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Abstract

Amazonia and the Northeast region of Brazil exhibit the highest levels of climate vulnerability in

the country. While Amazonia is characterized by an extremely hot and humid climate and hosts

the world largest rainforest, the Northeast is home to sharp climatic contrasts, ranging from

rainy areas along the coast to semiarid regions that are often affected by droughts. Both

regions are subject to extremely high temperatures and are susceptible to many tropical dis-

eases. This study develops amultidimensional Extreme Climate Vulnerability Index (ECVI) for

Brazilian Amazonia and the Northeast region based on the Alkire-Foster method. Vulnerability

is defined by three components, encompassing exposure (proxied by seven climate extreme

indicators), susceptibility (proxied by sociodemographic indicators), and adaptive capacity

(proxied by sanitation conditions, urbanization rate, and healthcare provision). In addition to the

estimated vulnerability levels and intensity, we break down the ECVI by indicators, dimensions,

and regions, in order to explore how the incidence levels of climate-sensitive infectious and par-

asitic diseases correlate with regional vulnerability. We use the Grade of Membership method

to reclassify themesoregions into homoclimatic zones based on extreme climatic events, so cli-

mate and population/health data can be analyzed at comparable resolutions. We find two

homoclimatic zones: Extreme Rain (ER) and Extreme Drought and High Temperature (ED-

HT). Vulnerability is higher in the ED-HT areas than in the ER. The contribution of each dimen-

sion to overall vulnerability levels varies by homoclimatic zone. In the ER zone, adaptive capac-

ity (39%) prevails as the main driver of vulnerability among the three dimensions, in contrast

with the approximately even dimensional contribution in the ED-HT.When we compare areas

by disease incidence levels, exposure emerges as themost influential dimension. Our results

suggest that climate can exacerbate existing infrastructure deficiencies and socioeconomic

conditions that are correlated with tropical disease incidence in impoverished areas.
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Introduction

Population vulnerability is a multidimensional concept that depends on the context in which

individuals are exposed to adverse conditions, such as climatic, environmental, sociodemo-

graphic, and health factors [1–3]. The severity of vulnerability experienced depends on the

interplay among extreme climatic events, sociodemographic susceptibility, and a society’s

adaptive capacity [2, 4]. In the short and medium run, population vulnerability can be miti-

gated by public policies, such as poverty alleviation, household infrastructure improvements,

and access to adequate healthcare services. On the other hand, climate exposure requires long-

term interventions that involve multiple strategies and different stakeholders [5–7]. Since cli-

mate does not respect political boundaries, any steps taken towards environment sustainability

require political agreements on a global scale, as well as some level of domestic economic sacri-

fice among select demographic and economic sectors [8, 9]. Because of the complex coordina-

tion required, structural changes in economic production and human occupation that reduce

climatic exposure are considered the most difficult targets on the vulnerability reduction

agenda [2, 4, 10].

Extreme weather events are the most common measurements of climate exposure and their

effects are diverse and usually more prominent in highly vulnerable families and societies [11,

12]. They can leave families permanently or temporarily without access to basic infrastructure

and, in some cases, can displace entire communities. The damages can even affect subsistence

activities, such as family farming and fishing, which reinforce the poverty trap. At the societal

level, extreme weather events can destroy public infrastructure and, ultimately, affect the econ-

omy [13, 14].

Extreme weather events can directly affect human health by causing death, physical injury,

illness, or mental health problems. For instance, in 2011 alone, the excessive rainfall and the

resulting landslides in Rio de Janeiro affected around 300.000 individuals and resulted in more

than 900 deaths [15]. However, the severity of the health impacts due to extreme climate events

depends on how well-equipped each society is in terms of infrastructure [16]. High-income

areas frequently impacted by extreme weather events, such as New Zealand and Japan (hurri-

canes and earthquakes) and the Netherlands (floods), have shown little loss of human life

when compared to hard-hit low and middle-income areas, such as Thailand and the Philip-

pines [17–19]. Even in developed countries, such as the United States, impoverished areas can

be severely affected by extreme weather events [20, 21].

Extreme climate events can also have direct health effects, such as physical injuries and

mental health impacts [22]. Several meteorological conditions including variations in tempera-

ture, relative humidity, wind speed, and air pressure can also cause health problems [22, 23].

Increasing average daily temperatures or changes in precipitation patterns or intensity can

affect pathogen and disease vector development. Sustained temperature increases can shorten

parasites’ life cycles, such as of plasmodium, while changes in precipitation volume can con-

tribute to disease vectors’ spread [16, 24, 25]. As shown by Lapouble et al. [26], flooding can

affect the movement of pathogens from environmental reservoirs to both surface and ground-

water, contaminating hydric systems. High temperatures and heavy rains contribute to an

increase in pathogens’ reproduction rates and survival, while long periods of drought favor

their accumulation through fecal deposition [16].

Climate interactions with ecosystems, water, and biodiversity, as well as changes in land

use, can lead to environmental degradation, affecting both food and water availability and

quality [27]. Water shortages can exacerbate the incidence of infectious diseases due to wors-

ened sanitary conditions and drinking water access. Empirical evidence has shown that long

periods of drought have increased the number of dengue cases due to inadequate water storage
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[1, 28]. There is also growing evidence concerning the health consequences of migration

induced by droughts, both in Brazil and elsewhere [29, 30]. Migrants from endemic areas may

carry communicable diseases as they move to new areas and could also be infected when mov-

ing to endemic areas, which could result in an upsurge in migration-induced morbidity and

mortality [29].

Recently, droughts, floods, cold snaps, and heat waves have been recorded in different Bra-

zilian regions, such as the drought that affected the South of Brazil in 2008 [13] and the water

crisis due to a precipitation deficit in São Paulo in 2014 and 2015 [31]. In particular, Amazonia

(AMZ) and the Northeast of Brazil (NEB), represented in the map in Fig 1, have experienced

the most intense and frequent extreme weather events in the country, encompassing both peri-

ods of torrential rainfall and severe droughts [13, 32–35]. These extreme events are often

responsible for endemic diseases, intensifying the vulnerability of local populations [2, 4]. In

addition, these regions possess the highest climate-sensitive infectious disease rates in the

country [36].

The Brazilian AMZ is characterized by a hot and humid climate. However, as the climate

conditions are modulated by ocean-atmosphere mechanisms, the region experiences total

rainfall above or below climatological averages that causes extremely humid or dry days [37,

Fig 1. Spatial distribution of homoclimatic zones across the mesoregions in the Brazilian Amazon and in the Northeast.

https://doi.org/10.1371/journal.pone.0259780.g001

PLOS ONE Health-related vulnerability to climate extremes in homoclimatic zones

PLOSONE | https://doi.org/10.1371/journal.pone.0259780 November 11, 2021 3 / 24

https://doi.org/10.1371/journal.pone.0259780.g001
https://doi.org/10.1371/journal.pone.0259780


38]. In recent years, the region has experienced alternating periods of heavy rainfall (2009,

2011, 2012, and 2014) and severe droughts (2005 and 2010) that affected the living conditions

of thousands of families and increased the incidence of climate-sensitive diseases [39–43].

In turn, the NEB possesses the lowest water availability among the Brazilian regions, partic-

ularly in semiarid areas [44]. It experiences noticeable interannual precipitation variations,

alternating between extremely dry and extremely rainy years [45]. Droughts form a part of the

region’s natural climatic variability and recurrently affect the population, especially the most

vulnerable inhabitants living in semiarid areas. Constant water shortages affect the agricultural

sector, increasing food insecurity risks and worsening socioeconomic conditions, as the region

is highly dependent on family farming [44]. Between 2012 and 2016, the NEB experienced its

worst drought in the last 50 years, which affected 83% of the cities [46, 47]. Important eco-

nomic sectors, such as agriculture and livestock, have also suffered significant losses [46]. The

depletion of important water sources has triggered a number of hazardous conditions, includ-

ing water pollution, which has contributed to the increased incidence of infectious and para-

sitic diseases [48]. On the other hand, many major Northeastern cities, especially those located

in coastal areas, have suffered from heavy rainfall episodes. These events, in conjunction with

poor infrastructure and unplanned urbanization, have resulted in severe flooding and adverse

health consequences for the general population [49].

The aim of this paper is twofold. First, we define homoclimatic areas that address the long-

standing difficulty in the population-climate literature of adequately matching climate data

resolution with the administrative-political boundaries used in population data. Second, we

provide Alkire-Foster-based [50] estimates of health vulnerabilities to climate extremes on a

microregion level for the homoclimatic zones in the Brazilian AMZ and the NEB. These are

the two most climate-sensitive regions and are home to the poorest populations in the country.

Our Extreme Climate Vulnerability Index (ECVI) encompasses the three most commonly

acknowledged dimensions in climate vulnerability literature–exposure, susceptibility, and

adaptive capacity [4]. In order to understand how climate vulnerability relates to population

health, we estimated the ECVI for different infectious disease incidence levels and broke down

the index by the contribution of each of its three dimensions.

Earlier research has already estimated multidimensional indices of health vulnerability to

climatic conditions in Brazil at both the national [1] and local levels, encompassing studies

focused on the Northeast [51], semiarid areas [30], and specific Brazilian states, including

Minas Gerais [10], Amazonas [2], and Rio de Janeiro [52]. The proposed ECVI builds upon

these prior efforts in multiple ways. To the best of our knowledge, this is the first study to esti-

mate a vulnerability index for the two most important Brazilian regions in terms of climatic

regulation and ecosystem diversity. It is also the first study to explicitly incorporate vulnerabil-

ity levels and intensity using the type of climatic data that most adequately captures climate-

related health vulnerabilities. Furthermore, our analysis is based upon climate data that uses

the homogenous climate zones proposed by Oliveira et al [45], Silveira Marinho et al [53], and

Santos et al [37, 38]. In addition, instead of considering classical geographic classifications, we

used the GoMmethod to reclassify Brazilian mesoregions into homoclimatic zones based on

extreme climatic events. This reclassification is important as climate does not adhere to politi-

cal-administrative boundaries. Several studies have previously attempted to define homoge-

neous climate regions based on different indicators and multivariate techniques [53]. For

Brazil, some studies have proposed homoclimatic regions for the Northeast [45, 54, 55], for the

South and the Southeast [56], and for the Amazon [37]. Silveira Marinho et al [53] is the sole

study to estimate homogeneous regions for the entire country. However, their homogeneous

subregions are based on meteorological variables, which are not the most suitable type of data

to analyze climate-related health vulnerabilities.
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Materials andmethods

Data

In this study we examine two particular Brazilian regions–the NEB and AMZ, combining epi-

demiological, demographic, socioeconomic, and climate data. Meteorological data are part of

a joint project between the University of Texas (USA) and the Universidade Federal do Espı́-

rito Santo (Brazil) and are available at https://utexas.box.com/Xavier-etal-IJOC-DATA. The

database contains a rich set of meteorological variables, such as precipitation, wind, minimum

and maximum temperatures, relative humidity, and evapotranspiration. These variables are

organized in a regular 0.25˚ x 0.25˚ grid and cover the entirety of Brazil. Detailed procedures

concerning meteorological data extraction and manipulation are described in Xavier et al.

[57].

We selected one grid point for the precipitation and temperature variables from each

homogeneous precipitation region for all 62 mesoregions (20 in AMZ and 42 in the NEB), as

defined by the political-administrative divisions established by the Brazilian Institute of Geog-

raphy and Statistics (IBGE) [58, 59].

Population health conditions were proxied using climate-sensitive infectious and parasitic

disease rates (Chapter 1 of the International Classification of Diseases, 10th edition), including

diseases that bear direct and indirect relation with climate conditions [60]. This health proxy is

derived from the administrative health records provided by the Brazilian Hospital Information

System (SIH in Portuguese), which includes all inpatient care supplied by the Brazilian Public

Health Care System (SUS in Portuguese). SUS hospitalizations represent 66% of all tertiary

care in the country, and the data is publicly available, which makes it the most used informa-

tion source for conducting health-related analyses [61, 62]. Health data were recorded at the

mesoregion level according to patients’ places of residence, rather than the location of inpa-

tient admission.

We measured disease counts as a 5-year average (2008–2012) based upon the 2010 popula-

tion because the probability of these events’ occurrence is relatively low, even at the mesore-

gion level. This strategy contributes to alleviating the distortions usually present when rates are

calculated for small areas or when there are seasonal health variations. Mesoregions were then

classified into quintiles based on the 2010-centered hospitalization rates. The first quintile

defines low incidence areas, whereas the fourth and fifth quintiles represent areas with high

levels of disease incidence. We used population size from the 2010 IBGE Demographic Census

to calculate climate-sensitive disease rates and the proxies for demographic, socioeconomic,

and infrastructure conditions.

All population data, including administrative health records and Census data, are publicly

available and none of them contains information which allows identification of respondents or

patients.

Definition of homoclimatic zones

The use of mesoregions as a unit of analysis can generate a loss of climatic spatial variability,

especially in the very large and diverse Amazonian region. However, previous studies have

shown consistently homogeneous levels of annual rainfall distribution throughout the Brazil-

ian AMZ [37] and the NEB [45]. Although the number of mesoregions is relatively higher than

the climatic variability in both areas, homogeneous rainfall regions and mesoregions do not

necessarily spatially coincide. Furthermore, climate regimes are not factored into the organiza-

tional logic of socioeconomic, demographic and health data, which respect traditional political

and administrative boundaries.
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To correct the political/climatic boundary mismatch and refine our climate/social spatial

resolution we use the Grade of Membership (GoM) method. GoM is a fuzzy cluster method

that allows observations in a multidimensional dataset to have multiple memberships, thus

modeling the degree of unobserved heterogeneity at the mesoregion level [63]. There are two

parameters to be estimated. The first parameter, λkjl, is the probability that a mesoregion

belonging to extreme profile ‘k’ will have a particular response in the ‘l’-th category of a ‘j-th

indicator, given the known score gik. For instance, if λ121 = 0.52, then a mesoregion that

completely belongs to k = 1 has a probability of 0.52 to have a particular response in l = 1 of

variable j = 2. The gik score is the part of the classification technique that defines it as a fuzzy

method as it estimates ‘k’ degrees of pertinence profiles (cluster) for each mesoregion. If g10,1 =

0.8, for example, then the mesoregion i = 10 possess an 80% membership (proximity) to k = 1.

Model identification is subject to two restrictions:

gik � 0 for each i ð1:1Þ

P

kjigik ¼ 1 ð1:2Þ

For the same profile, k, and the same variable, j, the parameter λkjl is normalized such that

∑l|jkλkjl = 1. The likelihood structure is based on the mesoregion-level conditional probability

for a particular response of the ‘i’-th mesoregion to the ‘l’-th category of the ‘j’-the variable,

represented by P(Yijl = 1) = ∑kgikλkjl. The probability model, based on a random sample, corre-

sponds to E(Yijl), with gik a strictly positive known parameter, by assumption. This probabilis-

tic structure on a random sample results in a likelihood function with the following

multinomial form [64]:

LðYijlÞ ¼
R
QI

i¼1

QJ

j¼1

QL

l¼1
ð
PK

k¼1
giklkjlÞ

yijl f ðgi1; . . . ; giKjαÞdgi1 . . . dgiK ð2Þ

This structure maximizes the likelihood in λkjl and α. This formulation assumes that gik are

random variables, i.i.d. with a joint density function f(gi1,. . .,giK|α). So, different fromManton

et al. [63], we do not estimate gik directly from the data, but indirectly by integrating out f(.|α)
to get the unconditional likelihood. Since 0�giK�1 and given restriction 1.2 above, a natural

choice for f(.|α) is the Dirichlet distribution. The α vector is a set of parameters governing the

Dirichlet distribution. In our formulation, we consider a reparameterization of α = (α1,. . .,αK)
with a

0
¼

PK

k¼1
ak and ξ = (ξ1,. . .,ξK), where ξk = αk/α0, as described in Erosheva et al. [65]. In

this parametrization strategy the components of vector ξ can be interpreted directly consider-

ing the proportion of item responses that belong to each extreme profile, while α0 represents

the spread of the membership distribution giK. As a result, a lower α0 indicates a better estimate

of extreme profiles.

To avoid the integration in Eq (2), we use the Bayesian procedure of Markov Chain Monte

Carlo (MCMC) proposed in Erosheva et al. [65]. The posterior distributions of model parame-

ters were obtained via the Gibbs sampler based on 5,000 iterations after a 2,500 burn-in period.

The Bayesian formulation of GoMmodel used in this study was performed using Stata 14.0

based on the ugom command [66].

In our GoMmodel we use five extreme temperature indices and two extreme precipitation

indices produced by the Climdex Project [59, 57]. All indicators, which correspond to J vari-

ables from our GoM equations, are defined using the data that cover the period from 1980 to

2013. The extreme temperature indices include TXx (monthly maximum value of daily maxi-

mum temperature–Co), TNx (monthly maximum value of daily minimum temperature–Co),

TX90p (percentage of days when TX> 90th percentile–warm days), TN90p (percentage of

days when TN> 90th percentile–warm nights), and DTR (daily temperature range equivalent
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to the monthly mean difference between TX and TN–Co). Extreme precipitation indices

include CDD (maximum number of consecutive days when rainfall<1 mm–dry spells) and

R99p (annual total daily precipitation that exceeded the 99th percentile–extremely wet days in

mm). All extreme climate indexes were treated as quintiles. Each quartile corresponds to the l-

th category of the j-th index from our GoM equations.

Extreme climate vulnerability index (ECVI)

We applied the Alkire-Foster (AF) method [50] to select mesoregion indicators, in order to

create a multidimensional index of vulnerability to climate extremes, named the Extreme Cli-

mate Vulnerability Index (ECVI). This index was estimated for the overall study area and for

the homoclimatic zones defined by GoM, weighted by their respective population sizes. We

further decomposed the ECVI by different levels of infectious disease incidence, in order to

understand how health correlates with climatic and socioeconomic indicators in our study

areas.

Formally, the ECVI is defined by the interaction between the censored (multidimensional)

deprivation headcount (CH) and the censored deprivation intensity (DI). The CH represents

the proportion of mesoregions that are simultaneously deprived of at least k among a total of I

indicators. In turn, the DI corresponds to the average proportion of indicators that mesore-

gions are deprived of among mesoregions deprived of at least k indicators.

Indicators can be used directly or grouped by dimension. In this study we used exposure,

susceptibility, and adaptive capacity as the three dimensions that define the ECVI. The indica-

tors that comprise each dimension are shown in Table 1. Exposure is proxied by the five

extreme temperature indices and two extreme precipitation indices used in the GoMmethod,

with a mesoregion classified as deprived if each of its indicators has a value higher than the

lower bound of its fourth quartile. The susceptibility dimension is measured by five indicators,

which encompass mesoregions where the elderly proportion of the population surpasses the

lower bound of the fourth quartile, mesoregions where children comprise a proportion of the

population above the lower bound of the fourth quartile, mesoregions with an average

monthly per capita income below R$255.00 (½ of the 2010 minimum wage), mesoregions

where the proportion of poor individuals is above the lower bound of the fourth quartile, and

mesoregions where the population proportion of literate adults is below the first quartile. The

adaptive capacity dimension was proxied by six indicators, with a mesoregion being consid-

ered deprived if its values for each of the indicators are lower than its first quartile. The six

indicators used are the proportion of households with adequate sewage (either sanitary sewer

or septic tank), the proportion of households with an adequate water supply, the proportion of

households with garbage collection, urbanization rate, the proportion of individuals covered

by the Family Health Strategy (primary care coverage), and the rate of hospitalization beds per

100,000 inhabitants. All individual indicator cutoffs are described in S1 Fig and S1 Table.

One of the most appealing features of the AF methodology is its ability to incorporate

weights to dimensions/indicators that are meaningful to the theory or to public policy inter-

ventions and monitoring. In this study we assigned equal weights to the dimensions (1/3

each), but, since the dimensions have different numbers of indicators, we allowed weights to

vary by indicator within each dimension without altering the overall dimensional weights. The

choice to assign equal weights to the dimensions was taken to capture the sole impact of com-

positional differences across mesoregions. Furthermore, other studies using different method-

ologies assign equal weights to dimensions to avoid entangling the varying theoretical

dimensional importance with units’ empirical compositional heterogeneity [53]. Thus, the dif-

ference among final indicator weights is a pure reflection of data availability for how we
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measured the dimensions, rather than how we proxied their relevance [10, 50]. This weighting

structure is shown in Table 1.

In accordance with Alkire and Foster [50], we established different indicator proportions

(kp = k/I) to classify mesoregions as deprived or not. A key decision to make when estimating

AF-based indices is the choice of the ideal value for kp, as it directly affects the level and inten-

sity of the multidimensional index, as well as the contribution of each dimension/indicator. In

this study we use two criteria, encompassing an examination of the regions of the ECVI, CH,

and DI curves that are relatively flat and whether the ECVI curve for a particular homoclimatic

zone sits above the other overall feasible values of kp. While the first criterion is a type of sensi-

tivity analysis, the second is better known as dominance analysis. Using the first criterion, we

define kp = 25% as the vulnerability cutoff, since it represents the point at which the distur-

bance in vulnerability trends is locally minimized. The second criterion allows us to show that

the level of vulnerability for one homoclimatic region is always higher than for the other,

regardless of the choice of kp. We developed an automated local optimization criterion that

permits us to choose the minimum variance of the selected index (ECVI, CH, or DI) calculated

on the t forward points from t = p. When more than one group is compared (as in the

Table 1. Cut-offs and weights attributed to each indicator of ECVI.

Dimension/Indicator Deprivation cut-off Weight

Exposure

Monthly maximum value of daily maximum temperature (˚C) 4th quartile 0.0476

Monthly maximum value of daily minimum temperature (˚C) 4th quartile 0.0476

Percentage of warm days 4th quartile 0.0476

Percentage of warm nights 4th quartile 0.0476

Daily temperature range 4th quartile 0.0476

Dry spell 4th quartile 0.0476

Extremely wet days 4th quartile 0.0476

Total exposure dimensional weight 0.3333

Susceptibility

Higher proportion of elderly (over 60 years old) 4th quartile 0.0667

Higher proportion of children (less than 5 years old) 4th quartile 0.0667

Proportion of households with low income Average per capita income< R$296.8
(US$ 214.1 (1))

0.0667

Higher proportion of Poor individuals (household income per
capita< ½minimum wage)

4th quartile 0.0667

Lower proportion of literate adults 1st quartile 0.0667

Total susceptibility dimensional weight 0.3333

Adaptive Capacity

Lower proportion of households with adequate sewage 1st quartile 0.0556

Lower proportion of households with adequate water supply 1st quartile 0.0556

Lower proportion of households with garbage collection 1st quartile 0.0556

Lower levels of urbanization 1st quartile 0.0556

Lower primary care coverage (%) (number of individuals
registered by the Family Health Strategy)

1st quartile 0.0556

Lower proportion of hospital beds per 100,000 inhabitants 1st quartile 0.0556

Total adaptive capacity dimensional weight 0.3333

ECVI: Extreme Climate Vulnerability Index.

(1) Brazilian Currency was converted to the 2010 US dollars exchange rate using the CCEMG—EPPI-Center Cost

Converter website (<http://eppi.ioe.ac.uk/costconversion/default.aspx>).

https://doi.org/10.1371/journal.pone.0259780.t001
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dominance analysis), we also included an optimization criterion for the kp selection; however,

instead of looking at the optimal kp for each curve, we minimize the average forward local vari-

ance across groups. The optimization procedures described must be used as an additional tool

and not as the sole criterion, since they depend on the number of cuts in the kp domain, the

number of groups to be compared, and the final vulnerability level to be addressed. The kp =

45% suggested by the optimization criterion in this particular application would lead to an

excessively small number of mesoregions. The kp = 25% chosen seems more adequate as it rep-

resents the point where the CH and the DI intersects, while still allowing for a reasonable num-

ber of regions to be analyzed in the pool of vulnerable regions. The sensitivity and dominance

analyses are available in the S2 Fig and S2.1-S2.3 Tables in S2 Table.

As a subsequent step of our sensitivity analysis, we estimated the ECVI and its indicators, in

addition to its dimensional and regional decomposition, for a 30% cutoff; however, the results

are quite similar to kp = 25% (S3.1-S3.2 Tables in S3 Table). Although a 35% to 45% kp interval

looks reasonably flat, such high cutoffs would produce a very small number of multidimen-

sionally deprived mesoregions (S2 Fig and S2.1-S2.3 Tables in S2 Table). For instance, using kp
= 45% would result in less than 3% of Extreme Rain (ER) homogenous climatic mesoregions

being classified as vulnerable.

After estimating the ECVI, we decomposed it by the homoclimatic zones to understand

how much of the overall vulnerability is due to each study area. If the entire study area y (of

size n) is divided into two subgroups, y1 (of size n1) and y2 (of size n2), then the ECVI can be

expressed as a weighted function of each subgroup as follows:

ECVI yð Þ ¼
n
1

n
� ECVI y

1
ð Þ þ

n
2

n
� ECVI y

2
ð Þ ð3Þ

The contribution of subgroup i to the overall adjusted ECVI is then:

ni
n
�
ECVIðyiÞ

ECVIðyÞ
; for i ¼ 1; 2 ð4Þ

Decomposing the ECVI by indicators requires writing it as a function of the relative weight

attributed to each indicator and the indicator-specific censored headcount (CHi). If the cen-

sored headcount of the i-th indicator is denoted by CHi, then the adjusted ECVI can be

expressed as:

ECVI yð Þ ¼
P

i

wi
I
� CHi ð5Þ

where wi is the weight attached to the i-th indicator. Eq (5) can be easily written to express

decomposition by dimension. In this case, a second summation needs to be added, along with

the relative weight assigned to each dimension. The contribution of the i-th indicator to the

overall ECVI is

wi
I

� �

�
CHi

ECVI

� �

for all i ¼ 1; . . . ; I ð6Þ

We used the software R, version 4.0.3, for data manipulation (based on the “tidyverse”

suite) and to estimate the ECVI (based on the “survey” and “convey” libraries). Maps were cre-

ated with the QGIS software, version 3.14. All scripts and data used in this study are available

at<https://github.com/epopea/ecvi.git>.
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Results

Homoclimatic regions

Based on the GoMmodel, we found two extreme climate profiles (k = 2). The Boxplots (S3

Fig) characterizes the extreme profiles regarding their climatic features by means of the poste-

rior distributions of λkjl (where j = 1,2,. . .,7 and l = 1,2,3,4,5). For most indicators, the boxplots

are symmetrical across profiles, suggesting an efficient solution for the number of reference

groups. The horizontal line represents a threshold for a characteristic at least 20% higher than

in the overall study region. Mesoregions belonging to the first extreme profile are character-

ized predominantly by extremely wet days (4th and 5th quantiles), low levels (1st quantile) of

the monthly maximum value of daily maximum temperature, and either low (1st quantile) or

high (5th quantile) percentage of warm days and nights. The second extreme profile, in con-

trast, comprises mesoregions predominantly characterized by long dry spells (3rd, 4th and 5th

quantiles), high levels (4th and 5th quantile) of monthly maximum value of daily maximum

temperature and of daily temperature range, and median levels (3rd quantile) of monthly maxi-

mum value of daily minimum temperature, and percentage of warm days and warm nights.

Based on their characteristics, the first and the second extreme profiles were named

Extreme Rain (ER) and Extreme Drought and High Temperature (ED-HT), respectively.

Mesoregions were classified into the k-th extreme profile if their degree of membership (gik)

were equal or higher than 0.90. This criterion identified 50% of the mesoregions. The remain-

ing 50% partially belonging to more than one extreme profile were classified as mixed profiles

based on two additional gik cut-off points: 0.75�gik<0.90 and 0.50�gik<0.75, higher and

median predominance of the k-th extreme profile characteristics, respectively.

The classification of mesoregions into each extreme zone (ER and ED-HT) is consistent

with previous empirical studies on rainfall in the tropical region of South America, which

include the Brazilian AMZ and NEB, even using different climatological data [67, 68]. All 18

mesoregions of the extreme ED-HT profile (gik� 90%) are located in the semiarid zone of

NEB or in the transition areas between AMZ and NEB. The climatic indexes in the semiarid

zone are associated with extremes temperatures (TXx) and precipitation deficit (CDD), despite

historical registers of sporadic intense rain [45] (Fig 1). The zone also exhibits high DTR due

to the low levels of air humidity, a measure of water vapor in the atmosphere, which results in

low absorption of longwave radiation emitted by the earth’s surface.

The twelve mesoregions with high predominance of the ED-HT extreme profile are located

both in the NEB (7) and in the AMZ (5). Although the mesoregions of the Southwest of AMZ

(North Amazonense, Southwest Amazonense and Vale do Acre) have the highest accumulation

of annual precipitation (averaging over 3,000 mm), its distribution is uniform throughout the

year, with few outliers [38]. The East Rondoniense andWestern Tocantins mesoregions, in turn,

are part of the border between the Amazon biome and the Brazilian Cerrado, an area known as

the Arc of Deforestation. These areas have been severely impacted by non-sustainable land use

systems [69, 70], with serious hydroclimatic consequences [71]. The four remaining mesoregions

with median predominance of the ED-HT extreme profile are all located in the NEB.

The extreme profile ER (gik� 90%) comprises 13 mesoregions from which seven are

located in the Brazilian AMZ, mainly in the north, and six are part of the coast from the NEB.

In the north of Brazilian AMZ, extreme precipitation events are associated with the occurrence

of Mesoscale Convective Systems which have a Squall Line configuration [72]. The six NEB

mesoregions from the coast area are located further east of the region, between Mata Paraibana

and Agreste Pernambucano. They are impacted by extreme precipitation events that stem

from east wave disturbances and the interaction between the runoff and the topography in the

Borborema Plateau [45, 73].
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Among the mesoregions with high predominance of the extreme ER profile characteristics,

three are located in the central region of the AMZ (Centro Amazonense, Sul Amazonense and

Sudeste Paraense) and four are in the NEB, of which three are coastal areas (Norte Maran-

hense, Metropolitana de Fortaleza and Leste Potiguar) and one is located in the central region

of Bahia (Centro-Norte Baiano). Mesoregions with medium predominance of the extreme ER

profile features are equally distributed between NEB and the Amazon, four in each of them.

The majority of the NEB mesoregions classified into the high and medium mixed ER profiles

are located on the coast. Mesoregions located in the North of the NEB are affected by the

meridional migration from the Intertropical Convergence Zone [74]. The Southern Bahia

mesoregion, in turn, is influenced by the frontal systems from mid-latitudes or events in the

South Atlantic Convergence Zone that operate in the region during the summer [75, 76].

For the AF index decomposition purposes, we reclassified the mixed (high and medium)

profiles into their respective extreme profiles (ER and ED-HT). Neither the ED-HT nor ER

zones are more clearly affected by exposure to adverse climatic conditions. For example,

among the ED-HT mesoregions precipitation levels are significantly lower than in their ER

counterparts. Consequently, the ED-HT mesoregions experience an additional 39.5 consecu-

tive days with less than 1 mm of rainfall. Conversely, ER areas has 93.9 more extremely wet

days than the ED-HT zone, on average (S1 Fig and S1 Table).

On average, ER and ED-HT regions share similar sociodemographic characteristics (S1 Fig

and S1 Table). Based on the selected indicators from S1 Table, it is not possible to clearly iden-

tify the most vulnerable homogeneous climatic zone. Statistically significant differences are

only observed for the proportion of elderly, the proportion of households with garbage collec-

tion, urbanization rate, and primary health coverage. The ED-HT mesoregions are more vul-

nerable with regards to garbage collection coverage and urbanization rate. In contrast,

primary health coverage is lower among the ER mesoregions (S1 Fig and S1 Table).

The ED-HT mesoregions present a slighter older population, which reflects the composi-

tion of this homogeneous climatic area that comprises the majority of Northeast mesoregions.

Even though older populations are associated with higher levels of socioeconomic develop-

ment, elderly individuals tend to be more vulnerable to climate-sensitive diseases [77]. In addi-

tion, the aging population process experienced by the Brazilian Northeast has more to do with

the age selectivity of out and return migration, rather than with improvements in local socio-

economic conditions [78].

Hospitalization rates due to infectious and parasitic diseases are approximately 815 and 708

per 100,000 inhabitants for the ED-HT and ER homogeneous climatic regions, respectively,

although this difference is not statistically significant (S1 Fig and S1 Table). Infectious and par-

asitic disease incidence rates vary from 1,705 per 100,000 inhabitants in the Southeast

Piauiense mesoregion, in sharp contrast with a rate of 199 per 100,000 inhabitants in the

Sertão Sergipano mesoregion, both classified in the ED-HT group.

Extreme climate vulnerability index (ECVI)

Average regional differences sometimes overestimate vulnerability when dimensions are not

simultaneously considered. This can occur if a region is considered deprived for one or two

indicators, but does not show enough simultaneous deprivation to reach multidimensional

vulnerability. Table 2 shows our ECVI, censored deprivation headcount (CD), and deprivation

intensity (DI) estimates for the overall study area and for each region. According to our results,

11% of all 62 mesoregions are classified as deprived for at least 25% of the indicators weighted

by their intensity. Among the mesoregions classified as ED-HT, the ECVI is 12%, a figure 31%

higher than the estimated multidimensional vulnerability for the ER homoclimatic zone. In
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addition, the contribution of the ED-HT area to the overall ECVI is about 53% (Table 2). The

ED-HT climatic zone comprises almost 55% of the mesoregions, but accounts for only 46% of

the population in the overall study area. If the population of the ED-HT zone were larger, its

contribution would easily be even higher.

According to the CD, 34% of the ED-HT mesoregions are considered deprived for at least

25% of indicators, while, in the ER areas, this value is 28%. Besides its relatively more deprived

mesoregions, DI is also higher in the ED-HT zone, with an average of 38% of indicators indi-

cating deprivation intensity, compared with 34% in the ER zone (Table 2).

The ECVI’s dimensional decomposition shows that adaptive capacity (35%) and exposure

(35%) are the two most important contributors to the vulnerability level in the combined

regions (Fig 2). Together, access to garbage collection, adequate sewage and adequate water

supply explain 20% of the ECVI. Accordingly, public policies that scale up access to these ser-

vices to 100% of households would reduce multidimensional vulnerability by 20%, from 11%

to 9%.

Regional decomposition reveals interesting patterns (Fig 2). While, in the ED-HT areas, the

three dimensions more or less equally contribute to explaining vulnerability, in the ER zone,

the contribution of adaptive capacity proves to be the most prominent (39%). Among the

ED-HT mesoregions, 36% of vulnerability is explained by exposure to adverse climatic condi-

tions. Low precipitation levels (dry spells), high temperatures, and high daily temperature

range stand out as the main indicators explaining vulnerability in the ED-HT relatively to the

ER zone. Susceptibility explains a slightly higher share of the ED-HT’s ECVI (32%), with the

low proportion of illiterate individuals alone explaining 10%. Even though the proportion of

elderly individuals explains very little the multidimensional vulnerability, its contribution for

the ED-HT’s ECVI (3%) is higher than among the ER mesoregions (2%). The regional contri-

bution of adaptive capacity to the ED-HT’s ECVI is around 32%, particularly due to low gar-

bage collection coverage and barriers to adequate sewage access. Each of these indicators

explains alone around 8% of multidimensional vulnerability. The rate of hospitalization beds

plays an important role to the ED-HT multidimensional vulnerability, explaining 5% against

3% among the ER mesoregions.

The large contribution of adaptive capacity (39%) to the ECVI in the ER homoclimatic

zone reflects precarious access to adequate water and the low proportion of primary care cov-

erage. If access to both services increased to 100% of the households the ECVI would decrease

18%, from 10% to 8%. Exposure to adverse extreme climatic events is the second most impor-

tant component (33%). Among the exposure indicators, relatively high proportion of

extremely wet day (7%) and high percentage of warm days (8%) are the most important indica-

tors explaining vulnerability in the region.

Table 3 shows multidimensional estimates according to the incidence of climate-sensitive

infectious and parasitic diseases. Vulnerability is greater in mesoregions with high disease

Table 2. ECVI, Censored Headcount and Vulnerability Intensity for the overall and each homoclimatic region (k = 0.25).

Indicator Overall ER ED-HT

Index SE Index SE Index SE

ECVI 0.111 0.024 0.097 0.033 0.127 0.036

Censored Headcount 0.309 0.070 0.284 0.106 0.337 0.093

Vulnerability Intensity 0.359 0.022 0.342 0.033 0.376 0.023

Contribution of each region to the Overall ECVI (%) 46.9 0.118 53.1 0.118

ER: Extreme rain zones in the Brazilian Amazon and Northeast region; ED-HT: Extreme drought and high temperature in the Brazilian Amazon and Northeast region;

ECVI: Extreme Climate Vulnerability Index; SE: Standard Error.

https://doi.org/10.1371/journal.pone.0259780.t002
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Fig 2. Percent contribution of each indicator to the ECVI by dimension and homoclimatic region (k = 0.25). TXx: Monthly
maximum value of daily maximum temperature (oC), TNx: Monthly maximum value of daily minimum temperature (oC); TX90p:
Percentage of warm days; TN90p: Percentage of warm nights; DTR: Daily temperature range; Cdd: Dry spell; R99p: Extremely wet
days; ER: Extreme rain zones in the Brazilian Amazon and Northeast region; ED-HT: Extreme drought and high temperature in the
Brazilian Amazon and Northeast region; ECVI: Extreme Climate Vulnerability Index.

https://doi.org/10.1371/journal.pone.0259780.g002
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incidence (14%), compared with those displaying low disease incidence (4%). Regional dispar-

ities in multidimensional vulnerability disappear when the analysis is broken down by level of

disease incidence. Among areas of high disease incidence, the ECVI is as large as 14% and 13%

in the ED-HT and ER homoclimatic zones, respectively. For low disease incidence, the ECVI

is around 4% in both zones.

The ECVI decomposition shows that adaptive capacity and susceptibility are the two most

important dimensions, regardless of disease incidence levels (Fig 3). In areas of low disease

incidence, adaptive capacity explains 46% of the ECVI, followed by susceptibility (32%). In

these areas, the exposure dimension is less important, representing a 22% contribution, com-

pared with a 27% contribution in high disease incidence areas (Fig 3). The relative importance

of the exposure dimension in high disease incidence areas is observed among the ED-HT

mesoregions (34%), mainly explained by high daily temperature range, extreme wet days, and

dry spells. Among the ER mesoregions, adaptive capacity (49%) remains as the main compo-

nent especially due to the contribution of basic sanitation conditions. These results reflect the

nature of infectious and parasitic diseases, which are sensitive to climatic and local sanitary

conditions.

Discussion

Inspired by Alkire and Foster [50], this study proposes a multidimensional index to evaluate

health vulnerability to climate extremes (the ECVI) in the Amazonian and Northeastern Bra-

zilian mesoregions. The index includes the three major vulnerability dimensions (exposure,

susceptibility, and adaptive capacity), is highly flexible in terms of decomposition and aggrega-

tion, and allows for a clear-cut interpretation suitable for policy intervention and surveillance

uses. In contrast with previous efforts to measure climate vulnerability, which have used mete-

orological trends or future climate scenarios [10], our approach utilized extreme climate mea-

sures. These are the most appropriate climatic indicators for a vulnerability analysis because

climate interacts with health and socioeconomic conditions when extreme events affect the

population exposed to these events [2, 59].

Table 3. ECVI, Censored Headcount and Vulnerability Intensity for the overall and homoclimatic regions by
level of climate-sensitive diseases (k = 0.25).

Indicator Low incidence High incidence

Index SE Index SE

Overall

ECVI 0.044 0.026 0.136 0.043

Censored Headcount 0.115 0.070 0.348 0.106

Vulnerability Intensity 0.378 0.040 0.392 0.024

ER

ECVI 0.045 0.039 0.132 0.065

Censored Headcount 0.134 0.116 0.335 0.163

Vulnerability Intensity 0.336 0.005 0.395 0.031

ED-HT

ECVI 0.042 0.039 0.140 0.058

Censored Headcount 0.094 0.085 0.361 0.142

Vulnerability Intensity 0.444 0.076 0.389 0.037

ER: Extreme rain zones in the Brazilian Amazon and Northeast region; ED-HT: Extreme drought and high

temperature in the Brazilian Amazon and Northeast region; ECVI: Extreme Climate Vulnerability Index; SE:

Standard Error.

https://doi.org/10.1371/journal.pone.0259780.t003
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To the best of our knowledge, there are only a few studies that have evaluated climatic,

demographic, and health conditions for Brazilian regions [2, 51, 59, 79]. Our index differs

from previous studies in four main aspects. First, it permits the exact decomposition and dis-

aggregation by dimension and spatial unit, while still providing a simple and direct interpreta-

tion. Second, it accounts for the intensity of climatic vulnerability, explicitly estimating

separate intensity and prevalence components. Third, it measures uncertainty by including the

standard errors for each component. Finally, it incorporates a new classification of regions

into homoclimatic zones based on the fuzzy set theory. Our classification uses extreme climate

indices for temperature and precipitation, that more appropriately pairs climate with popula-

tion data.

Measuring the relative importance of climatic variables is particularly important from a pol-

icy perspective, as climate extremes have adverse effects on population health and can be

Fig 3. Decomposition analysis of the ECVI for the overall and homoclimatic regions according to the level of climate-sensitive
diseases (k = 0.25). ER: Extreme rain zones in the Brazilian Amazon and Northeast region; ED-HT: Extreme drought and high
temperature in the Brazilian Amazon and Northeast region; ECVI: Extreme Climate Vulnerability Index.

https://doi.org/10.1371/journal.pone.0259780.g003
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mitigated by public policy interventions [2, 59]. The identification of climate vulnerable areas

may help improve mitigating actions, such as subsidized credit for areas dependent on non-

irrigated agriculture and larger transfers to municipalities in areas lacking climate-robust

infrastructure. Furthermore, areas that are close to the vulnerability threshold in our estimates

should interpret these findings as a call for preventive action [2]. From the standpoint of the

Brazilian Unified Health system, the implementation and expansion of the Family Health

Strategy (ESF) has played an essential role in combating diseases typical of tropical climates by

monitoring households and providing information to families. Household visits by commu-

nity health workers are key to detecting possible disease outbreaks and allow for the early iden-

tification of infected individuals and for the prompt referral promptly to appropriate health

care services [80].

Climatic conditions alone do not explain many disease outbreaks, such as the recent Zika

epidemic [81, 82] and the long-established malaria and dengue endemics [83]. Vulnerability to

these types of diseases is determined by the interplay between climatic events and structural

dimensions, such as existing infrastructure and adequate educational levels [84]. This interac-

tion is particularly relevant in places like Brazil that still suffer from lower levels of overall sani-

tation coverage and poor socioeconomic conditions, especially in AMZ and the NEB [85].

The use of measurements that map the complex facets of vulnerability in a synthetic index

is an appropriate and appealing instrumental choice. Axiomatic multidimensional indices,

such as the AF-based ECVI, have additional advantageous features, such as their ease of inter-

pretation and the possibility to make direct comparisons across places and time, as they pos-

sess both scale and replication invariance, decomposability, monotonicity, symmetry,

normalization, a poverty/deprivation focus, and a weak rearrangement [50]. These axiomatic

properties are particularly important to overcome identification issues in multidimensional

settings [50, 86]. They are also useful in identifying at-risk areas that should be prioritized by

policymakers [87], when explicitly calculating the amount of vulnerability that could be

reduced by eliminating one deprivation dimension and in incorporating the degree of vulnera-

bility experienced by those identified as multidimensionally deprived by the dual cutoffs [50].

Although not an exclusive attribute of the ECVI, the underlying methodology supporting

our vulnerability measurement allows for the explicit inclusion of two weighting schemes

(population size and indicator/dimension weights) and, most importantly, a dual cut-off (one-

dimensional and multidimensional). While the one-dimensional cutoff relaxes the nature of

the indicators used (qualitative or quantitative), the multidimensional deprivation cutoff cor-

rectly imposes simultaneous vulnerability as a multidimensionality and depth criterion for vul-

nerability experiences. The ECVI weights are exogenously determined [50], differing from

vulnerability indices drawn from multivariate techniques, where weights arise from the data’s

correlational structure. At first, this may seem like a drawback; however, this is precisely why

appropriately chosen weights are key for surveillance purposes over time.

Different methodologies have been used to estimate objective and reliable synthetic mea-

surements of health vulnerability to climate shocks, especially in low and middle-income

countries. Although the different measurements proposed are based on varying sets of indica-

tors, they all use the exposure, resilience/adaptive capacity, and susceptibility/sensitivity dimen-

sions to define vulnerability [4]. The commonality of constituent dimensions is not random,

but, rather, reflects theoretical efforts to include easy-to-use indicators by decision-makers

focused on fighting vulnerability to environmental shocks.

Our ECVI suggests a higher contribution of the exposure dimension in the ED-HT zone in

comparison with the ER mesoregions. This result does not come as a surprise, since the

ED-HT zone suffers from severe droughts, which subject a large share of its population to vul-

nerable conditions, especially in semiarid areas [53]. Dry spells affect access to adequate water
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supplies and create additional barriers for the agricultural sector. These extreme events jeopar-

dize the local population’s socioeconomic wellbeing and food security, since the region is

highly dependent on family farming [44].

In the ER homoclimatic zone, adaptive capacity stands out as the most relevant dimension,

which reflects the region’s more precarious access to basic sanitation. Noteworthy, this homo-

climatic zone comprises 70% of the Brazilian AMZmesoregions. Our results concur with

those found by Menezes et al [2], which analyzed vulnerability for all municipalities in the

State of Amazonas. Although these authors applied different methodological procedures and

indicators, they found that adaptive capacity and sensitivity provided more prominent contri-

butions than exposure in the study area. Building upon these results, this study shows that this

pattern seems to characterize the majority of the Amazonian region, rather than being an iso-

lated feature of the Amazonas State. Besides, these features are very particular to the Brazilian

regions that are more exposed to extreme rain.

The analysis of infectious and parasitic disease levels shows a more pronounced vulnerabil-

ity among regions with high levels of disease incidence. In these areas, the ECVI is around 14%

for the entire study area, and there is almost no difference among the ER (13%) and ED-HT

(14%) homoclimatic zones. Among low disease incidence mesoregions, these figures are lower

than 5%. The decomposition of the ECVI shows that exposure possesses the highest relative

importance in explaining vulnerability in areas with a high incidence of infectious and para-

sitic diseases mainly in the ED-HT homoclimatic zone. The adverse health effects of climatic

extremes are well documented in the empirical literature [1, 2, 59, 22, 23]. Furthermore,

adverse climatic conditions can contribute to an increase in climate-sensitive diseases and

intensify symptoms of several other diseases, especially among the population groups most

susceptible to extreme climate events, such as the elderly and children [22, 77].

For the ER homoclimatic zone, adaptive capacity (49%) followed by susceptibility (31%)

were the most important components to explain multidimensional vulnerability among

mesoregions with high incidence of infectious and parasitic diseases. Even though exposure to

extreme climatic events only accounts for 20% of the overall vulnerability, the interplay

between climate and poor basic sanitary conditions can exacerbate health vulnerability. In

places where infrastructure or adaptive measures are inadequate, these impacts can be more

severe, ultimately leading to loss of human life [2, 4, 22, 59]. Thus, identifying socioenviron-

mental deprivation and exposure to these events is key for decision makers to properly address

a population’s health vulnerabilities and establish strategies to mitigate adverse effects on cli-

mate-sensitive diseases [88].

Despite enhancing the literature on health vulnerability to climate extremes, our findings

have some limitations. Using hospitalization rates as a proxy for infectious and parasitic dis-

ease incidence is a somewhat restrictive health measurement, as it mainly reflects more severe

cases of infectious disease. Epidemiological profiles at the municipal level can be constructed

using four different data sources in Brazil, including hospitalizations (SIH/AIH), mortality

(SIM), disease notification (SINAN), and ambulatory care (SIA). Providing patient level data

to the SIA is not mandatory, which impedes the development of accurate epidemiological pro-

files [62]. While SINAN data recording is mandatory, its coverage is still precarious, especially

for the Brazilian Amazon and Northeast region [89]. Although mortality data is more com-

monly recorded, their use is even more restrictive than hospitalization data. In general, hospi-

talization information is viewed as having elevated coverage in Brazil because payments for

inpatient procedures are contingent upon recording them in the SIH system. Furthermore,

epidemiological data at the patient level is available through the SIH, making it the most used

information source, along with mortality, for studies on population health vulnerability [90].
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A second limitation regards spatial resolution, since we use mesoregions as our units of

analysis. We believe that this aggregation level is not an important caveat as intra-mesoregion

heterogeneities are less striking in our study areas when compared to other Brazilian regions,

such as the Southeast [37, 45, 53]. Our results also place limited emphasis on how climatic con-

ditions can affect population health because of the cross-sectional and correlational nature of

our approach. However, our empirical strategy still provides useful insights into regional dis-

parities in population vulnerabilities, facilitating the prioritization of regions experiencing

greater health sensitivity to poor sociodemographic conditions and extreme climate events.

The dimensional decomposition of the ECVI is particularly helpful in this regard, as it allows

for the identification of the areas that most contribute to explain each study region’s vulnera-

bility and how much this vulnerability can be reduced by eliminating specific deprivation fac-

tors in those areas.

In this study we use climate data developed by Xavier et al [57], which provides greater

meteorological information accuracy and coverage than data from the National Institute of

Meteorology (INMET). Moreover, the use of a daily time-based series that encompasses at

least 30 years of information is more suitable to measure climate extremes than the use of

short term or higher temporal resolution precipitation and temperature series, such as

monthly or yearly measurements.

The use of appropriate climatic markers when studying population vulnerability is even

more relevant in areas frequently affected by climatic extremes [53, 91]. The increase in the fre-

quency and magnitude of climate extremes in Brazilian Amazonia and in the Northeast high-

lights the importance of combining information on hydrometeorological and climatological

phenomena. The mere use of temperature and precipitation levels does not fully reflect the

intensity and the frequency of climatic events in both regions, both of which will likely inten-

sify in the future [92, 93].

Despite the proliferation of indices and methodological approaches to measuring vulnera-

bility in the literature [4], our AF-based vulnerability index is easy to use, generalizable to

other areas, and well-suited for monitoring vulnerability over time. Other indices inspired by

the Human Development Index, such as the one proposed by Silveira Marinho et al [53], are

not decomposable and lack other axiomatic features that are highly desirable for multidimen-

sional indices, which is particularly true for the monotonicity and focus axioms in a multidi-

mensional setting. Furthermore, the ECVI’s added complexity does not come at a cost of

greater difficulties to obtain and/or interpret the index. The AF method is a solid approach

and is widely recognized as being instrumental for public policymaking and being easy to

interpret. In the future, we plan to enhance the identification of the multidimensional cutoff

with non-parametric solutions, increasing the robustness of this method even further. Finally,

future analyses will also incorporate downscaled climate data that encompass all Brazilian

regions.

Supporting information

S1 Fig. Radar charts of average ECVI indicators values by homoclimatic zone. TXx:

Monthly maximum value of daily maximum temperature (oC), TNx: Monthly maximum

value of daily minimum temperature (oC); TX90p: Percentage of warm days; TN90p: Percent-

age of warm nights; DTR: Daily temperature range; Cdd: Dry spell; R99p: Extremely wet days;

ER: Extreme rain zones in the Brazilian Amazon and Northeast region; ED-HT: Extreme

drought and high temperature in the Brazilian Amazon and Northeast region; ECVI: Extreme

Climate Vulnerability Index.

(TIF)
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S2 Fig. Sensitivity and dominance analyses to define the cut-off point (k) for the ECVI

index. ER: Extreme rain zones in the Brazilian Amazon and Northeast region; ED-HT:

Extreme drought and high temperature in the Brazilian Amazon and Northeast region; ECVI:

Extreme Climate Vulnerability Index.

(TIF)

S3 Fig. Boxplot of the posterior distributions of λkjl for each extreme climate index

included in the GoMmodel. TXx: Monthly maximum value of daily maximum temperature

(oC), TNx: Monthly maximum value of daily minimum temperature (oC); TX90p: Percentage

of warm days; TN90p: Percentage of warm nights; DTR: Daily temperature range; Cdd: Dry

spell; R99p: Extremely wet days; Profile 1—ER: Extreme rain zones in the Brazilian Amazon

and Northeast region; Profile 2—ED-HT: Extreme drought and high temperature in the Bra-

zilian Amazon and Northeast region; ECVI: Extreme Climate Vulnerability Index; Q1-Q5:

Quantiles of the extreme climate index distribution.

(TIF)

S1 Table. Descriptive statistics and vulnerability cutoff-points of ECVI indicators by the

homoclimatic zone. ER: Extreme rain zones in the Brazilian Amazon and Northeast region;

ED-HT: Extreme drought and high temperature in the Brazilian Amazon and Northeast

region; ECVI: Extreme Climate Vulnerability Index. (1) ER: 10.6 –ED-HT: 11.6. (2) ER: 10.4 –

ED-HT: 9.3. (3) Brazilian Currency was converted to the 2010 US dollars exchange rate using

the CCEMG—EPPI-Center Cost Converter website (<http://eppi.ioe.ac.uk/costconversion/

default.aspx>). (4) Low incidence areas: 1st quantile of the rate of infectious diseases distribu-

tion; High incidence areas: 4th and 5th quantiles of the rate of infectious diseases distribution.

(DOCX)

S2 Table. 1. Sensitivity analysis to define the cut-off point (k) for the ECVI index, Overall

study area. ECVI: Extreme Climate Vulnerability Index. 2. Sensitivity analysis to define the

cut-off point (k) for the ECVI index, ER homoclimatic zone. ER: Extreme rain zones in the

Brazilian Amazon and Northeast region; ECVI: Extreme Climate Vulnerability Index. 3. Sensi-

tivity analysis to define the cut-off point (k) for the ECVI index, ED-HT homoclimatic zone.

ED-HT: Extreme drought and high temperature in the Brazilian Amazon and Northeast

region; ECVI: Extreme Climate Vulnerability Index.

(DOCX)

S3 Table. 1. ECVI, Censored Headcount, and Vulnerability Intensity for the Overall and

homoclimatic zones (k = 0.30). ER: Extreme rain zones in the Brazilian Amazon and Northeast

region; ED-HT: Extreme drought and high temperature in the Brazilian Amazon and North-

east region; ECVI: Extreme Climate Vulnerability Index. 2.Decomposition analysis of the

ECVI for the homoclimatic zone in the Brazilian Amazon and the Northeast (k = 0.30). ER:

Extreme rain zones in the Brazilian Amazon and Northeast region; ED-HT: Extreme drought

and high temperature in the Brazilian Amazon and Northeast region; ECVI: Extreme Climate
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social, saúde e ambiente: Relatório Executivo n˚ 4. Rio de Janeiro: Fundação Oswaldo Cruz, Secre-
taria de Estado do Ambiente do Rio de Janeiro; 2011.

PLOS ONE Health-related vulnerability to climate extremes in homoclimatic zones

PLOSONE | https://doi.org/10.1371/journal.pone.0259780 November 11, 2021 22 / 24

https://doi.org/10.1590/s0036-46652009000500003
http://www.ncbi.nlm.nih.gov/pubmed/19893976
https://doi.org/10.1155/2018/8159354
https://doi.org/10.1155/2018/8159354
http://www.ncbi.nlm.nih.gov/pubmed/30105057
https://doi.org/10.1371/journal.pone.0259780


53. Silveira Marinho KF, Barbosa Andrade LDM, Constantino Spyrides MH, Santos e Silva CM, de Oliveira
CP, Guedes Bezerra B, et al. Climate Profiles in Brazilian Microregions. Atmosphere. 2020, v. 11, n.
11, p. 1–14.

54. Rodrigues DT, GonçalvesWA, Spyrides MHC, Silva CMSE. Spatial and temporal assessment of the
extreme and daily precipitation of the Tropical Rainfall Measuring Mission satellite in Northeast Brazil.
International Journal of Remote Sensing. 2020, v. 41, n. 2 p.549–572.

55. De Aguiar JT, Junior ML. Reliability and discrepancies of rainfall and temperatures from remote sensing
and Brazilian ground weather stations. Remote Sensing Applications: Society and Environment. 2020,
v. 18, 100301, p.1-9.

56. Teixeira MDS, Satyamurty P. Trends in the frequency of intense precipitation events in Southern and
Southeastern Brazil during 1960–2004. Journal of Climate. 2011, v. 24, n. 7, p.1913–1921.

57. Xavier AC, King CW, Scanlon BR. Daily gridded meteorological variables in Brazil (1980–2013). Inter-
national Journal of Climatology. 2016, v. 36, n. 6, p. 2644–2659.

58. Da Silva PE, Santos e Silva CM, Spyrides MHC, Andrade LMB. Precipitation and air temperature
extremes in the Amazon and Northeast Brazil. International Journal of Climatology. 2019, v. 39, n. 2, p.
579–595.

59. Da Silva, PE. Indicador epidemiológico de vulnerabilidade a extremos climáticos para região Amazô-
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