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Resumo

A triagem virtual baseada na estrutura (SBVS) contribui significativamente para as eta-
pas iniciais da descoberta de fármacos. No entanto, o SBVS geralmente depende de um
processo bastante trabalhoso que consiste na seleção manual de compostos hits. Ape-
sar da existência de vários trabalhos semiautomáticos que propõem métodos de rescoring
e filtragem, a priorização e seleção automática de compostos promissores ainda é um
problema em aberto. Portanto, neste trabalho, abordamos esse problema a partir de
duas perspectivas. Primeiramente, no aspecto descritivo, propomos o nAPOLI (Analysis
of Protein-Ligand Interactions), um servidor web que combina análises em larga escala
de interações conservadas em complexos proteína-ligante a nível atômico, representações
visuais interativas e relatórios detalhados sobre resíduos/átomos que interagem com a
proteína. No aspecto preditivo, propomos LUNA e Functional Interaction FingerPrint
(FIFP). LUNA é uma nova biblioteca Python para a descoberta de fármacos que permite
a análise de qualquer complexo molecular e reúne várias funções para filtrar e visualizar
interações. Por sua vez, FIFP é um novo fingerprint de interação do tipo hash que codi-
fica complexos moleculares e suas interações como fingerprints binários ou de contagem.
FIFP também fornece vários recursos interativos e visuais para simplificar a análise de
informações dos fingerprints. Para validar e ilustrar a aplicabilidade do FIFP, primeiro ap-
resentamos uma avaliação exploratória de seus parâmetros, seguida de um estudo de caso
onde treinamos diferentes modelos de aprendizado de máquina para reproduzir as pon-
tuações de docking observadas em um conjunto de dados composto por 86.641 moléculas
em complexo com o receptor Dopamina D4. Em seguida, comparamos os modelos obtidos
com quatro fingerprints concorrentes (ECFP, FCFP, SILIRID e PLEC). FIFP superou
as abordagens concorrentes com um R2 médio de 0,55. Portanto, vislumbramos LUNA e
FIFP como estratégias promissoras para campanhas de SBVS e aprendizado de máquina.

Palavras-chave: Padrões de interação proteína-ligante, padrões de reconhecimento molec-
ular, análise visual de interações, priorização de compostos promissores



Abstract

Structural-based virtual screening (SBVS) contributes significantly to early-stage drug dis-
covery. However, SBVS commonly depends on a thorough manual process of hit selection.
Despite the existence of several semi-automatic works that propose rescoring and filtering
methods, the prioritization and automatic selection of promising compounds are still an
open problem. Therefore, we tackle this problem from two perspectives. First, in the
descriptive aspect, we propose nAPOLI (Analysis of PrOtein-Ligand Interactions), a web
server that combines large-scale analysis of conserved interactions in protein-ligand com-
plexes at the atomic level, interactive visual representations, and comprehensive reports
of the interacting residues/atoms to detect and explore conserved non-covalent interac-
tions. In the predictive aspect, we propose LUNA and Functional Interaction FingerPrint
(FIFP). LUNA is a novel Python library for drug design that permits the analysis of
any molecular complex and brings together several functions for filtering and visualizing
interactions. In its turn, FIFP is a novel hashed interaction fingerprint inspired by ECFP
that encodes molecular complexes and their interactions either as a binary or count fin-
gerprint. FIFP also provides several interactive and visual features to simplify fingerprint
information analysis. To validate and illustrate the applicability of FIFP, we first present
an exploratory evaluation of its parameters, followed by a case study where we trained
different machine learning models to reproduce the observed docking scores in a data
set consisting of 86,641 molecules docked against Dopamine D4. We then compared the
obtained models to four competing fingerprints (ECFP, FCFP, SILIRID, and PLEC).
FIFP outperformed the competing approaches with an R2 of 0.55. Therefore, we envision
LUNA and FIFP as promising strategies for SBVS campaigns and machine learning.

Keywords: Protein-ligand interaction patterns, molecular recognition patterns, interac-
tion visual analysis, prioritization of promising compounds
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Chapter 1

Introduction

1.1 Molecular recognition and protein function

Proteins are highly abundant, versatile, complex, and vital macromolecules that
play a diverse spectrum of functionalities in living beings. Countless functioning and bio-
logical processes can be pointed out, such as cellular communication, defense, metabolism,
molecular recognition, movement, structural, and transport [172]. Thus, due to their im-
portance and versatility, proteins are the focus of countless biological research, and their
applicability ranges from areas such as medicine, agriculture, and biotechnology [125] to
even warfare purposes [105].

Numerous biological functions performed by proteins depend on highly specific
interactions with other molecules, as occurs between hormones and receptors or enzymes
and substrates [125]. Thus, molecular recognition refers to how two or more molecules
interact with each other.

To provide the means for the recognition to arise, it is required specificity and
complementarity both chemical and geometric between the receptor protein and the ligand
molecule (or just ligand). Such recognition takes place at regions called binding sites and
is primarily controlled by noncovalent interactions [92].

An extent class of molecules can be considered a ligand: ions, carbohydrates,
RNAs, DNAs, or other proteins. However, according to [5], in Chemistry, the term
“ligand” is used to describe atoms and small molecules that bind to a receptor. Therefore,
from now on, the term “protein-ligand interaction” will be used to refer to this particular
type of interaction.

Given the crucial importance of molecular recognition in mind, several scientific
research was proposed to comprehend how the recognition between two molecules occurs
and which forces are involved in such a process. Understanding molecular recognition
allows us to answer puzzling questions like ‘how are proteins able to recognize specifically
and efficiently one or more ligands?’ or ’how can a ligand interact with several different
proteins?’.
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Although Grunenberg (2011) [98] states that these questions present a compu-
tational challenge even for simpler biological systems, computational tools are valuable
and promising due to the complexity and volume of available data concerning molecular
recognition.

1.2 Noncovalent interactions

Molecular recognition is a phenomenon that requires high specificity and comple-
mentarity both geometric and chemical between two molecules. The latter is usually
driven by intermolecular interactions known as noncovalent interactions.

The preponderance of noncovalent interactions is explained by their weaker char-
acteristic when compared to covalent interactions, which makes them susceptible to re-
versibility. This aspect is fundamental to life as it enables organisms to respond quickly
to changes in the environment.

Therefore, in this section, we depict several noncovalent interactions that con-
tribute to molecular recognition, such as aromatic stacking, electrostatic interaction, halo-
gen bond, hydrogen bond, and hydrophobic interaction, among others.

1.2.1 Aromatic interactions

Aromatic interactions, as the very name indicates, are interactions involving aro-
matic rings. These interactions present an electrostatic component, which arises from
the resonant double bonds in the aromatic ring, the electrons from the σ orbital within
the ring plane, and π orbitals above and below the plane. The latter generates partial
negative charges above and below the plane, and a partial positive charge in the ring
plane. Consequently, these partial charges create a quadrupole momentum that enables
the rings to interact with other aromatic rings and other systems through an electrostatic
interaction [114, 125, 236].
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1.2.1.1 Aromatic stacking or π-π interactions

Aromatic stackings or π-π interactions consist of electrostatic, hydrophobic, and
van der Waals forces involving two aromatic rings [114]. Three typical stacking conforma-
tions are possible, namely, edge-to-face or T-shaped, parallel displaced or offset stacked
interactions, and face-to-face (see Figure 1.1). Note however that the last stacking is
unfavorable as the partial negative charges from the rings will be in contact.

Figure 1.1: Typical geometrical arrangement of aromatic stackings.

1.2.1.2 Cation–π interactions

Cation-π interactions are electrostatic interactions involving an aromatic ring and
a nearby cation. That can happen due to the partial negative charges above and below
the ring plane, which produces an attraction with a positively charged atom [220].

In proteins, this type of interaction is observed between cationic side chains (ARG,
HIS, and LYS) and aromatic side chains (HIS, PHE, TRP and TYR) [89]. Cationic ligands
other than amino acid side chains as, for instance, acetylcholine [72] and metal cations
are also examples of molecules and ions capable of establishing cation-π interactions.
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1.2.1.3 Amide-π interactions

Similar to aromatic stackings, amide-π is an interaction in which aromatic ring
stacks against the π orbitals of the amide (Figure 1.2), characterizing, therefore, an ex-
ample of a dipole-quadrupole attraction [101, 229].

Figure 1.2: Example of an amide-π stacking.

1.2.2 Hydrophobic interactions or nonpolar interactions

The inclusion of a nonpolar substance in a polar solvent, like water, produces an
entropically unfavorable system. In order to compensate for the loss in entropy, apolar
substances tend to aggregate and interact with each other to reduce the contact with the
solvent, the so-called hydrophobic effect [75, 125, 145, 231].

These interactions involving apolar substances are commonly referred to as hy-
drophobic interactions. However, Privalov and Gill (1988) [188] drew attention to the
fact that hydrophobic interactions are indirect consequences of the hydrophobic effect,
and, therefore, they are not considered classical atom-atom interactions.

1.2.3 Hydrogen bonds

Hydrogen bonds, one of the most important and studied interactions, arise due
to the electronegativity difference between an electronegative atom (typically fluorine,
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nitrogen, or oxygen) and a hydrogen covalently bound to it. This difference causes the
electron cloud from the hydrogen to displace toward its partner (hydrogen donor), which
leaves a partial negative charge on the donor and a partial positive charge on the hydrogen.
An attractive force, namely hydrogen bond, is then formed between the hydrogen and an
electronegative atom containing a partial negative charge in the vicinity and free electron
pairs (hydrogen acceptor).

Hydrogens bonds’ strength varies according to the atoms involved in the inter-
action, the bond length between the hydrogen and the acceptor, and the angle formed
between the donor, the hydrogen, and the acceptor atom. Stronger hydrogen bonds were
demonstrated to be approximately linear (≈ 180◦) and to have a short bond length be-
tween the hydrogen and the acceptor (1.2 to 1.5 Å) [112, 226].

1.2.4 Weak hydrogen bonds

Although typical hydrogen bonds involve highly electronegative atoms, some non-
conventional and weaker hydrogen bonds can also comprehend carbons and aromatic rings
[25, 43, 62, 65, 230, 251]. In those circumstances, carbons act as hydrogen donors and
aromatic rings act as acceptors, which happens due to its electron-rich cloud above and
below the ring.

1.2.5 Halogen bonds

Halogen bonds are interactions with an electrostatic component that are considered
similar to hydrogen bonds as they also involve an electron acceptor and donor moieties.
They are frequently represented as B···X—R, where B is a Lewis base (halogen acceptor),
X is a halogen (usually chlorine, bromine, or iodine), and R is an atom covalently bound to
it. By this terminology, it is important to mention that the term Lewis base comprehends
any electron-rich species, including, therefore, aromatic rings.

In opposition to the commonly expected behavior of halogen atoms, when cova-
lently bound to other atoms, they act as electron acceptors (electrophiles) rather than
electron donors (nucleophiles). A well-established explanation for this unusual behavior
is that the electron density becomes anisotropically distributed (not uniform) due to the
covalent bond (Figure 1.3). Analysis of electrostatic potential shows that the electron
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cloud is displaced toward the covalent bond, which causes this region to obtain a negative
potential [186]. Consequently, a cap on the elongation of the covalent bond arises with a
positive potential, the so-called σ-hole. As this region is depleted of electrons, it can be
electrostatically attracted by a nucleophile moiety, giving rise to the halogen bond.

Figure 1.3: A representation of the unusual electron density in a halogen atom covalently
bound to carbon. The color scale varies from blue, the most positive surface potential,
including the σ-hole, to red, the most negative surface potential.

An interesting feature of halogen bonds that arises from the σ-hole is that the
interactions tend to be highly directional [163, 164, 165, 166] whereby stronger ones tend
to be shorter and linear (ranging from 140◦ to 180◦).

Of all halogen atoms, fluorine is the only exception not to be pointed out as a
participant of typical halogen bonds. The reason is that fluorine does not frequently form
σ-holes due to its high electronegativity.

1.2.6 Chalcogen bonds

Chalcogen bonds are interactions identical to halogen bonds in their origins as
they also arise from σ-holes, a cap on the elongation of the covalent bonds with positive
potential. The main difference between these bonds, as the very name indicates, is that
they involve chalcogen atoms, namely oxygen, sulfur, selenium, and tellurium. These in-
teractions can be represented as B···Y—R, where B is a Lewis base (chalcogen acceptor),
Y is a chalcogen, and R is an atom covalently bound to it (usually carbon and sulfur).
However, as σ-holes and the strength of chalcogen bonds increase as the atom polariz-
ability increases, bonds formed by oxygen atoms are the weakest and are relatively rare
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[18, 171]. It is also important to highlight that the term Lewis base comprehends any
electron-rich species, including, therefore, aromatic rings.

Another common feature between chalcogen and halogen bonds is their high di-
rectionality [154]. However, unlike its sister interaction, chalcogen bonds are typically
divalent [154], which means that two sigma-holes are present in the elongation of each
covalent bond. As a consequence, two chalcogen bonds may be formed (Figure 1.4).

Figure 1.4: A representation of a divalent chalcogen atom (Y) establishing two chalcogen
bonds with its Lewis base (B and B’) partners. R and R’ are atoms covalently bound to
Y, usually carbon and sulfur. In blue, it highlights the sigma-hole.

1.2.7 Tetrel and Pnictogen bonds

Tetrel and pnictogen bonds are also interactions from the family of halogen and
chalcogen bonds. These interactions, in its turn, involve groups 14 and 15 elements from
the periodic table, respectively. However, to the best of our knowledge, the application
and exploration of these interactions regarding their biological implications are still limited
and are typically restricted to theoretical and chemical crystal structure studies [17, 18,
143, 212].
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1.2.8 Van der Waals interactions

Van der Waals interactions arise from the distribution of the electronic charge
on an atom at a given moment. Since electrons continuously move around the atom
nuclei, its charge distribution becomes asymmetric, and a momentary dipole is formed.
Although this polarization is momentary, it is enough for inducing opposite charges in
another atom, forming the so-called induced dipole. As a consequence, the atoms, which
momentarily are with opposite charges, are attracted to each other by a force called
London force or dispersion force. As the atoms approach each other, their electrons start
to collide and repeal each other, which is in accordance with Pauli’s exclusion principle.
The combination of attraction and repulsive forces is called van der Waals interactions.
However, as pointed out by [125], the term “van der Waals” is typically used only in the
description of the attractive forces.

1.2.9 Electrostatic interactions

Electrostatic interaction is a broad term used to coin all interactions involving
partially or fully charged atoms or groups of atoms [118]. When both atoms have the
same charge, the interaction is repulsive and unfavorable; otherwise, it is attractive and
favorable.

Some examples of such interactions include ionic, dipole-dipole, and dipole-ion
[32, 231]. Other interactions also contain an electrostatic component, including aromatic
interactions, hydrogen bonds, and van der Waals. That said, in this section, we focus on
the three first examples.

Ionic, dipole-dipole, and dipole-ion can be described by basic Physics concepts,
namely Coulomb’s law. Thus, the strength of an electrostatic force is inversely propor-
tional to the distance between two charged entities. Other interactions, such as hydrogen
bonds, that contain other components should also be described considering these other
characteristics [125].
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1.2.9.1 Ionic interactions

Ion-Ion or ionic, the strongest noncovalent interaction, arise when fully charged
atoms attract or repeal each other.

1.2.9.2 Salt bridges

Salt bridges are a special type of interaction that involves simultaneously a hydro-
gen bond and ionic interaction, which means that the acceptor and donor atoms partic-
ipating in the hydrogen bond must be fully and oppositely charged [183]. In proteins,
these interactions can be established by positively charged residues (ARG, HIS or LYS)
and negatively charged residues (ASP or GLU) [15]

1.2.9.3 Dipole-dipole interactions

Dipole-dipole or multipolar interactions [181] are attractive/repulsive interactions
comprising partially charged atoms.

1.2.9.4 Ion-dipole interactions

As the very name indicates, ion-dipole forces arise from the attraction/repulsion
between fully (ion) and partially (dipole) charged atoms.
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1.3 Contacts and interaction calculation

A typical step preceding the identification of protein-ligand interactions is contact
mapping. The term contact is often confused with interaction or used interchangeably.
According to [55], contact refers to the spatial distribution of an atom and which atoms
comprise its vicinity. In its turn, interactions consist of all forces mediating the interaction
between atoms.

In this section, we first present two conventional approaches for detecting contacts,
followed by interaction representations, and finally, we present a series of tools currently
available in the literature.

1.3.1 Contacts calculation

Contacts can be calculated by using a cutoff-dependent or a cutoff-free strategy.
The former approach depends on a threshold value (cutoff) to determine the atom vicinity.
Thus, the vicinity of an atom X is determined by identifying which atoms are inside the
sphere of radius R (the cutoff) centered in X. However, the choice of this threshold is
not trivial [55].

Another drawback of such an approach is that it tends to identify “false contacts”
or occluded contacts, which occur when two atoms A and B are establishing a contact but
there is a third atom between them. From a physical point of view, a potential interaction
involving A and B are weakened and impaired by the third atom [70].

A straightforward solution for occlusions that occur due to covalently bound atoms
is the calculation of angles formed by the atoms in contact and their bound neighbors.
Such a method is typically taken into account during the interaction calculation step. In
HBPlus [161], for instance, the angle between the donor, the acceptor, and an atom bound
to the acceptor ensures that no atom is within the limits of a hydrogen bond. Besides
that, occlusions can also be reduced through shorter thresholds, which are usually applied
for some specific interactions.

Although these solutions reduce the number of occlusions significantly, some may
still be found. Cutoff-free approaches, on the other hand, did not experience the afore-
mentioned problems [55] since they do not require a threshold value and do not detect
occluded contacts. An example of a geometric and cutoff-free approach widely used is the
Delaunay tesselation (DT) that can be obtained as follows: firstly, the algorithm parti-
tions the atoms in geometric regions called Voronoi cells whose centroid is the atom. Each
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cell is defined as the smallest polyhedron formed by the linkage between a centroid and
all other centroids (Figure 1.5a), and the set of all cells form a Voronoi diagram (Figure
1.5b); next, a DT is generated by connecting the centroids of adjacent cells (Figure 1.5c).
Consequently, connected centroids form a graph in which edges represent atoms (vertices)
in contact.

(a) (b) (c)

Figure 1.5: Voronoi diagram and Delaunay tessellation (DT). (a) shows an example of
the construction of a Voronoi cell. (b) shows a set of Voronoi cells, the so-called Voronoi
diagram. (c) shows a DT (in light red) obtained through a Voronoi diagram (in dark red)
by connecting the centroid of adjacent Voronoi cells.

However, a limitation of DT is that it is sensible to minimal changes in atomic
positions as observed, for instance, between two models of an NMR structure [187], leading
to substantially different Delaunay tessellations (Figure 1.6).

(a) (b)

Figure 1.6: Sensitivity to minimal changes in Delaunay tessellation (DT). In (a), four
atoms are shown in their initial position and in (b), a small perturbation in atom positions
leads to substantially different Delaunay tessellations.
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1.3.1.1 Contact and interaction representation

Independently of the method chosen for contact prediction, contacts and, subse-
quently, interactions can be categorized by the granularity of the points [55, 133]. In
coarse-grained models (Figure 1.7a) [126, 246], contacts/interactions between molecules
are calculated departing from their representative point, which could be, for instance,
alpha carbons (CA) or their geometric center. Such modeling is especially preferred for
protein-protein analysis and molecular simulations of large biomolecules, which demand
high computational resources [10, 133].

Fine-grained models (Figure 1.7b) represent contacts/interactions at an atomic-
level, which are by far the most used representation. Examples of works that apply this
model include [138, 155, 208, 245, 249]. In the first phase of our work (Section 2.1), we
also opted for the atomic-level model [83]. However, in the second phase, we decided
to use a hybrid method (discussion below), which is more approximate to how chemical
interactions occur.

(a) (b) (c)

Figure 1.7: Different representations for aromatic stacking according to coarse-grained
(a), fine-grained (b), and hybrid models (c). In (a) and (c), the spheres represent the
alpha carbon and ring centroids, respectively.

Finally, in hybrid models (Figure 1.7c), both atoms and groups of atoms are consid-
ered during the contact/interaction perception. We believe this strategy to better model
some interactions that are established due to the contribution of multiple atoms. The
classic example is the interaction between two aromatic rings, where the stacking arises
from the contribution of all atoms in the ring. Thus, the ring centroid can be used as
the representative point, and interactions can be perceived using it as a reference. An
additional example is carboxylic acids whose anionic characteristics could be attributed
to all of its atoms. As a consequence, the geometric center of this chemical group could
be used as the representative point. In the second phase of our work, we decided to model
interactions using such a hybrid method (Section 2.3). Other examples of tools that apply
this modeling include PLIP [207] and Arpeggio [121].
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1.3.2 Tools for calculating protein-ligand interactions

Elucidating the mechanisms involved in molecular recognition and which forces
contribute to this phenomenon is a central problem in biology [123]. Since noncovalent
interactions are the primary contributors to the recognition between two molecules, inves-
tigating the mechanisms involved in protein-ligand interactions significantly contributes
to the understanding of how molecular recognition occurs, and to ligand prediction, target
identification, lead discovery, and drug design [90, 185].

Databases like the Protein Data Bank (PDB) [21], which comprehends more than
91,240 protein-ligand complexes (as of October 2019), provide us with essential knowl-
edge about protein-ligand interactions. Not surprisingly, several tools and databases were
proposed as an effort to investigate and depict protein-ligand interactions through such
large-scale data set [3, 36, 49, 54, 60, 77, 88, 103, 107, 121, 123, 215, 155, 157, 64, 192,
138, 161, 207, 208, 214, 222, 225, 247, 233, 238, 242, 245]. These tools are widely em-
ployed within the scientific community, being of great value in structure-based drug design
projects.

However, to the best of our knowledge, there is not an all-in-one tool that presents
a visual and interactive large-scale automated analysis of conserved interactions, and a
comprehensive report about them. Altogether, these features would further improve the
understanding of molecular recognition mechanisms.

In general, the tools currently available allow an investigator to analyze only one
complex at a time, and the comparison between multiple complexes is toilsome since it
must be performed manually. Even Ligplot+ [138], which permits the comparison of mul-
tiple structures, has some limitations, such as the small number of simultaneous diagrams
that a user can visually analyze. Some other tools [107, 157, 192, 242] were conceived to
assist analysis of docking and virtual screening results. In these tools, noncovalent interac-
tions are calculated both by angle or distance criteria [157, 192, 242] and by energy-based
criteria [107]. Results are presented as matrices of interaction fingerprints (IFP), which
allow the analysis of multiple complexes at once. Nonetheless, as these tools focus on an-
alyzing docking results, they do not provide an automated feature to detect and visualize
conserved protein-ligand interactions through structures available in the PDB. Determin-
ing these conserved interactions can provide evidence and suggestions to improve our
comprehension of the critical factors in molecular recognition, and to guide a docking and
virtual screening study.

Bearing this in mind, we proposed nAPOLI1 (Analysis of PrOtein-Ligand Interac-
tions), a web server that brings together an automated analysis of conserved interactions

1http://bioinfo.dcc.ufmg.br/napoli/
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across large data sets of protein-ligand complexes, interactive visualizations, and compre-
hensive reports of the interacting residues/atoms to explore and make sense of conserved
noncovalent interactions that work as key factors in molecular recognition.

This work was initially presented as a Master’s thesis [84], but during the present
work, nAPOLI was expanded with novel features, and its methods were improved, in-
cluding the ones for protein-ligand interaction calculation [83]. The improved methods
and novel features are presented in Section 2 and 3, while a brief overview of nAPOLI is
presented in the next section.

1.3.3 nAPOLI

The core of nAPOLI is divided into two sections: Dataset submission and Dataset
analysis. In Dataset submission, users are able to start a new project and submit their
own data set. At the time nAPOLI was first presented [84], users could only submit
projects by composing their data set in an exploratory way (see Section 3.1.1). However,
two new submitting options were included in the current version of nAPOLI (see Section
3.1.1) [83].

After the project submission, nAPOLI calculates the protein-ligand interactions
and generates a series of statistics, which will become available in Dataset analysis. To
do so, we devised a strategy to detect conserved atomic-level interactions in protein-
ligand interfaces modeled as bipartite graphs in which nodes are atoms from protein or
ligand, and edges are the interactions among them. Nodes and edges are labeled with the
physicochemical properties of atoms and interactions, respectively.

Some of the major questions nAPOLI aims to answer are: what are the possible
interactions that each ligand can establish with the protein? What is the frequency of
each type of interacting atom in the ligands data set? What is the frequency of each
type of interaction? Which residues interact with the ligands? At what frequency each
residue interacts with the ligands? Are there clusters of similar ligands? nAPOLI was
also developed to permit analysis of the whole data set or by choosing a cluster of similar
ligands for every feature.

The following sections present the visual strategies that support analyzing protein-
ligand interactions.
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1.3.3.1 Dataset summary

Provides an interactive table that contains the summary of the user data set (Fig-
ure 1.8a). A variety of interactive options were designed to help users to analyze their
data, including information about each type of atom or interaction; images of ligand
chemical structure or superposition of all ligands of a cluster, which helps to identify
structural similarities; search options and table sorting; just to list a few. nAPOLI also
provides an Interaction viewer (Figure 1.8b), where users can visualize the complex and
its interactions in an interactive and straightforward way. Both 3D and 2D-view of the
complex are displayed. 3D-view is a molecular viewer (3Dmol.js library [197]), while the
2D-view is the bipartite labeled graph whose edges are protein-ligand interactions. As
nAPOLI can define different interactions with a pair of atoms, multiple edges are included
in the representation.

1.3.3.2 Interactions by residues

The Interactions by residues section (Figure 1.8c) report which residues frequently
interact with a set of ligands and which types of interactions they establish.

We proposed a color coded table where users can analyze the whole data set or
a cluster of similar ligands at a time. This table has three main columns: Atom (the
atom name), Type of interaction and # Ligands with which it interacts (frequency). The
secondary headers show information about the alignment position - or the residue name if
it could not be aligned to any residue of the template structure - and the total frequency
with which such position/residue was found interacting. Such secondary headers group
the lines of the previous three columns and are coded by a heat-based color system that
varies from blue (cold lower frequencies) to orange (hot higher frequencies). Thus, through
this table, it is possible to detect the total frequency of a position/residue as well as the
frequency for each atom. Users can discover which residues were aligned to a certain
position and which PDB structures have such residues.
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Figure 1.8: Visual strategies to analyze protein-ligand interactions. (a) Dataset summary
table. (b) Interaction viewer. In this viewer, nodes represent the protein (blue) and the
ligand (green) atoms or a water molecule (red), and edges represent the established inter-
actions, which are color coded. For example, blue and yellow edges represent hydrogen
bonds and hydrophobic interactions respectively. (c) Color coded table from the Interac-
tions by residues section. (d) Available charts at the Graphical analysis section. From left
to right are shown a scatter, Pareto, pie and grouped chart. Slices in pie charts can be
colored based on the frequency or the number of atoms/interactions. In grouped charts,
each cluster is represented by a column.

1.3.3.3 Graphical analysis

In Graphical analysis section (Figure 1.8d), users have a statistical report using
Pareto charts, pies, grouped bars or scatter plots.

1.3.3.4 Interactions by ligands

All the protein-ligand interactions are presented and listed in a condensed and
concise table where each line contains the interactions established by each ligand. Users
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can also visualize the protein-ligand interactions in 3D and 2D-view such as described in
Section 1.3.3.1.

1.4 Molecular and interaction fingerprints

Molecular fingerprints (MFP) are descriptors that symbolically encode chemical
information, such as chemical formula, boiling and melting points, hydrophobicity, molec-
ular weight and size, number of rotatable bonds, and polarity, among others [202, 228],
typically through a binary or counting (frequency of a feature) sequence. MFPs are widely
used in screening and similarity comparison between a set of molecules, which permits
the discrimination of molecules according to a set of goals [202]. Similarly, interaction
fingerprints (IFP) encode contacts or interactions between atoms as a means to describe a
protein-ligand complex. IFPs are broadly applied in virtual screening as a post-processing
step to select compounds according to their similarity to a known complex of reference.

Frequently, the similarity between two molecules or complexes is given by the
Tanimoto coefficient, which varies from 0 to 1, and whose equation is presented below:

T (F1, F2) =
c

a+ b− c
(1.1)

Where a and b are the number of bits on (equal to 1) in the fingerprint F1 and
F2, respectively, and c is the number of common bits on between the fingerprints.

There are two major types of molecular fingerprints, namely structural and hashed
fingerprints. IFPs are often described as a specific fingerprint type, but due to their
common characteristics with the mentioned MFPs, we will describe IFPs as falling into
these categories.

In the following sections, we discuss the two major types of fingerprints. Therefore,
for a broader overview of other types of fingerprints refer to [12].

1.4.1 Structural fingerprint

In structural fingerprints, each bit in a binary sequence implies the presence or
absence of a predefined chemical/interaction feature. In the context of an MFP, for
example, the first bit could indicate whether a guanidine exists or not in a particular
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molecule. On the other hand, the first position in an IFP could indicate if the ligand
establishes a hydrogen bond with a particular residue R. For IFPs, one common approach
[61] is the separation of a block with N bits (one for each available interaction type) for
each residue in the binding site.

The number of features (fingerprint length) and which ones will be depicted in
the fingerprint directly impact the performance of algorithms that employ screening and
similarity comparison. Therefore, as Leach and Gillet (2007) [142] points out, the sub-
structures selection strongly depends on the ligands data set. Moreover, in IFPs, the
choice of which information to encode limits fingerprint usage in a multi-protein context
because a predefined set of bits from one fingerprint does not necessarily represent the
same bits in another fingerprint. That can happen because the binding site of two differ-
ent proteins may have different residues and, therefore, the information encoded in the
fingerprint will not be the same. A possible workaround for this problem is to perform a
structural alignment and define the bit information according to the aligned residues.

One of the most well-known MFP is the MACCS [76], although other examples
can be cited, namely Avalon [91], PubChem fingerprint2, E-state [100], BCI [16], and FP3
and FP4 from Open Babel [177].

Examples of IFPs that fall into this category are SIFt [61], Marcou’s IFP [157],
APIF [191], Pharm-IF [210], PyPLIF [192], TIFP [63], SILIRID [48], LORD_FP [237],
Arpeggio’s IFP [121], and PLIF [97].

1.4.2 Hashed fingerprint

Hashed fingerprints or topological fingerprints, differently from structural finger-
prints, do not contain a predefined sequence of features. Instead, the features are perceived
during the processing of molecules/complexes where unique substructures and patterns
are recognized and mapped to a bit position through a hashing function - hence the name
“hashed fingerprint”. However, as the number of features is not available a priori and as
the fingerprint length is finite, it may occur the so-called bit collision, which happens when
two unrelated features are mapped to the same bit position. As shorter the fingerprint
length is the more collisions may occur, which, as pointed out by Rogers and Hahn (2010)
[203] and Sastry et al. (2010) [209], causes the loss of information and adds noises to the
analysis. On the other hand, with a large enough fingerprint, the collision rate becomes
minimal [203].

The major advantage of hashed fingerprints over structural fingerprints is the gen-
2ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
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erality, i.e., it does not require the definition of a set of features a priori. As a consequence,
the fingerprint can explore the feature space more efficiently and permits the comparison
between two fingerprints in multiple contexts, not being limited to a specific scenario
and data set. Additionally, given such a large number of predefined features, structural
fingerprints tend to be much more sparse and slow for substructure searching.

However, the lack of a predefined set of features is also a double-edged sword as it
is not possible to map from a bit position back to the substructure that set the bit on,
which reduces its direct interpretability [142].

Examples of hashed MFPs include Atom pairs [37], Topological torsion [173], MOL-
PRINT 2D [19], Daylight fingerprint [59], ECFP [203], and E3FP [9]. Regarding IFP
approaches, to the best of our knowledge, SPLIF [53] and PLEC [245] are the only fin-
gerprints that fall into this category.

1.5 Drug discovery and virtual screening

The discovery and development of new lead compounds is a highly expensive and
time-consuming endeavor that takes up to 10-15 years [113]. Moreover, given the theoret-
ical number of chemical molecules that can be considered in a study (1060 to 10100) [148],
it is infeasible for current technologies to comprise this massive volume of compounds.

Thus, computational techniques like virtual screening (VS) and molecular docking
are becoming more and more popular as they contribute significantly to early-stage drug
discovery. The great acceptance and advantage of VS and docking are justified by a large
number of compounds (thousands of compounds) that are evaluated against a target
protein in silico, which sharply reduces costs and narrows the lead discovery [139]. It
is worthwhile to mention that these methodologies benefit from the immense amount
of available data in protein and chemical databases, such as the Protein Data Bank
(PDB) and ZINC, which encompass around 131,000 protein structures and 95,614,358
compounds, respectively [21, 116].

VS techniques can be classified into ligand-based (LBVS) and structure-based
(SBVS) methods based on the type of data available [152, 220].

LBVS is useful when structural information of the receptor (generally, a protein) is
not available, but a set of active ligand molecules for the desired receptor is known, which
is, therefore, the starting point to identify candidate compounds for experimental evalu-
ation. Some LBVS methods include similarity and substructure searching, quantitative
structure-activity relationships (QSAR), pharmacophore matching, and three-dimensional
shape matching [139]. In contrast, SBVS is useful when the receptor structure is known,
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which supports the use of docking methods to predict the protein-ligand conformation.
Drwal and Griffith (2013) [73] further add that when the structure of the receptor is avail-
able, both methods can be synergistically integrated to improve the drug design process.
In our work, we focus on the SBVS strategies and, therefore, from now on next sections
discuss the SBVS phases, namely the data preparation, the docking, and post-analysis.

1.5.1 Ligand and receptor preparation

The virtual screening success depends on many factors during each stage. In
the initial phase, the appropriate preparation of both ligand and receptor molecules is
critically important to obtain satisfactory outcomes.

The ligand preparation starts by selecting a set of ligands from chemical databases
like ZINC [116] or ChemDB [46]. The chemical space covered by current databases is
on the order of thousands to millions, and in a VS campaign would be a waste of time
to screen all compounds available. Thus, filtering ligands for docking is highly common
and reasonable. A usual strategy is to filter ligand databases by using drug-like physic-
ochemical properties based on Lipinski Rule of Five [147], as well as filtering potentially
reactive and toxic compounds. According to Klebe (2006) [132], ligand filtering can also
be improved by using the property profiles from the receptor binding site, such as the
pharmacophores.

Furthermore, in most cases, only a 2D representation (SMILES) of ligands is avail-
able, and the proper and realistic ligand conformer (the 3D representation) should be
generated. In this procedure, several considerations must be taken into account, namely
the correct assignment of ionization and tautomeric states and specification of enantiomers
arising from chiral centers in the molecules [152, 234]. Lastly, sometimes, it is also neces-
sary to assign partial charges to the compounds as a requirement of some docking tools
[152].

Regarding receptor preparation, it is important to check for structural integrity, for
instance, verifying if there are missing residues, especially in the binding site. Addition-
ally, assign appropriate ionization states of residues in the binding site, and the correct
tautomer for histidines must be taken into account. Usually, hydrogen atoms are added
to the protein and geometry refinement is employed for optimizing both protein-ligand
complex and also added hydrogen atoms. Finally, it is also recommended to maintain
structural waters whenever such molecules are essential to the protein-ligand interaction
[152, 234].
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1.5.2 Molecular docking

Molecular docking, or just docking, is a computational strategy envisioned to pre-
dict the likely binding mode of a small molecule at a particular receptor (generally, a
protein), the so-called ligand pose prediction. Since this work focus on protein-ligand
complexes, from now on, we will refer to the receptor as being a protein molecule.

Docking consists of two major phases: pose prediction and pose scoring. An accu-
rate pose prediction relies on the degree of ligand and receptor flexibility. Early docking
methods considered both molecules as rigid bodies, taking into account the lock-and-key
model proposed by Fischer (1894) [86]. However, currently, several different approaches
already consider the flexibility of ligands and receptors to some extent in order to con-
template the induced fit and the conformational selection model [30].

Finally, the correct and precise assignment of a scoring function comprises the
touchstone to rank compounds and distinguish ligands from non-ligands. Therefore, it is
well-established that scoring is still the Achilles’ heel of docking methodologies since it
is very challenging to accomplish small processing timescale, precision, and complexity.
In other words, a docking algorithm should be fast as the screening process comprehends
thousands of complexes, but the correct evaluation of a pose must also be accurate,
which usually involves complex calculations that demand more computational processing
[131, 234].

1.5.3 Post-analysis

As already discussed, it is well-established that scoring functions have several draw-
backs that trace back to their various assumptions and simplifications in the evaluation of
modeled complexes. Consequently, non-ligands may be prioritized first over true ligands,
which is not desirable [234].

Therefore, it is very wise to perform post-analysis procedures in order to minimize
the number of false positives in the selection list and to propagate the true hits to the
top of the list [152]. In this section, we will discuss some strategies commonly employed
to obtain better screening outcomes.
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1.5.3.1 Evaluation of the virtual screening performance

In order to evaluate the protocol employed in both ligand and receptor preparation
and the docking protocol, it is crucial to validate the obtained poses. The first simple
approach to access and validate the docking results is through redocking, which involves
taking the crystallographic ligand from the receptor-ligand complex and then docking
the same ligand into the original receptor coordinates by using a docking program. This
experiment is commonly used to evaluate the accuracy of a scoring function and a docking
program regarding their pose reproduction ability.

Another assessment of a docking program pose reproduction is cross-docking [130,
234], in which docking is performed in a protein structure co-crystallized with a different
ligand. This type of experiment is interesting since docking algorithms use rigid proteins
and therefore, a different receptor conformation may allow the sampling of different lig-
and conformations. Additionally, cross-docking resembles the typical scenario in virtual
screening. Usually, predicted poses are compared to the crystallographic position based
on the root-mean-square deviation (RMSD) between them. In [1], a docking is consid-
ered successful if the top-scoring pose was within 2.0 Å RMSD from the crystallographic
position.

Another way to evaluate the performance of docking protocols is through enrich-
ment studies. These comprise rank ordering a compound library containing a set of
known ligands (actives) among a large number of non-ligands (decoys) [1], which can be
obtained from the Directory of Useful Decoys (DUD) database [109]. The expectation
is that known actives would rank higher than non-actives by the docking program and
protocol. In [130], the authors discuss several different enrichment descriptors.

Additionally, outcomes can be evaluated by the receiver operating characteristic
(ROC) curves that plot the true positive rate (sensitivity) against the false positive rate
(1−specificity), based on their total area under the curve (AUC). Smaller subsets of the
docking database can also be assessed; such that early enrichment is reported. A good
early enrichment in a VS shows that active compounds were ranked at the very top of
the database, which is crucial since only a small number (in most cases a few dozen) of
compounds are usually selected for experimental testing.
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1.5.3.2 Consensus scoring and rescoring

Bearing in mind the limitations of scoring functions, one strategy is the use of con-
sensus scoring, in which more than one scoring function is used to select top-ranked com-
pounds that are common to each function. Another strategy is to use a rescore function,
such as more sophisticated methods that take into account a more appropriate descrip-
tion of interactions and incorporate the solvation effect. Examples of such methods are
the Molecular Mechanics-Poisson–Boltzmann Surface Area (MM-PBSA) and Molecular
Mechanics-Generalized Born Surface Area (MM-GBSA) [152, 234].

Some other works [53, 61, 63, 157] propose rescoring docking poses through access-
ing protein-ligand interactions profiles. Different approaches exist and broadly speaking,
they are based on interaction fingerprints, which are obtained by converting 3D struc-
tural binding information into a one-dimensional (1D) binary string. In such strategies,
docking poses are evaluated by comparing the interactions established in the complex of
reference, and their similarity is measured with the Tanimoto coefficient. Thus, highly
similar fingerprints are ranked first. In [61, 157], compounds were further clustered by
using a hierarchical agglomerative algorithm. The critical drawback of such methods is
that they do not provide their source code. Moreover, these methods depend on the refer-
ence structure to rank the compounds, which is not the case of iGEMDOCK [107], which
is a fingerprint-based method where the authors presented a new score function based on
interactions conservation. Nonetheless, a disadvantage of iGEMDOCK is that users are
required to use the author’s docking tool, the GEMDOCK [250].

Similarly, AuPosSOM [27] is a fingerprint-based approach that introduces a new
scoring function and proposes the use of self-organizing maps (SOM) to cluster the com-
pounds. A disadvantage of such a method is that it requires a list of known active com-
pounds to train the neural network. Thus, in the following work, Mantsyzov et al. (2012)
[156] proposed an improvement in the method by considering interactions conservation as
an effort to remove the dependence on prior knowledge of the compounds.

In contrast, in [69], the score function is based on an atom-atom contact matrix,
which means that their methodology only verifies an atom vicinity, and does not classify
the contacts into noncovalent interactions. In [14], the authors proposed a score func-
tion based on footprints, which are interaction signatures whose profile corresponds to
decompositions of electrostatic, steric, and hydrogen bonding interactions.

DiSCuS [242] is also an interesting tool that allows users to submit and compare
different score functions, as well as perform analysis using combinations of scores. This
tool also provides a filtering module for selecting compounds based on interaction fin-
gerprints and a searching feature for finding compounds with a similar binding mode.
DiSCus also provides a molecular viewer where users can analyze the 3D structure.
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Finally, machine learning (ML) techniques, especially deep learning methods, have
become increasingly prominent in the quest for active compound identification in recent
years [44, 79, 104, 140, 141]. Some of the reasons that made it possible include the massive
amount of biological data available nowadays and improvements in computational power
thanks to graphics processing units (GPUs) [44, 141]. The applications of ML in drug
discovery cover the task of predicting actives and inactive compounds, and binding affinity
[51, 144, 160, 162, 219, 245].

1.5.3.3 Geometric analysis

An additional but widespread and fundamental strategy consists of a thorough
analysis of the docking poses to select and filter hit molecules and distinguish poor poses.
This procedure is useful because it involves the researcher’s expertise and the use of the
literature as a source of knowledge [131, 152]. In the latter case, if previous studies
have already described critical residues to protein activity and which interactions are
commonly established in its binding site, it is reasonable and wise to use such knowledge
to select docked compounds based on the available information. Thus, tools presented in
Section 1.3.2 are advantageous as they permit to calculation and to analyze protein-ligand
interactions in docked structures.

On the other hand, such a “cherry-pick” procedure is remarkably toilsome and
involves the manual analysis of 100-1000 top-ranked compounds through a meticulous
inspection using molecular graphics programs. Furthermore, this filtering process relies
on previous literature works that could not exist and user expertise.

In two recent works [99, 136], for instance, the authors declared to have selected the
top hits by manual inspection. Therefore, the identification, prioritization, and automatic
selection of a small number of promising compounds (hits) is still an open problem in VS
field.

1.6 Motivation

Proteins are essential macromolecules to all organisms as a whole, and countless
diseases are associated with their proper functioning. Not surprisingly, there is a partic-
ular interest in producing new drugs (ligands) able to modulate these macromolecules.
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Accordingly, computational techniques like SBVS and molecular docking are powerful
tools that contribute significantly to early-stage drug discovery.

A typical SBVS campaign consists of three major phases, namely data prepara-
tion, docking, and post-analysis. Commonly, a researcher starts with more than 20,000
compounds, and after running a protocol of docking, 100-1000 candidate molecules re-
main for post-analysis. The latter is an essential procedure since scoring functions have
several drawbacks and non-ligands might be prioritized first over true ligands, which is
not desirable. Thus, the final step in SBVS strategies is a thorough manual process of hit
selection, in which binding modes of hundreds of top-scoring compounds are inspected in
molecular graphics programs. In this hit selection process, researchers have the opportu-
nity to incorporate previous knowledge of the system, such as prioritizing ligands which
interact with key residues of the target protein.

In recent years, several semi-automatic works proposed new rescore functions as
alternatives to docking scores in order to obtain superior enrichments. However, these
tools present certain limitations as following described. Some of them: do not present
user interactivity as users cannot provide their knowledge for the compound selection
procedure; proposed a model to rank compounds, but unfortunately, the source code is
not provided; rank compounds based on the similarity with the reference structure, or
interactions conservation, but never both; do not take advantage of other protein-ligand
complexes with similar binding sites available in the PDB; do not give many details about
why a compound was ranked first, and it is up to the user to check for frequent interactions
or interaction patterns.

Therefore, the identification, prioritization, and automatic selection of promising
hits is still an open problem in VS field.

1.7 Objectives

1.7.1 General Objective

The primary objective of this work is to develop metrics, models, and algorithms for
the identification, prioritization, and automatic selection of a small number of promising
compounds (hits) in a structural-based virtual screening campaign.
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1.7.2 Specific Objectives

Specific objectives are listed below:

• Address our major object through a descriptive and predictive perspective;

• Include new features in nAPOLI;

• Improve and expand the methods to calculate protein-ligand interactions;

• Develop an open-source library for molecular interaction analysis using the
expanded methods;

• Propose a novel hashed interaction fingerprint;

• Evaluate the fingerprint parameters and their effect on the similarity between
different complexes;

• Evaluate the applicability of the new fingerprint using machine learning tech-
niques.
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Chapter 2

Methods

In this section, we present the methods and algorithms proposed and implemented in this
work, and describe the two perspectives we take to address the identification, prioriti-
zation, and automatic selection of a small number of promising compounds (hits) in a
structural-based virtual screening campaign.

In the first aspect, we approach this subject more descriptively by providing ways
to characterize and analyze protein-ligand interaction patterns across large data sets of
protein-ligand complexes, as well as select and filter compounds through an interactive,
visual, and analytical manner. In the second aspect, we address the problem from a
predictive point of view.

This section is organized as follows. First, we discuss the descriptive aspect of this
work and related methods. Then, we present novel algorithms and methods for calculating
interactions, and we, finally, present the predictive aspect and its methods.

2.1 Descriptive aspect

As we mentioned in Section 1.3.2, we firstly proposed nAPOLI1 (Analysis of
PrOtein-Ligand Interactions) as a Master’s thesis [84], and since then, we have improved
its methods and included new functionalities. nAPOLI was conceived as a web server that
brings together an automated analysis of conserved interactions across large data sets of
protein-ligand complexes. Thus, the descriptive aspect of our work is especially attributed
to nAPOLI, which comprises interactive visualizations and comprehensive reports of the
interacting residues/atoms to explore and make sense of conserved noncovalent interac-
tions that work as crucial factors in molecular recognition.

The improvements of nAPOLI’s methods are presented in the following subsec-
tions, while novel functionalities are presented in Section 3. For a complete and detailed
description of the methods refer to [83].

1http://bioinfo.dcc.ufmg.br/napoli/
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2.1.1 Data set validation and PDB files filtering in nAPOLI

To avoid errors while running nAPOLI, we apply the following validation tests:
remove nAPOLI entries that are not in the format presented at Section 3.1.1; remove
entries whose chain was not found in the PDB file or does not have at least one of the
20 standard amino acids; remove entries whose ligand name and ligand number were not
found in the PDB file. Moreover, to standardize all PDB files, we remove hydrogen atoms,
keep only the first model when multiple models are available, and keep only atoms with
the highest occupancy for residues with multiple conformations.

2.1.2 Physicochemical properties of atoms in nAPOLI

We classified atoms according to their physicochemical properties into one or more
of the following types: acceptor, aromatic, donor, hydrophobic, negative, or positive. Atoms
that do not match any type are called unrated atoms. These properties are assigned
considering a neutral environment (pH 7).

Properties of residue atoms were manually predefined, while ligand atoms are clas-
sified automatically on the fly, i.e., during the processing of a user project. In the next
subsections, we detail the rules considered to classify atoms in accordance with their
physicochemical properties.

2.1.2.1 Residue atoms

Residue atoms were manually classified based on [24, 31, 161, 214, 218]. The
classification of all residue atoms is shown in Table A.1.

There are three considerations to bear in mind regarding the rules presented in
Table A.1: (i) all carbon atoms were labeled as hydrophobic, except those bound to a
nitrogen or oxygen atom that remained unrated [218]; (ii) guanidine carbon of arginine
was classified as positive; (iii) as histidine structure can be found in three forms depending
on its protonation state and tautomeric form [146], its imidazole nitrogens were classified
as acceptor, donor and positive to contemplate all these possibilities; (iv) finally, atoms
that are not in the table remained unrated.
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2.1.2.2 Ligand atoms

We developed an automatic classification method that consists of a preprocessing of
the ligand file, and the assignment of labels to its atoms using Pmapper from ChemAxon2.

In the preprocessing of ligand files, we first generate a new PDB file by extracting
the target ligand atoms and any ligand covalently bound to them from the original file.
Covalent bonds between ligands are frequently found in PDB files containing oligosaccha-
rides that are usually represented by their small monosaccharides units. An illustrative
example is found in PDB 2ZID, where a trisaccharide compound, known as isomaltriose,
was represented as three glucose molecules. The impact of covalent bonds in the atoms
classification can be illustrated by taking into account a hydroxyl group of glucose as an
isolate species, in which its oxygens would be labeled as acceptor and donor. However, in
isomaltriose example, oxygen is covalently bound to a carbon atom from another glucose
molecule. In such circumstances, the oxygen is classified just as acceptor since it does not
have any hydrogen to donate. Finally, hydrogen atoms are added to the extracted ligands
and the obtained PDB file is then converted into Mol file format using Open Babel [177].
In this process, a neutral environment was considered (pH 7).

Following, Pmapper (PMapper 16.5.2, 2016) perceive physicochemical properties
through a set of pharmacophore rules, which consists of an XML configuration file.
ChemAxon provides two default configuration files: a calculation-based and a fragment-
based one. In the former, pharmacophoric properties are obtained through chemical fea-
ture calculations as charges, partial charges or pKas. While in the latter, such properties
are acquired through the definition of functional groups.

As a first experiment, we classified the 20 most commonly found amino acids
in living beings with each of these files. The objective was to evaluate which file was
able to classify ligand atoms in higher agreement with our manual classification. As we
compared amino acids as free ligands and residues, main chain nitrogens and oxygens had
to be treated differently.

We observed that some atoms were correctly classified in one method but not in the
other and vice versa. For example, the fragment-based file was not able to classify both
oxygens from the carboxylate as being acceptor and negative. While the calculation-
based file failed in classifying the amine and guanidine nitrogens from the arginine as
positive. Therefore, we constructed a hybrid model joining the different strengths of both
configuration files.

Afterwards, we evaluated and improved this new hybrid model by using different
types of molecules. In order to evaluate a wide spectrum of functional groups and com-

2http://www.chemaxon.com
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Table 2.1: List of ligand ids used to improve the hybrid model.

Ligand ids

004, 00G, 00S, 010, 01F, 020, 02Y, 03L, 03V, 055, 056, 069, 06B, 06U, 07M, 07Z, 087,
0A0, 0A9, 0AH, 0CK, 0E1, 0E5, 0EA, 0FR, 0KV, 0L1, 0N9, 0PY, 0QA, 0R1, 0U7,
0UA, 0UC, 0VD, 0WV, 10H, 11E, 11M, 12O, 13X, 14J, 172, 1AC, 1AN, 1DH, 1DJ,
1DU, 1DW, 1H2, 1H3, 1HP, 1JZ, 1KA, 1MH, 1U8, 1VL, 1XA, 23N, 2DI, 2UC, 2UE,
39R, 3BF, 412, 4AO, 4GI, 4NC, 4PO, 4SX, 6HN, 6PC, 7I2, 7NI, CDG, DMF, IMT,
MAG, MIS, PCA, PYB, RIO, TEO, X01, X73

pounds, we searched PDB for ligands containing one or more of the following structures:
alcohol, aldehyde, amide, amidine, amine, aminium ion, aniline, benzisoxazole, benzoth-
iophene, carbonate, carbonyl, carboxylic acid, diazonium, ester, ether, furan, guanidine,
hydroxamic acid, hydroxyl, imidazole, indazole, indole, ketone, lactam, nitrile, nitro, ni-
trone, nitroso, oxadiazole, phenol, phenyl, phosphoryl, piperazine, piperidine, purine,
pyrazole, pyridine, pyrimidine, pyrrole, quinazoline, sulfanyl, sulfonamide, sulfonic acid,
sulfonyl, thiazol, triazine, triazole. We obtained 85 compounds (Table 2.1) that were used
in a cyclic process involving executing Pmapper, performing a rigorous manual analysis
of the atom types of each ligand and refining the configuration file until it matched our
quality criteria.

The pharmacophoric rules are defined by using SMARTS language and are pre-
sented in Section A.2.

2.1.3 Protein-ligand interactions in nAPOLI

In nAPOLI, we model protein-ligand interfaces as bipartite graphs, where nodes are
atoms from the protein or ligand, and edges are the interactions among them. Nodes are
labeled with physicochemical properties of atoms as explained in the previous subsection,
while interactions are characterized as shown in Figure 2.1 and described in detail below.

First, we compute contacts at the atomic-level by using a cutoff-free and geometric
approach called Delaunay tessellation (DT) (see Section 1.3.1), which in our work is
performed by the CGAL library [40].

Next, atoms are classified according to their physicochemical properties. Finally,
for each pair of atoms in contact, we define potential interactions by using physicochemi-
cal properties, distance, and angle criteria. nAPOLI identifies the following interactions:
aromatic stacking, hydrogen bond, hydrogen bond mediated by water, hydrophobic, attrac-
tive electrostatic, and repulsive electrostatic. The default values are shown in Table 2.2,
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Figure 2.1: Protein-ligand interaction computation diagram. Straight lines are covalent
interactions, gray dashed lines are contacts and thicker dashed lines (green/red) are in-
teractions.

however, users can change them according to their needs.

Table 2.2: Default criteria to define interactions in nAPOLI.

Interaction type Distance in Å Angle in Degrees Reference

Aromatic stacking 2.0 ≤ −−→∥rr∥ ≤ 4.0 [157]
Hydrogen bond

−−−→∥Ha∥ ≤ 2.5 and
−−→∥da∥ ≤ 3.9 dĤa ≥ 120 [13, 112, 161]

Hydrophobic 2.0 ≤ −−−→∥hh∥ ≤ 4.5 [157]
Repulsive electrostatic 2.0 ≤ −−→∥sc∥ ≤ 6.0 [24, 155]
Attractive electrostatic 2.0 ≤ −−→∥oc∥ ≤ 6.0 [24, 155]

Aromatic atom (r), hydrogen atom (H), acceptor atom (a), donor atom (d), hydrophobic atom (h),
similarly charged atoms (sc), oppositely charged atoms (oc).
Lower limits equal to 2.0 Å avoids the inclusion of covalently bonded atoms [218].

For each nAPOLI entry, our tool only identifies interactions involving a ligand and
residues from the same chain. If a user has informed the nAPOLI entry ‘3QL8:A:X01:300’,
all computed interactions will be between the residues and the ligand X01 from chain A.

Hydrogen bonds are computed using HBPlus [161]. To inform HBPlus which
atoms are hydrogen bond acceptors or donors, we use the HBAdd software available with
LIGPLOT [233]. After detecting all hydrogen bonds, nAPOLI filters out interactions that
do not involve the target chain and the target ligand. It also removes all hydrogen bonds
whose pair of involved atoms is not composed of an acceptor and a donor atom according
to our method. Finally, nAPOLI searches for hydrogen bonds that are intermediated
by water. After identifying such interactions, nAPOLI labels both protein-water and
water-ligand hydrogen bonds as hydrogen bond (water).
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2.2 Descriptive case studies

As an effort to validate and illustrate the applicability of nAPOLI, especially the
novel features presented in Section 3.1, we used two datasets related to ricin and human
nuclear receptor subfamily 3 (hNR3). Ricin is a type 2 ribosome-inactivating protein
(RIP) found in castor beans. Due to its high toxicity and ease of production [45], as
well as its promising application, for instance, in immunotoxin treatment [248], ricin is
an important and interesting target to be analyzed. Finally, hNR3 belongs to a family
of ligand-regulated transcription factors that play crucial roles in many physiological pro-
cesses. Thus, given its therapeutic importance, we chose the hNR3 as an example to show
the applicability of nAPOLI in the study of conserved protein-ligand interactions along
a functionally conserved binding site of a protein family. The two data sets employed in
our analysis are available in the nAPOLI web server as examples in the Data set analysis
section:

• Ricin data set: 26 complexes obtained from a literature review;

• Human nuclear receptor subfamily 3 data set: 198 complexes comprising 6 different
proteins from hNR3.

In both case studies, we used the default configuration to detect interactions. For
additional case studies demonstrating the applicability of nAPOLI refer to [83].

2.3 Improvement and expansion of methods for

calculating interactions

In previous sections, we briefly introduced nAPOLI (Section 1.3.3) and presented
some of its methods (Section 2.1). Also, we discussed how nAPOLI was specially conceived
for the analysis of protein-ligand interactions in a descriptive manner.

Nonetheless, some aspects of nAPOLI took us to redesign our models and propose
a new library to be accessible to more people, generic, customizable, and completely
open-source. They are:

• Protein-ligand interaction at the atomic-level : in nAPOLI, protein-ligand interac-
tions are modeled at the atomic-level for all interactions, however, as discussed in
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Section 1.3.1.1, hybrid models better represent interactions that are established due
to the contribution of multiple atoms;

• Protein-ligands complexes only : nAPOLI in its current version works only with
protein-ligand interactions; thus, a generic tool able to deal with any molecular
complex is more promising;

• Proprietary license: some third-party software we use, namely Pmapper, Gener-
ateMD, and Ward, require a Chemaxon license. Although for some purposes the
licenses are free, we believe a completely free-of-license tool can reach a higher num-
ber of users;

• System developed in Perl : nowadays, Python is one the most used languages and,
not surprisingly, a large number of libraries for biological and scientific purposes
are written in this language. Herein, we mainly highlight the data science libraries
such as Pytorch, Keras, Tensorflow, scikit-learn, Skorch, NumPy, Pandas, Seaborn,
RDKit, and others. Therefore, we believe Python offers more advantages than Perl
in this context.

Taking the items above as our touchstones, we propose LUNA3, a new Python
library completely based on open-source code. The library and its functionalities are
thoroughly presented in Section 3.2, while its methods are presented in the following
subsections.

It is noteworthy that, although we opted for developing a new library from scratch,
we envision nAPOLI and LUNA working together, where the descriptive aspect is pro-
vided by nAPOLI, while LUNA is responsible for calculating interactions and generating
the data that will feed nAPOLI, as well as providing the predictive perspective for the
prioritization of compounds in an SBVS campaign.

2.3.1 Dataset validation and PDB files filtering

We apply the following validation tests:

• Remove entries that are not a valid format, which is defined as follows:

– PDB id (4 characters) or a filename: mandatory;

– Model number (1 character): optional and required only for structures con-
taining more than one model. By default, the first model is used;

3https://github.com/keiserlab/LUNA
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– Chain (1 character): mandatory. Note that if only the chain information is
provided, it will calculate interactions considering the whole chain;

– Compound name (1-3 characters): optional and required only for computing
interactions involving a specific compound (residue, ligand, nucleotide, or any
other molecule);

– Compound number (valid integer): optional and required only for computing
interactions involving a specific compound (residue, ligand, nucleotide, or any
other molecule);

– Insertion code (1 character): optional and required only for computing interac-
tions involving a specific compound (residue, ligand, nucleotide, or any other
molecule).

• Remove entries whose chain was not found in the PDB file;

• Remove entries whose compound was not found in the PDB file (if defined);

Moreover, to standardize all PDB files containing compounds with multiple con-
formations, we keep only atoms defined as the first occupancy flag, which is usually ‘A’
or ‘1’.

2.3.2 Physicochemical properties of atoms and atom groups

The recognition between two molecules is a crucial and challenging process that
depends on several variables, such as the polarity and electronegativity of atoms and
functional groups, solvation, hydrophobicity, environmental pH, and charge.

Based on these chemical characteristics, and departing from our previous work [83]
and a thorough revision of the literature [4, 20, 22, 25, 34, 35, 50, 56, 66, 94, 95, 115,
120, 121, 174, 135, 146, 154, 181, 195, 207, 224, 227, 243, 252], we classify atoms and
groups of atoms according to their physicochemical properties into one or more of the
following types: acceptor, amide, aromatic, atom, chalcogen donor, donor, electrophile,
halogen acceptor, halogen donor, hydrophobe, hydrophobic, metal, negatively ionizable, nu-
cleophile, positively ionizable, weak acceptor, and weak donor. In LUNA, an atom group
can represent both chemical functional groups or simply an arrangement of atoms as in
hydrophobes. The latter is an optional property that represents a group of hydrophobic
atoms, which better mimics how the hydrophobic effect occurs, i.e., a favorable contact
between two hydrophobic surfaces. It is also important to highlight that although atoms
may belong to a group, they all have their own physicochemical properties.
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The terms negatively ionizable and positively ionizable were chosen to indicate that
a specific atom or group of atoms may be ionized. However, one can set a different pH in
order to alter the resultant classification of an atom or group.

Regarding the property amide, it identifies amide groups and is employed during
the calculation of amide-stackings. In its turn, the feature atom simply identifies a heavy
atom and is used to calculate atom-atom interactions, such as covalent bond and van der
Waals interactions.

All these physicochemical properties are identified on the fly, i.e., during the pro-
cessing of a user project. The only exception happens for protein residues to which a
precomputed list of properties considering the default pH (7.0) is already available to re-
duce computational processing. By default, this list contains only the 20 standard amino
acids and water molecules, but it can be expanded as necessary or even disabled whether
a different pH is to be considered.

In the next subsections, we detail the algorithm to classify atoms in accordance
with their physicochemical properties.

2.3.2.1 Physicochemical feature assignment

The feature assignment is performed on the fly for all molecules within a certain
distance (in Å) of the defined target, which can be a chain, a compound, or a list of
compounds. Thus, the target and the recovered molecules around it define the binding
site scope for the interaction analysis. For each one of these compounds, LUNA applies
three main procedures.

First, it verifies if the current compound already has a precomputed property
available in an internal configuration file. If so, the tool will use this information to
reduce computational processing and the property perception is successfully finalized to
the current compound. Otherwise, it verifies whether the current compound contains a
defined molecule file, which is usually the case for docking campaigns since the ligand
pose may be available as a separate molecular file. In this particular case, the third step
is promptly initialized.

Secondly, if neither situations described in the first procedure occur, the tool will
identify all molecules covalently bound to the current compound and convert their struc-
tures from PDB to Mol format using Open Babel [177]. This conversion is important
because the PDB format does not contain chemical information like atom charge or aro-
maticity, which is crucial for a proper physicochemical property perception. Moreover, it
is wise to convert the current compound with its bound neighbors in order to keep correct
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bond orders. During this conversion, if necessary, hydrogens can also be added to the
molecules according to the specified pH.

There is another optional step that consists of validating the converted molecules
and amending simple problems related to valence and charge. These problems sometimes
may occur with the current versions of Open Babel when PDB structures are converted to
Mol. It may happen precisely because the PDB format does not have sufficient chemical
information, which can induce Open Babel to incorrectly perceive the bond order, aro-
maticity, valence, or charge of an atom. Our implemented solutions cover simple problems
that are more recurrent during these conversions. Atom charges are amended only when
they do not match the expected charge according to our implementation of OpenEye’s
charge model4. Valences are amended only for ammonium nitrogen whose structure was
not previously ionized. In this case, Open Babel may perceive such atoms as hypervalent
and attribute an incorrect valence to nitrogen.

Finally, LUNA perceives physicochemical properties through a set of chemical rules
specified as a SMARTS-based language string and stored in a feature definition file format
(FDef) as in RDKit [195]. Our rules comprise both atoms and groups of atoms, which,
as mentioned before, can represent a functional group or an arrangement of atoms. Im-
portantly, tautomeric forms of chemical groups were also envisioned in our rules as a
means to account for the biological environment dynamics. The complete set of rules and
geometrical models are defined in Sections B and C.

Another optional step can be applied after the third procedure and consists of
grouping hydrophobic atoms to form a hydrophobe group. See Section C.13 for more
information.

2.3.3 Molecular interactions calculation

For each pair of atoms/group of atoms, molecular interactions are characterized
using physicochemical properties, distance, and angle criteria. In the context of atom
groups, the centroid of the group is used in the geometrical analysis.

LUNA identifies the following interactions: amide-aromatic stacking, anion-electro-
phile, antiparallel multipolar, cation-nucleophile, cation-pi, chalcogen bond, chalcogen-pi,
covalent bond, displaced face-to-edge pi-stacking, displaced face-to-face pi-stacking, dis-
placed face-to-slope pi-stacking, edge-to-edge pi-stacking, edge-to-face pi-stacking, edge-to-
slope pi-stacking, face-to-edge pi-stacking, face-to-face pi-stacking, face-to-slope pi-stack-
ing, halogen bond, halogen-pi, hydrogen bond, hydrophobic, ionic, multipolar, orthogo-

4https://docs.eyesopen.com/toolkits/python/oechemtk/valence.html
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nal multipolar, parallel multipolar, pi-stacking, repulsive, salt bridge, tilted multipolar,
unfavorable anion-nucleophile, unfavorable cation-electrophile, unfavorable electrophile-
electrophile, unfavorable nucleophile-nucleophile, van der Waals, water-bridged hydrogen
bond, and weak hydrogen bond.

In addition to these interactions, we provide more three contacts: atom overlap,
proximal, and van der Waals clash. The former contact identifies artifacts generated by
low-resolution structures and homology models, which consist of an unnatural overlap of
two atoms. Van der Waals clash characterizes repulsion between two atoms when they
become too close, and proximal is an optional contact which simply indicates that two
atoms are close to each other by a specific threshold.

The combination of chemical features, distance, angle criteria, and geometrical
models utilized to calculate these interactions are presented in Section C. It is important
to highlight that although LUNA implements its own methods and criteria to calculate
interactions, users can also define their own functions and cutoffs. That is possible thanks
to the object-oriented style employed in our library.

2.3.4 Interaction fingerprint

In this work, we also propose a novel hashed interaction fingerprint (IFP) called
FIFP (Functional InteracTion FingerPrint), inspired by ECFP [203], FCFP [203], and
E3FP [9]. Our fingerprint is able to encode the binding site interactions both as binary
or count fingerprint. Besides it, FIFP can encode contacts, interactions, or both, and is
compatible with RDKit.

Moreover, one of the most promising features of our approach is its interpretability.
Different from other hashed fingerprints that are usually black-boxes, in which one has to
design its own methods to interpret what each bit represents, ours already provides several
features to make the analysis straightforward and out-of-the-box (see Section 3.2.4).

On the whole, we believe FIFP to be a promising approach for structure-based
virtual screening and molecular dynamics, where thousands of compounds and poses can
be promptly filtered or clustered according to their interaction similarities. Not to mention
the possibility of using FIFP in a machine learning context, where a data set of known
complexes could be used to train a model for predicting and selecting unknown compounds
given a specific goal. In Sections 2.4.2 and 3.4, we present a case study illustrating the
applicability of FIFP in the mentioned context.

As ECFP and E3FP, FIFP depends on three parameters (Figure 2.2): the finger-
print length, the radius growth rate, and the number of levels. The fingerprint length, as
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discussed in Section 1.4.2, controls how many features at maximum can be represented
in the fingerprint. In its turn, the radius growth rate and the number of levels indirectly
control how many features will be included in the fingerprint. In the following subsec-
tions, we discuss how FIFP is generated and how these two parameters influence feature
discovery.

Figure 2.2: Parameters to control the FIFP creation: the fingerprint length, the radius
growth rate, and the number of levels.

2.3.4.1 Generating initial identifiers

At iteration 0, initial identifiers are assigned to each atom or atom group according
to a pharmacophore-based approach. In this method, only chemical features are consid-
ered during the identifier generation. For atoms, it comprehends both atom features and
those inherited from the groups to which the atom belongs. For example, an aromatic
carbon could have the features Hydrophobic and Weak donor as its own properties, as well
as the property Aromatic inherited from the ring (group) that comprises this atom. In
its turn, carboxylic oxygen could be considered an Acceptor and Negatively ionizable, the
latter being inherited from the carboxylic group it belongs to. For atom groups, the FIFP
encodes only the chemical features of the group. Therefore, this method is useful because
it keeps a level of abstraction when some groups should be recognized as functionally
equivalent.

After characterizing each atom (or atom group) according to their chemical in-
formation, FIFP applies a hashing function to this information to obtain their initial
identifiers (a 32-bit integer). In LUNA, the hashing function we use is a Python imple-
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mentation5 of MurmurHash3 [6]. However, any hashing function can be applied as long
as it generates uniform and random identifiers.

2.3.4.2 Subsequent identifiers update

After generating each initial identifier, the algorithm subsequently updates them
through an iterative process that continues until it converges or it reaches the maximum
number of levels. At each iteration, a sphere of size R∗L, where R is the radius growth and
L the current level (iteration number), is centered at each atom (atom group) and their
neighborhood is characterized by capturing all interactions within the shell. A hashing
function is then applied to the neighborhood, and a new identifier to the central atom
(atom group) is generated.

A single iteration for a given atom or atom group is performed as follows. First,
LUNA centers a sphere of size R ∗L in the atom (atom group) and initializes an array of
tuples with a pair consisting of the current level number and the identifier of the central
atom (atom group) in the previous iteration. Next, it captures all atoms (atom groups)
inside the shell and verifies if these entities establish any interaction with atoms/groups
from the previous iteration. Note that at level 1, the list of atoms and groups from the
previous iteration only contains the central atom/group. Thus, the only valid interactions
in this iteration are the ones between the central atom/group and the newly discovered
atoms (atom groups). Then, for each valid interaction, LUNA generates a tuple containing
the interaction type and the identifier of the new atoms (atom groups) in the last iteration.
These pairs are sorted and included in the array of tuples. Note that sorting the list is
essential for avoiding dependence on the order of its elements. Otherwise, fingerprint
generation would not be deterministic.

Finally, LUNA generates a new 32-bit integer identifier to the central atom (atom
group) by hashing the sorted list. Any atom or group interacting with the central entity
become part of its neighborhood and will be taken into consideration in the following
levels.

This iterative process continues for each atom (atom group) until it reaches the
maximum number of levels or when the algorithm converges, which happens when the
shells cannot be expanded anymore. In other words, if all interactions involving the atoms
(atom groups) inside each shell are already included in the last encoded neighborhood,
then convergence is reached.

5https://pypi.org/project/mmh3/
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2.4 Predictive aspect

In the predictive perspective of this work, we envision LUNA and FIFP as promis-
ing tools for the identification, prioritization, and automatic selection of compounds in
a structural-based virtual screening campaign. To do so, we performed two series of
experiments with different goals.

First, we evaluated the fingerprint parameters as a means to understand how they
influence feature extraction and how the fingerprint could be used for selecting and filtering
compounds based on similarity. While the second experiment consisted of a case study
where we applied FIFP on the task of reproducing docking scores.

2.4.1 Fingerprint parametrization

As we mentioned in Section 2.3.4, FIFP depends on three parameters: the finger-
print length, the radius growth rate, and the number of levels. Together, these parameters
control how features are extracted from a molecular complex and encoded into a binary
or count fingerprint. Well in advance, we emphasize that, although a default combi-
nation of parameters works for most cases, some tasks or data sets may require a new
parameterization for better results.

To find the best combination of parameters and to evaluate how the fingerprint
behaves when varying each parameter, we analyzed their influence on the similarity of
two complexes involving the same target and ligands with similar poses. If the ligands are
similar and have a similar pose, it is expected they also present a similar binding mode,
i.e., the interactions established with the protein would also be similar.

Bearing this in mind, we built three data sets composed by similar ligands related
to the human cyclin-dependent kinase 2 (CDK2), which is a well-studied enzyme involved
in cell cycle progression.

For the first data set, we manually generated different poses for the same CDK2-
ligand complex (PDB 3QQF, ligand X07) by performing small transpositions on the ligand
or rotating its bonds (Figure 2.3). On the whole, twelve manual poses were generated,
where poses C and L represent our positive and negative references. We chose these
two poses as our references because we expect that slight (pose C) and drastic (pose
L) modifications to produce the highest and smallest similarities, respectively. We are
aware that such manual modifications in the ligand structure could generate invalid poses,
unfavorable interactions, and even clashes with protein atoms. However, herein, our goal
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is only to evaluate the similarity between the fingerprints when slightly different poses
are compared. In any case, these unfavorable interactions are already taken into account
when calculating the molecular interactions, and, therefore, they will appear as features
of the complex.

Figure 2.3: Manual poses obtained by rotating and transposing the ligand crystal pose
(X07) in the CDK2 binding site (PDB 3QQF). The original pose and manually obtained
poses are shown as blue and green sticks, respectively. The baseline pose is shown in the
lower right corner.

For the second data set, we automatically generated a series of conformers for the
ligand X02 in a complex with CDK2. To do so, we used the function EmbedMultiple-
Confs from RDKit with the parameter numConfs and pruneRmsThresh set to 10,000 and
0.1, respectively. The first parameter defines the number of conformers the algorithm
should generate, while the second removes conformers whose distance (RMSD) to other
conformers are less than 0.1. This pruning procedure is greedy, which means that the
first conformation generated is retained and from then on only those that are at least
pruneRmsThresh away from all retained conformations are kept. After generating the
conformers, we aligned them to the ligand pose in complex with CDK2 (PDB 3QQK)
and measured their distance. If the distance between the conformer and the crystal pose
was less than 0.4, we retained the conformer; otherwise, we removed it. After this last
pruning, we obtained 181 conformers similar to the crystal pose, which are shown in
Figure 2.4.

Finally, the third data set was obtained from Schonbrunn et al. (2013) [213]. In
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Figure 2.4: Automatically generated conformers for the ligand X02 in complex with CDK2
(PDB 3QQK). The original pose and the conformers are shown as blue and green sticks,
respectively.

their work, the authors proposed 95 analogs by systematically modifying the flanking
allyl and phenyl moieties of the compound 2-(allylamino)-4-aminothiazol-5-yl(phenyl)
methanone (PDB id X02). Structures of 36 CDK2-ligand complexes were solved through
X-ray crystallography. We also found in the PDB, an additional 38 related structures that
were deposited by the authors, totalizing 74 complexes in our data set. The interesting
characteristic of this data set for our study is the similarity between the ligands from a
chemical perspective and their crystal poses are also similar.

In all experiments, the similarity between the fingerprints was measured using the
Tanimoto coefficient (Equation 1.1), and the protein-ligand interactions were calculated
with LUNA using the default parameters.

2.4.2 Predictive case study

As an effort to validate and illustrate the applicability of FIFP for prioritizing HIT
compounds, we chose a large data set recently published by Lyu et al. (2019) [153]. This
huge library consists of 138 million molecules docked against Dopamine D4, an important
G protein-coupled receptor (GPCR) superfamily member involved in many different roles
in the central nervous system. Given its relevance as a neurotransmitter, dysregulation
of the Dopamine D4 signaling cascade is linked to several pathological disorders like
Parkinson’s disease and schizophrenia [176], which makes it an interesting target to be
analyzed.

With such a large data set, FIFP could be applied to three different scenarios:
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classifying molecules as active or inactive, identifying bad poses, and predicting docking
score or even experimental binding affinity. Herein, we chose the third task because we
are interested in evaluating if a model trained with our IFPs would be able to reproduce
the Dock scores. In the future, we plan to optimize the model for predicting experimental
binding affinities, which is usually referred to as fine-tuning technique and whose most
straightforward application is the rescore of docking poses (see Section 1.5.3.2).

Aiming to reach this goal and starting from the whole data set, we clustered the
ligands docked against Dopamine D4 based on their chemotypes. Then, to create a
balanced data set, we sampled the clusters and obtained a subset composed of 86,641
samples. The hypothesis we wanted to evaluate when we decided to obtain a subset of
the whole library is whether we would be able to reproduce the Dock score even with a
smaller data set.

To do so, we generated several fingerprints using different combinations of param-
eters, namely, the fingerprint length, the radius growth rate, and the number of levels.
Besides these parameters, we also evaluated variations in the methods to calculate inter-
actions and how they impact predictive performance. To do so, we empirically explored
combinations of the following options: strict or loose rules for hydrogen bond donor
(Strict H rule); protein structure with or without hydrogens (Struct w/ H, pH 7.4); in-
clude or not non-covalent (excluding van der Waals) interactions (Non-cov); compute or
not atom-atom interactions (Atom-Atom), which include covalent bond, van der Waals,
van der Waals clash, and atom overlap; include or not proximal interactions (Proximal).
The presence of the described labels in the experiment name (X-axis) indicates whether
it was used or not during the calculation of interactions. For the best models, we also
evaluated if its count fingerprint version and the inclusion of interactions in the protein
side (w/ PPI ) would improve the prediction.

As our baseline models, we chose the RDKit implementations of ECFP and FCFP.
In addition to the baseline model, we also selected two other interaction fingerprints for
further comparison: SILIRID [48] and PLEC [245], both available in ODDT [244]. All
fingerprints were generated using their default parameters.

Three different machine learning techniques were used: Deep Neural Network
(DNN), Random Forest, and XGBoost [47]. During model development, we split the
data into train, validation, and test, where the proportion of each set was 60%, 20%, and
20%, respectively. The predicted and real Dock scores were evaluated in terms of the
R-squared (R2) metric.

For the random forest and XGBoost, we used their scikit-learn implementation
with default parameters, except for the number of estimators that were set to 300.

Finally, the DNN models were trained using the Pytorch implementation coupled
with Skorch, which is a Python library that makes it possible to use Pytorch and scikit-
learn together. Besides the several helpful methods available in Skorch, one of the main
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advantages of using this library is the possibility of using the methods for randomized
and grid searches from scikit-learn. Thus, using the mentioned libraries, and for each
fingerprint, ten different hyper-parameter combinations were sampled from the specified
distributions using a randomized search (RandomizedSearchCV from scikit-learn) with
five cross-validations (CV), totalizing 50 trained models. In all models, we used the Adam
optimizer [129] and MSELoss criterion, which are available in Pytorch. The maximum
number of epochs was set to 400; however, we allow the training process to stop earlier
whether the model does not improve after six epochs (EarlyStopping class from Skorch).
The best model for each hyper-parameter optimization is chosen by the average R2 value
on the five cross-validations. From the top models, we also evaluated if the performance
could be improved with RAdam optimizer [149], which is a variant of Adam that was
shown to outperform it in some scenarios.

Finally, we compared FIFP to the other selected fingerprints using 5-fold cross-
validation. At each iteration, 80% of the full data set was used for training and the
remaining for testing. Mean and standard deviation were then calculated for the R2.
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Chapter 3

Results and discussion

This section is organized as follows. First, we present the novel features included in
nAPOLI, followed by the new Python library. Then, we present the experiments per-
formed with FIFP to assess how the parameters influence the fingerprint. Finally, we
present a discussion about the case study where we apply FIFP in the task of predicting
Dock scores.

3.1 Novel features in nAPOLI

In this section, we describe the novel functionalities introduced in the current
version of nAPOLI [83].

3.1.1 Submitting new projects

Now, users have three manners to start a new project and submit a data set
composed of protein-ligand complexes, which must be in the format ‘<PDB id or filename
(4 characters)>:<chain (1 character)>:<ligand name (1-3 characters)>:<ligand number
(valid integer)>’. From now on, this representation will be referred to as a nAPOLI entry.

The first option is when one has a predefined list of nAPOLI entries and knows
which complexes to analyze. In such cases, the PDB files available at the PDB are
used. In the second, users can submit their own PDB files and provide a predefined list
of nAPOLI entries. This functionality has a wide spectrum of applications in docking,
virtual screening, and molecular dynamics, which are techniques that produce a huge
number of structures. Finally, in the last option, which was already available in nAPOLI
during the Master’s thesis, users can compose their own data set in an exploratory way.
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Sometimes, one has a protein of interest and wishes to build a new data set consisting of
proteins containing certain similarities to this protein and whose structures are complexed
with some ligand. nAPOLI performs a sequence similarity search and users can inform a
PDB id and a chain of interest as well as a sequence identity cutoff.

After retrieving the structures, users can define three additional parameters:

• Neighborhood cutoff : radius to search for ligands belonging to the same protein
region. The default value was empirically defined as being 5 Å.

• Minimum number of atoms : minimum number of heavy atoms that a ligand should
have so that it is not considered as a crystallography artifact. Default is 7 atoms
[185].

• List of crystallography artifacts : ligands considered crystallography artifacts (Table
3.1).

Table 3.1: Default list of ligand ids considered crystallography artifacts [29, 223].

Ligand ids

ACE, ACT, BME, CSD, CSW, EDO, FMT, GOL, MSE, NAG, NO3, PO4, SGM, SO4,
TPO

Next, nAPOLI searches for regions containing ligands and different binding sites.
As a result, a list of nAPOLI entries for each region is returned to users, who can then
choose a list for which nAPOLI will compute interactions. Users can also remove specific
ligands or remove crystallography artifacts.

3.1.2 Processing log

In Processing log users can access a report where any processing errors are informed.
Sometimes, an error can occur when processing a particular protein-ligand complex. In
this circumstance, nAPOLI stores the error message and removes the complex from the
next processing steps.
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3.1.3 Clusters comparison for interacting residues

The Clusters comparison functionality allows users to discover which residues in-
teract exclusively in only one cluster or are common to two or more ad hoc combination
clusters which are suitable, for instance, to propose potential residues to mutate. This
comparison feature was included as part of the section Interactions by residues in nAPOLI
(see Section 1.3.3.2).

3.1.4 Ligands filtering

This feature was conceived especially aiming at structure-based virtual screening
campaigns, where the final step is typically a manual process of hit selection, in which
binding modes of hundreds of top-scoring compounds are inspected in molecular graphics
programs. In this hit selection process, researchers have the opportunity to incorporate
previous knowledge of the system, such as prioritizing ligands that interact with key
residues of the target protein.

Bearing this in mind, we built Ligands filtering where users can filter, in a fast and
automatic way, all ligands that fit into a chosen interaction combination. Two filtering
options are available: Residues combination filtering and Interaction types filtering. In
the first option, a list of residue combinations is generated from a chosen list of residues.
For each combination, nAPOLI searches for all ligands that interact with all residues.
In the second option, users inform of a list of residues and an interaction type for each
residue. nAPOLI returns all ligands that interact with the defined residues through the
specified interactions.

3.1.5 Applicability of nAPOLI on two different scenarios

In this section, we present two study cases with the objective to demonstrate
the applicability of nAPOLI in different scenarios and how the novel features can be
employed. First, we provide a discussion on a study case involving ricin, a type 2 ribosome-
inactivating protein (RIP). Then, we employ nAPOLI in a scenario comprising six different
proteins from the human nuclear receptor subfamily 3 (hNR3). The corresponding data
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sets are available in nAPOLI web server as examples in the Data set analysis section.

3.1.5.1 Ricin data set

Earlier investigations based on site-directed mutagenesis, enzymatic studies and
the binding of substrate analogs to the RTA have revealed key conserved residues involved
in the depurination of ribosomal RNA, namely TYR80, TYR123, GLU177, ARG180 and
TRP211 [41, 58, 87, 111, 124, 127, 128, 168, 169, 170, 196, 198, 204, 205, 211, 235, 239].
Also, these studies showed that the RTA active site is highly polar and surrounded by
aromatic residues. Not surprisingly, X-ray crystal structural analysis revealed essential
hydrogen bonds and aromatic stackings to the catalytic process to occur.

Based on this information, several small molecules presenting a potential binding
mode similar to the adenosine were evaluated against RTA [11, 38, 58, 71, 106, 167, 170,
189, 190, 206, 239, 240, 248]. From the tested compounds, 26 complexes (18 inhibitors and
8 substrate compounds) were solved and deposited in the PDB (see Table 3.2). We then
submitted these complexes to nAPOLI to further analysis through the Insert nAPOLI
entries functionality, and the results are available as an example in nAPOLI.

Analysis of the whole ricin data set revealed that the ligands are predominantly
composed of polar and aromatic atoms (see Figure 3.1), which is in agreement with the
literature [232]. Few of them presented negatively or positively charged atoms, while
hydrophobic atoms are mostly part of aromatic rings. One can also observe that several
ligands present no hydrophobic atoms. It occurred because nAPOLI does not consider
carbons that are bound to polar atoms as hydrophobic (see two examples in Figure 3.2).
As expected, hydrogen bonds and aromatic stackings were prevalent in the database (see
Figure 3.3).

Regarding clustering, the compounds were automatically partitioned into five
groups (see Table 3.2) in a similar manner as in [232]. According to the authors, these
molecules can be divided into four main categories: adenine-based substrate analogues,
guanine-based, pterin-based, and pyrimidine-based inhibitors. In our approach, adenine-
based compounds were subdivided into a group composed of adenine and amide-based
compounds (cluster 2), and a group comprising molecules similar to adenosine monophos-
phate (cluster 3). Guanine-based compounds are part of cluster 1, though it also includes
two pterin-based compounds (PT1 and NEO). Finally, clusters 4 and 5 are formed by
pyrimidine-based and pterin-base compounds, respectively. It is noteworthy that Wa-
home et al. grouped the compounds according to a common substructure, while our
method grouped molecules based on global similarity using chemical hashed fingerprints.
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Table 3.2: RTA-ligand complexes whose structures were solved and deposited in the PDB.
The column Compound type distinguishes inhibitors from substrate molecules.

PDB Ligand Compound type Cluster Reference
1IL3 7DG Inhibitor 1 [11]
1IL4 9DG Inhibitor 1 [189]
1IL9 MOG Inhibitor 1 [190]
1BR6 PT1 Inhibitor 1 [206]
1BR5 NEO Inhibitor 1 [206]
1IFS ADE Substrate 2 [38]
2PJO NMU Substrate 2 [167]
2P8N ADE Substrate 2 [167]
2R3D ACM Substrate 2 [167]
2R2X URE Substrate 2 [248]
1IFU FMC Substrate 3 [38]
3RTI FMP Substrate 3 [38]
1OBT AMP Substrate 3 [248]
3HIO C2X Inhibitor 3 [240]
4Q2V 0XE Inhibitor 4 [58]
1IL5 DDP Inhibitor 4 [189]
3EJ5 EJ5 Inhibitor 4 [240]
3PX8 JP2 Inhibitor 5 [38]
4HUP 19M Inhibitor 5 [71]
4HV3 19L Inhibitor 5 [106]
4HUO RS8 Inhibitor 5 [167]
4ESI 0RB Inhibitor 5 [170]
4MX5 5MX Inhibitor 5 [206]
4MX1 1MX Inhibitor 5 [206]
4HV7 19J Inhibitor 5 [239]
3PX9 JP3 Inhibitor 5 [239]

Figure 3.1: Atom type frequencies for the 26 RTA ligands. The X-axis shows the number
of atoms, while the Y-axis shows the number of ligands that have a certain amount of
atoms of a given type.

Consequently and not surprisingly, these two approaches can generate different cluster
results [194].
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(a) (b)

Figure 3.2: Examples of two ligands containing no hydrophobic atoms according to
nAPOLI’s method. The chemical structure from 5MX and AMP are shown in (a) and
(b), respectively.

Figure 3.3: Interaction type frequencies for the RTA complexes. The X-axis shows the
number of interactions, while the Y-axis shows the number of ligands that have a certain
amount of interactions of a given type.

Among all clusters, the one presenting more aromatic atoms and stackings is cluster
5, which is also the group with the highest numbers of hydrogen bonds, as well as acceptor
and donor atoms. Interestingly, we observed that its ligands have more acceptors than
donor atoms. Considering that Ricin has evolved to depurinate a specific adenosine of
the 28S RNA, the previous finding may be in accordance with recent work of Raschka
et al. (2018) [193], where the authors report that proteins prefer to act as hydrogen
bond donors as part of their specificity. Thus, this simple information could lead the
researcher to further explore the chemical properties comprising the binding site and to
guide molecular scaffold investigation [108].

Through the Interactions by residues table, we could also confirm literature results
[41, 58, 87, 111, 124, 127, 128, 168, 169, 170, 196, 198, 204, 205, 211, 235, 239] as the key
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residues TYR80 (85%), TYR123 (81%) and ARG180 (85%) presented high interacting
frequencies (see Figures 3.4 and 3.5).

Figure 3.4: Protein-ligand interactions detected by nAPOLI to the complex Ricin and
the ligand JP2:1 (PDB 3PX8). Hydrogen bonds and aromatic stackings are shown as
blue and red lines. Note that all key residues TYR80, TYR123, ARG180, VAL81, and
GLY121 interacted with the ligand, as well as two other residues ASP124 and ASN209.

On the other hand, GLU177 and TRP211 did not emerge as frequent interacting
residues since they interacted with only 10 (38%) and 6 (23%) ligands, respectively. Re-
garding GLU177, the literature shows that this residue acts as a base to polarize attacking
water. Indeed, from the ten ligands interacting with GLU177, eight established hydrogen
bonds mediated by water. Moreover, we manually analyzed the complexes involving the
ligands that did not interact with GLU177, and, in most cases, we found a water molecule
placed at a favorable distance to interact with the residue but not with the ligand. Finally,
TRP211 is believed to play a structural role in the binding site and is not involved in
binding or catalysis [28, 201]. As a consequence, only a few ligands interacted with this
residue.

Besides these key residues, VAL81 and GLY121 also presented high interacting
frequencies (92% and 81%, respectively) in nAPOLI’s report (Figure 3.5). Both residues
were already shown to be relevant to the substrate binding [170].

Given that the ricin data set is composed of both inhibitors and substrate
molecules, we also investigated if there were any differences concerning the residues in-
teracting with these ligands. Using the Clusters comparison feature, we performed a
comparison between all clusters (see Figure 3.6). Since clusters 2 and 3 contain only sub-
strate molecules, except one ligand (C2X) from cluster 3 that is considered an inhibitor
based on the ricin substrate, we evaluated all other clusters against these two. We first
noticed that the residues ASN122, SER176, TRP211, THR216, GLU220, VAL256, and
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Figure 3.5: Most frequent interacting residues in the ricin data set.

CYS259 are absent in the substrate clusters. Moreover, we identified four other residues
(ASN78, ASP96, ASP124, and ARG213) that are found only in the inhibitor complexes,
including the C2X complex. These findings may suggest residues that likely contribute
to ricin inhibition.

To further evaluate if it would also be possible to distinguish inhibitors by their
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Figure 3.6: Comparison of interacting residues in all clusters. Results are shown as
alignment position. Blue rectangles highlight the residues (ASN122, SER176, TRP211,
THR216, GLU220, VAL256, and CYS259) absent in clusters 2 and 3, which contain only
substrate ligands. Orange rectangles highlight residues (ASN78, ASP96, ASP124, and
ARG213) that are found just in the inhibitor complexes, including the C2X ligand from
cluster 3.

interacting residues composition, we also compared cluster 5, which is composed of the
most potent ligands [189, 190, 206, 240], against clusters 1 and 4 (see Figure 3.7). In-
terestingly, we observed three residues exclusive to cluster 5: ASN122, ASN209, and
VAL256. Both asparagines participate in hydrogen bonds intermediated by water (see
an example in Figure 3.4), while the valine establishes hydrophobic interactions. Indeed,
Ready et al. (1991) [196] showed that the ASN209 plays an additive contribution to the
substrate binding, and Marsden et al. (2004) [158] showed through a mutagenesis study
that the N122A mutation caused a 37.5-fold reduction in the RTA activity. Therefore,
we believe the Clusters comparison results also have the potential to reveal common and
unique interacting features in the protein-ligand complexes, which may provide valuable
clues regarding the molecular recognition process.

Figure 3.7: Comparison of interacting residues in clusters 1, 4, and 5, which are the groups
containing only inhibitors. Results are shown as alignment position. Blue rectangles
highlight the residues ASN122, ASN209, and VAL256 that are exclusive to the most
potent inhibitors (cluster 5) [189, 190, 206, 240].
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3.1.5.2 Nuclear receptors subfamily 3

Human nuclear receptors (NR) are a family of ligand-regulated transcription fac-
tors that play crucial roles in many physiological processes, including development, home-
ostasis, and metabolism [216]. Their wide spectrum of functions is regulated by small
hydrophobic signaling molecules such as hormones and dietary compounds [67, 110].

A modular structure of five domains characterizes the NR family: a variable activa-
tion function 1 domain, a conserved DNA binding domain (DBD), a variable hinge region,
a conserved ligand-binding domain (LBD) and a variable C-terminal domain [110, 216].
Among them, DBD and LBD, which are the most conserved and important domains, sup-
ported the classification of the NR family into seven subgroups based on their sequence
identity [80, 93].

In order to illustrate the applicability of nAPOLI in the study of conserved protein-
ligand interactions along a functionally conserved binding site of a protein family, we chose
the subfamily NR3 as a target for our investigation. The NR3 subfamily includes a group
composed of steroid receptors and a group formed by orphan NRs. The latter comprises
three estrogen-related receptors (ERRα, ERRβ, and ERRγ), while the former consists
of the following proteins: androgen receptor (AR), estrogen receptor (ERα and ERβ),
glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and progesterone receptor
(PR) [96]. Steroid receptors are important therapeutic targets as they are implicated
with a series of diseases as breast and prostate cancer, cardiovascular disease, glaucoma,
hyperglycemia, hypertension, obesity, osteoporosis, and disorders of the central nervous
system and immunity [7, 57, 68, 110, 122, 180]. In this work, we are only interested in
receptors containing endogenous ligands. Accordingly, the orphan NRs, structures that
no endogenous ligands are known to bind them, were not included in the analysis.

The NR3 data set was composed as follows. First, we performed a sequence simi-
larity search for each human steroid receptor using a 90% sequence identity cutoff. We ob-
tained 455 structures containing ligands. Next, we searched for regions containing ligands
or different binding sites in all these structures (see Section 3.1.1). To correctly select the
region corresponding to the LBD binding site, we referred to the complex ERα-estradiol
(PDB 1ERE; see Figure 3.8) [33]. Then, after filtering out crystallography artifacts and
ions, 842 ligands remained in the LBD pocket. However, we observed through structural
analysis that 51 ligands were displaced from the target pocket. Our search in the lit-
erature revealed that these ligands bound to allosteric sites [81, 137]. For this reason,
we decided to discard these molecules, the remaining 791 complexes. Further analysis
revealed that more than 60% of the complexes involve the ERα protein (see Table 3.3).
To avoid bias towards this receptor, we generated a random uniform subsample of the
data set using the Spreadsubsample algorithm from Weka [241]. The distribution spread
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parameter was set to 1 (uniform distribution). Consequently, we obtained 33 complexes
for each target, totalizing 198 complexes that were then submitted to nAPOLI through
the Insert nAPOLI entries functionality, and whose results are available as an example
in the Dataset analysis section.

Table 3.3: Number of ligands located in the LBD binding site for each Human steroid
receptor.

Protein Number of ligands
AR 99 (13%)
ERα 502 (63%)
ERβ 68 (9%)
GR 49 (6%)
MR 40 (5%)
PR 33 (4%)

Figure 3.8: Structural alignment of the six steroid receptors. Ligands are shown as spheres
and proteins are represented as cartoons. Complexes AR-dihydrotestosterone (PDB
5JJM), ERα-estradiol (PDB 1ERE), ERβ-estradiol (PDB 3OLL), GR-dexamathasone
(PDB 3MNE), MR-desisobutyrylciclesonide (PDB 4UDB), and PR-progesterone (PDB
1A28) are colored red, blue, orange, pink, green, and yellow, respectively. The structural
alignment and the figure were generated with LovoAlign [159] and Chimera [184], respec-
tively.

Firstly, we assessed the ligands concerning their atom type composition and the
interactions established by them. As expected, since NRs are well known for their pre-
disposition for binding to hydrophobic molecules [80, 82], nAPOLI identified the ligands
as being predominantly hydrophobic. Concerning the interactions established by these
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atoms, we observed that 98% of the ligands established at least 20 hydrophobic interac-
tions. Also, all ligands presented at least one polar atom. The literature pointed out the
latter atom type as a conserved feature in the steroid family, permitting hydrogen bonds
to be established in the opposite ends of the receptor pockets [110]. Indeed, we found
that only three ligands did not establish any hydrogen bonds. In all these cases, the com-
plexes (3HQ5:A:GKK:934, 3HQ5:B:GKK:2, and 3KBA:B:WOW:2) were formed between
the PR and two ligands containing cyano groups (GKK and WOW). According to the
HBAdd software, which we used to automatically inform HBPlus which are the acceptor
and donor atoms, planar nitrogens are not pointed out as hydrogen bond acceptors. As
a result, HBPlus did not identify hydrogen bonds involving the cyano nitrogen. In its
turn, 133 ligands (67%) contain aromatic atoms, while 117 of them (59% of the whole
data set) established aromatic interactions. Finally, charged atoms are observed in only
47 ligands (24%), and only 16 of them (8% of the whole data set) established one to three
electrostatic interactions. Examples of works that discuss these two types of interactions
are [74, 151, 175, 178, 199].

Regarding the frequent interacting residues, it is important to mention that al-
though the LBD domain in the NR family is very conserved, it still presents several
differences in the amino acid sequences along each receptor. These differences are both in
size and physicochemical properties [78, 96]. Thus, the simple identical residues frequency
count would not reveal the real importance of each residue position. Then, taking into
account that different residues may be found in equivalent positions in the binding site,
nAPOLI performs a structural alignment using Multiprot [217] and counts frequencies of
aligned positions that interact with ligands. For example, the most frequent interacting
position is the 778 (100%), in which only phenylalanines were found interacting with the
set of ligands (see Figure 3.9). Another frequent position is the 759 (96%) that contains
three different residues aligned to it: leucine, methionine, and serine (see Figure 3.10).

Figure 3.9: Alignment position containing only phenylalanines.

Despite the differences in the residue sequences, [110] demonstrated that the steroid
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Figure 3.10: Alignment position containing three different residues: leucine, methionine,
and serine.

receptors interact with their cognate ligands in a similar and conserved way. Indeed, we
found 12 different positions with at least 70% of frequency, wherein each position presents
on average two different residues (see Table 3.4). From these, seven positions were found
interacting with the ligands in at least five of the six receptors.

Table 3.4: Most conserved interacting positions in hNR3 data set.

Interacting receptors Alignment
position

Different residues aligned
Overall frequency

AR ERα ERβ GR MR PR to this position

X X X X X 778 PHE 100%

X X X X X 718 LEU 98%

X X X X X X 759 LEU, MET, SER 96%

X X X 756 LEU, MET 94%

X X X 763 LEU, MET 94%

X X X X X X 891 ALA, CYS, LEU, THR 92%

X X X 721 LEU 86%

X X X X X 890 HIS, PHE, TYR 85%

X X X X X X 725 GLN, GLU 85%

X X X X X X 766 ARG 80%

X X 755 LEU, TRP 72%

X X 715 HIS, LEU, MET 70%

Moreover, Huang et al. (2010) [110] also discussed conserved hydrogen bonds oc-
curring in opposite ends of the steroid receptor pockets. All hydrogen bonds mentioned
in their work were found by nAPOLI (Figure 3.11). The residues involved in these in-
teractions were aligned in positions 719, 725, 766, 797, 890, 891, and 894 (Table 3.5).
Among them, three positions (766, 735, and 719) presented more conserved participation
in hydrogen bonds. Position 766, for instance, has only arginines, which are key conserved
residues that play important roles in the ligand-specificity in this family [78, 102]. On the
other hand, residues with a low interacting frequency could be indicative of residues that
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provide target specificity, and that could be further explored. In a virtual screening cam-
paign, for instance, one could be interested in selecting ligands that interact with specific
residues from specific targets. Using the Ligands filtering feature from nAPOLI, a user
can achieve this objective. In Figure 3.12, we show an example of a simple search for lig-
ands establishing hydrogen bonds with the residue ASN719. This residue was pointed out
by Huang et al. (2010) [110] as only establishing hydrophobic interactions, but nAPOLI
automatically selected 13 complexes establishing the intended interaction.
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Figure 3.11: Key hydrogen bonds in the six steroid receptors are pointed out by [110] and also identified by nAPOLI. (a) AR and the
ligand DHT:1001 (PDB 5JJM). (b) ERα and the ligand EST:596 (PDB 2OCF). (c) ERβ and the ligand EST:600 (PDB 3OLL). (d) GR
and the ligand DEX:784 (PDB 3MNE). (e) MR and the ligand CV7:1987 (PDB 4UDB). (f) PR and the ligand STR:2 (PDB 1A28).
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Figure 3.12: Filtering example in which ligands that are interacting with a specific residue
(ASN719) from the PR protein were selected.

Table 3.5: Residues (grouped by their alignment position) establishing hydrogen bonds
as mentioned in [110].

Receptors
Alignment positions

POS766 POS725 POS719 POS891 POS890 POS894 POS797

ERα R394 E353 H524

ERβ R346 E305 H475

AR R752 Q711 N705 T877 Q642

GR R611 Q570 N564 T739

MR R817 Q776 N770 C942* T945

PR R766 Q725 N719* C891* T894*

Overall frequency 80% 85% 64% 92% 85% 34% 63%

Fraction of HBonds 94% 88% 76% 21% 21% 46% 10%
* In [110], these residues were pointed out as only establishing hydrophobic interactions.

In Table 3.5, we also highlight four residues (CYS942, ASN719, CYS891, and
THR894) presenting divergent results from [110]. In Huang et al. (2010), these residues
were pointed out as involved only in hydrophobic interactions. On the other hand,
nAPOLI identified these residues as also establishing hydrogen bonds, which is in agree-
ment with literature findings [26, 150, 182].
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3.2 A novel Python library for drug design

LUNA1 was built in Python 3 and is fully object-oriented to permit users to con-
trol every processing step programmatically. The required dependencies are Biopython,
mmh3, Numpy, Open Babel, Pymol, and RDKit.

The files accepted by LUNA depend on the scenario in which the library is em-
ployed. For projects containing complexes whose structures are in the same file, the
options are the same as in Biopython: PDB, PDBx/mmCIF, PDBML/XML, MMTF,
and bundle. Finally, for projects containing complexes in different files, as commonly
happen when a docking study is performed, two separate files can be provided: one for
the macromolecule and one for the ligand. The macromolecule structures can be in any
format supported by Biopython as presented before. For the ligands, the accepted files
are any file supported by Open Babel or RDKit.

In the rest of this section, we present some of the major LUNA features.

3.2.1 Filtering interactions

LUNA provides several filters to control how interactions are calculated. Some of
them, for instance, can be applied to remove: intramolecular, protein-protein, protein-
DNA/RNA, protein-small molecule, DNA/RNA-DNA/RNA, DNA/RNA-small molecule,
and small molecule-small molecule interactions; and interactions involving waters and
artifacts of crystallography (Table 3.1). Other filters can also be applied to calculated
interactions to select those that match some geometric constraints.

3.2.2 Statistical analysis and data set characterization

LUNA provides several functions for summarizing and characterizing molecular
interactions and physicochemical properties, besides the generation of statistical data
with the support of Numpy, Pandas, and Seaborn. Besides it, LUNA also brings together
visual strategies physicochemical properties and molecular interaction analysis. Herein,

1https://github.com/keiserlab/LUNA
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we highlight the 2D molecular diagram (Figure 3.13) and the frequency heatmap plot
that can be employed in molecular dynamics analysis to characterize and summarize the
frequency in which the residues interacted with the ligands throughout the simulation
(Figure 3.14).

Figure 3.13: Example of a molecular 2D structure diagram with atoms colored according
to their physicochemical properties.

3.2.3 Visualizing interactions

Visualization of biological data is a clearly advantageous application inasmuch
as it aids the exploration, analysis, and interpretation of the data in an interactive and
straightforward way. Bearing this in mind, we built a functionality where users can export
their calculated interactions into a Pymol session (Figure 3.15). Thus, one can analyze
the binding site using a visual approach and interact with it by using the Pymol features.

In our visualization, interactions are color-coded and grouped by type, simplifying
the filtering of them. Moreover, multiple complexes can be visualized at the same time,
which makes it easier to discover conservation and dissimilarities. For analyzing multiple
complexes in a stacked way, it is necessary to perform a structural alignment before.

3.2.4 Visualizing fingerprint information

One drawback of most interaction and molecular hashed fingerprints refers to the
fact that the structural information is lost after the generation of the fingerprint. First,
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Figure 3.14: Example of an interaction heatmap summarizing the most frequent residues
interacting with different ligands throughout trajectory clusters obtained from a molecular
dynamics simulation.

because it is not possible to know which substructure generated the corresponding bit
(1s) in the fingerprint. Second, because multiple substructures can be hashed into the
same vector position, the so-called collision problem. Consequently, the hashed fingerprint
becomes a black-box as no structural information can be recovered from the bits.

Bearing this in mind, we provide in LUNA a functionality where users can recover
the information encoded into a bit, i.e., to reconstruct the neighborhood that generated
that bit. Additionally, it allows users to export one or more recovered neighborhood into
a Pymol session. Thus, one can visually analyze the atom neighborhood and interact with
it using the Pymol features.

The neighborhood view generated by Pymol is similar to sessions created for molec-
ular complexes (Section 3.2.3), but here the focus is on a central atom/group, its neigh-
boring atoms/groups, and interactions established by them. Since multiple neighborhoods
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(a) (b)

Figure 3.15: A Pymol session generated by LUNA, highlighting the protein-ligand inter-
actions between the enzyme CDK2 and the ligand X02 (PDB 3QQK). On the left, an
overview of all interactions is shown. In the right, the view was rotated, and a filter was
applied to the interactions to only show hydrogen bonds (blue) and a displaced face-to-face
stacking (red). Arrows represent directional interactions.

can be represented in the same Pymol session, LUNA groups interactions by neighbor-
hood.

One useful application of this feature is the possibility of visualizing similar and
dissimilar bits between two fingerprints through an interactive approach. Figure 3.16
shows an example of two similar bits, i.e., two similar neighborhoods, found in two different
CDK2-inhibitor complexes.

(a) (b)

Figure 3.16: A Pymol session generated by LUNA, highlighting two similar bits (neigh-
borhood) found in the fingerprints of two CDK2-inhibitor complexes (PDBs 3QQK and
3QWJ, left and right). Blue arrows and gray dashed lines represent hydrogen bonds and
van der Waals interactions. Arrows point to the interaction direction.
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3.3 Fingerprint evaluation

As we do not know a priori which similarity value we should expect when two poses
are compared with the proposed fingerprint, we performed an exploratory evaluation of
the fingerprint parameters using three data sets composed of similar ligands related to
the human cyclin-dependent kinase 2 (CDK2). These data sets were empirically designed
using CDK2 inhibitors, presenting both structural and molecular similarities and low
RMSD to the crystal structures. By doing so, we hypothesize that the binding mode
similarity between two pairs of FIFP would be proportional to the molecular and pose
similarity.

We organized this section as follows. First, we scrutinize the parameters number
of levels and radius growth rate, followed by a discussion about the impact of different fin-
gerprint lengths on the collision rate. Finally, we present an evaluation of the separability
between similar from dissimilar poses using FIFP.

3.3.1 Effect of the number of levels and radius growth rate

In this section, we analyze the effect of the parameters number of levels and radius
growth rate on the similarity of two complexes involving the same target and ligands with
similar poses. We start with a discussion about the effects of these parameters on the
similarity of manual poses and the ligand X07 (PDB id of the CDK2 complex: 3QQF).
Finally, we present a similar discussion using different conformers of the ligand X02 (PDB
id of the CDK2 complex: 3QQK) and an additional evaluation of the parameter effects
when different CDK2 ligands are considered.

3.3.1.1 Same ligand in different manual poses

Departing from the manual generated poses, we selected pose C (see Figure 2.3),
which presented the least amount of different interactions compared to the crystal pose
(Figure 3.17), as our positive reference. Thus, among all manual poses, we expect it to
present the highest similarity to the original pose.

On the other hand, we selected pose L as our negative reference since this pose
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Figure 3.17: Comparison between the original crystal pose (PDB 3QQF) and pose C. Pro-
tein, original pose, and modified pose are shown as gray, blue, and green sticks. Exclusive
interactions of each complex are shown as dashed lines, where light gray represents van
der Waals interactions established by the original pose, and dark gray and teal represent
van der Waals and weak hydrogen bonds, respectively, established by the modified ligand.

presented the highest number of dissimilar interactions in comparison to the crystal pose
(Figure 3.18).

Figure 3.18: Comparison between the original crystal pose (3QQF) and pose L. Protein,
original pose, and modified pose are shown as gray, blue, and green sticks. Exclusive
interactions are shown as blue (original pose) and green (modified pose) dashed lines.

In Figure 3.19, we show how the variation in the number of levels influences the
similarity between the manual poses and the crystal structure. Note that the positive
and negative references are the ones with the highest and lowest similarities, respectively,
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which is in accordance with our expectations. Moreover, as we mentioned in Section
2.3.4, the number of levels indirectly controls how many features will be included in
the fingerprint. This statement is emphasized by the trend in Figure 3.19, in which the
similarity decreases as we increase the number of levels. That happens because the number
of levels defines how many iterations the algorithm will have to explore the feature space.
Therefore, the higher the level, the more features could be found.

Figure 3.19: Effect of the number of levels on the similarity between manually generated
poses and the crystal structure. The gray dashed line highlights the minimum number of
levels for differing all poses from the original complex.

It is also noteworthy that the similarity decreases until a specific number of levels,
then it slightly increases, and from then on it converges. The increase in the similarity
given by higher levels is indicative of bit collisions. As we increase the number of levels,
more features are generated and included in the fingerprint. However, since the fingerprint
has a limited length, as higher the number of features covered by the fingerprint, the higher
the chance of collisions. As a consequence, some collisions may generate false similar-bits,
which artificially increases the similarity between two poses. In its turn, the convergence
in higher levels indicates that the whole feature space was already covered, i.e., there is
no new information to be included in the fingerprint after a specific number of levels.

Finally, the vertical gray line in Figure 3.19 highlights the minimum number of
levels to obtain a separation between the conformers from the crystal pose. The same
trend can be observed when varying the radius growth rate and the number of levels
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(Figure 3.20). For each radius growth rate, there is a minimum number of levels that
permit all manual poses to be separated from the original complex. For example, the blue
line, which corresponds to the growth rate of 0.1, shows that for small steps, more levels
are required to completely separate very similar poses.

Figure 3.20: Effect on the similarity between Pose C and the original pose when varying
the number of levels and radius growth rate.

3.3.1.2 Conformer analysis

In order to better assess the ability of FIFP on separating similar poses, we se-
lected a bigger set of conformers automatically generated with RDKit and evaluated how
the number of levels influences the similarity between these poses and the CDK2-ligand
complex (PDB 3QQK) (Figure 3.21). As explained in Section 2.4.1, these conformers
were obtained after a filtering procedure where only poses with an RMSD to the crystal
less than 0.4 were kept.

Using the minimum number of levels (5) found in the previous experiment as
our reference, we noticed that most of the conformers presented higher similarity to the
crystal pose, which is already expected given the RMSD threshold we used for pruning
conformers. As we increase the number of levels, the average similarity between the
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Figure 3.21: Effect on the similarity between the ligand X02 (CDK2 complex id: 3QQK)
and its different conformers when varying the number of levels.

conformers and the crystal pose is usually lower than 0.5. However, it is possible to
observe that some conformers still presented similarities above this value, which highlights
that the fingerprint is able to separate similar from dissimilar poses.

3.3.1.3 Different CDK2 inhibitors

Besides the analysis consisting of the same ligand on different poses, we also eval-
uated the similarity behavior when comparing different ligands (Figure 3.22). In previous
sections, we showed that the minimum number of levels for separating two very similar
poses was 5. Analysing the same value for the current data set, we observed that all pairs
of complexes presented a similarity lower than 0.5. Together with the previous analysis,
this result indicates that more features are usually required to separate very similar poses,
which could be achieved by increasing the number of levels. On the other hand, Figure
3.22 points out that the separation between dissimilar poses does not require so many
features and lower levels are enough for separating two different complexes.
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Figure 3.22: Effect of the number of levels on the similarity between pairs of CDK2
inhibitors (all against all).

3.3.2 Effect of the fingerprint length on the collision rate

For the analysis of the effect of bit collisions on fingerprint generation, we used the
data set composed of 74 CDK2 inhibitors. To do so, we generated fingerprints of different
sizes by fixing the number of levels and the radius growth rate to 7 and 1, respectively.
Then, for each fingerprint length, we measured the number of bits on, the collision rate,
and the fingerprint darkness, which is the rate of bits on in relation to the fingerprint
length (Figure 3.23).

Note that the number of collisions and fingerprint darkness reduces as we increase
the length of the fingerprint, which is in accordance with the expected behavior. Also,
observe that even in the worst case (4,096), on average, only 4% of the bits set on presented
collisions, while the maximum percentage of collisions observed was less than 8%. Thus,
we conclude that the rate of collisions for the tested lengths is acceptable. However, to
be more conservative, we envision the 16,384 version as more interesting given its tradeoff
between collision rate and performance - computational tasks using longer fingerprints
may require more processing time.
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Figure 3.23: Effect of the fingerprint length on the rate of collisions and fingerprint
darkness. In the top left, the point plot (a boxplot variant that better highlights the
relation between two parameters) shows the number of bits for the 74 CDK2 inhibitors.
In the top right and the bottom, the box plots show the variability of the fingerprint
darkness and collision rate, respectively, when the fingerprint length increases.

3.3.3 Separability of similar and dissimilar binding modes

To further validate our findings, we also decided to evaluate if the fingerprint is
able to separate similar from dissimilar complexes. To do so, we manually selected pairs
of fingerprints from the 74 CDK2 inhibitors data set based on their molecular structure
and pose similarity. For positive control, we selected the pairs of manual poses evalu-
ated in Section 3.3.1.1, and as a negative control, we included additional pairs composed
by CDK2 ligands (entries 3QL8:A:X01:300 and 3QQK:A:X02:497) and different protein-
ligand complexes, namely carbonic anhydrase II (entry 1G54:A:FFB:555), ricin (entry
1BR5:A:NEO:500), thymidylate synthase (entry 1TSD:A:F89:268), and tRNA-guanine
transglycosylase (entry 1K4H:A:APQ:900). By including these new pairs, we expect that
the CDK2-inhibitor complexes to be highly dissimilar to the non-CDK2 complexes.

We then generated fingerprints of different lengths while fixing the number of levels
and the radius growth rate to 7 and 1, respectively. In order to highlight the separability
of similar and dissimilar complexes, we also grouped pairs according to their expected
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similarity into the following groups: manual poses, similar CDK2 inhibitors, dissimilar
CDK2 inhibitors, and different proteins and ligands (expected negative control). Poses C
and L, which are our positive and negative references, respectively, remained ungrouped.
The similarity between the fingerprint pairs was calculated and shown in Figure 3.24.

4096 8192 16384 32768 65536 131072 262144 524288
FP length

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Si
m
ila
rit
y

Pose C
Pose L
Manual poses
Similar CDK2 ligands
Dissimilar CDK2 ligands
Different complexes

Similarity per pair of compounds

Figure 3.24: Similarity per pair of complexes for different fingerprint lengths.

Note in Figure 3.24 that pairs of compounds expected to be similar (manual poses
and similar CDK2 inhibitors) presented higher binding mode similarity and are separated
from pairs expected to be dissimilar (dissimilar CDK2 inhibitors and different proteins
and ligands). Not surprisingly, poses C and L appear at the top and at the bottom of the
plot, respectively.

Interestingly, longer fingerprints tend to accentuate the separateness of the groups,
which is explained by the reduction of bit collisions. Previously, we mentioned that the
collision rate artificially increases the similarity between any two poses. That happens
because fingerprints contain a predefined length and so, a limit for storing novel features.
Thus, the increasing the number of features, the higher will be chance to occur bit col-
lisions. On the other hand, if the fingerprint length is extended, more features can be
allocated, which, consequently, reduces the collision rate and the artificial similarity.

These remarking results potentially emphasize the applicability of FIFP on SBVS
campaigns where it could be employed for selecting molecules that bind in a similar
manner to known active molecules or even filtering out those ones that differ too much
from active molecules.
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3.4 Dock score prediction

To validate and illustrate the applicability of FIFP for prioritizing hit compounds,
we decide to apply this novel fingerprint to the Dock score prediction task. To do so, we
chose a large data set recently published by Lyu et al. (2019) [153] and performed several
experiments to identify the best FIFP parameters followed by their comparison with the
baseline (ECFP and FCFP) and two other interaction fingerprint models.

This section is organized as follows. First, we present the results and discuss the
exploratory search for the best FIFP parameters. Then, we finalize with a discussion on
comparing FIFP and other fingerprints.

3.4.1 Exploratory search for the best FIFP parameters

In the first experiment, we analyzed different combinations of parameters in order
to select the best models for further comparison with the baseline models. Besides the fin-
gerprint attributes (number of levels, radius growth rate, and fingerprint length) (Figures
3.26 and 3.30), we also evaluated how the methodology employed to calculate interactions
influences the predictive performance. To do so, we empirically explored combinations of
the following options: strict or loose rules for hydrogen bond donor (Strict H rule; Fig-
ure 3.25); include or not non-covalent (excluding van der Waals) interactions (Non-cov ;
Figure 3.27); compute or not atom-atom interactions (Atom-Atom; Figure 3.27), which
include covalent bond, van der Waals, van der Waals clash, and atom overlap; include
or not proximal interactions (Proximal ; Figure 3.27); protein structure with or without
hydrogens (Struct w/ H ; Figure 3.28). The presence of the described labels in the ex-
periment name (X-axis) indicates whether it was used or not during the calculation of
interactions. For the best models, we also evaluated if its count fingerprint version and
the inclusion of interactions in the protein side (w/ PPI ) would improve the prediction
(Figure 3.29).

Regarding the methodologies for hydrogen bond calculation, we observed that the
models slightly improved when strict rules for hydrogen bond donors were used (Figure
3.25). That indicates that the false positive interactions identified by loose rules negatively
impact the model performance. Finally, it is noteworthy in Figure 3.25 that the only
exceptions are the fingerprints whose number of levels and radius rate growth are 13
and 0.5, respectively. In this particular case, the reduction in the R2 when using strict
rules are due to the artificial similarity improvement discussed in Section 3.3.1.1, i.e.,
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this particular combination of levels and radius growth produces an excessive number of
features, which increases the collision rate and, consequently, generates false similar-bits.
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Figure 3.25: Comparison between strict and loose rules for hydrogen bonds. Default FIFP
parameters are shown above the chart, and bars are ascendingly sorted from left to right
according to the DNN models.

Another interesting trend we observed in the predictive performance was that
fingerprints obtained by using a small number of levels produced the highest R2 values
(Figure 3.26), being the number of levels 2 (radius growth rate around 6 Å) and 3 (radius
growth rate around 2.9 Å) the best options. The only exception was the combination of
5 levels and a radius growth rate equal to 1.5 that showed an R2 close to the top scores.
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Figure 3.26: Comparison between the different number of levels and radius growth rate. Default FIFP parameters are shown above the
chart, and bars are ascendingly sorted from left to right according to the DNN models.
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Additionally, when it comes to the different levels of information encoded in the
fingerprints (Figure 3.27), the usage of non-covalent and atom-atom interactions are en-
couraged as they provide a clear advantage over fingerprints with no contact information
(experiment label Levels = 1, Radius = 0.00). However, when we also included proximal
contacts, the performance of all models decreased. By default, proximal contacts are
assigned to all pairs of atoms or atom groups within 6 Å, including intramolecular pairs.
Consequently, an excessive number of features, especially false positive ones, are produced
by such a method. For that reason (although not proved herein), we believe a short-range
threshold for proximal contacts should be used, whereas intramolecular contacts should
be avoided.
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Figure 3.27: Comparison between different methodologies for computing interactions.
Default FIFP parameters are shown above the chart, and bars are ascendingly sorted
from left to right according to the DNN models.

Following the fine-tuning of the methodology, we then evaluated the importance
of the proper addition of hydrogens to the molecules. However, since the ligand contains
hydrogens, the hydrogen correction was performed only for the protein. Note in Figure
3.28 that the R2 slightly increases when hydrogen atoms are added to the structure. So
far, we have used strict rules without including hydrogens on the protein side. However,
remember that strict rules require all atoms to be protonated appropriately; otherwise,
(weak) hydrogen bonds are not identified. Thus, the observed improvement happened
because our models were not capturing interactions in which the donor belongs to the
protein side.

Concerning the count fingerprints, Figure 3.29 shows that its usage favorably con-
tributes to the predictive task. These fingerprints, as the very name indicates, explicitly
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Figure 3.28: Comparison between fingerprints with and without hydrogens added to the
protein structure. Default FIFP parameters are shown above the chart, and bars are
ascendingly sorted from left to right according to the DNN models.

define the frequency in which a specific feature appeared in a complex instead of only
pointing out its presence or not. In other words, it means that explicitly defining how
many times a feature consisting of a hydrogen bond, for instance, is more promising than
only accounting for its presence. Moreover, when interactions (both non-covalent and
atom-atom interactions) from the protein side are also encoded in count fingerprints (Fig-
ure 3.29), we observed a further remarking improvement in the models, where the best
4,096-bits model achieved an R2 of 0.52.
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Figure 3.29: Comparison between bit and count fingerprints and contribution of interac-
tions in the protein side. Default FIFP parameters are shown above the chart, and bars
are ascendingly sorted from left to right according to the DNN models.
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Finally, Figure 3.30 points out that longer fingerprints perform better than their
corresponding 4,096 versions (only models with R2 > 0.48). For example, the best model
(most-right grouped bars) in Figure 3.30, a 16,384-bits version of the best 4,096-bits model
discussed in the previous paragraph (fourth grouped bars from right to left in Figure 3.30),
achieved an R2 of 0.56 against 0.52 of its shorter version. Together with results presented
in Section 3.3.2, we believe that the choice for fingerprints up to 16,384-bits may provide
the best tradeoff between predictive performance, collision rate minimization, and model
reliability. The latter property is mainly related to the overfitting problem, which refers
to models that cannot generalize for unseen data and whose occurrence is typically higher
for longer fingerprints.
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Figure 3.30: Comparison between the top 4,096-bits fingerprints (R2 > 0.48; highlighted
in bold) and 16,384-bits version. Default FIFP parameters are shown above the chart,
and bars are ascendingly sorted from left to right according to the DNN models.

3.4.2 Baseline comparison

After the exploratory search for the best models and FIFP parameters, we selected
those models whose R2 was higher than 0.5 and compared them to the baseline (ECFP
and FCFP) and two other interaction fingerprint models using a 5-fold cross-validation
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strategy, whose results are shown in Figure 3.31.
Given that the molecular recognition event contains the required information for

the binding affinity prediction, we hypothesized that FIFP should perform at least as
well as ECFP and FCFP, which are two molecular fingerprints that only encode ligand
information. Indeed, the results presented in Figure 3.31 support our hypothesis as FIFP
outperformed both fingerprints, especially employing DNN strategies.

Regarding the interaction fingerprints, SILIRID showed not to be a promising ap-
proach on the Dock score prediction task (left-most grouped bars in Figure 3.31). SILIRID
is a fixed-length fingerprint that summarizes protein-ligand complexes into a 168-bit vec-
tor, where each 8-bits chunk (1 bit per interaction type) is reserved for one amino acid
and one additional chunk is reserved for cofactors, totalizing 21 chunks (21 ∗ 8 = 168).
However, we believe such a summary does not properly represent the protein-ligand in-
teraction context for a Dock score prediction task. FOR INSTANCE, even ECFP and
FCFP, which only encodes the ligand information, presented a superior performance than
SILIRID. Overall, these findings emphasize how critical data representation is for success
on machine learning tasks, although we highlight that SILIRID has been mainly conceived
for binding site comparison only.

PLEC, on the other hand, presented the second-best performance with its 16,384-
bits version, with consistent results for all machine learning algorithms (Figure 3.31). The
only other model that performed better than PLEC-16,384 was the DNN model trained
with FIFP count fingerprints using interactions in the protein side, number of levels and
radius rate growth equal to 2 and 6, respectively. Other FIFP fingerprints presented
slightly smaller results than PLEC-16,384, but the differences were not significant.

In summary, PLEC is a recently-published interaction fingerprint based on molec-
ular topology information from ECFP. However, unlike ECFP, PLEC only encodes the
environment of protein and ligand atoms in contact, which is defined by default as all
atoms within 4.5 Å. Thus, it is noteworthy that PLEC achieved remarking R2 scores by
only encoding contact information coupled with topology information.

Although our approach is based on the same circular neighborhood expansion from
ECFP, the current version of FIFP more closely resembles FCFP. The latter is a variation
of ECFP and encodes pharmacophore properties instead of the so-called atomic invariants
(the atomic number, isotope, number of neighboring heavy atoms, number of hydrogens,
formal charge, ring membership, and aromaticity). Nonetheless, it has already been
shown that ECFP usually performs better than FCFP [200] and, therefore, we believe
that the definition of atomic invariants further contributes to the prediction task inasmuch
it accounts for the specificity of each atom. On the other hand, the pharmacophore
version considers that atoms with the same pharmacophore property are functionally
equivalent, which seems not to add enough specificity for such a prediction problem.
Given these findings, we plan to build up a FIFP version where atomic invariants are
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explicitly considered and evaluate whether our models can further improve with such an
update.

Figure 3.31: Comparison between the top FIFP models (R2 > 0.5; highlighted in bold)
against the baseline (ECFP and FCFP) and two other interaction fingerprint models using
5-fold cross-validation. Default FIFP parameters are shown above the chart, and bars are
ascendingly sorted from left to right according to the DNN models.
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Chapter 4

Conclusion

In this work, we undertook to address the problem of identification, prioritization, and
automatic selection of a small number of promising compounds (HITs) in a structural-
based virtual screening campaign through a descriptive and predictive perspective.

For the first aspect, we propose nAPOLI (Analysis of PrOtein-Ligand Interactions),
a webserver to perform a large-scale analysis of protein-ligand interactions, consisting of
a set of algorithms and interactive visual interfaces to analyze and explore comprehensive
reports on conserved interactions in complexes. nAPOLI allows domain specialists to
detect conserved atomic-level interactions in labeled bipartite graphs representing protein-
ligand interfaces using visual strategies and statistical analysis. Furthermore, users can
analyze different structural data sets by creating several projects either by submitting their
local structures in PDB file format or by using the structures available at the PDB. By
providing ways to characterize and analyze protein-ligand interaction patterns across large
data sets of protein-ligand complexes, nAPOLI supports the understanding of processes
and patterns involved in molecular recognition and permits users to select and filter
compounds in a virtual screening campaign an interactive, visual, and analytical manner.

For the predictive aspect, we propose LUNA, a novel Python library for drug design
that permits the analysis of multiple molecular complex types, including protein-protein,
protein-DNA/RNA, protein-small molecule, and others. Moreover, the tool brings to-
gether several functions for filtering and visualizing interactions, generating statistical
data, and characterizing a data set. LUNA also provides connectors to MySQL databases,
RDKit, Open Babel, and Pymol. Another remarkable contribution of this work is the
comprehensive expansion of methods for calculating interactions and physicochemical as-
signment rules.

Finally, we also propose a novel hashed interaction fingerprint called FIFP (Func-
tional InteracTion FingerPrint), which was inspired by ECFP [203] and E3FP [9]. Dif-
ferent from other hashed fingerprints that are usually black-boxes, FIFP also provides
several features to make fingerprint information analysis straightforward and out-of-the-
box. To validate and illustrate the applicability of FIFP, we first presented an exploratory
evaluation of the fingerprint parameters to identify the best combination of parameters
and understand the fingerprint behavior when varying each parameter. Afterwards, we
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presented a case study that applied FIFP to the Dock score prediction task. To do so,
we built a data set composed of 86,641 molecules docked against Dopamine D4 departing
from [153]. Following, we trained several DNN, Random forest, and XGBoost models
using different combinations of FIFP fingerprints to identify the set of parameters that
provides the best prediction performance. We then compared the best results with two
baseline models (ECFP and FCFP) and two other interaction fingerprint models (SILIRID
and PLEC). As a result, we showed that FIFP outperformed the competing approaches
with an R2 of 0.56.

Therefore, we envision LUNA and FIFP as remarking approaches for structure-
based virtual screening and molecular dynamics campaigns. Additionally, they show
promising applicability in machine learning tasks like classifying molecules as active or
inactive, identifying bad poses, and predicting docking scores and experimental binding
affinity.

Lastly, as future works, we plan to include novel features in LUNA and additional
molecular interactions, namely anion-π, disulfide bond, agostic bond, hydrogen bonds
with metals, metal complex, and aromatic stackings with arrays of hydrogen bonds. Re-
garding FIFP, we plan to propose a new FIFP flavor where atomic invariants are explicitly
considered as in ECFP. Last but not least, we also plan to evaluate FIFP on different
scenarios as, for instance, the classification of ligands into two (active or inactive) or more
classes.
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Appendix A

Physicochemical property definitions in
nAPOLI

A.1 Residue atoms

Table A.1: Residue atom types.

Atom type Atoms

Acceptor ALA (O), ARG (O), ASN (O), ASN (OD1), ASP (O), ASP (OD1), ASP (OD2), CYS (O),
CYS (SG), GLN (O), GLN (OE1), GLU (O), GLU (OE1), GLU (OE2), GLY (O), HIS (O),
HIS (ND1), HIS (NE2), ILE (O), LEU (O), LYS (O), MET (O), MET (SD), PHE (O), PRO
(O), SER (O), SER (OG), THR (O), THR (OG1), TRP (O), TYR (O), TYR (OH), VAL (O)

Aromatic HIS (CG), HIS (ND1), HIS (CD2), HIS (CE1), HIS (NE2), PHE (CG), PHE (CD1), PHE
(CD2), PHE (CE1), PHE (CE2), PHE (CZ), TRP (CG), TRP (CD1), TRP (CD2), TRP
(NE1), TRP (CE2), TRP (CE3), TRP (CZ2), TRP (CZ3), TRP (CH2), TYR (CG), TYR
(CD1), TYR (CD2), TYR (CE1), TYR (CE2), TYR (CZ)

Donor ALA (N), ARG (N), ARG (NE), ARG (NH1), ARG (NH2), ASN (N), ASN (ND2), ASP (N),
CYS (N), CYS (SG), GLN (N), GLN (NE2), GLU (N), GLY (N), HIS (N), HIS (ND1), HIS
(NE2), ILE (N), LEU (N), LYS (N), LYS (NZ), MET (N), PHE (N), SER (N), SER (OG),
THR (N), THR (OG1), TRP (N), TRP (NE1), TYR (N), TYR (OH), VAL (N)

Hydrophobic ALA (CB), ARG (CB), ARG (CG), ASN (CB), ASP (CB), CYS (CB), GLN (CB), GLN (CG),
GLU (CB), GLU (CG), HIS (CB), ILE (CB), ILE (CG1), ILE (CG2), ILE (CD1), LEU (CB),
LEU (CG), LEU (CD1), LEU (CD2), LYS (CB), LYS (CG), LYS (CD), MET (CB), MET
(CG), MET (CE), PHE (CB), PHE (CG), PHE (CD1), PHE (CD2), PHE (CE1), PHE (CE2),
PHE (CZ), PRO (CB), PRO (CG), THR (CG2), TRP (CB), TRP (CG), TRP (CD2), TRP
(CE3), TRP (CZ2), TRP (CZ3), TRP (CH2), TYR (CB), TYR (CG), TYR (CD1), TYR
(CD2), TYR (CE1), TYR (CE2), VAL (CB), VAL (CG1), VAL (CG2)

Negative ASP (OD1), ASP (OD2), GLU (OE1), GLU (OE2)
Positive ARG (NE), ARG (CZ), ARG (NH1), ARG (NH2), HIS (ND1), HIS (NE2), LYS (NZ)

A.2 Ligand rules

Aromatic labels are assigned to aromatic atoms (‘[*;a]’).
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Positive labels are assigned to non-negative atoms (‘[!-]’) that fulfill at least one
of the following rules:

1. It has a formal charge greater than 0 or its partial charge is greater than 0.4;

2. It is a positive atom (‘[*+]’);

3. It is an N of a nitro-like group (‘[O]∼[N]=[O]’);

4. It is an N that:

a) belongs to an amine-like (‘C[N]’) or hydrazine-like (‘NN’) or amidine-like
(‘[#7][C,P,S]=[N]’) group;

b) does not belong to a tertiary amine-like (‘C[N](C)C’) or amide-like
(‘[#7][C,P,S]=O’) or aniline-like (‘c[N]’) or phenylhydrazine-like
(‘c[N][N]’).

Negative labels are assigned to non-positive atoms (‘[!+]’) that fulfill at least one
of the following rules:

1. It has a formal charge that is less than 0 or its partial charge is less than -0.4;

2. It is a negative atom (‘[*-]’);

3. It is an O of a nitro-like (‘[O]∼[N]=[O]’) or carboxylic acid-like
(‘[H][O][C]=[O]’) or carboxylate ion-like (‘[O-][C]=[O]’) or sulfonic acid-
like (‘[H][O][S](=[O])=[O]’) or phosphonic acid-like
(‘[H][O][P]([O])=[O]’) group;

4. It is an atom of a sulfonate-like (‘[O-][S](=[O])=[O]’) or phosphonate-like
group (‘[O][P]([O-])=[O]’).

Donor labels are assigned to atoms that fulfill at least one of the following rules:

1. It is a donor atom according to the HBDAPlugin from Chemaxon;

2. It is any atom other than carbon that is bound to hydrogen (‘[!#1!#6][H]’).

Acceptor labels are assigned to atoms that fulfill at least one of the following rules:

1. It is an acceptor atom according to the HBDAPlugin from Chemaxon;

2. It is a N/O/S atom that is not:

a) a positive atom;

b) a N of a tertiary amine-like (‘C[N](C)C’) or aniline-like (‘c[N:1]’) or
nitro-like (‘[O]∼[N]=[O]’) group;

c) an aromatic N with three total bonds (‘[nX3]’);

d) a N/S of a amide-like (‘[#7][C,P,S]=O’) group;
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e) a S of a sulfonic acid-like (‘[H][O][S](=[O])=[O]’) or sulfonate-like
(‘[O-][S](=[O])=[O]’);

f) a S with bond order equal to 6 (‘[Sv6]’).

Hydrophobic labels are assigned to atoms that fulfill the following rules:

1. It is a C/F/Cl/Br/I atom that is not:

a) a carbon bound to an O or N atoms [218];

b) an acceptor atom;

c) a donor atom;

d) a negative atom;

e) a positive atom.
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Appendix B

Physicochemical property definitions in
LUNA

Hydrogen donor labels are assigned to atoms that fulfill the following rules:

1. It is a tertiary amine N (‘$([Nv3](-C)(-C)-C)’) that is not:

a) an amide-like N (‘$([#7][C,P,S]=O)’);

b) an amidine-like N (‘[N;![$([#7][C,P,S]=O)];$(N=[CX3][N;![$([#7][C,P,S]
=O)]]),$(N[CX3]=[N;![$([#7][C,P,S]=O)]])]’).

2. It is a tautomeric aromatic N (‘[$(n[n;H1]),$(nc[n;H1])]’) not in a tetrazole
(‘[nR1r5;$(n:n:n:n:c),$(n:n:n:c:n)]’);

3. It is a tautomeric N in a guanidine-like group (‘[$([NX2H0]=[CH0X3](N)N)]’);

4. It is a N/O/S atom bound to a hydrogen atom (‘[N!H0v3,N!H0+v4,nH+0,OH2v2,
OH+0,SH+0]’), where the N is not acidic (‘[$([NH,NH0-1](S(=O)(=O))(C(=O))),
$([NH1,NH0-1;R](C(=O))(C(=[O,S])))]’) and does not belong to a tetrazole
(‘[nR1r5;$(n:n:n:n:c),$(n:n:n:c:n)]’), while O and S are also not acidic
(‘[$([O][C,S,P](=[O,S]))]’);

5. It is a tautomeric O in a ketene acetal-like group (‘[$([O;H1,H0&-1]-[#6;X3]
-,:[#8])]’).

Halogen donor labels are assigned to atoms that fulfill the following rules:

1. It is a Cl/Br/I bound to C/S (‘[$([Cl,Br,I;X1]-[#6])]’).

Chalcogen donor labels are assigned to atoms that fulfill the following rules:

1. It is a divalent S/Se/Te bound to C/S (‘[$([#16,#34,#52;v2;H0](-,:[#6,#16])
-,:[#6,#16]),$([#16,#34,#52;v2;H1][#6,#16])]’) or in an isothiazole-like group
(‘[$([#16,#34,#52;v2;H0;a](n)c)]’).

Hydrogen/Halogen/Chalcogen acceptor labels are assigned to atoms that fulfill
the following rules:
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1. It is a tautomeric aromatic N (‘[$([n;H1]n),$([n;H1]cn)]’) not in a tetrazole
(‘[nR1r5;$(n:n:n:n:c),$(n:n:n:c:n)]’);

2. It is an aromatic N with a double bond and no hydrogen (‘[n;+0;H0;!X3]’);

3. It is an N that is not:

a) a positive N (‘[*;+1,+2,+3]’);

b) an aniline-like N (‘[$(N[a])]’);

c) an amide-like N (‘[$([#7][C,P,S]=O)]’);

d) an amidine-like N (‘[N;![$([#7][C,P,S]=O)];$(N=[CX3][N;![$([#7][C,P,S]
=O)]]),$(N[CX3]=[N;![$([#7][C,P,S]=O)]])]’);

e) a nitro-like N (‘[$([N+]-[O-])]’);

f) a basic N (‘[$([N;H2&+0][CX4]),$([N;H1&+0]([CX4])[CX4]),[$([N;H0&+0]
([CX4])([CX4])[CX4])]’).

4. It is a chalcogen (‘[O,$([S;!v4;!v6])]’).

Weak hydrogen donor labels are assigned to atoms that fulfill the following rules:

1. It is a C bound to at least one hydrogen (’[#6;!H0]’).

Weak hydrogen acceptor labels are assigned to atoms that fulfill the following
rules:

1. It is a neutral aromatic O or S (‘[o,s;+0]’);

2. It is a F bound to C (‘[F;$(F-[#6]);!$(FC[F,Cl,Br,I])]’).

Positively ionizable labels are assigned to atom and atom groups that fulfill the
following rules:

1. It is a basic N (‘[$([N;H2&+0][CX4]),$([N;H1&+0]([CX4])[CX4]),[$([N;H0&+0]
([CX4])([CX4])[CX4])]’);

2. It is a guanidine-like group (‘N[CH0X3](=N)N’);

3. It is an amidine-like group (‘[N;![$([#7][C,P,S]=O)]]=[CX3][N;![$([#7]
[C,P,S]=O)]]’);

4. It is a 4-aminopyridine (‘Nc1cc[nH0]cc1’) or 2-aminopyridine (‘Nc1cccc[nH0]1’);

5. It is an imidazole-like group (‘[n;R1]1[c;R1][n;R1][c;R1][c;R1]1’);

6. It is positive atom not bound to a negative atom
(‘[[*;+1,+2,+3];!$(*∼[*;-1,-2,-3])]’).

Negatively ionizable labels are assigned to atom and atom groups that fulfill the
following rules:
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1. It is a carboxylic-like group (‘C(=[O,S])-[O;H1,H0&-1]’);

2. It is a ketene acetal-like group (‘[O;H1,H0&-1]-[#6;X3]-,:[#8]’);

3. It is a tetrazole (‘c1nnn[nH,n-1]1’);

4. It is a barbiturate-like group (‘O=C1CC(=O)[NH1,NH0-1;R]C(=O)[NH1,NH0-1;R]1’);

5. It is a thiazolidinedione-like group (‘O=C1[NH1,NH0-1;R]C(=[O,S])[SX2H0R]C1’);

6. It is a diformamide-like group (‘[NH1,NH0-1;R](C(=O))(C(=O))’);

7. It is one of the hydroxamic acid forms: O anion (‘C(=O)[NX3]-[O;H1,H0&-1]’), N
anion (‘C(=O)[N-1]-[OH1]’) or its resonance form (‘C(-[O-1])=N-[OH1]’);

8. It is a sulfuric-like (‘S(=[O,S])(=O)(-O)-[O;H1,H0&-1]’) or sulfonic-like
(‘S(=[O,S])(=O)-[O;H1,H0&-1]’) or sulfinic-like (‘S(=[O,S])-[O;H1,H0&-1]’) acid
group;

9. It is a acyl sulfonamide-like (‘[NH,NH0-1](S(=O)(=O))(C(=O))’) or a sulfonamide-
like (‘[N;!H0,H0&-1]S(=O)(=O)’) group;

10. It is a phosphoric-like (‘P(=[O,S])(-O)(-O)-[O;H1,H0&-1]’) or phosphonic-like
(‘P(=[O,S])(-O)-[O;H1,H0&-1]’) or phosphinic-like (‘P(=[O,S])-[O;H1,H0&-1]’)
acid groups;

11. It is a negative atom not bound to a positive atom
(‘[[*;-1,-2,-3];!$(*∼[*;+1,+2,+3])]’).

Nucleophile labels are assigned to atom groups that fulfill the following rules:

1. It is a halogen from a haloalkane (‘[F,Cl,Br,I;X1][#6]’);

2. It is an O in a carbonyl but not in a carboxylic-like group
(‘[O;!$(O=C[O;H1,H0&-1])]=[C;!$(C([O;H1,H0&-1])=O)’);

3. It is an O in alcohol but not in a carboxylic-like group
(‘[O;v2;H1;!$(OC=[O,S])][#6;!$(C(=[O,S])[O;v2;H1])]’);

4. It is a cyano-like N (‘N#C’);

5. It is an O in a water molecule (‘[O;v2;H2]’);

6. It is a sulfonyl-like O (‘[$(O=[S;v4,v6]([#6])[#6])]=[$([S;v4,v6]([#6])
([#6])=O)]’);

7. It is ketene acetal-like O (‘[$([O;H1,H0&-1]-[#6;X3]-,:[#8])][$([#6;X3]
(-,:[#8])[O;H1,H0&-1])]’);

8. It is a nitro-like O (‘[$(O=[N;D3;+][O-]),$([O-][N;D3;+]=O)]∼[$([N;D3;+]
(=O)[O-])]’);

9. It is an ether-like O (‘[$([#8;v2]([#6])[#6])][$([#6][#8;v2][#6])]’);
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10. It is a thioether-like S (‘[$([#16;v2]([#6])[#6])][$([#6][#16;v2][#6])]’);

11. It is a hydroxylamine-like O (‘[$(O-[#7;H0;X3]([#7,#6])[#7,#6])][$([#7;H0;X3]
([#7,#6])([#7,#6])O)]’).

Electrophile labels are assigned to atom groups that fulfill the following rules:

1. It is a haloalkane C (‘[#6][F,Cl,Br,I;X1]’);

2. It is a C in a carbonyl but not in a carboxylic-like group
(‘[#6;!$(C([O;H1,H0&-1])=[O,S])]=[O;!$([O;H1,H0&-1]C=[O,S])]’);

3. It is a cyano-like C (‘C#N’);

4. It is a nitro-like N (‘[$([N;D3;+](=O)[O-])]∼[$(O=[N;D3;+][O-]),$([O-][N;D3;+]
=O)]’).

Aromatic labels are assigned to atom groups that fulfill the following rules:

1. 4-membered rings (‘[a;r4,!R1&r3]1:[a;r4,!R1&r3]:[a;r4,!R1&r3]:[a;r4,!R1&
r3]:1’);

2. 5-membered rings (‘[a;r5,!R1&r4,!R1&r3]1:[a;r5,!R1&r4,!R1&r3]:[a;r5,!R1&
r4,!R1&r3]:[a;r5,!R1&r4,!R1&r3]:[a;r5,!R1&r4,!R1&r3]:1’);

3. 6-membered rings (‘[a;r6,!R1&r5,!R1&r4,!R1&r3]1:[a;r6,!R1&r5,!R1&r4,!R1&
r3]:[a;r6,!R1&r5,!R1&r4,!R1&r3]:[a;r6,!R1&r5,!R1&r4,!R1&r3]:[a;r6,!R1&r5,

!R1&r4,!R1&r3]:[a;r6,!R1&r5,!R1&r4,!R1&r3]:1’);

4. 7-membered rings (‘[a;r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]1:[a;r7,!R1&r6,!R1&
r5,!R1&r4,!R1&r3]:[a;r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;r7,!R1&r6,!R1&r5,

!R1&r4,!R1&r3]:[a;r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;r7,!R1&r6,!R1&r5,!R1

&r4,!R1&r3]:[a;r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:1’);

5. 8-membered rings (‘[a;r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]1:[a;r8,!R1&
r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]

:[a;r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;r8,!R1&r7,!R1&r6,!R1&r5,!R1

&r4,!R1&r3]:[a;r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;r8,!R1&r7,!R1&r6,

!R1&r5,!R1&r4,!R1&r3]:[a;r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:1’);

6. 9-membered rings (‘[a;r9,!R1&r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]1:[a;
r9,!R1&r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;r9,!R1&r8,!R1&r7,!R1&r6,

!R1&r5,!R1&r4,!R1&r3]:[a;r9,!R1&r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;

r9,!R1&r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;r9,!R1&r8,!R1&r7,!R1&r6,

!R1&r5,!R1&r4,!R1&r3]:[a;r9,!R1&r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;

r9,!R1&r8,!R1&r7,!R1&r6,!R1&r5,!R1&r4,!R1&r3]:[a;r9,!R1&r8,!R1&r7,!R1&r6,

!R1&r5,!R1&r4,!R1&r3]:1’).
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Hydrophobic labels are assigned to atoms that fulfill the following rules:

1. It is a divalent sulfur, halogen (except fluorine), or a carbon not bound to an
electronegative atom (‘[s,S&H0&v2,Br,I,Cl,At,[#6;+0;![#6;$([#6]∼[#7,
#8,#9])]];+0]’).

Amide labels are assigned to atom groups that fulfill the following rules:

1. It is an amide-like group (‘[NX3][CX3](=[OX1])’).

Atom labels are assigned to atoms that fulfill the following rules:

1. It is any heavy atom (‘[!#1])’).
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Appendix C

Geometrical criteria for computing
molecular interactions

In this section, we present the geometrical criteria and the models employed in the calcu-
lation of molecular interactions in LUNA. Figures C.1, C.2, and C.3 show the geometrical
models for most of the interactions. Not all interactions are shown in the diagrams be-
cause they require only the evaluation of Euclidean distances between two atoms (atom
groups). For these cases, the methods are discussed directly in their respective section.

It is important to mention that all geometrical criteria and models presented in
this section consist of the default model of LUNA, but all of them are customizable.

Figure C.1: Models for calculating hydrogen, weak hydrogen, halogen, and chalcogen
bonds. The definitions for each letter and angle depicted in the diagrams are explained
in their respective interaction section.
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Figure C.2: Models for calculating aromatic stackings and amide-π stackings. The defini-
tions for each letter and angle depicted in the diagrams are explained in their respective
interaction section.

Figure C.3: Models for calculating dipole-dipole (multipolar interactions) and ion-dipole
interactions. The definitions for each letter and angle depicted in the diagrams are ex-
plained in their respective interaction section.

C.1 Hydrogen bonds

Hydrogen bonds are identified according to [161] and its calculation depends on
five parameters as shown in Figure C.1, where D, H, B, and R are the donor, hydrogen, a
Lewis base (acceptor), and an atom covalently bound to the acceptor, respectively. Below
we provide the default values extracted from literature [13, 83, 112, 161] for each of the
parameters presented in Figure C.1.

• Default distance thresholds: d ≤ 3.9Å and h ≤ 2.8Å, respectively;
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• Default angle thresholds: θ, ε, ω ≥ 90◦.

In Figure C.1, the model depicts only one hydrogen for the donor and one neighbor
for the acceptor. However, if the donor contains two or more hydrogens, each one of them
is evaluated against an acceptor, which can result in multiple hydrogen bonds. Similarly,
when acceptors contain more than one neighbor, the hydrogen bond is only accepted if
the angles involving these atoms match the angle criteria.

Lastly, the algorithm has two modes for applying the above criteria, a strict and
loose one. In the strict mode, donor atoms must have their hydrogens explicitly defined
as the algorithm requires the hydrogens’ coordinates. However, not all PDB structures
contain hydrogens, and it also may happen that a potential donor is not in its ionized or
tautomeric form, which would impede the algorithm to detect the hydrogen bonds. Also,
consider the dynamic of water molecules. In Open Babel, for instance, when hydrogens
are included in the structure, usually water molecules can have their hydrogens added
in different manners. As a consequence, if the exact position of hydrogens is taken into
account, several results would be possible for the same system. Therefore, we also provide
a loose mode bearing in mind the dynamic of the system. When the loose mode is
activated, hydrogen bonds are identified despite the presence of hydrogens. Furthermore,
with this mode, all hydrogen bonds involving solvents are loosely validated even if they
contain hydrogens explicitly defined, which is a measure acknowledging their dynamic
and multiple possible hydrogen placement.

The loose mode works similarly to the method proposed by [161]: angles involving
the hydrogens are ignored and the distance between the hydrogen and the acceptor is
calculated as if the hydrogen was placed 1Å away from the donor in the direction of the
acceptor. As a mathematical expression it can be defined as follows:

h = d− 1 ≤ 2.8Å (C.1)

It is noteworthy that this method may generate more interactions than the strict
one, and some of the identified interactions may be false positives.

C.2 Weak hydrogen bonds

Weak hydrogen bonds are identified through two models depending on the acceptor
atom. For single atoms (Lewis bases), the model is the same as presented for hydrogen
bonds. However, herein, D is a weak hydrogen donor, i.e., a carbon with an attached
hydrogen bond; while, B can be an acceptor or a weak acceptor, which are defined as
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any aromatic oxygen/sulfur or fluorine [34, 66, 174, 135]. In its turn, the second model
comprises aromatic rings as acceptors. Below we provide the default values extracted
from literature [66, 179, 221] for each of the parameters presented in Figure C.1.

• Conventional weak hydrogen bonds:

– Default distance thresholds: d ≤ 4Å and h ≤ 3Å, respectively;

– Default angle thresholds: θ ≥ 110◦ and ε, ω ≥ 90◦;

• Weak hydrogen bonds involving aromatic rings:

– Default distance thresholds: d ≤ 4.5Å and h ≤ 3.5Å, respectively. The dis-
tances are calculated in relation to the ring centroid;

– Default angle thresholds: θ ≥ 120◦ and φ ≤ 40◦, where φ (displacement angle)
is the angle formed by the ring normal (−→N ) and the vector between the ring
centroid and the donor atom.

Similarly to hydrogen bonds, multiple weak hydrogen bonds can also be identified
whether more than one hydrogen is covalently bound to the weak hydrogen donor. It also
evaluates all possible angles with the acceptor’s neighbor.

Also, as presented for hydrogen bonds, weak hydrogen bonds can also work on
either strict or loose modes. Thus, similarly to hydrogen bonds, the distance expression
in the loose mode is defined as follows:

h = d− 1 ≤ 3Å (C.2)

C.3 Water-bridged hydrogen bond

Water-bridged hydrogen bonds are identified by directly performing a search for
pairs of compound-water hydrogen bonds, where both bonds involve the same water
molecule. Departing from a valid pair of hydrogen bonds, a new interaction connecting
the involved compounds is created and labeled water-bridged hydrogen bond.

These special hydrogen bonds are not identified by default because the interac-
tions required for its computation already account for its existence implicitly. However,
if necessary this interaction can be easily turned on through a flag in the method for
calculating interactions.
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C.4 Halogen bond

Halogen bonds are identified according to the model presented in Figure C.1, where
X, C, B, R are a halogen, a carbon bound to the halogen, a Lewis base (acceptor), and
an atom covalently bound to the acceptor, respectively. Below we provide the default
values extracted from literature [8, 119] for each of the parameters presented in Figure
C.1.

• Conventional halogen bonds:

– Default distance threshold: d ≤ 4Å;

– Default angle thresholds: θ ≥ 120◦ and ε ≥ 80◦;

• Halogen bond involving aromatic rings:

– Default distance threshold: d ≤ 4.5Å, where d is calculated in relation to the
ring centroid;

– Default angle thresholds: θ ≥ 120◦ and φ ≤ 60◦, where φ (displacement angle)
is the angle formed by the ring normal (−→N ) and the vector between the ring
centroid and the halogen.

At pointed out by [39], multiple carbons may be bound to the halogen, which, in
its turn, may result in multiple halogen bonds with the same acceptor. Moreover, when
the acceptor contains more than one neighbor, the tool will evaluate all possible angles
formed with these atoms, and the interaction is only accepted if all angles match the
criteria.

C.5 Chalcogen bond

Chalcogen bonds are identified according to the model presented in Figure C.1,
where Y , C/S, B, R are a chalcogen, a carbon/sulfur bound to the chalcogen, a Lewis
base (acceptor), and an atom covalently bound to the acceptor, respectively. Below we
provide the default values extracted from literature [2, 117, 134] for each of the parameters
presented in Figure C.1.

• Conventional chalcogen bonds:
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– Default distance threshold: d ≤ 4Å;

– Default angle thresholds: θ ≥ 120◦ and ε ≥ 80◦;

• Chalcogen bond involving aromatic rings:

– Default distance threshold: d ≤ 4.5Å, where d is calculated in relation to the
ring centroid;

– Default angle thresholds: θ ≥ 120◦ and φ ≤ 60◦, where φ (displacement angle)
is the angle formed by the ring normal (−→N ) and the vector between the ring
centroid and the chalcogen.

In hydrogen and halogen bonds, we mentioned that the donor atoms might contain
more than one neighbor covalently bound to it. However, note that this information is
only explicitly depicted in chalcogen bonds. That is because chalcogen bonds are mainly
established by divalent chalcogens. Consequently, chalcogen bonds could also establish
multiple chalcogen bonds to the acceptor.

Finally, when multiple neighbors are bound to the acceptor atom, all angles formed
with them should match the criteria; otherwise, the interaction is not accepted.

C.6 Aromatic stacking

Aromatic stackings are identified as presented in Figure C.2 and are classified
according to their geometrical arrangements into nine different stackings (Figure C.4) as
in [23]. Below we provide the default values extracted from literature [23, 42] for each of
the parameters presented in Figure C.2.

• Default distance threshold: d ≤ 6Å, where d is calculated in relation to the ring
centroids;

• Default angle thresholds: each specific stacking depends on a combination of φ and
β angles, as shown in Figure C.4, where φ (displacement angle) is the angle formed
by the ring normal (−→N ) and the vector between the two ring centroids; while β

(dihedral angle) is the angle between the two ring planes, which is calculated by the
angle formed by the ring normals. The displacement angle is calculated using both
rings as references, and the smallest angle is chosen for defining the stacking type.

If the user decides not to use the angle criteria, the interaction will be labeled as
a general aromatic stacking.
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Figure C.4: Classification of aromatic stackings according to the angles φ (displacement
angle) and β (dihedral angle) given two aromatic rings.

C.7 Amide-π stacking

Amide-π stackings are identified according to the model presented in Figure C.2.
Below we provide the default values extracted from literature [52, 85, 101, 221] for each
of the parameters presented in Figure C.2.

• Default distance threshold: d ≤ 4.5Å, where d is calculated in relation to the ring
and amide centroids;

• Default angle thresholds: φ, β ≤ 30◦, where φ (displacement angle) is the angle
formed by the ring normal (−→N ) and the vector between the ring and amide centroids;
while β (dihedral angle) is the angle between the ring and amide planes, which is
calculated by the angle formed by their normals.
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C.8 Dipole-dipole or multipolar interactions

Multipolar interactions are identified according to the model presented in Figure
C.3, where E n and N e are the dipoles containing the interacting electrophile (E)
and nucleophile (N); and R are the atoms covalently bound to the electrophile.

There are four possible arrangements for favorable multipolar interactions [181]:
parallel multipolar, antiparallel multipolar, orthogonal multipolar, and tilted multipolar.
Below we provide the default values extracted from literature [181] for each possible
arrangement and the parameters presented in Figure C.3.

• Default distance threshold: d ≤ 4Å, where d is calculated in relation to the nucle-
ophilic and electrophilic atoms;

• Default angle thresholds: 70◦ ≤ θ ≤ 110◦ and φ ≤ 40◦, where φ (displacement angle)
is the angle formed by the electrophile normal (−→N ) and the vector connecting the
interacting electrophile and nucleophile. In its turn, α is the angle formed by the
dipole vectors and determines the multipolar arrangements as follows:

– Parallel multipolar: α ≤ 25◦;

– Antiparallel multipolar: α ≥ 155◦;

– Orthogonal multipolar: 70◦ ≤ α ≤ 110◦;

– Tilted multipolar: any α not comprised by the above criteria.

The algorithm also detects unfavorable dipole-dipole interactions, which are clas-
sified either as unfavorable nucleophile-nucleophile or unfavorable electrophile-electrophile.
However, the arrangements presented above are not employed for unfavorable interactions
and, therefore, the tool only evaluates the distance d and angles θ and φ in the same way
presented for the favorable interactions.

Also, it is noteworthy that although the diagram depicts the classic dipole-dipole
interaction involving a carbonyl-like structure in the electrophile side of the interaction,
other non-planar substructures are also accepted.

Lastly, in cases where the coordinate of the nucleophile neighbor (e) cannot be de-
termined (e.g., hydrogens in water molecules), the angle α is not available and, therefore,
the interaction is classified as a general multipolar interaction since it is not possible to
define the proper dipole arrangement. In its turn, when the coordinate of the electrophile
partner (n) is not available, it is only possible to calculate the distance between E and
N . Thus, we also opted for classifying the interaction as a general multipolar interac-
tion. However, the latter case is unlikely to occur as all default pharmacophore rules for
electrophiles comprehend heavy atoms bound to the electrophilic atom (see Section B).
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C.9 Ion-dipole interaction

Ion-dipole interactions are identified similarly to multipolar interactions (Figure
C.3), where I is the ion centroid and D Y is the dipole, having D as the electrophile
when Y is the nucleophile and vice versa. Given the possible combinations of ions and
dipoles, there are two favorable (cation-nucleophile and anion-electrophile) and two unfa-
vorable interactions (unfavorable anion-nucleophile and unfavorable cation-electrophile).

Below we provide the default values extracted from literature [181] for each of the
parameters presented in Figure C.3.

• Default distance threshold: d ≤ 4.5Å, where d is calculated in relation to the
nucleophilic/electrophilic atom (D) and the ion centroid (I);

• Default angle thresholds: θ ≥ 60◦ and φ ≤ 40◦, where φ (displacement angle) is the
angle formed by the dipole normal (−→N ) and the vector connecting the ion centroid
and the interacting electrophile/nucleophile.

Similarly to dipole-dipole interactions, both planar and non-planar dipoles are
accepted. Also, in cases where the coordinate of the atom Y cannot be determined, only
the distance between D and I is evaluated.

C.10 Ionic and repulsive interactions

Interactions involving ions are classified as either ionic or repulsive when the ions
are oppositely or similarly charged, respectively. The only parameter evaluated in these
interactions is the distance between the ion centroids whose upper-limit threshold is 6Å
[15, 24, 83, 155].

C.11 Salt bridge

Since a salt bridge consists of a hydrogen bond and an ionic interaction occurring
simultaneously between the same interacting partners, salt bridges are identified by di-
rectly performing a search for pairs of hydrogen bonds and ionic interactions that match
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the mentioned requirement. However, as hydrogen bonds are modeled as an atom-atom
interaction and ionic interactions as a group-group interaction, this requirement is fulfilled
when the acceptor belongs to one ionic group and the donor to the other.

Salt bridges are not identified by default because the interactions required for
their computation already account for their existence implicitly. However, if necessary
this interaction can be easily turned on through a flag in the method for calculating
interactions.

C.12 Cation-π interaction

Cation-π interactions are identified when the cation and aromatic ring centroids
are up to 6Å apart [89].

C.13 Hydrophobic interaction

Hydrophobic interactions can be modeled as atom-atom interactions or as surface-
surface contacts, which is the default approach in our tool. The former is identified when
any two hydrophobic atoms are up to 4.5Å apart [83, 121, 157].

Surface-surface contacts, in its turn, are identified as follows. Firstly, the tool
computes hydrophobic interactions between atoms as explained in the atom-atom model.
Then, it identifies all hydrophobic atoms covalently bound to each other and merges them
to form a hydrophobic cluster/island, called hydrophobe. Finally, the tool converts each
atom-atom interaction to its hydrophobe-hydrophobe form by identifying the hydrophobic
clusters comprehending each interacting atom and attributing this interaction to them.
However, it may be possible that not all hydrophobic atoms in a cluster participate in
surface-surface contact. For that reason, each interaction contains the hydrophobic cluster
information as a whole and keeps track of which of their specific atoms are in contact.
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C.14 Covalent interaction

Covalent bonds are automatically obtained from Open Babel or RDKit. However,
when the precomputed set of properties for atoms is used during the physicochemical
feature assignment (see Section 2.3.2.1), it is necessary to manually compute covalent
bonds as these intermediary tools are not used. To do so, we implemented the Open
Babel model for covalent bonds detection, whose expression is defined below:

0.4 ≤ d ≤ Acov +Bcov + 0.45 (C.3)

Where d is the Euclidean distance between two atoms A and B, while Acov and
Bcov are their covalent radii, which are derived from Open Babel.

C.15 Atom overlap

Atom overlap identifies artifacts generated by low-resolution structures and homol-
ogy models, which consist of the unnatural overlap of two atoms. An overlap is defined
as two atoms not covalently bound separated from each other by less than or equal to the
sum of their covalent radii [121].

C.16 Van der Waals clash

Van der Waals clashes are identified as in [184], which describes a van der Waals
clash by the following expression:

Avdw +Bvdw − d ≥ 0.6 (C.4)

Where d is the Euclidean distance between two atoms A and B, Avdw and Bvdw

are their van der Waals radii, and 0.6 is the threshold for van der Waals clashes. Van der
Waals radii are derived from Open Babel.
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C.17 Van der Waals interaction

Van der Waals interactions are identified as in [121], which describes a van der
Waals by the following expression:

d ≤ Avdw +Bvdw + 0.1 (C.5)

Where d is the Euclidean distance between two atoms A and B, Avdw and Bvdw are
their van der Waals radii, and 0.1 is a margin of error. Van der Waals radii are derived
from Open Babel.

C.18 Proximal interactions

Proximal interactions are defined as any two atoms separated from each other by
at least 2Å and at most 6Å.

C.19 Intramolecular interactions

Interactions involving atoms or atom groups from the same molecule are calculated
using the specific interaction methods described in previous sections. However, there is an
additional criterion for intramolecular interactions that consists of evaluating how many
bonds separate the interacting atoms or atom groups. Note that two different molecules
covalently bound to each other also fall into the rules discussed in this section.

For van der Waals clashes, the interaction is only accepted if the atoms are sepa-
rated by more than 4 bonds. This threshold was defined to avoid invalid clashes typically
found in structures like the one shown in Figure C.5.

For the other interactions, the number of bonds separating two atoms must be
higher than 3 [184]; otherwise, the interaction is ignored. The only exception is the
hydrophobic interaction which is not considered for intramolecular interactions.
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Figure C.5: Example of an invalid van der Waals clash (gray dashed line) between two
atoms separated by four bonds.
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