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“If a machine is expected to be infallible, it cannot also be intelligent.”
- Alan Turing



RESUMO

A manutenção de pequenas centrais hidrelétricas é um tópico essencial para garantir
a expansão de fontes de energias limpas e o fornecimento de energia necessária para
as próximas décadas. No contexto industrial moderno, a manutenção preditiva guia
intervenções e reparos de acordo com o estado de saúde da máquina, calculado a partir
de técnicas estatísticas e computacionais. O trabalho atual tem como objetivo principal
propor um modelo de manutenção específico para pequenas usinas hidrelétricas. A tese é
apresentada em formato de coleção de artigos, sendo o primeiro uma revisão sistemática
sobre manutenção preditiva no setor hidrelétrico, o segundo sobre o perfil de manutenção e
operação das usinas e formulação do problema, e o terceiro sobre a aplicação do método de
floresta de isolamento estendida para detecção de anomalias para diagnóstico inteligente
de falhas. Como conclusão, apresentamos duas linhas de ação para trabalho para a tese
final: a primeira na área de diagnóstico inteligente por tipo de falhas e a segunda em
relação ao prognóstico de variáveis críticas para a operação.

Palavras-chave: Manutenção preditiva. Pequenas centrais hidrelétricas. Modelagem
estatística e computacional. Diagnóstico inteligente de falhas. Prognóstico de falhas.



ABSTRACT

Maintenance in small hydroelectric plants is fundamental for guaranteeing the expansion
of clean energy sources and supplying the energy estimated to be necessary for the coming
decades. In the modern industrial context, predictive maintenance guides interventions
and repairs based on the state of health of the machine, calculated from statistical and
computational techniques. The current work has as main objective to propose a specific
maintenance model for small hydroelectric plants. The thesis proposal is presented in the
form of a collection of articles, the first being a systematic review on predictive maintenance
in the hydroelectric sector, the second on the maintenance and operation profile of the
plants and the formulation of the problem, and the third on the application of the method
of extended isolation forest for anomaly detection for intelligent fault diagnosis. As a
conclusion, we present two lines of action for work for the final thesis: the first in the area
of intelligent diagnosis by type of failures and the second in relation to the prognosis of
critical variables for the operation.

Keywords: Condition-based maintenance. Small hydroelectric plants. Computational
and statistical modelling. Intelligent fault diagnosis. Fault prognosis.
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1 INTRODUÇÃO

1.1 Contextualização

Vivemos a era da informação.

Se você, leitor, nasceu no milênio passado, provavelmente teve a oportunidade de
acompanhar diversas disrupções se tornarem obsoletas. Tomemos o exemplo dos tocadores
de música: a primeira versão do Walkman foi lançada em 1979, capaz de reproduzir músicas
direto de uma fita cassete do seu bolso para seus ouvidos. Com sua versão atualizada para
CD, este tipo de sistema dominou o mercado 32 anos, até o primeiro iPod ser lançado, em
2001. E hoje, em 2020, o iPod entrou oficialmente na lista de produtos vintage. Hoje a
música está presente em todos os lugares em plataformas de streaming: você pode ouvir
desde as clássicas composições de Vivaldi, até o último lançamento de uma banda pop
koreana. E onde quiser: celular, computador, televisão. A maioria destes dispositivos nem
existiam há 1 século atrás.

O ritmo de transformação da sociedade em que vivemos é incomparável ao de
qualquer outra época. São 7.494 bilhões de pessoas habitando o mesmo globo, conectados,
criando e compartilhando conhecimento. Barreiras estão sendo derrubadas: comerciais,
linguísticas, culturais. Somos uma colmeia do tamanho do mundo. Este ritmo se torna
mais evidente quando olhamos para nossos antepassados. O homo sapiens desenvolveu
suas primeiras ferramentas de perfuração e corte há cerca de 100 mil anos, com o objetivo
de extrair tutano dos ossos de animais. A maioria das ferramentas e culturas agrícolas se
desenvolveram durante 5-10 mil A.C., e até hoje se fazem presente em nossa sociedade.
Da mesma forma, o que iremos deixar de legado para as próximas gerações, são os frutos
da revolução digital.

Neste cenário caótico e dinâmico, este trabalho se faz presente. Buscamos aplicar
as mais recentes técnicas computacionais a um setor vital para a continuidade de nossas
ações, o energético. A eletricidade iluminou o mundo, e hoje a maioria dos utensílios
que usamos dependem dela. Muito brevemente, carros serão inteiramente movidos pela
energia elétrica. Diversos países como Reino Unido e França já estabeleceram planos para
que carros movidos a combustão sejam eliminados até 2040. Para atendermos toda esta
demanda, precisamos continuar investindo em pesquisa e desenvolvimento de fontes de
energia limpas.

Dentre estas, destacamos a importância das pequenas centrais hidrelétricas (PCHs)
e centrais geradoras hidrelétricas (CGHs). Este tipo de usina, apresenta um menor investi-
mento inicial, baixo impacto ambiental e um enorme potencial de geração, principalmente
no Brasil. As PCHs e CGHs vêm ganhando destaque nas discussões acadêmicas e industri-
ais, se tornando empreendimentos rentáveis para os investidores, junto a outras formas de
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energia limpa como usinas eólicas e fotovoltaicas. Com a regulamentação do mercado de
energia, possibilitando a compra e venda do excedente produzido em mercados spot, além
de contratos firmados entre geradores e consumidores, as PCHs e CGHs vêm ganhando
destaque, junto às demais formas de produção de energia limpa.

1.2 Objetivos

Nossa proposta tem como objetivo central a proposta de modelos para o diagnós-
tico e prognóstico de equipamentos em PCHs. Com a identificação de falhas de forma
automatizada e eficiente, alinhada com a previsão do tempo útil até a falha, busca-se a
diminuição dos custos operacionais e de manutenção de usinas em operação. Para isso,
adotamos técnicas estatísticas e computacionais aplicadas ao grande volume de dados
monitorados gerados constantemente pelo sistema de automação industrial das usinas.

Os objetivo principal é desdobrados em diversas hipóteses de pesquisa, que são
separadas e respondidas em cada capítulo:

2. Como o setor hidrelétrico tem se beneficiado dos últimos avanços das técnicas de
manutenção baseada em condições (MBC)?

2.1. Quais são os modos de falha mais comuns em hidrelétricas, e quais são as
variáveis monitoradas associadas a eles?

2.2. Quais ferramentas de extração de atributos foram usadas para aprimorar os
sistemas de MBC?

2.3. Que métodos estatísticos e computacionais têm sido aplicados no diagnóstico e
prognóstico das hidrelétricas?

3. Qual o perfil de manutenção e operação de PCHs e quais os tipos de falhas que mais
frequentemente contribuem para a indisponibilidade forçada

3.1. Como se dá o processo de desenvolvimento e execução do plano de manutenção
em PCHs;

3.2. Dentre o tempo de parada, quanto está relacionado a cada estado operacional
(parada por falta de água, parada programada, parada forçada, parada por
condições externas);

3.3. quais são os principais componentes que contribuem para as paradas forçadas.

4. É possível obter melhores resultados na detecção e diagnóstico de falhas de uma
unidade hidrogeradora em uma PCH utilizando o modelo de Floresta de Isolamento?

4.1. Qual a diferença das métricas de desempenho do modelo de Floresta de Isola-
mento e Floresta de Isolamento estendida no diagnóstico inteligente de falhas
em uma unidade geradora de PCH?
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4.2. É possível utilizar as métricas de distância temporal e detecção de contagem, na
avaliação de modelos no contexto de detecção de anomalias em série temporal?

4.3. Qual a redução nas métricas de distância temporal comparado com os últimos
modelos reportados na literatura (PCA e KICA-PCA)?

5. É possível obter resultados satisfatórios no prognóstico de equipamentos hidrelétricos
a partir da aplicação do algoritmo TSFRESH de extração seleção de atributos e
modelos de análise de sobrevivência?

5.1. Qual o desempenho de um framework orientado a dados incluindo estratégias de
engenharia de atributos e modelos de sobrevivência de aprendizado de máquina
para diagnóstico inteligente de falhas da unidade geradora de PCH?

5.2. Quais atributos são mais importantes de acordo com o método importância
de permutação associado ao modelo de sobrevivência floresta randômica de
sobrevivência?

5.3. Qual dos modelos híbridos tem o melhor desempenho avaliando-se o índice de
concordância?

1.3 Caracterização da tese de doutorado

Esta pesquisa inova em três aspectos principais. O primeiro é referente à metodo-
logia/tecnologia empregada: a aplicação de ferramentas de métodos de aprendizado de
máquina na área da manutenção preditiva tem chamado atenção devido sua capacidade e
eficiência em tratar enorme massa de dados, como os registros de sensores em máquinas.
No entanto esta aplicação ainda é um desafio para o setor hidrelétrico, devido a alta
complexidade do sistema de geração.

No aspecto prático, este trabalho propõe uma ferramenta computacional para
auxiliar a rotina de manutenção de diversas usinas monitoradas pela empresa parceira.
Espera-se que a ferramenta seja capaz de auxiliar a priorização de recursos no planejamento
da manutenção e da geração, aumentando a disponibilidade dos ativos e consequentemente
a capacidade de geração e utilização de recursos hídricos.

O terceiro aspecto é no ponto de vista acadêmico. A formação de profissionais e
construção e divulgação de conhecimento na área de confiabilidade é um fator crítico para
nossa indústria e o desenvolvimento do país. O conhecimento e métodos gerados por este
trabalho pode ser reciclado em outros projetos, principalmente no setor de energia limpa
como geração eólica ou foto-voltaica.
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1.4 Estrutura da tese

Esta tese de doutorado segue o formato de coleção de artigos. Foram dois temas
principais abordados na tese. O foco principal refere-se ao desenvolvimento de modelos de
machine learning no contexto de PCHs (capítulos 2, 3, 4 e 5). No apêndice se encontram
o desenvolvimento de metodologia de previsão de séries temporais Dynamic Time Scan
Forecasting (DTSF), que foi desenvolvida pelo grupo de pesquisa e aprimorado conforme
no escopo deste trabalho.

No contexto da aplicação, o capítulo 2 traz uma revisão bibliográfica sistemática
sobre o tema de manuteção preditiva em usinas hidrelétricas nos últimos 10 anos. O
capítulo 3 apresenta a identificação e formulação do problema, a partir do levantamento
do perfil da operação e manutenção de PCHs e CGHs. O capítulo 4 propõe a aplicação do
método de detecção de anomalias baseado em árvores de decisão para a identificação de
falhas. O capítulo 5 traz uma proposta de aplicação de métodos de análise de sobrevivência
para estimação da vida útil de unidades geradoras em PCHs, baseado em métodos de
extração de atributos de séries temporais e modelos de aprendizado de máquina.

Dentro do contexto metodológico, o apêndice A traz uma análise do desempenho
do método DTSF utilizando a base de dados da competição de previsão de séries temporais
univariadas M4, frente a outros métodos estatísticos abordados na competição. No apêndice
B propomos formas mais eficientes do que a busca exaustiva (BruteForce) de se realizar a
busca do perfil de correlação entre a última janela observada e todas as demais do passado,
através da busca JustInTime e da convolução.

1.5 Resultados e publicações

As publicações da pesquisa são apresentadas abaixo, incluindo o ISSN, fator de
impacto e última avaliação qualis na área de Engenharias III (quadriênio 2017-2020):

1. Capítulo 2. Artigo publicado na revista Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability (ISSN: 1748-006X; Fator de
impacto: 1,602; Qualis: A4) em julho de 2021.

DE SANTIS, Rodrigo Barbosa; GONTIJO, Tiago Silveira; COSTA, Marcelo Aze-
vedo. Condition-based maintenance in hydroelectric plants: A systematic literature
review. Proceedings of the Institution of Mechanical Engineers, Part O: Journal
of Risk and Reliability, v. 236, n. 5, p. 631-646, 2022. <https://doi.org/10.1177/
1748006X211035623>

2. Capítulo 3. Artigo apresentado na conferência International Conference on Re-
newable Energy (ICREN - Roma, Itália) em novembro de 2020.

https://doi.org/10.1177/1748006X211035623
https://doi.org/10.1177/1748006X211035623
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3. Capítulo 4. Artigo publicado na revista Sustainability (ISSN 2071-1050; Fator de
impacto: 2,576; Qualis: A2) em agosto de 2020.

DE SANTIS, R. B.; COSTA, M. A. Extended Isolation Forests for Fault Detection
in Small Hydroelectric Plants. Sustainability, v. 12(16), p. 6421, 2020. <https:
//doi.org/10.3390/su12166421>

4. Capítulo 5. Artigo publicado na revista Sensors (ISSN: 1424-8220; Fator de
impacto: 3,847; Qualis: A2) em dezembro de 2022.

DE SANTIS, R. B.; GONTIJO, T. S.; COSTA, M. A. A Data-Driven Framework for
Small Hydroelectric Plant Prognosis Using Tsfresh and Machine Learning Survival
Models. Sensors, v. 23, n. 1, p. 12, 2022. <https://doi.org/10.3390/s23010012>

5. Apêndice A. Artigo publicado na revista IEEE Latin America Transactions (ISSN:
1548-0992; Fator de impacto: 0,729; Qualis: B2) em setembro de 2022.

DE SANTIS, Rodrigo Barbosa; GONTIJO, Tiago Silveira; COSTA, Marcelo Azevedo.
Dynamic Time Scan Forecasting: A Benchmark With M4 Competition Data. IEEE
Latin America Transactions, v. 21, n. 2, 2023.

6. Apêndice B. Artigo publicado na revista Journal of Renewable and Sustainable
Energy (ISSN: 1941-7012; Fator de impacto: 2,88; Qualis: A4) em outubro de 2020.

GONTIJO, Tiago Silveira; COSTA, Marcelo Azevedo; DE SANTIS, Rodrigo Barbosa.
Similarity search in electricity prices: An ultra-fast method for finding analogs.
Journal of Renewable and Sustainable Energy, v. 12, n. 5, p. 056103, 2020.
<https://doi.org/10.1063/5.0021557>

https://doi.org/10.3390/su12166421
https://doi.org/10.3390/su12166421
https://doi.org/10.3390/s23010012
https://doi.org/10.1063/5.0021557
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2 CONDITION-BASED MAINTENANCE IN HYDROELECTRIC
PLANTS: A SYSTEMATIC LITERATURE REVIEW

Abstract: Industrial maintenance has become an essential strategic factor for profit and
productivity in industrial systems. In the modern industrial context, condition-based
maintenance guides the interventions and repairs according to the machine’s health status,
calculated from monitoring variables and using statistical and computational techniques.
Although several literature reviews address condition-based maintenance, no study discusses
the application of these techniques in the hydroelectric sector, a fundamental source of
renewable energy. The present study innovates by addressing condition-based maintenance
in the hydroelectric sector, a subject still not covered in the literature. To do so, we
conducted a systematic literature review of articles published in the area of predictive
maintenance in the last ten years. This was followed by quantitative and thematic analyses
of the most relevant categories. We identified a research trend in the application of
machine learning techniques, both in the diagnosis and the prognosis of the generating
unit’s assets, this being the primary monitoring variable. Finally, there is a vast field to
be explored regarding the application of statistical models to estimate the useful life, and
hybrid models based on physical models and specialists’ knowledge, of turbine-generators.

Keywords: Condition based maintenance. Hydroelectric. Fault diagnostics. Fault
isolation. Fault monitoring. Fault prognostics. System health management.

2.1 Introduction

From time to time, new technologies emerge and revolutionize entire industries,
as we know them. Just as the steam engine and weaving loom transformed production
in the 18th century, bringing significant productivity gains to the mass industry sectors,
today we witness the 4th wave of this revolution with the digitization of processes. New
buzzwords such as the internet of things (IoT), cyber-physical systems, cloud solutions, and
augmented reality have been gaining popularity in academic and business environments. In
this context, the maintenance paradigm changes so that industrial maintenance has become
an essential strategic factor, contributing to profit and guaranteeing the productivity of
industrial systems. (CACHADA et al., 2018)

Maintenance 4.0 includes a set of advanced data analysis techniques for processing
the enormous amount of data produced by shop floor processes. It seeks to detect
the occurrence of disturbances in the behaviour of assets. As a result, maintenance
managers can develop more effective action plans, maximizing the availability of assets
at a lower operating cost. This approach is called condition-based maintenance (CBM),
as maintenance is driven by the current state of the machines, measured from principal
variables for monitoring the health of the systems and their components. (PENG et al.,
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2010)

There is a range of reviews in the literature in this area that deal with CBM
techniques and their applications in the industry. One of the pioneer reviews to address
the topic divided the CBM techniques into three main groups: data acquisition, data
processing, and maintenance decision making. (JARDINE et al., 2006) More recently,
another review presented a full view of prognosis(PENG et al., 2010), which is the data
processing phase related to estimating remaining useful life. Also, a more recent review has
restricted analysis to statistical approaches for prognosis. (SI et al., 2011) An update review
that includes all stages of a CBM system, from data acquisition to estimating remaining
useful life, has been presented recently. (LEI et al., 2018) Yet another review relates the
CBM process to maintenance and company management, supporting decision-makers’
actions. (BOUSDEKIS et al., 2018) Finally, a review focused on deep-learning methods
applied to monitoring machine health is presented. (ZHAO et al., 2019) However, to date,
no review has been found specifically addressing the application of these methods in the
hydroelectric sector, which has specific characteristics and complexities. Thus, the present
article provides a systematic review in an area not yet comprehensively reviewed.

The remainder of the present article is organized as follows. Section 2 describes the
study methodology and the systematic literature review process, and presents a qualitative
summary of the articles sampled. Section 3 presents the failure modes found most frequently
in hydroelectric systems (HS). Section 4 summarizes the monitored variables in CBM
applications, associating them with the recurrent failure modes. Sections 5 and 6 discuss
the models proposed so far for dealing with the diagnosis and prognosis of HS and their
components. Finally, Section 7 presents the conclusions and recommendations for future
work.

2.2 Materials and methods

2.2.1 Review methodology

A systematic literature review (SLR) is a replicable and unbiased procedure applied
to identify and select representative literature to answer a research question and its sub-
questions. (BABATUNDE et al., 2017) The present study aims to answer the following
question: “How has the hydroelectric sector been benefiting from the latest advances in
CBM techniques?”. The research question comprises three sub-questions:

• Sub-Question 1: What are the most common failure modes in HS, and what are the
monitored variables associated with them?

• Sub-Question 2: Which attribute extraction tools have been used to enhance CBM
systems?
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• Sub-Question 3: What statistical and computational methods have been applied to
the diagnosis and prognosis of HS?

The methodology adopted for conducting the SLR consists of a three-step procedure.
(GLOCK; HOCHREIN, 2011; HOCHREIN; GLOCK, 2012) The first step is to define
the list of relevant keywords that will be used to search peer-reviewed journals in online
literature databases. Table 2.1 summarizes the keywords adopted in the present paper.
The first set of keywords relates to the context of predictive maintenance; the second
set refers to hydroelectric plants and components. The keyword list has been iteratively
expanded to include synonyms and frequently used terms. We searched the scholarly
databases Scopus and Web of Science for peer-reviewed articles featuring these keywords,
either in their titles, abstracts, or lists of keywords. Only articles published in the English
language during the period between 2010 and 2019 were considered. After removing
duplicates, the total number of articles is 118.

Keywords

Predictive maintenance keywords: predictive maintenance OR condition-based maintenance
OR fault detection OR diagnosis OR remaining useful life OR health monitoring
AND
Hydroelectric keywords: hydroelectric OR hydropower OR hydro generator OR hydro turbine

Tabela 2.1 – List of relevant keywords adopted in searching journal databases.

The second step is to check the articles’ relevance by screening their abstracts. If
the abstract indicates that the paper might be relevant for this review, a detailed analysis
of the entire article is carried out. Articles that do not deal effectively with the topic
are removed from the sample at this stage. The third step is to conduct a backward and
forward snowball search, examining relevant articles cited in our sample.

Phase Description Total

Identification Records identified through database searching 176
Screening Records after duplicates removed 118
Eligibility Full-text articles assessed for eligibility 88
Included Studies included in quantitative synthesis 80

Studies included in qualitative synthesis 71

Tabela 2.2 – Review protocol and sample sizes by stages.

2.2.2 Descriptive analysis

Table 2.2 presents the review protocol adopted, with the number of articles at each
stage of the SLR process. In the end, the study sample consists of 80 articles. Figure 2.1
shows how the number of publications has been developing over time. There is a significant
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2.3.1 Cavitation

Cavitation is a complex and harmful phenomenon for hydraulic machinery such
as turbines, pumps, and valves. Sudden changes in the local pressure of the liquid form
bubbles that collapse, radiating acoustic energy waves and causing the erosion of nearby
surfaces. (GREGG et al., 2017) Sand erosion increases the likelihood of cavitation, since
eroded surfaces increase wall turbulence and, consequently, reduce the local pressure.
(EGUSQUIZA et al., 2018)

Cavitation is more likely in Francis turbines and reversible pump turbines than
in Kaplan turbines. There are several types of cavitation such as leading-edge, traveling
bubbles, draft tube swirl, inter-blade vortex, Karman vortex and tip vortex (only Kaplan
turbines). (VALENTÍN et al., 2018)

variable speed
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predictive maintenance

power grid noise ratio

location method

induction machine

finite element method

feature extraction

fault tolerant control

failure mechanism

excitation transformer

ensemble empirical mode decomp

cuckoo search

vibration monitoring

short circuit

partial discharge

fault type

variational mode decomposition

useful life

draft tube

monitoring system

mathematical model

fault detection

neural network

vibration signal

VOSviewer

Figura 2.3 – Temporal word cloud created from the titles and abstracts of the sampled
articles.

2.3.2 Loss of excitation

Loss of excitation is widespread in synchronous machines and, alone, accounts for
70% of all generator failures. The phenomena are caused by short circuits of the field
winding, unexpected field breakers or relay failures. It can increase rotor speed, causing
excessive vibration and bearing overheating. Additionally, as the generator operates as an
induction machine, the loss of excitation of one piece of equipment can impact the whole
system, decreasing active power and increasing reactive power output, which may even
result in the collapse of the entire interconnected system. (AZIZ et al., 2017)
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Loss of excitation is usually enhanced by short-circuit faults of the rotor winding
of the synchronous generator, which can also lead to the rotor grounding and shaft
magnetization. While short-circuit failures are frequent and occur in most hydro-generators,
in the long run, this type of failure causes an increase of the excitation current and,
consequently, of the rotor temperature. These effects cause an unbalanced thermal
distribution of the rotor magnetic poles that increase the incidence of short-circuit failures
and compromise the reliable operation of the generator. (LI et al., 2019)

2.3.3 Partial discharge

Partial discharge is the name given to electrical micro-discharges generated in
the insulating structure when subjected to high-intensity electric fields. The diagnosis
of partial discharge allows accurate assessment of the degree of insulation degradation
of the generating system. (KANEGAMI et al., 2016) These discharges can partially or
entirely break down the insulation between conductors. The phenomena produce physical
indicators such as light flashes, acoustic noise, temperature gradients, chemical reactions,
and electromagnetic pulses. (OLIVEIRA et al., 2016)

The defects originate from aging deterioration, moisture pollution, or inadequate
design. In generators, defects can be due to gaps in the ground-wall insulation or to
degradation of the corona shielding. The identification and source separation of these
kinds of events are complex tasks, and require intense adoption of pulse shape analysis
and statistical/artificial intelligence techniques. (BORGHETTO et al., 2004)

2.3.4 Shaft, bearing, and other components failure modes

Shaft misalignment is a significant problem in hydro-power systems, causing almost
60% of the failures in rotating machines. This defect may lead to a series of vibration
patterns that are adverse to steady and safe operation, contributing to accelerated wear of
the components, shaft deformation, and deflection of the shaft coupling. (XU et al., 2018)
Misalignment is not an exclusive fault of the shaft; it can also be present in guide vanes,
runner blades or rotors. (WU et al., 2016)

The bearings and the lubrication system are responsible for absorbing part of the
energy from the shaft rotation. If there is misalignment, the absorbed energy will be
converted into thermal energy and overheat the bearings, which ends up reducing the life
of the components and leading the cooling system to fail. Unbalanced magnetic fields can
create a magnetic flux surrounding the shaft which, coupled with the associated bearing
currents, increases the wear on the guide bearings.

Each turbine-generator auxiliary system presents specific failure modes and specific
monitoring variables such as the cooling and lubrication system (SELAK et al., 2014),
turbine governor (GUO et al., 2010), power converter (JOSEPH et al., 2019), servo-
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valve (YU; BREIKIN, 2009) and pressure tubes (MAZZOCCHI et al., 2016). All these
failures detrimentally impact the hydroelectric operation. Some studies model failure
modes by sub-systems, and present them in an organized and interconnected way through
hierarchical models. (JONG; LEU, 2013; MELANI et al., 2016; CHENG et al., 2019b)
While we highlight the phenomena recurring the most frequently in the literature, we
recommend consulting these studies to comprehend the failure modes by sub-systems and
their interactions.

2.4 Data acquisition

Data acquisition is the capturing and storing of monitoring data from several
sensors installed in the monitored asset. Below, we list the sensors and variables monitored
in the hydroelectric sector, associating them with the types of failure modes.

Table 2.3 presents a detailed summary of CBM systems. The publications were
grouped by monitored objects and variables, listing the failure modes that the systems
can identify. The systems were assigned to one of the following contexts, depending on
the nature of the monitored variables: air gap eccentricity, electrical signature analysis,
multi-source, structural health, or vibration monitoring.

The main object of interest for monitoring is the turbine-generator system through
vibration. However, the air gap eccentricity and electrical signal variables are intrinsically
associated with the health of the rotor and stator winding, which is a specific component
of the generator. Most applications are of the diagnosis type, although there are some
recent studies of prognosis in vibration monitoring. The following subsections detail the
main ways of monitoring and acquiring data in CBM systems in the hydroelectric sector.

2.4.1 Vibration signal

Vibration monitoring is the technique used the most in hydroelectric CBM. It can
detect mechanical, hydraulic, and electromagnetic related problems, which impact hydro
turbine-generator sets. It is estimated that more than 80% of failures and accidents in
generating units are detected through vibration monitoring, making it an essential variable
of interest for identifying damage to equipment. (CHENG et al., 2018a)
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Authors Context Object Failure mode Variables monitored T
(VALAVI et al., 2018) Air gap Rotor winding Inter-turn short circuit Air gap flux density, phase voltage D
Griscenko2015EccentricitySpectrum,
Babic2017FaultHydrogenerator,
Dirani2018ImpactHydro-generator

Air gap Stator winding Magnetic unbalance Magnetic flux and vibration spectrum D

(RAMÍREZ-NIÑO et al., 2015) Electrical Generator Impendence asymmetry between pha-
ses, mechanical defects

Neutral current D

(AZIZ et al., 2017; JOSEPH et al., 2019) Electrical Generator Loss of excitation, power converter fai-
lure

Terminal voltage and stator current D

(BLANQUEZ et al., 2015; BLANQUEZ et al.,
2016; PARDO et al., 2016)

Electrical Rotor winding Ground fault Field-winding voltage and grounding
voltage

D

(DALLAS et al., 2011; CARVALHO et al., 2015;
OLIVEIRA et al., 2016; SALOMON et al., 2019a)

Electrical Stator winding Partial discharge Voltage from different phases and
points of measurement

D

(GUO et al., 2010) Electrical Turbine governor Defective components Current, frequency, gate displacement D
(XU, 2013) Multi-

source
Generator Winding, electromagnetic, structure,

oil cooling failures
Current, voltage, power (active, reac-
tive), insulation resistance, tempera-
ture, temperature oil, vibration, sound

D

(BLANCKE et al., 2018) Multi-
source

Generator stator Partial discharge, erosion, insulation
degradation, etc.

Expert knowledge and diagnostic data P

(WU et al., 2016) Multi-
source

Turbine Cavitation, mass unbalance of the ro-
tor, oil whirl, vortex in draft tube, ro-
tor misalignment, guide vane uneven,
and runner blade uneven

Governor, excitation, vibration,
ground current, pressure, voltage

D

(CHENG et al., 2019b; XU et al., 2019) Multi-
source

Turbine Several Several D

(SELAK et al., 2014) Multi-
source

Thrust bearing Overheating, lubrification consump-
tion, cooling system failure, degrada-
tion

Output power, rotation frequency, tem-
perature, oil level, oil temperature, ve-
locity

D

Tabela 2.3 – Summary of CBM models applied to the hydroelectric context, including monitored object, variables and type of application - (D) Diagnosis,
(P) Prognosis.
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(KLUN et al., 2019; MATEJA et al., 2020) Structural Dam and bearing
structure

Hydraulic faults, fatigue Vibration signal D

(MAZZOCCHI et al., 2016) Structural Pressure tunnels
and shafts

Wall stiffness drop Pressure wave reflections D

(MILIC et al., 2013) Temperature Rotor poles Overheating Temperature by infrared radiation D
(KANEGAMI et al., 2016) Temperature Stator winding Partial discharge Resistance-temperature sensor rea-

dings
D

(LU et al., 2018; WANG et al., 2019) Vibration Draft tube Vortex strip Upper/lower guide bearing vibration,
turbine guide vibration

D

(PENG et al., 2007; CHENG et al., 2014; ZHU et
al., 2014; XIA et al., 2015; XIA; NI, 2016; XIA et
al., 2017; CHENG et al., 2018a; FU et al., 2019)

Vibration Generator Rotor unbalance, rotor misalignment,
rubbing, movement collision, and vor-
tex draft tube, karman vortice

Vibration spectrum D

(LUO et al., 2010; XU et al., 2018) Vibration Generator Shaft misalignment, mass unbalance Displacement (orbit), water head, tur-
bine flow, guide vane opening, rotation
speed, generator rotor

D

(PINO et al., 2018) Vibration Guide bearing Degradation Vibration displacement (orbit) D
(AN et al., 2014) Vibration Generator Degradation Upper bracket horizontal vibration, ac-

tive power, working head
P

(GREGG et al., 2017; VALENTÍN et al., 2018) Vibration Turbine Cavitation Vibration and acoustic emissions D/P
(XUE et al., 2014; QIAO; CHEN, 2015) Vibration Turbine Mechanical faults Lower bearing vibration and draft tube

pressure
D/P

(ZHANG et al., 2012) Vibration Turbine Several (mechanical, electrical, hydrau-
lic)

Vibration from upper/lower guide be-
aring, water pilot bearing, upper brac-
ket

D

(AN et al., 2017a; AN et al., 2017b; ZHOU et al.,
2019)

Vibration Turbine Vortex Shaft vibration, lower guide vibration D

Tabela 2.3 – Summary of CBM models applied to the hydroelectric context, including monitored object, variables and type of application - (D) Diagnosis,
(P) Prognosis.
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Vibration monitoring has a broad range of applications in the generator system,
since it can detect anomalies associated with mechanical, hydraulic, and electrical failures.
Examples of failure modes usually detected using this technique are cavitation, rotor
unbalance, rotor misalignment, rubbing, movement collision, vortex draft tube, vortex
strip, and Karman vortices. Nevertheless, the broad range of vibration monitoring
applications can be a notable drawback, as it does not clearly inform what type of failure
is occurring. For this reason, it is common for other forms of monitoring to be used in
conjunction with vibration monitoring.

To measure vibration, accelerometers and acoustic emission sensors are placed in
different parts of the machine such as the guide vanes, turbine bearings, draft tubes, or
shafts. Each location presents advantages and drawbacks in detecting different types of
cavitation. (VALENTÍN et al., 2018) Another form of vibration analysis is shaft orbit
monitoring, in which two sensors are placed 90o apart. This arrangement allows description
of the movement of the shaft centre, extracting geometric, time-domain, frequency-domain,
moment, and angle characteristics. This type of vibration monitoring is usually adopted to
identify shaft misalignment, mass imbalance, and degradation, as found in several studies.
(LUO et al., 2010; XU et al., 2018; PINO et al., 2018; JABLON et al., 2020)

Frequency decomposition, in harmonics, allows simultaneous evaluation of the
health of several components. For example, in a Kaplan turbine composed of thirteen
blades, operating at a frequency of 2.73 Hz, each blade is associated with a frequency
proportional to 13× 2.73 ≈ 35.5 Hz. The vibration data acquisition process must allow an
acquisition rate that is high enough to capture the natural frequencies of its components.

When a unit runs under part-load conditions, the turbine cannot achieve optimum
flow of the runner inlet and outlet, thus creating a vertex rope in the shaft system. During
these unstable operating conditions, the vibration signals are too complex to predict, and
damage is more likely to occur to the runner and draft tube system. (AN et al., 2017a)
From laboratory testing, it was estimated that each start and stop procedure causes
fatigue damage equal to 15-20 hours of stationary operation. (KLUN et al., 2019) To
better understand the vibration behaviour during different operating states, parameter
conditions variables (or operating conditions) are often adopted, using linear models.
Examples of these parameters are active and reactive power, distributor opening, and
bearing temperature. (LUCIFREDI et al., 2000) An example of a parameter condition is
vibration analysis, together with the rotation speed for diagnosing different failure modes.
(XIAO et al., 2014)

2.4.2 Air gap eccentricity

Air gap eccentricity is another object of interest in hydro-power generation. It
allows the identification of several causes of failures like unbalanced inner forces, stator
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core shifts, rotor ovality, defects of stator lamination. This variable measures the space
between the spinning rotor and the stationary rotor in a generator unit, through the
application of contacting probes or proximity sensors.

The air gap monitoring system assesses rotor eccentricity and can identify shorted
turns on the rotor pole winding. Static eccentricity is associated with the wrong positioning
of the rotor or stator during operation or assembly. In contrast, dynamic eccentricity is
associated with thermal expansion, bearings wear, shaft line bend, and rotor displacement
by higher magnetic forces. Before air gap analysis, the standard way to determine the
existence of shorted turns was the pole drop test. This test required stopping and partially
disassembling the generator unit, and measuring the voltage drop across each pole (BABIĆ
et al., 2017). With the recent developments of measuring systems, air gap online monitoring
is now possible through the introduction of flux sensors on the stator core teeth.

The main types of measuring systems use: (1) contacting probes in no-load mode
which, although precise, is not suitable for continuous monitoring since it requires stopping
the generator and running the tests manually; (2) non-contacting capacitive proximity
sensors, widely adopted and commercially available; and, (3) non-invasive measuring
systems, which present enormous potential but are still in development. Recent experiments
with slow-speed generators indicate that the proximity sensors provide measurements
almost as precise as the probe sensors. (GRISCENKO; ELMANIS-HELMANIS, 2015)

Air gap monitoring is not proposed as a stand-alone application, but as a comple-
mentary source of information in integrated, multi-parameter CBM systems. An algorithm
could more efficiently identify excess vibration from magnetic imbalance, rather than only
mechanical or hydraulic imbalance, thereby increasing the precision of the system and its
false-positive rate. The similarities in the spectra of the variables evidence the connection
between the air gap and vibration variables. However, further investigation in future
studies and the definition of reliable evaluation criteria of the air gap spectrum is required.
(GRISCENKO; ELMANIS-HELMANIS, 2015)

2.4.3 Electrical signature analysis

Electrical signature analysis evaluates the current and voltage profiles of a generator
in the frequency domain. It is a non-invasive technique that has been applied increasingly
to CBM in hydro-electrics, to detect inter-turn short-circuit, air gap eccentricity and
rotating diode failures. As it depends only on electrical measurements, the method has
high technical and economic feasibility. (SALOMON et al., 2019a)

Partial discharge was one of the first failure modes associated with electrical
monitoring. The voltage spectrum of different phases undergoes cross talk interference,
that can be overcome by clustering the partial discharge pulses according to shape similarity.
(BORGHETTO et al., 2004) Using signal decomposition techniques, partial discharge



37

pulses can be automatically decomposed and the denoising can be evaluated from the time
shift difference and noise threshold levels. (CARVALHO et al., 2015) These approaches
can better filter out wide-band noise and significantly reduce background interference with
the partial discharge measurement of hydro-generators.

The inter-turn short-circuit diagnosis also benefits from the development of systems
based on the electrical signature. The spectral analysis of stator voltage and current can
be applied to detect early stage, rotor inter-turn faults. (VALAVI et al., 2018) This is
possible since some of the signal harmonics amplitudes increase only when this kind of
fault develops.

Several factors such as over speeding, vibration, excessive field currents, reduced
cooling, and temperature rise expose the field winding to abnormal mechanical and thermal
stresses. These stresses lead to breakdown of the insulation of the field winding and the
rotor iron at points where stress is maximum, thereby generating a ground fault. While a
single ground fault does not represent any immediate danger, high currents and mechanical
imbalances can severely harm or even melt the rotor if a second fault arises. (BLANQUEZ
et al., 2016)

2.4.4 Temperature

Temperature sensors are most commonly found in power generation systems,
presenting significant advantages such as stability, repeatability, and accuracy. Temperature
variations are excellent indicators of impending failure conditions. In generator systems,
temperature monitoring is usually associated with bearing monitoring: the bearing being
the machine component that supports shaft rotation. In the event of failure of the
lubrication system or defect in the shaft (i.e., misalignment, vibration overload, or speed),
the bearings absorb the thermal overload and prevent damage to vital components of the
system.

In the design of a generating unit, the maximum operating temperatures are defined
from technical test simulations. Generation is stopped as soon as the limit is reached.
However, temperature monitoring has low latency, which makes it reactive. Frequently,
once the temperature trip alarm is triggered, the fault (or set of faults) has already
occurred. A recent solution adopted contactless infrared detector measurements for online
monitoring of the surfaces of water-cooled rotors poles. (MILIC et al., 2013) From the
time-frequency analysis of the resistance-temperature sensor, the stator winding discharge
detection can be improved, as the phase angle can aid in distinguishing signals from noise.
(KANEGAMI et al., 2016)

Temperature is also adopted as a condition parameter for estimating other variables.
A three-dimensional mathematical model relates the temperature, thermal deformation,
and thermal stress of magnetic poles fields, in the rotor winding inter-turn short circuits.
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The shorted turns decrease the temperature of magnetic poles, indicating that diagnosis
can be obtained by monitoring the temperature change of the rotor. (LI et al., 2019)

2.4.5 Structural health monitoring

Structural monitoring assesses the health of the structures that constitute a hydro-
electric generation system, such as the powerhouse or the dam. This is vital for preventing
structural damage that could collapse the entire system. The effects of dam failure,
for instance, have substantial social and environmental costs, which makes structural
monitoring so critical and necessary.

Vibration monitoring is commonly associated with structural assessment. In
hydroelectric structures, vibration is also applied to diagnose critical structural components.
A two-step model can identify the modal order and the characteristic of dams under
operation, with the dynamic response of the hydraulic structure excited by fluctuations in
flow load. (LIAN et al., 2009) Through modelling the interaction between the unit shaft
system and the powerhouse structure during transient, sudden load increasing process, it
is concluded that the generator floor structure is more susceptible to the transient process
and to excessive vertical vibration. (ZHANG et al., 2019)

The laser Doppler vibrometer (LDV) is a non-contact sensor. It was developed
to measure the amplitude and frequency of surface vibration by analysing the reflected
laser beam frequency applied to the surface of interest. The use of LDV, under transient
conditions within the concrete dam monitoring context, can contribute to the elimination
of pseudo-vibrations and noise from measures inherent in the non-stationary process.
(KLUN et al., 2019) A low-level reading of instrument noise is obtained by placing the
sensor inside the powerhouse, as regular accelerometers are sensitive to magnetic field
excitation. Some solutions such as the use of reflective tapes, adoption of standing points
that are more rigid than the observation point, and instrument visor shading are proposed
to minimize ambient noise. (MATEJA et al., 2020)

2.4.6 Multi-source

While most of the work in the CBM area is related to monitoring a specific type
of variable, there is a tendency to develop models that simultaneously monitor variables
of different natures. This monitoring process, taking input from multi-modal sensors, is
known as sensor fusion. It seeks to develop collaborative distributed systems. (XUE et al.,
2008)

Some studies have been successful in applying multivariate monitoring systems
in the context of hydroelectric maintenance. An example is the control system based on
the combine input of twelve different types of sensors, such as accelerometers, inductive
displacement sensors, inductive switches, pressure sensors. In total, 108 attributes were
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extracted and used to create a classification model of approximately 97% accuracy. (SELAK
et al., 2014) Other applications have applied nineteen variables such as tank level, rotor
and bearing temperature and vibration, excitation current and voltage, runner speed,
among others. The model diagnoses seventeen failure modes, hierarchically grouped in
the bearing, rotor, and stator sub-systems, and sequentially grouped in two root nodes:
dynamo system and hydro turbine. (CHENG et al., 2019b)

In the context of structural health monitoring, several factors can influence the
behaviour of the system. Hydro-power dam dislodging, for instance, is affected by different
elements such as dam maturing, store water level, air, water, and stable temperature,
which cause complicated, nonlinear behaviour that is hard to foresee. Additionally,
natural external factors such as earthquakes and ice pressure interfere with the structural
monitoring models and reduce their accuracy. A multivariate approach considered a set
of these external variables: air temperature, water temperature, concrete temperature,
displacements between dam blocks, inclination of dam blocks, uplift water pressure and
underground water pressure. (HAMZIC et al., 2020) The model presented accuracy in
the short term; however, the biggest limiter for the long term was the climatic forecast,
especially concerning precipitation and air temperature, which directly influence the water
level and the concrete temperature.

2.5 Feature extraction

Among the feature extraction techniques found in the literature, fast Fourier
transformation (FFT) and wavelet transform (WT) are the most commonly used for
feature extraction. They are useful for transforming signals from the time domain to the
time-frequency domain. The magnitude and phase signal decomposition of each frequency
component can contribute to a set of fault patterns for machine diagnosis: a detection
system can promptly identify faults by monitoring the increase of the values of certain
higher harmonics in the signal spectrum. Examples of applications that have adopted
FFT for feature extraction can be found in the literature. (BABIĆ et al., 2017; WU et al.,
2018; KLUN et al., 2019; XIA et al., 2015; XIA; NI, 2016)

Both FFT and WT present a significant limitation, which is the need to determine
the specific parameters beforehand. In the case of non-stationary vibration, these para-
meters are mostly unknown, and more flexible methods have been proposed. Intrinsic
time-scale decomposition (ITD), empirical mode decomposition (EMD), and the ensem-
ble of empirical mode decomposition (EEMD) are all self-adaptive signal decomposition
methods proposed for analysing nonlinear signals. The application of ITD with a classifica-
tion algorithm has shown better results than the application of the classification algorithm.
(AN et al., 2014)

This result boosted the development of several versions of EEMD, such as the
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Figura 2.4 – Dendrogram with the most used techniques in CBM models for HS. The size of the
nodes represents the binary occurrence of the terms in sampled articles.

noise-assisted method complementary ensemble empirical mode decomposition (CEEMD)
and the over-sampling ensemble empirical mode decomposition (OSEEMD), to obtain
more accurate decomposition sets while keeping computational costs at a minimum. (XUE
et al., 2014) The adaptive local iterative filtering (ALIF) method uses an iterative filtering
strategy with an adaptive, data-driven filter length selection to decompose the signal,
inhibiting the mixing mode inherent in EMD. (AN et al., 2017a) More recently, empirical
wavelet transform (EWT) was adopted to decompose the signal in multiple components.
EWT presents higher accuracy mode estimation at significantly reduced computation time,
compared to EEMD and EMD. (KEDADOUCHE et al., 2016)

Finally, variational mode decomposition(AN et al., 2017b) (VMD) and adaptive
variational mode decomposition(FU et al., 2019) (AVMD) are pre-processing methods used
to decompose the signal into a set of intrinsic mode components with limited bandwidth.
The AVMD automatically determines the model number, based on the characteristic of
intrinsic functions, using a set of indexes: entropy, extreme value, kurtosis criterion, and
energy loss coefficient.
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2.6 Diagnosis

2.6.1 Data-driven

In fault diagnosis applications using supervised learning algorithms, the data is
labelled by specialists as either healthy or faulty. The labels can also be obtained using
technical tests in which specialists design specific failure situations that seek to differentiate
the algorithms. The algorithms can adopt a multi-class approach, seeking to determine
not only if there is a failure, but also what type of failure it is such as misalignment, vortex
with eccentricity, or shaft imbalance.

The learning algorithm most frequently found in our literature sample is the
artificial neural network (ANN). This is a nonlinear model, widely used in the area of
machine learning, that is capable of mapping fault symptoms to a set of source failures. A
more elaborate architecture, that considers temporal dependency between observations,
the application of 1-dimension convolutional neural networks (CNN), has been proposed.
(LIAO et al., 2019)

However, there are some limitations to the application of ANN: the low speed
of convergence and the high sensitivity to initial parameters. To circumvent these,
some authors propose applying heuristic optimization algorithms such as the ant colony
optimization(XIAO et al., 2015) (ACO) and the cuckoo search(CHENG et al., 2018a;
CHENG et al., 2018b; CHENG et al., 2019a) (CS). The aim is to decrease the training
instability and increase the generalizability and convergence speed of the model. Other
machine learning models found in the literature are the support vector machine(XIAO et
al., 2014; XIA; NI, 2016) (SVM) and the principal component analysis (GREGG et al.,
2017) (PCA).

Failure diagnosis in hydroelectric plants can also be seen as a nonlinear, multivariate
process. Conditions are monitored and faults are detected online if the process deviates
from normal operating conditions. The kernel independent component analysis and
principal component analysis (KICA-PCA) method is used for this, to extract and reduce
the dimensionality of independent components. These are combined with the confidence
limits of the Hotelling’s T 2 and SPE statistics to evaluate the normal condition. (ZHU et
al., 2014)

2.6.2 Knowledge-driven

Knowledge-based models are built from the input of experts and technicians, and
seek to consolidate tacit knowledge in intelligent decision-making systems.

Spectral signal analysis (SSA) is one of the techniques most frequently applied
by specialists to detect anomalies. This technique consists of analysing the harmonics
that make up the signal. From their observations, the experts formulate basic operating
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conditions to be met. The latest developments in the area seek precisely to enable intelligent
algorithms to learn to define them, with or without human intervention. The spectral
analysis is applicable to vibration signals (AN et al., 2017a; AN et al., 2017b), neutral
current (RAMÍREZ-NIÑO et al., 2015), air gap (GRISCENKO; ELMANIS-HELMANIS,
2015) and partial discharge (OLIVEIRA et al., 2016).

Fuzzy inference (FI) systems are capable of assigning a set of reference rules to
represent the relationship between the fault phenomenon and the fault reason, in a concise
and interpretable way. They can be applied either alone (XU, 2013) or together with
machine learning models like, for instance, SVM (ZHANG et al., 2012; XIAO et al., 2014)
or ANN (AZIZ et al., 2017). Fuzzy theory is widely applied in the industrial sector, adding
artificial intelligence agents to the regulation and control of resource activities with the
adoption of the Fuzzy Recursive Decision Feedback Extension(MINO-AGUILAR et al.,
2014) (FRDFE) models.

Another knowledge-based approach to multi-fault diagnosis is the construction of
system fault trees (FT) and their components. Failure probabilities are interrelated using
logical AND and logical OR conditions in a tree hierarchy. The FT starts with the failure
mechanism and is grouped into components, sub-systems, and, finally, the whole system.
Subsequently, the calculated probabilities feed a Bayesian network (BN) in which the
model receives input from maintenance experts. (JONG; LEU, 2013) In this framework,
current advances seek to construct the BN model from the perspective of machine learning
and the experience of specialists, into a model capable of expanding or reducing according
to the size of the hydroelectric station and the requirements of maintenance personnel.
(CHENG et al., 2019b)

2.6.3 Physics-based

Physics-based approaches are generally mathematical models built from the premise
that there are underlying, deterministic phenomena that influence the generation system.
The modelling is focused on a specific component (or group of components). The adoption
of simplified models, such as the influence of bearing stiffness (BRITO et al., 2017) and
hydraulic dynamics (ZHANG et al., 2019) on the monitored vibration, can generate
satisfactory results when the operating condition is appropriately determined.

The stability modelling of a generator system is obtained from the vibration of the
unit and conversion efficiency. It seeks to establish bases for the safe and stable operation
of hydroelectric stations during the transient processes. A unified mathematical model for
the sensitive analysis of turbines is approached from three aspects: hydraulic, mechanical,
and electrical. The confidence interval of the variable is estimated from computational
simulations. The new observations are monitored using the mathematical model and, if
the confidence limit is exceeded, it is considered an anomaly. (XU et al., 2017; XU et al.,
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2018; XU et al., 2018)

The Kutta-Zhoukowski conditions (KZC) can be applied to the input and output
velocity vectors and unbalanced forces to estimate the normality curves of the vibration
and efficiency variables. (XU et al., 2019) In this type of model, a challenge arises from
the sensitivity influence of the initial conditions on its performance. The Hamiltonian
dynamic (HD) can also be used to describe the dynamic evolution of the energy produced,
dissipated, and supplied in an operating, multi-generator system. (LI et al., 2018) Finally,
a three-dimensional mathematical formulation of the temperature and thermal stress fields
of the magnetic poles of the rotor can be used for stability estimation. The model is
based on the theory of heat transfer and its resolution is obtained using the finite element
method (FEM). Unlike previous models that acted generically, this one is specific to the
type of rotor winding inter-turn short circuit failure. (LI et al., 2019)

Among the stability models of hydroelectric units, the application of computational
intelligence methods for regression of the vibration and pressure variables, such as ANN
and the least square support vector machine(QIAO; CHEN, 2015) (LS-SVM), is becoming
more commonplace. The main advantage of these models is their ability to generate
nonlinear mapping of the stabilization parameters, providing more accurate models for
predicting the output parameters.

2.7 Prognosis

Prognosis seeks to estimate the useful life of an asset and establish a confidence
interval for that estimate. In the hydroelectric context, prognosis consists of forecasting a
given variable of interest, such as vibration, pressure, or the calculated health index, within
a time-frame feasible for interventions in the system. An example of a prognosis system is
based on the application of Shepard’s interpolation of three variables, bearing vibration,
apparent power, and working head, to construct the health index of the generator unit.
Applying ITD, the signal is decomposed into a finite number of rotating components. An
ANN is trained for each of the temporal components intrinsic to the signal, while the first
order gray model predicts the trend of the series. Finally, the individual forecasts of each
temporal component are summed together into a single forecast for the original series.
(AN et al., 2014)

Later models present a similar framework, with varied individual methods. Signal
decomposition can be obtained through the VMD, optimizing the meta-parameters using
the least-square error index. The LS-SVM regression model can substitute for the ANN,
and the model is fine-tuned using either the chaotic sine cosine algorithm (CSCA) or
the adaptive sine cosine algorithm (ASCA). (W. WANG K., 2018; FU et al., 2019) The
signal pre-processing, feature selection, and prediction steps can also be condensed into a
single, multi-objective optimization framework. The EWT to decompose the signal into
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several modes, along with an entropy-based sample reconstruction strategy, refactor the
modes. Variables are selected using the Gram-Schmidt orthogonal (GSO) process, and
each series is extrapolated using the kernel extreme learning machine (KELM) method. A
multi-objective salp swarm algorithm (MOSSA) adjusts the hyper-parameters of both the
GSO and KELM models from the bias-variance indices. (ZHOU et al., 2019)

Other forms of prognosis can be developed from hybrid models involving knowledge-
and data-driven methods. An example is the application of failure mechanism and
symptoms analysis (FMSA) and Petri nets (PN) to predict the occurrence of degenerative
states. This approach predicts the applicable time interval for maintenance tasks, based
on the occurrence and propagation of known failure modes. (BLANCKE et al., 2018)

2.8 Discussion and conclusions

The present paper has provided a systematic overview of the state-of-art of CBM
models for the hydroelectric sector. The discussion is summarized according to five
categories: common failure modes, data acquisition, feature extraction, diagnosis and
prognosis. Machine learning algorithms associated with time-frequency decomposition
have been playing an important part in publications in this area in the last decade.
The advantage of these models is that they do not require extensive human work or
specialist knowledge, since the end-to-end structure is capable of mapping raw data with
the associated failure classes. In addition, some research trends and potential future
directions are given, as follows:

• Multi-source data acquisition: Vibration monitoring clearly predominates in the models
proposed in recent years. Nevertheless, combining other variables such as temperature,
electrical signature, pressure, and acoustic emission in multi-source systems is a trend
in the research, given the capacity of these other variables not only to identify other
failure modes that vibration does not capture, but also to help in classifying the type
of failure. Studies associating the feature importance of monitored variables with the
types of failure, like cavitation(GREGG et al., 2017) and partial discharge(ZEMOURI
et al., 2020), can guide the design of new hydroelectric CBM systems.

• Hybrid models: The explainability of data-driven models, or machine explainability,
offers the potential to provide insights into model behaviour using various methods such
as visualization, feature importance scores, counterfactual explanation or influential
data.(BHATT et al., 2020) This type of approach requires continuous interaction with
specialists who have expertise in the knowledge domain, from the discrimination of
attributes to the continuous feedback of the system, to articulate new anomalies as
they arise. From the adoption of simple mathematical models and expert judgment, the
model shows great improvement in its accuracy.
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• Deep learning techniques: Machine learning models currently predominate in the hydro-
electric CBM models. In the next decade, it is expected that the application of deep
learning techniques will become more common in the area. (ZHAO et al., 2019) These
techniques may include auto-encoders, restricted Boltzman machines, convolutional
neural networks and recurrent neural networks. In recent years, due to their high
accuracy in large-scale machinery datasets(SI et al., 2011), these techniques have been
widely applied in the context of asset health management.

• Health management and prognosis: Reports on the prognosis of hydroelectric generating
units are still scarce in the literature. Most studies present a very restricted framework
for estimating the useful life of the generating unit. For example, there is a range of
statistical methods such as the Wiener and Gamma process, also the stochastic filtering-
based, hidden Markov models, that are used in prognosis and could be applied to this
specific problem. Another important challenge in the area is to propose approaches that
consider the interaction among faults between different generating units and auxiliary
systems interconnected in the same generation system.

In conclusion, development of CBM technical applications in the energy sector
is a trend that has been evident in recent years. It is gradually transforming the entire
sector in the Industry 4.0 context. With the maturing of the different monitoring types,
i.e., electrical signature and structural monitoring, it is natural for diagnostic systems to
take the next step toward prognosis. The next step in the development of maintenance
systems does not depend on the adoption of a single technology but on the interactions
between intelligent systems and human specialists, complementing each other’s strengths
in striving toward a common goal.
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3 MAINTENANCE AND OPERATION PROFILE OF SMALL HYDRO-
ELECTRICS: IDENTIFYING THE CAUSES OF UNAVAILABILITY IN
POWER GENERATION

Abstract: Developing and maintaining renewable energy sources are vital for sustainable
growth in the coming decades. Despite the great increase in the number of publications
on predictive maintenance, no study has been found in the literature that presents the
application of specific models for small hydroelectric plants. A case study is presented of
an energy operator specialized in the operation and maintenance of small hydroelectric
plants in Brazil, in which a questionnaire was applied to executives and technicians. An
exploratory analysis of a one-year operation was carried out, in order to describe the
qualitative and quantitative maintenance profiles of 42 plants in Brazil. The potential to
improve the availability of assets was demonstrated by reducing downtime for planned and
forced maintenance, which accounts for an average of 47 days (13.0%) per year of plant
operation. The components that failed the most frequently were the bearings (15.1%) and
hydraulic units (11.2%). The results of the present study show the feasibility of applying
predictive maintenance models to plants, which could benefit from lower operating costs
and greater equipment availability.

Keywords: Industry 4.0. Predictive maintenance. Small hydroelectric plants. Qualitative
profile. Exploratory analysis.

3.1 Introduction

The development of renewable energy sources is essential, in order to guarantee
energy supply in the coming decades. According to the World Energy Council (WEC,
2019), energy demand is expected to double by 2060, while renewable energy sources
represent three quarters of installed capacity in the same year. Among the clean energy
sources already installed, the most used types are those related to the application of water
resources. While the growth rate of large hydroelectric plants has maintained a moderate
pace over the past fifty years, there has been gigantic growth in small hydroelectric plants
(SHPs), which have become economically viable on the world stage. This viability is
attributed to the decrease in the initial investment required to build a SHP and the decrease
in operating costs, in addition to the development of regulation of energy markets by
government and private agents. It is estimated that the potential for the total generation
capacity of new SHPs is 78 GW, which represents only 36% of the total potential generation
currently existing worldwide (LIU et al., 2016).

Management of the maintenance of a plant is a complex task, that requires a
certain level of expertise in order to ensure a satisfactory level of reliability of the asset
during its useful life (JARDINE et al., 2006). There are three types of maintenance. The
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first and most rudimentary is corrective maintenance, in which a component is expected
to break and is replaced. The second is preventive maintenance, in which estimates of
the expected service life of a component are made, and replacement is done based on a
calculated value of operating time. Third, in predictive maintenance, the condition of the
system is calculated using data obtained from various sensors, periodically or continuously
(BOUSDEKIS et al., 2018; PENG et al., 2010).

Predictive maintenance, also known as condition-based maintenance, consists of
two main phases. The first phase is the diagnostic phase, which includes everything from
the detection of a fault or abnormal operating condition to the isolation by sub-components
and identification of the nature and extent of the fault (PENG et al., 2010). The next
phase is the prognostic phase, in which the application of statistical and machine learning
models make it possible to estimate the remaining useful life of equipment. This provides
a confidence interval of the prediction (SIKORSKA et al., 2011), thereby anticipating the
maintenance and increasing the reliability and availability of the energy generation system.
Examples of commonly applied methods for estimating remaining useful life are divided
among statisticians (SI et al., 2011), which include: regression methods, Wiener process,
gamma process, based on Markovian processes; machine learning methods, such as neural
networks, vector support machine, principal component analysis (LEI et al., 2018); and,
more recently, deep learning techniques, such as auto-encoder, recurrent and convolution
neural networks (ZHAO et al., 2019).

Several other energy sectors already make extensive use of these techniques, such
as the nuclear (AYO-IMORU; CILLIERS, 2018; LI et al., 2018; WU et al., 2018), wind
(MÁRQUEZ et al., 2012; TIAN et al., 2011) and solar sectors (DING et al., 2018; KAID et
al., 2018). In the hydroelectric sector, the literature on predictive maintenance is specific
and limited to large hydroelectric plants (SELAK et al., 2014). Only one study was found
addressing computer monitoring and failure prediction for SHPs. It dealt with two case
studies in which specialist systems were developed for monitoring some sensor-detected
variables, and issued an alert if some predefined limits were violated (HENDERSON et al.,
1998). Therefore, the literature lacks examples reflecting the reality of the SHPs, which
present a different operation and maintenance profile than the large hydroelectric plants.
With the application of prognostic models, a plant can benefit from increasing its asset
availability and its total generation capacity, favouring both the investor and the society.

The general objective of the present article is to identify the maintenance and
operation profile of SHPs, and to evaluate the types of failures that contribute most
frequently to forced unavailability. Among the specific objectives are: understanding the
development process and execution of the maintenance plan; analysis of the time stopped,
according to the type of operational state (stopped by water scarcity, planned stop, forced
stop, stop by external conditions); and, survey of the main components that contribute to
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3.2.2 Operational status record base

The operational records dataset of several plants was adopted as a basis, with
the operating status defined by the National Electric System Operator (NESO). The
records are maintained by the companies’ remote operation areas, and are used to generate
external operation reports for each client and regulatory agency. These documents contain
the records of operating states for 91 generating units (GU), for 43 plants located in the
states of Goias, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Rio de Janeiro, and
Santa Catarina. The number of GUs per plant varies from 1 to 5 units. Records from
January 1, 2018 to December 31, 2018 were used.

3.2.3 Exploratory data analysis

For exploratory data analysis, we adopted the libraries of the graphical representa-
tion software Seaborn (v.0.9.0) and Matplotlib (v.3.1.0), and the numerical calculation
libraries NumPy (v.1.16.4) and Pandas (v.0.24). The scripts were developed using the
Python language (v.3.7.3) on the Jupyter Notebook development platform (v.6.0.0). The
analyses were performed by the authors, and iteratively evaluated and validated by
company executives and specialists.

3.3 Results

3.3.1 Case study of an energy operator

The current study was conducted at a company responsible for the operation and
maintenance of dozens of SHPs and photo-voltaic units in the south, southeast, midwest
and northeast regions of Brazil. The company has a remote-operations control centre
which monitors all customer plants 24 hours a day, 7 days a week, developing actions to
deal with any operational problems that may occur. In addition to the operations and
maintenance services, the energy operator also has a team of specialists in automation and
retrofitting that provides consultancy services for evaluating energy generating systems in
the most diverse types of projects in the area.

3.3.2 Qualitative profile

The qualitative profile is based on the responses to the questionnaires by the
specialists and executives involved in the operations and maintenance processes of the
plants. This profile is presented, below, in the form of questions and answers, to facilitate
the reader’s understanding.

1. What is the plant’s unavailability and how is it calculated? How is machine
breakdown time counted? And for water scarcity?
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The process for verifying unavailability is developed by NESO, and is detailed
in the Operation Procedures Manual (OPM). The main operating states are: (1) ON -
hours in service, connected as a generator; (2) RHD - reserve hours disconnected, the
period stopped due to lack of water resources; (3) HSS - hours of scheduled shutdown,
planned stops; (4) HFS - hours of forced shutdown, unplanned stops, for example, resulting
from machine breakdown; (5) HOEC - hours turned off due to conditions external to the
generating unit (GU), normally associated with the energy concessionaire. The equivalent
rate of accumulated programmed outage is calculated from HSS divided by the total
number of hours in the calculation period considered. The equivalent rate of accumulated
forced outage is calculated from HFS divided by the sum of HFS, ON, HOEC and RHD.
Full details of the methodology for determining unavailability can be found in the OPM.

2. How is the maintenance plan for a generating unit developed?

General maintenance is performed once a year per GU, usually during the dry,
or low generation, period. In this period, the GU is opened and the components are
inspected in order to clean them and to identify any problems. This period lasts for two
weeks. The aim is to mitigate all potential risks to the equipment and to prepare it for
the rainy season, when the equipment will need to operate with the greatest possible
reliability. All components of the generator system are mapped on an equipment tree by
the maintenance team. Each piece of equipment has its own maintenance policy, defined in
the manufacturer’s manual or by the engineering team. Minor maintenance is performed
weekly by the maintenance team.

3. Who carries out maintenance on the SHPs? Is there a team that moves to each
SHP when there are failures or is maintenance done locally by someone who operates the
SHP? Is this team segmented with people with greater expertise in one segment than the
other, i.e., a specialist in hydraulics vs an expert in electrical?

Maintenance is divided into three levels, according to complexity. First level
maintenance includes inspections or simple interventions that can be performed by the
plant’s own maintenance team. Second level maintenance is more specific (i.e., oil changes,
cleaning, equipment measurements) and requires a group of mechanical and/or electrician
specialists. These teams can be linked to a single plant or to a group of plants, depending
on the level of demand and the proximity between plants, to reduce fixed costs. Third-level
maintenance is that which cannot be performed internally by the company, such as opening
machines, machining components, for which external companies are hired.

4. What are the main causes of generation failure?

Each plant has a different fault pattern. Some of the main causes identified were:
(1) the lack of silting up of the water, which obstructs the industrial system and filtration
grids; (2) voltage drop and fluctuation, which generates disconnection between the system
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and the transmission line; (3) communication failure between the remote operation control
centre and the plant, due to the unavailability of either the VPN or the internet; (4)
automation system generating an incorrect trip, usually caused by an incorrect sensor
reading due to external factors or waste accumulation.

5. Is there redundancy in the generating units to avoid shortages? Are there
auxiliary systems whose failure can interfere with generation?

Most plants have at least two turbines, although there are some older plants that
have only one turbine. Auxiliary systems common to the generation systems are the:
compressed air, direct current and alternating current, industrial water and drainage
systems. Generally, these systems are shared among the generating units, and their failure
impacts the total generation of the plant.

6. What variables are sensed in real time? How often is the data recorded

There are some basic variables that are monitored in almost all generating units,
such as the energy generated and the temperature of the bearings. The water levels
upstream, downstream and in the dam are found only in larger plants, while some smaller
plants usually do not have a dam (run-of-river plants). The flow of oil and water that feed
the GU is also commonly monitored. Some information, however, is more difficult to find,
which includes vibration and noise sensing, and inlet and outlet oil temperature. The data
readings are saved in the database every 5 minutes. There are some measurements that
are made periodically by specialists, such as thermographic tests.

7. Is the event data recorded? How reliable is this data?

The operating states of each generating plant are recorded by the post-operation
area, and are disclosed to NESO and to the customer who owns the plant. The reliability of
this information is high, as the information must be generated according to the normative
instructions. There are also records of all maintenance performed in a maintenance system.
These records identify all service orders that were executed, by equipment, with details of
the maintenance team and materials that were used.

8. How is the operation plan developed?

Each GU has an operating parameter that is defined based on engineering tests.
For plants with a dam, the responsible planner uses the maintenance plan, the water levels
(when available to read) and the rain forecast of the region as input information. That
information comes from company experts and external weather services. The production
plan seeks to optimize generation, keep plants at more efficient levels of operation and
avoid the loss of water resources as much as possible. There are groups of plants positioned
along the same water system, and these require coordinated planning because the water
output from one system is the input of the subsequent system.
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3.3.3 Quantitative profile

The first decision to be made relates to the frequency and duration of each state, as
shown in Figure 3.2. On average, a GU is connected 237 days per year, which represents
65% of the total time. It is turned off for 78 days due to water outages. Dividing the
generation time by the available time with water resources, we were able to estimate the
average availability of the generating units – 237 / (365-78-3) = 83.45%.

Figura 3.2 – Distribution of average operating states. On the left, we find the average number of
occurrences of each operating state per GU, while on the right, we find the average
number of days in each state per GU.

Analysing the downtime for each operational state, we found that the most frequent
average number of failures is due to external conditions (HOEC). With about 40 occurrences
per year for each GU, and considering that HOEC, HSS and HFS are the states related
to failure, it is evident that HOEC is the problem faced most frequently by the company
during the operation. However, analysing the graph on the right, we find that the time in
this state represents only 1% of the time stopped, about 3 days per year on average, for
each GU.

On the other hand, although HFS and HSS occur less frequently, they require more
time to be resolved. Together, they cause 13% of downtime, while HOEC causes only 1%.
Thus, the potential gains from decreasing HFS / HSS times for total availability are much
greater than the gains from improvements to the transmission system.

The comparison of HFS and HSS allows assessment of the maturity level of the
maintenance planning. In general, it is more effective to plan maintenance than for it to
happen of necessity, so that the company can mobilize human and material resources in
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advance and optimize costs. The unexpected failures (HFS) occur less frequently than
the planned shutdowns. However, the total time spent in the scheduled shutdowns (HSS)
is greater. This is an indication that the failures that require more intervention time
are closely monitored by the company’s technicians and analysts, while the unexpected
failures are less familiar and receive more rapid intervention.

Figure 3.3 presents a strip graph representing the occurrences of each status of
all generators, segmented by operating state. The water shortage situation is distributed
in the interval between 0 to 50 days, with most occurrences lasting fewer than 10 days.
The period distribution of machines connected without intermittence is similar, with most
occurrences fewer than 20 days.

Figura 3.3 – Distribution of records by operating status, according to duration in days.

It is possible to observe that shutdowns due to external conditions (HOEC) are
resolved quickly, with a single, isolated exception that took 35 days to resolve. However,
most occurrences of this state did not last more than two days.

Finally, the durations of the programmed and forced shutdown states also show close
distributions, with intervals ranging from 0 and 60 days. Most of the data is concentrated
in the period of 7-10 days, which indicates the average time of intervention in the system
for both scheduled and corrective maintenance. However, these interventions can be spread
over longer periods, as shown in the representation of the categorical variable.

Figure 3.4 shows the distributions of the durations of the operating states by the
months of the year. Average values are represented by circles and confidence intervals (CI
= 0.95) are represented by bars. In this visualization, it is noteworthy that the longest
planned downtime (HSS) is carried out during the time of drought, between May and July.
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Figura 3.4 – Distribution of duration in each operating state by months. The points represent
the mean values, while the bar represents the value for the confidence interval of
0.95.

The forced stop time (HFS) is longer between the months of June and October.
The duration of the states connected as a generator (ON) and stopped due to lack of water
resources (RHD) are relatively stable throughout the year, with the longest time in the
months of April and May. Finally, downtime due to external conditions (HOEC) is close
to zero during all months of the year, with a small increase in August.

Assessing the confidence intervals, it is noted that the states RHD and ON have
smaller standard deviations when compared to the states HSS and HFS. From these
results, it appears that the operation of the plants seeks to maintain the generation and
availability of water resources because, even in the dry months, the states ON and RHD
are balanced and have shorter confidence intervals.

Another feature that stands out in the graph in Figure 3.4, is that the frequency
of failures is greater after the period of planned maintenance, where the system should be
operating with greater reliability. However, during the rainy season, between November
and March, the downtime for both planned and corrective maintenance is low.

Figure 3.5 shows the 10 generator system components that contribute the most
to the forced stop time (HFS). The red bar represents how much the component failures
contribute to the total forced stop time, while the blue bar shows the frequency with which
the components fail in relation to all the failures that occurred during the same period.

The first component that contributed the most to forced downtime was the bearing,
with 15.1% of the total time, although it is not the item that failed the most frequently. It
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Figura 3.5 – Unavailability rate (red) and failure rate (blue) by component, filtered among the
10 most significant.

represents 5.2% of the total failure occurrences. The second component that contributed
the most to forced downtime was the hydraulic unit, with 11.2% of the time and 4.7% of
the total failure occurrences. The third component that contributed the most to forced
downtime was channel obstruction, with 9.1% of the entire HFS time but only 0.2% of the
total failure occurrences. This indicates an isolated occurrence, in which a single problem
resulted in the operation failing for too long.

Other components that stand out are protection systems of the system itself, such
as circuit breakers and sensors, which together represent 10.7% of the total time and
13.8% of the occurrences. In general, these stops are due to the action of the system if
any system variable (e.g., power generated, temperature, etc.) exceeds a predetermined
limit in the maintenance design.

The turbine is one of the main components of a GU and, although it has a relatively
low occurrence rate (0.9%), it contributed 4.2% of the total downtime. This indicates that
the turbine failure requires more repair time, given the complexity and accessibility of the
component. The speed regulator is associated with the turbine, as it regulates the flow of
the water that feeds the turbine. This represents 3.8% of the total forced downtime and
5.5% of the failure occurrences.

3.4 Discussion

When compared to the large hydroelectric plants, it appears that the SHPs have
some restrictions such as decentralized maintenance teams and a lower level of sensing.
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Furthermore, many are very old and have been operating since the early 20th century.
However, most SHPs have undergone recent automation and now show satisfactory levels
of sensing in both real-time and remote operations.

However, it appears that the level of maintenance management is relatively high,
with the definition of the equipment tree and the preventive maintenance plan. NESO
regulation and event registration activity, associated with the history of the order of services
performed, provide fundamental information for the implementation of a prognostic system.

There is coherence between the results found and the variables sensed by the
automation systems: the bearing is the most critical component and, in most GUs, there
are temperature sensors in these components. The hydraulic unit is the second most
critical component, as it is responsible for feeding the system with oil. For this reason,
most GUs have flow switches for measuring flow, and temperature sensors for measuring
the temperature of oil inlet and outlet. Finally, the turbines are monitored using vibration
sensors and thermographic measurements.

The adoption of a prognostic maintenance system based on condition monitoring
could come to contribute greatly to the increase in system availability, primarily associated
with the main components of the generator system that fail the most frequently. Those
components are the bearings, hydraulic unit, turbine and speed regulators. Separately,
they represent 34.3% of all the forced downtime, which yields an average of 3 days per
year of generation loss in SHPs.

3.5 Conclusion

The present study addressed the theme of maintenance in SHPs. It raised the profile
of the maintenance planning and execution processes, based on the practical experience of
executives and specialists in the area and by analysing historical records of operational
states in order to identify the main causes of unavailability in more than 40 SHPs operating
in Brazil. From the results obtained, we identified several configurations according to the
plant project: some are more sensed, others have less monitoring data; dams may or may
not exist; the operation can be local or remote; the teams may or may not be decentralized,
with part of the activities being carried out by specialized, external companies. The main
causes of failure can vary from plant to plant, but in general the components that generate
the most downtime are bearings, hydraulic units and others related to the main generator
system.

Although many interruptions in supply are due to failures in the transmission line,
it was found that the total time of these stoppages is insignificant because the repair time
is exceptionally low. However, there is potential for improvement in reducing corrective
and preventive maintenance times, based on adopting predictive maintenance. Further
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study still needs to be done to verify which components are the most critical to monitor,
in order to prioritize the design of the prognosis system.

The results found in the present study show the feasibility of applying predictive
maintenance models to plants, which could benefit from lower operating costs and greater
availability of assets. For future work, it is suggested to build the equipment failure tree
in a practical case study of a plant. In such a study, the authors suggest selecting a pilot
plant and applying the failure tree analysis method (MÁRQUEZ et al., 2012; LEE et al.,
1985) to the generation system, combining expert support and the plant’s failure history.
This diagnostic step is essential for the development of a prognostic model based on the
history of reading sensors, and operational and maintenance data.
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4 EXTENDED ISOLATION FORESTS FOR FAULT DETECTION IN
SMALL HYDROELECTRIC PLANTS

Abstract: Maintenance in small hydroelectric plants is fundamental for guaranteeing the
expansion of clean energy sources and supplying the energy estimated to be necessary
for the coming years. Most fault diagnosis models for hydroelectric generating units,
proposed so far, are based on the distance between the normal operating profile and
newly observed values. The extended isolation forest model is a model, based on binary
trees, that has been gaining prominence in anomaly detection applications. However, no
study so far has reported the application of the algorithm in the context of hydroelectric
power generation. We compared this model with the PCA and KICA-PCA models, using
one-year operating data in a small hydroelectric plant with time-series anomaly detection
metrics. The algorithm showed satisfactory results with less variance than the others;
therefore, a suitable candidate for online fault detection applications in the sector.

Keywords: Hydroelectric power plant. Condition-based maintenance. Machine learning.
Early fault detection. Decision tree algorithm.

4.1 Introduction

With energy demand expected to double by 2060, the development of clean energy
sources is essential for guaranteeing an energy supply in the coming decades. Renewable
energy already represents three quarters of yearly new installed capacity (WEC, 2019), and
those related to water resources are the most applied. In this group, the construction of
small hydroelectric plants (SHPs) has grown worldwide due to the lower initial investment,
low operating costs and increasing regulation of energy markets. The potential total energy
generation capacity of these SHPs is twice the current total capacity of the presently
installed energy plants (UNIDO, 2016).

Several case studies are reported in recent literature addressing the energy potential
and importance of developing SHPs in emerging countries like Brazil (FERREIRA et al.,
2016), Turkey (DURSUN; GOKCOL, 2011), Nigeria (OHUNAKIN et al., 2011) and other
sub-Saharan African (KAUNDA et al., 2012) countries. Overall life cycle assessment is
applied for quantitative economic evaluation of this type of undertaking in India (BHAT;
PRAKASH, 2014) and Thailand (SUWANIT; GHEEWALA, 2011). Economic models
of viability sensitivity analysis of SHPs stations are presented and applied to the energy
context in Spain (ALONSO-TRISTÁN et al., 2011) and Greece (KALDELLIS et al., 2005).
A common factor among all these models of economic viability is the cost of operation
and maintenance, which is a determining variable for the development of new stations.

Maintenance of a hydroelectric generating plant is a complex task, though. It
requires a certain level of expertise to ensure a satisfactory level of reliability of the
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asset during its useful life. There are three types of maintenance. The first, and most
rudimentary, is corrective maintenance, in which a component is expected to break,
and is then replaced. Preventive maintenance estimates the expected service life of a
component, and replacement is done when the operating lifetime is reached. Last, in
predictive maintenance, the condition of the system is calculated from data periodically
or continuously obtained from various sensors (BOUSDEKIS et al., 2018; PENG et al.,
2010). A predictive, or condition-based maintenance (CBM) system, consists of two main
phases. The first phase is diagnosis, which comprises fault detection or abnormal operating
conditions, fault isolation by sub-components, and identification of the nature and extent
of the failure (PENG et al., 2010). The next phase is prognosis, applying statistical and
machine learning models to estimate the useful life of the equipment and the confidence
interval of the prediction (SIKORSKA et al., 2011), to anticipate maintenance, and to
increase the reliability and availability of the generation system.

Examples of commonly applied methods for estimating useful life are divided
between statistics (SI et al., 2011), which includes the regression methods, Wiener process,
gamma process, based on Markovian processes; machine learning methods such as neural
networks, vector support machine, electrical signature analysis (SALOMON et al., 2019b),
principal component analysis (LEI et al., 2018); and more recently, deep learning techniques
such as auto-encoder, recurrent and convolution neural networks (ZHAO et al., 2019).
Several other energy sectors already make extensive use of these techniques: nuclear
(AYO-IMORU; CILLIERS, 2018; LI et al., 2018; WU et al., 2018), wind (MÁRQUEZ et
al., 2012; TIAN et al., 2011) and solar (DING et al., 2018; KAID et al., 2018).

Multivariate statistical methods such as Principal Component Analysis (PCA) (LIU
et al., 2009), Independent Component Analysis (ICA) (ŽVOKELJ et al., 2016) and Least
Square - Support Vector Machine (LS-SVM) (FU et al., 2019; QIAO; CHEN, 2015; VU et
al., 2013; PENG et al., 2007), have been widely applied for fault detection and diagnosis
in hydro-generating systems. For instance, PCA decomposition is applied to aid experts in
identifying and selecting the main features which contribute to cavitation in hydro-turbines
(GREGG et al., 2017). Recent studies have proposed a new monitoring method, based on
ICA-PCA, that can extract both non-Gaussian and Gaussian information of process data
for fault detection and diagnosis (GE; SONG, 2007). Later, the ICA-PCA was extended
with the adoption of a non-linear kernel transformation prior to the application of the
decomposition method, which became known as the Kernel ICA-PCA (KICA-PCA) (ZHU
et al., 2014). They reported its application in the hydroelectric generation context with
higher success rates and lower fault detection delays than either the PCA or ICA-PCA
applications.

The isolation forest (iForest) (LIU et al., 2012; LIU et al., 2008) is an anomaly
detection model based on decision trees which, recently, is appearing in several case
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studies of anomaly detection in the business(SUN et al., 2016a), industrial (SUSTO et al.,
2017) and virtual security (RIERA et al., 2020; VARTOUNI et al., 2018) areas. Briefly,
the iForest method provides a non-parametric density estimate of the data. The non-
parametric density can be estimated using data under normal operating conditions. After
fitting the iForest model, density estimates or anomaly scores are calculated using online
data. Faults are detected when the anomaly scores are higher than a pre-defined upper
bound, indicating that the system under monitoring is no longer operating under normal
conditions. The meta-heuristic model has some interesting advantages when compared to
the classical linear decomposition models: it can handle an enormous amount of data and
heterogeneous variables, without needing a data labeling process. It can, thus, develop
non-linear models of learning based on random, decision tree ensembles.

The most recent version of the algorithm, the extended isolation Forest (EIF),
adopts hyperplanes with random slopes to separate the data, solving problems related
to how the algorithm calculates the anomaly score (HARIRI et al., 2019). The EIF can
build scores with less variance and obtain better accuracy in the area under the receiver
operating characteristics metric, compared to the original algorithm, without sacrificing
computational efficiency (HARIRI et al., 2019; SUN et al., 2016b). However, no study has
been found reporting the application of the iForest or EIF in hydroelectric turbines.

In this context, the present paper proposes the application of iForest and EIF to
support fault detection and diagnosis of a hydro-generating unit (HGU) in an SHP. We
compared the algorithms with PCA and KICA-PCA, using specific metrics for anomaly
detection in time series (KOVÁCS et al., 2020). The main findings and contributions of
the current paper are:

• Application of iForest and EIF for intelligent fault diagnosis in an SHP generating
unit.

• Proposal of the application of time distance and count detection metrics, most
appropriate for the evaluation of models in the context of anomalies detection in
time series.

• EIF presented reductions of 40.62% and 7.28% in the temporal distance, compared
to the PCA and KICA-PCA.

The remainder of the present article is organized as follows. Section 2 defines the
study methodology, describing the methods, algorithms and data set applied. Section 3
presents the results and discussions of the simulations of the models, in addition to the
outputs of the forest committee with illustrative examples of imminent failures. Finally,
Section 4 presents the conclusions and recommendations for future work.
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4.2 Materials and methods

4.2.1 Dataset

The current study was developed in Ado Popinhak, an SHP situated in the southern
region of Brazil. With an installed capacity of 22.6 MW, the plant supplies energy to
50,000 residences. Condition monitoring data from the main single HGU is registered every
5 minutes, and the scope of the study period is from 8/13/2018 to 8/9/2019. We filtered
out from the dataset the periods of maintenance, planned stop, operator intervention,
or another status not associated to normal operation. Event data related to the asset is
gathered from status reports and the maintenance management system to identify past
failures. Fifty-nine faults were registered in the disclosed period, totaling 123 hours of
downtime. Six monitored variables are used: generator apparent power; bearing hydraulic
lubrication unit (HLU) inflow; and, bearing vibration from four different positions: axial,
vertical radial, horizontal radial and coupled.

Figure 4.1 presents the interaction between the variables in the dataset, in two
different visualizations. The vibration variables are replaced by the average of the variables
at the different measuring points. Figure 4.1-a indicates a low-apparent power region,
where the average vibration is higher than in the rest of the observations. These present a
transient period in which the generator unit operates with imbalanced water inflow inside
the runner. In such a state, the wear damage to the system and the fault risks are more
serious.

Figure 4.1-b presents three excerpts of the time series before failure. The analysis of
the representation indicates that the failures generally occur in regions where the vibration
and apparent power are at their maximum, and there may be significant fluctuations in
the power and flow of HLU before they occur. The figure presents only a sub-sample,
of 3 out of the 59 faults in the entire database, to avoid overload of information in the
representation, which would make it difficult for the reader to analyze.

A fixed period, from 12h prior to the failure up to the failure, splits the full data
set into a training set and a test set. The training set corresponds to the healthy state, or
normal operation, as long as the test set is linked to abnormal operation. In this way, the
algorithm focuses its training on the positive class related to normal operating conditions,
thus becoming a density estimator of the class of interest (HEMPSTALK et al., 2008).
This type of approach is common in problems of unbalanced classes, in the context of
anomaly detection, in which negative cases (our outliers) are absent or not adequately
sampled (KHAN; MADDEN, 2009).

After separation, the training and test set sizes were 47857 and 4897, respectively.
The ratio between training and test sets is about 10:1, which is an appropriate ratio
when compared to reference studies on failure detection in hydroelectric plants that have
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(a) (b)
Figura 4.1 – Graphical representation of the data set in 3 dimensions. In (a), the entire data

set is presented, regardless of the temporal relationship between data points. In
(b), three excerpts from the series with imminent failures are presented, each in a
different color. The darker the marker, the closer the fault. Points connected by
lines represent sequential states.

adopted proportions of 8:1 (LIAO et al., 2019) and 1140:100 ∼ 10:1 (ZHU et al., 2014).
Anomaly detection algorithms, reported sequentially, are trained using only training data.

4.2.2 PCA

Principal Component Analysis (PCA) is a linear decomposition technique, effective
for data dimensionality reduction, that projects the correlated variables onto smaller sets
of new variables that are orthogonal and retain most of the original variance. PCA is the
most widely used data-driven technique for process monitoring, due to its capacity to deal
with high-dimensional, noisy and correlated data variance (NAVI et al., 2018).

Let X ∈ Rn×m be an observation matrix, where n is the number of samples, and
m is the number of monitor variables. X can be decomposed by the function

X = TPT + E (4.1)

where E is the residual matrix, T ∈ Rnxa is the score matrix, and P ∈ Rmxa is loading ma-
trix. The measure of PCA variance can be obtained by Hotelling’s T 2 statistic representing
the sum of the normalized squared scores

T 2 = tTD−1t (4.2)

, where D is the diagonal matrix of the eigenvalues with the retained principal components
and t = PTx, is the score of PCA, calculated from the multiplication of each element x
and the loading matrix P.
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The T 2 index is used for monitoring processing, detecting a systematic variation of
the process every time an observation exceeds the confidence limit T 2

α, given by

T 2
α = (n2 − 1)α

n(n− α) Fα(α, n− α) (4.3)

where n is the number of samples, α is the number of sensed variables, Fα is the upper 100%
critical point of F-distribution with α and n−α degree of freedom. As to a classification, a
set of class labels C is set as 1 if T 2

i > T 2
α or else 0, if condition not met, for T 2

1 , T
2
2 , ..., T

2
n .

4.2.3 KICA-PCA

The KICA-PCA method provides a kernel transformation of data into higher
dimensional data, prior to the application of decomposition. Thus, the method is capable
of handling non-linear multivariate processes, such as SHP condition monitoring (ZHU et
al., 2014).

In this application we adopted the explicitly mapping to a low-dimensional Eucli-
dean inner product space using a randomized feature map z : Rnxm → Rnxd proposed by
(RAHIMI; RECHT, 2009), so that the inner product between a pair of transformed points
approximates their kernel evaluation:

k(x,y) = 〈Φ(x),Φ(y)〉 ≈ z(x)′z(y). (4.4)

Contrary to kernel’s lifting Φ, z is low dimensional and k is the radial basis function
k(x,y) = exp(−||x− y||2/σ) and σ is the standard deviation.

The z mapping competes favorably in speed and accuracy, as evidenced by (RING;
ESKOFIER, 2016; SENECHAL et al., 2015; RAHIMI; RECHT, 2009), being capable of
handling the large training matrix of this study without exceeding computational resources
of a standard personal computer.

The transformed matrix X′ is calculated by the kernel approximation zTz, such as
each element

k(xi,xj) = x′ij = z(xi)T z(xj), (4.5)

where xi and xj are the ith and jth columns of X respectively.

Before the application of ICA, the matrix X′ should be whitened to eliminate the
cross-relations among random variables. One popular method for whitening is to use the
eigenvalue decomposition, considering x′(k) with its co-variance R′x = E{x′(k)x′(k)T}, as
described in (GE; SONG, 2007). The association of the kernel transform and the ICA is
known in the literature as KICA.
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ICA is a statistical, computational technique originally proposed to solve the
blind source separation problem by revealing patterns hidden in signals, variable sets, or
measurements (GE; SONG, 2007).

X̄′ = AS + E (4.6)

where X̄′ is the the whitened transformed matrix, A is the mixing matrix, S is the
independent component matrix and E is the residual matrix. The basic problem is
estimating the original component S and the matrix A from X̄′. ICA calculates a
separating matrix W such that the components of the reconstructed matrix S become as
independent of each other as possible, given as

Ŝ = WX̄′. (4.7)

From the multiplication of x′′ = ST x̂′ is obtained a new matrix X′′ which represents
the independent components (ICs) from the sensed data. These matrices are used as input
for the PCA monitoring algorithm in equation (1) and used to calculate the T 2 score and
classification set from the comparison with the T 2

α threshold.

4.2.4 iForest and EIF

While most anomaly detection approaches are based on normal instance profiling,
iForest is an anomaly detection algorithm that explicitly isolates anomalies. The method
exploits two particularities of anomalies: they represent fewer instances in the observed
set, and, compared to healthy instances, they have discrepant attribute-values (LIU et al.,
2008).

The method does not apply any distance or density measures, thereby eliminating
the major computational cost of distance calculation. Also, the algorithm scales up linearly
while keeping memory usage low and constant, which aligns with parallel computing,
making the model suitable for handling large, high-dimensional data sets.

The anomaly detection procedure using iForest is a two-stage procedure: the
training stage constructs the isolation trees (iTree), using sub-samples from the training
set; the subsequent evaluation stage calculates the anomaly score for each instance of test
set (LIU et al., 2008; LIU et al., 2012).

The iForest builds an ensemble of binary trees individually trained using a sub-
sample Xs randomly drawn from X, Xs ⊂ X. There are two control parameters in the
algorithm: (1) the sub-sampling rate ψ, sets the number of samples used for each tree
training, and (2) the number of trees nt, related to the complexity of the model.
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Algorithm 1: iForest (X, nt, ψ)
Input: X - input data, nt - number of trees, ψ - sub-sampling size
Output: a set of t iTrees
Initialize Forest
for i← 1 to nt do

Xs ← sample(X, ψ);
Forest← Forest ∪ iTree(Xs);

end
return Forest

The normal points tend to be isolated at the deeper end of the tree, whereas
anomalies are closer to the tree root, due to their singularity nature. The shorter the
average path length, the higher the chances to be anomalies. Hence, the anomaly score s
is then defined by:

s(x,n) = 2−
E(h(x))

c(n) (4.8)

where n is the number of samples in the dataset, E(h(x)) is the average of path length
h(x) from a group of isolation tree, and c(n) is the average of h(x) given n, used for
normalizing the path length. If an instance returns an anomaly score s very close to 1, it
is very likely one represents an anomaly; if it is much smaller than 0.5, it is safe to say
the instance is normal; if the instance returns s ≈ 0.5, the sample does not present any
distinct anomaly (LIU et al., 2012).

Although the standard iForest algorithm is computationally efficient, there is a
limitation as to how the anomaly score aggregates tree branches’ length. Branch cuts are
always horizontal or vertical, which introduces a bias in the anomaly score map.

The EIF algorithm can overcome this limitation by adopting random slopes along
with the branching process. The selection of the branch cut then requires a random slope
and a random intercept chosen from the range of values available in the training data.
Each random slope is drawn from a random number for each coordinate of a vector ~m of
size equal to the number of variables in a normal distribution N(0,1). The intercept is
obtained from the uniform distribution of a range of values present at the branching point.
The splitting criterion for a point x is given by (~x− ~p).~m ≤ 0.

The property of concentration of data in clusters is maintained with the algorithm,
as the intercept points ~p tend to accumulate where the data is, while the score maps
are free of previously observed artifacts. EIF implementation modifies the lines of the
original formulation 2 that describes the choice of the random value and intercept and
adds an inequality condition test. The algorithm 3 is modified accordingly to receive the
regular observation and intercept point of each tree, and to calculate the path depth if the
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Algorithm 2: iTree (X, e, hl)
Input: X - input data, e - current tree height, hl - height limit
Output: an iTree
if e ≥ hl or |X| ≤ 1 then

return exNode{Size← |X|}
else

randomly select a normal vector ~m ∈ IR|X| by drawing each coordinate of ~m
from a standard Gaussian distribution.
randomly selects an intercept point ~p ∈ IR|X| in the range of X
set coordinates of ~m to zero according to extension level
Xhl ← filter(X, (X− ~p).~m ≤ 0)
Xr ← filter(X, (X− ~p).~m > 0)
return inNode{Left← iT ree(Xhl, e+ 1,el), Right← iT ree(Xr, e+ 1,el),

Normal← ~m, Intercept← ~p}
end

condition test is valid (HARIRI et al., 2019).

Algorithm 3: PathLength (~x, T , e)
Input: ~x - an instance, T - an iTree, e - current path; to be initialized to zero

when first called
Output: path length of ~x
if T is an external node then

return e+ c(T.size){c(.) is defined in Equation (8)}
~m← T.Normal
~p← T.Intercept
if (~x− ~p).~m ≤ 0 then

return PathLength(~x,T.left,e+ 1)
else

return PathLength(~x,T.right,e+ 1)
end

Contamination is the parameters that estimate the number of outliers in a given
set. The value is set near the confidence interval of 0.95, adapted for the Hotelling’s
distance-based models. Proposed values for the number of trees nt and the size of the ψ
sub-sample are 100 and 256 respectively (LIU et al., 2012; LIU et al., 2008). Although,
these parameters may vary according to the size and complexity of the dataset.

We carried out 50 simulations varying one parameter at a time while keeping the
other fixed at its standard value. Figure 5.4 summarizes the results of these simulations,
in which the points represent the average values calculated by the metric, while the bars
represent the confidence interval of 0.95. The nt search parameter space is defined as 1, 5,
10, 50, 100, 500 and 1000, while ψ the sample space followed the power of 2, from 27 to 213.
By varying the nt, we find that with the increase in the number of trees, the variance and
average of the TTC and CTT decrease, with the model showing excellent stability with
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The amount of time necessary to perform all 150 simulations is around 2 hours. All data
and scripts are available in the researcher’s public repository 1.

4.3 Results and discussion

The temporal distance and anomaly detection count are measured in test sets for
each method, using equations 4.9 and 4.10 shown in section 4.2.5. The methods were
trained 150 times using the training set, with unique random seeds. Table 4.2 exhibits
the average and standard deviation of the calculated metrics. KICA-PCA obtained the
smallest difference between real fault detection, in general. It was followed by PCA, EIF,
and iForest. The methods with the lowest scores are shown in bold. As a linear model,
PCA converges equally to the same solution when applied to a single training set. Thus,
the standard deviation, unaffected by randomness, is not calculated for this particular
method.

Tabela 4.2 – Results of temporal distance and detection count obtained in simulations of anomaly
detection models – standard deviation in parentheses.

Temporal distance (hours)

Model TTC CTT TD Detection count – l

PCA 3270 738 4008 118
KICA-PCA 1633 (363) 933 (94) 2567 (375) 111.7 (15.7)
iForest 1541 (182) 934 (33) 2476 (185) 156.5 (6.1)
EIF 1474 (208) 906 (32) 2380 (210) 150.2 (5.0)

PCA is the method with the lowest CTT distance. This means that, since the
distance between the detections and anomalies is the lowest, it is less likely to raise false
alarms than the others. On the other hand, the TTC distance is higher with PCA than
with all other methods. This means that the linear approach is less effective in detecting
all anomalies. The total TD, obtained from the sum of the two individual components, is
higher due to the TTC score.

Combining the PCA with the kernel trick and the ICA increased the accuracy,
compared to the PCA alone. KICA-PCA presented intermediate distances when compared
to all other methods. When compared to PCA, the non-linear method improved the TTC,
TD, and l. However, the main drawback is that its variance is higher than the others,
meaning the method is more susceptible to randomness.

iForest presented the second-lowest TTC distance, which is the distance between
the anomalies and the closest detection. Thus, this model was able to detect anomalies
closest to their occurrence and, having the lowest TD and standard deviation, to present a
suitable method for adoption in an online detection system. The main drawback with this
method is the detection count: the number of detections is higher than the other methods.
1 Github repository: https://github.com/rodrigosantis1/shp_anomaly
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The model has the limitation of not allowing the analysis of the importance of
attributes, as do other models based on decision trees. The choice of the separation
attributes in each node is random, and not generated from an explicit rule. However,
machine understanding models, such as permutation-based and depth-based isolation forest,
feature importance that can be used to circumvent this model limitation (CARLETTI et
al., 2019).

From our simulations, we found that EIF obtained an average TD reduction of
1628 (40.62%) compared to PCA, and of 187 (7.28%) compared to KICA-PCA. These
results indicate that the anomaly detection algorithms are efficient and suitable for dealing
with the problem of intelligent fault detection in hydroelectric plants, as indicated in the
qualitative analysis of imminent failure. In some cases, the anomaly score depicts the
trend in the risk of failure. In other cases, the anomaly score identifies regions of at-risk
operation, even though no fault is registered.

Continuous improvement of the model is found in associating the detected fault
patterns with known failure modes, using fault analysis techniques such as fault trees
(JONG; LEU, 2013; MELANI et al., 2016; CHENG et al., 2019b). The anomaly score that
is calculated can be used in future work to develop forecasting systems. The adoption of a
single dimension HI simplifies the process control and the design of the predictive system.
Instead of predicting each variable in isolation, one can focus on analyzing a single time
series, which carries the individual characteristics of each of the individual measurement
variables.

4.4 Conclusions

In the present paper, we propose the application of iForest for fault diagnosis in a
small hydro-electric plant in CBM. The observed period is approximately one year, and the
main input variables are vibration, oil inflow and apparent power. The model benchmarks,
in the recently reported hydro-power fault diagnosis literature, are PCA and KICA-PCA ,
using the specific metrics of time series anomaly detection, temporal distance, and average
detection count. The tree ensembles presented promising results, with lower error levels
and variance than KICA-PCA. Another significant advantage of adopting iForest and EIF
is their capability for parallel computing, which speeds up model training while keeping
memory usage low, and fixed to a known limit.

Identifying failures before they occur is vital to allowing better management of asset
maintenance, reducing operating costs and, in the case of SHPs, enabling the expansion
of renewable energy sources in the energy matrix (ZHANG et al., 2017a). With the
application of machine learning models such as iForest and EIF, the aim is to improve the
health of the equipment and reduce power generation downtime.
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Future studies should include investigating feature and model selection through
exhaustive searching, Bayesian or evolutionary optimization, as parameters manually
adjusted. Fine-tuning the models can contribute even more to increasing model accuracy.
A step towards the prognostic model can be taken from the prediction of the anomaly
score by decomposing the signal into components in the time and frequency spectrum, and
combining methods of extracting attributes with uni- or multi-variate forecasting (QIAO;
CHEN, 2015; ZHOU et al., 2019).

Another essential beneficial area of the present study is identifying feature impor-
tance in a SHP diagnosis system. This knowledge can guide the development of CBM
systems by prioritizing the installation of critical sensors in SHP automation projects. EIF,
since it is a generalization of iForest, can be combined with forward selection component
analysis (PUGGINI; MCLOONE, 2018) for automatic variable selection.

Finally, the present study contributes to the improvement of SHP maintenance,
a vital renewable power resource with huge potential for energy supply worldwide. By
identifying faults before failure, management can take actions to avoid further damage
caused to joint systems and further aggravation of the components, lowering the operating
costs of power plants.
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Nomenclature

The following nomenclature is adopted in this chapter:

A mixing component matrix
C classification vector
CTT candidate to target distance
D diagonal matrix of eigenvalues
E residual matrix
fclosest closest distance
Fα F-distribution
h average of path length
k radial basis function
l detection count
m number of variables
~m random number with m dimension
n number of observations
nt number of trees
~p intercept
P loading matrix
R co-variance matrix
s anomaly score
S independent component matrix
t score
T score matrix
T 2 Hotelling’s score vector
T 2
α threshold
TD temporal distance
TTC target to candidate distance
~x vector of observations
X matrix of observations
X′ matrix of observations transformed
X̄′ matrix of observations transformed and whitened
Y observations time series
z low dimensional
α degree of freedom
∆t time difference
ψ sub-sampling size
Φ kernel’s lifting



75

5 A DATA-DRIVEN FRAMEWORK FOR SMALL HYDROELECTRIC
PLANTS PROGNOSIS USING TSFRESH AND MACHINE LEAR-
NING SURVIVAL MODELS

Abstract: Maintenance in small hydroelectric plants (SHPs) is essential for securing the
expansion of clean energy sources and supplying the energy estimated to be required for the
coming years. Identifying failures in SHPs before they happen is crucial for allowing better
management of asset maintenance, lowering operating costs, and enabling the expansion of
renewable energy sources. Most fault prognosis models proposed thus far for hydroelectric
generating units are based on signal decomposition and regression models. In the specific case of
SHPs, there is a high occurrence of data being censored, since the operation is not consistently
steady and can be repeatedly interrupted due to transmission problems or scarcity of water
resources. To overcome this, we propose a two-step, data-driven framework for SHP prognosis
based on time series feature engineering and survival modeling. We compared two different
strategies for feature engineering: one using higher-order statistics and the other using the
Tsfresh algorithm. We adjusted three machine learning survival models—CoxNet, survival
random forests, and gradient boosting survival analysis—for estimating the concordance index
of these approaches. The best model presented a significant concordance index of 77.44%. We
further investigated and discussed the importance of the monitored sensors and the feature
extraction aggregations. The kurtosis and variance were the most relevant aggregations in the
higher-order statistics domain, while the fast Fourier transform and continuous wavelet transform
were the most frequent transformations when using Tsfresh. The most important sensors were
related to the temperature at several points, such as the bearing generator, oil hydraulic unit,
and turbine radial bushing.

Keywords: Hydroelectric power plant. Condition-based maintenance. Prognosis. Survival
analysis. Time series feature engineering. Survival random forest.

5.1 Introduction

The expansion of renewable energy sources is vital for ensuring the energy supply of
a fast-paced market growing in the coming decades, with expectations for it to double by
2060 (WEC, 2019). Clean energy already accounts for three quarters of newly installed capacity
annually (WEC, 2019), and those related to water resources are the most-used ones. The building
of small hydroelectric plants (SHPs), which accounts for a significant share of this group, has
increased worldwide due to the lower initial investment, lower operating costs, and expanding
regulation of energy markets. The potential total energy generation capacity of these SHPs is
twice the total capacity of the currently installed energy plants (UNIDO, 2016).

The maintenance of a hydropower plant is a complex task. It demands a specific level
of skill to ensure an adequate level of dependability of the asset through its useful life. There
are three kinds of maintenance. The first and most basic is corrective maintenance, in which
a component is replaced after a failure occurs. The second is preventive maintenance, which
estimates the service life of a component and realizes a replacement once the operating lifetime is
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reached. Finally, there is predictive maintenance, in which the system condition is assessed from
data periodically or continually acquired from various sensors (BOUSDEKIS et al., 2018; PENG
et al., 2010). A predictive or condition-based maintenance system consists of two stages. The first
stage is the diagnosis, which incorporates fault detection or anomalous operating conditions, fault
isolation by subcomponents, and identification of the character and degree of the failure (PENG
et al., 2010). The second stage is the prognosis, which involves using statistical and machine
learning models in order to calculate the use life of the assets and the confidence interval of the
estimation (SIKORSKA et al., 2011), foresee maintenance, and increase the dependability and
availability of the generation units.

Many data-driven models have been proposed for fault detection and diagnosis in
hydroelectric plants. These models include principal component analysis (PCA) (LIU et al.,
2009), independent component analysis (ICA) (ŽVOKELJ et al., 2016), and a least square
support vector machine (FU et al., 2019; QIAO; CHEN, 2015; VU et al., 2013; PENG et al.,
2007). PCA decomposition is used to assist specialists in determining and selecting the principal
features which contribute to cavitation in hydro-turbines (GREGG et al., 2017). Current studies
have presented a new monitoring method based on ICA-PCA that can extract both non-Gaussian
and Gaussian information from operating data for fault detection and diagnosis (GE; SONG,
2007). This ICA-PCA method has been expanded with the adoption of a nonlinear kernel
transformation prior to the application of the decomposition method, which has become known
as kernel ICA-PCA (ZHU et al., 2014). Zhu et al. applied this method in the hydropower
generation context with increased success rates and lower fault detection delays than either the
PCA or ICA-PCA applications. While most models rely on signal processing, De Souza Gomes
et al. proposed functional analysis and computational intelligence models for fault classification
in power transmission lines (GOMES et al., 2013). Santis and Costa proposed the application
of isolation iForest for small hydroelectric monitoring, where iForest isolates anomalous sensor
readings by creating a health index based on the average distance of the points to the tree
root (SANTIS; COSTA, 2020). Hara et al. extended iForest’s performance by implementing a
preliminary step of feature selection using the Hilbert–Schmidt independence criterion (HARA et
al., 2021). It is worth emphasizing that in addition to data-driven models, there is the application
of analytic model-based methods, which have been presenting significant design results in the
context of fault diagnosis in power systems, such as in (WU et al., 2020).

For prognoses, the techniques generally applied for estimating the use life are classified
into statistical techniques, comprising regression techniques (SI et al., 2011), Wiener-, Gamma-,
and Markovian-based processes such as machine learning techniques, comprising neural networks,
vector support machines, and electrical signature analysis (SALOMON et al., 2019b), and
principal component analysis (LEI et al., 2018), as well as deep learning techniques more recently,
comprising auto-encoder, recurrent, and convolutional neural networks (ZHAO et al., 2019).

Reports on the prognoses of hydroelectric generating units are scarcer than publications
related to their diagnosis (SANTIS et al., 2021). A great challenge in the area is proposing
procedures that contemplate faults between different generating units and auxiliary interconnected
systems (SANTIS et al., 2021). An et al. presented a prognosis model based on the application
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of Shepard’s interpolation of three variables: bearing vibration, apparent power, and working
head (AN et al., 2014). The signal is decomposed by applying intrinsic time-scale decomposition
to a limited number of rotating components, and the artificial neural network is trained for
each of the temporal components of the signal. Thereafter, the models present a similar
framework, with varied individual methods for signal decomposition and regression models.
Fu et al. applied variational mode decomposition for signal decomposition and a least square
support vector machine regression model fine-tuned using an adaptive sine cosine algorithm (W.
WANG K., 2018; FU et al., 2019). Zhou et al. combined a feature strategy using empirical
wavelet decomposition for decomposing and Gram–Schmidt orthogonal process feature selection
combined with kernel extreme learning machine regression (ZHOU et al., 2019).

Since feature extraction is a key factor in the success of data-driven diagnosis and
prognosis systems, the Time Series Feature Extraction Based on Scalable Hypothesis Tests
(TSFRESH, or TSF for short) algorithm has gained prominent attention in the literature, leading
to better results than physical and statistical features alone (DINDORF et al., 2020). The
algorithm is capable of generating hundreds of new features while reducing collinearity through its
hypothesis test-integrated selection procedure. Tan et al. adopted TSF along with a probability-
based forest for bearing diagnosis (TAM et al., 2020). A two-stage feature learning approach
combining TSF and a multi-layer perceptron classifier was adopted for anomaly detection in
machinery processes by Tnani et al. [44] and for earthquake detection by Khan et al. (KHAN et
al., 2020).

Finally, the random survival forest (RSF) is a survival analysis model that has recently
been adapted for data-driven maintenance prognosis systems. Voronov et al. proposed the
application of RSF for heavy vehicle battery prognosis (VORONOV et al., 2020), an important
part of the electrical system and mostly affected by lead-acid during the engine starting. Gurung
adopted the RSF along with histogram data for interpretive modeling and prediction of the
remaining survival time of components of heavy-duty trucks, aiming to improve operation and
maintenance processes (GURUNG, 2020). Snider and McBean proposed an RSF-based model for
the water main pipe replacement model, expecting savings of USD 26 million, or 14% (SNIDER;
MCBEAN, 2021) of the total cost of the ductile iron pipe, over the next 50 years.

In this context, the present paper innovates by proposing a framework for the prognosis
of hydroelectric plants, based on the TSF feature extraction and selection algorithm and survival
analysis models. The authors did not find any evidence or study that has adopted a similar
approach in the literature thus far. We compare the different strategies of feature engineering
associated with three survival model analyses, evaluating the models using the concordance index
metric. The main findings and contributions of the current paper are the following:

• The proposal of a data-oriented framework including feature engineering strategies and
machine learning survival models for intelligent fault diagnosis of the SHP generating unit;

• Evaluation of the importance of attributes using the permutation importance method
associated with the RSF survival model;
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• Affirmation that the RSF survival analysis model associated with the TSF feature enginee-
ring hybrid model obtained the highest concordance index score (77.44%).

The remainder of the present article is organized as follows. Section 2 defines the study
methodology, describing the methods, algorithms, and dataset applied. Section 3 presents the
results and discussions of the simulations of the models, in addition to the outputs of the feature
engineering strategies and survival analysis models, with illustrative examples of those models’
inference. Finally, Section 4 presents the conclusions and recommendations for future work.

5.2 Problem Formulation

The prognosis problem was formulated as an inference problem based on historical data,
specialist knowledge, external factors, and future usage profiles. Prognosis is a condition-based
maintenance (CBM) practice widely applied to reduce costs incurred during inefficient schedule-
based maintenance. In mechanical systems, the repetitive stresses from rotating machinery
vibration temperature cycles leads to structural failures. Since mechanical parts commonly
move slowly to a critical level, monitoring the growth of these failures permits evaluating the
degradation and estimating the remaining component life over a period of time (MATHUR et
al., 2001).

The current study was developed in Ado Popinhak, an SHP situated in the southern
region of Brazil. With an installed capacity of 22.6 MW, the plant supplies energy to 50,000
residences. Monitoring data from the main single hydro generator unit were registered every 5
min, and the study period was from 13 August 2018 to 9 August 2019. Table 5.1 describes the
number of runs by the generators contained in the dataset, the number of runs that ended due
to failure, the average cycle time per run, and the longest cycle time.

The objective was to predict the remaining useful life (RUL) of a power system based on
multiple component-level sensor and event data. The RUL information allows decision makers to
better plan maintenance and interventions, improving availability and reducing costs.

Tabela 5.1 – Descriptive information of the runs by generators contained in the dataset.
Generator No. of Total

Runs
No. of Faulty

Runs
Avg. Cycle

Time
Max. Cycle

Time
1 133 50 691 4067
2 64 20 1270 6162
3 157 89 972 6835
4 130 40 764 3026

Raw sensor reading data and event data, such as interventions, shutdowns, and planned
and corrective maintenance, were curated and merged. The data registered were classified and
split into runs, which are periods from the moment the generating unit is turned on until it is
shut down, whether due to failure or not. Runs that ended because of failure were labeled with
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a true or false failure label. The time distribution plot until the end of the runs that ended in
failure and those that were interrupted for another reason is shown in Figure 5.1.

Figura 5.1 – Distribution chart of the last operating cycle time registered for runs with and
without faults. The time cycle scale was converted to the logarithmic scale in order
to better show the distribution of the variable. The average maximum cycle time of
failed runs is less than that of normal operations. The distribution of both presents a
bimodal characteristic, with two different concentration points more clearly verified
in the faulty series.

The nature of the problem is interpreted as a problem of survival analysis, given that
the system does not run to failure and can be shut down due to a lack of water resources for
generation, failures in the transmission system, or the execution of scheduled maintenance. A
summary of the characteristics of the problem and dataset is as follows:

• Data were collected for four generator units of the same manufacturer, model, and age;

• Fifty-four variables were monitored, and readings were registered in the transactional
database every 5 min;

• Data were heterogeneous, including either control settings or monitored variables, both
numerical and categorical;

• Missing data represented around 5% of total registrations, mostly caused by loss of a
network connection between the remote plants and the operations center;

• The runs in which the subsequent state was a forced stop were labeled, and the last reading
was registered as the logged time of failure;

• There were many runs where no failure was registered during the time (i.e., data were
right-censored).
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The runs were considered independent, given that the systems could be turned off for
a long time and undergo modifications, such as routine maintenance, during this period, and
because machine start-up is the biggest cause of system deterioration. For this reason, the
Kaplan–Meier model was adjusted and presented in order to describe the survival function of
each run of the four generators in Figure 5.2.
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Figura 5.2 – Kaplan–Meier model adjusted for each of the generators. The decay rate of the
survival function of the adjusted model for each of the generators was similar,
indicating the correlated behavior of the health of the generating units.

The data transformation workflow is described in Figure 5.3. Sensor and event data
were collected from the transactional database of telemetric systems and stored in text files. In
the data-wrangling phase, the record tables were parsed and joined with the event tables, and
the records were resampled into 5 minute periods. While still in this stage, the imputation of
the missing data and the classification of the runs were made if they ended due to failure or
programmed shutdowns (censoring).

In the feature extraction and selection step, the features were extracted from each of the
time series of the sensors during the first 30 5 minute time units (150 min of operation) using
the feature engineering strategies described in Section 2.2. The fixed period of the first 30 cycle
times was selected from each run to extract features and adjust the survival models. Runs with
a cycle time of fewer than 30 seconds were excluded from the training base. This approach was
adopted to avoid data leakage in model training, where size-related features can contribute to
models readily predicting the estimated total time to failure. These features were recorded in a
text file and zipped due to the size of the generated tables.

In the next step, the runs were randomly divided into training and test sets, using
proportions of 90% of the runs for training and 10% for testing. In each of the simulations, the
partitioning was performed using a different random seed. The models were fitted to the training
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set, and metrics were calculated on the training set. The computational time was calculated for
each fit of the models and saved for later analysis.

Finally, the model metrics were compared using a set of statistical tests in order to identify
if there was a difference in the average scores for different groups of models or feature strategies.

Pre-processing

Feature 
Extraction/Selection

Survival Analysis

Performance Analysis

Data
WranglingData Retrieval

TSFRESHHOS

Model 
Training

Model 
Evaluation

Figura 5.3 – Data transformation flow from data retrieval to performance analysis.

5.3 Materials and Methods

5.3.1 Time Series Feature Engineering

5.3.1.1 Higher-Order Statistics (HOS)

Higher-order statistics (HOS) have been applied in different fields which require separation
and characterization of non-Gaussian signals against a Gaussian background. Moments and
cumulants are widely used to quantify certain probability distributions, such as location (first
moment) and scale (second moment). Several authors have used HOS in signal processing. For
example, De La Rosa and Muñoz reported the application of higher-order cumulants via signal
processing using HOS for early detection of subterranean termites (ROSA; MUÑOZ, 2008), while
Nemer et al. presented an algorithm for robust voice activity based on third- and fourth-order
cumulants of speech (NEMER et al., 2001).

Let X = [x(t)], t = 0, 1, 2, 3, · · · be a real stationary discrete-time signal and its moments
up to order p exist. Then, its pth-order moment can be given by (WELLING, 2005; NEMER et
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al., 2001)

mp(τ1, τ2, . . . , τp−1) ≡ E{x(t)x(t+ τ1) · · ·x(t+ τp−1)} (5.1)

depending solely on the time differences τ1, τ2, . . . , τp−1 for all i. E(.) represents the statistical
expectation for a deterministic signal. If the signal has zero mean as well, then its cumulant
functions are given by (NEMER et al., 2001)

second-order cumulant: C2(τ1) = m2(τ1) (5.2)

third-order cumulant: C2(τ1,τ2) = m3(τ1,τ2) (5.3)

fourth-order cumulant: C4(τ1,τ2,τ3) = m4(τ1,τ2,τ3)−

m2(τ1) ∗m2(τ3 − τ2)−m2(τ2).m2(τ3 − τ1)−m2(τ3).m2(τ2 − τ1)
(5.4)

By setting all the lags to zero in the cumulant expressions and normalizing the input
data to have a unity variance, we obtained the variance, normalized skewness, and normalized
kurtosis:

variance: γ2 ≡ C2(0) = E{x2(n)} (5.5)

normalized skewness: γ3 ≡
C3(0,0)

[C2(0)]1.5 =
E{x3(n)}

[E{x2(n)}]1.5 (5.6)

normalized kurtosis: γ4 ≡
C4(0,0,0)
[C2(0)]2 =

E{x4(n)}
[E{x2(n)}]2 (5.7)

The skewness indicates to which side of the distribution the data are concentrated for
unimodal distributions, so a positive skew indicates that the tail is to the right, and a negative
skew indicates that it is to the left. The kurtosis is usually associated with the measure of the
“peakedness” of the probability distribution of a real-valued random variable. Higher kurtosis
means that more of the variance is due to infrequent extreme deviations, as opposed to frequent,
modestly sized deviations. The first four moments were calculated for each of the runs in order
to extract the basic descriptive variables of the sensor signals:
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5.3.1.2 Tsfresh (TSF)

TSF is an algorithm presented for time series feature engineering, which accelerates this
procedure by combining 63 time series characterization methods. Features are chosen based on
automatically configured hypotheses (CHRIST et al., 2018).

Given a set of time series D = {Xi}Ni=1, each time series Xi is mapped into a feature
space with a problem-specific dimensionality M and feature vector −→x i = (xi,1,xi,w, · · · ,xi,M ).
The feature vector −→x i is built by applying time series characterization methods fj : Xi → xi,j to
the respective time series Xi, which results in the feature vector (CHRIST et al., 2018)

−→x i = (f1(Xi), f2(Xi), · · · ,fM (Xi) (5.8)

The feature vector might be extended by additional univariate attributes {ai,1, ai,2, · · · ,
ai,U}Ni=1 and feature vectors from other kinds of time series. For a machine learning system
with K different time series and U univariate variables per sample i, the resulting design matrix
would have i rows and (K ·M + U) columns (CHRIST et al., 2018).

From the set of 63 characterization methods fj available in the algorithm, we illustrate
two of the most important ones based on our feature analysis, which are the fast Fourier
transform (FFT) and the continuous wavelet transform (CWT). Both methods are time–frequency
decomposition methods often applied in signal analysis.

The discrete Fourier transform (DFT) is a signal decomposition technique adequate for
discrete and periodic signals. Let a signal an for n = 0, . . . ,N − 1 and an = an+jN for all n
and j. The discrete Fourier transform of a, also known as the spectrum of a, is described by
(HECKBERT, 1995)

Ak =
N−1∑
n=0

W kn
N an (5.9)

whereWN = e−i
2π
N andW k

N are called the Nth roots of unity. The sequence Ak is the DFT of the
sequence an, where each is a sequence of N complex numbers. The FFT is a fast algorithm for
computing the DFT into log2N states, each of which consists of fewer computations (HECKBERT,
1995).

The CWT of a signal a with the wavelet ψ is defined as (MUNOZ et al., 2002)

Wψa(s,t) =
1
√
s

∫ +∞

−∞
a(x)ψ

t− x
s

dx (5.10)

where the scale s is inversely proportional to the central frequency of the rescaled wavelet
ψs(x) = ψx/s, which is a bandpass, and t represents the time location of the signal analysis.
The larger the scale s, the wider the analyzing function ψ(x), and therefore the smaller the
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corresponding examined frequency. The main advantage over the Fourier transform methods is
that the frequency description is localized in time, and that window size varies. It gives more
flexibility and effectiveness than fixed-size analysis since low frequencies can be analyzed over
wide time windows, while high frequencies can be analyzed over narrow time windows (MUNOZ
et al., 2002).

Finally, the feature selection of TSF is used to filter out irrelevant features based on
automated statistical hypothesis tests (CHRIST et al., 2018). Feature selection is crucial to
reducing the number of variables, which increases generalization and prevents overfitting, in
addition to bringing speed gains and less complexity to the estimator (ATTALLAH et al., 2017).

5.3.2 Survival Analysis

5.3.2.1 Evaluation Metrics

The most employed evaluation metric of survival models is the concordance index (C-
index or C-statistic) (JR et al., 1996). It reflects a model’s capacity of ranking the survival times
based on the individual risk scores, and it can be expressed by the formula (UNO et al., 2011)

C-index =
∑
i,j 1Tj<Ti · 1ηj>ηi · δj∑

i,j 1Tj<Ti · δj
(5.11)

where ηi is the risk score of a unit, 1Tj<Ti = 1 if Tj < Ti and is otherwise 0, and 1ηj>ηi = 1
if ηj > ηi. A C-index score equivalent to 1 corresponds to a perfect model estimator, while a
C-index score of 0.5 represents a random estimator (UNO et al., 2011).

The C-index score can compare pairs in which the predictions and outputs are concordant,
which means that the one with a higher risk score has a shorter actual survival time. If two
instances experience an event at different times, or if one experiences an event and is outlasted
by the other, we say that they are comparable. In contrast, a pair is said to not be comparable
when they experience events at the same time (JR et al., 1996; UNO et al., 2011).

5.3.2.2 CoxNet (CN)

The Cox proportional hazard (CPH) assumes that the hazard is proportional to the
instantaneous probability of an event at a particular time. In this case, the effect of the covariates
is multiplying the hazard function by a function of the exploratory covariates. This means that
two units of observation have a ratio of the constant of their hazards, and it depends on their
covariate values (FISHER et al., 1999).

Let Xi = (Xi1, . . . , Xip) be the realized values of the covariates for a subject i. The
hazard function for the CPH model is described by (COX, 1972)

λ(t|Xi) = λ0(t) exp(β1Xi1 + · · ·+ βpXip) = λ0(t) exp(Xi · β) (5.12)
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where λ(t|Xi) is the hazard function at time t for subject i with a covariate vector X)i, λ0(t) is
the baseline hazard, and βi represents the effect parameters.

The CPH model is especially interpretive since the regression coefficients represent the
hazard ratio, providing useful insights into the problem. However, in applications with a large set
of features, the standard CPH fails due to the fact that the model convergence relies on inverting
the matrix that becomes non-singular due to correlation among features (SIMON et al., 2011).

The CoxNet (CN) overcomes these problems by implementing an Elastic Net regression
with a weighted combination of the l1 and l2 penalty by solving (SIMON et al., 2011)

arg max
β

logPL(β)− α

r p∑
j=1
|βj |+

1− r
2

p∑
j=1

β2
j

 (5.13)

where PL is the partial likelihood function of the Cox model, β1, . . . ,βp are the coefficients for p
features, α ≥ 0 is a hyperparameter that controls the amount of shrinkage, and r ∈ [0; 1[ is the
relative weight of the l1 and l2 penalty. The l1 penalty helps the model select only a subset of
features, while l2 leads to better stability through regularization. In this paper, we adopted the
default value proposed for r = 0.5 and an automatic procedure for selecting α ≥ 0.01.

5.3.2.3 Random Survival Forest (RSF)

The random survival forest (RSF) model is an adaption of the random survival regressor
for the analysis of right-censored survival data. The main components of the RSF algorithm are
the growing of the survival trees and the forming of the ensemble cumulative hazard function.
Survival trees are binary trees grown by the recursive splitting of tree nodes using a predetermined
survival criterion. The splitting into nodes maximizes the survival distinction between the nodes,
and eventually, each node of the tree becomes homogeneous and populated by cases with similar
survival. Once training is complete, the cumulative hazard function estimation λ(t|Xi) of each
survival tree is described by the function (ISHWARAN et al., 2008)

λ(t|Xi) = λ̂h(t) =
∑
tl,h≤t

dl,h

Yl,h
(5.14)

where dl,h is the number of failures and Yl,h is the operation run at risk at time tl,h. The ensemble
cumulative function estimation λ∗e(t|Xi) is the simple average of the M base estimators and is
given by (ISHWARAN et al., 2008)

λ∗e(t|Xi) =
1
M

M∑
j=1

λ∗b(t|Xi) (5.15)
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where λ∗b(t|Xi) represents the cumulative hazard function estimation of jth survival trees in the
ensemble and M is the total number of survival trees. The base estimator hyperparameters were
chosen from the convergence analysis performed on our data (shown in Figure 5.4). We used the
parameter of the number of base estimators M = 100, as it was a value close to the smallest
error observed. For the minimum value of the samples in each node, the value adopted was 15
samples, selected because it presented the lowest error for ensembles with 100 trees.

5.3.2.4 Gradient Boosting Survival Analysis (GBS)

The gradient boosting survival analysis (GBS) model was constructed using the gradient
boosting framework for optimizing a specified loss function. The model was built on the
principle of additively combining the predictions of multiple base learners into a powerful overall
model (FRIEDMAN, 2002). GBS is an ensemble model similar to RSF, since it relies on multiple
base learners to produce an overall prediction. The main difference between the two approaches
is that while RSF independently fits the base learners and averages their predictions, the GBS
model is assembled sequentially in a greedy, stage-wise manner. The GBS overall additive model
f can be described by (FRIEDMAN, 2002)

f(Xi) =
M∑
m=1

βmg(Xi; θm) (5.16)

where M > 0 represents the number of base learners, βM is the weighting term, the function g
refers to a base learner outcome, and θ is the parameterized vector.
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Figura 5.4 – Analysis of the convergence of the RSF model, varying the parameters of the number
of base estimators M and the minimum of samples in each node. We adopted a
standard sample count of 15, since it achieved the lowest error for ensembles with
M = 100 estimators.
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The loss function set for GBS is the partial likelihood loss of the CPH model. Therefore,
the model maximizes the log partial likelihood function with the additive model f(X) such
that (RIDGEWAY, 1999)

arg min
f

n∑
i=1

δi

f(Xi)− log

∑
j

exp(f(Xj)

 . (5.17)

The base estimator of GBS, as in the RSF model, is the survival tree. In this way, we
adopted the same control parameters for the estimator number M and a minimum number of
samples in each node for both models.

5.3.3 Software and Hardware

All the routines, including data preparation, simulation, and result analysis, were develo-
ped using the Python language version 3.9.7 (ROSSUM; DRAKE, 2009), adopting the following
common scientific libraries: scipy 1.4.1 (VIRTANEN et al., 2020) for statistical analysis and
hypothesis testing, pandas 1.2.4 (MCKINNEY, 2010) for data wrangling, numpy 1.20.2 (HARRIS
et al., 2020) for array manipulation, scikit-learn 1.0.2 (PEDREGOSA et al., 2011) for general data
science functions, scikit-survival 0.17.2 (PÖLSTERL, 2020) for survival model implementation,
tsfresh 0.19.0 (CHRIST et al., 2018) for the TSF feature extraction model implementation, mat-
plotlib 3.4.2 (HUNTER, 2007) and seaborn 0.11.2 (WASKOM, 2021) for plots and visualization,
and eli5 0.13.0 for permutation importance testing.

The specifications of the hardware used to perform the simulation were as follows: CPU
Intel Core i9 2.30 GHz, 16 GB of RAM installed, and the macOS v.12.5 operating system. The
approximate amount of time necessary to perform the data preparation, feature selection, and
all 100 simulations was around three hours (one hour for feature extraction and two hours for
simulation) without any parallelization. All scripts are available from the researcher’s public
repository (Github repository: <https://github.com/rodrigosantis1/shp_prognosis> accessed
on 1 December 2022) for reproducibility and replicability. Data have not been made publicly
available by the SHP but can be shared upon request.

5.4 Results and Discussion

5.4.1 Simulation Results

Figure 5.5 shows the C-index scores calculated for each of the 100 randomized simulations
with different training and testing sets. This visualization format provides better understanding
of the metric distribution of each of the CN, RSF, and GBS survival analysis models when
combined with HOS and TSF feature engineering.

https://github.com/rodrigosantis1/shp_prognosis
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Figura 5.5 – Box plot representation of the C-index scores by group of feature strategies and
survival models for the 100 simulations performed. The groups with the highest
accuracy were TSF-RSF and TSF-GBS, while the lowest was HOS-CN.

From the box plot analysis, we observed that the HOS-CN group obtained the lowest
accuracy, while the TSF-RSF and TSF-GBS groups obtained the highest accuracies. The variance
of CN was higher than those for the other survival models, especially when adopted with TSF
feature engineering.

There were a few outliers in all models which were mostly in the lower bound, indicating
possible convergence problems. A suggestion for both improving the variances and reducing
outliers is to adopt a model selection schema for tuning and adjusting the models. The TSF-RSF
and TSF-GBA groups presented close distribution in terms of both median and variance. In
general, most of the RSF and GBS groups presented close variance.

Table 5.2 presents the average and standard deviation of the C-index score and fitting
time, highlighting in bold the model with the highest score and the one with the lowest fitting
time. The nonlinear models RSF and GSA, which require more computational time for training,
achieved better accuracy scores than the linear model with regularization (CN). This trade-off
between accuracy and computational time is expected in machine learning applications. When
comparing RSF and GBS, RSF required up to 10 times more fitting time than GBS. However, it
is worth mentioning that RSF, a bagging ensemble, can be more easily parallelized than GBS, a
boosting ensemble. The fitting time difference between the TSF-CN and the nonlinear models
was significant, requiring more than 1000 times less time than TSF-RSF for training.
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Tabela 5.2 – C-index score and average computational time. TSF-RSF obtained the best average
score, while HOS-CN achieved the lowest score at a reasonably lower fitting time.

Model Description C-Index Fitting Time (s)

HOS-CN Higher-Order Statistics + Cox-
Net

0.5562 0.0898 0.0053 0.0061

HOS-GBS Higher-Order Statistics + Gradi-
ent Boosting Survival

0.7440 0.0736 1.7514 1.5064

HOS-RSF Higher-Order Statistics + Ran-
dom Survival Forest

0.7026 0.0843 14.6232 12.1850

TSF-CN Tsfresh + CoxNet 0.6060 0.1060 0.0193 0.0023
TSF-GBS Tsfresh + Gradient Boosting Sur-

vival
0.7644 0.0854 9.7241 2.2749

TSF-RSF Tsfresh + Random Survival Fo-
rest

0.7744 0.0903 27.5949 23.2420

Table 5.3 presents the total time necessary to execute both feature engineering strategies.
As this is a step preceding model adjustment, it is worth considering its time when evaluating
the models.

The computational time required to extract and select attributes using the TSF method
was about 20 times greater than the time required using HOS. This is a significant difference
that must be taken into account, especially for real-time applications of the prognosis model.
However, it is interesting to point out that the TSF library offers the possibility of implementing
cluster parallel computing. Furthermore, the time required for inference was lower, given that
only the features previously selected by the feature hypothesis tests and applied in the model
training needed to be calculated.

Tabela 5.3 – Preprocessing time for feature engineering strategies. TSF technique requires about
20× more computational time than HOS.

Feature Engineering Strategy Preprocessing Time (s)

Higher-Order Statistics (HOS) 4.68 s
Tsfresh (TSF) 67 s (extraction) + 26.6 s (selection)

One-way ANOVA (MCDONALD, 2014) was applied to test the null hypothesis that the
groups had the same mean C-index score. Table 5.4 displays the FS statistics, which represent
the ratio of the variance among score means divided by the average variance within groups, and
the p value calculated for the statistics. By adopting a confidence level of 0.95, we rejected
the hypothesis that the score was equal between all groups since the p-value was lower than
alpha = 0.05. Normality was checked using a Q-Q plot. The homogeneity of the variance when
checking the ratio of the largest to the smallest sample standard deviations was less than 2 (1.44).

Tabela 5.4 – One-way ANOVA FS statistics and P value for the null hypothesis of scores being
equal for all groups. The hypothesis H0 : µ1 = µ2 = µ3 = · · · = µ6 was rejected at
the significance level of 1− α > 0.95.

FS Statistics P Value Reject H0

103.144 3.0036e-78 True
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Sequentially, a pairwise Tukey test (TUKEY et al., 1977) was applied, and the results
are presented in Table 5.5. The pair of groups in which the mean difference of the scores was not
significant at the 0.95 level is highlighted in bold. The results show that the mean score metrics
of the HOS-GBS, TSF-GBS, and TSF-RSF groups were statistically different. These results
indicate that, from our experimentation, it is not possible to verify significant differences among
the scores in these models. A reasonable model for the dataset we simulated was the HOS-GBS
group, since it presented the least computational time for both preprocessing and fitting and
was among the top three models.

Tabela 5.5 – The pairwise Tukey test qS statistics and lower and upper bounds for mean diffe-
rences between each pair of groups. The null hypothesis H0 : µ1 = µ2 was rejected
at a significance level of 1− α > 0.95.

Group 1 Group 2 µ1 − µ2 qS Statistics Lower Upper Reject H0

HOS-CN HOS-GBS 0.1878 0.001 0.1519 0.2238 True
HOS-CN HOS-RSF 0.1464 0.001 0.1105 0.1824 True
HOS-CN TSF-CN 0.0498 0.0012 0.0139 0.0857 True
HOS-CN TSF-GBS 0.2082 0.001 0.1723 0.2441 True
HOS-CN TSF-RSF 0.2182 0.001 0.1823 0.2541 True
HOS-GBS HOS-RSF −0.0414 0.0132 -0.0773 −0.0055 True
HOS-GBS TSF-CN −0.138 0.001 -0.1739 −0.1021 True
HOS-GBS TSF-GBS 0.0203 0.5743 −0.0156 0.0562 False
HOS-GBS TSF-RSF 0.0304 0.152 −0.0056 0.0663 False
HOS-RSF TSF-CN −0.0966 0.001 −0.1325 −0.0607 True
HOS-RSF TSF-GBS 0.0617 0.001 0.0258 0.0977 True
HOS-RSF TSF-RSF 0.0718 0.001 0.0359 0.1077 True
TSF-CN TSF-GBS 0.1584 0.001 0.1225 0.1943 True
TSF-CN TSF-RSF 0.1684 0.001 0.1325 0.2043 True
TSF-GBS TSF-RSF 0.01 0.9 −0.0259 0.0459 False

5.4.2 Feature Importance Analysis

Feature importance was evaluated using the permutation importance method, which
measures how the score decreases when a feature is not available (BREIMAN, 2001). The score
adopted for evaluation was the C-index, the base estimator was the RSF model, and the number
of permutation iterations was equal to 15.

Table 5.6 presents the 20 most important features of the HOS-RSF combination, detailed
by the sensor and the statistic used for aggregation into the feature used to train the RSF model.

The features associated with the speed registered in the speed regulator and the tem-
perature of the oil were the most important features, contributing to an average increase of
2.8% in the C-index score. The features related to the coupled side bearing temperature of
the generator were the most frequent ones (4/20), the oil temperature of the hydraulic unit
was the second-most-frequent feature (3/20), and the uncoupled side bearing temperature was
the third-most-frequent feature (2/20). When analyzing the type of aggregation, kurtosis and
variance were the most frequent types (6/20), and skewness and average were the least frequent
types (4/20), although there was a balance among all four types.
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Table 5.7 presents the top 20 most important features of the TSF-RSF combination,
detailed by the sensor and the type of feature extraction technique applied.

The most important features were the CWT coefficient of the radial bushing temperature
in the turbine and the absolute energy of the voltage in the bar, which contributed to an increase
of 1.1% in the C-index score. Since more features were extracted using the TSF strategy than
the HOS, it was expected that the weight of each individual feature would be lower. The features
related to the radial bushing temperature in the turbine were most frequent (4/20), followed by
those related to the coupled bearing temperature in the generator (2/20) and the bar voltage
(2/20). The features originating from CWT were most frequent (9/20), followed by the FFT
(3/20). The dominance of the CWT and FFT indicates the importance and efficiency of the
time–frequency decomposition methods in this type of application.

Tabela 5.6 – The 20 most important features of HOS-RSF using permutation importance. Column
weight represents the average increase in the C-index when the feature is available.

Sensor Aggregation Weight

Speed Regulator: Speed Kurtosis 0.0285 0.0346
Hydraulic Unit: Oil Temperature Skewness 0.0281 0.0156
Generator: Coupled Side Bearing Temperature Skewness 0.0180 0.0189
Turbine: Downstream Shaft Sealing Temperature Average 0.0149 0.0241
Voltage Regulator: Excitation Voltage Variance 0.0120 0.0120
Turbine: Radial Bushing Temperature Average 0.0116 0.0223
Spiral Case: Pressure Kurtosis 0.0116 0.0064
Generator: Current T Variance 0.0114 0.0083
Generator: Current S Variance 0.0110 0.0048
Speed Regulator: Distributor Variance 0.0107 0.0055
Generator: Coupled Side Bearing Temperature Average 0.0103 0.0092
Generator: Uncoupled Side Bearing Temperature Skewness 0.0093 0.0117
Coupled Side Bearing Vibration Kurtosis 0.0091 0.0127
Generator: Uncoupled Side Bearing Temperature Kurtosis 0.0085 0.0157
Generator: Voltage RN Average 0.0081 0.0141
Hydraulic Unit: Oil Temperature Kurtosis 0.0079 0.0096
Generator: Coupled Side Bearing Temperature Kurtosis 0.0078 0.0127
Hydraulic Unit: Flow Switch Variance 0.0076 0.0101
Hydraulic Unit: Oil Temperature Variance 0.0074 0.0085
Generator: Coupled Side Bearing Temperature Skewness 0.0074 0.0070
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Tabela 5.7 – The 20 most important features of the TSF-RSF group by permutation importance.
Column weight represents the average increase in the C-index when the feature is
available.

Sensor Extraction Weight

Turbine: Radial Bushing Temperature CWT Coefficient 0.0122 0.0211
Bar: Voltage Abs. Energy 0.0112 0.0256
Generator: Coupled Bearing Temperature CWT Coefficient 0.0093 0.0147
Speed Regulator: Speed Energy Ratio 0.0083 0.0144
Generator: Voltage RN CWT Coefficient 0.0074 0.0125
Generator: T-Phase Winding Temperature Autocorrelation 0.0070 0.0063
Turbine: Radial Bushing Temperature CWT Coefficient 0.0066 0.0204
Generator: Voltage TS CWT Coefficient 0.0064 0.0098
Generator: S-Phase Winding Temperature CWT Coefficient 0.0064 0.0044
Generator: Voltage ST CWT Coefficient 0.0064 0.0138
Generator: Reactive Power Quantiles Change 0.0052 0.0080
Bearing: Vertical Radial Vibration Index Max Quan-

tile
0.0052 0.0044

Bar: Frequency FFT Coefficient 0.0052 0.0166
Turbine: Radial Bushing Temperature Lempel Ziv Com-

plexity
0.0052 0.0064

Hydraulic Unit: Flow Switch FFT Coefficient 0.0052 0.0088
Bar: Voltage CWT Coefficient 0.0052 0.0182
Generator: Frequency Quantiles Change 0.0050 0.0054
Generator: Coupled Bearing Temperature CWT Coefficient 0.0050 0.0103
Turbine: Radial Bushing Temperature Longest Strike

above Mean
0.0050 0.0172

Turbine: Downstream Shaft Sealing Temperature FFT Coefficient 0.0050 0.0078

It is important to note that the TSF algorithm includes the statistical aggregations of
kurtosis, skewness, mean, and variance from the HOS feature engineering strategy. Additionally,
none of these aggregations were present in the 20 most important attributes after the inclusion
of more complex features, such as the FFT and CWT.

5.4.3 Model Application Analysis

In this section, we present a deeper look at the model which presented the highest mean
score in the simulation: TSF-RSF. The C-index of the model was 0.8139. It is worth noting that
the maximum value for the C-index is 1, which indicates the order of observed events followed
the same order as all predicted events, and a C-index value of 0.5 indicates the prediction was
no better than a random guess (SNIDER; MCBEAN, 2021). For comparative purposes, the
application of the RSF method on the remaining service life of water mains obtained a C-index
of 0.88 (SNIDER; MCBEAN, 2021), while for modeling the disruption durations of a subway
service, the metric was 0.672 (WANG et al., 2022).

Figure 5.6 presents the reliability, and Figure 5.7 presents the cumulative hazard function
plots predicted by the model for 20 instances randomly selected from the test set. When analyzing
the representations, we can identify three operation cycles with a reliability pitfall in the earliest
minutes of operation. These indicate some cases in which there was an intrinsic problem in the
generator-turbine system prior to or during start-up, and those systems must be stopped as soon
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as possible for maintenance. There was a second group of four instances in which the reliability
dropped by half in the first 1000 5 min time units. This behavior might be related to some
operating conditions that were observed in the operation of the machine. Finally, there was a
third group containing the other instances with a steadier rhythm of reliability decay, in which
more than half of the systems were expected to fail after 2000 5 min time units.

0 1000 2000 3000 4000 5000 6000
Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

ia
bi

lit
y

Figura 5.6 – Reliability function estimate of test samples (n = 20) using TSF-RSF. With the
passage of time units (t), the probability of the system not failing declines. According
to the measured variables, the model estimates whether the reliability decays more
abruptly or not. After 400 5 minute time units, stability in the operation of the
generating units is expected.
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Figura 5.7 – Cumulative hazard function estimate of test samples (n = 20) using TSF-RSF.
The cumulative hazard risk increased as the operation time increased, with the
highest rate occurring in the first 3000 5 minute time units of operation. In unstable
start-up operating cycles, this increase happened drastically in the first moments of
operation.

In practical applications, the survival model can be used to evaluate both the current
and previous runs of a generator unit, returning both the risks and the expected remaining useful
life. Maintenance teams may want to keep all their systems with a reliability function closer to
the third group described before, especially right before the rainy periods. During these periods,
the generation is higher, and the stopped periods are rarer, making it more difficult and less
desirable to execute maintenance procedures on the machines, which may lead to a loss in power
generation.

The model can also be extended for a prescriptive perspective combined with the
parameters of the start-up process, aiming to optimize the start-up process in order to achieve
the highest reliability level possible. With this, a longer lifetime of the assets and greater time
between failures can be expected.

5.5 Conclusions

In the present paper, we presented a structured modeling pipeline for survival analysis
and remaining useful life estimation in a small hydroelectric plant in CBM. The available period
of operations was approximately 1 year, and the 54 variables were monitored in 4 generating
units of the same model and manufacturer. The HOS-GBS, TSF-RSF, and TSF-GBS models
presented the highest C-index scores in our simulation. All three are suitable for production
deployment.
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Identifying failures before they happen is crucial for allowing better management of asset
maintenance, lowering operating costs, and in the case of SHPs, promoting the expansion of
renewable energy sources in the energy matrix (ZHANG et al., 2017a). Applying time series
feature engineering and machine learning survival models, such as a framework, aims to enhance
the health of the equipment and decrease power generation downtime.

Looking at variable importance, variance and kurtosis represented the most frequent
transformation functions in HOS feature engineering, while the FFT and CWT were the most
frequent transformations in TSF feature engineering. The sensors that contributed the most to
the model accuracy were the generator bearing temperature, hydraulic unit oil temperature, and
turbine radial bushing temperature. The data-driven framework presents generalities, and thus
it can be reused to model generator units with different types of sensors.

Future studies should examine feature and model selection through exhaustive searching
and Bayesian or evolutionary optimization, as the parameters were manually adjusted. Fine-
tuning the models can contribute even more to improving the model accuracy. From the point of
the modeling assumptions, runs are set to be independent, but features can be crafted to include
times from other runs and from the last imperfect or perfect repairs. Additionally, the predictive
model opens a path for prescriptive optimization of the machine operation parameters, aiming
to minimize wear, operational wear, and risk over time. Reinforcement learning approaches
are a prominent course of action, since they have been adopted for dynamically developing
maintenance policies for multi-component systems such as the power system of our object of
study. (YOUSEFI et al., 2020)

Finally, the present study contributes to the advancement of SHP maintenance, a
crucial renewable power resource with enormous potential for supplying energy worldwide. By
determining the faults before failure, management can carry out actions to avoid additional
damage caused to combined systems and additional aggravation of the components, thus reducing
the operating costs of power plants.
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6 CONCLUSÃO

Nesta proposta de qualificação, apresentamos seis trabalhos desenvolvidos e publicados
nos temas centrais da tese: análise e de séries temporais e a manutenção preditiva em PCHs e
CGHs. Os trabalhos são interligados e apresentados de forma sequencial ao seu desenvolvimento.
Enquanto obtivemos sucesso em adotar técnicas estatísticas e computacionais aos dados moni-
torados para detecção e previsão de falhas, não foi possível propor um modelo de detecção de
falhas em séries temporais baseado no DTSF. Destacamos aqui algumas conclusões relevantes de
cada capítulo.

Da revisão bibliográfica, no capítulo 2, verificamos o aumento exponencial das publicações
sobre aplicações de técnicas de manutenção preditiva no setor hidrelétrico. A aplicação de modelos
de aprendizado de máquina vem sido amplamente defendida por pesquisadores nos estudos de caso
relatados. Em especial as técnicas de aprendizado profundo, dada sua eficiência em desenvolver
modelos de alta acurácia e capacidade de generalização, indicam uma oportunidade enorme de
avanço neste tipo de sistemas preditivos. Com o desenvolvimento das plataformas de nuvem
e seu respectivo poder computacional, estes algoritmos são capazes de lidar com banco de
dados gigantescos, como os encontrados no contexto de monitoramento da saúde de máquinas.
Estes avanços recentes, em harmonia com novas técnicas de entendimento de máquina (machine
understanding), indicam um futuro em que a interação entre especialistas e sistemas inteligente
será cada vez mais próxima e dinâmica.

No capítulo 3, as análises dos perfis de manutenção e operação e do perfil de operação
das usinas nos elucidou quanto à realidade das usinas em funcionamento e as principais causas de
indisponibilidade dos ativos de geração. Verificamos uma alta frequência de falhas na transmissão,
porém a maior contribuição para o tempo total parado das unidades geradoras foi dada pelos
componentes do sistema gerador-turbina. Em especial o sistema de sustentação dos rotores,
representado pelos mancais e unidade hidráulica de lubrificação, representam mais de 25% do
tempo parado por indisponibilidade forçada. A partir destas análises, e em conjunto com os
estudos de revisão bibliográfica, direcionamos nossos esforços para um sistema de diagnóstico de
falhas nestes componentes críticos.

No capítulo 4, propomos a aplicação de um método de detecção de anomalia conhecido
como floresta de isolamento estendida, para o diagnóstico inteligente de falhas em PCHs e CGHs.
O modelo não-supervisionado é capaz de isolar observações distantes da massa central de dados,
utilizando como métrica a profundidade média nas árvores individuais do comitê. A saída do
modelo reflete um índice de saúde único para cada unidade geradora, e com a definição de um
ponto limítrofe de controle, os gestores de manutenção são capazes de acompanhar o risco de
falha do sistema.

No capítulo 5, propomos a combinação de técnicas de engenharia de atributos de séries
temporais (TsFresh) com modelos de sobrevivência para estimação da curva de sobrevivência
da unidade geradora em relação ao tempo de operação. O modelo foi ajustado utilizando como
métrica a o índice de concordância (C-index), e a predição é realizada nos primeiros 150 minutos



97

de operação (que inclui a partida de máquina) e indica a probabilidade de falha nas próximas X
unidades de tempo (1 unidade = 5 minutos).

Como próximos passos, sugerimos o aprofundamento na discussão no tema de diagnóstico
inteligente de falhas (COSTA et al., 2019), realizando a classificação de falhas por tipos (falhas
elétricas, hidráulicas e mecânicas) em um contexto de aprendizado supervisionado desbalanceado.
Os dados são rotulados a partir das falhas acusadas pelo sistema supervisório. Serão avaliados
modelos baseados em árvores de decisão, como florestas randômicas, gradient boosting; modelos
estatísticos, como regressão logística com e sem penalização; e modelos baseados em redes neurais
artificiais. A partir da análise da importância dos atributos dos mais apropriado para o problema,
esperamos poder avaliar quais variáveis de monitoramento mais impactam cada tipo de falha.

Na linha de prognóstico, acreditamos que o modelo possa obter melhores resultados se
forem exploradas novos atributos que modelem a dependência entre as corridas das máquinas e o
histórico de reparos realizados. Isso porque o modelo proposto assume independência entre as
corridas, enquanto na prática pode existir dependência. Ainda, destacamos a possibilidade do
desenvolvimentos de modelos prescritivos por exemplo otimizando a operação da máquina de
forma a minimizar o desgaste sofrido pelas unidades geradores principalmente durante a partida.

Quanto ao modelo DTSF para detecção de falhas, foram realizados alguns testes criando
um índice de saúde a partir da média do perfil de correlação dos N análogos mais próximos.
Embora a ideia tenha sido promissora, na prática o índice se tornou sensível a escolha do tamanho
da janela de busca, enquanto grandes janelas levaram a modelos com pouca sensibilidade no
decorrer do tempo. Em busca de melhorar o método proposto, foi utilizado a técnica de controle
estatístico CUMSUM. Porém, novamente uma grande quantidade de parâmetros era necessário
ser ajustado para se obter resultados satisfatórios.

Outra linha de desenvolvimento proposta é na área de prognóstico, que busca prever
o comportamento em momentos futuros de uma dada variável de interesse no sistema. Para
isso iremos aplicar métodos de previsão de séries temporais univariadas (COSTA et al., 2019),
como por exemplo a suavização exponencial, modelos de auto-regressão, e baseados em análogos.
No contexto multi-variado, os modelos xgboost e de redes neurais recorrentes serão aplicados.
Os métodos serão avaliados utilizando métricas clássicas de de erro de regressão, como a média
absoluta percentual entre valores previstos e observados, erro quadrado médio e coeficiente
de determinação. Iremos testar modelos de decomposição em tempo-frequência, que vêm sido
recentemente aplicados junto aos métodos univariados e demonstrado melhores resultados do
que a aplicação isolada dos métodos de previsão temporal.
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A DYNAMIC TIME SCAN FORECASTING: A BENCHMARK WITH
M4 COMPETITION DATA

Abstract: Univariate forecasting methods are fundamental for many different application areas.
M-competitions provide important benchmarks for scientists, researchers, statisticians, and
engineers in the field, for evaluating and guiding the development of new forecasting techniques.
In this paper, the Dynamic Time Scan Forecasting (DTSF), a new univariate forecasting
method based on scan statistics, is presented. DTSF scans an entire time series, identifies past
patterns which are similar to the last available observations and forecasts based on the median
of the subsequent observations of the most similar windows in past. In order to evaluate the
performance of this method, a comparison with other statistical forecasting methods, applied in
the M4 competition, is provided. In the hourly time domain, an average sMAPE of 12.9% was
achieved using the method with the default parameters, while the baseline competition – the
simple average of the forecasts of Holt, Damped, and Theta methods – was 22.1%. The method
proved to be competitive in longer time series, with high repeatability.

Keywords: Univariate methods. M4 competition. Benchmarking. Dynamic time scan forecas-
ting.

A.1 Introduction

The development of predictive models is widely debated in the literature (HILL et al.,
1994; PAI; LIN, 2005; DUDEK, 2016; SHANMUGAM, 2006), since it assists the control of
associated uncertainty intrinsic to random variables. Given the above, there are several categories
of predictive models based on this physical knowledge (such as spectral analysis (TCHRAKIAN
et al., 2011)) of intensive machine learning and statistical approaches (VOYANT et al., 2017).
Forecasting models associated with a single random variable as a function of time support
univariate forecasting, which is a very important area given its application in various sectors
such as (HASSANI; SILVA, 2018; CAI et al., 2017; BERNARDINI; CUBADDA, 2015), business
(JAFFUR et al., 2017; ZHANG et al., 2017b; TULARAM; SAEED, 2016), energy (GIRISH et al.,
2016; RANA et al., 2016; RAVIV et al., 2015), among others. In this context, it is fundamentally
valuable to develop meticulous criteria for selecting the models (BILLAH et al., 2005).

The M-competition (MAKRIDAKIS et al., 2018; MAKRIDAKIS; HIBON, 2000; MA-
KRIDAKIS et al., 1993; MAKRIDAKIS; HIBON, 1979) is the most important forecasting
competition in academia, in which researchers from all around the world test their methods on
real-life, anonymous time series from distinct areas of industry. The 4th edition took place in
2018 (MAKRIDAKIS et al., 2018), and 17 methods based on combinations of statistical- and
machine-learning or hybrids were tested on 100,000-time series. Outputs from these events are
registered in review articles, pointing out the directions of development and refinement of the
most promising forecasting techniques (FLORES et al., 2019). The 5th edition took place in
2020, and focused on a retail sales application with 42,850 unit sales hierarchical series, with the
objective to produce the most accurate point forecast as well as the most accurate estimation of
the uncertainty of these forecasts (MAKRIDAKIS et al., 2021). The 6th competition will take
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place this year and it will focus on predicting the overall market returns of individual stocks.

Whereas most well-known forecasting methods are based on identifying intrinsic compo-
nents of the time series, such as level, trend, or seasonality, a particular group of methods based
on similarity searches have been arousing interest in the areas of meteorology and renewable
energy (YANG; ALESSANDRINI, 2019a; HOELTGEBAUM et al., 2021). These methods consist
of identifying past weather patterns ("analogs") that closely resemble the current state. These
methods are capable of handling lengthy historical time series in order to produce accurate and
interpretive forecasts.

Among these methods, Dynamic Time Scan Forecasting (DTSF) consists of a new and
simple analog-based forecasting technique (COSTA et al., 2021). It generates forecasts based on
similar patterns, those with the highest R2 scores, calculated from the last available window.

The accuracy of analog-based methods is scarcely reported in areas other than energy
prediction and is mostly limited to wind and solar energy forecasting applications (GONTIJO
et al., 2020; GONTIJO et al., 2021), which begs the question: "are analog-search-based models
competitive compared to classical statistical prediction methods?

. Additionally, no research was found that compared analog search methods and statistical
methods.

To fill this gap, the current paper describes the DTSF forecasting method and discloses
its performance on the M4 competition time series. We compare DTSF with eight classical
statistical methods (Naive, Seasonal Naive, Simple Exponential Smoothing, Holt, Damped,
Theta, AutoRegressive Integrated Moving Average (ARIMA), and ExponenTial Smoothing state
space model (ETS)) and a combination of the outcomes of 3 individual methods (Holt, Damped,
and Theta), which compose the baseline of the M4 competition. The M4 benchmark dataset
was selected for this research because: (1) it consists of a reliable and curated benchmark base,
adopted by other researchers and practitioners for developing and testing forecasting methods;
(2) it has a significant number of series: 100,000 time series, with different frequencies (hourly,
daily, monthly, weekly, quarterly, yearly); (3) it has been mostly predominated by statistical
methods of forecasting; (4) and it is composed of univariate and independent series.

The major contributions of the present paper can be summarized as follows:

• the study applies a new method to M4 competition for benchmark purposes;

• the method is compared with nine classical statistical methods and a combination of the
outcomes of three individual methods, which compose the baseline of the competition;

• in addition to applying the method, along with its default parameters, an exhaustive search
with hold-out validation is adopted for model selection.

The major conclusions are:

• in the hourly time domain, an average error of 12.9% was obtained using the method with
the default parameters, while the competition baseline was 22.1%;
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• through the automatic selection of parameters, we boosted the accuracy of the method by
12.31% compared to the method application without parameters selection;

• the method proved to be competitive, both in terms of accuracy and computational cost,
over long time series and with high repeatability.

The present paper is organized into 5 sections. Following this Introduction, Section
2 provides a review of the proposed forecasting method. Section 3 provides a background of
the datasets and methods applied in this study. Section 4 presents the results and discussions
obtained from the application of the methods. Finally, Section 5 concludes the present paper
and includes some recommendations for future studies.

A.2 Materials and methods

A.2.1 M4 competition dataset

The data used in the current study comes from the M4 competition dataset (MAKRI-
DAKIS et al., 2018). It is composed of 100,000 time series, taken from different domains such as
Economics, Finance, Demographics, and Industry, among others. The time series show different
periods: yearly, quarterly, monthly, weekly, daily, or hourly.

Table A.1 summarizes the information about the competition’s dataset. Domain refers
to the time period from which the data have been extracted, ranging from hourly to yearly.
The number of Series shows how many time series are available, in total. The dataset is mostly
composed of a collection of time series from yearly, quarterly or monthly domains - 95,000 time
series. The minimum length is the shorter time series in the given domain: the more aggregated
the domain, like yearly, the more difficult it is to retrieve data. For example, hourly time series
are longer, having at least 700 available observation points. Horizon refers to how many steps are
being predicted in the future and are being used for metric computation. Seasonality represents
the expected recurrence of an event in a given time domain.

Tabela A.1 – Summary of M4 competition dataset, including time-frequency, minimum length of
time series, and forecast horizon of each time series.
Domain Number of series Min. length Horizon Seasonality
Yearly 23,000 13 6 1
Quarterly 24,000 16 8 4
Monthly 48,000 42 18 12
Weekly 359 80 13 52
Daily 4,227 93 14 7
Hourly 414 700 48 24

The dataset provides a public and reliable source for comparing statistical, machine
learning, or hybrid methods on univariate time series forecasting (BONTEMPI, 2020). It is
internationally recognized by researchers and data scientists as the most important competition
in this area (FILDES; MAKRIDAKIS, 1995).
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A.2.2 Dynamic time scan forecasting

DTSF is a forecasting method based on scan statistics (GLAZ; BALAKRISHNAN, 2012)
and was originally developed to address the problem of wind forecasting for Brazilian power
generation plants. It consists of scanning a time series and identifying past patterns (called
"analogs") similar to the last observations available of the time series (called "query") (COSTA et
al., 2021).

Let yt be a time series of length N , t = 1, ..., N . Firstly, let vector y[w] be defined as the
last w observations of the series:

y[w] = [yN−w+1, ..., yN ]. (A.1)

The goal of DTSF is to identify analogs in the time series which are greatly correlated
with vector y[w]. Hence, the set of candidate vectors can be defined by:

x[w]
t = [yt−w+1, ..., yt−w] (A.2)

where t = 1, ..., N − 2 · w. The upper limit of the time sequence (N − 2 · w) guarantees that
vector x[w]

t does not overlap with vector y[w]. Fig. A.1 presents the DTSF procedure. Given the
last w observed values, which comprises vector y[w], a rolling window with the same size (xwt ) is
used for scanning previous values of the series.

Lastly, DTSF provides a k steps ahead forecast of the time series, yN+1, ..., yN+k. To
produce this outcome, the DTSF scans the series to find the closest analogs x[w]

t . The subsequent
values of the time series are used as the forecast values:

yN+i = fx[w]
t

(yt−w+i) (A.3)

where fx[w]
t

is a function which correlates the elements of vector x[w]
t and the elements of

vector y[w].

According to that, a first constraint can be set on k : 1 ≤ k ≤ w. This constraint
guarantees that if the most correlated time series window comprises the most recent values, prior
to vector y[w], then the forecast values are a function of vector y[w],

yN+i = fx[w]
N−2w

(yN−w+i). (A.4)

As stated in Equations (3) and (4), forecast values depend on the window length w and
the function fx[w]

t

(.). A intuitive proposal for function fx[w]
t

(.) is a linear scaling of the elements

of vector x[w]
t , i.e., a linear model. This occurs due to the fact that previous values are likely

similar to the last observations, except for a scale and/or offset shift. So, the method searches
for values that may be similar to the last values, after applying a similarity function (COSTA et
al., 2021).
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Figura A.1 – Illustration of the DTSF time series scan procedure.

By taking a linear function as the similarity function, the parameters of the model can
be estimated to minimize the sum of squares between the elements of vector y[w] and the linear
equation: β[t]

0 + β
[t]
1 × x[w]

t . Moreover, the similarity statistic can be assumed as the linear
regression coefficient of determination R2 (COSTA et al., 2021; MONTGOMERY et al., 2021):

R2 = 1−
∑
j

(
y[w]
j − ŷ[w]

j

)2

∑
j

(
y[w]
j − ȳ

[w]
j

)2 (A.5)

where y[w]
j is the j-th value of vector y[w] and ŷ[w]

j is the j-th predicted value using the estimated
linear function. Finally, the method calculates a similarity profile based on the R2 score resulting
from the comparison of the query with previous windows. The analogs with higher R2 scores are
considered closer analogs. Predictions of future steps are calculated from a predefined number of
analogs using aggregation functions, such as median (COSTA et al., 2021).

The DTSF model requires three parameters to be selected by the user: the length of the
query window, the similarity function specification, and the number of analogs to be considered.
The original implementation of DTSF is available on the R package, DTScanF. In the present
study, the original implementation is the extent to which the aggregation function applied to
analogs can be either the median or the mean, according to the user or the model selection
procedure.

Fig. A.2 illustrates the forecasting procedure, using time scanning in a given hourly time
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Figura A.2 – Example of DTSF application to forecasting a time series. The three colored lines
represent the top three analogs correlated to the queried period. The dashed lines
are the subsequent observations of the analogs. The forecast is given by the median
of the adjusted forecast from the subsequent observations of the top analogs.

series, adopting a window with a length equal to 48 hours, a linear similarity function (degree
equal to 1), and the three analogs. Windows 1, 2, and 3 are the ones most similar to the last
window of available data. The forecast is given by the median (but other statistics can be used
such as the mean) of the subsequential observations of the analogs.

As a data-driven method, DTSF usually performs better on time series with large numbers
of observations and it can also be extended to search the patterns of secondary series related
to the prediction. The main disadvantage of the method is the computational cost of scanning
the entire time series and calculating the similarity profile. However, more efficient methods,
such as the Maureen’s Algorithm of Similarity Search (MASS) which applies convolution, have
been applied for speeding up this task (GONTIJO et al., 2020). To keep it feasible, the linear
similarity functions commonly adopted are from the first to the third-degree polynomials.

A.2.3 Statistical forecasting methods

A univariate forecasting method is a procedure for estimating a point. The forecast is
based on past and present values of a given time series (CHATFIELD, 2000). This method
is generally applied when there is a large number of series to forecast, or when multivariate
methods require forecasts for each explanatory variable. Given the advantage of simplicity and
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high usage, univariate forecasting methods are employed in most of the forecast applications in
areas such as business, energy, and finance. The following methods are selected from the latest
M4 competition benchmark (MAKRIDAKIS et al., 2018), and a simple explanation is given for
each one, as follows:

1. Naive: the simplest, yet still powerful forecasting method; assumes that the next steps to
be predicted are equal to the last available observation (MAKRIDAKIS; HIBON, 1979).

2. Seasonal Naive (sNaive): the same concept as Naive, with the adaptation that the time
series is deseasonalized; method adjusted and forecast later, re-adjusted with the seasonal
component (MAKRIDAKIS; HIBON, 1979).

3. Naive2 : each time series uses the forecast of either Naive or sNaive, based on their score
on the validation set.

4. Simple Exponential Smoothing (SES): classic statistical method which applies an exponen-
tially weighted average (HYNDMAN et al., 2008).

5. Holt: exponential smoothing with level and linear trend components (HYNDMAN et al.,
2008).

6. Damped: exponential smoothing with dampened parameters for flattening trends, after a
given period (GARDNER; MCKENZIE, 2011).

7. Theta: method based on a coefficient of curvature of the time-series, applied to the second
difference of the data (ASSIMAKOPOULOS; NIKOLOPOULOS, 2000).

8. Combined (Comb): the simple average of the forecasts of the previous three models: Holt,
Damped and Theta.

9. ARIMA: general forecast method estimated from the autoregressive, moving average and
integration components from the time series analysis (BOX; PIERCE, 1970).

10. ETS : automatic forecasting based on an extended range of exponential smoothing methods
(HYNDMAN et al., 2002).

11. DTSF : the proposed method, adopting the defined default parameters, which are: (i)
polynomial function degree equal to 1, (ii) analogs equal to 10, (iii) window size equal to
length of forecast horizon, and (iv) median as aggregation function (COSTA et al., 2021).

Table A.2 presents the range adopted for the parameters of the proposed method. The
polynomial degree is the degree of the function used for approximation, analogs are the number
of analogs to be used to estimate the forecast, window size defines the length of the scan window,
and aggregation function is the one that transforms the projection of the analogs into the final
forecast.
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Tabela A.2 – Parameters range adopted for DTSF.
Parameters Range
Polynomial degree 1
Analogs 10
Window size 48
Aggregation function Median

A.2.4 Model selection procedure

The split of the data into training sets and test sets split is predefined and given by the
competition organizers. The data come from different files for each of the time series domains.
The test set has a fixed horizon for all the time series, and it is used only for computing the
final scores. The evaluation metrics adopted are the same ones that are applied in the M4
Competition, and are those most used in literature (AL-ALAWI; ISLAM, 1996; AZADEH et al.,
2008): the Symmetric Mean Absolute Percentage Error (sMAPE), Mean Absolute Scaled Error
(MASE) and Overall Weighted Average (OWA). The formula for calculating the metrics is given:

sMAPE = 1
h

h∑
t=1

2|Yt − Ŷt|
|Yt|+ |Ŷt|

(A.6)

MASE = 1
h

(n−m)
∑h
t=1 |Yt − Ŷt|∑n

t=m+1 |Yt − Yt−m|
(A.7)

OWA = sMAPEk/sMAPEbase +MASEk/MASEbase
2 (A.8)

where Yt is the post sample value of the time series at point t, Ŷt is the estimated forecast,
h is the forecasting horizon, m is the frequency of the data, k is a given regressor, and base is
the sNaive estimator.

A hold-out cross-validation scheme is adopted to evaluate and select the best parameters
for the methods, in which the last k observations are kept as the validation set, k being equal to
the forecast horizon. All possible parameter combinations are enumerated within the defined
ranges, and the methods are tuned using an exhaustive grid search procedure with sMAPE as
the scorer.

A.2.5 Software and hardware

Routines were implemented using the R 3.6.0 programming language with the offi-
cial benchmarks and evaluation script of M4 Competition, available at the GitHub repository
(https://github.com/M4Competition/M4-methods). The Forecast 8.7 package is used for the SES,
Holt, Damped, ARIMA, and ETS methods. DTSF comes from the official implementation of the
method in R and C++, available from the public repository (https://rdrr.io/github/leandromineti/DTScanF/).
All data and scripts are available from the authors upon request.

Computer specifications used to execute the algorithms and calculate the forecasts are as
follows: CPU 8-core Intel Core i9 2.3 GHz, 16 GB of RAM, and macOS 12.5 operating system.
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Once the predictions are calculated, the error arrays are next calculated and saved as RDS files,
allowing analysis of the results. Fitting time is computed from the time delta of the system,
before and after each execution of the methods.

A.3 Results and discussion

Table A.3 presents the average sMAPE achieved by each of the statistical methods and
by the proposed method, computed for each of the time domains. The Theta method achieved
the best scores for the yearly and monthly frequencies (14.603 and 13.003), which composed more
than 70% of the total of the series, thus contributing to this particular method outperforming
the other methods in the overall average (12.312). In the individual domains, Comb achieved the
lowest error for both the daily (10.197) and the quarterly (10.197) domains, while the ARIMA
method scored the lowest error on the weekly frequency (8.593).

The average error of all methods is the lowest for daily frequency (close to 3.00), and
there seems to exist a trend toward increasing as the time domain becomes broader: the weekly
average error is around 9, the monthly is around 13, and so on. The exception is for the hourly
frequency, in which most of the statistical methods scored errors from 13.912 to 43.003.

DTSF exhibited errors considerably fewer errors methods considered for benchmarking
in this particular kind of time series (12.927). This makes the DTSF method interesting for
studying applications in which competitive estimators are sought.

Table A.4 presents the evaluation of the methods using OWA. This metric is understood
as showing how one method is more accurate when compared to Naive2. If OWA is lower than
1 the method is more adequate than Naive2. Otherwise, Naive2 provides better forecasting
performance. The DTSF scores for the hourly series imply a meaningful increase in accuracy
over the Naive method (0.552). Moreover, when applying fine-tuning, the gain increases to nearly
50%. For all other domains, the only ones in which the method performed worse than Naive2
were the yearly and the daily, both of which have in common the longer term forecast period
and the lowest seasonality traits in common.

The outcome of the experiment can be explained by the intrinsic design of the DTSF
method, which was originally conceived to deal with very long time series with recurrent patterns,
such as its original application to 30-min frequency wind speed forecasting. Comparing results
to Table A.1, which presents the seasonality, length, and forecast horizon of each time domain, it
is shown that the DTSF accuracy is greater when the number of available data points is also
greater.

Fig. A.3 displays the average sMAPE for each one of the 414 hourly time series available
in the competition database, listed in ascending order according to the calculated error of the
DTSF method. The methods Naive, sNaive and SES methods were holdouts of the graphical
representation. The y-axis is presented using the base-10 logarithmic scale in order to facilitate
visual analysis.

In the first 170 time series with the lowest sMAPE – one-third of the total available – the
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Tabela A.3 – The performance of DTSF compared to M4 benchmark statistical methods – sMAPE
metric.

sMAPE

Yearly Quarterly Monthly Weekly Daily Hourly Average
Method (23k) (24k) (48k) (359) (4,227) (414) (100k)
Naive 16.342 11.610 15.255 9.161 3.405 43.003 14.207
sNaive 16.342 12.521 15.994 9.161 3.405 13.912 14.660
Naive2 16.342 11.012 14.429 9.161 3.405 18.383 13.565
SES 16.398 10.600 13.620 9.012 3.405 18.094 13.089
Holt 16.535 10.955 14.833 9.706 3.070 29.474 13.839
Damped 15.162 10.243 13.475 8.867 3.063 19.277 12.655
Theta 14.603 10.312 13.003 9.094 3.053 18.138 12.312
Comb 14.874 10.197 13.436 8.947 2.985 22.114 12.567
ARIMA 15.150 10.408 13.486 8.593 3.185 14.081 12.679
ETS 15.356 10.291 13.525 8.727 3.046 17.307 12.725
DTSF 16.816 11.006 13.823 8.983 3.313 12.927 13.370

Tabela A.4 – The performance of DTSF compared to M4 benchmark statistical methods – OWA
metric.

OWA

Yearly Quarterly Monthly Weekly Daily Hourly Average
Method (23k) (24k) (48k) (359) (4,227) (414) (100k)
Naive 1.000 1.066 1.095 1.000 1.000 3.593 1.072
sNaive 1.000 1.153 1.147 1.000 1.000 0.628 1.106
Naive2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SES 1.003 0.970 0.951 0.975 1.000 0.990 0.970
Holt 0.956 0.935 0.989 0.964 0.997 2.760 0.976
Damped 0.888 0.893 0.924 0.916 0.996 1.140 0.912
Theta 0.872 0.917 0.907 0.971 0.999 1.006 0.906
Comb 0.868 0.891 0.920 0.926 0.979 1.559 0.906
ARIMA 0.891 0.898 0.904 0.927 1.041 0.950 0.906
ETS 0.903 0.890 0.914 0.931 0.996 1.824 0.913
DTSF 1.002 0.961 0.950 0.914 1.092 0.552 0.969

method proposed in the present article achieved errors close to 10−2, while most of the others
obtained errors between 100.5 and 102. This shows the enormous predictive power in this specific
type of series, and the great gain in accuracy that explains the best performance of this method,
on average. Analyzing the sets between the 170th and 300th time series with the smallest error,
there is less distinction between all the methods which, in general, presented errors very close to
each other. Other methods have shown a lower errors than DTSF along all time series, specially
the methods ARIMA and ETS. In the set between 300th and 414th, DTSF again marginally
outperformed the other benchmark methods in most of the series.

Table A.5 presents the average sMAPE detailed by the forecast horizon, grouped by
6-hour periods. DTSF obtained lower errors, for all horizons than the other compared methods.
Furthermore, the average error is 12.9%, and the highest errors were obtained during the periods
between the hours from 19 to 30 and the hours from 43 to 48.

To provide better visualization of error evolution over time, Fig. A.4 presents the mean
errors per step of each method (excluding the three from the previous figure), for all hourly time
series. An increase in error over time, according to the phenomenon of error propagation, is
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Figura A.3 – Forecasting methods average sMAPE for each of the 414 hourly time series, ordered
by the accuracy of the DTSF method. The proposed method obtained fewer errors
for most of the time series in this particular domain of application.

Tabela A.5 – Average sMAPE obtained in the 414 hourly time series by the predicted steps,
grouped in 6-hour periods.

Steps

Methods 1-6 7-12 13-18 19-24 25-30 33-36 37-42 43-48 1-48
Naive2 16.3 20.1 18.8 15.7 18.2 20.7 19.3 18.0 18.4
Naive2 16.3 20.1 18.8 15.7 18.2 20.7 19.3 18.0 18.1
Holt 15.7 23.0 27.1 27.5 29.9 34.9 37.9 39.8 29.5
Damped 15.5 20.3 20.5 17.5 18.1 21.2 21.2 19.9 19.3
Theta 16.1 19.9 18.5 15.3 17.8 20.5 19.2 17.8 18.1
Comb 15.6 20.6 21.8 19.7 20.8 24.9 26.7 26.8 22.1
ARIMA 14.2 11.4 11.2 15.8 15.4 13.9 13.4 17.0 14.1
ETS 13.6 16.5 16.4 16.6 16.5 19.0 18.9 17.4 17.3
DTSF 12.6 10.7 10.2 15.0 14.8 11.6 11.6 11.6 12.9

expected. This is better observed in the Holt method, in which error varied from 10% at the
first step to 40% at the last step. Moreover, in such a visual representation, the Theta model is
perceived to have been more accurate, on average, than the DTSF model for the 1st and 24th
hours.

Most statistical methods presented a pattern of very similar curves, with the exception
of the DTSF method. In DTSF, the errors presented a different pattern, alternating peaks, and
valleys with the patterns of the other statistical methods. In general, DTSF appeared to remain
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Figura A.4 – Average sMAPE (obtained in the 414 hourly time series by all the methods for
each step of the prediction, up to 48 hours – forecast horizon).

more stable throughout the period, experiencing less of the error propagation effect and not
exceeding the limit of 20%. These are more examples that explain the better performance of the
DTSF method, compared to the benchmark, in the hourly domain.

Table A.6 shows the time necessary to fit the methods for all of the 100,000 time series.
The methods Naive2 and Comb have been omitted as these two are a combination/selection
of individual methods. Total fitting time is given in seconds, while the average time per series
is given in microseconds. The Ratio Naive column compares the average time of a particular
method compared to the execution time of the Naive method.

Tabela A.6 – Total and average times necessary for fitting the methods.
Methods Total fitting time

(s)
Average time per series (ms) Ratio to naive

Naive 0.458 1.106 1.00
sNaive 0.656 1.584 1.43
SES 2.219 5.360 4.85
Holt 5.947 14.365 12.99
Damped 12.789 30.892 27.94
Theta 2.964 7.159 6.47
ARIMA 18437.598 44535.261 40278.22
ETS 1838.638 4441.155 4016.63
DTSF 6.241 15.074 13.63

DTSF was the method that consumed the most computational time, almost 9 times more
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than Naive. It is worth mentioning that the default parameters for DTSF adopt 10 analogs to
estimate the forecast. Also, part of the method is executed in the C compiled language, and part
of it is executed in R.

A.4 Conclusions

The current paper presents the results of applying the dynamic time scan forecasting
method with the M4 competition data and compares it with statistical methods used as baselines
in the same competition. The results point to a significant gain in accuracy in hourly time
domain problems, compared to the reference, which justifies adopting this method for problems
of this particular nature.

Since the method was developed for problems with long time series and high repeatability,
DTSF has been proved competitive. In the present experiment, the DTSF method reduced the
sMAPE by 12.13%.

Furthermore, the dissemination of this method may be interesting for other researchers
who wish to extend it to existing methods, either by combining it with other techniques or by
adapting its operation to other applications.

Future research should extend the method to multivariate forecasting problems and
hierarchical time series and should assess its performance in other applications with this cha-
racteristic (the M5 competition, for instance). Also, some extensions of the method itself are
foreseen, in order to improve its accuracy on time series for which its performance was less
satisfactory than the performance of other statistical methods, for example, adopting k-fold
instead of hold-out cross-validation for model selection (BERGMEIR et al., 2018).
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B SIMILARITY SEARCH IN ELECTRICITY PRICES: AN ULTRA-
FAST METHOD FOR FINDING ANALOGS

Abstract: Accurately predicting electricity prices allows us to minimize risks and establish more
reliable decision support mechanisms. In particular, the theory of analogs has gained increasing
prominence in this area. The analog approach is constructed from the similarity measurement,
using fast search methods in time series. The present paper introduces a rapid method for
finding analogs. Specifically, we intend to: (i) simplify the leading algorithms for similarity
searching, and (ii) present a case study with data from electricity prices in the Nordic market.
To do so, Pearson’s distance correlation coefficient was rewritten in simplified notation. This
new metric was implemented in the main similarity search algorithms, namely: Brute Force,
JustInTime, and Mass. Next, the results were compared to the Euclidean distance approach.
Pearson’s correlation, as an instrument for detecting similarity patterns in time series, has shown
promising results. The present study provides innovation in that Pearson’s distance correlation
notation could reduce the computational time of similarity profiles by an average of 17.5%. It is
noteworthy that computational time was reduced in both short and long time series. For future
research, we suggest testing the impact of other distance measurements, e.g., Cosine correlation
distance and Manhattan distances.

Keywords: Analog. Ensemble forecasting. Similarity search. Electricity prices.

B.1 Introduction

The construction of predictive models is gaining prominence in the literature (GEISSER,
2017), since economic agents deal with uncertainty and aim to achieve the best results using
available resources (CHOI, 1993). Therefore, developing models with acceptable accuracy presents
a meaningful challenge to researchers. George Box stated, "All models are wrong, but some are
useful"(BOX, 1976). In other words, prediction is a technique that deals with risk, and there
will always be a fundamental error associated with it. The best model is the one that most
adequately represents the phenomenon of interest.

In relation to the object of our study, electricity prices, there are several forecasting
applications: (i) classical time series models like the autoregressive moving average, autoregressive
integrated moving average, generalized autoregressive conditional heteroscedastic, among others
(LIU; SHI, 2013); (ii) pre-processing techniques like spectrum analysis, wavelets and Fourier
analysis (MIRANIAN et al., 2013); and, (iii) machine learning approaches such as neural networks,
fuzzy systems and support vector machine (BUI et al., 2016). Additionally, an alternative class
known as hybrid models aims to combine machine learning representations with different methods.
Instances of these methods are focused time-delay neural networks (CHEN et al., 2019), neural
networks with fuzzy inputs (LIU et al., 2015), finite-impulse response neural networks (PIR et al.,
2017), local feedback dynamic fuzzy neural networks (NAGARAJA et al., 2016), type recurrent
fuzzy networks (JAIN et al., 2014), neuro-fuzzy inference systems (MORENO; COELHO, 2018),
among others.
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The energy market is known for being an industry with high-frequency data (MADADI
et al., 2018), for several reasons. First, sensor usage is widespread in energy (JARADAT et al.,
2015). Second, high-frequency data can better represent specific weather conditions, enabling
the improvement of energy modeling (AIGNER et al., 2007). Examples are diverse, such as:
(i) solar radiation, which can be collected in minutes (ASSUNCAO et al., 2003); and, (ii) air
humidity, atmospheric pressure, temperature and wind speed, which can also be measured in
minutes (LONGMAN et al., 2018).

In particular, the pricing of electricity also has significant volumes of information, in most
cases, arranged on an hourly scale (VORONIN; PARTANEN, 2014). Although the literature on
this question is extensive, there is academic interest in the construction of nonparametric models
applied to electricity prices, as they have presented promising predictive results. In general,
these models are designed to deal with long-time series and are chiefly based on analog ensemble
(AnEn) searches (YANG; ALESSANDRINI, 2019b; YANG et al., 2018a) and scan-clustering
methodologies (Azevedo Costa et al., 2019).

Due to both the complexity and the high volume of information, finding patterns in
time series is a data science challenge. Given that, similarity analysis has been studied since
the 1960s (Lorenz, 1969. In addition to the complexity of creating highly accurate models,
significant volumes of information lead to developing algorithms with low computational time.
As a result, the literature reflects efforts in mathematical and computational solutions to this
problem (MUEEN et al., 2017; YANG et al., 2018b).

In general, similarity and analog studies are based on searches of similarity patterns
between the latest available observations and the old observations through a scanning process on
data (GENSLER et al., 2016). This methodology is widely used in climatology studies, where
an AnEn is developed by first matching up the actual prediction from a numerical weather
prediction (NWP) model with similar past projections (ECKEL; MONACHE, 2016).

As an example, some research in this area deserves special mention. Yang et al. (YANG et
al., 2018a) presented a dual NWP model approach, boy jointing the AnEn and the bias-corrected
analog ensemble (BCAnEn) procedure and demonstrated that by combining different NWP
models, it is possible to improve the storm wind speed prediction. Another critical study was
carried out by Yang (YANG, 2019), which pointed out that using the kd-tree in AnEn, it could
be possible to save computational time when necessary to test different model adjustments. Still,
in this context, research on the forecast of solar irradiation is frequent, and (YANG et al., 2018b)
presented a substantive review of this area’s main procedures.

Although relevant, previous work on the similarity search is mainly aimed at climatological
research. This article innovates, as it addresses this methodology in the energy commercialization
sector. Also, it is highlighted that previous analog forecasting studies are based on Euclidean
distance as a metric of similarity (MUEEN et al., 2017; YANG, 2019). McDermott Wikle
(MCDERMOTT; WIKLE, 2016) show that this procedure may present trouble. Since searches
of analogs rely on embedding vectors being spatially similar over time, it is not certain that
Euclidean distance ever leads to first-rate analogs, particularly for the spatiotemporal state
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processes. Pearson distance has mathematical similarities to the Euclidean approach (IMMINK;
WEBER, 2015), and could be a simplified way of rewriting its notation.

A research gap still needs to be addressed: finding alternative measures for the similarity
pattern to reduce the computation time of analog searches. The research question is formulated:
how it is possible to rewrite the classical analog ensemble models, based on the Euclidian distance
profile, into simplified Pearson distance notation to obtain computational gains in the main
analog algorithms? Therefore, our goal is to simplify the notation of the analog procedure to
achieve the same distance profile with less computational time. The present paper contributes to
the debate about electricity since it introduces a new predictive instrument based on the analog
procedure, using the Nord Pool prices of electricity as a case study.

This paper is structured as follows: Section 1 outlines the objectives of this paper. Section
2 presents the materials and methods employed in preparing this paper. Section 3 presents
the results obtained. Finally, section 4 discusses the implications of this research as well as
possibilities for future research.

B.2 Materials and Methods

The algorithms used in this paper are: (i) Brute Force, (ii) JustInTime, and (iii)
Mass. Usually, the Euclidean formula is presented in the literature on analogs to calculate the
distance between length-m query (Xi) and each length-m subsequence (Yi) in a given time series
(RADACK; BADLER, 1989; YANG; ALESSANDRINI, 2019b; ZHU et al., 2019). Generally,
this approach calculates Euclidean distance d=(Y,X), based on the normalized values of Y ∗i and
X∗i , as d =

√
(Y ∗i −X∗i )2. If we perform z-score normalization on each object, the Euclidean

Distance behaves similarly to the Pearson correlation coefficient (HöPPNER; KLAWONN, 2009).
Finally, the use of the Pearson correlation can produce simplified mathematical expressions, as
shown in Equation (1).

B.2.1 Similarity profile computation based on the Pearson correlation distance

The Pearson coefficient, ρ, measures the degree of correlation and the direction of
this correlation, positive or negative, between two random variables. The Pearson correlation
coefficient is defined as follows (PEARSON, 1895):

ρxy =
∑m
i=1(Xi − µX).(Yi − µY )√∑m

i=1(Xi − µX)2.
∑m
i=1(Yi − µY )2 (B.1)

Equation (1) represents a single-pass algorithm for calculating the Pearson correlation.
However, depending on the amount of data, it can demand considerable computational time.
Using a little algebra, we can rearrange Equation (1) as follows, obtaining the Pearson product-
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and the variance of the conditional distribution of Y given X = x is

σ2
Y |x = σ2

Y (1− ρ2) (B.10)

For additional details on computational procedures, see the Attachment section.

B.2.2 Similarity profile computation based on Euclidean distance

Equation (11) presents the mathematical formulation of the Euclidean distance between
the elements of two vectors. Note that the formula below illustrates the case where the two
vectors have previously been normalized. This is the formulation used in the Brute Force method.

d(X,Y ) =

√√√√√ m∑
i=1

Xi − µX
σX

−
Yi − µY
σY

2

=

√√√√ m∑
i=1

(X∗i − Y ∗i )2 (B.11)

where X∗i = (Xi − µX/σX) and Y ∗i = (Yi − µY /σY ).

The JustInTime method can be considered a rewrite of Equation (11), above. However,
it takes one normalized variable and one without normalization. Equation (12) uses some algebra
steps to demonstrate how to determine the adjusted equation for Euclidean distance.

=

√√√√∑m=1
i=1

(Xi − µX)2

σ2
X

+
∑m=1
i=1

(Yi − µY )2

σ2
Y

− 2
∑m=1
i=1

∑m
i=1XiYi −m.µX .µY

σX .σY

=

√√√√√2

m− ∑m
i=1XiYi −m.µX .µY

σX .σY

 (B.12)

Assuming the normalization of variable X (query), we can simplify Equation (12):

d(X,Y ) =

√√√√√2

m− ∑m
i=1XiYi

σY

 (B.13)

Equation (14) uses some algebra to demonstrate the existence of a relationship between
Pearson’s correlation coefficient and the Euclidean distance formula. Thus, since the correlation
coefficient values vary between minus one and one, the smaller the distance between the vectors,
the greater the force (correlation) between them:

ρX∗Y = 1−
d(X,Y )2

2m (B.14)

The Euclidean distance incorporates the Pearson correlation function. Thus, the present
paper will search for similarity patterns considering the Pearson coefficient, since this approach
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B.2.3 Dataset and simulation procedures

The data used in the present study were obtained from the Nord Pool, the leading power
market in Europe (JANKE et al., 2020). The dataset includes the hourly average electricity
price for seven different countries, segregated into market areas (POOL, 2020).

The period of data analysis ranges from January 1st, 2014, 00:00, to September 2nd,
2019 00:00, totaling 49,709 registers for each time series. There were six missing data points,
from hour 02:00 to 03:00, at the end of March of each year. Missing data were computed using
the average price of the preceding and subsequent hours. The time series utilized, including the
number of time series per country and their acronyms, are presented in Table 1.

Tabela B.1 – Nord pool energy submarkets analyzed
Time series Acronyms # Time Series
System reference SYS 1
Sweden SE1, SE2, SE3, SE4 4
Finland FI 1
Denmark DK1, DK2 2
Norway Oslo, Krsand, Bergen, Molde, Trhein, Tromso 6
Estonia EE 1
Latvia LV 1
Lithuania LT 1

From each of the time series, 30 samples of size n equal to 720, 2,400, 7,200, 12,000 and
24,000 are randomly drawn. These values are associated with time series lengths of 30, 100, 300,
500 and 1000 days. The values of m adopted for this simulation were, 6, 9, 24 and 48 hours.

Figure 4 shows the flowchart with the detailed simulation process used to compare
the similarity search algorithms based on Pearson’s correlation and those based on normalized
distance. The validation of the analysis is obtained by comparing the computational times
calculated for the different methods in carrying out the same task, building the similarity profile.
As the similarity profile is deterministic, the accuracy is the same as long as the model reaches
its objective.

Routines were implemented using the R R© 3.6.0 programming language, adapting al-
gorithms from (MUEEN et al., 2017) and (YANG; ALESSANDRINI, 2019b). The R-package
RollingWindow was used to calculate the standard deviation of the data, considering fixed-width
subsets of observations, called windows. This package is available from the GitHub repository at:
https://github.com/andrewuhl/RollingWindow.

The computer used to execute the algorithms and to calculate the correlation and distance
profiles had: CPU Intel Core i5-4570 3.20GHz, 16 GB of RAM and operating system Windows
10 x64. Computational time was calculated from the system’s time delta before and after each
execution of the methods.

B.3 Results and discussion

Each of the search algorithms (Brute Force, JustInTime, and Mass) were properly
calculated using both Pearson correlation metrics and Euclidian distance formulation. To make
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In other cases, however, the former is more efficient. It is up to the user of the algorithm to
assess which model best suits their specific situation and data types.

Here, a similar analysis is presented (Table 3). However, the sample universe was
substantially increased (n = 24,000 hours). Again, the Pearson correlation-based models stood
out concerning computational time, with the JustInTime algorithm as the most promising method
for computing long time series (the most abundant sample universe).

Tabela B.3 – Sample data length of 24,000 (1,000 days) [hours]. The query length m varies from
6 to 48 [hours]. Each scenario is repeated 100 times, the mean computational times
(in ms) are shown in the table.

Avg. time (ms)
Correlation similarity profile Euclidean distance profile

m BruteForce JustInTime MASS BruteForce JustInTime MASS
m =6 377.402 (12.924) 15.678 (4.842) 136.023 (8.606) 379.560 (14.351) 19.249 (6.436) 135.817 (8.815)
m =9 381.169 (15.298) 16.321 (5.009) 84.343 (8.274) 384.333 (19.447) 20.051 (6.644) 84.518 (7.871)
m =24 394.380 (14.623) 18.377 (5.699) 1087.231 (29.833) 396.693 (14.785) 22.121 (7.312) 1086.358 (28.683)
m =48 406.765 (14.676) 20.495 (6.714) 10.859 (6.644) 408.716 (14.300) 24.404 (7.587) 11.140 (6.748)

By increasing the sample size of the available period by ten times, we obtained proportional
increases in computational times for almost all models. The standard deviation increase, however,
was limited to twice its original value. Thus, the computational advantage of models based on
the correlation similarity profile becomes more evident.

The JustInTime algorithm, using the similarity profile, showed a 17.5% reduction in
computational time. With the BruteForce and MASS algorithms, the gains were more discrete
due to the greater variability of computational times. Again, the computational time of the
MASS algorithm showed high sensitivity to the parameter m, assuming values 0.5 to 60 times
the average time value of the JustInTime algorithm.

Finally, conclusions of the present paper are presented, emphasizing the time saving of
the proposed formulation as well as suggesting potential studies to be developed in the future.

B.4 Conclusions

The electricity energy market is known for having high-frequency data. The examples
are numerous, as the large-scale use of sensors across a wide range of processes provides a robust
set of data. Thus, as the amount of information stored continuously increases over time, the
search for statistical solutions that model this data is remarkable. Regarding predictive models,
the range of approaches is broad. In particular, the literature has highlighted the relevance of
predictive methods based on similarity or analogous searches. These methods scan a time series
and, from the most recent observations, define moments where there is a high degree of affinity.

The main work on the methodology of analogs ensamble (AnEn) has made use of the
Euclidean distance function. Our methodology revealed a high degree of similarity between the
Euclidean formulation and Pearson’s method. Thus, the present study is innovative in that, by
rewriting Pearson’s correlation equation, it was able to obtain the same results as the traditional
approach but using less computational time. Therefore, the results of the present study are
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expected to provide a fast and robust tool for finding patterns in long time series, contributing
to different actors in the energy planning sector.

The present study contributes to the energy planning processes of different agents, given
that understanding price patterns has singular importance for minimizing risks and supporting
reliable production planning. Good forecasts for future energy pricing can support operational
arrangements, e.g., when the energy price is high, it may be more valuable for an industry to
delay part of its production temporarily, trade the surplus electricity, and carry out preventive
maintenance on machines and accessories.

There are no disadvantages in applying Pearson’s correlation in the search for analogs, as
the correlation profile is a mathematical simplification of the normalized distance: the temporal
analog with the shortest normalized distance is also the one with the most significant correlation
with the search. The proposition is valid for the other windows: the analog with the second
shortest distance has the second-largest correlation, and so on. The same is not observed; however,
for the search algorithms: the JustInTime algorithm presented the lowest computational times in
most excerpts of the series; however, the Mass algorithm obtained the best efficiency in others.

Future research should test the effect of different probability distributions on the data
standardization process. A study of other measurement functions, such as distance from
Manhattan, is recommended. Finally, yet no less importantly, we suggest the analysis of the
impact of using different coefficient approaches such as entropy, Kendall, and Spearman.
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