Tecnologias para a colheita e processamento de *Mauritia flexuosa L. F.* em comunidades rurais do norte de Minas Gerais

- Cibelle Pinheiro Mourão UFMG
- Ernane Ronie MartinsUFMG
- Karoline Paulino Costa UFMG

RESUMO

O extrativismo do buriti permite trabalho e renda a agricultores familiares no Norte de Minas Gerais, especialmente mulheres. Técnicas para a colheita e processamento facilitam o manejo correto e geram melhor aproveitamento dos frutos. O trabalho teve como objetivo, avaliar a maturação dos frutos após a aplicação de etefon e o efeito da temperatura na firmeza do epicarpo e no rendimento do óleo da casca e do mesocarpo para processamento da polpa na produção de raspa. Na avaliação do etefon, utilizou--se o delineamento inteiramente casualizado, em arranjo fatorial 5x2, cinco tempos de imersão (0, 30, 60, 90 e 120 min) e dois estádios de maturação (E1 e E2). Os resultados foram submetidos à análise de regressão. Na avaliação da temperatura foram utilizados três tratamentos (T1 = 30°C; T2 = ambiente - 27°C; T3 = 45°C). O óleo foi extraído das raspas e cascas secas. Os dados foram submetidos à análise de variância e teste de médias. O etefon não influenciou na maturação dos frutos; diferentes temperaturas não influenciaram na firmeza das cascas (0,67 +/-0,11 kg) e não houve efeito de interação entre as temperaturas e a origem do material utilizado para extração do óleo. A casca apresentou rendimento menor que a raspa (9,28% e 30,61%) e a temperatura de 45°C teve menor rendimento de óleo (18,85%). Concluiu-se que a aplicação do etefon não influencia na maturação dos frutos; temperaturas elevadas reduzem o rendimento de óleo e que além da polpa, é possível extrair óleo das cascas, normalmente descartadas pelos extrativistas.

Palavras-chave: Vereda, Etefon, Firmeza, Rendimento de Óleo, Extrativismo.

INTRODUÇÃO

Milhões de pessoas residentes nas áreas rurais satisfazem uma considerável parte de suas necessidades básicas e renda a partir da colheita de Produtos Florestais Não Madeireiros - PFNMs (ENDRESS et *al.* 2006; AFONSO & ÂNGELO, 2009). Complementar a importância dos PFNMs para a segurança alimentar das comunidades e para a geração de renda, a utilização de recursos florestais de maneira sustentável é uma importante ferramenta para a conservação dos recursos naturais e das comunidades rurais (DUARTE, 2002; CARVALHO, 2006; EMBRAPA, 2007; AFONSO & ÂNGELO, 2009).

O buriti, *Mauritia flexuosa* L.f, é uma espécie de palmeira da família Arecaceae com ampla distribuição no território brasileiro e grande fonte de produtos e subprodutos não-madeireiros por ter um uso múltiplo. Conforme RABELO & FRANÇA (2015), os principais produtos obtidos do buritizeiro são as fibras das folhas, as polpas concentradas ou desidratadas e os óleos, os quais são muito ricos em ácido oleico (ômega - 9). O fruto é rico em vitamina A, B, C, E, proteínas e minerais como cálcio e ferro. Consumido tradicionalmente ao natural, o fruto também pode ser transformado em doces e utilizado na alimentação de animais (ALMEIDA et *al.*, 1998; BARBOSA et *al.*, 2010; CARVALHO, 2011). A palmeira também pode ser utilizada no paisagismo. (LORENZI et *al.*, 2010)

Na região Norte de Minas, os buritizais se desenvolvem em veredas de Cerrado, possuem ampla utilidade e importância para os extrativistas, principalmente para as mulheres. O extrativismo dos frutos é uma importante forma de renda para as famílias das comunidades rurais. Estas comercializam os frutos *in natura*, o óleo extraído ou a raspa (polpa seca).

Acrescida a importância social, econômica e cultural, a espécie apresenta também importância ambiental, com papel fundamental nas veredas e matas de galeria, em locais inundados e nascentes (COLATTO, 2019). Normalmente a espécie ocorre em matas de galeria ao longo das margens de cursos d'água, ou no entorno de nascentes, em áreas baixas e úmidas, ou ainda em veredas de áreas de Cerrado (PINHEIRO, 2011; FERREIRA et *al.*, 2015).

A espécie é dioica (RABELO & FRANÇA, 2015) e os frutos possuem a casca rugosa com a textura semelhante a escamas, a polpa possui consistência pastosa e coloração alaranjada (LOUREIRO et *al.*, 2013).

Na colheita, há duas possibilidades, coletar frutos que caem ao solo ou colher na árvore. Na colheita na árvore é feita a escalada, a qual é considerada uma atividade árdua e muito perigosa, ou ainda os frutos são derrubados com uso de varas de madeiras ou bambus, ainda assim é um manuseio difícil, sendo considerada uma atividade cansativa e inadequada. Por essas razões, a colheita dos frutos é realizada quase sempre na superfície do solo, porém a quantidade que se desprende é muito baixa em relação aos frutos que permanecem nos cachos, desse modo, poucos frutos são coletados, resultando numa

produtividade insignificante (RABELO & FRANÇA, 2015), indicando a necessidade de práticas que possam promover a coleta dos frutos e a maturação de forma sincronizada, facilitando o manuseio e beneficiamento.

Em um mesmo buritizal, a maturação dos frutos pode ocorrer de forma heterogênea, variando de 7 a 11 meses (LORENZI et *al.*, 2004; SOUSA & PÉRPETUO, 2016). A busca por técnicas para a inovação dos procedimentos de colheita, processamento e beneficiamento da espécie é cada vez mais necessária, visto que "nos últimos 10 anos, a produção florestal não-madeireira vem aumentando a cada ano e os ingressos totalizam mais de 10 bilhões de reais, distribuídos nas diversas regiões brasileiras" (COLATTO, 2019). Além disso, somam-se os ganhos obtidos pelos extrativistas, uma vez que melhorias no processo de colheita e processamento resultam em maior aproveitamento do tempo e dos frutos.

As cascas dos frutos, na maioria das vezes, são descartadas pelos extrativistas, que utilizam a raspa para comercialização. Diante da ampla possibilidade de usos do buriti, orientações sobre a colheita, a pós-colheita, o processamento e o beneficiamento dos frutos da palmeira são importantes para que novas formas de manejo da espécie sejam alcançadas.

Objetivou-se com este trabalho buscar inovações para a colheita, acelerar a maturação, o processamento e o beneficiamento dos frutos de buriti, para que os extrativistas utilizem a espécie de forma mais sustentável, realizem práticas que otimizam as atividades, diminuindo os riscos nas etapas de colheita dos frutos e retirada das polpas, proporcionando melhor aproveitamento dos frutos.

OBJETIVOS

- Avaliar a maturação dos frutos da espécie após a aplicação de etefon.
- Avaliar o efeito da temperatura na firmeza do epicarpo e no rendimento do óleo da casca e do mesocarpo.

MÉTODOS

Avaliação da influência do etefon: Foram coletados frutos de duas palmeiras localizadas em vereda comunidade de Paracatu, município de Brasília de Minas - Minas Gerais, sendo que cada cacho apresentava estádio de maturação específico: palmeira 1, frutos menos imaturos (E1); palmeira 2, frutos mais imaturos (E2).

Na condução do experimento foi utilizado o delineamento inteiramente casualizado (DIC) em arranjo fatorial 5x2, cinco tempos de imersão em etefon (0– sem imersão em etefon, 30, 60, 90 e 120 min) e dois estádios de maturação (E1 e E2) com três repetições. A solução de etefon foi preparada na concentração de 2,4 g L⁻¹. Cada parcela recebeu 10 frutos,

totalizando 30 frutos por tratamento. As bandejas com os frutos foram ensacadas com saco plástico preto. A firmeza do fruto foi avaliada ao longo de 5 dias, utilizando penetrômetro digital (*Instrutherm, PTR-300*), com ponteira de 3 mm. A cada dia de avaliação, dois frutos de cada parcela foram perfurados na região mediana do epicarpo para leitura com o penetrômetro. Após a avaliação, os frutos eram descartados. Os resultados foram submetidos à análise de regressão.

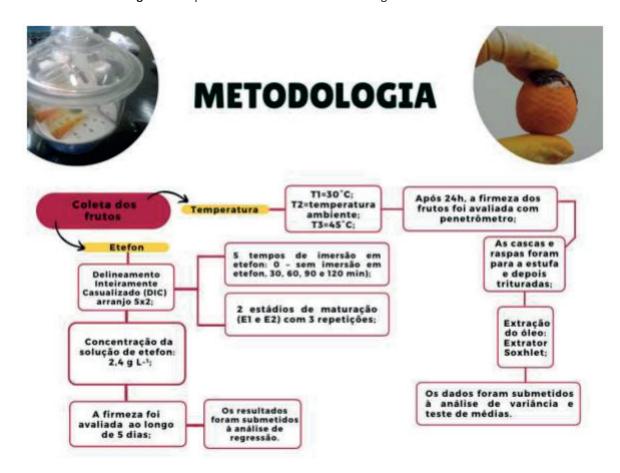
Biometria dos frutos: Avaliou-se com o auxílio de paquímetro digital e balança digital, os valores de diâmetro, comprimento e peso de 50 frutos em cada estádio de maturação. Assim, por meio dos valores médios do diâmetro e comprimento foi conduzida a classificação de acordo com a razão diâmetro longitudinal/diâmetro transversal (DL/DT). A classificação dos frutos quanto à biometria foi realizada segundo SANTOS, (2016) que classifica os frutos de acordo com seu índice de formato (IF), a razão entre os diâmetros longitudinal e transversal, como: esféricos (IF=1); oblongos (entre 1,1 e 1,7) e cilíndricos (maior que 1,7).

Avaliação da influência da temperatura: Após a coleta os frutos foram levados ao Laboratório de Plantas Medicinais e Aromáticas do Instituto de Ciências Agrárias da Universidade Federal de Minas Gerais (ICA/UFMG) e submetidos a diferentes temperaturas no processamento. Foram três tratamentos com cinco repetições (10 frutos por repetição), sendo, T1 = estufa a 30°C; T2 = temperatura ambiente e T3 = estufa a 45°C.

Todos os frutos estavam imersos em água e houve acompanhamento para avaliar a variação da temperatura. Após 24h foi avaliada a firmeza dos frutos e as cascas e raspas foram retiradas com uma faca para a avaliação do teor de óleo. Parte dos frutos foram avaliados após 48h, devido à firmeza elevada da casca após as 24h iniciais, que é uma situação que se observa em campo pelos extrativistas. Os frutos com o epicarpo mais tenro foram selecionados e pesados. Depois as cascas e as polpas foram removidas, pesadas, alocadas em saquinhos de papel e armazenadas na estufa de secagem com circulação de ar à temperatura de 45°C. Após 24h na estufa, as amostras foram novamente pesadas para a obtenção do peso seco do epicarpo e do mesocarpo.

Extração do óleo da polpa: As polpas secas foram trituradas em liquidificador industrial e 5 g de cada amostra foram dispostas em cartuchos de papel filtro. A extração foi realizada no laboratório de Bromatologia do Instituto de Ciências Agrárias da Universidade Federal de Minas Gerais (ICA/UFMG), utilizando-se extrator Soxhlet. Antes de iniciar a extração, os cartuchos e os *reboilers* foram colocados em dessecador. Depois foram adicionados 100 mL do solvente orgânico hexano em cada *reboiler* e estes foram conectados à cápsula de extração. O aquecimento do extrator foi programado para 100°C. O gotejamento do solvente foi monitorado até o seu ponto inicial, iniciando assim, a contagem do tempo de extração.

O tempo de cada extração foi de 4h contínuas. Após a extração, a válvula de refluxo foi fechada e o solvente recuperado. O *reboiler* foi desacoplado do sistema e levado à estufa para evaporação do solvente. Depois, o óleo foi pesado e transferido para frasco âmbar armazenado sob refrigeração (2 a 8°C). Foram realizadas quatro extrações de cada tratamento.


Extração do óleo da casca: Para a extração do óleo da casca foi utilizado o mesmo processo utilizado na polpa. A partir do momento que começou o gotejamento do solvente, foram contabilizadas 4 horas para fechar o sistema e recuperar o hexano. Após esse processo, o óleo que estava no *reboiler* foi transferido para os frascos âmbar hermeticamente fechados, que foram armazenados sob refrigeração (2 a 8°C). As tortas foram desidratadas na estufa e depois pesadas.

A firmeza do fruto foi submetida a teste de médias e, o rendimento de óleo, tanto da casca quanto da polpa, foram analisados considerando arranjo fatorial arranjo fatorial 3x2, sendo três temperaturas e duas origens.

O cálculo do rendimento foi realizado a partir da metodologia utilizada por CARVALHO, 2011. O rendimento do óleo foi calculado em porcentagem (%), utilizando-se a diferença entre a massa de óleo da polpa seca (g) e a massa da torta proveniente da extração (g), sobre a massa da polpa úmida (g) multiplicada por cem. A massa de óleo (g) foi calculada pela diferença entre a polpa seca e a torta. Os cálculos do rendimento dos constituintes da amostra foram, a umidade (%), calculada pela diferença da polpa úmida (g) e da polpa seca (g) sobre a polpa úmida (g) multiplicada por cem e a biomassa (%) resultante do cálculo da massa da torta (g) sobre a massa da polpa úmida (g) multiplicada por cem. Os rendimentos foram expressos em gramas e não em mL por causa das perdas que ocorrem durante a extração (CARVALHO, 2011).

Abaixo, um fluxograma sobre a metodologia utilizada na avaliação da influência do etefon e da temperatura da água de imersão sobre os frutos de buriti.

Figura 1. Esquema resumido sobre a metodologia adotada no estudo.

RESULTADOS

Os dados biométricos observados estão expressos na Tabela 1.

TABELA 1. Biometria dos frutos de buriti coletados em vereda do município de Brasília de Minas.

	Diâmetro Transversal (DT)(mm)	Diâmetro Longitudinal (DL)(mm)	Índice de formato (IF)	Classificação segundo o IF	Peso (g)
Palmeira 1 (E1)	43,14 ± 1,22	50,67 ± 2,56	1,2	Oblongo	49,68 ± 3,98
Palmeira 2 (E2)	41,17 ± 1,55	43,68 ± 2,63	1,2	Oblongo	39,77 ± 4,41

SANTOS (2016) classifica os frutos de acordo com seu índice de formato (IF), que é a razão entre os diâmetros longitudinal e transversal, como: esféricos (IF=1); oblongos (entre 1,1 e 1,7) e cilíndricos (maior que 1,7). Portanto, os frutos das palmeiras 1 e 2 foram classificados como oblongos.

Os dados de firmeza e rendimento estão na Tabela 2.

TABELA 2. Firmeza e rendimento de óleo do epicarpo dos frutos de buriti (*Mauritia flexuosa*) imersos em água em três temperaturas.

Temperatura	Firmeza	Rendimento
Ambiente (27°C)	0,71 a*	20,38a*

Temperatura	Firmeza	Rendimento
30°C	0,67 a	20,61a
45°C	0,63 a	18,85b

^{*}Médias seguidas da mesma letra não diferem entre si pelo teste Tukey a 5% de probabilidade

De acordo com os resultados apresentados na tabela 2 não houve diferença na firmeza do epicarpo dos frutos ao tratá-los com temperaturas diferentes $(0.67 \pm 0.11 \text{ kg})$.

Em relação ao rendimento de óleo, a 45°C houve menor rendimento (18,85%) quando comparado às temperaturas de 27°C e 30°C (20,38% e 20,61%, respectivamente).

Os dados de rendimento de óleo de acordo com a origem estão na Tabela 3.

TABELA 3. Rendimento de óleo em duas partes dos frutos do buriti (Mauritia flexuosa).

Origem	Rendimento de óleo	
Raspa	30,61 a*	
Casca	9,28 b	

^{*}Médias seguidas da mesma letra não diferem entre si pelo teste F a 5% de probabilidade.

Em relação à origem do material, a casca apresentou rendimento de óleo menor que a raspa (9,28% e 30,61%).

O resultado relacionado à firmeza no estádio de maturação 1 pode ser visualizado na figura 2.

2.00
1.80
1.80
1.60
1.40
1.20
1.20
1.20
1.20
0.60
0.40
0.20
5 5.5 6 6.5 7 7.5 8 8.5 9

FIGURA 2. Firmeza (kg) dos frutos de buriti (Mauritia flexuosa) no estádio 1 de maturação.

O resultado relacionado à firmeza no estádio de maturação 2 está apresentado na figura 3.

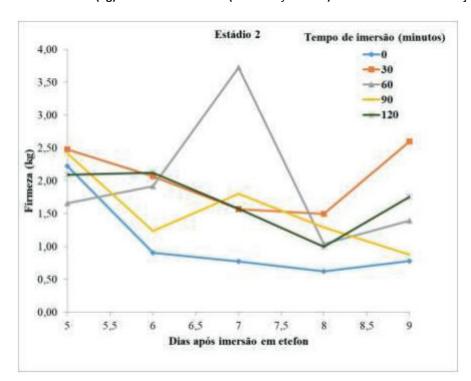


FIGURA 3. Firmeza (kg) dos frutos de buriti (Mauritia flexuosa) no estádio 2 de maturação.

O comportamento observado nos gráficos para os frutos no estádio 1 e 2 indica que o etefon não influenciou na aceleração da maturação.

DISCUSSÃO

O tratamento com água à temperatura de 45°C apresentou menor rendimento (18,85%) quando comparado à temperatura ambiente (20,38%) e à temperatura de 30 °C (20,61%). Para que não ocorram perdas durante o processamento e beneficiamento dos frutos de buriti, é necessário ter uma temperatura padrão que facilite a retirada das cascas, que deixe os frutos mais tenros, que não influencie no rendimento e que não afete a composição química do óleo. Em um estudo feito por RABELO & FRANÇA (2015), após uma hora de imersão, tanto em água morna como em água na temperatura ambiente, todos frutos ficaram com epicarpo (casca) e o mesocarpo (polpa) tenros e prontos para o processamento e beneficiamento após 12 horas de armazenamento.

Em relação à origem do material, a casca apresentou rendimento de óleo menor que a raspa (9,28% e 30,61%). A extração do óleo das cascas, que na maioria das vezes são descartadas, é uma opção para os extrativistas, pois mesmo que o rendimento de óleo dessa região do fruto seja menor comparado com a região do mesocarpo, a atividade é viável, evidenciando assim, a importância do aproveitamento máximo de todas as partes dos frutos. Em estudo realizado por ANDRADE et *al.* (2006), composição, densidade e teor de óleo do coco da macaúba em base seca são apresentados, sendo o teor da casca 9,8%,

enquanto que para o buriti foi observado o rendimento 9,28%, e, o da polpa, 69,9%, mais que o dobro encontrado nas raspas de buriti. Já em outro estudo, MENEZES FILHO et *al.*, (2019) utilizaram a mesma forma de extração de óleo, com extrator Soxhlet, porém os óleos extraídos foram dos frutos da espécie *Hymenaea stigonocarpa* (jatobá-do-cerrado) e o teor de óleo da semente também foi avaliado. Os resultados apresentados para o teor de óleo da casca, do arilo e da semente foram iguais a 3,94%, 1,83% e 3,47% respectivamente. Houve diferença significativa entre as três amostras. O motivo da casca apresentar maior rendimento de óleo, neste caso, é a própria porcentagem de cada material que constitui o fruto, uma vez que o jatobá não é um fruto carnoso como o buriti. De toda forma, o óleo pode ser extraído das cascas de buriti que normalmente são descartadas pelos extrativistas.

A aplicação de etefon em determinadas concentrações pode acelerar o amadurecimento de alguns frutos como bananas e caqui. Porém não foi observado esse comportamento para os frutos de buriti, mesmo sabendo que são climatéricos (SANTELLI et al., 2009), não houve relação entre o tempo de imersão em etefon e a firmeza do fruto. Uma explicação para esse comportamento atípico pode ser o fator umidade, após a imersão em etefon, as bandejas com os frutos de *M. flexuosa* foram ensacadas com plástico escuro. Em estudo realizado por SANTELLI et al., (2009) com frutos de *M. vinifera* foi evidenciado atraso do amadurecimento em cerca de 20 dias devido ao efeito da alta umidade relativa.

No trabalho com macaúba realizado por LOPES (2016), concluiu-se que a firmeza da polpa está correlacionada com o teor de óleo, ou seja, quanto menor a firmeza da polpa mais avançado o estádio de maturação do fruto e consequentemente maior o teor de óleo. Neste trabalho não foi observada essa relação, visto que os tratamentos com imersão, em etefon e em água a diferentes temperaturas, não influenciaram na firmeza dos frutos.

Em estudo realizado por SANTOS (2016) concluiu-se que a aplicação do etefon por imersão não é eficiente para uniformizar a maturação dos frutos de buriti, sendo a diminuição da firmeza do mesocarpo influenciada somente pelo tempo após a colheita.

Sugere-se que na realização de novos estudos sejam utilizados maior número de frutos por parcela e maior tempo de imersão em etefon, de forma que a amostragem na avaliação da firmeza seja mais representativa (NAZÁRIO, 2016).

CONCLUSÃO

A maturação dos frutos não foi influenciada pela aplicação do etefon. Temperaturas elevadas reduzem o rendimento de óleo e, além da polpa (raspa), é possível extrair óleo das cascas, que são normalmente descartadas pelos extrativistas.

■ REFERÊNCIAS

- 1. ANDRADE, M. H. C.; VIEIRA, A. S.; AGUIAR, H. F.; CHAVES, J. F. N.; NEVES, R. M. P. S.; MIRANDA, T. L. S.; SALUM, A. Óleo do fruto da palmeira macaúba parte I: uma aplicação potencial para indústrias de alimentos, fármacos e cosméticos. Anais do II ENBTEQ Encontro Brasileiro sobre Tecnologia na Indústria Química, p. 17-19, 2006.
- 2. AFONSO, S. R.; ÂNGELO, H. Mercado dos produtos florestais não-madeireiros do cerrado brasileiro. **Ciência Florestal**, v. 19, n. 3, p. 315-326, 2009.
- 3. CARVALHO, C.O. de. Comparação entre métodos de extração do óleo de *Mauritia flexuosa* L.f. (Arecaceae buriti) para o uso sustentável na Reserva de desenvolvimento Tupé: rendimento e atividade antimicrobiana. 109 f. Dissertação (Mestrado em Biotecnologia e Recursos Naturais). Universidade do Estado do Amazonas. Manaus. 2011.
- 4. COLATTO, V. In: BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Bioeconomia da florestal: a conjuntura da produção florestal não madeireira no Brasil. Serviço Florestal Brasileiro. 2019. 84 p.il.
- 5. ENDRESS, B. A.; GORCHOV, D. L.; BERRY, E. J. Sustainability of a non-timber forest product: Effects of alternative leaf harvest practices over 6 years on yield and demography of the palm Chamaedorea radicalis. Forest Ecology and Management, v. 234, n. 1-3, p. 181-191, 2006.
- 6. FERREIRA, M. das. G. R. F.; COSTA, C. J.; PINHEIRO, C. U. B.; CARVALHO, C. O. de. In: LOPES R.; OLIVEIRA, M. do. S. P. de.; CAVALLARI, M.M.; BARBIERI, R. L.; CONCEIÇÃO,
- 7. L. D. H. C. S. da C. Palmeiras nativas do Brasil. Embrapa, 2015, p.160, 432p. il. LOPES, O. P. Caracterização do amadurecimento e uso de inibidores do etileno na conservação póscolheita de macaúba. 2016. 68 p. Tese (Doutorado em Fitotecnia) Universidade Federal de Viçosa, Viçosa.
- 8. LORENZI, H.; NOBLICK, L. R.; KAHN, F.; FERREIRA, E. Flora Brasileira Arecaceae (Palmeiras). São Paulo, p. 280, 2010.
- LOUREIRO, M. N.; FIGUEIRÊDO, R. M. F.; QUEIROZ, A. J. M.; OLIVEIRA, E. N. A. Armazenamento de buriti em pó: efeito da embalagem nas características físicas e químicas. *Bioscience Journal*, v. 29, n. 5, p. 1092-1100, 2013.
- MENEZES FILHO, A. C. P. D.; MALAQUIAS, K. da S.; CASTRO, C. F. D.S. Caracterização dos Compostos Químicos dos Óleos Extraídos da Casca, Arilo e Semente dos Frutos de *Hymenaea stigonocarpa* Mart. ex Hayne (Jatobá-do-Cerrado). Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde, v. 23, n.2, p.195-198, 2019. DOI: http://dx.doi.org/10.17921/1415-6938.2019v23n3p171- 174
- 11. NAZÁRIO, D. F. R. dos S. Influência do Etefom na Maturação de Frutos de Buriti (*Mauritia flexuosa* L. f.). 2016. Trabalho de Conclusão de Curso (Bacharelado em Agronomia) Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros.
- 12. RABELO, A.; FRANÇA, F. Buriti: coleta, pós-colheita, processamento e beneficiamento dos frutos de buriti. Editora INPA, 2015. 42 p. il.
- 13. SANTELLI, P.; CALBO, M. E. R.; CALBO, A. G. Fisiologia pós-colheita de frutos da palmeira *Mauritia vinifera* Mart. (Arecaceae). **Acta Botanica Brasilica**, p. 697-702, 2009.

14.	SANTOS, C. B. dos. Influência do armazenamento e do ethephon nas propriedades físico- químicas do fruto e óleo de buriti (<i>Mauritia Flexuosa</i> L.f). 2016. 64 f. Dissertação (Mestrado em Produção Vegetal) – Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros.
15.	SOUSA, R. C. de.; PERPÉTUO, N. C. F. Fibra de buriti (<i>Mauritia flexuosa</i> Mart.): características e aplicações. <i>Blucher Design Proceedings</i> , v. 2, n. 9, p. 4316-4326, 2016.