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Rapid diagnosis of COVID‑19 
using FT‑IR ATR spectroscopy 
and machine learning
Marcelo Saito Nogueira1*, Leonardo Barbosa Leal2, Wena Dantas Marcarini2,7, 
Raquel Lemos Pimentel2, Matheus Muller2, Paula Frizera Vassallo5, 
Luciene Cristina Gastalho Campos6, Leonardo dos Santos2, Wilson Barros Luiz6, 
José Geraldo Mill2, Valerio Garrone Barauna2 & Luis Felipe das Chagas e Silva de Carvalho3,4

Early diagnosis of COVID‑19 in suspected patients is essential for contagion control and damage 
reduction strategies. We investigated the applicability of attenuated total reflection (ATR) Fourier 
transform infrared (FTIR) spectroscopy associated with machine learning in oropharyngeal swab 
suspension fluid to predict COVID‑19 positive samples. The study included samples of 243 patients 
from two Brazilian States. Samples were transported by using different viral transport mediums (liquid 
1 or 2). Clinical COVID‑19 diagnosis was performed by the RT‑PCR. We built a classification model 
based on partial least squares (PLS) associated with cosine k‑nearest neighbours (KNN). Our analysis 
led to 84% and 87% sensitivity, 66% and 64% specificity, and 76.9% and 78.4% accuracy for samples 
of liquids 1 and 2, respectively. Based on this proof‑of‑concept study, we believe this method could 
offer a simple, label‑free, cost‑effective solution for high‑throughput screening of suspect patients for 
COVID‑19 in health care centres and emergency departments.

In early 2020, a new strain of coronavirus called SARS-CoV-2 became a major health problem worldwide. After 
an epidemic outbreak in Wuhan-China in late 2019, it quickly became a pandemic with serious consequences to 
the healthcare system and also at social, political and economic sectors  worldwide1–4. Although research is cur-
rently being carried out to investigate the biomolecular mechanisms of virus spreading, no effective  treatment5,6 
and  vaccine7 has been developed yet. In addition, prescribing diagnostic assays for patients with clear symptoms 
has not been sufficient to contain the COVID-19 transmission  rate8. Therefore, an increase in the number of 
cases is still expected in many countries around the world.

In this pandemic, extensive testing of the asymptomatic population and early detection of COVID-19 in 
suspected patients are crucial for contagion control and damage reduction strategies. However, due to technical 
issues, current tests are complex and costly. Although real‐time reverse‐transcriptase polymerase chain reac-
tion (RT-PCR) is actually the gold standard tests for COVID-19, usually performed with a sample from the 
nasopharyngeal swab, the current data indicate that it is not very sensitive due to fluctuation of viral load, which 
significantly further reduces after the 10th day of  symptoms9. Thus, health care systems around the world have 
used rapid serological tests indicating past exposure to SARS-CoV-2, which also show varied efficacy, and similar 
to RT-PCR, have shown a percentage of false  negatives9. Thus, none of the tests currently available has completely 
satisfactory performance, and the search for rapid and low-cost tests with adequate sensitivity is critical.

In addition to social isolation, governments are looking to rapidly expand testing capabilities as the major 
means to battle the COVID-19 pandemic. Serology testing is mainly used for surveillance and epidemiologi-
cal purposes, since it only checks for past exposition to the virus. It was demonstrated that immune response 
to the new coronavirus takes 1–2 weeks to  occur10, which justifies why serological tests are not appropriate for 
detection in the acute phase of the disease. Actually, RT‐PCR assay has been widely used as the gold standard 
to detect SARS‐CoV‐2 in respiratory samples such as nasopharyngeal swabs or bronchial aspirate and, thus, to 
indicate isolation and treatment, discharge, or transfer to units for patients diagnosed with COVID-19. In the 
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present study we used symptomatic patients tested by RT-PCR for definition of confirmed cases (positive) or 
not-a-case (negative) by the first testing.

Although the in vitro sensitivity of RT-PCR tests is high, the sensitivity of the nasopharyngeal RT-PCR swab 
tests for diagnosing COVID-19 in clinical settings is questionable. It is well known that the accuracy of the test 
depends not only on its intrinsic characteristics and the time-window of viral replication, but also on the selec-
tion of the population to be tested. In a recent pre-proof meta-analysis of the accuracy of diagnostic tests for 
COVID-19, a number of studies show false negatives by RT-PCR if the viral load is insufficient or if the time-
window of viral replication is  inadequate9. This systematic review evidenced an averaged sensitivity of 73.3% 
(95% CI 68.1–78.0%) nasopharyngeal/throat swabs on data collected from seven clinical trials. The selection 
of the tested population interferes with the accuracy of the test, and an even worse sensitivity (62%) has been 
reported for mild  cases11.

Thus, due to the inherent characteristics of tests currently approved by regulatory agencies, there is a need for 
the association of different tests, collection of multiple samples, collections in different regions and at repeated 
time-points, in order to obtain a definitive diagnosis of COVID-19, which makes the pandemic containment 
even more complex and costly. In this context, the combination of different diagnostic tests is highly useful to 
achieve adequate sensitivity and  specificity9.

Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy associated with machine 
learning methods could be a potential alternative method for diagnosis of COVID-19, as it is simple, label-free 
and cost-effective. This technique has shown promise as a diagnostic or screening tool in several diseases such 
as  cancer12–14, diabetes, hypertension, and physiological  stress15,16. In 2018, Leal et al.15 and Baker et al.17 pointed 
out that small samples of biofluids (saliva, blood and urine) could be effective for the diagnosis of a wide range 
of diseases, including infectious  diseases18. The application of vibrational optical techniques for COVID-19 
detection was discussed by later papers, especially in the context of enabling high-throughput screening and 
combination with telemedicine to contain the virus  spreading19,20. Within this context, the objective of the present 
study is to show that ATR-FTIR spectroscopy associated with machine learning methods for analysis of swab 
suspension fluids from suspected patients is capable of becoming a novel real-time, cost-effective diagnostic 
tool for COVID-19.

Results and discussion
For LIQUID 1, a total of 65 suspected patients went through COVID-19 screening and of them 40 were cases 
confirmed (positive) by RT-PCR and 25 were not-a-case (negative); while from 178 suspected patients screened 
for LIQUID 2, 111 patients were confirmed as positive and 67 patients as negative. The group of patients from 
LIQUID 1, presents the age (mean ± SD) of 46.2 ± 15.9 and 64.7% were women, with 63.9% positives and 36.1% 
negatives, and for LIQUID 2 the age was 50.9 ± 18.2, 64% were women, with 59.1% positives and 40.9% negatives.

LIQUID 1 classification model. Figure 1 shows the average spectra after the subtraction of the spectrum 
of LIQUID 1 and the second derivative of the COVID-19 positive and COVID-19 negative groups for the LIQ-

Figure 1.  (A) Averaged FTIR spectra and (B) averaged second derivative of the FTIR spectra of the COVID-19 
positive and negative groups of the LIQUID 1 dataset.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15409  | https://doi.org/10.1038/s41598-021-93511-2

www.nature.com/scientificreports/

UID 1 dataset. The second derivative removes the background present in the raw ATR-FTIR spectra to enhance 
the visualization of the features of COVID-19 positive and negative spectra.

The second derivative of the FTIR spectra were used to calculate the PLS components (PLSC) for differentia-
tion of the COVID-19 positive and negative groups of the LIQUID 1 dataset. The differentiation between these 
groups is illustrated in Fig. 2, which shows the PLS scores for combinations of PLSC2, PLSC3 and PLSC4. Most 
of the differentiation could be observed for combinations including PLSC2.

The absolute values of PLS loadings of PLSC2, PLSC3 and PLSC4 used to determine the main vibrational 
modes and biochemical components (Table 1) associated with the discrimination between COVID-19 positive 
and negative groups are illustrated in Fig. 3 (fingerprint region) and Fig. 4 (high wavenumber region). Peaks can 
be found over a wide range of wavenumbers. Most of the narrow peaks were observed between 665–760  cm−1, 
1030–1250  cm−1, 1725–1800  cm−1, and 3130–3600  cm−1.

The interpretation of the coronavirus samples detected in patients with COVID-19 was performed by associat-
ing vibrational modes derived from spectral data with sample biochemical/structural components. The peak at 
921  cm−1 is not related to the vibrational modes and the structural components of the Table 1 21. Peak frequency 
1092 is related to the vibrational modes stretching PO2 2 symmetric (phosphate II) (50) nasym (C–O–C) and 
the cellulose polysaccharide structural component that stimulates the production of saliva. The 1299 (94/95/96) 
 cm−1 peak represents the vibrational mode of the deformation N–H and the cytosine structure, which is sug-
gested to be involved in hypercytokinemia in severe cases of COVID-198,23–25.

The sharp increase in these proteins generates a hyperinflammatory response that leads to organ dysfunc-
tion and, in several cases, multiple organ failure. In the band at 1146  cm−1, phosphates are also used as modular 
blocks of various substances, including those used by the cell for energy, cell membranes and  DNA26,27, and can 

Figure 2.  PLS score plots of (A) PLSC2 × PLSC3, (B) PLSC2 × PLSC4, (C) PLSC3 × PLSC4, (D) PLSC2 × 
PLSC3 × PLSC4 for COVID-19 positive and negative groups of the LIQUID 1 dataset.

Table 1.  Main vibrational modes present in the fingerprint region between 650–1800  cm−1 and the high 
wavenumber region between 2800–3000  cm−1 of the PLS loading spectra of PLSC2, PLSC3 and PLSC4 for the 
analysis of the LIQUID 1 dataset (according to Movasaghi et al.21 and Naseer et al.22).

Wavenumber  (cm−1) Vibrational mode Structural component

PLSC2

921 (924) ? Membrane lipids (phospholipids)

1092
Stretching PO2 2 symmetric (phosphate II)
Nasym(C–O–C)

(polysaccharides-cellulose)

2878 (2880) Asymmetric stretch of –CH2 Methylene

PLSC3

1299 Deformation N–H Cytosine

1146 C–O bond Phosphate and oligosaccharides

2838 Stretching C–H Methoxy

PLSC4

1552 (1550) CN stretch and NH bend Amide I

867 ?
Left-handed helix
DNA (Z form)

2941 ? ?
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be indicated for the treatment of flu-like symptoms; oligosaccharides are found on the outer surface of the plasma 
membrane, in the blood, in the cellular matrix and in most of the secreted  proteins8,23–25.

The peak at 2838  cm−1, the structural mode found was stretching C–H21, and the structural component 
methoxy can be related to esters and can be used in medicine, as an anesthetic and in the preparation of 
 medicines8,23–25. Bands at 1552  cm−1 and 867  cm−1 were not related to vibrational modes, but to structural com-
ponents, such as the base ring and left-handed helix DNA (Z form)21.

Recently, ATR-FTIR has already been investigated as a screening/diagnostic tool in medicine. In 2019, the 
use of this technique was reported in the screening of patients with brain cancer, achieving sensitivity of 93.2% 
and specificity of 92.8% in the identification of high-risk patients indicated for definitive diagnostic tests (more 
expensive), thus saving time and  cost28. Moreover, vibrational spectroscopy has been used with very good results 
in different areas of health science, as brain  cancer28, oral  cancer29–31 and prostate  cancer32. In infectious diseases, 
a similar study was done to discriminate patients with Human immunodeficiency virus (HIV) infection by 
ATR-FTIR also associated with linear discriminant analysis (LDA) in plasma samples. Interestingly, this analysis 
proved to be a possible strategy for discrimination against different spectra of HIV infection and co-infection 
with the hepatitis C virus (AIDS, HIV + HCV or AIDS + HCV)18.

In the present study, the multivariate statistical analysis using a PLS-cosine KNN model achieved 84% of sen-
sitivity and 66% of specificity, and 76.9% accuracy upon fivefold cross-validation. Also, the area under the ROC 
curve (AUC) was 0.82 which is a satisfactory value for a proposed real-time COVID-19 detection method (Fig. 5).
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Figure 3.  Absolute values of PLS loadings of PLSC2 (blue), PLSC3 (green) and PLSC4 (red) in the fingerprint 
spectral region between 650–1800  cm−1 for our analysis of the LIQUID 1 dataset.
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Figure 4.  Absolute values of PLS loadings of PLSC2 (blue), PLSC3 (green) and PLSC4 (red) in the high 
wavenumber spectral region between 2800–3600  cm−1 for our analysis of the LIQUID 1 dataset.
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LIQUID 2 classification model. Figure 6 shows the average spectra after the subtraction of the spectrum 
of LIQUID 2 and the second derivative of the groups COVID-19 positive and COVID-19 negative for the LIQ-
UID 2 dataset. Even though the average spectra are slightly different in shape compared to the LIQUID 2 dataset, 
which may be due to the different viral transport medium of the swab suspension fluid used in these two loca-
tions, the spectral shape of are similar between datasets and differences are evidenced by computing the second 
derivative of the FTIR spectra.

The PLS score differentiation between COVID-19 positive and negative groups of the LIQUID 2 dataset is can 
be observed in Fig. 7. In contrast with the analysis of LIQUID 1 dataset, PLSC2 seems to contribute less to the 
discrimination between groups. Still, combining scores of PLSC2, PLSC3 and PLSC4 could lead to a reasonably 

Figure 5.  ROC curve suggests that the specificity and sensitivity of best classifier (PLS-cosine KNN) found 
difference between positive and negative samples for COVID-19 (LIQUID 1 dataset) upon fivefold cross-
validation.

Figure 6.  (A) Averaged FTIR spectra and (B) averaged second derivative of the FTIR spectra (B) of the 
COVID-19 positive and negative groups of the LIQUID 2 dataset.
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good discrimination (Fig. 7D) which can only be confirmed and automated by using the KNN model discussed 
later in this section.

In the same way as data was analysed for LIQUID 1 samples, the absolute values of PLS loadings of PLSC2, 
PLSC3 and PLSC4 (Figs. 8 and 9) were used to understand the sample biochemistry (Table 2) related to dif-
ferentiation of COVID-19 positive and negative groups. Most of the narrow peaks which could be associated 
with vibrational modes occurred between 665–780  cm−1, 1070–1540  cm−1, 1730–1800  cm−1, 2800–2845  cm−1 
and 3020–3600  cm−1.

It can be seen that the 896  cm−1 peak is not related to the vibrational modes and the structural components 
found in the tabulated data from Movasaghi et al.21. The peak at wavenumber 1359 (58)  cm−1, is related to the 
vibrational modes Stretching C–O, deformation C–H, deformation N–H, but structural components were not 
found. At the maximum 2820 it has been related to the vibrational mode Stretching N–H (NH3). However, the 
structural components were not Movasaghi et. al.21 table.

Bands at 1442 (44)  cm−1 are related to the vibrational mode d (CH2), and the structure containing lipids, 
fatty acids (polysaccharides, pectin). Scientific studies show that fatty acids can alter the lipid composition of cell 
membranes, which results reduced inflammation due to the production of molecules that are less inflammatory 
compared to those produced when omega-3 is not  present8,23–25. At the 1524  cm−1 peak, the vibrational mode 
Stretching C=N, C=C belongs to, but no structural components were found. The peak at 2913  cm−1 is not related 
to vibrational modes and structural components of samples involved in this research.

Through the research, the 1088  cm−1 band can be associated with the vibrational modes stretching PO2 2 
symmetric vibration found in B-form  DNA26,27 and the structural component phosphate  I21, which is involved 

Figure 7.  PLS score plots of (A) PLSC2 × PLSC3, (B) PLSC2 × PLSC4, (C) PLSC3 × PLSC4, (D) PLSC2 × 
PLSC3 × PLSC4 for COVID-19 positive and negative groups of the LIQUID 2 dataset.
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Figure 8.  Absolute values of PLS loadings of PLSC2 (blue), PLSC3 (green) and PLSC4 (red) in the fingerprint 
spectral region between 650–1800  cm−1 for our analysis of the LIQUID 2 dataset.
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in processes of energy production inside the cell. The 1497  cm−1 band could be related to the vibrational mode 
of C=C and deformation C–. Finally, the peak found at 2855 (53)  cm−1 corresponds to the vibrational modes 
Asymmetric CH2 stretching mode of the methylene chains in membrane lipids and the structural component 
 lipids21, which could be related to the composition of the plasma membrane of  cells8,23–25.

The statistical analysis using a PLS-cosine KNN model on the LIQUID 2 dataset achieved 87% of sensitivity 
and 64% of specificity, and 78.4% accuracy upon fivefold cross-validation; and the area under the ROC curve 
(AUC) was 0.82 (Fig. 10), which configure a satisfactory performance for a proposed real-time COVID-19 
detection method.

In general, research involving the diagnosis of COVID-19 is considerably difficult, mainly due to the novelty 
that the disease alone brings. Thus, we are currently working with totally incomplete information regarding 
the pathophysiology of the disease, even having as much clinical and epidemiological information as possible. 
Furthermore, the use of the FTIR spectroscopy technique, although it makes the diagnostic challenge even 
greater, is totally relevant and the research involved is timely, as highlighted by Carvalho and Saito Nogueira in 
a letter to the  editor19.

Current status, limitations and future perspectives. In symptomatic patients presenting dyspnea 
and low oxygen saturation, imaging tests such as chest X-ray or computed tomography (CT) can help with the 
clinical diagnosis the COVID-19. Since the CT scan process is fast and relatively simple and CT equipment is 
adopted worldwide, it enables relatively rapid screening of suspected patients, assessing the severity of the dis-
ease, response to treatment, or presence of complications and differential  diagnosis33,34. However, it is important 
to note that CT has helped the diagnosis of severe and symptomatic COVID-19 cases, whereas asymptomatic 
patients do not benefit from this technique, as it is not cost-effective for screening of patients without pulmo-
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Figure 9.  Absolute values of PLS loadings of PLSC2 (blue), PLSC3 (green) and PLSC4 (red) in the high 
wavenumber spectral region between 2800–3600  cm−1 for our analysis of the LIQUID 2 dataset.

Table 2.  Main vibrational modes present in the fingerprint region between 650–1800  cm−1 and the high 
wavenumber region between 2800–3000  cm−1 of the PLS loading spectra of PLSC2, PLSC3 and PLSC4 for the 
analysis of the LIQUID 1 dataset (according to Movasaghi et al.21 and Naseer et al.22).

Wavenumber  (cm−1) Vibrational mode Structural component

PLSC2

896 ? ?

1359 (58) Stretching C–O, deformation C–H, deformation N–H ?

2820 –CH2 and –CH3 Lipids

PLSC3

1442 d(CH2) Lipids, fatty acids (polysaccharides, pectin)

1524 vCN, vCC proteins, tyrosine Amide II

2913 ? ?

PLSC4

1088 Stretching PO2 2 symmetric vibration) in B-form DNA Phosphate I

1497 C=C, deformation C–H Proteins

2855
Asymmetric CH2 stretching mode of the methylene 
chains in membrane lipids

Lipids
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nary manifestations. Also, CT equipment is not always located in close distances from COVID-19 and at times 
patients with severe symptoms cannot be transported to centres with the CT equipment.

Yet, clinical experience has demonstrated a poor diagnostic accuracy of chest CT in screening patients with 
suspected COVID-19 without chest discomfort, difficulty in breathing or pneumonia. In this scenario, all sus-
pect cases still waiting for RT-PCR results, being followed exclusively by its clinical condition to the moment.

Thus, by using our approach with an accurate prediction of the biomolecular test, the decision making could 
already be done in advance (isolation, treatment or transfer to another health centre or intensive care units, etc.).

It is important to note that FTIR could be a point-of-care, fast-running, low-cost, non-reagent, non-invasive 
and non-destructive analytical technique, which are great advantages if we consider that all current tests for 
detection of COVID-19 are cost- and time-consuming, require kits and reagents (mostly imported), and special-
ized human resources. If considering that in the near future its performance will be improved reaching as few 
false-negatives as possible, it is possible to suggest that this screening method could be applied at the entrance 
door to avoid unnecessary testing in patients with a 100% probability of being negative. Moreover, rapid identi-
fication of those suspect patients with high chance of infection by ATR-FTIR can influence decisions that need 
to be made before the RT-PCR results, such as the recommendation for quarantine or specific COVID units in 
case of hospitalization.

Our study has some limitations. It is worth noting that our study included relatively selected patient popula-
tions (i.e., individuals who sought a health service and were previously screened by a physician or nurse). Thus, 
we are aware of potential introduction of bias caused by not including patients with just one symptom or even 
asymptomatic, which could expand the applicability of ATR-FTIR to outside population studies. In addition, the 
results obtained in our study were limited by the fact that we did not use samples from patients also diagnosed 
with influenza. In a preliminary analysis, our results showed the effectiveness of the proposed diagnostic model 
FT-IR spectroscopy associated with machine learning of the differentiation of positive and negative COVID-19 
patients. In future studies, we consider the possibility of including patient groups with different viral infections 
such as Influenza and H1N1 in order to corroborate our findings and consolidate the use of techniques in the 
medical and hospital environment.

Finally, we did not follow up for possible repeated RT-PCR on negative patients in the first testing. Because 
current findings indicate that RT-PCR test results from pharyngeal swab were variable and potentially unstable, 
and that initial RT-PCR tests may be negative and then become positive with repeated  tests35,36, a patient that 
ATR-FTIR indicates as negative should not be considered as non-infected. However, we believe this is a proof-of-
concept study demonstrating that ATR-FTIR, if combined with clinical, radiological and epidemiological criteria 
could be extremely useful as a real-time point-of-care strategy to reduce excessive and unnecessary expenses 
with RT-PCR in non-contaminated patients, or even to indicate early isolation and health care for patients with 
high probability to be COVID-19 positive cases, even before the final result by RT-PCR is available. In order to 
include ATR-FTIR analysis in the routine of medical facilities, a universal test should be developed with stand-
ardized instrumentation (with sufficient equipment specifications such as wavenumber resolution), standardized 

Figure 10.  ROC curve suggests that the specificity and sensitivity of the best classifier (PLS-cosine KNN) 
found difference between positive and negative samples for COVID-19 (LIQUID 2 dataset) upon fivefold cross-
validation.
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materials (such as collection swabs and VTM liquid for storage of the swab), standardized protocols for sample 
handling and storage, and a universal machine learning model for sample classification. A universal machine 
learning model will require increasing the number of patients as well as validating models using different com-
binations of instrumentation, materials and protocols. The most accurate model will determine the standardized 
combination to be used for ATR-FTIR testing. It is important to state that we are continuously increasing sample 
size in order to try subgrouping, subcategories, individualized algorithms and, thereby, enhance the performance 
(sensitivity and specificity) of FTIR in nasopharyngeal swab suspension fluid from COVID-19 patients.

In summary, such screening method by ATR-FTIR should be valuable in the current epidemic scenario, where 
the limitations of clinical and epidemiological diagnosis (similarity of the symptoms of COVID-19 infection with 
other high prevalent viruses) and the complexity and cost- and time-demanding of RT-PCR are critical problems 
for quick decision-making in emergency care. Furthermore, in regions with high prevalence, reduced testing 
of suspect cases should save RT-PCR test kits for patients with moderate and severe disease and for healthcare 
professionals (Supplementary Information).

Conclusion
In the present proof-of-concept study, we concluded that FT-IR spectroscopy associated with artificial intel-
ligence in nasopharyngeal swab suspension fluid was effective for discriminating between COVID-19 positive 
and negative patients and, in that way, our model can potentially be used for high-throughput screening for 
symptomatic suspect case.

Methods
Patient attendance and data collection. The study was submitted to Plataforma Brasil and was evalu-
ated by ethical committee of the Federal University of Espírito Santo. The study was approved under the numbers 
30993920.1.0000.5071, 31411420.9.0000.8207 and 33838620.0.0000.5526. Informed consent was obtained for 
all patients participating in the study. All methods were carried out in accordance with relevant guidelines and 
regulations. Samples were obtained from individuals with more than 18 years old who RT-PCR were performed 
in three health care units in State 1 (Vila Velha Hospital, Hospital Roberto Arnizaut Silvares and Unidade Sani-
tária 3 in São Matheus, Espírito Santo, Brazil) and State 2 (Hospital Santa Casa de Misericórdia and Hospital de 
Base Luis Eduardo Magalhães, both in Itabuna, Bahia, Brazil) between May and July of 2020, and met the criteria 
for suspected cases according to State Health Secretary and World Health Organization (WHO)  guidelines37,38. 
For all patients, clinical data (age, sex, pre-existing medical conditions, symptoms and date of onset of symp-
toms) were collected from medical records. A nasopharyngeal swab was collected from patients by inserting a 
swab into the nostril parallel to the palate. The swab was inserted to a location equidistant from the nostril and 
the outer opening of the ear and was gently scraped for a few seconds to absorb secretions. The rayon swab with 
a plastic shaft was placed immediately into a sterile tube containing 3 ml of the swab suspension fluid—viral 
transport medium (VTM). The same samples of these nasopharyngeal swab solutions employed for RT-PCR 
were used directly for FTIR analyses without sample preparation. All nasopharyngeal swabs were evaluated by 
RT-PCR that were performed in the central laboratory from the Health Secretary of each State (LACEN-SESA), 
as the gold standard method for definitive diagnosis of COVID-19 infection. It is important to point out that 
the liquids (i.e. the VTM compounds) used by these two Central Laboratories (State 1 and State 2) are different, 
and this was the reason why we did not combine the samples. The workflow of the present study is summarized 
in Fig. 11.

Figure 11.  Data collection and analysis workflow.
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ATR‑FTIR measurements. Five microliters of each VTM (previously used for RT-PCR analysis) were air-
dried on foil paper for 2 h and evaluated by a FTIR spectroscopy system (Cary 600 Agilent) coupled with an 
attenuated total reflection accessory. For samples collected in State 1 (LIQUID 1), we obtained 112 spectra from 
40 COVID-19 positive patients and 74 spectra from 25 negative patients; and for those collected in State 2 
(LIQUID 2), we measured 329 spectra from 111 COVID-19 positive patients, and 199 spectra from 67 negative 
patients. Samples were individually dried on 4  cm2 aluminum foils for 2 h inside the laminar flow, and after-
wards, each set of aluminum foil + dry sample was placed on the ATR crystal in the FTIR. This procedure has 
been previously reported in the  literature39 and was more feasible for the rapid processing and analysis of large 
quantities of samples and reduced the time for each measure in the ATR apparatus, because the samples are dried 
separately outside the crystal (i.e., on aluminum foils).

Although triplicate measurements were considered for each patient, some patients have different number of 
spectra collected due to outlier removal, in order to ensure the high quality of FTIR spectra used as an input to 
the classification model. Then, to generate the classification model in this study, each spectrum was considered 
an independent sample measurement to be subsequently included in each dataset. Wavenumbers of these spectra 
ranged from 650  cm−1 to 4000  cm−1, with a resolution of 1.86  cm−1.

Data processing and statistical analysis. For the characterization of the sample and general and clini-
cal data of the patients, a Kolmogorov–Smirnov normality test was performed, and the data are expressed as 
mean ± standard deviation. All steps of data pre-processing, machine learning and sample classification was 
performed by using the MATLAB (R2018a version, Mathworks, Natick, Massachusetts, United States) software.

For spectra pre-processing, the FTIR spectra of the viral transport medium (VTM) was subtracted from 
the raw FTIR spectra between 650 to 4000  cm−1 and the wavenumber range 650–3600  cm−1 was considered for 
analysis. Next, the FTIR spectra were smoothed by using a Savitsky–Golay filter (2nd polynomial order using 
19 points). Then, we calculated the second derivative of the FTIR spectra. In this study, we reported the average 
FTIR spectra of COVID-19 positive and negative samples after the subtraction of the VTM spectra (Figs. 1A and 
6A, Supplementary Information) and after computing the second derivative spectra (Figs. 1B and 6B). Average 
spectra were taken for each COVID-19 group and State separately. In order to avoid bias in feature selection for 
our classification model, we rescaled absorbance values at each wavenumber between − 1 and + 1. To develop our 
classification model, we used the Partial Least Squares (PLS) analysis associated with the K-Nearest Neighbours 
(KNN) classifier implemented in a MATLAB routine. Our model was built by using the second, third and fourth 
PLS components, which are correlated to the wavelengths shown in the loading plots of the PLS components 
(PLSCs). The first PLSC was excluded from the analysis due to the sample heterogeneity it featured, which could 
worsen the performance of the classifiers utilized in this study and would hinder the comparison between the 
datasets measured at the two locations where the data collection took place (Vitoria/State 1 and Itabuna/State 2). 
Therefore, PLSC1 could hinder the sample discrimination and was removed from the analysis. The PLS loadings 
of PLSC2, PLSC3 and PLSC4 were used to determine the main biochemical/structural components associated 
with this discrimination, while reducing the data dimensionality (fewer input parameters) for our classification 
model as well as the risk of overfitting. Biochemical components were determined based on the highest values 
of PLS loadings in the high wavenumber region between 2800–3000  cm−1 (which is not influenced by water 
absorption) and the fingerprint region between 650–1800  cm−1. One peak of the high wavenumber region and 
two of the fingerprint region were selected based on highest absolute values of PLS loadings and peak width 
smaller than the spectral resolution (4  cm−1) of the FTIR instrumentation.

In terms of the KNN classifier, we used 10 neighbours and calculations based on the cosine distance metric 
with no distance weight. In order to validate our classifiers, we first divided the datasets of Vitoria/State 1 and 
Itabuna/State 2 into two parts each. In terms of the Vitoria/State 1 dataset, we used the data collected from 40 
positive patients (112 spectra) and 25 negative patients (74 spectra) to build the classification model. This model 
was validated by using k-fold cross-validation (when k = 5). In this type of validation, the dataset was randomly 
separated into training and tests sets with 80% and 20% of the total data, respectively. Next, the classification 
model was generated using the training set, and the model was applied to classify and validate the test set. Then, 
classification parameters such as sensitivity, specificity, accuracy and are under the receiver operating charac-
teristic curve (AUC) were calculated as per definitions and equations below:

• True positive (TP): number of COVID-19 patients correctly classified
• False positive (FP): Healthy patients incorrectly classified
• True negative (TN): Healthy patients correctly classified
• False negative (FN): number of COVID-19 patients incorrectly classified

(1)Sensitivity =
TP

TP + FN
,

(2)Specificity =
TN

TN + FP
,

(3)Accuracy =
TP + TN

TP + FN + TN + FP
.
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The process was repeated five times until all parts of the datasets were included in the test set. The mean of 
the classification performance parameters was calculated and reported. The entire same process was repeated 
for the Itabuna/State 2 dataset, which consisted of FTIR spectra from 111 positive patients (329 spectra) and 
67 negative patients (199 spectra) to build the classification model. A summary of the data analysis workflow 
is shown in Fig. 12.
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