
UNIVERSIDADE FEDERAL DE MINAS GERAIS

Departamento de Ciência da Computação

Programa de Pós-graduação em Ciência da Computação

Artur Luis Fernandes de Souza

BAYESIAN OPTIMIZATION WITH

A PRIOR FOR THE OPTIMUM

Belo Horizonte

2022

Artur Luis Fernandes de Souza

BAYESIAN OPTIMIZATION WITH

A PRIOR FOR THE OPTIMUM

Versão final

Tese apresentada ao Programa de Pós-

Graduação em Ciência da Computação do Insti-

tuto de Ciências Exatas da Universidade Fed-

eral de Minas Gerais como requisito parcial

para a obtenção do grau de Doutor em Ciência

da Computação.

Orientador: Leonardo Barbosa e Oliveira

Coorientador: Luigi Nardi

Belo Horizonte

2022

© 2022, Artur Luis Fernandes de Souza.

 Todos os direitos reservados

 Souza, Artur Luis Fernandes de

S729b Bayesian optimization with a prior for the optimum
 [manuscrito] / Artur Luis Fernandes de Souza. – 2022.
 85 f. il.

 Orientador: Leonardo Barbosa e Oliveira.
 Coorientador: Luigi Nardi.
 Tese (Doutorado) - Universidade Federal de Minas Gerais,
 Instituto de Ciências Exatas, Departamento de Ciências da
 Computação.
 Referências: f. 71-76.

 1. Computação – Teses. 2. Otimização bayesiana – Tese.
 3. Aprendizado de máquina – Teses. 4. Markov, Processos de –
 Teses.I. Oliveira, Leonardo Barbosa e. II. Nardi, Luigi III.
 Universidade Federal de Minas Gerais, Instituto de Ciências
 Exatas, Departamento de Computação. IV.Título.

CDU 519.6*82.10(043)

Ficha Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende

Costa CRB 6/1510 Universidade Federal de Minas Gerais - ICEx

0!�2�',��	��Z����*�Z��Z��!	,Z��*�,Z
�!,.�.0.#Z��Z��R!��	,Z�5.	,Z

%'#�*�	Z��Z%S,��*�0	QP#Z��Z��R!��	Z�	Z�#�%0.	QP#Z

���	���������������

�������
�����	������
�����������������������	�	�

��������
�������������������

.:H:Z9:<C9@96Z:Z6EFDK696ZE:A6Z76C86Z:M6B@C69DF6Z8DCHI@IJY96ZE:ADHZ,:C?DF:H�Z

%($��Z��$"
(�$Z�
($-
Z�Z#��3��)
Z�Z#F@:CI69DFZ
�:E6GI6B:CIDZ9:Z�@XC8@6Z96Z�DBEJI6VUDZ�Z0���Z

%($��Z�1���Z!
(��Z�Z�DDF@:CI69DFZ
�:E6FIB:CIZD;Z�DBEJI:FZ,8@:C8:Z�Z�JC9Z0C@K:FH@INZ

%($�
�Z��-���Z�$$Z%
&&
Z
�:E6FI6B:CIDZ9:Z�@XC8@6Z96Z�DBEJI6VUDZ�Z0���Z

%($��Z'��
(�$Z�
-/$-Z�
ZLZ���
"/�Z%(1��"��$Z
�:CIFDZ9:Z�C=FBTI@86Z�Z0�%�Z

%($��Z��1
(�$Z	�3�-Z�$Z4Z
���Z�1"�$(Z
�:E6FI6B:CIDZ9:Z�C>:C?6F@6Z�AWIF@86Z:Z96Z�DBEJI6VUDZ�Z0!��	�%Z

%($��Z���/$(Z,$
(�-Z+ $-Z����$Z
�:E6FI6B:CIDZ9:Z�@XC8@6Z96Z�DBEJI6VUDZ�Z0���Z

�:ADZ�DF@ODCI:�Z��Z9:ZB6FVDZ9:Z�����Z

Resumo

Otimização Bayesiana (Bayesian Optimization – BO) é uma ferramenta eficiente para a

otimização de decisões de projeto que tem ganhado grande popularidade nos últimos

anos. BO tem impactado uma vasta gama de áreas, de aprendizado de máquina à

cristalografia serial. Porém, embora BO seja um método popular para a otimização

de funções caixa-preta, BO não é capaz de aproveitar da experiência de especialistas

humanos no processo de otimização. Especialistas humanos frequentemente tem intuições

sobre quais regiões do espaço de busca tem maior chance de trazer bons resultados,

porém, não tem suporte apropriado para injetar esse conhecimento na BO. Isso faz

com que BO desperdice avaliações da função em regiões sabidamente ruins do espaço

de busca, desacelerando a convergência. Para tratar esse problema, nós introduzimos

Bayesian Optimization with a Prior for the Optimum (BOPrO). BOPrO permite que

usuários injetem seu conhecimento no processo de otimização na forma de priors de

quais regiões do espaço de busca levarão à melhor performance, no lugar dos priors sob

funções tradicionais de BO, que são muito menos intuitivos para usuários. BOPrO então

combina esses priors com o modelo probabiĺıstico tradicional de BO para construir uma

distribuição pseudo-posterior de boas regiões do espaço de busca. Nós avaliamos BOPrO

em um conjunto de funções sintéticas e demonstramos que BOPrO é mais eficiente em

número de avaliações do que métodos do estado da arte sem priors de usuários, outras

abordagens com suporte para injeção de priors e 10,000× mais rápido do que a busca

aleatória. Nós também comparamos BOPrO com o estado da arte em uma aplicação

real de projeto de hardware com priors providenciados por um especialista humano e

mostramos que BOPrO atinge um novo estado da arte. Por fim, demonstramos que

BOPrO converge mais rápido mesmo que o prior do usuário não seja perfeitamente

preciso e que BOPrO robustamente recupera de priors incorretos.

Palavras-chave: Otimização Bayesiana. Aprendizado de Máquina Automatizado. Pro-

cessos Gaussianos.

Abstract

Bayesian Optimization (BO) is a data-efficient tool for the joint optimization of design

choices that is gaining great popularity in recent years. BO has impacted a wide

range of areas, ranging from ML hyperparameter optimization to serial crystallography.

However, while BO has become a popular method for optimizing expensive black-box

functions, it fails to leverage the experience of human domain experts. Human experts

often have intuitions on which regions of the design space are more likely to yield good

results, but have no good way to encode this knowledge into BO. This causes BO to

waste function evaluations on commonly known bad regions of design choices, slowing

down convergence. To address this issue, we introduce Bayesian Optimization with

a Prior for the Optimum (BOPrO). BOPrO allows users to inject their knowledge

into the optimization process in the form of priors about which parts of the input

space will yield the best performance, rather than BO’s standard priors over functions

which are much less intuitive for users. BOPrO then combines these priors with BO’s

standard probabilistic model to yield a pseudo-posterior distribution on good regions of

the design space. We evaluate BOPrO on a suite of synthetic benchmarks, specially

tailored to evaluating BO methods, and show that BOPrO is more sample efficient

than state-of-the-art methods without user priors, previous approaches that support

prior injection, and 10,000× faster than random search. We also compare BOPrO to

the state-of-the-art on a real-world hardware design application with priors provided

by a human application expert and once again show that BOPrO sets a new state-of-

the-art performance. We also perform a series of ablation studies showing that BOPrO

converges faster even if the user priors are not entirely accurate and that it robustly

recovers from misleading priors.

Keywords: Bayesian Optimization. Automated Machine Learning. Gaussian Process.

List of Figures

1.1 Illustration of a BO algorithm. 12

4.1 Illustration of our probabilistic model. 30

4.2 Breakdown of our prior, model, and pseudo-posterior for the 1-dimensional

Branin function. 36

5.1 Log regret comparison of BOPrO with and without priors, random sampling,

and Spearmint. 40

5.2 Log regret comparison of BOPrO, SMAC, TuRBO, and Spearmint. 42

5.3 Log regret comparison of BOPrO, TPE, and the approaches of Li et al. and

Ramachandran et al. , all with a strong prior. 43

5.4 Log regret comparison of BOPrO, TPE, and the approaches of Li et al. and

Ramachandran et al. , all with a weak prior. 44

5.5 Log regret comparison of BOPrO, TPE, and the approaches of Li et al. and

Ramachandran et al. , all with a misleading prior. 45

5.6 Log regret comparison of random sampling, HyperMapper, BOPrO, and a

human expert configuration on the CNN Spatial benchmarks. 46

5.7 Log regret comparison of random sampling, HyperMapper, BOPrO, and a

human expert configuration on the Spatial MD Grid benchmark. 47

5.8 BOPrO prior forgetting on the 1D Branin function with an exponential prior. 53

5.9 BOPrO prior forgetting on the 1D Branin function with a decay prior. . . 54

5.10 Prior forgetting of BOPrO on the standard Branin function with exponential

priors. 55

5.11 Log regret comparison of BOPrO with varying prior quality 56

5.12 Log simple regret comparison between BOPrO and sampling from the prior. 57

5.13 Log regret comparison of BOPrO, Spearmint with prior initialization, and

Spearmint with default initialization. 59

5.14 Log regret comparison of BOPrO, HyperMapper with prior initialization,

and HyperMapper with default initialization. 60

5.15 Log regret comparison of BOPrO with multivariate and univariate KDE

priors. 61

5.16 Comparison of BOPrO with the 1% prior and different values for the β

hyperparameter on our four synthetic benchmarks. 62

5.17 Comparison of BOPrO with the 1% prior and different values for the γ

hyperparameter on our four synthetic benchmarks. 63

A.1 Simple regret of sampling from the prior with different priors for our Branin

benchmark. 78

A.2 Simple regret of sampling from the prior with different priors for our SVM

benchmark. 79

A.3 Simple regret of sampling from the prior with different priors for our FCNet

benchmark. 80

A.4 Simple regret of sampling from the prior with different priors for our XGBoost

benchmark. 81

A.5 Simple regret of BOPrO with different priors for our Branin benchmark. . 82

A.6 Simple regret of BOPrO with different priors for our SVM benchmark. . . 83

A.7 Simple regret of BOPrO with different priors for our FCNet benchmark. . 84

A.8 Simple regret of BOPrO with different priors for our XGBoost benchmark. 85

List of Tables

3.1 Comparison of BOPrO and previous state-of-the-art prior-guided optimiza-

tion solutions. 27

5.1 Search spaces for our synthetic benchmarks. For the Profet benchmarks, we

report the original ranges and whether or not a log scale was used. 39

5.2 Search space, priors, and expert configuration for the Shallow CNN applica-

tion. The default value for each parameter is shown in bold. 49

5.3 Search space, priors, and expert configuration for the Deep CNN application.

The default value for each parameter is shown in bold. 50

5.4 Search space, priors, and expert configuration for the MD Grid application.

The default value for each parameter is shown in bold. 51

6.1 Features supported by HyperMapper and competing BO frameworks. RIOC

abbreviates Real/Integer/Ordinal/Categorical, for the different variable

types supported. 65

Contents

1 Introduction 11

1.1 Goals . 13

1.2 Contributions . 13

1.3 Dissertation Question . 14

1.4 Dissertation Statement . 14

1.5 Organization . 15

2 Background 16

2.1 Bayesian Optimization . 16

2.2 Gaussian Process Regression . 17

2.3 Tree-structured Parzen Estimator . 19

2.4 Expected Improvement . 19

3 Related Work 21

3.1 Previous BO Approaches . 21

3.2 Priors in BO . 23

3.3 Meta-learning for BO . 24

3.4 The Novelty of BOPrO . 26

4 Bayesian Optimization with Priors 28

4.1 Priors . 28

4.2 Model . 29

4.3 Pseudo-posterior . 30

4.4 Model and Pseudo-posterior Visualization 31

4.5 Acquisition Function . 32

4.6 Formal Analysis . 33

4.7 Putting It All Together . 35

5 Experiments 37

5.1 Experimental Setup . 37

5.1.1 Implementation. 37

5.1.2 Benchmarks. 38

5.1.3 Priors . 39

5.2 Performance Comparison . 41

5.2.1 Performance on Synthetic Benchmarks 41

5.2.2 Comparison to Baselines without Priors 42

5.2.3 Comparison to Baselines with Priors 44

5.2.4 The Spatial DSL Use-case . 47

5.3 Ablation Studies . 51

5.3.1 Prior Forgetting . 51

5.3.2 Misleading Prior Comparison 55

5.3.3 Prior Impact . 56

5.3.4 Prior Baselines Comparison . 58

5.3.5 Multivariate Prior Comparison 59

5.3.6 β Sensitivity Study . 60

5.3.7 γ Sensitivity Study . 62

6 Other Projects and Future Work 64

6.1 The HyperMapper Framework . 64

6.2 Multi-objective Prior Optimization . 66

6.3 Sparse Space Optimization . 67

7 Conclusion 68

Bibliography 71

A KDE Prior Bandwidth 77

11

Chapter 1

Introduction

Replacing manual tasks with new automated solutions is a growing tendency in both

industry and academia. Scientists develop automated models to speed up experiments

and discovery, while industry solutions grow smarter at a remarkable rate. However,

as these automated solutions become more powerful, they also become more complex

and require the fine-tuning of more parameters in order to be effective. To complicate

things further, the fine-tuning of these parameters is often domain-specific and, thus,

there is no single configuration that works well for all applications.

Traditionally, human experts are tasked with manually fine-tuning these parame-

ters. These experts spend days, or even months, experimenting with different decisions

to build an intuition of what are the (approximate) best parameters for each appli-

cation. This is an expensive approach that becomes highly ineffective as automated

solutions become more complex. The high cost of fine-tuning these increasingly complex

automations calls for the development of efficient parameter optimization solutions.

Bayesian Optimization (BO) has emerged as a powerful solution for this parameter

optimization problem. Optimization problems can be described as optimizing an

unknown (black-box) function f subject to a set of parameters X. BO tackles this

problem by building a surrogate model M to approximate the behavior of f and

then using an acquisition function on top of M to decide on promising parameter

combinations to explore [Shahriari et al., 2015]. This approach allows BO to find

good parameter configurations with few function evaluations, making BO particularly

well suited to optimize expensive black-box functions [Brochu et al., 2010]. Figure 1.1

illustrates a standard BO algorithm.

BO has gained great popularity in recent years. It is impacting a wide range

of areas, including hyperparameter optimization [Snoek et al., 2012; Falkner et al.,

2018], AutoML [Feurer et al., 2015a; Hutter et al., 2018], robotics [Calandra et al.,

12

Random Sampling

Search Space

Input Bayesian Op�miza�on Output

Black-box
Func�on

X = {x1, ..., xn}

Fit Model

Op�mize
Acquisi�on Func�on

acqmax

Evaluate

{xi}

Op�mum x*

{xj}

{xi, yi}

Figure 1.1. Illustration of a BO algorithm. xi are the input parameters, with
xi ∈ X . {xi, yi} is the input parameter configuration explored at iteration i and
the respective objective function value.

2016], computer vision [Bodin et al., 2016; Nardi et al., 2017], environmental moni-

toring [Marchant and Ramos, 2012], combinatorial optimization [Hutter et al., 2011],

experimental design [Azimi et al., 2012], RL [Brochu et al., 2010], Computer Go [Chen

et al., 2018], hardware design [Nardi et al., 2018; Koeplinger et al., 2018], seria crys-

tallography [Souza et al., 2019], and many others. It promises greater automation so

as to increase both product quality and human productivity. As a result, BO is also

established in many large tech companies (e.g., with Google Vizier [Golovin et al., 2017]

and Facebook BoTorch [Balandat et al., 2019]).

However, domain experts often have substantial prior knowledge that BO cannot

incorporate. Users can incorporate prior knowledge by narrowing the search space;

however, this type of hard prior can lead to poor performance by missing important

regions. BO also natively supports a prior over functions p(f), e.g., specified by a kernel

function. However, this is not the prior human experts have: users often know which

ranges of hyperparameters tend to work best, and are able to specify a probability

distribution pbest(x) to quantify these priors. For example, many users of the Adam

optimizer [Kingma and Ba, 2015] know that its best learning rate is often in the vicinity

of 1e-3 (give or take one order of magnitude), yet one may not know the accuracy one

may achieve in a new application.

As a result, many competent users instead revert to manual search, which can

fully incorporate their prior knowledge. A recent survey showed that most NeurIPS

2019 and ICLR 2020 papers that reported having tuned hyperparameters used manual

search, with only a very small fraction using BO [Bouthillier and Varoquaux, 2020].

13

In order for BO to be adopted widely, and help facilitate faster progress in the ML

community by tuning hyperparameters faster and better, it is, therefore, crucial to

devise a method that fully incorporates priors into BO. This is precisely the main

contribution of this proposal.

1.1 Goals

Our goal in this work is to develop a BO framework that allows human experts to inject

their priors into the optimization process. We aim at a solution that is flexible and

simple in the prior injection, so that it can be easily employed by non-BO experts. We

also aim at a solution that is robust in that it can still converge to good function values,

even if the user priors are wrong about its locality. At last, naturally, our solution must

also be more efficient in number of evaluations than previous state-of-the-art methods

when priors are provided.

To achieve these goals, we propose Bayesian Optimization with a Prior for the

Optimum (BOPrO). BOPrO allows users to inject their knowledge into the optimization

process in the form of priors about which parts of the input space will yield the best

performance. BOPrO then combines these priors with BO’s standard probabilistic

model to yield a pseudo-posterior on “good” regions of the space. BOPrO achieves

improved statistical efficiency over state-of-the-art methods by leveraging the injected

prior knowledge. At the same time, BOPrO is also a robust approach that can recover

in case the user-defined prior is misleading and still achieve good performance. In

addition, BOPrO is flexible in that it allows its users to specify priors for any subset of

input parameters, including all or none, and any form of probability distribution.

We evaluate BOPrO empirically on a number of synthetic benchmarks, as well

as a real-world application. We compare BOPrO with state-of-the-art BO approaches,

including other approaches that support user priors in BO, and demonstrate that BOPrO

outperforms these approaches. We also evaluate BOPrO on a real-world hardware

design application with an unbiased human-expert prior and show that it leads to

improved performance over the current state-of-the-art.

1.2 Contributions

The contributions we make with BOPrO are as follows:

• We introduce Bayesian Optimization with a Prior over the Optimum, short

BOPrO, which allows users to inject priors that were previously difficult to inject

14

into BO, such as Gaussian, exponential, multimodal, and multivariate priors for

the location of the optimum.

• BOPrO’s model bridges the gap between the well-established Tree-structured

Parzen Estimator (TPE) methodology, which is based on Parzen kernel density

estimators, and standard BO probabilistic models, such as Gaussian Processes

(GPs) and Random Forests (RFs).

• We demonstrate that accurate prior knowledge helps BOPrO to dramatically

outperform standard BO and 10,000x random search.

• We demonstrate that BOPrO outperforms the previous state-of-the-art of BO

with support for prior injection.

• We demonstrate BOPrO on a real-world application, with priors provided by an

unbiased human expert.

• We demonstrate that BOPrO overcomes misleading prior knowledge and still

finds optimal configurations.

Simultaneous to the development of BOPrO, we have also worked on the develop-

ment of the open-source HyperMapper black-box optimization framework1. BOPrO is

made publicly available as part of the HyperMapper framework2.

1.3 Dissertation Question

The research question that guided us in this Ph.D. was: can we leverage the prior

knowledge that experts have in order to improve the performance of BO? In order to

answer this question, we conceived a novel approach that combines user knowledge, in

the form of prior distributions, with the probabilistic approach of BO. We then evaluated

our novel approach to show that the user knowledge leads to improved performance in

BO, in terms of function evaluations.

1.4 Dissertation Statement

Our hypothesis in this thesis is that we are able to inject user priors into BO and

that it leads to improved performance. We believe this can be achieved by computing

1https://github.com/luinardi/hypermapper/
2https://github.com/luinardi/hypermapper/wiki/prior-injection

15

a pseudo-posterior that combines the user prior with BO’s probabilistic model. The

user prior will ensure BO focuses on important parts of the search space, while BO’s

probabilistic model will learn from the data and refine the prior knowledge in order to

find better function values.

1.5 Organization

This work is structured as follows. In section 2, we provide a background of BO and

the building blocks of this work. In section 4, we introduce BOPrO, together with a

detailed explanation of its components. Section 5 shows empirical results for BOPrO

and comparisons to other state-of-the-art methods. We discuss related work in section 3

and conclude the work in Section 7.

16

Chapter 2

Background

2.1 Bayesian Optimization

Bayesian Optimization (BO) is a powerful tool to solve optimization problems. BO

aims to find the optimum of a function over a space of parameters. The function being

optimized is often unknown and we can only query it for the outcome of a specific

parameter configuration. This function is usually referred to as a black-box function,

while the space of possible parameter configurations is often called the problem’s search

space. The main advantage of BO is that it is one of the most efficient approaches

considering the number of black-box function evaluations [Shahriari et al., 2015], which

makes BO a great tool for optimizing expensive black-box functions.

BO uses an approach for optimization based on Bayes’ theorem. BO builds a

posterior model on the black-box function based on an initial prior model1 and a set

of evaluated configurations (the evidence). BO, then, uses the posterior model to

make informed decisions on which configuration should be evaluated next. BO is an

iterative algorithm, at each iteration, a new configuration is evaluated and the posterior

model is updated with the new evidence. It is common, however, for BO to randomly

sample configurations from the search space to bootstrap the model, before starting

the iterative BO loop. The BO loop is executed for a pre-specified budget, usually on

the number of function evaluations or wall-clock time.

The posterior model is a key component of BO. It is paramount that the BO

model accurately predicts the behavior of the black-box function and be cheap to

evaluate. Another important property for BO models is to accurately estimate their

own uncertainty regarding their predictions. This allows BO to reason over which

1Here, we refer to the model’s prior over functions and not the user’s prior

17

configurations are more valuable to explore considering the quality of the solution

(exploitation) and its own uncertainty regarding the black-box function (exploration).

This is the fundamental exploration × exploitation trade-off in BO. Common model

choices for BO are Gaussian Process (GPs) [Snoek et al., 2012], Random Forests

(RFs) [Hutter et al., 2011], and Tree-structured Parzen Estimators (TPEs) [Bergstra

et al., 2011].

Another key component of BO is the acquisition function. The acquisition function

dictates which configurations should be explored next, considering the exploration

and exploitation trade-off. The acquisition function quantifies the quality of each

configuration and the next configuration to explore is chosen by maximizing the

acquisition function. To be effective, the acquisition function must properly balance

exploration and exploitation. Too much focus on exploration will lead to a good

understanding of the black-box function, but a weak optimized value. Too much

focus on exploitation will lead to a poor understanding of the black-box function

and likely lead optimization to a local minimum (or maximum). Common choices of

acquisition function are Expected Improvement (EI), Upper Confidence Bound (UCB),

and Thompson Sampling (TS) [Shahriari et al., 2015].

Algorithm 1 shows a standard BO algorithm. BO starts with an initialization

phase, randomly sampling a number of configurations in line 3 and evaluating them

in line 4. The main BO loop is then started in line 6: BO fits the model with the

data observed so far in line 7, chooses the next configuration to explore by maximizing

the acquisition function in line 8, evaluates the new configuration with the black-box

function in line 9, and adds it to the history of evaluated configurations in line 10.

This loop is repeated for a pre-specified number of times (the budget) and the best

configuration found is returned at the end in line 12. The search space, budget, and

number of initialization configurations are hyperparameters of the BO algorithm.

2.2 Gaussian Process Regression

A GP can be described as a regression model that defines a distribution over func-

tions [Williams and Rasmussen, 2006]. A GP starts with an assumed prior distribution

over possible functions. At first, this prior distribution only makes loose assumptions

about the regression mean (often a constant) and the smoothness of the functions

in the distribution, i.e., how fast the functions change given a change in the input.

This distribution is then updated as new configurations are evaluated to consider only

functions that are consistent with the configurations that have been observed. This

18

Algorithm 1 Bayesian optimization.

1: Input: Search space X , initialization budget N , and BO budget B.
2: Output: Best configuration found xinc.
3: D ← Initialize(X , N)
4: for t = 1 to B do
5: M← fit model(D)
6: xi ∈ arg maxx∈X acq(x,M)
7: yi ← f(xi)
8: D ←D ∪ (xi, yi)
9: end for

10: xinc ← ComputeBest(D)
11: return D

implies a change in the distribution’s mean and the smoothness of the functions in the

distribution. This updated distribution is the posterior used in BO.

GPs are defined entirely by their mean and kernel (or covariance function). The

mean and kernel define a distribution of functions of the GP, with the kernel dictating

the smoothness of these functions. When defining a GP, it is important to choose a

kernel that correctly reflects the smoothness expected of the function being modeled.

This is the prior over functions of the GP. Then, whenever new configurations are

observed, the hyperparameters of the kernel are updated to match the shape of the data,

forming the GP posterior. The hyperparameters are usually optimized by maximizing

the log marginal likelihood of the observed function values. Common GP kernels are

the squared-exponential and matérn kernels [Shahriari et al., 2015].

The predictions of the GP take the form of a gaussian distribution at each point.

This means that for each point we can compute a mean value (the prediction of the

regressor for that point) and a prediction variance (the uncertainty of the prediction at

that point). Both mean and variance depend on the kernel chosen for the GP, though,

naturally, the variance in GPs is low near points that have been explored and grows

together with the distance to explored points. Formally, the predictive distribution of a

GP with kernel K and kernel parameters θ is a Gaussian N (ŷ | µ̂, σ̂2) with posterior

mean µ̂ and variance σ̂2, where the posterior mean µ̂ is estimated with:

µ̂ = K(θ,x,X)K(θ,X,X)−1y, (2.1)

where K is the GP Kernel and θ are the kernel hyperparameters. The pseudo-posterior

standard deviation (or uncertainty) estimate σ̂ is defined as:

σ̂2 = K(θ,x,x)−K(θ,x,X)K(θ,X,X)−1K(θ,x,X)>. (2.2)

19

2.3 Tree-structured Parzen Estimator

Whereas the standard probabilistic model in BO directly models p(y|x), the Tree-

structured Parzen Estimator (TPE) approach by Bergstra et al. [2011] models p(x|y)

and p(y) instead.2 This is done by constructing two parametric densities, g(x) and

l(x), which are computed using the observations with function value above and below

a given threshold, respectively. The separating threshold y∗ is defined as a quantile of

the observed function values. TPE uses the densities g(x) and l(x) to define p(x|y) as:

p(x|y) = l(x)I(y < y∗) + g(x)(1− I(y < y∗)), (2.3)

where I(y < y∗) is 1 when y < y∗ and 0 otherwise. The parametrization of the

generative model p(x, y) = p(x|y)p(y) facilitates the computation of EI as it leads to

EIy∗(x) ∝ l(x)/g(x) and, thus, arg maxx∈X EIy∗(x) = arg maxx∈X l(x)/g(x).

2.4 Expected Improvement

EI is an improvement-based acquisition function proposed by Mockus et al. [1978].

Improvement-based acquisition functions seek to improve upon a target value, usually,

the target value is the incumbent finc. In other words, improvement-based acquisition

functions quantify the quality of each configuration based on how likely they are to

improve on finc. The first improvement-based policy, Probability of Improvement

(PI) [Kushner, 1964], quantifies the quality of each configuration by simply taking the

probability of the configuration leading to a value better than finc.

EI expands on the PI acquisition function by also incorporating the amount of

improvement expected from each point [Shahriari et al., 2015]. In other words, EI

quantifies the quality of configurations by weighting how likely they are to improve upon

finc, as well as, how much of an improvement it will provide. Formally, EI quantifies

the expected improvement upon finc as:

EIfinc(x) =

∫ ∞
−∞

max(finc − y, 0)p(y|x)dy, (2.4)

where the target finc is usually taken to be the incumbent function value, i.e., the

best objective function value found so far, and p(y|x) is a probabilistic model, e.g., a

2Technically, the model does not parameterize p(y), since it is computed based on the observed
data points, which are heavily biased towards low values due to the optimization process. Instead, it
parameterizes a dynamically changing pt(y), which helps to constantly challenge the model to yield
better observations.

20

Gaussian Process. Note that the first term in the integral means that EI vanishes if

the improvement is lower than 0, i.e., the quality of a configuration is 0 if it will not

improve upon finc

The prediction of the expected improvement for each configuration is based on the

predictions of the surrogate model for the black-box function. If the prediction of our

model is normally distributed, as is the case for GPs, we can compute EI analytically

with [Shahriari et al., 2015]:

EI(x) = (finc − µx)Φ

(
finc − µx

σx

)
+ σφ

(
finc − µx

σx

)
, (2.5)

where µx and σx are the mean and standard deviation of the surrogate model at x

and Φ and φ are the normal cumulative distribution function and probability density

function, respectively. This formulation works seamlessly with GPs, making it another

favorable aspect of GPs for BO, however, other works have shown that it is also

possible to compute EI for other surrogate models such as RFs [Hutter et al., 2011]

and TPE [Bergstra et al., 2013].

Equation 2.5 shows how EI balances the exploration vs exploitation trade-off.

Namely, note that the EI is is higher when µx is low and when σx is high. In other

words, EI is high when the model’s prediction is low, favoring exploitation, and when

the uncertainty of the model is high, favoring exploration.

21

Chapter 3

Related Work

Several authors have worked on BO, proposed their own BO solutions, and steadily

advanced the state of the art over the years. In this section, we review some prominent

BO solutions in the literature. Our work also relates to meta-learning for BO, thus we

also review prominent works on meta-learning for BO.

3.1 Previous BO Approaches

An early notable BO solution in the literature is the work of Jones et al. [Jones et al.,

1998]. Jones et al. propose a BO solution they call Efficient Global Optimization (EGO),

built on top of the DACE model [Sacks et al., 1989] and the EI acquisition function.

The DACE model relies on a correlation function that treats the model’s noise as

a function of the distance between points in the space. This correlation function is

so effective that the authors can simply assume a constant mean for their stochastic

process. Jones et al. combine this model and an EI acquisition function, optimized via

a branch-and-bound algorithm, to complete the EGO framework.

More recently, Snoek et al. [2012] propose Spearmint, a BO solution based on

GPs. Initially, the authors proposed Spearmint as a solution to perceived limitations of

previous BO solutions. The authors identified three limitations to existing BO solutions:

how to define the GPs kernel and its associated hyperparameters, how to account for

widely different black-box evaluation times, and how to leverage parallel computation

in BO. In later works, the authors expanded Spearmint to support new features, such

as a non-stationary approach based on input warping [Snoek et al., 2014].

Eriksson et al. [2019] also proposed a BO solution based on GPs, but more focused

on scalable, high-dimensional optimization. Their solution, dubbed TuRBO, breaks

down the search space into “trust regions” and performs BO in these trust regions.

22

Trust regions are shrunk or expanded based on the performance of BO in each trust

region. Once their solution determines that a trust region has been fully explored,

new trust regions are selected. This approach of dividing the search space into smaller

local regions allows TuRBO to optimize well both locally and globally, which makes it

well-suited for high-dimensional problems.

Hutter et al. propose a BO framework that replaces the commonly used GPs with

a RF model [Hutter et al., 2011]. Their solution, dubbed SMAC, uses a RF model and

the EI acquisition function, optimized with a multi-start local search. The RF model is

cheaper than GPs and also more flexible, allowing SMAC to seamlessly support discrete

and categorical input parameters1. Hutter et al. show that their RF-based solution

performs better than previous solutions, while also being more flexible.

Gardner et al. [2014] propose a solution for constrained BO based on GPs dubbed

cBO. Their solution models a separate GP on a cost function and, based on a pre-defined

cost threshold, define a “probability of feasibility” for each configuration in the search

space. This probability of feasibility allows their solution to handle constrained search

spaces, where some parameter configurations are impossible to evaluate. Gardner et

al. show that their cBO approach is better than traditional BO solutions and random

sampling on a number of constrained benchmarks.

In a multi-objective setting, Knowles proposes an extension of the EGO algorithm

for multiple objectives called ParEGO [Knowles, 2004]. ParEGO uses a scalarization

function and a set of weights to scalarize multiple objectives into a single value. ParEGO

then applies the EGO algorithm of Jones et al. [Jones et al., 1998] on the scalarized

objectives. Similarly, Paria et al. propose an approach for multi-objective BO using

random scalarizations [Paria et al., 2018]. They propose randomly sampling scalarization

weights and using novel scalarized versions of the UCB and Thompson Sampling (TS)

acquisition functions to tackle multiple objectives.

Knudde et al. [2017] have also proposed a BO solution based on GPs dubbed

GpFlowOpt. Rather than proposing a key insight, GpFlowOpt seeks to provide a flexible,

easy-to-use, and customizable framework for GP BO. GpFlowOpt supports an array of

acquisition functions, constrained optimization, and multi-objective optimization, all

based on GP models.

Recently, BO has also started to attract the attention of large tech companies,

with both Google and Facebook developing their own optimization frameworks. Face-

book’s BoTorch (by Balandat et al. [Balandat et al., 2019]) combines state-of-the-art

approaches, such as cBO [Gardner et al., 2014] and random scalarizations [Paria et al.,

1We note that it is also possible to employ GPs to discrete parameters, but these require input
transformations or specially designed kernels, whereas RFs are able to handle these parameters naturally

23

2018], into a flexible BO framework that seamlessly integrates with their ML library

PyTorch [Paszke et al., 2019]. Similarly, Google’s Vizier (by Golovin et al. [Golovin

et al., 2017]) implements a suite of state-of-the-art approaches, e.g., SMAC [Hutter et al.,

2011], and their own novel probabilistic optimization approach into an optimization

framework used internally at Google.

3.2 Priors in BO

A few authors have proposed to incorporate user experience into BO in the form of

priors. Swersky et al. [Swersky, 2017], for instance, propose a number of adaptations to

BO approaches for ML, based on prior knowledge that they have built working on ML

problems. These adaptations include a multi-task BO algorithm to mimic knowledge

transference between similar problems and an early-stopping BO algorithm that detects

configurations that are not worth fully evaluating in iterative models. Although all of

the proposed adaptations are based on human prior experience, the work of Swersky

does not allow users to input their own custom priors into the optimization process.

Oh et al. [2018] and Siivola et al. [2018] propose structural priors for high-

dimensional problems. They assume that users always center the search space at regions

they expect to be good and then develop BO approaches that favor configurations near

the center. However, this is a rigid assumption about optimum locality, which does

not allow users to freely specify their priors. Similarly, Shahriari et al. Shahriari et al.

[2016] focus on unbounded search spaces. The priors in their work are not about good

regions of the space, but rather a regularizer that penalizes configurations based on

their distance to the user-defined search space. The priors are automatically derived

from the search space and not provided by users.

Other tools support limited custom user priors in the search space definition. For

instance, black-box optimization tools such as SMAC [Hutter et al., 2011] or iRace [López-

Ibáñez et al., 2016] support simple hand-designed priors, e.g. log-transformations.

However, these are not properly reflected in the predictive models and both cannot

explicitly recover from bad priors. Thus, both approaches are also less flexible than

BOPrO.

In a parallel work, the BO approach of Li et al. [2020] supports user-defined priors

in the form of probability distributions like ours. Their approach proposes sampling a

number of maximum points from the GP, via Thompson Sampling, and then choosing

to explore the maximum that has the highest prior. Their approach does not directly

combine the model and prior. We argue our method leverages better the information

24

from the prior and model by combining both distributions into a pseudo-posterior before

computing the acquisition function.

The work of Ramachandran et al. [2020] also supports priors in the form of

probability distributions. Their work uses the probability integral transform to warp

the search space, stretching regions where the prior has high probability, and shrinking

others. Once again, compared to their approach, BOPrO is agnostic to the probabilistic

model used and directly controls the balance between prior and model via the β

hyperparameter. Additionally, BOPrO’s probabilistic model is fitted independently

from the prior, which ensures it is not biased by the prior, while their approach fits the

model to a warped version of the space, transformed by the prior, making it difficult to

recover from misleading priors.

The most related work to ours is, as already mentioned before, the TPE approach

by Bergstra et al. [2011], which also allows to define limited hand-designed priors in the

form of normal distributions or log-normal distributions. TPE also builds two pseudo-

posterior distributions based on the priors and the data and optimizes an EI acquisition

function by looking for points that are likely under the “good” pseudo-posterior and

unlikely under the “bad” pseudo-posterior. TPE is provided as part of the HyperOpt

tool [Bergstra et al., 2013].

BOPrO is inspired by TPE in that it defines “good” and “bad” probability

distributions to guide optimization; however, BOPrO defines these distributions with a

novel Bayesian approach that sets it apart from TPE in several aspects:

1. BOPrO is not tied to a specific predictive model; in our experiments we use GPs

and RFs, which are often more sample-efficient than TPE.

2. BOPrO is more flexible with respect to how the prior is defined, the prior for

BOPrO can be any probability distribution.

3. BOPrO gives more importance to the model as iterations progress, gradually

forgetting the prior.

These differences make BOPrO more flexible and efficient (c.f. Section 5.2.3) than TPE,

even when using the exact same prior.

3.3 Meta-learning for BO

Our work also relates to meta-learning for BO. Meta-learning seeks to learn how learning

algorithms perform on different problems, in order to use this experience to choose

25

which algorithms to apply to new problems [Hutter et al., 2018]. In other words,

meta-learning builds a prior knowledge based on experience and applies this prior to

improve performance of learning algorithms. Following this idea, meta-learning for

BO assumes that BO is applied to many similar optimization problems in a sequence

such that knowledge about the general problem structure can be exploited on future

optimization problems.

Meta-learning can be combined with different steps of BO. For instance, one

approach is to use meta-learning to warmstart BO during initial design. The core

idea here is to initialize BO with a set of configurations that are known to perform

well on similar previously-solved problems. Feurer et al. [2015b], for instance, define a

set of meta-features to characterize each optimization problem and then consider two

problems similar based on a distance metric between meta-feature vectors. The authors

implement a total of 46 meta-features to define the optimization problem and then use

two distance metrics to identify similar problems. The authors apply their meta-learned

BO algorithm to optimize ML hyperparameters on a set of 57 benchmarks and show

that it improves the performance of BO considerably.

Another approach is to incorporate meta-learning in the surrogate model. Schilling

et al. [2016] achieve this by training a separate GP for each previous problem and a

GP for the new problem and combining the predictions of all GPs when optimizing the

new problem. The GPs are combined with a weighing parameter so that more weight

is given to the GPs of similar problems. After the GPs are trained, prediction can be

done linearly in the number of GPs. The authors evaluate their solution and show that

it is more scalable and leads to better results than previous approaches in the literature.

In a later work, Wistuba et al. [2018] expand on their work [Schilling et al.,

2016] by incorporating meta-learning in the acquisition function. The authors adopt a

similar approach of training a separate GP for each problem, including the new problem.

However, instead of looking at the prediction of these GPs directly, their approach looks

at the predicted improvement of each GP for their respective problem and combines it

with the expected improvement on the new problem. The authors once again show that

their solution is more scalable and leads to better results, when compared to previous

solutions.

At last, other approaches consist of trying to identify the similarity to previous

problems on the fly and can often recover from uninformative meta-learning priors [Lin-

dauer and Hutter, 2018]. Lindauer and Hutter [2018] propose warmstarting BO with a

initial design chosen so that configurations that are too similar are avoided, reducing

the overhead in the initial design. The authors then use this initial design to initialize

a meta-learning BO model that fits one separate model for each optimization problem

26

(previous and current). Their model uses a set of weights to control how much weight is

given to previous models compared to the current model. These weights are optimized,

so that as iterations progress, the new model receives more weight, effectively forgetting

uninformative priors.

The key difference between BOPrO and these meta-learning approaches for BO

is in our prior flexibility. Meta-learning approaches assume that a prior in the form

of previously optimized problems. This type of prior is not always present, as users

may wish to apply BO to a problem without any previous optimization experience.

Further, users might have an insight on which configurations are likely to perform well

from their experience in the field, but not data from previous executions to show this

prior. Without this data, they are not able to input these priors with meta-learning.

Conversely, BOPrO provides a flexible prior definition that allows for both priors based

on previous data and priors based on previous user knowledge.

3.4 The Novelty of BOPrO

In this section, we briefly compare the features and contributions of BOPrO to the

current state-of-the-art of prior-injection in BO. Namely, we identify four paramount

properties for a prior-guided BO framework and show that only BOPrO provides all

four properties in a single optimization framework. First, the framework must be

flexible in the prior definition, otherwise, users may be unable to input the priors

they have in BO (Flexibility). Second, the framework must be able to forget wrong

or uninformative priors and still converge to good function values (Forgetting). Third,

the framework must be efficient in the number of function evaluations it requires to

converge (Efficiency). At last, it is desirable for the framework to properly combine the

prior knowledge with BO’s predictive model into a unified pseudo-posterior (Posterior).

This last step is important as it provides a direct balance between prior and model

and allows BO’s acquisition function to properly quantify promising configurations

according to the prior and model jointly.

Table 3.1 shows a comparison of BOPrO and previous state-of-the-art approaches

according to these four properties. We note that standard BO approaches, such as

Spearmint [Snoek et al., 2012], simply do not support prior-injection. In the table,

we combine all previous BO solutions that do not support priors as a single entry.

Likewise, all meta-learning approaches are based on a less flexible prior definition, thus,

for simplicity, we also combine all meta-learning approaches into a single entry. We

consider that these combined entries provide a specific property if at least one approach

27

Table 3.1. Comparison of BOPrO and previous state-of-the-art prior-guided
optimization solutions.

Approach Flexibility Forgetting Efficiency Posterior
Standard BO × × × n/a
Meta-learning × X X X
Swersky [2017] × × X X
SMAC × × X ×
iRace × × X ×
Li et al. [2020] X X × ×
Ramachandran et al. [2020] X × X ×
TPE × × × X
BOPrO X X X X

inside the category provides the property. Conversely, we compare our work to all

BO frameworks that support prior-injection in our related work, since those are the

approaches that more closely relate to ours.

At last, we note that Table 3.1 summarizes the properties that we consider more

important for prior-injection in BO, however, BOPrO also provides a number of desirable

features for BO that most other approaches do not. Namely, BOPrO is model agnostic

and can be implemented with any traditional BO surrogate model, such as GPs, RFs,

TPE, and BNNs. BOPrO can be combined with cBO to support constrained search

spaces (c.f. Section 5.2.4). At last, BOPrO provides a hyperparameter that explicitly

controls how much weight is given to the prior vs the model, allowing users to specify

how confident they are in their own priors. This hyperparameter is also treated such

that regardless of the hyperparameter value, BOPrO will always recover from misleading

priors.

28

Chapter 4

Bayesian Optimization with Priors

We propose a BO approach dubbed BOPrO that allows field experts to inject user

prior knowledge into the optimization. BOPrO uses a Bayesian approach to combine a

user-defined prior with a probabilistic model that captures the likelihood of the observed

data (xi, yi)
n
i=1. BOPrO is independent of the probabilistic model being used; it can be

freely combined with, e.g., Gaussian processes (GPs), random forests, or Bayesian NNs.

4.1 Priors

BOPrO allows users to inject prior knowledge into BO. This is done via a prior

distribution that informs where in the input space X we expect to find good f(x)

values. A point is considered “good” if it leads to low function values in a minimization

problem. We denote the prior distribution Pg(x), where g denotes that this is a prior

on good points and x ∈ X is a given point. Examples of priors are shown in Figures 4.2

and 5.8.

Similarly, we define a prior on where in the input space we expect to have “bad”

points. Although we could have a user-defined probability distribution Pb(x), we aim

to keep the decision-making load on users low and thus, for simplicity, only require the

definition of Pg(x) and compute Pb(x) = 1− Pg(x).1 Pg(x) is normalized to [0, 1] by

min-max scaling before computing Pb(x).

In practice, x contains several dimensions but it is difficult for human experts

to provide a multivariate distribution Pg(x). Users can easily specify, e.g., draw, a

univariate or bivariate probability distribution for continuous dimensions, or provide a

1We note that for continuous spaces, Pb(x) is not a probability distribution as it does not integrate
to 1 and therefore is only a pseudo-prior. For discrete spaces, we normalize Pb(x) so that it sums to 1
and therefore is a proper distribution and prior.

29

list of probabilities for each level of an ordinal or categorical variable. In BOPrO, users

are free to define a complex multi-variate distribution, but we expect the standard use

case to be that users only want to specify univariate distributions, implicitly assuming

a prior that factors as

Pg(x) =
N∏
i=1

Pg(xi), (4.1)

where N is the number of variables in X , xi is the i-th input dimension of X , and g

denotes that this is a prior on good points. While a non-factorized prior can of course

be more powerful, throughout our experiments, we use this factorized prior to mimic

what we expect standard users to be able to provide. In Section 5.3.5 we show that

these factorized priors can in fact lead to similar BO performance as multivariate priors.

4.2 Model

Whereas the standard probabilistic model in BO, e.g., a GP, quantifies p(y|x) directly,

that model is hard to combine with the prior Pg(x). We therefore introduce a method to

translate the standard probabilistic model p(y|x) into a model that is easier to combine

with this prior. Similar to the TPE work described in Sec. 2.3, our generative model

combines p(x|y) and p(y) instead of directly modeling p(y|x).

The computation we perform for this translation is to quantify the probability that

a given input x is “good” under our standard probabilistic model p(y|x). As in TPE,

we define configurations as “good” if their observed y-value is below a certain quantile

γ of the observed function values (so that p(y < fγ) = γ). We in addition exploit the

fact that our standard probabilistic model p(y|x) has a Gaussian form, and under this

Gaussian prediction we can compute the probability Mg(x) of the function value lying

below a certain quantile using the standard closed-form formula for PI [Kushner, 1964]:

Mg(x) = p(f(x) < fγ|x, (xi, yi)ti=1) (4.2)

= Φ

(
fγ − µx

σx

)
,

where (xi, yi)
t
i=1 are the evaluated configurations, µx and σx are the mean and

standard deviation of the probabilistic model at x, and Φ is the standard normal CDF,

see Figure 4.1. Note that there are two probabilistic models here:

1. The standard probabilistic model of BO, with a prior over functions p(f), updated

by data (xi, yi)
t
i=1 to yield a pseudo-posterior over functions p(f |(xi, yi)ti=1),

30

Figure 4.1. Our model is composed by a probabilistic model and the probability
of improving over the threshold fγ , i.e., right tail of the Gaussian. The black curve
is the probabilistic model’s mean and the shaded area is the model’s variance.

allowing us to quantify the probability Mg(x) = p(f(x) < fγ|x, (xi, yi)ti=1) in

Eq. (4.2).

2. The TPE-like generative model that combines p(y) and p(x|y) instead of directly

modelling p(y|x).

Eq. (4.2) bridges these two models by using the probability of improvement from BO’s

standard model as the probabilityMg(x) in TPE’s model. With this same formulation,

we also define a probability Mb(x) of x being bad as Mb(x) = 1 −Mg(x). This is

equivalent to computing the probability of the function value lying above the quantile

fγ.

4.3 Pseudo-posterior

BOPrO combines the prior in Eq. (4.1) and the model in Eq. (4.2) into a pseudo-

posterior on “good” points. This pseudo-posterior represents the updated beliefs on

where we can find good points, based on the prior and data that has been observed.

The pseudo-posterior on good points is computed as the product of the prior and the

31

model:

b(x) ∝ Pb(x)Mb(x)
t
β , (4.3)

where t is the current optimization iteration, β is an optimization hyperparameter,

and Pg(x) and Mg(x) are defined in Eq. (4.1) and Eq. (4.2) respectively. We note

that the pseudo-posterior computed in Eq. (4.3) is not normalized, but this suffices

for BOPrO as the normalization constant cancels out (c.f. Section 4.5). Since g(x) is

not normalized and we include the exponent t/β in Eq. (4.3), we refer to g(x) as a

pseudo-posterior.

The t/β fraction in Eq. (4.3) controls how much weight is given to the model. As

the optimization progresses, more weight is given to the model over the prior. Intuitively,

this means that we put more emphasis on the predictions of the model as it observes

more data and becomes more accurate. We do this under the assumption that the

model will eventually be better than the user at predicting where to find good points.

In addition, this also allows to recover from “bad” priors as we show in Section 5.3.2;

similar to, and inspired by Bayesian models, the data ultimately washes out the prior.

The β hyperparameter defines the balance between prior and model, with higher β

values giving more importance to the prior.

We note that, since our pseudo-posterior is not normalized, computing it directly

as in Equation (4.3) can lead to numerical issues. Namely, the pseudo-posterior can

reach extremely low values if the prior and model probabilities are low, especially as

the t/β exponent grows. To prevent this, in practice, BOPrO uses the logarithm of the

pseudo-posterior instead:

log(g(x)) ∝ log(Pg(x)) + t
β
· log(Mg(x)). (4.4)

Once again, we also define a pseudo-posterior distribution on bad x, b(x), with a

similar approach, only using Pb(x) and Mb(x) instead. We then use these quantities

to compute a density model p(x|y) as follows:

p(x|y) ∝

g(x) if f(x) < fγ

b(x) if f(x) ≥ fγ.
(4.5)

4.4 Model and Pseudo-posterior Visualization

This section we illustrate the prior Pg(x), the model Mg(x) and the pseudo-posterior

g(x) for a 1-dimensional Branin function and their evolution over the optimization

iterations. We define the 1D Branin function by setting the second dimension of the

32

Branin function to the global optimum x2 = 2.275 and optimizing the first dimension.

We perform an initial design of the usual budget of D + 1 = 2 random points and use

a GP as predictive model. We use a Beta distribution prior Pg(x) = B(3, 3) which

resembles a truncated Gaussian centered close to the global optimum and compute

the model Mg(x) and pseudo-posterior g(x) following Eq. (4.2) and (4.3) respectively.

Figure 4.2 shows the evolution at different stages.

In Figure 4.2a, after the initialization phase, the pseudo-posterior in the top row

is almost equal to the prior: in the absence of much data, BOPrO relies heavily on the

prior. In 4.2b, the pseudo-posterior is high near the global minimum, around x = π,

where both the prior and the model agree there are good points. The optimum has

almost been found at this stage.2

After 10 BO iterations in 4.2c, there are three regions with high pseudo-posterior

which lead to future exploration steps on these regions as it can be seen in 4.2d on the

right and left of the global optimum in light green. In the middle region of 4.2c, the

pseudo-posterior vanishes because the model is certain that sampling from that region

will not bring any improvement. After 20 iterations, the pseudo-posterior vanishes

where the model is certain there will be no improvement but is high wherever there is

uncertainty in the GP. Note that the influence of the prior after 20 iterations is weaker,

because of t/β in Eq. (4.4). We also studied in preliminary experiments the influence

of choosing different β on the 1D Branin and observed that the performance of BOPrO

is fairly robust with respect to β.

4.5 Acquisition Function

We adopt the EI formulation used in [Bergstra et al., 2011] by replacing their Adap-

tive Parzen Estimators with our computation of the pseudo-posterior probabilities in

Eq. (4.3). Namely, we compute EI as:

EIfγ (x) :=

∫ ∞
−∞

max(fγ − y, 0)p(y|x)dy =

∫ fγ

−∞
(fγ − y)

p(x|y)p(y)

p(x)
dy. (4.6)

As defined in 4.2, p(y < fγ) = γ and γ is a quantile of the observed objective

values {y(i)}. Then p(x) =
∫
R p(x|y)p(y)dy = γg(x) + (1 − γ)g(x), where g(x) and

2Please note that the scale of the Model and the log scale of the Pseudo-posterior don’t allow
a proper visualization that explains all the bumps in the Pseudo-posterior. As an example in 4.2b
around 1 we see a bump that is not supported by a bump in the model. Indeed, the model has a
small bump that is not visible in the plot and the log scale magnifies that in a visible bump in the
pseudo-posterior. On the other hand, the bumps that are visible in the model are plateaued in the
pseudo-posterior so that different heights correspond to a pseudo-posterior of 1.

33

b(x) are the pseudo-posterior introduced in Section 4.3. Therefore

EIfγ (x) =

∫ fγ

−∞
(fγ − y)p(x|y)p(y)dy =

g(x)

∫ fγ

−∞
(fγ − y)p(y)dy =

γfγg(x)− g(x)

∫ fγ

−∞
yp(y)dy, (4.7)

so that finally

EIfγ (x) =
γfγg(x)− g(x)

∫ fγ
−∞ yp(y)dy

γg(x) + (1− γ)b(x)
∝
(
γ +

b(x)

g(x)
(1− γ)

)−1
. (4.8)

Eq. (4.8) shows that to maximize improvement we would like points x with

high probability under g(x) and low probability under b(x), i.e., minimizing the ratio

b(x)/g(x). We note that the point that maximizes the ratio for our unnormalized pseudo-

posterior will be the same that maximizes the ratio for normalized pseudo-posterior

and, thus, we do not need to compute the normalized pseudo-posterior.

4.6 Formal Analysis

The dynamics of the BOPrO algorithm can be understood in terms of the following

proposition:

Proposition 1 Given fγ, Pg(x), Pb(x), Mg(x), Mb(x), g(x), b(x), p(x|y), and β as

above, then

lim
t→∞

arg max
x∈X

EIfγ (x) = lim
t→∞

arg max
x∈X

Mg(x),

where EIfγ is the Expected Improvement acquisition function as defined in Eq. (4.6)

and Mg(x) is as defined in Eq. (4.2).

Which can be derived as shown.

34

lim
t→∞

arg max
x∈X

EIfγ (x) (4.9)

= lim
t→∞

arg max
x∈X

∫ fγ

− inf

(fγ − y)p(x|y)p(y)dy (4.10)

= lim
t→∞

arg max
x∈X

g(x)

∫ fγ

− inf

(fγ − y)p(y)dy (4.11)

= lim
t→∞

arg max
x∈X

(
γfγg(x)− g(x)

∫ fγ

− inf

yp(y)dy

)
(4.12)

= lim
t→∞

arg max
x∈X

γfγg(x)− g(x)
∫ fγ
− inf

yp(y)dy

γg(x) + (1− γ)b(x)
(4.13)

= lim
t→∞

arg max
x∈X

(
γ +

b(x)

g(x)
(1− γ)

)−1
(4.14)

= lim
t→∞

arg max
x∈X

(
γ +

b(x)

g(x)
(1− γ)

)− 1
t

(4.15)

= lim
t→∞

arg max
x∈X

γ +
Pb(x)Mb(x)

t
β

Pg(x)Mg(x)
t
β

(1− γ)

− 1
t

(4.16)

= lim
t→∞

arg max
x∈X

Pb(x)Mb(x)
t
β

Pg(x)Mg(x)
t
β

(1− γ)

− 1
t

(4.17)

= lim
t→∞

arg max
x∈X

(
Pb(x)

Pg(x)

)− 1
t

(
Mb(x)

t
β

Mg(x)
t
β

)− 1
t

(1− γ)−
1
t (4.18)

= lim
t→∞

arg max
x∈X

(
Mb(x)

Mg(x)

)− 1
β

(4.19)

= lim
t→∞

arg max
x∈X

(
1−Mg(x)

Mg(x)

)− 1
β

(4.20)

= lim
t→∞

arg max
x∈X

(
1

Mg(x)
− 1

)− 1
β

(4.21)

= lim
t→∞

arg max
x∈X

(Mg(x))
1
β (4.22)

= lim
t→∞

arg max
x∈X

Mg(x) (4.23)

Proposition 1 shows that in early BO iterations the prior for the optimum will have

a predominant role, but in later BO iterations the model will grow more important and

the prior washes out. If BOPrO is run long enough, it will trust only the probabilistic

35

model Mg(x) informed by the data.

4.7 Putting It All Together

Algorithm 2 shows the BOPrO algorithm, based on the components defined in the

previous sections. In line 3, BOPrO starts with a design of experiments (DoE) phase,

where it randomly samples a number of points from the user-defined prior Pg(x). After

initialization, the BO loop starts at line 4. In each loop iteration, BOPrO fits the

probabilistic model on the previously evaluated points (lines 5 and 6) and computes

the pseudo-posterior g(x) and b(x) (lines 7 and 8 respectively). The EI acquisition

function is computed next, using the pseudo-posterior, and the point that maximizes

EI is selected as the next point to evaluate at line 9. The black-box function evaluation

is performed at line 10. This BO loop is repeated for a pre-defined number of iterations,

according to the user-defined budget B.

Algorithm 2 BOPrO Algorithm. D keeps track of all evaluated configurations and
their function value: (xi, yi)

t
i=1

1: Input: Input space X , user-defined prior distributions Pg(x) and Pb(x), quantile
γ and BO budget B.

2: Output: Optimized point xinc.
3: D ← Initialize(X)
4: for t = 1 to B do
5: Mg(x)← fit model good(D)
6: Mb(x)← fit model bad(D)

7: g(x)← Pg(x) · Mg(x)
t
β

8: b(x)← Pb(x) · Mb(x)
t
β

9: xi ∈ arg maxx∈X EIfγ (x)
10: yi ← f(xi)
11: D = D ∪ (xi, yi)
12: end for
13: xinc ← ComputeBest(D)
14: return xinc

36

5
0

5
10

0.
0

0.
5

1.
0

Prior
Pr

io
r

5
0

5
10

0.
00

0.
25

0.
50

0.
75

1.
00

Model

M
od

el
Po

st
er

io
r 20151050

Posterior

5
0

5
10

0.
00

0.
25

0.
50

0.
75

1.
00

Model

M
od

el
Po

st
er

io
r 20151050

Posterior

5
0

5
10

0.
00

0.
25

0.
50

0.
75

1.
00

Model

M
od

el
Po

st
er

io
r 20151050

Posterior

Re
al

 F
un

ct
io

n
GP

Op
tim

um
In

cu
m

be
nt

RS
BO

Th
re

sh
ol

d
Ne

xt
 p

oi
nt

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40 3.

26

3.
35

(a
)

0
B

O
it

er
at

io
n

s

5
0

5
10

x
0

10
0

20
0

f(x)
0.

40
0.

40

0.
71

(b
)

5
B

O
it

er
a
ti

o
n

s

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

0.
40

0.
40

(c
)

1
0

B
O

it
er

a
ti

o
n

s

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

0.
40

0.
40

(d
)

2
0

B
O

it
er

a
ti

o
n

s

F
ig
u
re

4
.2
.

B
re

a
k
d

ow
n

o
f

th
e

p
ri

o
r
P
g
(x

)
=
B

(3
,3

),
th

e
m

o
d

el
M
g
(x

)
a
n

d
th

e
p
se

u
d
o
-p

o
st

er
io

r
g
(x

)
(t

o
p

ro
w

)
fo

r
th

e
1
-d

im
en

si
o
n
a
l

B
ra

n
in

fu
n
ct

io
n

(b
o
tt

o
m

ro
w

)
a
n

d
th

ei
r

ev
o
lu

ti
o
n

ov
er

th
e

o
p

ti
m

iz
a
ti

o
n

it
er

a
ti

o
n

s.
T

w
o

ra
n

d
o
m

p
o
in

ts
fr

o
m

th
e

p
ri

o
r

a
re

sa
m

p
le

d
to

in
it

ia
li

ze
th

e
G

P
m

o
d

el
(b

o
tt

o
m

ro
w

)
b

ef
o
re

st
ar

ti
n
g

B
O

P
rO

.
T

h
e

b
ot

to
m

ro
w

sh
ow

s
th

e
sa

m
p
le

s
ex

p
lo

re
d

d
u
ri

n
g

op
ti

m
iz

at
io

n
.

T
h

e
b

lu
e/

g
re

en
x
’s

d
en

o
te

B
O

P
rO

sa
m

p
le

s,
w

it
h

g
re

en
sa

m
p

le
s

d
en

o
ti

n
g

la
te

r
it

er
a
ti

o
n

s.
T

h
e

b
lu

e
li

n
e

a
n

d
sh

a
d
ed

a
re

a
sh

ow
th

e
m

ea
n

a
n

d
u

n
ce

rt
a
in

ty
o
f

th
e

G
P

m
o
d

el
.

37

Chapter 5

Experiments

In this section, we perform an empirical evaluation of BOPrO. We first present our

experimental setup for BOPrO, then present our experiments separated in two sections.

First, we show experiments comparing BOPrO to other state-of-the-art baselines, with

and without priors. We compare BOPrO and the baselines on a suite of synthetic

benchmarks and a real-world application. Next, we perform a suite of ablation studies

on BOPrO, validating the assumptions and goals we set for our solution.

5.1 Experimental Setup

Before presenting our experiments, we will describe the experimental setup. All

experiments use the setup described in this section, unless stated otherwise.

5.1.1 Implementation.

We use the BOPrO implementation provided in HyperMapper1 [Nardi et al., 2018]. We

use GPs for all experiments. We use GPy’s [GPy, 2012] GP implementation with the

Matérn5/2 kernel. We use different lengthscales for each input dimension, learned via

Automatic Relevance Determination (ARD) [Neal, 2012]. We set the model weight

hyperparameter to β = 10 and the model quantile to γ = 0.05 (See Sections 5.3.6

and 5.3.7). Before starting the main BO loop, all methods are initialized by randomly

sampling points. We use the default for which baseline if there is one. For BOPrO

we sample D + 1 points, randomly sampled from the user prior. We also implement

interleaving which randomly samples a point to explore during BO with a 10% chance.

1https://github.com/luinardi/hypermapper

38

We optimize our EI acquisition function using a combination of a multi-start local

search and CMA-ES Hansen and Ostermeier [1996]. Our multi-start local search is

similar to the one used in SMAC Hutter et al. [2011]. Namely, we start local searches on

the 10 best points evaluated in previous BO iterations, on the 10 best performing points

from a set of 10,000 random samples, on the 10 best performing points from 10,000

random samples drawn from the prior, and on the mode of the prior. To compute the

neighbors of each of these 31 total points, we normalize the range of each parameter to

[0, 1] and randomly sample four neighbors from a truncated Gaussian centered at the

original value and with standard deviation σ = 0.1. For CMA-ES, we use the public

implementation of pycma Hansen et al. [2019]. We run pycma with two starting points,

one at the incumbent and one at the mode of the prior. For both initializations we set

σ0 = 0.2. We only use CMA-ES for our continuous search space benchmarks.

5.1.2 Benchmarks.

We use a suite of four synthetic benchmarks for the majority of our experiments. Our

synthetic benchmarks are comprised of a mathematical function and four syntheti-

cally generated AutoML benchmarks, from the Profet framework [Klein et al., 2019].

All Profet benchmarks are generated by a generative model built using performance

data on OpenML or UCI datasets. We use emukit’s public implementation for these

benchmarks [Paleyes et al., 2019].

Branin is a well-known synthetic benchmark for optimization problems [Dixon, 1978].

The Branin function has two input dimensions and three global minima. The Branin

function is defined as:

f(x1, x2) = a(x2 − bx21 + cx1 − r)2 + s(1− t)cos(x1) + s (5.1)

where x1 and x2 are the function’s input parameters and a, b, c, r, s, and t are

usually set to a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, and t = 1/(8π).

SVM is a hyperparameter-optimization benchmark in 2D based on Profet. This bench-

mark is generated by a generative meta-model built using a set of SVM classification

models trained on 16 OpenML tasks. The benchmark has two input parameters,

corresponding to SVM hyperparameters.

FC-Net is a hyperparameter and architecture optimization benchmark in 6D based on

Profet. The FC-Net benchmark is generated by a generative meta-model built using

a set of feed-forward neural networks trained on the same 16 OpenML tasks as the

SVM benchmark. The benchmark has six input parameters corresponding to network

hyperparameters.

39

Table 5.1. Search spaces for our synthetic benchmarks. For the Profet bench-
marks, we report the original ranges and whether or not a log scale was used.

Benchmark Parameter name Parameter values Log scale
Branin x1 [−5, 10] -

x2 [0, 15] -
SVM C [e−10, e10] X

γ [e−10, e10] X
FCNet learning rate [10−6, 10−1] X

batch size [8, 128] X
units layer 1 [16, 512] X
units layer 2 [16, 512] X
dropout rate l1 [0.0, 0.99] -
dropout rate l2 [0.0, 0.99] -

XGBoost learning rate [10−6, 10−1] X
gamma [0, 2] -
L1 regularization [10−5, 103] X
L2 regularization [10−5, 103] X
number of estimators [10, 500] -
subsampling [0.1, 1] -
maximum depth [1, 15] -
minimum child weight [0, 20] -

XGBoost is a hyperparameter-optimization benchmark in 8D based on Profet. The

XGBoost benchmark is generated by a generative meta-model built using a set of

XGBoost regression models in 11 UCI datasets. The benchmark has eight input

parameters, corresponding to XGBoost hyperparameters.

The search spaces for each benchmark are summarized in Table 5.1. For the

Profet benchmarks, we report the original ranges and whether or not a log scale was

used. However, in practice, Profet’s generative model transforms the range of all

hyperparameters to a linear [0, 1] range.

5.1.3 Priors

We build two synthetic priors in a controlled way for our experiments. We emphasize

that in practice, manual priors would be based on the domain experts’ expertise on their

applications; here, we only use artificial priors to guarantee that our prior is not biased

by our own expertise for the benchmarks we used. In practice, users will manually

define these priors like in our real-world experiments (Section 5.2.4). We perform a

more in-depth analysis of the effects of different prior strengths in Section 5.3.3.

Our synthetic priors take the form of Gaussian distributions centered near the

40

RS (10,000x)
Spearmint

BOPrO Prior
BOPrO Weak Prior

Prior Sampling
Initialization

0 100 200
Number of Evaluations

12
8
4
0
4

Lo
g

Si
m

pl
e

Re
gr

et Branin

0 100 200
Number of Evaluations

16
12

8
4
0 SVM

0 100 200
Number of Evaluations

5
4
3
2
1
0 FC-Net

0 100 200
Number of Evaluations

5.0
2.5
0.0
2.5
5.0

XGBoost

Figure 5.1. Log regret comparison of BOPrO with and without priors, random
sampling, and Spearmint. The line and shaded regions show the mean and standard
deviation of the log simple regret after 20 runs. All methods were initialized with
N + 1 random samples, where N is the number of input dimensions, indicated by
the vertical dashed line. We run the benchmarks for 100d iterations, capped at
200.

optimum. For each input x ∈ X , we inject a prior of the form N (µx, σ
2
x), where µx

is sampled from a Gaussian centered at the optimum value xopt
2 for that parameter

µx ∼ N (xopt, σ
2
x), and σx is a hyperparameter of our experimental setup determining

the prior’s strength. For each run of BOPrO, we sample new µx’s. This setup provides

us with a synthetic prior that is close to the optimum, but not exactly centered at it,

and allows us to control the strength of the prior by σx. We use two prior strengths in

our experiments: a strong prior, computed with σx = 0.01, and a weak prior, computed

2If the optimum for a benchmark is not known, we approximate it using the best value found
during previous BO experiments.

41

with σx = 0.1.

5.2 Performance Comparison

We first compare BOPrO’s optimization performance to several state-of-the-art baselines.

We compare BOPrO to state-of-the-art approaches that do not support users priors,

showing that BOPrO can leverage the user priors and achieve new state-of-the-art

performance, and to other state-of-the-art approaches that support user priors, showing

that BOPrO can better combine user priors and BO and achieve better results.

5.2.1 Performance on Synthetic Benchmarks

We first evaluate BOPrO’s performance on the synthetic benchmarks, comparing to

several baselines. Namely, we compare BOPrO with and without priors (both weak and

strong) to Spearmint, randomly sampling points from the prior, and 10,000x random

sampling (RS). 10,000x RS is a uniform random sampling approach (i.e. no priors) with

10,000x the budget of the other optimizers, i.e., for each sample evaluated by BO or

prior sampling, 10,000x RS evaluates 10,000 samples. Spearmint is a well-adopted BO

approach using GPs and the EI acquisition function. In contrast to BOPrO, Spearmint

always uses 2 uniform random samples for initialization.

Figure 5.1 shows this comparison on our four synthetic benchmarks. The methods

are compared using the log simple regret on five runs (mean and std error reported)

on the four synthetic benchmarks. The log simple regret is defined as the natural

logarithm of the distance between the function value at the best configuration found

by the optimization method (i.e. the incumbent) and the optimum of the black-box

function.

Figure 5.1 shows that BOPrO with the strong prior (dubbed BOPrO Prior) beats

10,000x Random Sampling on all benchmarks while this is not always the case for

other optimization methods, including Spearmint. BOPrO Prior performs better than

BOPrO with a weak prior on all benchmarks as expected. It also either outperforms

or matches the performance of sampling from the prior; this is expected because prior

sampling cannot recover from a non-ideal prior. The two methods are identical up to

the initialization phase because they both sample from the same prior in that phase.

BOPrO with a strong prior is also more sample efficient and finds better or similar

results to Spearmint on all benchmarks. Importantly, in all our experiments, BOPrO

with a good prior consistently shows tremendous speedups in the early phases of the

42

BOPrO
Spearmint

SMAC
TuRBO

Initialization

0 100 200
Number of Evaluations

15

10

5

0

5

Lo
g

Si
m

pl
e

Re
gr

et Branin

0 100 200
Number of Evaluations

16
12

8
4
0

Lo
g

Si
m

pl
e

Re
gr

et SVM

0 100 200
Number of Evaluations

5
4
3
2
1
0

Lo
g

Si
m

pl
e

Re
gr

et FC-Net

0 100 200
Number of Evaluations

5.0
2.5
0.0
2.5
5.0
7.5

Lo
g

Si
m

pl
e

Re
gr

et XGBoost

Figure 5.2. Log regret comparison of BOPrO, SMAC, TuRBO, and Spearmint.
The line and shaded regions show the mean and standard deviation of the log
simple regret after 20 runs. All methods were initialized with N + 1 random
samples, where N is the number of input dimensions, indicated by the vertical
dashed line. We run the benchmarks for 100d iterations, capped at 200.

optimization process, requiring on average only 15 iterations to reach the performance

that Spearmint reaches after 100 iterations (6.67× faster).

5.2.2 Comparison to Baselines without Priors

We next extend our performance comparison to other state-of-the-art optimizers without

priors. Namely, we compare BOPrO to Spearmint, SMAC, and TuRBO using log regret

on our four synthetic benchmarks. SMAC is a state-of-the-art optimizer that uses RFs

rather than GPs and the EI acquisition function [Hutter et al., 2011], while TuRBO

uses GPs and EI, but employs a novel mix of local and global optimization for improved

performance. For TuRBO, we also have to choose the number of trust regions that

43

BOPrO
Li et al.

Ramachandran et al.
TPE

Initialization

0 100 200
Number of Evaluations

15

10

5

0

5

Lo
g

Si
m

pl
e

Re
gr

et Branin

0 100 200
Number of Evaluations

16
14
12
10

8
6

Lo
g

Si
m

pl
e

Re
gr

et SVM

0 100 200
Number of Evaluations

4.5

3.0

1.5

0.0

Lo
g

Si
m

pl
e

Re
gr

et FC-Net

0 100 200
Number of Evaluations

3
0
3
6
9

Lo
g

Si
m

pl
e

Re
gr

et XGBoost

Figure 5.3. Log regret comparison of BOPrO, TPE, and the approaches of Li et
al. and Ramachandran et al. , all with a strong prior. The line and shaded regions
show the mean and standard deviation of the log simple regret after 20 runs.
BOPrO was initialized with D + 1 random samples, where D is the number of
input dimensions, indicated by the vertical dashed line. We run the benchmarks
for 200 iterations.

TuRBO will use during optimization (c.f. Section 3), we experiment with different

values for this hyperparameter and ultimately use two trust regions for this comparison,

which lead to the best performance. SMAC and TuRBO are initialized with D + 1

uniform random samples.

Figure 5.2 shows the comparison. BOPrO still achieves better or similar per-

formance to all baselines on all benchmarks. Notably, BOPrO outperforms SMAC

and TuRBO considerably on all benchmarks and, as before, achieves either better or

similar performance to Spearmint on all benchmarks. Spearmint outperforms SMAC

and TuRBO on all benchmarks except for SVM, where TuRBO achieves the best

performance out of the no-prior baselines.

44

BOPrO
Li et al.

Ramachandran et al.
TPE

Initialization

0 100 200
Number of Evaluations

12
8
4
0
4
8

Lo
g

Si
m

pl
e

Re
gr

et Branin

0 100 200
Number of Evaluations

16

12

8

4

0

Lo
g

Si
m

pl
e

Re
gr

et SVM

0 100 200
Number of Evaluations

4.5

3.0

1.5

0.0

Lo
g

Si
m

pl
e

Re
gr

et FC-Net

0 100 200
Number of Evaluations

3
0
3
6
9

Lo
g

Si
m

pl
e

Re
gr

et XGBoost

Figure 5.4. Log regret comparison of BOPrO, TPE, and the approaches of Li et
al. and Ramachandran et al. , all with a weak prior. The line and shaded regions
show the mean and standard deviation of the log simple regret after 20 runs.
BOPrO was initialized with D + 1 random samples, where D is the number of
input dimensions, indicated by the vertical dashed line. We run the benchmarks
for 200 iterations.

5.2.3 Comparison to Baselines with Priors

We compare BOPrO to other BO approaches that support user priors. Namely, we

compare BOPrO to the approach of Li et al. [2020], Ramachandran et al. [2020], and

TPE [Bergstra et al., 2013]. All three approaches are detailed in Section 3. We compare

the four methods using log regret on our four synthetic benchmarks and compare them

under three different prior strengths. We inject a strong prior, a weak (but accurate)

prior, and a misleading prior and evaluate the performance of each approach. The

strong and weak priors are as defined in our experimental setup (Section 5.1). For our

misleading prior, we use a Gaussian centered at the worst point out of 10,000,000D

uniform random samples. Namely, for each parameter, we inject a prior of the form

45

BOPrO
Li et al.

Ramachandran et al.
TPE

Initialization

0 100 200
Number of Evaluations

12
8
4
0
4

Lo
g

Si
m

pl
e

Re
gr

et Branin

0 100 200
Number of Evaluations

16
12

8
4
0

Lo
g

Si
m

pl
e

Re
gr

et SVM

0 100 200
Number of Evaluations

4
3
2
1
0
1

Lo
g

Si
m

pl
e

Re
gr

et FC-Net

0 100 200
Number of Evaluations

1.5
3.0
4.5
6.0
7.5

Lo
g

Si
m

pl
e

Re
gr

et XGBoost

Figure 5.5. Log regret comparison of BOPrO, TPE, and the approaches of Li
et al. and Ramachandran et al. , all with a misleading prior. The line and shaded
regions show the mean and standard deviation of the log simple regret after 20
runs. BOPrO was initialized with D + 1 random samples, where D is the number
of input dimensions, indicated by the vertical dashed line. We run the benchmarks
for 200 iterations.

N (xw, σ
2
w), where xw is the value of the parameter at the point with highest function

value out of 10,000,000D uniform random samples and σw = 0.01.

Figure 5.3 shows the four methods with the strong prior. BOPrO achieves

superior or similar final performance on all four benchmarks. Compared to TPE and

the approach of Li et al. , BOPrO achieves better performance in three out of four

benchmarks and equivalent performance on the final benchmark. Compared to the

approach of Ramachandran et al. , BOPrO performs better on the Branin benchmark

and achieves similar final performance on the other three. We note, however, that the

approach of Ramachandran et al. converges to the final performance faster than BOPrO

on the SVM and XGBoost benchmarks.

Figure 5.4 shows the four methods with the weak prior. BOPrO once again

46

RS HyperMapper BOPrO Expert Configuration Initialization

0 10 20 30 35 50
Number of Evaluations

5M
6M
7M
9M

10M
13M
16M

Cy
cle

s (
lo

g)

Shallow CNN

0 10 25 35 50
Number of Evaluations

1M

2M

3M

5M

9M

Cy
cle

s (
lo

g)

Deep CNN

Figure 5.6. Log regret comparison of random sampling, HyperMapper, BOPrO,
and a human expert configuration on the CNN benchmarks. The line and shaded
regions show the mean and standard deviation of the log simple regret after 3
runs. BOPrO and HyperMapper were initialized with N + 1 random samples,
where N is the number of input dimensions, indicated by the vertical dashed line.

outperforms TPE and the approach of Li et al. , this time on all four synthetic

benchmarks. Compared to the approach of Ramachandran et al. , BOPrO now performs

better on two of the synthetic benchmarks (Branin and SVM); has similar performance,

but converges faster on the FCNet benchmark; and performs worse on the XGBoost

benchmark.

At last, Figure 5.4 shows the four methods with the misleading prior. BOPrO is

the only method that can consistently recover from the misleading prior and converge

to good solutions. In particular, BOPrO vastly outperforms the TPE and the method

of Ramachandran et al. on all four benchmarks. BOPrO also outperforms the approach

of Li et al. on three out of four benchmarks, and achieves similar performance on the

fourth (XGBoost), although it also takes longer to converge to the final solution.

Considering the four benchmarks and three prior strengths, BOPrO performs

better than TPE in 11 out of 12 benchmarks and achieves the same performance on

the last (FCNet with a strong prior). BOPrO also outperforms the approach of Li et

al. in 10 out of 12 benchmarks, has similar performance on one, and performs slightly

worse on one (XGBoost with the wrong prior). Lastly, BOPrO performs better than

the approach of Ramachandran et al. in 7 out of 12 benchmarks, achieves similar

performance in 4 benchmarks, and performs worse in 1 benchmark. We note that

the method of Ramachandran et al. performs the best out of the three competitors,

but cannot recover from misleading priors. On the other hand, the approach of Li et

47

RS HyperMapper BOPrO Expert Configuration Initialization

0 50 100 150
Number of Evaluations

60k

160k

440k

1.2M

Cy
cle

s (
lo

g)

~43k
~35k

MD Grid

11 16 21 163k

 328k

 660k

 1.2M

~578k

~194k

Figure 5.7. Log regret comparison of random sampling, HyperMapper, BOPrO,
and a human expert configuration on the MD Grid benchmark. The line and
shaded regions show the mean and standard deviation of the log simple regret
after 3 runs. BOPrO and HyperMapper were initialized with N + 1 random
samples, where N is the number of input dimensions, indicated by the vertical
dashed line.

al. is the only competitor able to recover from misleading priors, but achieves weak

performance overall when given accurate priors. BOPrO is the only approach that can

consistently achieve good performance with both strong and weak priors, while also

being robust to misleading priors.

5.2.4 The Spatial DSL Use-case

Lastly, we apply BOPrO to the Spatial DSL real-world application.Spatial is a

programming language and corresponding compiler for the design of application ac-

celerators, i.e., FPGAs. We apply BOPrO to three Spatial benchmarks, namely, 7D

shallow and deep CNNs, and a 10D molecular dynamics grid application (MD Grid).

We compare the performance of BOPrO to RS, manual optimization, and HyperMap-

per Nardi et al. [2018], the current state-of-the-art BO solution for Spatial. For a fair

comparison between BOPrO and HyperMapper, since HyperMapper uses RFs as its

surrogate model, here, we also use RFs in BOPrO. The manual optimization and the

prior for BOPrO were provided by an unbiased Spatial developer. The priors were

provided once and kept unchanged for the whole project.

We apply BOPrO to three Spatial benchmarks. The first two benchmarks are

48

shallow and deep convolutional neural networks, while the third is a molecular dynamics

application. The three benchmarks contain only discrete (ordinal and categorical)

parameters. The search spaces and priors used for the three benchmarks are presented

in Tables 5.2, 5.3, and 5.4. The three benchmarks also include feasibility constraints,

meaning that some input parameter combinations lead to invalid configurations. This

happens because some parameter combinations lead to configurations that use more

logic units (or require more physical space) than what is provided by the target FPGA.

To handle these constraints, we implement an approach similar to constrained Bayesian

Optimization (cBO) [Gardner et al., 2014] in BOPrO. cBO weights the acquisition

function at each configuration by the probability of the configuration being feasible, as

predicted by a feasibility model. In our implementation, we use a RF model trained on

previously evaluated configurations to predict the probability of a new configuration

being feasible. When feasibility constraints are present, we also normalize the acquisition

function before multiplying by the probability of feasibility, so that both are defined in

the same range.

Figures 5.6 and 5.7 show the log regret on the Spatial benchmarks. BOPrO vastly

outperforms RS in all benchmarks. BOPrO is also able to leverage the expert’s prior and

outperforms the expert in all benchmarks (2.73×, 1.05×, and 10.41× speedup for shallow

CNN, deep CNN, and MD Grid, respectively). In the MD Grid benchmark, BOPrO

achieves better performance than HyperMapper in the early stages of optimization

(2.98× speedup after the first 10 iterations, see the plot inset), and achieves better

final performance (1.21× speedup). For context, this is a significant improvement

in the FPGA field, where a 10% improvement could qualify for acceptance in a top-

tier conference. In the CNN benchmarks, BOPrO converges to the minima regions

faster than HyperMapper (1.18× and 2× faster for shallow and deep, respectively).

Thus, BOPrO leverages both the expert’s prior knowledge and BO to provide a new

state-of-the-art for Spatial.

49

Table 5.2. Search space, priors, and expert configuration for the Shallow CNN
application. The default value for each parameter is shown in bold.

Parameter name Type Values Expert Prior
LP Ordinal [1, 4, 8, 16, 32] 16 [0.4, 0.065, 0.07,

0.065, 0.4]
P1 Ordinal [1, 2, 3, 4] 1 [0.1, 0.3, 0.3, 0.3]
SP Ordinal [1, 4, 8, 16, 32] 16 [0.4, 0.065, 0.07,

0.065, 0.4]
P2 Ordinal [1, 2, 3, 4] 4 [0.1, 0.3, 0.3, 0.3]
P3 Ordinal [1, 2, ..., 31, 32] 1 [0.1, 0.1, 0.033, 0.1,

0.021, 0.021, 0.021,
0.1, 0.021, 0.021,
0.021, 0.021, 0.021,
0.021, 0.021, 0.021,
0.021, 0.021, 0.021,
0.021, 0.021, 0.021,
0.021, 0.021, 0.021,
0.021, 0.021, 0.021,
0.021, 0.021, 0.021,
0.021]

P4 Ordinal [1, 2, ..., 47, 48] 4 [0.08, 0.0809,
0.0137, 0.1, 0.0137,
0.0137, 0.0137, 0.1,
0.0137, 0.0137,
0.0137, 0.05, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137, 0.0137,
0.0137]

x276 Categorical [false, true] true [0.1, 0.9]

50

Table 5.3. Search space, priors, and expert configuration for the Deep CNN
application. The default value for each parameter is shown in bold.

Parameter name Type Values Expert Prior
LP Ordinal [1, 4, 8, 16, 32] 8 [0.4, 0.065, 0.07,

0.065, 0.4]
P1 Ordinal [1, 2, 3, 4] 1 [0.4, 0.3, 0.2, 0.1]
SP Ordinal [1, 4, 8, 16, 32] 8 [0.4, 0.065, 0.07,

0.065, 0.4]
P2 Ordinal [1, 2, 3, 4] 2 [0.4, 0.3, 0.2, 0.1]
P3 Ordinal [1, 2, ..., 31, 32] 1 [0.04, 0.01, 0.01,

0.1, 0.01, 0.01, 0.01,
0.1, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01,
0.01, 0.2, 0.01, 0.01,
0.01, 0.01, 0.01,
0.01, 0.01, 0.1, 0.01,
0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.2]

P4 Ordinal [1, 2, ..., 47, 48] 4 [0.05, 0.005, 0.005,
0.005, 0.005, 0.005,
0.005, 0.13, 0.005,
0.005, 0.005, 0.005,
0.005, 0.005, 0.005,
0.2, 0.005, 0.005,
0.005, 0.005, 0.005,
0.005, 0.005, 0.11,
0.005, 0.005, 0.005,
0.005, 0.005, 0.005,
0.005, 0.2, 0.005,
0.005, 0.005, 0.005,
0.005, 0.005, 0.005,
0.005, 0.005, 0.005,
0.005, 0.005, 0.005,
0.005, 0.005, 0.1]

x276 Categorical [false, true] true [0.1, 0.9]

51

Table 5.4. Search space, priors, and expert configuration for the MD Grid
application. The default value for each parameter is shown in bold.

Parameter name Type Values Expert Prior
loop grid0 z Ordinal [1, 2, ..., 15, 16] 1 [0.2, 0.1, 0.05, 0.05, 0.05,

0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05]

loop q Ordinal [1, 2, ..., 31, 32] 8 [0.08, 0.08, 0.02, 0.1, 0.02,
0.02, 0.02, 0.1, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02,
0.1, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02]

par load Ordinal [1, 2, 4] 1 [0.45, 0.1, 0.45]
loop p Ordinal [1, 2, ..., 31, 32] 2 [0.1, 0.1, 0.1, 0.1, 0.05, 0.03,

0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02]

loop grid0 x Ordinal [1, 2, ..., 15, 16] 1 [0.2, 0.1, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05]

loop grid1 z Ordinal [1, 2, ..., 15, 16] 1 [0.2, 0.2, 0.1, 0.1, 0.07,
0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03]

loop grid0 y Ordinal [1, 2, ..., 15, 16] 1 [0.2, 0.1, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05]

ATOM1LOOP Categorical [false, true] true [0.1, 0.9]
ATOM2LOOP Categorical [false, true] true [0.1, 0.9]
PLOOP Categorical [false, true] true [0.1, 0.9]

5.3 Ablation Studies

We perform a series of ablation experiments to demonstrate and validate some of

the properties we envisioned for BOPrO. We explore the influence that priors of

varying qualities, including misleading priors, have in BOPrO and the impact that the

hyperparameters of BOPrO have in its optimization performance.

5.3.1 Prior Forgetting

In this section, we show that BOPrO can recover from a wrong prior and still find

good function values. This is thanks to our predictive model and the t/β parameter in

the pseudo-posterior computation. As BO progresses, the predictive model becomes

52

more accurate and receives more weight in the pseudo-posterior computation, guiding

optimization away from the wrong prior and towards better values of the objective

function. We show this behavior on the 1D and 2D Branin functions.

Figure 5.8a shows BOPrO on the 1D Branin function with an exponential prior.

Columns (b), (c), and (d) show BOPrO on the 1D Branin after D+1 = 2 initial samples

and 0, 10, 20 BO iterations respectively. After initialization, as shown in column (b),

the pseudo-posterior is nearly identical to the exponential prior and guides BOPrO

towards the region of the space on the right, which is towards the local optimum. This

happens until the predictive model becomes certain there will be no more improvement

from sampling that region (columns (c) and (d)). After that, the predictive model

guides the pseudo-posterior towards exploring regions with high uncertainty. Once the

global minimum region is found, the pseudo-posterior starts balancing exploiting the

global minimum and exploring regions with high uncertainty, as shown in column (d).

Notably, the pseudo-posterior after x > 6 falls to 0 in 5.8d, as the predictive model

is certain there will be no improvement from sampling this region which contains the

local optimum.

Figure 5.9 shows BOPrO on the 1D Branin function as in Figure 5.8 but with

a decay prior. Column (a) of Figure 5.9 shows the decay prior and the 1D Branin

function. Columns (b), (c), and (d) of Figure 5.9 show BOPrO on the 1D Branin

after D + 1 = 2 initial samples and 0, 10, and 20 BO iterations, respectively. At the

beginning of BO, as shown in column (b), the pseudo-posterior is nearly identical to

the prior and guides BOPrO towards the left region of the space. As more points are

sampled, the model becomes more accurate and starts guiding the pseudo-posterior

away from the wrong prior (column (c)). Notably, the pseudo-posterior before x = 2.5

falls to 0, as the predictive model is certain there will be no improvement from sampling

this region. After 20 iterations, BOPrO finds the optimum region, despite the poor

start (column (d)). The peak in the pseudo-posterior in column (d) shows BOPrO will

continue to exploit the optimum region as the exact optimum has not been found yet.

The pseudo-posterior is also high in the high uncertainty region after x = 4, showing

BOPrO will explore that region after it finds the optimum.

Figure 5.10 shows BOPrO on the standard 2D Branin function. We use exponential

priors for both dimensions, which guides optimization towards a region with only poor-

performing high function values. 5.10a shows the prior and 5.10b shows optimization

results after D + 1 = 3 initialization samples and 50 BO iterations. Note that, once

again, optimization begins near the region incentivized by the prior, but moves away

from the prior and towards the optima as BO progresses.

53

5
0

5
10

0.
0

0.
5

1.
0

Prior

Pr
io

r

5
0

5
10

0.
00

0.
25

0.
50

0.
75

1.
00

Model

M
od

el
Po

st
er

io
r 20151050

Posterior

5
0

5
10

0.
00

0.
25

0.
50

0.
75

1.
00

Model

M
od

el
Po

st
er

io
r 20151050

Posterior

5
0

5
10

0.
00

0.
25

0.
50

0.
75

1.
00

Model

M
od

el
Po

st
er

io
r 20151050

Posterior

Re
al

 F
un

ct
io

n
GP

Op
tim

um
In

cu
m

be
nt

RS
BO

Th
re

sh
ol

d
Ne

xt
 p

oi
nt

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

(a
)

N
o

sa
m

p
le

s

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

8.
81

9.
08

(b
)

0
B

O
it

er
a
ti

o
n

s

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

0.
43 0.

43

(c
)

1
0

B
O

it
er

a
ti

o
n

s

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

0.
40

0.
40

(d
)

2
0

B
O

it
er

a
ti

o
n

s

F
ig
u
re

5
.8
.

B
O

P
rO

on
th

e
1D

B
ra

n
in

fu
n
ct

io
n
.

T
h
e

le
ft

m
os

t
co

lu
m

n
sh

ow
s

th
e

ex
p

on
en

ti
al

p
ri

or
.

T
h
e

ot
h
er

co
lu

m
n
s

sh
ow

th
e

m
o
d
el

an
d

th
e

lo
g

p
se

u
d
o-

p
os

te
ri

or
af

te
r

0
(i

n
it

ia
li
za

ti
on

on
ly

),
10

,
an

d
20

B
O

it
er

at
io

n
s.

B
O

P
rO

fo
rg

et
s

th
e

w
ro

n
g

p
ri

o
r

o
n

th
e

lo
ca

l
op

ti
m

u
m

an
d

co
n
ve

rg
es

to
th

e
gl

ob
al

op
ti

m
u

m
.

54

5
0

5
10

0.
0

0.
5

1.
0

Prior
Pr

io
r

5
0

5
10

0.
00

0.
25

0.
50

0.
75

1.
00

Model

M
od

el
Po

st
er

io
r 20151050

Posterior

5
0

5
10

0.
00

0.
25

0.
50

0.
75

1.
00

Model

M
od

el
Po

st
er

io
r 20151050

Posterior

5
0

5
10

0.
00

0.
25

0.
50

0.
75

1.
00

Model

M
od

el
Po

st
er

io
r 20151050

Posterior

Re
al

 F
un

ct
io

n
GP

Op
tim

um
In

cu
m

be
nt

RS
BO

Th
re

sh
ol

d
Ne

xt
 p

oi
nt

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

(a
)

N
o

sa
m

p
le

s

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

36
.2

2

37
.0

2

(b
)

0
B

O
it

er
a
ti

o
n

s

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

21
.8

8

22
.5

4

(c
)

1
0

B
O

it
er

a
ti

o
n

s

5
0

5
10

x
0

10
0

20
0

f(x)

0.
40

0.
40

0.
40

(d
)

2
0

B
O

it
er

a
ti

o
n

s

F
ig
u
re

5
.9
.

B
O

P
rO

on
th

e
1D

B
ra

n
in

fu
n
ct

io
n

w
it

h
a

d
ec

ay
p
ri

or
.

T
h
e

le
ft

m
os

t
co

lu
m

n
sh

ow
s

th
e

lo
g

p
se

u
d

o-
p

os
te

ri
or

b
ef

or
e

an
y

sa
m

p
le

s
ar

e
ev

al
u

at
ed

,
in

th
is

ca
se

,
th

e
p

se
u

d
o
-p

o
st

er
io

r
is

eq
u
a
l

to
th

e
d

ec
ay

p
ri

o
r.

T
h

e
o
th

er
co

lu
m

n
s

sh
ow

th
e

m
o
d

el
a
n
d

p
se

u
d

o
-p

o
st

er
io

r
a
ft

er
0

(o
n

ly
ra

n
d

o
m

sa
m

p
le

s)
,

1
0
,

a
n

d
2
0

B
O

it
er

a
ti

o
n

s.
2

ra
n

d
om

sa
m

p
le

s
ar

e
u

se
d

to
in

it
ia

li
ze

th
e

G
P

m
o
d

el
.

55

Random Samples
Bayesian Optimization

Next point
Incumbent

Optima

5 0 5 10
x1

0
2
4
6
8

10
12
14

x 2

Prior

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

5 0 5 10
x1

0
2
4
6
8

10
12
14

x 2

Posterior

3500

3000

2500

2000

1500

1000

500

Figure 5.10. BOPrO on the Branin function with exponential priors for both
dimensions. (a) shows the log pseudo-posterior before any samples are evaluated,
in this case, the pseudo-posterior is equal to the prior; the crosses are the optima.
(b) shows the result of optimization after 3 initialization samples drawn from
the prior at random and 50 BO iterations. The dots in (b) show the points the
exploration, with greener points denoting later iterations. The colored heatmap
shows the prediction of the GP model for the value of the Branin function.

5.3.2 Misleading Prior Comparison

We showed that BOPrO can forget misleading priors and still converge towards good

function values in Section 5.3.1. We also showed a comparison with misleading priors

against other methods in Section 5.2.3. In this section, we expand the analysis to what

is the actual optimization impact of a misleading prior, compared to both not having a

prior and having correct priors in our four synthetic benchmarks. For that, we compare

the performance of BOPrO with a misleading prior, with no prior, and with the weak

and strong priors we used in our baseline comparisons.

Figure 5.11 shows the effect of injecting a misleading prior in BOPrO. We note

similar behavior in all benchmarks, the misleading prior slows down convergence and

hurts optimization. This is expected since the prior pushes the optimization away from

the optima in the initial phase. However, in all benchmarks BOPrO still achieves similar

final regret to BOPrO without a prior. These results show that BOPrO can effectively

forget priors and achieve similar final performance to the case where there were no

priors at all. However, it is still beneficial to have accurate priors, as the curves for the

weak and strong correct priors show.

56

BOPrO Wrong Prior
BOPrO No Prior

BOPrO Weak Prior
BOPrO Prior

Initialization

0 100 200
Number of Evaluations

15

10

5

0

5

Lo
g

Si
m

pl
e

Re
gr

et Branin

0 100 200
Number of Evaluations

16
12

8
4
0

Lo
g

Si
m

pl
e

Re
gr

et SVM

0 100 200
Number of Evaluations

4.5

3.0

1.5

0.0

Lo
g

Si
m

pl
e

Re
gr

et FC-Net

0 100 200
Number of Evaluations

5.0
2.5
0.0
2.5
5.0
7.5

Lo
g

Si
m

pl
e

Re
gr

et XGBoost

Figure 5.11. Log regret comparison of BOPrO with varying prior quality. The
line and shaded regions show the mean and standard deviation of the log simple
regret after 20 runs. All methods were initialized with D + 1 random samples,
where D is the number of input dimensions, indicated by the vertical dashed line.
We run the benchmarks for 200 iterations.

5.3.3 Prior Impact

In this section, we study the effect of varying prior qualities in BOPrO. How does prior

selection affect the performance of BOPrO? A suitable property of the prior is that, by

selecting a tighter prior around an optimum, we would expect sampling from the prior

to have an increased performance. To the limit, if the prior is composed by only one

point which is one of the global optima, then the first sample (and all of them) from

the prior will hit the optimum.

To have a sanity check of this property, we build an artificial prior in a controlled

way. We rely on an automated computation of the prior by computing a univariate

Kernel Density Estimation (KDE) using a Gaussian kernel on the synthetic benchmarks

introduced above.3 Compared to scipy’s Scott’s Rule n−
1

D+4 , we set the original

3We chose a univariate KDE here following our assumption that most users will not be able to
provide a multivariate prior with more than 2 dimensions.

57

5 10 15 20
Number of Evaluations

10

5

0

5

Lo
g

Si
m

pl
e

Re
gr

et

Branin

5 10 15 20
Number of Evaluations

15

10

5

0

Lo
g

Si
m

pl
e

Re
gr

et

SVM

0 20 40 60
Number of Evaluations

8

6

4

2

0

Lo
g

Si
m

pl
e

Re
gr

et

FCNet

0 20 40 60 80
Number of Evaluations

2

0

2

4

6

8
Lo

g
Si

m
pl

e
Re

gr
et

XGBoost

Figure 5.12. Log simple regret comparison between BOPrO and sampling from
the prior. The shaded lines are mean +/- one std error. BOPrO was initialized
with D + 1 random samples, indicated by the vertical dashed line.

bandwidth a bit smaller 100n−
1
D , where D is the number of input dimensions. We run

experiments with a budget T = 10D and consider an array of varying quality priors. We

set this bandwidth as it led to better performance in BOPrO and allowed us to make

the prior stronger in a controlled environment. In Appendix A we show experiments

with different bandwidth sizes and that they still lead to the same behavior and similar

performance.

To control the strength of the prior, we select a constant 10D points in each prior

and vary the size of the random sample dataset so that we can make the priors more

sharply peaked around the optima in a controlled environment. We follow the following

rule: we use the best performing 10D samples to create the prior from a random sample

dataset size of 10D 100
x

; we refer to this prior as x% in Figure 5.12.

As an example the XGBoost benchmark has d = 8, so, 100% means we sample 80

58

points and use all 80 to create the prior, 10% means we sample 800 points and use the

best performing 80 to create the prior, 1% means we sample 8000 and use the best 80 to

create the prior, and so on. A bigger random sample dataset and a smaller percentage

leads to a tighter prior making the argument for a stronger prior.

Figure 5.12 shows the performance of purely sampling from the prior and running

BOPrO with the prior respectively in all synthetic benchmarks. As expected a sharply

peaked prior leads to better performance in all benchmarks. In addition, we observe

that in contrast to sampling from the prior, BOPrO achieves a smaller regret in the vast

majority of cases by being able to evolve from the initial prior and making independent

steps towards better values of the objective function.

5.3.4 Prior Baselines Comparison

We show that simply initializing a BO method in the DoE phase by sampling from a prior

on the locality of an optimum doesn’t necessarily lead to better performance. Instead

in BOPrO, it is the pseudo-posterior in Eq. (4.3) that drives its stronger performance

by combining prior and new observations. To show that, we compare BOPrO with

Spearmint and HyperMapper such as in section Sections 5.2.1 and 5.2.4, respectively,

but we initialize all three methods using the same approach. Namely, we initialize all

methods with D+ 1 samples from the prior. Our goal is to show that simply initializing

Spearmint and HyperMapper with the prior will not lead to the same performance as

BOPrO, because, unlike BOPrO, these baselines do not leverage the prior after the DoE

initialization phase. We report results on both our synthetic and real-world benchmarks

Figure 5.13 shows the comparison between BOPrO and Spearmint Prior. In most

benchmarks, the prior initialization does not lead to improved final performance. In

particular, for XGBoost, the prior leads to improvement in early iterations, but to

worse final performance. We note that for SVM, the prior leads to better performance,

however, we note that the improved performance is given solely from sampling from the

prior. There is no improvement for Spearmint Prior after initialization. In contrast, in

all cases, BOPrO is able to leverage the prior both during initialization and its Bayesian

Optimization phase, leading to improved performance. BOPrO still outperforms

Spearmint Prior in the same 3 out of 4 benchmarks.

Figure 5.14 shows similar results for our Spatial benchmarks. Once again, the

prior does not lead HyperMapper to improved final performance. For the Shallow CNN

benchmark, the prior leads HyperMapper to improved performance in early iterations,

compared to HyperMapper with default initialization, but HyperMapper Prior is still

outperformed by BOPrO. Additionally, the prior leads to degraded performance in the

59

BOPrO Spearmint Prior Spearmint Initialization

0 100 200
Number of Evaluations

15

10

5

0

5

Lo
g

Si
m

pl
e

Re
gr

et Branin

0 100 200
Number of Evaluations

16
12

8
4
0

Lo
g

Si
m

pl
e

Re
gr

et SVM

0 100 200
Number of Evaluations

5
4
3
2
1
0

Lo
g

Si
m

pl
e

Re
gr

et FC-Net

0 100 200
Number of Evaluations

5.0
2.5
0.0
2.5
5.0

Lo
g

Si
m

pl
e

Re
gr

et XGBoost

Figure 5.13. Log regret comparison of BOPrO, Spearmint with prior initializa-
tion, and Spearmint with default initialization. The line and shaded regions show
the mean and standard deviation of the log simple regret after 20 runs. BOPrO
and Spearmint Prior were initialized with D + 1 random samples from the prior,
where D is the number of input dimensions, indicated by the vertical dashed line.
We run the benchmarks for 100D iterations, capped at 300.

Deep CNN benchmark. These results confirm that BOPrO is able to leverage the prior

in its pseudo-posterior during optimization, leading to improved performance in almost

all benchmarks compared to state-of-the-art BO baselines.

5.3.5 Multivariate Prior Comparison

In this section, we compare the performance of BOPrO with univariate and multivariate

priors. For this, we construct synthetic univariate and multivariate priors using Kernel

Density Estimation (KDE) with a Gaussian kernel. We build strong and weak versions

of the KDE priors. The strong priors are computed using a KDE on the best 10D

out of 10,000,000D uniformly sampled points, while the weak priors are computed

60

HyperMapper BOPrO HyperMapper Prior Initialization

0 20 40
Number of Evaluations

5M
7M
9M

11M
15M
18M
24M

Cy
cle

s (
lo

g)

Shallow CNN

0 20 40
Number of Evaluations

1M
2M
3M
5M
9M

15M
24M

Cy
cle

s (
lo

g)

Deep CNN

0 50 100 150
Number of Evaluations

20k
50k

200k
400k

1M
3M
9M

Cy
cle

s (
lo

g)

MD Grid

Figure 5.14. Log regret comparison of BOPrO, HyperMapper with prior initial-
ization, and HyperMapper with default initialization. The line and shaded regions
show the mean and standard deviation of the log simple regret after 20 runs.
BOPrO and HyperMapper Prior were initialized with D+ 1 random samples from
the prior, where D is the number of input dimensions, indicated by the vertical
dashed line.

using a KDE on the best 10D out of 1,000D uniformly sampled points. We use the

same points for both univariate and multivariate priors. We use scipy’s Gaussian KDE

implementation, but adapt its Scott’s Rule bandwidth to 100n−
1
d , where d is the number

of variables in the KDE prior, to make our priors more peaked.

Figure 5.15 shows a log regret comparison of BOPrO with univariate and mul-

tivariate KDE priors. We note that in all cases BOPrO achieves similar performance

with univariate and multivariate priors. For the Branin and SVM benchmarks, the

weak multivariate prior leads to slightly better results than the weak univariate prior.

However, we note that the difference is small, in the order of 10−4 and 10−6, respectively.

Surprisingly, for the XGBoost benchmark, the univariate version for both the weak

and strong priors lead to better results than their respective multivariate counterparts,

though, once again, the difference in performance is small, around 0.2 and 0.03 for the

weak and strong prior, respectively, whereas the XGBoost benchmark can reach values

as high as f(x) = 700. Our hypothesis is that this difference comes from the bandwidth

estimator (100n−
1
d), which leads to larger bandwidths, consequently, smoother priors,

when a multivariate prior is constructed.

5.3.6 β Sensitivity Study

In this section, we show the effect of the γ hyperparameter on BOPrO. We recall that

the β parameter controls how much weight is given to the model vs the prior in BOPrO’s

pseudo-posterior computation. To show the effects of β, we compare the performance of

BOPrO with the 1% prior and different β values on our four synthetic benchmarks. For

61

BOPrO Weak Multivariate Prior
BOPrO Multivariate Prior

BOPrO Weak Univariate Prior
BOPrO Univariate Prior

Initialization

0 100 200
Number of Evaluations

15
10

5
0
5

10

Lo
g

Si
m

pl
e

Re
gr

et Branin

0 100 200
Number of Evaluations

18
15
12

9
6

Lo
g

Si
m

pl
e

Re
gr

et SVM

0 100 200
Number of Evaluations

4.8
4.2
3.6
3.0
2.4

Lo
g

Si
m

pl
e

Re
gr

et FC-Net

0 100 200
Number of Evaluations

3
2
1
0
1

Lo
g

Si
m

pl
e

Re
gr

et XGBoost

Figure 5.15. Log regret comparison of BOPrO with multivariate and univariate
KDE priors. The line and shaded regions show the mean and standard deviation
of the log simple regret after 20 runs. All methods were initialized with D + 1
random samples, where D is the number of input dimensions, indicated by the
vertical dashed line. We run the benchmarks for 200 iterations.

all experiments, we initialize BOPrO with D+1 random samples and then run BOPrO

until it reaches 10D function evaluations. For each β value, we run BOPrO five times

and analyze mean and standard deviation.

Figure 5.16 shows the results of our comparison. We note that values of β that are

too low (near 0.01) or too high (near 1000) lead to lower performance. This shows that

putting too much emphasis on the model or the prior will lead to degraded performance,

as expected. Further, we note that β = 10 leads to the best performance in three out

of our four benchmarks. This result is reasonable, as β = 10 means BOPrO will put

more emphasis in the prior in early iterations, when the GP model is still not accurate,

and slowly shift towards putting more emphasis in the model as the model sees more

data and becomes more accurate.

62

0.01
0.1 1 10 100

1000

8

6

4

2
Lo

g
Si

m
pl

e
Re

gr
et

-4.70

-5.88 -6.00 -6.32
-5.89

-5.45

Branin

0.01
0.1 1 10 100

1000
13
12
11
10

9
8

Lo
g

Si
m

pl
e

Re
gr

et

-9.21

-10.26
-10.84-11.06

-10.35-10.09

SVM

0.01
0.1 1 10 100

1000

5.2

5.0

4.8

4.6

4.4

Lo
g

Si
m

pl
e

Re
gr

et

-4.77 -4.79 -4.79 -4.77 -4.77 -4.78

FCNet

0.01
0.1 1 10 100

1000

4

3

2
Lo

g
Si

m
pl

e
Re

gr
et

-2.17
-2.62 -2.67 -2.77

-2.48 -2.51

XGBoost

Figure 5.16. Comparison of BOPrO with the 1% prior and different values for
the β hyperparameter on our four synthetic benchmarks. We run BOPrO with
a budget of 10D function evaluations, including D+1 randomly sampled DoE
configurations.

5.3.7 γ Sensitivity Study

In this section, we show the effect of the γ hyperparameter on BOPrO. We note that γ

directly affects BOPrO’s exploration vs exploitation tradeoff. Higher γ values emphasize

exploitation, while lower γ values emphasize exploration. This is because γ dictates

the threshold that separates good regions from bad regions. This threshold is defined

as a quantile of the previously explored points, this means the threshold is always

higher than a fraction of the explored points. Thus, a higher gamma will lead to higher

thresholds, and points near the incumbent will likely be considered good. However, a

lower gamma will cause the threshold to approximate the incumbent faster and points

near the incumbent will be less likely to bring an improvement.

To show the effects of γ, we compare the performance of BOPrO with different γ

values. We compare the performance of BOPrO with the 1% prior on our four synthetic

63

0.01
0.03

0.05
0.1 0.15

0.2

8

6

4

2
Lo

g
Si

m
pl

e
Re

gr
et

-5.86 -6.03 -6.32 -6.16 -5.78

-4.59

Branin

0.01
0.03

0.05
0.1 0.15

0.2

12

10

8

Lo
g

Si
m

pl
e

Re
gr

et

-9.93
-10.87-11.06

-10.35-10.34
-9.40

SVM

0.01
0.03

0.05
0.1 0.15

0.2

5.2

5.0

4.8

4.6

4.4

Lo
g

Si
m

pl
e

Re
gr

et

-4.78 -4.80 -4.77 -4.77 -4.78 -4.77

FCNet

0.01
0.03

0.05
0.1 0.15

0.2

4

3

2

1

0

Lo
g

Si
m

pl
e

Re
gr

et
-2.14

-2.74 -2.77 -2.83
-2.14

-1.21

XGBoost

Figure 5.17. Comparison of BOPrO with the 1% prior and different values for
the γ hyperparameter on our four synthetic benchmarks. We run BOPrO with
a budget of 10D function evaluations, including D+1 randomly sampled DoE
configurations.

benchmarks. For all experiments, we initialize BOPrO with D+1 random samples and

then run BOPrO until it reaches 10D function evaluations. For each γ value, we run

BOPrO five times and analyze mean and standard deviation.

Figure 5.17 shows the results of our comparison. We first note that values near

the lower and higher extremes lead to degraded performance, this is expected since

these values will lead to an excess of either exploitation or exploration. These results

emphasize the importance of a proper balance in the exploration vs exploitation trade-off.

Further, we note that BOPrO achieves similar performance for all values of γ, however,

γ = 0.03 and γ = 0.05 consistently lead to better performance, with γ = 0.05 usually

leading to lower deviation. Thus, we set γ = 0.05 as the default in our experiments.

64

Chapter 6

Other Projects and Future Work

6.1 The HyperMapper Framework

Throughout the course of my Ph.D. and my work in the BO field, we leveraged our

studies and novel techniques developed to implement an open-source BO framework

dubbed HyperMapper. HyperMapper is a BO framework that implements several state-

of-the-art BO strategies, including some of our own design. Additionally, HyperMapper

provides several optimization features that are often required by real-world application,

such as constrained BO, discrete variables, and support for mixed search spaces. The

combination of high-performance methods and flexibility features makes HyperMapper

stand out among competition as a great solution for real-world applications.

We summarize the features provided by HyperMapper in Table 6.1. We imple-

mented this features based on known requirements present in the literature and our

own personal experience talking to prospective users. First, HyperMapper implements

four type of variables: real (numbers in a real-valued interval), integer (numbers in

an integer-valued interval), ordinal (an ordered list of numbers), and categorical (a

unordered list of values, possibly non-numeric). To better support these discrete and

possibly mixed search spaces, we implement both GP and RF models, which handle

better continuous and discrete search spaces, respectively. Our GP implementation is

the one provided by GPy, while our RF implementation is a variation of the imple-

mentation described by Hutter et al. Hutter et al. [2014], using the model provided by

scikit-learn Pedregosa et al. [2011].

Second, we implement a feasibility model in HyperMapper, to support feasibility

constraints. Feasbility constraints refer to applications where some configurations

are considered infeasible solutions for the application. For instance, in our Spatial

application, some configurations require more resources (e.g. more processing units)

65

RIOC Feasibility Constraints Multi-objective Prior-injection
HyperMapper X X X X

KTT × × × ×
GPTune × × × ×
SMAC3 X × × ×
GpyOpt × × × ×

Spearmint × X × ×
Hyperopt X × × X

Hyperband × × × ×
GPflowOpt × X X ×

cBO × X × ×
BOHB X × × ×

Table 6.1. Features supported by HyperMapper and competing BO frameworks.
RIOC abbreviates Real/Integer/Ordinal/Categorical, for the different variable
types supported.

than the target FPGA could provide and are, thus, impossible to synthesize in practice.

These feasibility constraints are often impossible or too hard to describe beforehand

in optimization, thus, they need to be discovered (and learned) during optimization.

For our feasibility constraint approach, we use an approach similar to that of Gardner

et al. Gardner et al. [2014], which trains a model to predict which configurations will

be feasible/infeasible as optimization progresses. We adapt the solution of Gardner

et al. to use a RF classification model, instead of the proposed GP regression model

combined with a feasibility threshold. Using a classification model directly simplifies

our approach as it no longer requires a feasibility threshold from the user.

Thid, we support applications with multiple optimization objectives. In applica-

tions with multiple objectives, there are usually two or more objectives that one wants

to optimize simultaneously. Further, these multiple objectives are often contradicting,

meaning configurations that improve one objective, make the others worse. In these

situations, we want to find the objectives’ Pareto-front Knowles [2006], the combination

of all configurations that cannot be improved further in any objective without making

another objective worse (i.e. the configurations that are Pareto-efficient). Our multi-

objective approach is based on random scalarizations, similar to the work of Paria et

al. Paria et al. [2018]. Simply put, at each optimization iteration, we randomly sample

a set of weights λ and use it to scalarize the multiple objectives into a single value

through a scalarization function g(λ,x). Our work diverges from the work of Paria

et al. in our scalarized acquisition function. Paria et al. propose their version of the

Tchebyshev scalarization function, defined as:

66

gtchm(λ, x) =
K

min
k=1

λk(fk(x)− z∗k) (6.1)

Where z∗k is an ideal reference point, often taken to be the best possible value of

the objectives. Although they dub it “Tchebyshev scalarization function”, there are

notable differences from their equation and other versions of Tchebyshev scalarization

in the literature Knowles [2004]; Nakayama et al. [2009], hence, we instead use an

tchebyshev scalarization function more aligned with the literature, defined as:

gtch(λ, x) =
K

max
k=1

λkfk(x) + α
K∑
k=1

λkfk(x) (6.2)

Fourth, and at last, HyperMapper supports expert prior-injection. HyperMapper

supports two types of prior-injection. The first is the one described in this thesis project,

the second is an altered approach we also developed, as a follow-up to this thesis work.

This follow-up approach is dubbed πBO and has been described in detail in an ICLR

publication Hvarfner et al. [2022]. The key idea of our follow-up approach is that it

diverges less from a standard BO approach, using the priors as a weighting factor on

top of the standard BO acquisition function.

6.2 Multi-objective Prior Optimization

In my thesis work, we also investigated extending HyperMapper’s prior-injection ap-

proach for multiple objectives. Our proposal to achieve this was to use random

scalarizations on the computed posterior. For multi-objective applications, we would

consider separate priors and models for each objective. For the priors, the user provides

one probability distribution per variable i and per objective k. We then construct the

prior for each objective k by multiplying the probability distributions for that objective,

as in Eq. (4.1). Similarly, for the model, we fit a separate GP for each objective k

and compute a probabilistic model for each objective following Eq. (4.2). We then

combine the prior and model for each objective into a posterior gk(x) for each objective

k. In order to scalarize the posteriors, we then randomly sample a set of weights λ and

multiply the weighted posteriors:

g(x) =
K∏
k=1

gk(x)λk (6.3)

where K is the number of objectives and λk is the weight given to objective k.

The same equation is used to scalarize the bad posteriors b(x), only using bk(x) instead

67

of gk(x). This leads us to a single scalarized good posterior and a single scalarized bad

posterior, which allows us to continue with BOPrO as in single-objective applications.

Although this approach is conceptually simple and theoretically similar to the

original scalarization approach, it did not perform as well as we hoped it would in our

experiments. Because of the extra added components, performance in optimization

became somewhat inconsistent. We suspect this approach requires some fine-tuning in

order to balance the differing terms and ensure the space is properly explored. For now,

this approach remains as future work for us.

6.3 Sparse Space Optimization

We also investigated the issue of optimizing applications with sparse search spaces. In

these applications, there are feasibiliy constraints in the search space that are known

in advance. These feasibility constraints describe combinations of input parameters

that are considered infeasible and, thus, represent known holes in the search space (i.e.

the search space is sparse). To tackle this issue, we adapt the chain-of-trees approach

proposed by Rasch et al. Rasch et al. [2017] for a BO setup. The crux of our approach

lies on optimizing the acquisition function considering only configurations that are

known to be feasible, coupled with several optimizations to the GP model used in

optimization. We also change how random sampling is done in the chain-of-trees, to

better cover the search space uniformly. Details of our approach will be presented in an

upcoming publication.

68

Chapter 7

Conclusion

In this thesis and my Ph.D. work, we introduce BOPrO, a Bayesian Optimization

framework that allows users to inject their expert knowledge into the optimization

process in the form of priors about which parts of the input space will yield the best

performance. These are different than BO’s standard priors over functions which are

much less intuitive for users. BO failed so far to leverage the experience of human

domain experts, not only causing function evaluations waste but also getting users

away from applying of BO approaches because they could not exploit their years of

knowledge in optimizing their black-box functions, e.g., hyperparameter optimization

of machine learning algorithms. BOPrO addresses this issue and will nudge new users

to adopt BO.

BOPrO advanced the state-of-the-art of BO by combining standard BO probabilis-

tic models with flexible user priors in an efficient, yet robust manner. BOPrO adopts a

Bayesian-inspired approach that combines user priors with BO’s probabilistic model,

forming a pseudo-posterior that balances both the prior and the model. Additionally,

we add a weight hyperparameter to this computation to ensure that, given time and

enough samples, the probabilistic model eventually washes out the prior. This approach

allows BOPrO to leverage the prior to speed up BO convergence while remaining robust

to misleading priors.

We validate BOPrO with a suite of synthetic and real benchmarks. We show that

BOPrO is more sample-efficient than state-of-the-art BO solutions with no user prior

support and that BOPrO is also more sample-efficient and robust than current BO

solutions with user prior support. We also show BOPrO in a real-world setting, with

priors provided by an unbiased human expert. We also perform a series of ablation

studies on BOPrO, validating our assumptions and showing that BOPrO achieves the

goals we set forth for it. We show that BOPrO can recover from misleading priors

69

and still converge to find good solutions, even for priors that are extremely confident

and wrong. We also study the impact of different prior qualities in the performance of

BOPrO and validate our assumption of univariate versus multivariate priors leading to

similar qualities. At last, we perform sensitivity studies to show the impact of choosing

BOPrO’s hyperparameters.

We also made several other contributions, besides BOPrO itself, during the course

of this Ph.D.. Most notably, we developed HyperMapper, a black-box multi-objective

optimization tool that combines several state-of-the-art approaches (including many of

our own design) to provide a complete and efficient solution for BO. We also worked

on BO for sparse spaces and a follow-up prior work in prior-injection for BO. At last,

we also investigated expanding our prior-injection for multi-objective applications, but

decided that this requires further investigation to be published and used in real-world

applications, thus, we will tackle it in future work.

71

Bibliography

Azimi, J., Jalali, A., and Fern, X. (2012). Hybrid batch bayesian optimization. arXiv

preprint arXiv:1202.5597.

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham, B., Wilson, A. G., and

Bakshy, E. (2019). Botorch: Programmable bayesian optimization in pytorch. arXiv

preprint arXiv:1910.06403.

Bergstra, J., Yamins, D., and Cox, D. D. (2013). Making a science of model search:

Hyperparameter optimization in hundreds of dimensions for vision architectures. In

Proceedings of the 30th International Conference on International Conference on

Machine Learning - Volume 28.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-

parameter optimization. In Advances in neural information processing systems, pages

2546--2554.

Bodin, B., Nardi, L., Zia, M. Z., Wagstaff, H., Sreekar Shenoy, G., Emani, M., Mawer,

J., Kotselidis, C., Nisbet, A., Lujan, M., et al. (2016). Integrating algorithmic

parameters into benchmarking and design space exploration in 3d scene understanding.

In Proceedings of the 2016 International Conference on Parallel Architectures and

Compilation, pages 57--69. ACM.

Bouthillier, X. and Varoquaux, G. (2020). Survey of machine-learning experimental

methods at NeurIPS2019 and ICLR2020. Research report, Inria Saclay Ile de France.

Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian optimization

of expensive cost functions, with application to active user modeling and hierarchical

reinforcement learning. arXiv preprint arXiv:1012.2599.

Calandra, R., Seyfarth, A., Peters, J., and Deisenroth, M. P. (2016). Bayesian opti-

mization for learning gaits under uncertainty. Annals of Mathematics and Artificial

Intelligence, 76(1-2):5--23.

72 Bibliography

Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., and

de Freitas, N. (2018). Bayesian optimization in alphago. CoRR, abs/1812.06855.

Dixon, L. C. W. (1978). The global optimization problem: an introduction. Toward

global optimization, 2:1--15.

Eriksson, D., Pearce, M., Gardner, J. R., Turner, R., and Poloczek, M. (2019). Scalable

global optimization via local bayesian optimization. In Advances in Neural Information

Processing Systems.

Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: robust and efficient hyperparameter

optimization at scale. In Proceedings of the 35th International Conference on Machine

Learning, pages 1436--1445.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F.

(2015a). Efficient and robust automated machine learning. In Cortes, C., Lawrence,

N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural

Information Processing Systems 28, pages 2962--2970. Curran Associates, Inc.

Feurer, M., Springenberg, J. T., and Hutter, F. (2015b). Initializing bayesian hyperpa-

rameter optimization via meta-learning. In Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence, pages 1128--1135.

Gardner, J. R., Kusner, M. J., Xu, Z. E., Weinberger, K. Q., and Cunningham, J. P.

(2014). Bayesian Optimization with Inequality Constraints. In ICML.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J. E., and Sculley, D. (2017).

Google vizier: A service for black-box optimization. In Golovin, D., Solnik, B., Moitra,

S., Kochanski, G., Karro, J. E., and Sculley, D., editors, Proceedings of KDD’17.

GPy (since 2012). GPy: A gaussian process framework in python. http://github.

com/SheffieldML/GPy.

Hansen, N., Akimoto, Y., and Baudis, P. (2019). CMA-ES/pycma on Github.

Hansen, N. and Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions

in evolution strategies: the covariance matrix adaptation. In Proceedings of IEEE

International Conference on Evolutionary Computation.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based

optimization for general algorithm configuration. In International conference on

learning and intelligent optimization, pages 507--523. Springer.

Bibliography 73

Hutter, F., Kotthoff, L., and Vanschoren, J., editors (2018). Automated Ma-

chine Learning: Methods, Systems, Challenges. Springer. In press, available at

http://automl.org/book.

Hutter, F., Xu, L., Hoos, H. H., and Leyton-Brown, K. (2014). Algorithm runtime

prediction: Methods & evaluation. Artificial Intelligence, 206:79--111.

Hvarfner, C., Stoll, D., Souza, A., Lindauer, M., Hutter, F., and Nardi, L. (2022). \
π bo: Augmenting acquisition functions with user beliefs for bayesian optimization.

arXiv preprint arXiv:2204.11051.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of

expensive black-box functions. Journal of Global optimization, 13(4):455--492.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization.

In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings.

Klein, A., Dai, Z., Hutter, F., Lawrence, N. D., and Gonzalez, J. (2019). Meta-surrogate

benchmarking for hyperparameter optimization. In Advances in Neural Information

Processing Systems 32 NeurIPS, pages 6267--6277.

Knowles, J. (2004). ParEGO: A Hybrid Algorithm with On-line Landscape Approx-

imation for Expensive Multiobjective Optimization Problems. Technical report

TR-COMPSYSBIO-2004-01, University of Manchester.

Knowles, J. (2006). Parego: A hybrid algorithm with on-line landscape approximation for

expensive multiobjective optimization problems. IEEE Transactions on Evolutionary

Computation, 10(1):50--66.

Knudde, N., van der Herten, J., Dhaene, T., and Couckuyt, I. (2017). Gpflowopt: A

bayesian optimization library using tensorflow. arXiv preprint arXiv:1711.03845.

Koeplinger, D., Feldman, M., Prabhakar, R., Zhang, Y., Hadjis, S., Fiszel, R., Zhao, T.,

Nardi, L., Pedram, A., Kozyrakis, C., et al. (2018). Spatial: A language and compiler

for application accelerators. In ACM Sigplan Notices, volume 53, pages 296--311.

ACM.

Kushner, H. J. (1964). A new method of locating the maximum point of an arbitrary

multipeak curve in the presence of noise. Journal of Basic Engineering, 86(1):97--106.

74 Bibliography

Li, C., Gupta, S., Rana, S., Nguyen, V., Robles-Kelly, A., and Venkatesh, S. (2020).

Incorporating expert prior knowledge into experimental design via posterior sampling.

arXiv preprint arXiv:2002.11256.

Lindauer, M. and Hutter, F. (2018). Warmstarting of model-based algorithm configura-

tion. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,

pages 1355--1362.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., and Birattari, M.

(2016). The irace package: Iterated racing for automatic algorithm configuration.

Operations Research Perspectives, 3:43--58.

Marchant, R. and Ramos, F. (2012). Bayesian optimisation for intelligent environmental

monitoring. In 2012 IEEE/RSJ international conference on intelligent robots and

systems, pages 2242--2249. IEEE.

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The application of bayesian methods

for seeking the extremum. Towards global optimization, 2(117-129):2.

Nakayama, H., Yun, Y., and Yoon, M. (2009). Sequential Approximate Multiobjective

Optimization Using Computational Intelligence. Springer Science & Business Media.

Nardi, L., Bodin, B., Saeedi, S., Vespa, E., Davison, A. J., and Kelly, P. H. (2017).

Algorithmic performance-accuracy trade-off in 3d vision applications using hyper-

mapper. In 2017 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pages 1434--1443. IEEE.

Nardi, L., Koeplinger, D., and Olukotun, K. (2018). Practical Design Space Exploration.

arXiv preprint arXiv:1810.05236.

Neal, R. M. (2012). Bayesian learning for neural networks, volume 118. Springer

Science & Business Media.

Oh, C., Gavves, E., and Welling, M. (2018). Bock: Bayesian optimization with

cylindrical kernels. arXiv preprint arXiv:1806.01619.

Paleyes, A., Pullin, M., Mahsereci, M., Lawrence, N., and González, J. (2019). Emulation

of physical processes with emukit. In Second Workshop on Machine Learning and

the Physical Sciences, NeurIPS.

Paria, B., Kandasamy, K., and Póczos, B. (2018). A Flexible Multi-Objective Bayesian

Optimization Approach using Random Scalarizations. CoRR, abs/1805.12168.

Bibliography 75

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style,

high-performance deep learning library. In Advances in Neural Information Processing

Systems, pages 8024--8035.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research, 12:2825--2830.

Ramachandran, A., Gupta, S., Rana, S., Li, C., and Venkatesh, S. (2020). Incorporating

expert prior in bayesian optimisation via space warping. Knowledge-Based Systems,

195:105663.

Rasch, A., Haidl, M., and Gorlatch, S. (2017). Atf: A generic auto-tuning framework.

In 2017 IEEE 19th International Conference on High Performance Computing and

Communications; IEEE 15th International Conference on Smart City; IEEE 3rd

International Conference on Data Science and Systems (HPCC/SmartCity/DSS),

pages 64--71. IEEE.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis

of computer experiments. Statistical science, pages 409--423.

Schilling, N., Wistuba, M., and Schmidt-Thieme, L. (2016). Scalable hyperparameter

optimization with products of gaussian process experts. In Machine Learning and

Knowledge Discovery in Databases - European Conference, ECML PKDD, pages

33--48.

Shahriari, B., Bouchard-Côté, A., and Freitas, N. (2016). Unbounded bayesian opti-

mization via regularization. In Artificial intelligence and statistics, pages 1168--1176.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking

the human out of the loop: A review of bayesian optimization. Proceedings of the

IEEE, 104(1):148--175.

Siivola, E., Vehtari, A., Vanhatalo, J., González, J., and Andersen, M. R. (2018).

Correcting boundary over-exploration deficiencies in bayesian optimization with

virtual derivative sign observations. In International Workshop on Machine Learning

for Signal Processing.

76 Bibliography

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of

machine learning algorithms. In Advances in neural information processing systems,

pages 2951--2959.

Snoek, J., Swersky, K., Zemel, R., and Adams, R. (2014). Input warping for bayesian

optimization of non-stationary functions. In International Conference on Machine

Learning.

Souza, A., Oliveira, L. B., Hollatz, S., Feldman, M., Olukotun, K., Holton, J. M., Cohen,

A. E., and Nardi, L. (2019). Deepfreak: Learning crystallography diffraction patterns

with automated machine learning. arXiv preprint arXiv:1904.11834.

Swersky, K. (2017). Improving Bayesian Optimization for Machine Learning using

Expert Priors. PhD dissertation, University of Toronto (Canada).

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning,

volume 2. MIT press Cambridge, MA.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2018). Scalable gaussian process-

based transfer surrogates for hyperparameter optimization. Machine Learning,

107(1):43--78.

77

Appendix A

KDE Prior Bandwidth

In this section, we show the effect of different bandwidth sizes on the univariate KDE

prior. For that, we compare the performance of sampling from the prior and BOPrO

with different bandwidth sizes. We consider four variations of scipy’s Scott’s Rule

an−
1

D+b . We experiment with a = 1, b = 4 (scipy’s default); a = 1, b = 0; a = 10,

b = 0; and a = 100, b = 0. Note that larger values for a and smaller values for b lead to

smaller bandwidths. For each bandwidth size, we show results for an array of varying

quality priors. We select a constant 10D points in each prior and vary the size of the

random sample dataset. We follow the following rule: we use the best performing 10D

samples to create the prior from a random sample dataset size of 10D 100
x

; we refer to

this prior as x%. We experiment with dataset sizes varying from 10D to 107D.

Figures A.1- A.4 show the performance of purely sampling from the prior. We

note that, in most cases, using a larger dataset leads to better results. This is expected,

sampling more points means we find more points near the optima and, therefore, the

prior will be built with points closer to the optima. Likewise, we note that smaller

bandwidths often lead to better results, especially as more points are sampled. This

is also expected since a smaller bandwidth means the prior distribution will be more

peaked around the optima. However, there are a couple of exceptions to these trends.

First, for the Branin, sampling more points does not lead to a better prior when we

use a = 1, b = 4, this is likely because the multiple minima of the Branin and the

bigger bandwidth lead the prior to be oversmoothed, missing the peaks near the optima.

Second, smaller bandwidths do not always lead to better performance for smaller

random samples datasets. This happens because we find points farther from the optima

in these datasets and end up computing priors peaked at points that are farther from

the optima, i.e., our priors become misleading. The effects of these misleading priors

can be especially noticed for the 100% random samples dataset.

78 Appendix A. KDE Prior Bandwidth

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

2

4

6

8

10

Si
m

pl
e

Re
gr

et

2.26

0.32 0.28

2.37

1.08 1.14 0.98

Branin

(a) a = 1, b = 4

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

2

4

6

8

10

Si
m

pl
e

Re
gr

et

4.77

0.48 0.09 0.07 0.19 0.16 0.09

Branin

(b) a = 1, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

2

4

6

8

10

Si
m

pl
e

Re
gr

et

3.53

0.22 0.15 0.02 0.02 0.03 0.02

Branin

(c) a = 10, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

2

4

6

8

10
Si

m
pl

e
Re

gr
et

4.83

0.26 0.07 0.00 0.00 0.00 0.00

Branin

(d) a = 100, b = 0

Figure A.1. Simple regret of sampling from the prior with different priors for
our Branin benchmark. We provide 5 repetitions for each experiment and mean
+/- one std error bars.

Figures A.5- A.8 shows the performance of BOPrO for different priors. The same

observations from prior sampling hold here. Namely, sampling more points and using

smaller bandwidths lead to better performance. Also, the 100% dataset once again

leads to inconsistent results, since it is a misleading prior for BOPrO. Based on these

results, we use the smallest bandwidth and largest dataset in our experiments, i.e.

a = 100, b = 0, and 0.0001%. Intuitively, this is a reasonable choice, since these priors

will be our closest approximation to an ideal prior that is centered exactly at the optima,

where sampling from the prior always leads to the optimum. Our results in Figure 5.12

show that this combination leads to the best results in all benchmarks.

79

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.01
0.00 0.00 0.00 0.00 0.00 0.00

SVM

(a) a = 1, b = 4

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.01
0.00 0.00 0.00 0.00 0.00 0.00

SVM

(b) a = 1, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.02

0.00 0.00 0.00 0.00 0.00 0.00

SVM

(c) a = 10, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.01
0.00 0.00 0.00 0.00 0.00 0.00

SVM

(d) a = 100, b = 0

Figure A.2. Simple regret of sampling from the prior with different priors for
our SVM benchmark. We provide 5 repetitions for each experiment and mean
+/- one std error bars. A more informative prior gives better results.

80 Appendix A. KDE Prior Bandwidth

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.03
0.02

0.02 0.02
0.01

0.00 0.00

FCNet

(a) a = 1, b = 4

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et
0.03

0.02
0.01 0.01 0.01

0.00 0.00

FCNet

(b) a = 1, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.04

0.02
0.01 0.01

0.01
0.00 0.00

FCNet

(c) a = 10, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.03

0.02
0.02

0.01 0.01 0.00 0.00

FCNet

(d) a = 100, b = 0

Figure A.3. Simple regret of sampling from the prior with different priors for
our FCNet benchmark. We provide 5 repetitions for each experiment and mean
+/- one std error bars. A more informative prior gives better results.

81

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

1

2

3

4

5

6

7

8

Si
m

pl
e

Re
gr

et

4.19

2.54
2.03

1.36
0.96 0.70 0.50

XGBoost

(a) a = 1, b = 4

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

1

2

3

4

5

6

7

8

Si
m

pl
e

Re
gr

et

4.27

3.09

1.88
1.37

1.00
0.63 0.48

XGBoost

(b) a = 1, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

1

2

3

4

5

6

7

8

Si
m

pl
e

Re
gr

et

3.86

2.53
2.07

1.52
0.84 0.73 0.49

XGBoost

(c) a = 10, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

1

2

3

4

5

6

7

8

Si
m

pl
e

Re
gr

et

4.60

2.97

1.39 1.51
0.90 0.72 0.44

XGBoost

(d) a = 100, b = 0

Figure A.4. Simple regret of sampling from the prior with different priors for
our XGBoost benchmark. We provide 5 repetitions for each experiment and mean
+/- one std error bars.

82 Appendix A. KDE Prior Bandwidth

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

2

4

6

8

10

Si
m

pl
e

Re
gr

et

0.06 0.02 0.00 0.00 0.00 0.00 0.04

Branin

(a) a = 1, b = 4

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

2

4

6

8

10

Si
m

pl
e

Re
gr

et

0.79
0.04 0.01 0.00 0.00 0.00 0.00

Branin

(b) a = 1, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

2

4

6

8

10

Si
m

pl
e

Re
gr

et

1.81

0.06 0.01 0.00 0.00 0.00 0.00

Branin

(c) a = 10, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

2

4

6

8

10

Si
m

pl
e

Re
gr

et

4.40

0.41 0.09 0.00 0.00 0.00 0.00

Branin

(d) a = 100, b = 0

Figure A.5. Simple regret of BOPrO with different priors for our Branin
benchmark. We provide 5 repetitions for each experiment and mean +/- one std
error bars. A more informative prior gives better results.

83

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.00 0.00 0.00 0.00 0.00 0.00 0.00

SVM

(a) a = 1, b = 4

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.01
0.00 0.00 0.00 0.00 0.00 0.00

SVM

(b) a = 1, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.00 0.00 0.00 0.00 0.00 0.00 0.00

SVM

(c) a = 10, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.00 0.00 0.00 0.00 0.00 0.00 0.00

SVM

(d) a = 100, b = 0

Figure A.6. Simple regret of BOPrO with different priors for our SVM bench-
mark. We provide 5 repetitions for each experiment and mean +/- one std error
bars. A more informative prior gives better results.

84 Appendix A. KDE Prior Bandwidth

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.02
0.01 0.01 0.01

0.01
0.00 0.00

FCNet

(a) a = 1, b = 4

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.02
0.01 0.01 0.01

0.01
0.00 0.00

FCNet

(b) a = 1, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.02
0.01 0.01 0.01 0.01

0.00 0.00

FCNet

(c) a = 10, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e

Re
gr

et

0.02
0.01 0.02 0.01

0.01
0.00 0.00

FCNet

(d) a = 100, b = 0

Figure A.7. Simple regret of BOPrO with different priors for our FCNet
benchmark. We provide 5 repetitions for each experiment and mean +/- one std
error bars. A more informative prior gives better results.

85

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

1

2

3

4

5

6

7

8

Si
m

pl
e

Re
gr

et

2.94

0.97 0.75 0.60 0.39 0.32 0.33

XGBoost

(a) a = 1, b = 4

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

1

2

3

4

5

6

7

8

Si
m

pl
e

Re
gr

et

3.91

0.85 0.59 0.74
0.32 0.45 0.34

XGBoost

(b) a = 1, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

1

2

3

4

5

6

7

8

Si
m

pl
e

Re
gr

et

3.94

1.03 0.68 0.68 0.53 0.40 0.33

XGBoost

(c) a = 10, b = 0

100%
10%

1% 0.1%
0.01%

0.001%
0.0001%

0

1

2

3

4

5

6

7

8

Si
m

pl
e

Re
gr

et

2.86

1.05
0.66 0.55 0.49 0.44 0.28

XGBoost

(d) a = 100, b = 0

Figure A.8. Simple regret of BOPrO with different priors for our XGBoost
benchmark. We provide 5 repetitions for each experiment and mean +/- one std
error bars. A more informative prior gives better results.

