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Robson. Ambos cientistas da computação, eles plantaram em mim a semente da curiosi-
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Resumo

A sumarização de v́ıdeo se refere à criação de uma versão resumida de um v́ıdeo mais

longo, destacando as partes mais informativas ou engajantes. Esta técnica é útil na área

da recuperação de informação multimı́dia, permitindo que os usuários acessem facilmente

informações importantes em grandes coleções de v́ıdeos. Os métodos de sumarização de

v́ıdeo, que ajudam os usuários a consumir a crescente quantidade de dados visuais publi-

cados, foram melhorados como resultado do avanço da pesquisa em visão computacional e

aprendizado de máquina. Apesar do progresso realizado por backbones poderosos e designs

de arquiteturas de redes neurais, a maioria dos métodos atuais negligencia as informações

multimodais que estão ampla e naturalmente dispońıveis na maioria dos cenários, como os

sinais audiovisuais presentes em um v́ıdeo. Neste trabalho, apresentamos um novo método

baseado em informações audiovisuais para resumir v́ıdeos. Ao contrário da maioria dos

métodos atuais, nosso método aproveita as informações multimodais presentes nos v́ıdeos,

incluindo os sinais audiovisuais, para melhorar o desempenho da sumarização de v́ıdeo.

Nosso modelo incorpora essa informação em uma arquitetura baseada em transformers e

demonstra uma melhora significativa como resultado. Além disso, propomos uma nova

estratégia de treinamento usando pseudo-rótulos gerados a partir de caracteŕısticas psi-

coacústicas do v́ıdeo, o que nos permite alcançar resultados de ponta na configuração

não-supervisionada. Por fim, introduzimos um novo dataset de sumarização de v́ıdeo e

avaliamos o desempenho de nosso método através de uma abordagem de avaliação de zero-

shot. Nosso método supera as técnicas atuais estado da arte nesse domı́nio. Avaliamos

as contribuições de cada componente do nosso método com estudos de ablação cuida-

dosos. Nossos experimentos mostram que nosso método é uma base de comparação forte

tanto na configuração supervisionada quanto na não-supervisionada, alcançando o melhor

desempenho na última com pontuação F1 de 52.6 no conjunto de dados SumMe.

Palavras-chave: Sumarização de Vı́deo. Informação Semântica. Psicoacústica. Apren-

dizagem Multi-modal.



Abstract

Video summarization refers to the creation of a condensed version of a longer video, high-

lighting the most informative or engaging parts. This technique is useful in the field of

multimedia information retrieval, allowing users to easily access important information

from large video collections. Video summarization methods, which help users digest the

increasing amount of published visual data, have been improved as a result of the advance

in computer vision and machine learning research. Despite the remarkable progress that

has been made by powerful backbones and clever architectural designs, most of the cur-

rent methods neglect the multi-modal information that is widely and naturally available

in most scenarios, such as the audiovisual signals present in a video. In this thesis, we

present a novel method based on audiovisual information to summarize videos. In contrast

to most current methods, our method leverages the multi-modal information present in

videos, including both audiovisual signals, to improve the performance of video summa-

rization. Our model incorporates this information in a transformer-based architecture and

demonstrates significant improvement as a result. Additionally, we propose a new train-

ing schema using pseudo-labels generated from the psychoacoustic features of the video,

allowing us to achieve state-of-the-art results in the unsupervised setting. Furthermore,

we introduce a novel audiovisual video summarization dataset and assess our method’s

performance on it through a zero-shot evaluation approach. Our method surpasses the

current state-of-the-art techniques in this domain. We evaluate the contributions of each

of our method’s components with thorough ablation studies. Our experiments show that

our method is a strong baseline in both supervised and unsupervised settings, achieving

the best performance in the latter with an F1 score of 52.6 on the SumMe dataset.

Keywords: Video Summarization. Semantic Information. Psychoacoustics. Multi-

modal Learning.
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Chapter 1

Introduction

Video summarization is the process of generating a short summary of the content of a

longer video by selecting and presenting the most informative or interesting materials for

potential users. This task is crucial in the domains of computer vision and multimedia

information retrieval, as it enables users to quickly access significant information from a

vast collection of videos.

Navigating the plethora of videos that are available in today’s digital age can be

a daunting task. With the proliferation of online platforms for sharing and streaming

video and the increasing use of video for a variety of purposes, the amount of published

visual data is overwhelming and can be difficult for users to digest. Video summarization,

illustrated in Figure 1.1, is an important task that helps to address this problem by

condensing large amounts of video into a shorter, more manageable format while still

preserving the key information of the original content. This task can be particularly

useful for tasks such as video indexing, search, and retrieval, as well as for reducing

the time and resources required to view and understand the content of a video. The

importance of video summarization is further highlighted by the need for more efficient

ways to navigate and make sense of the growing amount of video data.

Over the years, there has been growing interest in using machine learning tech-

niques for video summarization, with the aim of automating this process and making

it more efficient. However, most existing approaches to video summarization rely on

human-annotated labels, which are time-consuming and expensive to obtain. To obtain

human-annotated labels for video summarization, typically, a dataset of videos is shown

to human evaluators, who then select the most relevant or salient segments or frames of

the video to create a summary. This process can be repeated multiple times with different

evaluators to ensure that the summaries are representative of the consensus among mul-

tiple viewers. The method of obtaining human-annotated labels is both time-consuming

and costly, as it requires the participation of multiple evaluators and the manual anno-

tation of each video segment. This high cost has led to the development of unsupervised

methods for video summarization, which do not require human-annotated labels and can

be trained on large collections of unlabeled videos, thus reducing the cost and effort

required to obtain labels.
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One of the categorizations of video summarization methods can be defined as

static or dynamic. Static video summarization involves generating a summary using

still images, while dynamic video summarization involves selecting representative video

segments that retain motion information to provide a more efficient and comfortable

browsing experience [52]. By carefully selecting informative and representative video

segments, a dynamic summary can provide a rich and engaging experience for the viewer.

In this thesis, we focus on dynamic video summarization, which has the potential to offer

a more comprehensive and immersive understanding of the content of a video.

Despite the abundance of methods for addressing the video summarization prob-

lem, many of these approaches fail to take into account the audio information present in

the videos. Furthermore, none of the existing methods incorporate psychoacoustic features

in their analyses. This lack of consideration for audio information and psychoacoustic

features is particularly notable given the importance of both auditory and psychological

factors in the human perception and understanding of videos. The inclusion of these

elements could potentially lead to a more comprehensive and accurate representation of

the video content and, subsequently, more effective and efficient video summarization.

The objective of this thesis is to address this gap in the literature by proposing a novel

approach for video summarization that incorporates both audio information and psy-

choacoustic features and evaluating its effectiveness through extensive experiments and

analysis.

In this thesis, we propose an audiovisual approach to video summarization that uses

psychoacoustic features to generate pseudo-labels for training the model. Psychoacoustics

is the branch of science studying the psychological responses associated with sound, and

Figure 1.1: Summarizing Videos. Video summarization is the process of selecting
frames from an input video to create a condensed and informative summary of the original
content.

Video Summarization Method

Input Video Frames

Final Summary
✓ ✓✗✗✗

Source: Created by the author.
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it has been shown to be effective in a variety of tasks related to audio processing. By

using psychoacoustic features as pseudo-labels, our method avoids the need for human-

annotated labels and can be trained in a self-supervised manner.

The investigation of psychological responses induced by sound has been an exten-

sively studied topic [1, 49, 8, 48, 50]. When evaluating human audiovisual consumption,

sounds should not only be accounted as a purely mechanical phenomenon but also as a

response-inducing perceptual event. Psychoacoustic features are characteristics of sound

that are related to how the human auditory system perceives and processes them. They

can play an important role in machine learning methods that aim to model the perceived

importance of different segments of a video, as they capture the physiological and psycho-

logical responses of the human auditory system to auditory stimuli. Auditory annoyance,

for example, has both psychological and physiological effects on us. Some psychological

effects, as pointed out by Abel et al. [1] and Saeki et al. [49], include inhibited memory,

lengthened reaction times, increased errors in cognition, and selective attention. Physi-

ologically, it leads to effects such as hypertension [8], increased blood pressure [48], and

other symptoms of stress [18]. In a recent study by Sammler et al. [50], the effects of vari-

ous musical signals on electroencephalogram (EEG) power and heart rate were examined

using EEG recordings and physiological measures of heart rate. The results of the study

provide insights into the ways in which different types of musical signals can affect brain

and cardiovascular function.

Our method leverages both auditory and visual information from the input video

to generate the frames’ importance scores. These scores are used to select the frames that

are included in the summarized video. The backbone of our approach is a transformer

encoder architecture, which has proven to be highly effective for a variety of natural

language processing tasks, including machine translation and sentiment analysis. In our

case, the transformer encoder is trained to capture the relationships between the audio

and visual information in the video and to use this information to predict the importance

of each frame. Our results show that this approach is able to outperform or strongly

compete against other unsupervised methods of video summarization, demonstrating the

effectiveness of this architecture for this particular task. Furthermore, our approach is

highly flexible and can be easily adapted to incorporate additional information, such

as audiovisual attention mechanisms, that may further improve the performance of the

summarization process.
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1.1 Objectives and Contributions

This thesis presents a new method for video summarization that utilizes both

audio and visual information. While previous approaches have made significant advance-

ments in the field, they often overlook the availability of multi-modal information in most

scenarios. Our method incorporates both auditory and visual modalities, leading to im-

proved performance, as demonstrated in our experiments. Furthermore, we propose a

training schema that utilizes pseudo-labels generated from the psychoacoustic features of

the video, leading to state-of-the-art results in the unsupervised setting. Our model out-

performs the state-of-the-art methods in the unsupervised setting on the SumMe dataset

while demonstrating strong performance in both supervised and unsupervised settings for

the SumMe and TVSum datasets.

The main contributions of this thesis can be summarized as follows:

1. We introduce a novel video summarization method that leverages audiovisual infor-

mation to generate summaries;

2. We propose the use of psychoacoustic features as pseudo-labels to enable self-

supervised training of video summarization methods;

3. We create a new audiovisual summarization dataset that is suitable for evaluating

audiovisual video summarization models;

4. We conduct extensive experiments and ablation studies to demonstrate the effec-

tiveness of our method and the challenges of our dataset.

To further advance research in this field and facilitate the reproducibility of our

results, we are making our code and network weights publicly available.

1.2 Document Structure

The structure of this thesis is as follows: i) Chapter 2 provides an introduction

and background information on video summarization and psychoacoustics, while Chapter

3 discusses related works in the field and their approaches, results, and contributions. ii)

Chapter 4 presents our proposed approach to address the video summarization problem,

including details on our proposed pseudo-label extraction and our audiovisual video sum-

marization model. iii) Chapter 5 introduces our novel multi-modal dataset and explains
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the pipeline used to collect and prepare the data. iv) Chapter 6 presents our experimen-

tal protocol and results. v) Finally, Chapter 7 includes our conclusions and identifies

potential avenues for future research to build upon and improve our work.
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Chapter 2

Theoretical Background

This chapter aims to provide a comprehensive overview of the key concepts and techniques

related to video summarization and psychoacoustics. This section is divided into several

sub-sections that cover the following topics: video summarization, supervised video sum-

marization, unsupervised video summarization, the process of converting frame scores to

a video summary, and psychoacoustics, more specifically, the psychoacoustic annoyance

metric that we use in this work. Together, these sub-sections provide a solid foundation

for understanding the research presented in the subsequent chapters of this thesis.

2.1 Video Summarization

Video summarization is the process of creating a condensed representation of a

video by identifying and extracting the most informative or representative segments. This

task poses a significant challenge due to the vast volume of data present in videos, such

as diverse visual content, complex temporal dynamics, and varying audio information.

As a result, determining the most relevant information becomes difficult. There are sev-

eral different approaches to video summarization, including supervised and unsupervised

methods.

In addition, video summarization methods can be classified based on the type

of summary they generate. Some methods, falling under the umbrella of dynamic video

summarization, concentrate on generating an abridged version of the original video, which

entails creating a shorter video that retains the most significant content while preserving

its temporal continuity. Other methods create a set of key-frames that represent the most

important segments of the video. Some methods also generate a textual summary that

describes the main events or actions in the video.

Overall, video summarization is a complex task that benefits from the integration of

multiple modalities and cues, such as visual, audio, and textual information. Additionally,

it usually requires the use of sophisticated models and algorithms to extract the most
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relevant information from the video. The ultimate goal of video summarization is to create

a condensed representation of the video that contains the most important information

while being as short as possible within a certain budget. This condensed representation

can be used for a variety of applications, such as video browsing, retrieval, and analysis.

In recent years, there has been a significant amount of research on video summariza-

tion, which has led to the development of several methods that can effectively summarize

videos. However, there are still many open challenges and areas for improvement, such

as addressing videos with complex or overlapping events, managing videos encompassing

various modalities, and generating summaries customized to individual user preferences

or specific applications.

2.1.1 Supervised Video Summarization

As illustrated in Figure 2.1, supervised video summarization methods rely on the

use of annotated data, such as ground-truth scores, to train models that can predict

the importance of video segments. These methods are based on the assumption that

the annotated data provides a reliable indicator of the most important segments of the

video. This approach is useful for datasets that have rich annotations, as it allows for the

development of models that can accurately predict the importance of video segments.

The main advantage of supervised video summarization methods is that they can

achieve high accuracy and precision as they are trained on annotated data. This charac-

teristic makes them suitable for datasets that have rich annotations, such as the SumMe

and TVSum datasets. Additionally, supervised methods can be used to identify patterns

and features that are indicative of important segments, which can inform the development

of unsupervised methods. However, these methods may exhibit limitations in their gen-

eralizability to other datasets or video content, as their performance heavily relies on the

quality and relevance of the annotations used for training. Consequently, they may not

adapt as effectively to new or diverse video content without extensive annotation work.

2.1.2 Unupervised Video Summarization

Unsupervised video summarization methods, portrayed in Figure 2.2, do not rely

on annotated data and instead use other cues, such as the dependency among frames or
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Figure 2.1: High-level representation of supervised algorithms that perform
summarization by learning the frames’ importance after modeling their de-
pendency.

Human-annotated frame 
importance scores

Summarizer
(Estimates frames’ importance by modeling the dependency among frames)

Input Video Frames

PA Scores (Pseudo-Labels)

Predicted frame 
importance scores

{Regression, 
Classification}

Source: Figure and caption adapted from Apostolidis et al. [4].

some consistency analyses between the final summary and input video, to determine the

importance of video segments [61, 58, 3]. These methods are based on the assumption that

there are underlying patterns and features in the video that can be used to identify the

most informative segments. The main advantage of unsupervised video summarization

methods is that they do not rely on annotated data, making them suitable for datasets

that lack annotation. Additionally, unsupervised methods can be used to identify patterns

and features that are indicative of important segments, which can inform the development

of supervised methods. However, these methods exhibit the limitation of potentially

not being as accurate as supervised methods and can be sensitive to the quality of the

cues employed for summarization, such as the strength of the frame dependencies, the

robustness of consistency analyses, or the effectiveness of feature extraction techniques in

capturing meaningful video characteristics.

2.1.3 Frame scores to video summary

There are various approaches for converting frame scores to a final video summary;

in this work, we focus on the method illustrated in Figure 2.3, following the footsteps

of previous works [45]. The chosen method utilizes the Kernel Temporal Segmentation

(KTS) technique due to its effectiveness in handling varying segment lengths and adapt-

ability to different video content.
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Figure 2.2: High-level representation of unsupervised algorithms that perform
summarization by learning the frames’ importance after modeling their de-
pendency.

Summarizer
(Estimates frames’ importance by modeling the dependency 

among frames)

Input Video Frames

PA Scores (Pseudo-Labels)

Reward/

Predicted frame 
importance scores

Evaluator
(Examines specific 

characteristics of the 
summary)

Predicted Summary

Source: Figure and caption adapted from Apostolidis et al. [4].

The initial step entails generating frame scores using a summarizer method, which

can incorporate inputs from diverse modalities, such as audio, visual, and text. A signif-

icant portion of the existing literature in the video summarization field concentrates on

the development and optimization of summarizer methods. These frame scores indicate

the importance of each frame within the video.

Subsequently, the video undergoes temporal segmentation using the KTS method.

The method employs features extracted from the video frames to divide the video into

segments of varying lengths. For each segment, the frame scores are averaged to produce

a segment score, which represents the overall importance of the segment.

Finally, these segments, accompanied by their respective length and score, are input

into the Knapsack 0/1 algorithm. This algorithm selects the segments that fit within a

predefined budget, typically 15% of the total video length while striving to achieve the

maximum possible score. We define the Knapsack 0/1 algorithm as:

Maximize

nseg∑
i=1

(
1

nframesi

nframesi∑
j=1

yj

)
xi

subject to

nseg∑
i=1

nframesixi ≤ W and xi ∈ {0, 1},

(2.1)

where nseg is the number of segments of the video, nframesi is the number of frames in

segment i, xi indicates the presence of the segment in the final summary, and W is the

maximum allowed size.

The selected segments are then concatenated to form the final video summary.

This process balances the trade-off between the importance of the selected segments, as
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determined by the frame scores, and the length of the summary, as determined by the

budget constraint.

Figure 2.3: Process of converting frame scores to a final video summary. Il-
lustration of the various steps involved in the process, beginning with the generation of
frame scores using a summarizer method, which can take visual inputs from the video
along with other modalities. The frame scores represent the importance of each frame in
the video. Next, the video is temporally segmented using the KTS method, which uses
encoded frames to temporally divide the video into segments of different lengths. For each
segment, the frame scores are then averaged to generate a segment score, which represents
the importance of the segment as a whole. These segments, along with their correspond-
ing length and score, are then passed to the Knapsack 0/1 algorithm. The algorithm
selects the segments that will fit within a selected budget, usually 15% of the total video
length, while trying to obtain the maximum possible score. The selected segments are
then concatenated to form the final video summary, balancing the trade-off between the
importance of the selected segments and the length of the summary.

Source: Created by the author.

In this section, we acknowledge the limitations associated with the Kernel Temporal

Segmentation (KTS) and Knapsack 0/1 algorithm employed in our chosen method. KTS

may group segments with visual similarities, which can lead to relevant information being

lost if an important frame with highly important content is situated close to a cluster

of unimportant frames. Consequently, the significance of such a frame may be diluted

within the segment.

Regarding the Knapsack 0/1 algorithm, its global optimization nature can result in

the selection of multiple smaller, less relevant segments over a single highly relevant seg-

ment to maximize the overall score within the predetermined budget. This can potentially

reduce the summary’s informativeness.

Despite these limitations, we have adopted this method in line with the existing
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literature [45, 51, 59], as it has demonstrated effectiveness in various video summarization

tasks. This approach serves as a basis for future work in addressing these limitations and

developing more sophisticated summarization techniques.

2.2 Psychoacoustics

Noise effects on humans have been extensively studied in a variety of specific do-

mains, including transportation [19, 13, 56, 22, 9], sleep [23, 56, 37], and general health

and well-being [38, 42, 27, 10]. Research has shown that noise can have negative impacts

on these areas, with transportation noise being linked to decreased performance and in-

creased accidents, sleep noise leading to sleep disturbance and negative impacts on mental

health, and general health and well-being being affected by long-term exposure to noise.

The effects of noise can be divided into primary effects, which are measurable immediately

following exposure to noise, and after effects, which are the longer-term consequences of

exposure [37]. In this work, we are focusing on modeling the primary effects of noise on

humans. These effects are the immediate psychological responses to sound exposure that

occurs when individuals watch and react to video segments. We aim to capture these

responses in order to better understand how to create better video summaries.

According to Zwicker et al. [64], sound perception by a human listener can be

estimated by psychoacoustic properties that are closely related to the relative degree

of perceived auditory annoyance. The authors propose the psychoacoustic annoyance

(PA) metric as a function of four other properties: fluctuation, roughness, loudness, and

sharpness. These properties are designed to objectively approximate the effects of different

sound stimuli on the human ear.

In this thesis, we leverage these estimations of psychological responses to sound for

our video summarization pipeline. We extract the PA metric from each video to use them

as pseudo-labels during training time. This training strategy allows us to achieve strong

results in the unsupervised video summarization setting, outperforming all methods on

the SumMe dataset and most of the baselines on the TVSum dataset.



2.2. Psychoacoustics 24

2.2.1 Psychoacoustic Annoyance (PA)

This section describes the processes involved in the calculation of the Psychoacous-

tic Annoyance (PA) values for a sound. Psychoacoustic Annoyance is a measure of the

subjective discomfort that a person experiences as a result of exposure to certain sounds

[64]. It is an important concept in the field of psychoacoustics, which is the study of how

the human auditory system perceives and processes sound. It is important to note that

PA is different from the sound pressure level (SPL), which is a physical measure of the

amplitude of sound waves. While SPL is an objective measurement of the intensity of a

sound, PA focuses on the subjective perception of annoyance, taking into account various

psychoacoustic factors that contribute to the discomfort experienced by a listener. In

this work, we used the measurement model from Zwicker et al. [64]. In this model, the

acoustic annoyance of a sound is related to the following psychoacoustic indices:

• Fluctuation (F) and Roughness (R): these indices measure the modulation of a signal

over time. A modulated signal with higher values for these indices tends to be more

unpleasant. On high fluctuation signals, the listener can hear each individual rise

and fall in the sound;

• Loudness (N): this property is based on perceived loudness, and it is based on human

subject studies. It measures how loud people with average hearing perceive a sound;

• Sharpness (S): it is calculated by a weighted sum of specific loudness levels in

different bands. A sound with higher sharpness is more unpleasant. Sharp sounds

have a greater proportion of high frequencies than the rest of the energy in them.

The PA value can be calculated as follows:

PA = N5

(
1 +

√
ω2
S + ω2

FS

)
, (2.2)

ωS = 1[S > 0]× (S − 1.75)log(N5 + 10), (2.3)

ωFS = 2.18×N−0.4
5 × (0.4F + 0.6R), (2.4)

where N is the loudness, N5 is the 95th percentile of loudness, S is the sharpness, F and

R are fluctuation and roughness, respectively, and 1[X] is the indicator function, that

evaluates the predicate X, returning 1 if it is true and 0 otherwise.

In this work, we aim to model the importance of different video segments in order

to compose a summary by examining the relationship between psychoacoustic and human

attention. As shown in Figure 2.4, the semantics of sound can significantly impact human

perception, as demonstrated by the various PA values of common sounds that have been
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Figure 2.4: Example Psychoacoustic Annoyance (PA) values for common
sounds. The sound samples were normalized to the same sound pressure level (SPL).
The sounds have the following characteristics: (i) Car Sound: low, rumbling, continuous
sound; (ii) Crying Baby: High-pitched, high-fluctuation sound; (iii) Bells and Beeps: un-
predictable, high-pitched, multiple-source sound. The combination of the sounds results
in a PA value close to the highest individual value. This highlights the complex nature
of sound perception and the way in which sounds interact with one another to shape our
experience of them.
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Source: Created by the author.

normalized to the same sound pressure level. As seen in the data, the car sound is

associated with a value of 10.71, the crying baby with 19.77, and bells and beeps with

45.20. Notably, the combination of all of these sounds yields a value of 45.70, which is not

the additive result of the individual values. This highlights the complex nature of sound

perception and the way in which sounds interact with one another to shape our experience

of them. These examples also indicate that the Psychoacoustic annoyance is not simply

the sum of the individual sounds but rather a result of the interactions between them.

These interactions can manifest in a variety of ways, such as masking, the interaction of

frequency components and temporal envelope, and cognitive factors. We aim to utilize

this understanding of the role of sound semantics to accurately model the importance of

video segments.
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Chapter 3

Related Work

This chapter provides an overview of the related work in the field, including supervised

and unsupervised learning methods and the use of psychoacoustics in video processing.

The focus is on the recent progress made in video summarization using deep learning

techniques and the contributions made by each method toward advancing the field. The

chapter also highlights the key similarities and differences between the proposed methods

and our proposed approach, which leverages psychoacoustic features as pseudo-labels for

self-supervised training.

3.1 Video Summarization

The field of automatic video summarization has experienced significant growth in

recent years, fueled in part by the widespread adoption of deep learning methods in com-

puter vision. This has resulted in a proliferation of proposed methods for video summa-

rization. The establishment of standard evaluation protocols for this task has been aided

by the introduction of benchmark datasets such as SumMe [29], and TVSum [51]. These

datasets have played a key role in advancing research in the field by providing a common

platform for the evaluation of various video summarization methods. Early learning-

based video summarization methods were focused on manipulating and extracting frame

features such as clustering [36], and pairwise deep ranking models [57]. Sequence-based

models followed by formulating the summarization problem as a structured prediction

task on sequential data [59, 36]. These models used recurrent networks, such as LSTMs,

to leverage the sequential structures in videos. In a parallel research direction, early meth-

ods also introduced the use of multi-modality by incorporating information from sensors,

gaze [33], and text [44, 11]. Instead of using recurrent architectures, our method models

the interaction between audio and video frames using a transformer network to leverage

multi-modal signals.
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3.2 Supervised Video Summarization

Supervised learning methods have achieved state-of-the-art results in video summa-

rization, thanks to the availability of well-annotated datasets. A high-level representation

of supervised video summarization methods is portrayed in Figure 2.1. Fajtl et al. [20] pro-

posed a method based on self-attention to replace the commonly used recurrent models.

The authors demonstrated it was possible to use a simpler and more efficient model while

achieving better performance. Apostolidis et al. [5] extended the self-attention method

by combining local and global multi-headed attention mechanisms. Their model is able to

model frames’ dependencies at different granularity levels. Wang et al. [55] overcome the

RNNs limitations by augmenting LSTM layers with a memory layer, enforcing the explicit

modeling of the long dependency among video frames, and achieving state-of-the-art re-

sults on the SumMe dataset. Their method is depicted in Figure 3.1. In this thesis, we

use psychoacoustic information from videos to generate pseudo-labels for the data rather

than relying on human annotations. This strategy enables us to train the network in a

self-supervised manner, using the data itself to provide supervision rather than explicit

labels.

Attention mechanisms have been widely used in video summarization methods in

order to capture important information from the video and generate a summary. Feng et

al. [21] proposed the use of external memory to record visual information of the whole

video and then predict the importance score of a video shot based on the global under-

standing of the video frames in order to generate a summarized version of the video. The

method introduced by Liu et al. [34] uses a multi-concept self-attention mechanism to

identify informative regions across temporal and concept video features while enforcing

consistency between the video and summary. The MSVA method by Ghauri et al. [26] pre-

dicts importance scores in video summarization by combining three feature sets for visual

content and motion. It utilizes a parallel attention mechanism before fusing these fea-

tures, leveraging both visual content and motion features to generate the final summary.

In our transformer-based approach, the self-attention layers use the attention mechanism

to model the relationships between every frame and audio segment.

Zhu et al. [63] leverage temporal consistency in order to generate summarized

videos. Their method uses a dense sampling of temporal interest proposals with multi-

scale intervals to extract long-range temporal features for interest proposal location re-

gression and importance prediction and assigns positive and negative segments for the

correctness and completeness of the generated summaries. Alternatively, it can directly

predict the importance scores of video frames and segment locations in an anchor-free

approach. DSNet is formulated as a regression problem with temporal consistency and

integrity constraints. In their more recent work, Zhu et al. [62] extract object-level and
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Figure 3.1: The overall framework of the Stacked Memory Network (SMN)
video summarization method. Given a video, they first employ the pretrained CNN
network to extract video frame features. Then, they forward these features into their
stacked memory networks to update the states of LSTM layers and memory layers. After
combining the states from these LSTM layers and memory layers, they employ a fully-
connected layer to predict each frame an importance score. In addition, they also explore
different types of connections between two memory networks to fuse the learned repre-
sentation from previous layers.

Source: Figure and caption adapted from Wang et al. [55].

relation-level information in order to capture spatial-temporal dependencies from videos.

The method builds spatial graphs on object proposals and temporal graphs by aggregat-

ing spatial graphs. Then, it performs relational reasoning over the spatial and temporal

graphs using graph convolutional networks and extracts spatial-temporal representations

for importance score prediction and key shot selection.

3.3 Unsupervised video summarization

Unsupervised video summarization methods do not require ground-truth data and

can be trained using only a large collection of original videos, making them useful for
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real-world applications where manual annotation of data may not be feasible. Zhou et

al. [61] present a method for video summarization called DSN, which is formulated as a

sequential decision-making process. DSN predicts a probability for each frame, indicating

how likely it is to be selected, and uses these probabilities to select frames and generate

a summary. The method is trained using an end-to-end, reinforcement learning-based

framework with a novel reward function that evaluates the diversity and representative-

ness of the generated summaries. The reward function does not require labels or user

interactions, and DSN aims to maximize the reward by learning to produce more diverse

and representative summaries.

Generative Adversarial Network (GAN)-based video summarization has been shown

to be a promising approach for generating condensed summaries of videos without the

need for human-labeled data. Yuan et al. [58] proposed using a cycle-consistent adver-

sarial LSTM architecture to maximize the information and compactness of the summary

video. It consists of a frame selector, which is a bi-directional LSTM network that learns

video representations that embed long-range relationships between frames, and an eval-

uator that defines a learnable information-preserving metric between the original video

and summary video. The evaluator is composed of two GANs, and the consistency be-

tween their outputs is used as the information-preserving metric for video summarization.

The evaluator supervises the selector to identify the most informative frames to include

in the summary. Methods such as Apostolidis et al. [7] and Apostolidis et al. [3] in-

corporate an attention mechanism into the GAN framework, which improves the ability

of the model to identify the most relevant parts of the video. Apostolidis et al. [2] use

an actor-critic model to learn a sequence generation policy for selecting important video

fragments, which further enhances the performance of the GAN-based model. Although

these methods have shown promising results in unsupervised video summarization using

GANs, this formulation is notoriously hard to train [39].

In the work by Jung et al. [31], the authors address two main challenges in the video

summarization task: (1) flat distributions of output scores for each frame, which hinder

feature learning, and (2) difficulty in training with long videos. To address these chal-

lenges, the authors propose a regularization loss term called variance loss and a two-stream

network called the Chunk and Stride Network (CSNet), respectively. They also introduce

an attention mechanism to handle dynamic information in videos. Our transformer-based

approach is able to model the dependencies between visual and auditory features in long

videos while also handling the dynamic information from these modalities.

Park et al. [43] proposed a video summarization method using a graph-based ap-

proach to identify and extract important segments from a video. It is based on the idea

of modeling the video as a graph, where the nodes represent individual frames of the

video and the edges represent the affinity between them. SumGraph has been shown to

be effective at summarizing videos with complex structures and has been applied to a
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Figure 3.2: The analysis pipeline of the CA-SUM method. The lower part illus-
trates the processing steps within their attention mechanism.

Source: Figure and caption adapted from Apostolidis et al. [6].

variety of video summarization tasks. It has also been shown to be complementary to

other video summarization methods and can be used to improve their performance.

Hu et al. [30] proposed a two-stream LSTM network that leverages both spatial

saliency and temporal semantic dependencies to improve the critical features of images in

user-created videos. The method includes a mechanism to filter out irrelevant information

and a system to extract temporal dependencies on semantic features. It also utilizes

a multi-feature-based reward function to strengthen the model and employs the Deep

Deterministic Policy Gradients (DDPG) algorithm for unsupervised training.

In their most recent work, Apostolidis et al. [6] tackled the limitations of exist-

ing approaches to unsupervised video summarization, including the unstable training of

Generator-Discriminator architectures, the use of RNNs for modeling long-range depen-

dencies, and the inability to easily parallelize the training process of RNN-based network

architectures. They use a self-attention mechanism and a concentrated attention mech-

anism to estimate the importance of video frames and extract and exploit knowledge

about the uniqueness and diversity of frames to make better estimates of the significance

of different parts of the video. It also has fewer learnable parameters than other methods.

Their method is illustrated in Figure 3.2.

It is important to notice that, similarly to this thesis, some works design a so-

lution for a specific supervision modality, such as supervised or unsupervised learning,

but ultimately evaluate their method in both modalities. This is why, although some

methods may be described in a specific section of this chapter that is focused on a par-

ticular supervision modality, they are also compared in Chapter 6 in both supervised and
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unsupervised settings. This allows for a thorough evaluation of the performance of these

methods in different scenarios and enables a more comprehensive understanding of their

capabilities. By experimenting with both supervision modalities, these works are able to

provide a complete picture of the effectiveness of their method.

Our proposed method is primarily related to three recent video summarization

approaches: the work of Narasimhan et al. [41], Zhong et al. [60], and another study

by Narasimhan et al. [40]. The approach of Narasimhan et al. [41], shown in Figure

3.3, employs a multi-headed attention layer to attend to one modality using the other.

In contrast, Zhong et al. [60] minimize the distance between video and text representa-

tions without any frame-level labels. Both of these approaches demonstrate promising

results in video summarization tasks and share similarities with our proposed method.

Narasimhan et al. [40] proposed a video summarization method for instructional videos

using pseudo summaries and achieved state-of-the-art results on the WikiHow Summaries

dataset. Our approach leverages psychoacoustic features as pseudo-labels to enable self-

supervised training, which is a unique aspect of our method. Our video summariza-

tion method has been shown to achieve very good performance, comparable to that of

Narasimhan et al. [41], outperforming them on both supervised and unsupervised settings

on the SumMe dataset. However, unlike their method, our method does not require ac-

cess to text data for training. Their training schema relies on either ground-truth text

labels, which can be expensive and time-consuming to obtain, or automatically extracted

video captions. In contrast, our method uses the audio psychoacoustic features extracted

from the audio in the videos to generate pseudo-labels, allowing us to train our model in

an unsupervised manner. Our experiments show that this approach outperforms other

unsupervised methods of video summarization.

3.4 Psychoacoustics in Video Processing

In the field of video processing, there are two works that are most closely related

to our approach when it comes to processing human responses to sounds. Their task is

a sub-task of video summarization, called semantic hyperlapse (first defined by Ramos et

al. [47]), which involves speeding up long first-person videos to make them more man-

ageable to watch by adding the constraints of temporal continuity and visual stability

to the final summarized video. These methods leverage human responses to sound in

order to propose new methods for video processing beyond traditional semantic audio

representations.

The first work, proposed by de Matos et al. [15], presents a new fast-forward
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Figure 3.3: Overview of CLIP-It! Given an input video, CLIP-It generates a summary
conditioned on either a user-defined natural language query or an automatically generated
dense video caption. The Language-Guided Attention head fuses the image and language
embeddings, and the Frame-Scoring Transformer jointly attends to all frames to predict
their relevance scores. During inference, the video summary is constructed by converting
frame scores to shot scores and using the Knapsack algorithm to select high-scoring shots.

Source: Figure and caption adapted from Narasimhan et al. [41].

method that considers both the information present in the video and the background

music. The method uses neural networks to automatically recognize the emotions induced

in the video and the background music and combines the contents in the accelerated video

through a new method of frame selection that aims to maximize the similarity of the

induced emotions. The method is evaluated on a large dataset with different videos and

songs, and the results show that it achieves the best performance in matching emotion

similarity while maintaining the video’s visual quality.

Finally, it is also important to emphasize that Furlan et al. [24] proposed the only

work, to the extent of our knowledge, that used psychoacoustic annoyance as a proxy

for human interaction on a video processing task. Interestingly, in their work, they aim

to minimize the PA in the final video so the users would have a more pleasant auditory

experience. In our case, we associate the high PA values with high user attention, mean-

ing more meaningful segments. Although their work and ours are optimizing opposite

objective definitions, our findings discussed in Section 6.2.4 suggest that psychoacoustic

annoyance is a good proxy for estimating frame importances.
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Chapter 4

Methodology

In this chapter, we present a comprehensive overview of the techniques and approaches

that we have developed for tackling the video summarization problem. Specifically, we

detail our method for generating psychoacoustic pseudo-labels, which we use to train our

system in an unsupervised manner. We also describe our approach for integrating audio

and visual signals to automatically generate a summary of a given video. To provide

a clear and comprehensive understanding of our methods, we first provide an overview

of our overall approach and then delve into the details of each individual section in our

methodology.

Illustrated in Figure 4.1, our method is based on a self-supervised framework for

video summarization. Given an input video, we extract its auditory and visual infor-

mation using feature extractors to feed a transformer encoder that will incorporate the

information from both modalities into its output tokens. Then, these tokens are fed into

a score regression network which will generate the scores for each individual frame from

both modalities, which are then aggregated. Since human annotations are rather expen-

sive, leveraging information that is already in the data through self-supervised learning

can be a useful alternative that allows the model to learn from large amounts of un-

labeled data, saving time and resources. We introduce pseudo-labels generated from

psychoacoustic features instead of using human-annotated labels. From the input audio,

we extract psychoacoustic features that are used to supervise the frame-scoring pipeline.

After the frame scores are predicted, the KTS algorithm is used to group the video into

semantically-consistent segments. Finally, the 0-1 Knapsack algorithm is used to select

the most important segments to include in the summary based on their number of frames

and average frame importance.
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Figure 4.1: Overview of the proposed approach for unsupervised video summa-
rization. After being extracted, the psychoacoustic features from the video are used as
pseudo-labels for training the frame-scoring pipeline. The model leverages auditory and
visual information to generate the frames’ importance scores, which are converted into
the final summarized video.

Source: Created by the author.

4.1 Psychoacoustic Pseudo-Labels

Pseudo-labels are important as they allow us to train the model in an unsupervised

manner, without the need for manual annotations, enabling us to make use of large

amounts of data without the cost of manual annotation and allowing models to learn

from a wider range of information. We define the pseudo-labels for a video as Y ′, with
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size T , the number of input tokens for the visual modality.

For each video in the dataset, we extract the audio and convert it to mono by

averaging the original channels, if needed. Converting the audio to mono is a practical

choice that simplifies the audio processing while preserving the necessary information for

our task. This step reduces the dimensionality of the audio data and ensures compatibility

with various audio formats present in the dataset. Next, the one-channel signal is split into

P -second non-overlapping segments. The choice of P -second non-overlapping segments

ensures that each segment captures distinct audio characteristics, while minimizing the

computational complexity associated with processing overlapping segments.

After segmenting the audio, we compute the PA for each segment. Given an audio

length of S seconds, we obtain a final list of S
P
values. The PA values correspond to the

perceived annoyance the sound segment has. These values are usually bounded between

0 and 100 originally, but they are normalized to the 0-to-1 range to match the scale of

human-annotated ground-truth frame score values of the datasets we used. Finally, the

list of PA values is upsampled to match the length of the visual input sequence length

T . The upsample method used for this process is explained in the next section, as it

is used to align the pseudo-labels with the visual input. Proper alignment between the

pseudo-labels and the visual input is essential to ensure that our model can effectively

learn from both modalities and generate accurate video summaries.

4.2 Audiovisual Video Summarization

Frame Encoding. Encoding frames using a pre-trained neural network allows us to

leverage the learned feature representations from large amounts of data, capturing the

underlying patterns and relationships in the data and thus improving the performance of

our video summarization system. To encode the video frames, we use a pretrained image

network fimg. Given a set of frames from the input video, we extract the frame features

Ximg = {ximgt}Tt=1. The image network is kept frozen during our training process.

Audio Encoding. Encoding the audio signal with a pre-trained neural network allows

for the extraction of high-level, semantically meaningful representations of the audio con-

tent, which can provide valuable information for video summarization tasks. The audio

is encoded using a pretrained audio network faud. Then, we compute the log-power spec-

trograms of w-second windows using the Short-Time Fourier Transform and feed them to

faud, generating the audio features Xaud = {xauds}
S/w
s=1 .

Given that the number of visual input tokens T is greater than the ratio of audio
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length S to the window size w, we need to upsample the audio features to match the

length of the frame features. This is an important step to ensure that the audio and

visual modalities have the same temporal resolution, which allows for better fusion and

alignment during the training process.

To upsample the audio features, we apply a simple yet effective repetition-based

approach. For each consecutive audio feature xs, we calculate the repetition factor, r, as

follows:

r = T/
(S
w

)
.

The repetition factor r represents the number of times each audio feature needs to be

repeated in order to achieve the desired length. By repeating each audio feature xs for

r times, we create an upsampled audio feature sequence that has the same length as the

frame features. This approach maintains the temporal structure of the audio features

while ensuring that the audio modality is aligned with the visual modality in terms of

sequence length.

It is worth noting that this repetition-based upsampling method is a simple yet

effective technique that does not introduce any additional computation or complexity

to the model. More advanced upsampling methods, such as interpolation or learned

upsampling, could potentially be explored in future work to further improve the alignment

between audio and visual modalities. However, the current approach provides a reasonable

trade-off between simplicity and performance for the task of video summarization.

Audiovisual Transformer Encoder. To model and contextualize the information of

video frames and audio, we use a transformer encoder [54]. The model takes a con-

catenated multimodal sequence of features Xmultimodal = Ximg ⌢ Xaud and outputs the

corresponding attended features. Since features from each modality can be extracted from

a variety of pretrained networks with different feature dimensionality, we add modality-

specific MLP heads to project both audio and frame features onto the same embedding

space. We let these heads be trained in an end-to-end matter. Thus the common embed-

ding space is shaped by the final task.

We also introduce modality-specific positional embeddings. Positional embeddings

are crucial for providing the model with information about the relative or absolute posi-

tions of the input tokens in a sequence. By adding independent positional embeddings to

each modality (audio and visual), we help the model to better understand the temporal

relationships within each modality and enforce the correspondence between the audio and

frame features at the same timestep.

In other words, modality-specific positional embeddings enable the model to differ-

entiate between the positions of the audio and visual tokens in their respective sequences.

This distinction allows the model to effectively capture the temporal structure and rela-
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tionships within each modality, while also facilitating the alignment and fusion of the two

modalities at corresponding timesteps.

Score Regression Network. The feature vectors that have passed through our trans-

former encoder have contextual information on the whole sequence for both modalities.

We introduce a score regression network that takes the attended features and generates

an importance score for each. As we understand the importance of the auditory events

in capturing users’ attention when watching videos, each modality’s features generate

separate scores. The final scores Y are obtained by aggregating the modality-specific

scores

Y = λimgYimg + λaudYaud,

where Yimg and Yaud are the scores generated from the image and audio attended features,

respectively, and λimg+λaud = 1. The score regression network comprises fully connected

layers with shared weights along the whole multimodal sequence.

Learning. To train our summarization method, we minimize the Root Mean Squared

Error between the predicted scores Y and the pseudo-labels Y ′:

RMSE =

√√√√ T∑
i=1

(y′i − yi)2

T
,

given that Y ′ = {y′0, y′1, ..., y′T} and Y = {y0, y1, ..., yT}.
In our unsupervised setting, we found that the use of auxiliary losses, such as in

the work of Narasimhan et al. [41], hindered our model’s convergence during training.

We argue this could be due to the way in which the audio tokens interact with the

frame tokens after they have been processed by the transformer encoder, and we leave

this investigation to further extensions of this work. We found that in the unsupervised

setting, the pseudo-labels generated from the psychoacoustic information in the videos

provide sufficient signal for the model to obtain a good performance.



4.2. Audiovisual Video Summarization 38

Figure 4.2: Overview of our pseudo labeling generation and video summariza-
tion model training. Our approach is composed of two main steps: (a) Processing the
video audio to extract psychoacoustic information that is used to compose the pseudo-
labels. (b) Then, using these generated labels, we train an audiovisual video summariza-
tion model. After the input modalities have their features extracted, they are added to the
respective positional embedding and fed into the audiovisual transformer encoder. The
attended features resulting from the attention mechanism are passed to a score regression
network that generates scores for both modalities. Finally, The audio and visual scores
are aggregated, composing the final score. At inference time, the final summary is com-
posed by segmenting the video using Kernel Temporal Segmentation and then selecting
the segments using the Knapsack 0/1 algorithm using the average score as “value” and
the number of frames as “weight”.

+

++

Source: Created by the author.
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Chapter 5

The Audiovisual Summarization

Dataset (AVSum)

This chapter presents the methodology for our proposed video summarization dataset.

The main goal of this dataset is to explore the relationship between auditory stimuli and

important events in videos in order to improve future video processing methods. This

dataset is intended to supplement existing datasets, such as SumMe and TVSum, by

providing diverse audiovisual settings and frame-level scores to be used in future video

processing methods.

5.1 Data Collection

The Audiovisual Summarization Dataset (AVSum) was created with the aim of

advancing the field of video summarization. The data collection process involved selecting

videos based on specific criteria, which will be detailed in the next subsection, and then

extracting labels for the important frames. The extracted labels consisted of importance

scores and psychoacoustic pseudo-labels, which were used to train the summarization

models. In this section, we describe the video selection criteria and the label extraction

process and provide an overview of the dataset statistics.

5.1.1 Video Selection Criteria

The data collection for the AVSum dataset focused on first-person videos, which

are known for their long-running recordings and potential for summarization (inspired by

Ramos et al. [47]). Specifically, we chose videos of people touring around cities, as they
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provide a rich and variable environment for different visual and auditory stimuli. The

selection process for the videos aimed to guarantee a diverse range of auditory and visual

information, catering to various content types and styles. This diversity is crucial for

training a robust summarization model that can generalize well across different scenarios.

Additionally, the videos were chosen to be of sufficient length, ensuring that they contained

enough content to be effectively summarized, thus providing meaningful challenges for the

video summarization task. We provide some examples of the dataset scenes in Figure 6.1.

5.1.2 Label Extraction

In this section, we explain how we extracted the labels for the AVSum dataset.

The process includes the extraction of the frame-level importance scores and the psychoa-

coustic annoyance values.

Importance Scores. In May 2022, YouTube introduced a new feature named heatmap-

a graph by the progress bar that shows the most replayed parts of a video 1. For the

channels that have this feature enabled, the graph provides values from 0 to 1 for each 1%

increment of the video’s duration, as illustrated in Figure 5.1. This feature is intended to

help creators understand which parts of their videos are the most engaging and interesting

to their audience and to use this information to improve their content. Additionally, the

feature can also be used by viewers to quickly navigate to the most popular parts of a

video and to easily identify which parts of the video are worth watching 2. In the context

of the video processing community, these values can be interpreted as ground-truth data

1https://twitter.com/TeamYouTube/status/1527024322359005189
2https://techcrunch.com/2022/05/18/youtubes-player-gains-new-features-including-most-replayed-

video-chapters-single-loop-and-more

Figure 5.1: The heatmap YouTube feature graph showing engagement levels
throughout a video on YouTube, with values ranging from 0 to 1 for each 1%
increment of the video’s duration.

Importance: 0.97Importance: 0.12

Source: Created by the author.
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collected from multiple users and be a good way forward to create bigger, less-costly

datasets.

In this work, we use these importance values extracted from each YouTube video

page to compose our ground-truth importance scores. As the annotations have a fixed

length for every video of 100 samples, we resample the signal to fit the number of final

frames of each video after our sampling, following the protocol of Gygli et al. [29].

As a result, we obtain frame scores in the same format as those present in other

datasets in the literature. These frame scores serve as the ground-truth scores for our

dataset and provide a consistent and reliable basis for training and evaluating video

summarization models. By using the YouTube heatmap feature as a source of ground-

truth data, we can efficiently create larger datasets with lower annotation costs, as these

scores are derived from real-world user engagement and reflect the interests of a diverse

audience. This approach not only facilitates the development of more accurate and robust

summarization models but also ensures that the generated summaries align well with the

preferences of actual users.

Psychoacoustic Pseudo-labels. After extracting the audio signals from each video,

we segment them into 1s audio clips and resample these clips to 16Hz, averaging left and

right channels if the signal is stereo. Then, we extract the Psychoacoustic Annoyance

(PA) values using the protocol described in Section 4.1, generating the pseudo-labels for

each video.

5.2 Dataset Statistics

In this section, we present the statistics of the AVSum dataset, including the

number of videos, the duration, and the content. The dataset is composed of 27 videos

from YouTube 3 with their duration varying from 2 to 10 minutes long. The dataset

has frame-level importance scores calculated from the heatmap extracted from youtube

along with the videos. Table 5.1 describes the individual information for each video of

the dataset, including the number of frames, frames per second, the average PA value,

and the average ground-truth value.

3https://www.youtube.com
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Table 5.1: Summary of video features of our AVSum dataset. The table shows
the number of frames, frames per second (FPS), and the mean Psychoacoustic Annoyance
(PA) Score and Ground-truth (GT) values for each video. In the last column, it is depicted
a profile for both PA (in blue) and GT (in yellow) curves along the video. Best seen in
color and with zoom.

Video Title # Frames FPS PA Avg. GT Avg. PA vs GT

video 1 9600 30 0.575 0.295

video 2 8400 30 0.343 0.395

video 3 3600 30 0.158 0.270

video 4 16200 30 0.253 0.424

video 5 14400 30 0.223 0.333

video 6 13500 30 0.309 0.356

video 7 9600 30 0.308 0.373

video 8 10800 30 0.425 0.291

video 9 10800 30 0.210 0.255

video 10 14400 30 0.200 0.271

video 11 10800 30 0.447 0.202

video 12 15000 30 0.157 0.158

video 13 18000 30 0.405 0.175

video 14 12300 30 0.170 0.146

video 15 10200 30 0.240 0.193

video 16 12600 30 0.618 0.265

video 17 15000 30 0.280 0.179

video 18 14400 30 0.239 0.200

video 19 15000 30 0.300 0.261

video 20 11400 30 0.317 0.227

video 21 14400 30 0.333 0.150

video 22 6000 30 0.336 0.203

video 23 14400 30 0.128 0.232

video 24 13500 30 0.386 0.178

video 25 11400 30 0.268 0.196

video 26 12900 30 0.167 0.151

video 27 7200 30 0.257 0.217
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Chapter 6

Experiments

In this chapter, we present the results and discussion of our proposed method for video

summarization. We begin by discussing the quantitative results for both unsupervised

and supervised video summarization, followed by a discussion of the qualitative results.

Additionally, we present the results of our zero-shot experiments, where we evaluate

our method on a new audiovisual video summarization dataset. We then present the

results of our analysis of the ground truth scores and the psychoacoustic annoyance. We

also conduct an ablation study to investigate the impact of various components of our

method on the performance of the system. This includes the use of psychoacoustic scores

supervision versus fully supervised, shared score regression network between modalities,

features aggregation before transformer, audiovisual vs. visual-only, and other factors.

Finally, we provide a discussion of the results and their implications.

6.1 Experimental Setup

In this section, we describe the experimental setup used in this study to evalu-

ate the proposed method for video summarization. We begin by describing the datasets

used, which include SumMe, TVSum, and our proposed AVSum dataset. We then pro-

vide details on the evaluation protocol, including the use of the canonical setting when

comparing to baselines, the use of the F-score as the evaluation metric, and the process

for calculating the metrics for videos with multiple user-annotated summaries. Finally,

we provide implementation details, including information on how the pseudo-labels were

extracted, the resampling of audio, and the models used to extract features.
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6.1.1 Datasets

In this work, we used three video summarization datasets, described in Table

6.1 and illustrated in Figure 6.1: SumMe [29], TVSum [51], and our proposed AVSum.

SumMe and TVSum datasets are used to train our audiovisual model and for performance

evaluation, as well as ablation studies. Our AVSum dataset is used in this work as a

benchmark for the transfer learning setting analysis.

• SumMe comprises 25 videos, with an average video duration of 2m40s, and a

diverse set of categories, e.g., sports, leisure, and travel. For each video, there are

15 to 18 human annotations on a segment level. The frame-level scores are obtained

by averaging the segment-level annotations.

• TVSum is composed of 50 videos from YouTube1. The videos are distributed

among a wide range of genres, e.g., documentaries, news, and historical lectures,

and their duration varies from 1 to 4 minutes long. The dataset has frame-level

importance scores which can be computed by averaging across 20 users’ frame-level

annotations.

• AVSum dataset is composed of 27 videos from YouTube. All videos have well-

defined user-curated auditory events, and their duration varies from 2 to 10 minutes

long. The frame-level importance scores were obtained by collecting data from the

new (at the time of publication) YouTube heatmap, or Most replayed, feature which

conveys the information about which segments of the video are being most watched

by the platform’s users.

1http://www.youtube.com

Table 6.1: Datasets used in this thesis’ experiments.

Dataset SumMe [53] TVSum [51] AVSum

# of videos 25 50 27
duration (min) 1 - 6 2 - 10 2-10
content holidays, events,

sports
news, how-to’s, user-
generated, documen-
taries

walking tours

type of annotations multiple sets of key-
fragments

multiple fragment-
level scores

frame-level scores

# of annotators per
video

15 - 18 20 -
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6.1.2 Evaluation Protocol

In this study, we evaluate the performance of the proposed method using a standard

approach. Specifically, we randomly divide the dataset into five parts, using four parts

for training and one part for evaluation. The evaluation metric used is the F-score,

which is a measure of the similarity between the generated summaries and the ground-

truth summaries. This metric is computed by considering the precision and recall of the

temporal overlap between the two.

We use the F-score to evaluate the similarity between the generated summaries

(Si) and the ground-truth summaries (S∗
i ) for each video (i). The precision and recall are

determined by calculating the temporal overlap between Si and S∗
i :

Precision =
|Si ∩ S∗

i |
|Si|

, Recall =
|Si ∩ S∗

i |
|S∗

i |
,

and the F -score is calculated by

F−score = 2× Precision×Recall

Precision+Recall
.

For videos that have been summarized by multiple users, we use the same method as

described in [59] to compute the metrics.

6.1.3 Implementation Details

The pseudo-labels were extracted using a segment size of P = 1, and the audios

were resampled to 16Hz. For extracting the features, we use a pretrained CLIP ViT-

B/32 [46] pretrained on ImageNet [16], and an ESResNeXt [28] model pretrained on

Audioset [25], for the visual and audio respectively. In the given setup, the audio model is

pretrained on Audioset to provide a strong foundation for learning audio representations.

Audioset is a large-scale dataset consisting of diverse audio events, which enables the

model to capture a wide range of audio features. The original task for which the model

is pretrained involves audio event classification, where the goal is to identify the presence

of various audio events within a given audio clip. The positional embeddings added to

each modality have a maximum sequence length of 5000. The audiovisual transformer

encoder has 4 layers with 8 heads each and an embedding size of 512. The score regression

network consists of two fully-connected layers, which have input and internal dimensions

512 and output dimension 1 (for regression). The scores are aggregated using λimg = 0.5
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and λaud = 0.5. The video summarization training in all setups is made with a learning

rate of 5e−4, using the Adam optimizer [32] and a weight decay of 1e−6. The training

was done using a full batch setup for 1500 epochs. The complete training for one split

takes around 6.5 hours on a single NVIDIA Tesla T4 GPU. The KTS algorithm utilizes

the frame features extracted from the ViT to efficiently segment the video into meaningful

parts. The Knapsack algorithm is applied with a constraint on the maximum weight, set

to 15% of the video size.

6.2 Results & Discussion

This section presents and analyzes the results of our proposed approach for video

summarization. This section is divided into several sub-sections that cover the following

topics: Quantitative Results, Qualitative Results, Ground truth scores and Psychoacous-

tic Annoyance, and an Ablation Study. In the first sub-section, we will present the

quantitative results of our approach, comparing it with state-of-the-art methods for both

unsupervised and supervised video summarization. In the second sub-section, we will

provide qualitative results, demonstrating the effectiveness of our approach on a vari-

ety of video samples. In the third sub-section, we perform the experiments using our

dataset in the zero-shot scenario. In the fourth sub-section, we will analyze the relation-

ship between the psychoacoustic annoyance and the annotated ground-truth scores. The

last sub-section will present an ablation study, evaluating the impact of different design

choices and features on the performance of our approach.

6.2.1 Quantitative Results

Unsupervised Video Summarization. We compare our method to unsupervised

video summarization baselines on SumMe and TVSum in their canonical configuration

[59]. Table 6.2 shows that our method outperforms all unsupervised baselines in the

SumMe dataset while maintaining competitive results in TVSum. It is important to

emphasize that CLIP-It!, which has a strong performance in both datasets, is also multi-

modal, utilizing textual information instead of sound. This can be an indication that

with the increasing availability of multi-modal data, methods that can efficiently leverage

this incoming data will thrive. Our method achieved an F1 Score of 52.6 on the SumMe
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Table 6.2: Unsupervised. Our complete model (Ours) achieves overall better results
compared with other alternatives (best in bold).

Method
SumMe TVSum

Avg.
F1 Rank F1 Rank Rank

DR-DSN [61] 41.4 11 57.6 10 10.5
Cycle-SUM [58] 41.9 10 57.6 10 10
SUM-GAN-sl [7] 47.8 8 58.4 8 8
SUM-GAN-AAE [3] 48.9 7 58.3 9 8
DSAVS [60] 47.0 9 59.4 6 7.5
SumGraph [43] 49.8 6 59.3 5 5.5
CSNet [31] 51.3 3 58.8 7 5
AC-SUM-GAN [2] 50.8 5 60.6 4 4.5
CA-SUM [6] 51.1 4 61.4 2 3
CLIP-It! [41] 52.5 2 63.0 1 1.5
Ours 52.6 1 61.2 3 2

Table 6.3: Supervised Quantitative Results. Our complete model (Ours) achieves
overall better results compared with other alternatives (best in bold).

Method
SumMe TVSum

Avg.
F1 Rank F1 Rank Rank

CSNet [31] 48.6 10 58.5 12 11
VASNet [20] 48.0 11 59.8 10 10.5
DSAVS [60] 48.9 9 59.8 10 9.5
DSNet [63] 50.2 8 62.1 7 7.5
MSVA [26] 53.4 5 61.5 8 6.5
MAVS [21] 44.4 12 66.8 1 6.5
PGL-SUM [5] 55.6 3 61.0 9 6
MC-VSA [34] 51.6 7 63.7 4 5.5
RR-STG [62] 53.4 5 63.0 5 5
CLIP-It! [41] 54.2 4 66.3 2 3
SMN [55] 58.3 1 64.5 3 2
Ours 56.7 2 62.5 6 4

dataset and of 61.2 on the TVSum dataset.

Supervised Video Summarization. To assess the capabilities of our proposed model,

we also evaluate it in a fully-supervised setting against the SOTA methods in the liter-

ature. In this setting, human-provided ground truth labels for frame importances are

used to train the model, replacing our self-generated pseudo-labels. We observe that our

method shows competitive performance against more complex architectures and solutions.

Table 6.3 shows that the method SMN performed the best overall, achieving the highest

F1 score on both SumMe and TVSum datasets. CLIP-It! also performed well, achieving

the second-highest average F1 rank. The method proposed in this thesis also performed
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well, achieving the second-highest F1 rank on SumMe and the sixth-highest on TVSum,

resulting in an average of 4th rank. It is important to notice that the best-performing

method, SMN, performed poorly on the SumMe dataset compared to the TVSum dataset.

This suggests that the method is heavily tuned for the TVSum dataset and may not per-

form as well on other datasets. Our proposed method, on the other hand, achieves a

balanced performance on both datasets, which suggests that it has a more generalizable

and robust approach to video summarization.

6.2.2 Qualitative Results

In Figure 6.2(c), we can see that our self-supervised model had a significant boost in

performance, as measured by the F1 score. This suggests that the pseudo-labels generated

from the audio-psychoacoustic features were effective in training the model to identify

important frames. In Figure 6.2(d), both supervised and self-supervised models had

similar F1 scores, but our self-supervised model had a better qualitative result when

visually inspecting the generated summary. This demonstrates the effectiveness of our

approach in producing high-quality video summaries without the need for costly and

time-consuming human annotation.

6.2.3 Zero-shot Results

In this section, we present our evaluation results for the zero-shot scenario in which

we utilize pretrained models from available codebases to evaluate their performance on

our Audiovisual Summarization Dataset (AVSum). Our aim is to compare our audiovisual

model to state-of-the-art models and to demonstrate the effectiveness of our dataset in

evaluating video summarization models.

In this zero-shot evaluation, all models were evaluated using the unsupervised pre-

training approach. This was done to ensure a fair comparison between our proposed

method and the pretrained competitors, as all models were evaluated under the same

conditions. By utilizing the unsupervised pre-training, we were able to provide a compre-

hensive evaluation of each model’s performance, highlighting its strengths and limitations.

The results of this evaluation, presented in the form of F1 scores, provide valuable insights

into the effectiveness of each model in a zero-shot scenario.
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We selected a set of state-of-the-art video summarization models and evaluated

their performance on the AVSum dataset. The results of our zero-shot evaluation showed

that our AVSum dataset follows a similar distribution to well-established datasets such

as SumMe and TVSum, but with a stronger correlation between audio and visual infor-

mation. The results are shown in Table 6.4.

Our audiovisual model outperformed the pretrained competitors, demonstrating

the effectiveness of our approach and the importance of incorporating both audio and

visual information in video summarization models. These results highlight the signifi-

cance of our contribution to the field of video summarization and the potential for our

audiovisual model to be applied in real-world scenarios.

In conclusion, the zero-shot evaluation results reinforce the importance of incorpo-

rating both audio and visual information in video summarization models and demonstrate

the effectiveness of our audiovisual model and the AVSum dataset in evaluating video

summarization performance.

6.2.4 Ground truth scores and the Psychoacoustic Annoyance

In this section, we present a comprehensive analysis of the relationship between

Psychoacoustic Annoyance (PA) and the annotated ground-truth scores. This analysis is

based on the examination of data from the SumMe and TVSum datasets. Our findings

indicate that there is a significant correlation between the PA and the ground-truth scores,

suggesting that the PA can be used as an effective feature for predicting human attention.

Furthermore, we also present a comparison between the PA and the sound pressure level

(SPL) to evaluate the relative importance of these features in predicting human attention.

The results of this comparison provide valuable insights into the relationship between

psychoacoustic features and human attention and can inform the development of models

Table 6.4: Zero-shot results on the AVSum dataset. The evaluation of the pre-
trained video summarization methods was conducted using a zero-shot setting, in which
the models were pre-trained on each split of the SumMe and TVSum datasets and then
evaluated on the complete AVSum dataset. The reported F1 scores are the average values
obtained across all models for each dataset.

Method
Pretrained on

SumMe TVSum
CSNet [31] 50.43 48.35
CA-SUM [6] 50.99 50.07
Ours 52.16 51.34
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for predicting attention in real-world scenarios.

Figure 6.3 illustrates the relationship between the ground-truth scores and the

psychoacoustic annoyance for three videos of the SumMe dataset. In Figure 6.3-(a), it is

possible to observe that the events that have a strong auditory annoyance signal ended up

catching the attention of the human labelers. However, in the video portrayed in Figure

6.3-(b), kids playing in leaves, the audio does not provide much information regarding

the relevant frames in the first high-importance segment. In this case, the pseudo-label

is more likely to generate noise in the training process. In all videos from Figure 6.3,

we also plotted the normalized sound pressure level (SPL) to investigate whether the

psychoacoustic was indeed a better proxy for the user’s attention than a simple sound

measurement. Interestingly, we see that, although there are some overlaps in the three

signals, the correlation between PA and GT is significantly stronger than between the

other two pairs ({GT, SPL} and {SPL, PA}).
The plot presented in the Fig. 6.4, extracted and adapted from Chen et al. [12],

illustrates the relationship between psychoacoustic features and EEG sub-bands associ-

ated with human behavior. Specifically, the figure shows the correlation between the

psychoacoustic features of Psychoacoustic Annoyance (PA), Sound Pressure Level (SPL),

Loudness, Sharpness, and Roughness, and the EEG sub-bands associated with attention

(2), drowsiness (4), and attention marker (7). The data presented in the figure suggests

that there is a correlation between these psychoacoustic features and EEG sub-bands,

which implies that they can be used as markers for human attention and drowsiness.

The methodology used for extracting these features and sub-bands is described in chap-

ter 4. This figure illustrates the potential of using psychoacoustic features as a tool for

understanding human behavior.

This relationship between psychoacoustic features and human behavior can be used

to develop models that can predict attention levels or drowsiness in real-time applications

such as driver assistance systems, human-computer interaction, and others. The ability to

predict attention levels can be used to improve human-computer interaction, for example,

by adapting the interface or the content to the user’s attentional state. Additionally, the

ability to predict drowsiness can be used in driver assistance systems to prevent accidents

caused by drowsy driving.

To further investigate the relationship between PA, SPL, and ground-truth scores,

we present Figure 6.5. The figure illustrates the correlation values between the psychoa-

coustic feature of PA and SPL and the ground-truth scores for each video in the SumMe

and TVSum datasets. The data in the plots show the correlation values for each video,

where the x-axis represents the video name and the y-axis represents the correlation

values. The dashed lines in each plot represent the average correlation values for each

dataset.

In the SumMe dataset (Figure 6.5a), we see that that are some videos in which
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the difference between PA and SPL is very pronounced such as Air Force One, Sav-

ing dolphines, and paluma jump. This is likely due to the nature of the activities depicted

in these videos, which are characterized by sudden and sharp sounds that are associated

with higher PA values. On the other hand, for some other videos, such as Paintball and

cooking, it is the other way around; the SPL has a higher correlation. This is intrinsi-

cally connected to the type of activity, where these videos are characterized by a more

continuous and moderate sound that is associated with higher SPL values.

In the TVSum dataset (Figure 6.5b), the difference between PA and SPL correla-

tions seems smaller and more variable, although there are some examples in which the PA

correlation is higher than any of SumMe videos, such as uGu 10sucQo or xmEERLqJ2kU.

This smaller difference can explain why we perform worse in the unsupervised setting in

the TVSum dataset. This can be attributed to the fact that the TVSum dataset contains

a more diverse range of videos and activities as described in Table 6.1, which results in a

more varied distribution of PA and SPL values.

In the AVSum dataset (Figure 6.5c), the difference between the correlation of SPL

and PA is noticeable. This is likely due to the bias of the data collection process, as

the videos chosen to compose the dataset were selected for having a strong audiovisual

signals correlation. This is evident in strong examples such as video 7, video 3, and

video 11. These videos exhibit a marked difference in the correlation between SPL and

PA, which highlights the importance of incorporating both audio and visual information

in video summarization models.

The two videos in SumMe that have zero correlation (Scuba and St Marteen Landing)

have zeroed values because their audio signal was not available in the dataset.

6.2.5 Ablation Study

We evaluate the impact of the different components of our proposed method using

the canonical training and evaluation procedure from the SumMe dataset. First, we

discuss the impact of having pseudo-labels versus a fully human-annotated set of scores.

Then, we proceed with analyzing the modules using the fully-supervised setting. Table

6.5 shows the results after removing each of the following components:

Psychoacoustic scores supervision versus fully supervised. As mentioned in the

discussion of Figure 6.3, one of the key points of this work is understanding the benefits

of using psychoacoustic features as pseudo-labels in a setting where manually annotating

video frames can be rather costly. In this experiment, we compare the performance
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Table 6.5: Ablation study. Our complete model (Ours) achieves overall better results
compared with other alternatives.

Method Supervision Modality F1(↑)

Randomly Generated Scores + Knapsack None - 41.43
Small Transformer + Random Inputs Full - 44.23
Small Transformer + Audio Features Full A 46.78

Small Transformer + GoogleNet Full V 51.16
Transformer + GoogleNet Full V 53.87
Transformer + CLIP Full V 55.27
Transformer + CLIP + Concat. features pre-transformer Full AV 52.16
Transformer + CLIP + Separate Score Regressor Full AV 53.49
Ours (Transformer + CLIP + Shared Score Regressor) Full AV 56.71

Ours (Transformer + CLIP + Shared Score Regressor) PA AV 52.58

between the two modes of supervision. We have seen that although the psychoacoustic

features can help guide the model predictions, in some cases, the video’s content is not

intrinsically auditory. The inferior model’s performance in the unsupervised setting can

be justified by the nature of these pseudo-labels.

Shared score regression network between modalities. As described in Chapter

4, the score regression network shares its weights between the two modalities. To under-

stand the influence this architectural decision has, we compare it to a model with specific

score regression networks for each modality. This change yields a 3.22 drop in the F1

score. Our understanding is that since we are predicting modality-specific scores and

aggregating them afterward, the shared MLP network enforces a stronger interaction in

the backpropagation path between audio and frame features. This can result in a quicker

convergence of the model training.

Features aggregation before the transformer. We understand that the size of a

sequence that is fed to a transformer model can significantly influence its efficiency due

to its quadratic complexity. For this reason, we investigate the need to have a larger

sequence composed of two modalities versus aggregating the audio and frame feature

vectors before being fed to the transformer. For aggregation, we used average pooling

between the features. The model dropped from a score of 53.49 to 52.16 in our experiment.

In a similar rationale as the last subsection, the way both modalities interact with each

other can impact strongly on performance.

Audiovisual vs. visual-only. As we are one of the few utilizing more than visual fea-

tures to perform video summarization, part of the objective of this work is to understand

the impact auditory information can bring to a video summarization method. We see that



6.2. Results & Discussion 53

there is a 1.44% improvement by adding the audio information in our best configuration

(comparing lines 6 and 9 of Table 6.5).

CLIP features. As previously shown by Medhini et al. [41], the feature extractor used

can have a significant impact on the performance of a video summarization method. In

our experiments, we observed a similar effect when switching from using CLIP features

to GoogLeNet features. This resulted in a drop of 1.40% in the F1 Score performance of

our method.

Transformer encoder size. In our experiments, we trained two transformer models

with different sizes and found that there was only a small difference in their performance.

The larger model had a slightly higher F1 score of 53.87% than the smaller model. This

suggests that the size of the transformer encoder may be an important factor in the per-

formance of our method, but further research is needed to confirm this. Our experiments

show that our proposed method is a strong baseline for video summarization and has the

potential to improve the performance of existing approaches in the field.

Audio-only Features. In this experiment, we replaced the visual features with audio-

only features to evaluate the contribution of each modality individually. Our objective was

to investigate if the audio was enough information to perform competitively with other

video summarization methods. However, our results show that while the audio features

can be of great help as additional information, removing the visual signal altogether

resulted in a significant drop in performance, from 51.16 to 46.78 in the F1 score. This

highlights the importance of considering both modalities in video summarization and

reinforces that visual information is currently the main modality for this task.

Random Inputs. To understand the role of the features being fed to the transformer

model in our method, we fed the same transformer architecture with random inputs

instead. Our results suggest that even with random inputs, the transformer network is

able to learn some features, such as the common regions of all videos that are most likely

to be highlighted and similar patterns. This is an indication that the transformer can

extract meaningful information from the task supervision itself, even when the input is

not informative. On the other hand, we see that this implicit information is not enough to

perform well on the datasets we used in this work. Using random inputs yielded a drop in

F1 score of 6.93 points when compared to the GoogleNet visual features and a drop of 2.55

compared to the audio features. As we will see in the next experiment, this robustness

to random inputs when compared to the audio features input can be explained by the

reduction of the optimization space that the frame scores to video summary method,
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described in Section 2.1.3, intrinsically performs when transitioning from frame-level to

segment-level comparisons.

Random Scores. In this experiment, we generated random scores and applied the KTS

and Knapsack methods to them to evaluate the impact of the KTS and Knapsack methods

on the final summary. Our results show that even when using random scores, the KTS

method is able to segment the video and generate probable meaningful summaries. This

highlights the importance of the KTS and Knapsack methods in our proposed method

and the potential of using visual features alone for video summarization.

Discussion. In conclusion, our results indicate that our proposed method, which uti-

lizes both visual and audio information, outperforms its alternatives that use only visual

information. Furthermore, the shared score regression network and feature aggregation

before transformer architecture choices have a positive impact on the performance of our

method. The use of CLIP features also had a significant impact on the performance of our

method, while the transformer encoder size had only a small effect. Overall, our experi-

ments demonstrate the effectiveness of our proposed method in video summarization and

highlight the importance of considering both visual and audio information in this task.

Further research is needed to further improve the performance of our proposed method

and explore the use of psychoacoustic features in other areas of video processing.
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Figure 6.1: Frame samples of the datasets used in this thesis. The examples
from the SumMe dataset include sporting and culinary events, while the TVSum dataset
encompasses a diverse range of subjects, including sports and dog competitions. The
AVSum dataset primarily consists of walking videos from various cities, showcasing a
diverse set of urban landscapes.

SumMe

TVSum

AVSum

Source: Created by the author.
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Figure 6.2: Qualitative analysis on the test set of the SumMe dataset’s (split0).
Best viewed with zoom. As expected, there is a drop in performance when switching
from the supervised to the unsupervised setting. On videos (c) and (d), our unsupervised
model outperforms the supervised model in terms of F1 score, with a significant boost on
video (c). In addition, the unsupervised model also produces a better qualitative result
on video (d).

Source: Created by the author.
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Figure 6.3: Ground truth scores and the Psychoacoustic Annoyance. Video
samples from the SumMe dataset illustrate what was observed from the premise of linking
human attention to psychoacoustic features, such as the PA. The PA scores (in blue) were
extracted using the methodology described in Chapter 4 and are the same used for training
in the self-supervised setting. Normalized sound pressure levels (in red) were extracted to
help evaluate the influence of psychoacoustics when estimating frame importance scores.
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Figure 6.4: Relation between psychoacoustic features and EEG sub-bands. The
figure illustrates the relationship between the psychoacoustic features of Psychoacoustic
Annoyance (PA), Sound Pressure Level (SPL), Loudness, Sharpness, and Roughness,
and the EEG sub-bands associated with human behavior such as attention (index 2 ),
drowsiness (index 4 ), and attention marker (index 7 ). The data shows that there is a
correlation between these psychoacoustic features and EEG sub-bands, suggesting that
they can be used as markers for human attention and drowsiness. This figure illustrates
the potential of using psychoacoustic features as a tool for understanding human behavior.
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Figure 6.5: Correlation between psychoacoustic features and ground-truth
scores for the SumMe, TVSum, and AVSum datasets. This figure illustrates
the correlation values between the psychoacoustic feature of PA and SPL and the ground-
truth scores for each video in the (a) SumMe, (b) TVSum, and (c) AVSum datasets. The
data in the plots show the correlation values for each video, where the x-axis represents
the video name and the y-axis represents the correlation values. The dashed lines in each
plot represent the average correlation values for each dataset. The comparison within
each dataset allows us to evaluate the consistency of the relationship between PA and
SPL with ground-truth scores and the generalizability of the results across different video
contents. The methodology used for extracting these features and ground-truth scores is
described in Chapter 4.
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(c) AVSum dataset.
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Chapter 7

Conclusion

In this thesis, we have presented a comprehensive study on the utilization of audiovi-

sual information for video summarization. The exponential growth of multimedia data

has led to increasing demand for effective and efficient summarization techniques. In

this context, our proposed approach leverages both auditory and visual information to

generate high-quality video summaries. Our method takes advantage of the correlation

between audiovisual signals in videos, which is widely and naturally available in most

scenarios, to enhance the performance of video summarization. We first presented a novel

audiovisual model for video summarization that incorporates psychoacoustic features as

pseudo-labels to help the model learn the most relevant parts of the videos without the

need for human-labeled data. Our proposed model is based on a transformer architec-

ture, which demonstrates significant improvement compared to state-of-the-art methods

in the unsupervised setting on the SumMe dataset. Furthermore, we also conducted thor-

ough ablation studies to evaluate the contributions of each component of our method.

In addition to the proposed model, we also introduced a new audiovisual video summa-

rization dataset called AVSum, which contains a significant amount of untrimmed videos

showcasing a range of auditory stimuli. This new dataset provides a diverse and chal-

lenging benchmark for future video summarization research and highlights the need for

more sophisticated models that can effectively leverage audiovisual information. Finally,

our results show that the incorporation of psychoacoustic features can significantly im-

prove the performance of video summarization models. Our experiments demonstrate

that our method is a promising approach for generating accurate and effective summaries

of videos, providing a strong foundation for future work in this area. The proposed model

and dataset are of great significance for the field of video summarization and will have a

lasting impact on future research in this area.
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7.1 Limitations & Future Work

One possible direction for future work is to explore different methods of calculating

the psychoacoustic measure, such as Zwicker’s improved models proposed by Di et al. [17]

and neural networks to calculate the PA values from the audio as proposed by Lopez et

al. [35]. Another avenue we believe is worth exploring is the use of other emotion-based

metrics, as they have been shown to be effective in similar applications such as Semantic

Hyperlapse [14, 15]. Despite the promising results obtained by our model, there are some

limitations that we identified during our experimentation. Firstly, the model did not

converge using the auxiliary losses as used in Narasimhan et al. [41]. In order to resolve

this issue, alternative auxiliary loss functions could be explored to stabilize the training

process. Secondly, our performance on the TVSum dataset was not as good in the un-

supervised setting due to the lower correlation between the psychoacoustic measure and

the ground-truth labels. To address this, we could investigate methods for better align-

ing the psychoacoustic measure with the ground truth or using additional modalities in

the self-supervision process. Lastly, it is worth mentioning that the self-supervision using

psychoacoustic features may not be effective in datasets with no auditory stimuli. In these

cases, alternative self-supervision techniques or a fully-supervised approach may be neces-

sary. By expanding upon these methods, we hope that these future directions will improve

the overall performance of our system and bring it closer to real-world applications.



62

Bibliography

[1] S.M. Abel. The extra-auditory effects of noise and annoyance: An overview of re-

search. The Journal of otolaryngology, 19 Suppl 1:1–13, 1990.

[2] Evlampios Apostolidis, Eleni Adamantidou, Alexandros I Metsai, Vasileios Mezaris,

and Ioannis Patras. Ac-sum-gan: Connecting actor-critic and generative adversarial

networks for unsupervised video summarization. IEEE Transactions on Circuits and

Systems for Video Technology, 31(8):3278–3292, 2020.

[3] Evlampios Apostolidis, Eleni Adamantidou, Alexandros I Metsai, Vasileios Mezaris,

and Ioannis Patras. Unsupervised video summarization via attention-driven adver-

sarial learning. In International Conference on multimedia modeling, pages 492–504.

Springer, 2020.

[4] Evlampios Apostolidis, Eleni Adamantidou, Alexandros I Metsai, Vasileios Mezaris,

and Ioannis Patras. Video summarization using deep neural networks: A survey.

Proceedings of the IEEE, 109(11):1838–1863, 2021.

[5] Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris, and Ioannis Patras.

Combining global and local attention with positional encoding for video summariza-

tion. In 2021 IEEE International Symposium on Multimedia (ISM), pages 226–234.

IEEE, 2021.

[6] Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris, and Ioannis Patras.

Summarizing videos using concentrated attention and considering the uniqueness and

diversity of the video frames. In Proceedings of the 2022 International Conference

on Multimedia Retrieval, pages 407–415, 2022.

[7] Evlampios Apostolidis, Alexandros I Metsai, Eleni Adamantidou, Vasileios Mezaris,

and Ioannis Patras. A stepwise, label-based approach for improving the adversarial

training in unsupervised video summarization. In Proceedings of the 1st International

Workshop on AI for Smart TV Content Production, Access and Delivery, pages 17–

25, 2019.

[8] W. Babisch et al. Health status as a potential effect modifier of the relation be-

tween noise annoyance and incidence of ischaemic heart disease. Occupational and

Environmental Medicine, 60(10):739–745, 2003.



Bibliography 63

[9] W Babisch, H Fromme, A Beyer, and H Ising. Increased catecholamine levels in

urine in subjects exposed to road traffic noise: the role of stress hormones in noise

research. Environment international, 26(7-8):475–481, 2001.
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