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AGRONOMY (AGRONOMIA)

ABSTRACT: The objective of this experiment was to study the effects of different concentrations of the plant growth regulators 
prohexadione-calcium (ProCa) on the growth control of tomato seedlings. The experiment was conducted in the forest seedling 
nursery of the Faculty of Agronomic Sciences - UNESP, Botucatu Campus-SP. The experimental design was completely 
randomized, composed of five treatments: 0, 50, 100, 200 and 400 mg of the active ingredient (a.i.) of ProCa, with 4 replicates 
of 30 seedlings. Treatments were applied with a manual CO

2
 sprayer when seedlings completed 20 days after sowing. Ten days 

after applying the treatments, seedling growth analysis, SPAD index, gas exchange, chlorophyll a fluorescence and biochemical 
analyses were all performed. From the results obtained, the conclusion was that ProCa concentrations inhibited seedling growth 
without compromising the photosynthetic apparatus.
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Aspectos fisiológicos e bioquímicos de mudas
de tomateiro tratadas com proexadiona cálcica

RESUMO: O objetivo do trabalho foi estudar os efeitos de diferentes concentrações do regulador vegetal proexadiona cálcica 
(ProCa) no controle do crescimento de mudas de tomateiro. O experimento foi conduzido no viveiro de mudas florestais da 
Faculdade de Ciências Agronômicas – UNESP, Campus de Botucatu–SP. O delineamento experimental foi o inteiramente 
casualizado, composto por cinco tratamentos: 0, 50, 100, 200 e 400 mg de ingrediente ativo (i.a.) de ProCa, com quatro repetições 
de 30 mudas cada. Os tratamentos foram aplicados com pulverizador manual de CO

2
 quando as mudas completaram 20 dias 

após a semeadura. Dez dias após a aplicação dos tratamentos foram realizadas análises de crescimento das mudas, índice 
SPAD, trocas gasosas, fluorescência da clorofila a e análises bioquímicas. Pelos resultados obtidos foi possível concluir que as 
concentrações de ProCa inibiram o crescimento das mudas, não comprometendo o funcionamento de seu aparato fotossintético. 

Palavras-chave: enzimas antioxidantes; fluorescência; crescimento; Solanum lycopersicum L.
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Introduction
Tomato plant (Solanum lycopersicum L.), part of the 

Solanaceae family, has its origins centered in the Andean 

region, covering Ecuador, Peru, Colombia, Bolivia and northern 

Chile. Although a perennial plant, it is cultivated worldwide as 
an annual instead (Peixoto et al., 2017). In Brazil, the tomato 

crop also plays an important role in feeding the population, 
with the states of Goiás, São Paulo and Minas Gerais, 
respectively, as its largest producers (IBGE, 2019). Production 
can be for the industry or for consumption in natura, with 
fruits classified according to their shape and caliber, which 
is the ratio between length and transversal diameter. For the 
market, fruits are split into five groups: Santa Cruz; Caqui; 
Salada; Saladete (Italian); and mini-tomatoes (Alvarenga, 
2013). 

In the market, the availability of hybrid tomato seeds is also 

a possibility. These are agronomically superior materials when 
compared to traditional cultivars. They also have a higher 
acquisition cost, due to greater productive potential, as well 
as resistance to bacterial, viral and nematode diseases. These 

materials are commonly grown under protected environment, 
whose producers have high technological level, thus reaching 
high yield rates (Alvarenga, 2013).

For plant species produced from seedlings, such as the 
tomato, this is one of the most important steps, since the 

final success of the project will depend on it in terms of yield, 
plant health and even the fruit nutritional value (Maggioni 
et al., 2014). A desirable seedling stand, besides having good 

rooting levels and a high survival rate after transplanting, 
should also demonstrate homogeneity in its shoot size. For 
tomato growers, in which seedling production occurs in high 
density, etiolation may be used in order to reduce costs, but 
compromising the viability of the production activity in turn 
(Seleguini et al., 2013). 

In recent decades, using plant regulators as a strategy 

for plant production has been gaining prominence around 
the world. Plant regulators are synthetic substances that act 
in the regulation of metabolic and physiological processes, 
promoting or inhibiting plant growth, such as plant hormones 
(Espindula et al., 2010). Application can be held by different 
ways, including seeds and cuttings, leaves and via soil, as long 
as the characteristics of the product and the plant species are 
paid attention to (Seleguini et al., 2013; Melo et al., 2014; 
Pereira et al., 2016).

Plant regulators (phytohormones) act physiologically in 

several ways on plants such as growth regulation, stimulation 
of production and yield, improvement in fruit quality and 
harvest operations (Fagan et al., 2015). Plant regulators used 
in agronomic practices to control plant growth mostly act by 
inhibiting the biosynthesis of gibberellins. Depending on their 
group and action mode, these products may act in one of the 
three stages of gibberellin biosynthesis (Mouco et al., 2010). 

Inhibitors of gibberellin biosynthesis are divided into three 

groups: the first one acts by blocking ent-caurene synthesis, 
preventing its formation from geranylgeranyl-diphosphate 

(Espindula et al., 2010); the second group blocks GA12-
aldehyde, not enabling the oxidation of ent-caurene by the 
ent-caurene oxidase enzyme (Rademacher, 2000); and the 
third group acts in the last step of gibberellin biosynthesis, 

in competition for the binding sites of the dioxygenases. 
Acylcyclohexadiones such as Prohexadione-calcium represent 
this last group (Espindula et al., 2010).

Prohexadione-calcium (ProCa: calcium 3-oxide-4-
propionyl-5-oxo-3-cyclohexane carboxylate) is a plant growth 
regulator already employed for some years to control growth in 
some cereal and fruit species and, in more recent researches, 

on vegetable species (Altintas, 2011; Ozbay & Ergun, 2015). 
Today, ProCa is classified as a low-toxicological compound 
with no mutagenic, carcinogenic or teratogenic effects as well 
as having no harm to bees, fish, birds, mammals and the soil 
microbiota. Thereby, ProCa may be a viable alternative for 
agronomic use, considerably reducing damage to plants and 

the environment (Evans et al., 1999).
Many are the gaps that need to be filled about using 

plant regulators in seedlings. Studies are restricted within 
the literature on this subject, with rare exceptions that only 
evaluate seedling growth variables, not investigating more 
deeply the possible responses of seedlings in other aspects 

such as their physiology and biochemistry. Analyses of gas 

exchange and chlorophyll a fluorescence can indicate the 
effects of ProCa application on photosynthesis, especially 
in the potential quantum efficiency of photosystem II (Fv/

Fm), as this is a sensitive indicator of the photosynthetic 
performance of plants (Krause & Weis, 1991). Quantifying 
lipid and enzyme peroxidation may point out possible levels 
of oxidative stress caused by ProCa, thus indicating possible 
damage to cell membranes and the action of antioxidant 
enzymes, such as superoxide dismutase (SOD), catalase (CAT) 
and peroxidase (POD), producing a more complete picture of 
the plant regulator action in plants. These answers may help 
nurserymen and growers, contributing to the advancement 
of tomato cropping, making the sector more efficient and 
competitive.

In light of the foregoing, the objective of this study was to 
evaluate the effects of different ProCa concentrations on the 
growth control of tomato seedlings.

Materials and Methods

The experiment was conducted in a greenhouse on the 
premises of the Faculty of Agronomic Sciences - UNESP, 
Botucatu campus-SP (latitude: 22°51’22.1” S, longitude: 
48°26’01.0” W). Seedlings were prepared from seeds of the 
hybrid ‘Santy’, from Sakata Seeds Sudamerica, in 128-cell trays 
with commercial substrate (Carolina Soil II®). After sowing, 
trays were kept in the greenhouse, under sprinkling, with 
irrigation frequency of 30 seconds every hour. At twenty days 
after sowing (DAS), with the seedlings already with one pair of 
expanded leaves, the treatments were applied.

Treatments were composed of concentrations containing 
0, 50, 100, 200 and 400 mg of Prohexadione-calcium (ProCa) 
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(Viviful® with 27.5% a.i.), from Iharabras S.A company. The 
experimental design was the entirely randomized, with four 
replicates of 30 seedlings each. Plant regulator was mixed 
with water directly in the application container together with 
an adjuvant agent. Treatments were applied by leaf spraying 
with a pressurized CO

2
 manual sprayer, with 0.3 kgf cm-2, 

conical nozzle, of the model X2, having an estimated flow rate 
of 3.5 mL per cell.

Ten days after applying the treatments, when seedlings 
completed 30 days after sowing (DAS), also considering the 
time required for them to be ready for transplanting in this 
period, the following evaluations were performed in ten 
seedlings per replicate: number of leaves; stem length, by 
measuring from the stem base to the petiole of the first pair 
of leaves with digital pachymeter; leaf length, by measuring 
from the sheath to the end of the terminal leaflet; leaf width, 
in the median leaf region; Spad index (total chlorophyll 
concentration) in terminal leaflets, using a portable 
chlorophyllometer (Model 502 – Minolta), obtaining values 
from the mean of five readings per fully expanded leaf of each 
seedling.

The physiological parameters of gas exchange and 

chlorophyll a fluorescence were evaluated by using an 
equipment of open-photosynthesis system with CO

2
 and water 

vapor analyzer by infra-red radiation (Infra-Red Gas Analyser 
– IRGA, model LI-6400, - LI-COR), with a coupled fluorometer. 
For gas exchange parameters, the following were analyzed: 
CO

2
 assimilation rate (A, μmol CO

2
 m-2s-1); transpiration rate 

(E, mmol water vapor m-2s-1); stomatal conductance (gs, 

mol m-2s-1) and internal CO
2
 leaf concentration (Ci, μmol 

CO
2
 mol-1). For physiological fluorescence parameters, the 

saturated pulse method was used with the nomenclature 
recommended by Baker & Rosenqvist (2004), obtaining the 
following parameters: potential quantum efficiency of FSII (Fv/

Fm); antenna quantum efficiency (Fv’/Fm’); photochemical 
extinction coefficient (qP); non-photochemical extinction 
coefficient (qNP) and electron transport apparent rate (ETR). 

For both parameters, one seedling per replicate was used and 
the measurements took place between 07:00 and 11:00 am.

Seedlings were also biochemically evaluated by lipid 
peroxidation (TBAR), determined by the technique described 
by Heath & Packer (1968); determination of enzyme activity: 
superoxide dismutase (SOD), by the method of Giannopolitis 
& Reis (1977); catalase (CAT), by the methodology described 
by Peixoto et al. (1999); and peroxidase (POD), determined 
according to Teisseire & Guy (2000). For the analyses, leaves 
from ten seedlings per replicate were used, which had been 
instantly frozen in liquid nitrogen and then stored in an ultra-
freezer at - 85 °C until the analyses.

Data were submitted to the Shapiro-Wilk SPSS normality 
test, without the need of undergoing transformations. Means 
of the variables were submitted to variance analysis and 
grouped by using the Scott-Knott test, with those that were 
significant at 5% level also submitted to the regression analysis 
later. The statistical analyses were performed using the open 
access software R version 3.3.2.

Results and Discussion

Treatments for the variables stem length, leaf number, 

leaf length and leaf width were significant, showing a linear 
reduction by the ProCa concentrations (Figure 1). For all 
ProCa treatments, stem length was reduced by 18, 41, 49 
and 57%, respectively, at increasing concentrations of the 
plant regulator containing 50, 100, 200 and 400 mg active 
ingredient (a.i.) when compared to the control (Figure 1A). For 
leaf number, only the 400 mg concentration differed from the 
control and the other treatments (Figure 1B). For leaf length, 
all treatments differed from the control, having reductions 
of 15, 39, 35 and 36%, respectively, with the increasing 
ProCa concentrations, with no significant difference among 
treatments (Figure 1C). Similar response was also observed 
for leaf width, where ProCa concentrations reduced leaf width 
when compared to the control group (Figura 1D).

Pereira et al. (2016) observed polynomial and linear 

behavior for the reducted vegetative growth in Fragaria x 

ananassa D. regarding the studied variables in presence of 
ProCa at concentrations between 50 and 800 mg L-1. Efficiency 
of ProCa in reducing vegetative growth was also found in 
other studies with tomato (Giannakoula & Ilias, 2007; Altintas, 
2011) and in other plant species such as Malus domestica B. 

(Guak, 2013), Solanum melongena L. (Ozbay & Ergun, 2015) 
and Fragaria x ananassa D. (Kim et al., 2019). Increasing ProCa 
concentrations applied to seedlings inhibited gibberellin 
biosynthesis, possibly by competing with the binding sites 
of dioxygenases (Espindula et al., 2010). Reductions in the 

Figure 1. Stem length in cm (A); number of leaves (B); 
leaf length in cm (C); leaf width in cm (D); and SPAD index 
(E) in ‘Santy’ tomato seedlings, subjected to different of 
Prohexadione-calcium (ProCa) concentrations, 10 days after 
applying the treatments.
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vegetative growth in tomato seedlings, when in the presence 
of ProCa, especially at the higher concentrations (200 and 400 
mg L-1), possibly occurred due to hormonal regulation due 
to the presence of plant regulator in the metabolism of the 

seedlings. This promoted a possible reduction in the levels of 
endogenous gibberellins, possibly GA

1
 and GA

4
, as they are the 

main gibberellins active in plant growth (Pereira et al., 2016) 
and inhibiting cell elongation, which in this study is evidenced 
by the stem length of seedlings treated with ProCa (Figure 2).

ProCa concentrations had no significant effect on the SPAD 
index in tomato seedlings (Figure 1E). Different authors found 
different responses of the SPAD index, which is an indirect way 
to quantify the chlorophyll content in vegetables. Kofidis et al. 
(2008) also observed no significant difference in chlorophyll 
contents when studying Coriandrum sativum in presence of 

ProCa at concentrations of 100 and 200 mg L-1 applied at three 

different times. However, Giannakoula & Ilias (2007), working 
with Solanum lycopersicum L., concluded ProCa promoted 

significant decline in the chlorophyll content within the 
analyzed leaves at doses of 100, 200 and 300 mg L-1, sprayed at 

two distinct times at 10-day intervals. The same authors argue 
that the reduction may have been caused by photoxidation. 
Already in Solanum melongena L. seedlings, Ozbay & Ergun 
(2015) observed an increase in chlorophyll content after a 
single application of ProCa at concentrations of 100 and 150 
mg L-1.These same authors hypothesized that seedlings under 

ProCa effect had lesser leaf area and, as a compensatory 
strategy, synthesized more chlorophyll molecules. 

These different results demonstrate that it is still unclear 
how ProCa acts on chlorophyll metabolism. In short, 
chlorophylls are pigments specialized in absorbing light and 

transferring radiant energy to the reaction centers, allowing 
the functioning of the photosynthetic apparatus (Taiz et al., 
2017). In the present study, as the chlorophyll values were 
not significantly influenced by the treatments, even if not 
investigated, it can ultimately be stated that ProCa did not 
affect the biosynthesis of pigments involved in photosynthesis 
significantly (Taiz et al., 2017).

When evaluating the physiological parameters of gas 
exchange and chlorophyll a fluorescence, there was also no 
significant effect of the treatments compared to the control 
(Table 1). Giannakoula & Ilias (2007) found similar results, 
studying two cultivars of Solanum lycopersicum L., where after 
applying 100, 200 and 300 mg L-1 of ProCa; they observed no 
change in the internal carbon Ci concentration for the Karla 
cultivar, as well as, the transpiration rate E for the Hari Moran 
cultivar also did not differ significantly. Medjdoub et al. (2007), 
working with Malus domestica B. of the Royal Gala variety, also 
found no significant difference in CO

2
 assimilation rates A, in E 

and in stomatal conductance gs in tomato leaves in presence 

of ProCa at concentrations of 125 and 250 mg L-1. Thomidis et 

al. (2018) found the same result in the Xinomavro cultivar of 

Table 1. Mean values of the assimilation rate of CO
2
 (A, μmol m-2s-1); stomatal conductance (gs, mol m-2 s-1); internal concentration 

of CO
2
 in the leaf (Ci, μmol mol-1); transpiration rate (E, mmol m-2 s-1); water usage efficiency (EUA, μmol CO

2
 (mmol H

2
O)-1); 

carboxylation efficiency (A/Ci); potential quantic efficiency of FSII (Fv/Fm); quantic efficiency of antennas (Fv’/Fm’); photochemical 
extinction coefficient (qP); non-photochemical extinction coefficient (NPQ) and electron transport apparent rate (ETR), in ‘Santy’ 
tomato seedlings subjected to different Prohexadione-calcium (ProCa) concentrations.

Figure 2. Height of ‘Santy’ tomato seedlings (cm) subjected to different Prohexadione-calcium (ProCa) concentrations, in mg L-1, 

at 10 days after applying the treatments.
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Vitis vinifera L., where ProCa application did not alter gs within 
the grapevine leaves. The process of chlorophyll excitation by 
light induces the formation of ATP and NADPH+H+, and these 

products, in turn, are consumed in the Calvin-Benson cycle, by 
reactions catalyzed by enzymes that reduce atmospheric CO

2
 

into phosphate trioses (Taiz et al., 2017). Given the foregoing, 
ProCa concentrations did not affect light and carboxylation 
reactions of photosynthesis, allowing the seedlings to develop 
normally.

Giannakoula & Ilias (2007) obtained data contrasting to 
those presented here in this study, finding significant difference 
for E and Ci, with a reduction and lack of growth trend and 
decrease observed, respectively, in Solanum lycopersicum L. 

cultivars in presence of ProCa compared to the control. These 
same authors also found a reduction in Fv/Fm in both studied 

materials. 

ProCa can also potentiate the photosynthetic apparatus, 
as verified in Malus domestica B. of the Royal Gala variety 
that, in presence of ProCa, demonstrated increased A 

when compared to the control with the increasing ProCa 
concentrations (Medjdoub et al., 2007). In Vitis vinifera L., 

ProCa presence at the concentration of 250 mg L-1 increased A 

and gs values by 12 and 22%, respectively, compared to plants 
that did not receive the plant regulator (Thomidis et al., 2018). 

In adult plants of Fragaria x ananassa D., Kim et al. (2019) 
observed that after ProCa application, Fv/Fm was increased in 
all treatments when compared to the control. 

For Privé et al. (2006) ProCa effects on different plant 
species is conditioned to seasonality, the shoot growth 
pattern, the studied species, the employed management and 
biotic factors. In the present study, the plant material used 

was a hybrid cultivated in a protected environment, restricting 
the action of environmental factors, associated with the 
correct management, both nutritional and phytosanitary may 
have contributed in the maintenance of the photosynthetic 
processes, even in presence of ProCa. 

Non-significant variation found between treatments and 
the control, for the physiological fluorescence parameters, 
especially Fv/Fm, reinforces the approach that ProCa 

did not physiological impaired the seedlings. Potential 
quantum efficiency of FSII is a sensitive indicator of the plant 
photosynthetic performance (Krause & Weis, 1991). However, 
in presence of stress, Bolhar-Nordenkampf et al. (1989) 
stated that Fv/Fm values between 0.75 and 0.85 pointed to 
the overcoming of said stress, preventing photoinhibitory 
damage. Since values observed in tomato seedlings for Fv/

Fm were between 0.93 and 0.96, it is possible to verify that 
these seedlings overcame a possible stress caused by ProCa, 

leading to activation of the antioxidant system, so as not to 
compromise the seedling physiological performance. This 

system may also have contributed to maintaining the integrity 

of chloroplast membranes, site responsible for the light 

reactions of photosynthesis (Taiz et al., 2017).
When investigating the influence of ProCa concentrations 

on biochemical aspects, significant difference between the 
treatments compared to the control were found (Figure 3). 
It was possible to observe moderate stress caused by ProCa 
concentrations, evidenced by lipid peroxidation values, which 
responded increasingly and linearly to the ProCa concentrations 
(Figure 3A). Although significant, the variation range of values 
between treatments was small, which may suggest that 
the plant regulator does not induce severe stress. In ProCa-

Figure 3. Lipid peroxidation (MDA x 10-³, nmol g fresh weight-¹) (A); activities of the superoxide dismutase enzymes (SOD x 10-³, 

U mg-1 of protein) (B); catalase (CAT, μKat μg-¹ of protein) (C) and peroxidase (POD, μmol of purpurogalin min-¹ mg-¹ of protein) 

(D) in ‘Santy’ tomato seedlings subjected to different Prohexadione-calcium (ProCa) concentrations.
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treated grass, Rezapour Fard et al. (2015) also observed 
increased lipid peroxidation, finding malondialdehyde (MDA) 
accumulation and ion leakage. Lipid peroxidation, quantified 
by MDA content, is an important indicator for estimating cell 
membrane stability (Rachmilevitch, 2006). 

Enzymatic activity presented a linear growth for the 
enzymes superoxide dismutase (SOD), catalase (CAT) and 
peroxidase (POD) concerning the ProCa concentrations 
(Figures 3B, 3C and 3D). An intense antioxidant activity was 
verified in the seedlings, which was indirectly measured by 
enzyme activities. In regards to the SOD enzyme, there was 
an increase of 89, 289, 444 and 800% in the concentrations 
of 50, 100, 200 and 400 mg a.i. L-1 of ProCa (Figure 3B). This 
very activity pattern was also observed for the CAT enzymes, 
having an increase in their activity when compared to the 
control of 17, 52, 94 and 151%, respectively, at increasing 
ProCa concentrations, and for POD with an increase of 36, 66, 
82 and 360% also compared to the control (Figures 3C and 
3D).

Pan et al. (2016) also observed the antioxidant action in 
Nicotiana tabacum L. seedlings that had the activity of SOD, 
CAT and POD enzymes increased in presence of increasing 
ProCa concentrations. In Rubus idaeus L. leaves, Dragišić 
Maksimović et al. (2017) found increased activity of SOD, CAT 
and POD enzymes in presence of ProCa in comparison to the 
control group by 117, 12 and 31%, respectively.

SOD is the primary enzyme active in combating reactive 
oxygen species (ROS), promoting the dismutation of the highly 
toxic superoxide radical into hydrogen peroxide and oxygen (Gill 
& Tuteja, 2010). From the enzyme activity rates, we inferred 
that the seedlings suffered moderate stress due to ProCa 
concentrations. After SOD action, the enzymes CAT and POD 
act on H

2
O

2
, which undergoes dismutation and oxireduction, 

releasing in turn oxygen, water and the reducing agent. H
2
O

2
, 

which albeit not as damaging as the other ROS, can transpose 
membranes when at high concentrations, forming hydroxyl, 
the most reactive free radical (Gill & Tuteja, 2010). However, 
this stress was not enough in compromising physiologically 
the seedlings. For Taiz et al. (2017), in concentrations that are 
not harmful to cells, ROS can have the functions of signaling 
and physiological regulation. 

For any aerobic organism, the balance between ROS 
production and action of the antioxidant system is paramount 
for the functioning of its metabolism (Taiz et al., 2017). ROS in 
plants are eliminated by a variety of water-soluble molecules 
and antioxidant enzymes (Rezapour Fard et al., 2015), with 
the later as the most effective against oxidative damage of 
these (Foyer & Fletcher, 2001). Results of this study allowed 
us to state that the balance between ROS and the antioxidant 
system in tomato seedlings treated with ProCa was kept, 
ensuring the maintenance of cellular structures, which in turn 
reflected on seedling vigor at the end of the experiment.

However, future studies are needed in order to investigate, 
after transplanting, the phenology of plants from seedlings 
that received ProCa application and its possible effects on fruit 
production and quality.

Conclusions

ProCa treatments inhibited the growth of tomato seedlings 
on all evaluated concentrations. 

Chlorophyll content, physiological parameters of gas 

exchange and chlorophyll a fluorescence were not affected by 
ProCa applications.

ProCa concentrations caused moderate stress to tomato 
seedlings, albeit not compromising their physiological 

development.
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