weight, i.e., prior to the
onset of IUGR [45]. Importantly, nitric oxide (NO) derived from (eNOS) activity controls
placental vascular tone and an imbalance of endothelial eNOS/arginase activity may
contribute to vascular dysfunction in IUGR umbilical and placental vessels [52]. In our
study, we excluded pregnancies with complications such as IUGR and pre-eclampsia,
but given that ART-conceived pregnancies have higher IUGR and pre-eclampsia risk [4],
further studies should investigate the maternal and fetal citrulline levels in ICSI pregnancies
complicated by these conditions.

We observed a decrease in serum FFA levels in venous cord blood of ICSI newborns.
Placental transport of FFA occurs via several transport mechanisms [16,53] and when
visually comparing the heatmaps of the maternal versus the umbilical vein lipids and
lipoproteins, it is possible to identify lower levels of these lipid biomarkers in the umbilical
vein, showing that lipid transfer into the fetal circulation is largely controlled by the pla-
centa. Future studies are necessary to investigate placental lipid metabolism and transfer
in ICSI pregnancies to understand the mechanisms leading to lower FFA levels in ICSI
newborns, and the impact this may have on fetal development. Although there were no
differences in maternal levels of lipids and lipoproteins between ICSI and CON, overall,
both groups of mothers had levels of FFA, cholesterol, triglycerides and lipoproteins above
the recommended reference ranges. This may suggest that the placenta is adapting to lipid
excess in order to regulate supply to the fetus. Further, taken with our finding that most
mothers had lower circulating levels of free amino acids than recommended reference
ranges for adults, our data suggests that participants in our study had a suboptimal nutri-
tional profile. Future studies could cross-validate blood biomarker findings with validated
food frequency questionnaires to better understand participant nutritional profiles and
whether these, or the ART procedure itself, contribute to the outcomes observed, including
lower FFA levels in cord blood from ICSI pregnancies. Since maternal malnutrition alters
materno–fetal FFA transfer in pregnancy [54], disrupts placental expression of fatty acid
transporters in mice [53] and in ewes [55] and significant lower cholesterol levels in the ICSI
mouse placenta have been reported [56], it is conceivable that placental fatty acid transport
is altered following ICSI in human pregnancies. This clearly requires further investigation.

Correlation analyses identified that, apart from triglycerides, HDL, VLDL and methio-
nine, umbilical vein nutrient levels were positively associated with maternal levels of these
nutrients. This demonstrates that even though the syncytium trophoblast barrier controls
fetal nutrient transfer through the action of diverse mechanisms [13,16], the umbilical
cord nutrient profile is directly dependent upon the maternal nutritional status. In our
cohort, maternal pre-pregnancy BMI had limited influence on maternal blood nutrient
levels. Further, the lack of correlation between umbilical cord citrulline and FFA levels in
ICSI pregnancies suggests that ICSI impacts levels of these nutrients in the umbilical cord,
possibly through independent, currently unknown mechanisms.

The placenta has high energetic demands throughout pregnancy, which increase
exponentially at term [57]. Placentomegaly has been detected at term ICSI mouse [58]
and human (IVF and ICSI-conceived) placentae [9], accompanied by significantly lower
birthweights compared to spontaneously conceived pregnancies [9]. With this in mind,
and the altered placental turnover we observed by increased rates of proliferation and
apoptosis in ICSI placentae, it is possible that ICSI placentae are reallocating energetic and
metabolic resources to a greater degree than CON, such that these metabolic substrates are
used by the placenta to guarantee proper placental size (or its overgrowth)—a hypothesis
that clearly requires further investigation. This, however, could have detrimental effects
for the fetus, such as decreased transfer of key nutrients, consistent with our finding of
lower umbilical cord serum FFA levels in ICSI newborns.

A consequence of decreased levels of specific nutrients in the fetal blood is reprogram-
ming of fetal metabolism which may, in the short-term, ensure proper fetal growth, (here
reflected by normal birthweight found in the ICSI group), but in the long-term, this adapta-
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tion may predispose offspring to cardiometabolic diseases in adult life, as demonstrated
extensively in the developmental origins of health and disease (DOHaD) field [59]. Further,
it is possible that changes in nutrient levels in the umbilical cord of ICSI newborns is one
of the mechanisms through which excessive gamete and embryo manipulation inherent to
ART procedures may program ART conception to altered developmental trajectories and
life-long disease risk.

Increased placental apoptosis may be indicative of intrauterine stress, as commonly
associated with excessive manipulation of gametes and embryos in ART reproductive
cycles [2]. Importantly, given the increase in placental Ki67 staining, we can infer that ICSI
placentae are capable of circumventing increased apoptotic rates and maintain cellular
allostasis by increasing levels of cell proliferation. The increased proliferation/cell division
rates herein observed were not associated with changes in the volumetric ratio of the
various placental cell types or specific placental-related pathologies, and thus, allowed
adequate placental and fetal growth, at least in later stages in pregnancy.

As to the other transporter systems investigated in this study, we did not observe
differences in placental expression levels of GLUT1, P-gp and BCRP transporters in the
CON and ICSI groups. Dong et al. [60] found increased levels of GLUT1 in placentae from
ART pregnancies, which contrasts with our findings. Such differences may result from
patient inclusion criteria in both studies, since the ART group in Dong’s study consisted of
pregnancies conceived by IVF and ICSI, delivered both by vaginal and C-section modes [60],
whereas in this report, we only recruited ICSI pregnancies which delivered by C-section
with no labor. Accordingly, we did not find differences in glucose levels in the maternal and
venous umbilical cord blood, which matches our findings in placental GLUT1 expression.
Further, the lack of differences in placental P-gp and BCRP expression between groups,
suggests a preserved protective function of these efflux transporters in ICSI pregnancies,
at least in later stages of pregnancy.

Strengths of our study include our comprehensive quantification of the maternal and
umbilical cord blood nutrient milieux in ICSI and naturally conceived pregnancies, which
allowed us to better capture potential differences in nutrient availability and transfer to
the fetus than inferring these based on placental transporter expression alone. Further,
our study is one of the few to examine ICSI exposures or placental outcomes in pregnant
populations from the Global South, filling a large gap in our understanding of the mecha-
nisms driving fetoplacental development and the programming of later health trajectories
in underrepresented populations. As our groups were similar for clinical characteristics,
particularly variables associated with subfertility and adverse pregnancy outcomes, all
differences described are likely to be attributed to the ICSI method of conception and/or
to the intrinsic risk factors inherent to the various causes of the couples’ infertility that
were not measured here. One potential limitation of our study is the relatively small
number of patients enrolled in each group, warranting caution when considering the
implications or translatability of our findings to other contexts. Nevertheless, our findings
provide preliminary data for larger observational trials. For example, our groups were
well-matched for key potential covariates including mode of delivery (all were C-section
with no labor), initial and final maternal BMI and newborn fetal sex rates, and we did not
include pregnancies with fetal–maternal, endocrine or metabolic complications or other
comorbidities. Thus, we were able to study the effects of ICSI more accurately. In addition,
due to our limited sample size, we were not able to robustly investigate the effects of sex
on placental outcomes. Future studies should be powered to look at sex differences in
the placenta from naturally conceived and ICSI conceived pregnancies. Another potential
limitation of our study is the semiquantitative nature of the protein measurements. Never-
theless, such analyses enabled us to identify transporter protein expression not only in the
syncytiotrophoblast layer of the placenta, but also in endothelial cells of fetal blood vessels
and in the connective tissue.
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5. Conclusions

We provide some of the first evidence for altered cord blood citrulline and FFA levels
in human term pregnancies conceived by ICSI, associated with increased placental cellular
turnover (increased rates of placental cell proliferation and apoptosis) and reduced SNAT2
protein abundance. Our data suggest that ICSI may have subtle, but important, effects
on placental function without gross alterations in placental size, histology or pathology.
Newborns conceived through ICSI may thus be potentially exposed to stressors in utero,
which can result in metabolic adaptations, at least in late pregnancy, highlighting the need
for follow-up studies to understand postnatal endocrine and metabolic phenotypes and
how ICSI and altered placental function may explain these. The present study improves
our understanding of the mechanisms that may contribute to poor pregnancy and postnatal
outcomes in ICSI pregnancies and offspring, and adds to the dearth of evidence on placental
development and function in pregnancies from the Global South.
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