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a b s t r a c t

Corticolous myxomycetes are a distinct ecological group consisting of species typically

associated with the outer bark surface of living trees. The current study aimed to char-

acterize the community structure of corticolous myxomycetes and their associated trees,

analyzing the influence of geographic distance, bark pH, and tree diameter on myxomycete

assemblages in a Neotropical Seasonal Dry Tropical Forest (SDTF) in Brazil. The myxo-

mycete community composition significantly varied with the increase of the geographic

distance between the studied plots, and tree bark pH was able to explain the species

composition exclusively recorded in one of the three transects.

© 2017 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved.

1. Introduction

The monophyletic Myxomycetes lineage, including Myx-

ogastria and Ceratiomyxida (Cavalier-Smith et al. 2015),

comprises amoeboid protists with a trophic stage involving a

unicellular, multinucleate, plasmodium and a reproductive

stage, developing as a sporocarp, where themeiotic spores are

produced (Fiore-Donno et al. 2010; Cavalier-Smith 2013).

Myxomycetes are ubiquitous in all terrestrial ecosystems

across different climates and vegetation zones: (i) tropical

[Schnittler and Stephenson 2000 (Central America);

* Corresponding author. Fax: þ55 31 34092733.
E-mail addresses: arigoesneto@pq.cnpq.br, arigoesneto@icb.ufmg.br (A. G�oes-Neto).

Available online at www.sciencedirect.com

journal homepage: www.elsevier .com/locate /myc

my c o s c i e n c e 5 8 ( 2 0 1 7 ) 2 8 2e2 8 9

http://dx.doi.org/10.1016/j.myc.2017.04.004
1340-3540/© 2017 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved.



Stephenson et al. 2004 (South America); Tran et al. 2006 (Asia);

Ndiritu et al. 2009 (Africa)]; (ii) temperate (Stephenson 1989;

Snell and Keller 2003; Schnittler et al. 2006); (iii) boreal

[Schnittler and Novozhilov 1996; Novozhilov et al. 1999 (Asia)];

(iv) tundra [Stephenson et al. 2007 (Southern Hemisphere);

Stephenson et al. 2000 (Northern Hemisphere)] and (v)

montane/alpine [Ronikier and Ronikier 2009 (worldwide);

Novozhilov et al. 2013]. They inhabit litter and woody plant

debris, dung and soil, and the surface of living plants and

fungi (Stephenson 2011). Environmental factors such as sub-

strate pH, moisture, and temperature influence both trophic

and reproductive stages of the myxomycete life cycle, sug-

gesting that distribution in nature is not random (Stephenson

1989; Tesmer and Schnittler 2007; de Lima and Cavalcanti

2015; Liu et al. 2015).

A distinct ecological group of myxomycetes consists of

species typically associated with the outer bark surface of

living trees (Clayton et al. 2014; Schnittler et al. 2016). The term

“corticolous myxomycetes” was originally used to describe

these species that complete their entire life cycle on the bark

of living trees (Keller and Brooks 1976). As many of the corti-

colous myxomycetes species are rather inconspicuous, or

sporadic in their occurrence, they are difficult to detect in the

field (Stephenson 2011). A convenientmanner to study them is

the moist chamber culture method originally devised by

Gilbert and Martin (1933).

The Caatinga phytogeographic domain of Northeastern

Brazil is the largest nuclei of Seasonally Dry Tropical Forests

(SDTF) that are scattered in the Neotropics (Prado 2000;

Queiroz 2006). A dry season in the Caatinga can last

6e11 mo and the mean annual precipitation is less than

1000 mm (Queiroz 2006; Oliveira-Filho et al. 2013). The vege-

tation in Caatinga exhibits remarkable adaptations that allow

it to thrive under strong seasonality. Typically, the woodland

is composed of small to medium-sized trees and shrubs, often

bearing thorns and small leaves that are deciduous in the dry

season (Queiroz 2006). Recently, fossil-calibrated plant phy-

logenies, dating back to early Miocene, have tracked the

ancient evolutionary history of the Caatinga dry woodland

(Queiroz and Lavin 2011; Pennington and Lavin 2016). The few

studies reporting the occurrence of corticolous myxomycetes

species in the Caatinga (Gottsberger 1968; G�oes-Neto and

Cavalcanti 2002; Silva and Cavalcanti 2012) are all taxonomic

surveys upon field-collected myxomycete specimens. No

study, however, has attempted to understand the community

structure of corticolous myxomycetes in the Caatinga. In

order to fill this ecological gap, the current study aimed to

characterize the community structure of corticolous myxo-

mycetes and their associated trees, and to analyze the influ-

ence of geographic distance, bark pH, and tree diameter on

myxomycetes assemblages within the seasonally dry setting

of the Brazilian Caatinga.

2. Material and methods

2.1. Study area

The study area is a fragment of seasonally dry tropical forest

(Biome Caatinga) located in the northeastern of Brazil

(municipality of Ipir�a in the state of Bahia)

(12�10036.100Se12�10051.300S; 39�46010.200We39�46014.900W; eleva-

tion: 280m). The site is a remnant of a previously larger pristine

forested area. The region has a tropical semiarid climatewith a

meanannual temperatureof 23.7 �Candameanannual rainfall

of 754 mm, mainly concentrated in winter (JuneJul), corre-

sponding to BSw in K€oppen system of climate classification

(Kottek et al. 2006).

2.2. Sampling strategy

The point-center quarter method (PCQM) was used to survey

the tree community (Cottam and Curtis 1956). A total of 30

points was distributed along three 100 m long transects. The

distance between each point was 10 m, so that each transect

contained 10 points. The nearest tree to the sampling point in

each one of the four quarters was sampled. The following

inclusion criteria for selection of the trees were adopted: (i)

trees with fissured outer bark and (ii) DBH (trunk diam at

breast height) � 2 cm at 1.30 m above the soil. A fragment of

barkwith about 10 cmwas sampled from each host tree with a

sterile knife, taking care not to damage the underlying tree

living tissues, and the samples were deposited in sterile

plastic bags.

2.3. Moist chambers

Moist chambers were made with collected substrata using 9-

cm plastic Petri dishes covered with a sterilized paper filter at

the bottom. A total of 118 moist chambers was prepared,

comprising one for each sampled individual tree. Substrata

were placed on the filter paper and sterilized distilled water

(pH 7.0) was added enough to submerge thematerial (Mitchell

1977). After 24 h, the excess of water was drained off and pH

(Digimed, DM20, Brazil) was measured (Stephenson 1985).

Moist chambers were incubated in the laboratory in a diffuse

light/dark environment at room temperature (23e25 �C) and

examined, initially daily, and later twice a week, during two

months, with a stereomicroscope, for the presence of plas-

modia and/or sporocarp. Plasmodia types were classified as

protoplasmodium, aphanoplasmodium, phaneroplasmo-

dium or intermediate (trichiaceous) plasmodium (Everhart

and Keller 2008). A group of sporocarps originated from the

same plasmodium was considered as an individual (Eliasson

1981).

2.4. Identification of myxomycetes and trees

Trees were sampled according to standard botanical methods

(Mori et al. 2011) and vouchers of living trees were identified at

species level using taxonomic keys from specific literature

(Queiroz 2009), and stored in the Herbarium of the State Uni-

versity at Feira de Santana (HUEFS). The tree families are cir-

cumscribed according to the phylogenetic classification

proposed by the Angiosperm Phylogeny Group (Byng et al.

2016). The myxomycetes were identified using taxonomic

identification keys (Martin and Alexopoulos 1969; Lado and

Pando 1997; Poulain et al. 2011; Lado et al. 2016) and repre-

sentative samples of each identified species were deposited in

the HUEFS.
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2.5. Data analyses

The phytosociological (plant community structure) parame-

ters of density, relative frequency, dominance, and impor-

tance value per species were calculated for each tree species

(Martins 1993). The accumulation curve was fitted for each

transect based on the Chao2 estimator (Chao 1987), and the

species richness was estimated using the non-parametric

richness incidence-based coverage estimator Chao2 and

abundance-based coverage estimator (Unterseher et al. 2011).

The diversity was estimated using Shannon (H0) index

(H' ¼ �Spi ln pi), where pi is the relative abundance (the

Table 1 e Phytosociological parameters of tree species recovered in a seasonally dry tropical forest in Brazil.

Species Families Transects No. Ind Plant structure parameters HC MR

T1 T2 T3 RD RDo RF IVI CV

Aspidosperma polyneuron Apocynaceae 1 0 0 1 0.83 3.19 1.27 5.29 4.02 1 1

Averrhoidium gardnerianum Sapindaceae 16 17 8 41 34.17 18.53 29.11 81.81 52.70 41 8

Bougainvillea spectabilis Nyctaginaceae 2 1 0 3 2.50 0.70 3.80 7.00 3.20 3 1

Caesalpinia pyramidalis Leguminosae 5 15 23 43 35.83 31.17 30.38 97.39 67.01 43 11

Capparis flexuosa Capparaceae 1 1 0 2 1.67 0.63 2.53 4.83 2.30 2 0

Cordia superba Boraginaceae 0 1 0 1 0.83 0.45 1.27 2.55 1.28 1 0

Diospyros inconstans Ebenaceae 2 0 0 2 1.67 0.35 2.53 4.55 2.02 2 0

Goniorrhachis marginata Leguminosae 1 0 2 3 2.50 4.81 2.53 9.84 7.31 3 1

Muellera campestris Leguminosae 0 2 0 2 1.67 1.76 1.27 4.70 3.43 2 0

Parapiptadenia blanchetii Leguminosae 0 0 1 1 0.83 0.17 1.27 2.27 1.00 1 0

Ruprechtia laxiflora Polygonaceae 1 1 0 2 1.67 7.69 2.53 11.89 9.35 2 0

Schinopsis brasiliensis Anacardiaceae 0 0 2 2 1.67 4.59 2.53 8.79 6.26 2 1

Schoepfia brasiliensis Schoepfiaceae 3 0 1 4 3.33 2.90 3.80 10.03 6.23 4 1

Sideroxylon obtusifolium Sapotaceae 0 2 3 5 4.17 16.41 6.33 26.90 20.57 5 3

Syagrus coronata Arecaceae 4 0 0 4 3.33 3.54 3.80 10.67 6.88 4 1

Ziziphus cotinifolia Rhamnaceae 2 0 0 2 1.67 2.20 2.53 6.39 3.86 2 0

118 e

Notes: T1: First Transect; T2: Second Transect; T3: Third Transect; RD: Relative density; RDo: Relative dominance; RF: Relative frequency; IVI:

Importance value index; CV: Cover value; HC: Number of tree individual species sampled. MR: Myxomycete species richness.

Table 2 e List of myxomycete species found in a SDTF in Brazil with corresponding relative frequencies, tree species and
bark pH organized by transects.

Myxomycete species Orders RF (%) Transect Tree species pH*

Licea minima Fr. Liceales 1.96 1 C. pyramidalis 5.4

Hemitrichia serpula (Scop.) Rotaf. ex Lister Trichiales 1.96 1 A. gardnerianum 5.9

Arcyria denudata (L.) Wettst. Trichiales 1.96 2 A. gardnerianum 5.5

Physarum tenerum Rex Physarales 3.92 2 C. pyramidalis 5.14 (4.9e5.7)

Comatricha laxa Rostaf. Stemonitales 5.9 2 A. gardnerianum 5.6 (5.3e5.8)

Stemonitis fusca Roth Stemonitales 3.92 2 C. pyramidalis 5.35 (5.3e5.4)

A. gardnerianum

Stemonitis pallida Wingate in Macbride Stemonitales 1.96 2 Sideroxylon obtusifolium 6.6

Clastoderma debaryanum Blytt Echinosteliales 1.96 3 C. pyramidalis 4.9

Perichaena depressa Libert Trichiales 1.96 3 C. pyramidalis 7.5

Comatricha elegans (Racib.) G. Lister Stemonitales 1.96 3 A. gardnerianum 4.8

Comatricha pulchella (C. Bab.) Rostaf. Stemonitales 5.9 3 C. pyramidalis 4.46 (4.3e4.9)

A. gardnerianum

Stemonitis flavogenita Jahn Stemonitales 1.96 3 C. pyramidalis 6.3

Stemonitis herbatica Peck Stemonitales 1.96 3 C. pyramidalis 4.6

Physarum bogoriense Racib. Physarales 5.9 1,2 A. gardnerianum 6.34 (5.6e5.8)

Physarum vernum Sommerf Physarales 3.92 1,2 Sideroxylon obtusifolium 7.2

Cribraria violacea Rex Liceales 7.85 2,3 Sideroxylon obtusifolium 6.34 (6.0e6.8)

Schinopsis brasiliensis

Arcyria cinerea (Bull.) Pers. Trichiales 31.38 1,2,3 Aspidosperma polyneuron 5.78 (4.7e7.5)

Averrhoidium gardnerianum

Bougainvillea spectabilis

Sideroxylon obtusifolium

Caesalpinia pyramidalis

Schoepfia brasiliensis

Physarum serpula Morgan Physarales 9.8 1,2,3 C. pyramidalis 6.15 (5.8e7.1)

Goniorrhachis marginata

RF: relative frequency. * bark pH median (inferior and superior pH values).
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proportion of the total number of individuals or records rep-

resented by ith species), which is a heterogeneity index,

influenced by both species richness and evenness. The even-

ness of species diversity was calculated using the Pielou for-

mula: H'/H'max, where H' ¼ Shannon index and H'max ¼ the

possible maximum diversity of the number of species (S)

present in the community, defined by the formula H'max¼ ln

S. As an indicator for overall myxomycete taxonomic

diversity and to compare with previous studies, it was used

themean number of species per genus (S/G) (Stephenson et al.

1993).

The multiple regression on matrices (MRM) was used to

evaluate the relative importance of the geographic distance,

bark pH and tree diameter on myxomycetes community

similarity (Goslee and Urban 2007). To further examine the

relative importance of each predictor variable at the three

transect scales, we have investigated scale-specific MRM

models. This method is useful to evaluate the b-diversity and

to determine if the dissimilarity observed between commu-

nities is associated to the environmental variables and/or

geographic distance (spatial distance). Moreover, it allows

assessing the sign and magnitude of these relationships: a

positive coefficient indicates that a large difference for an

environmental variable corresponds to a large turnover in

species composition. The MRM models were performed with

all the variables. The non-significant variable with the highest

P value was removed and then the test was repeated. This

procedure was done iteratively with all variables presenting P

values highest than 0.5 (Vaz et al. 2014). We have tested the

significance of each model by performing 10,000 permuta-

tions. All analyses were done using the software package R (R

Development Core Team 2016).

3. Results

A total of 46.7% of moist chambers were positive, i.e., exhibi-

ted plasmodia, and 85.7% of them produced sporocarps (Table

1). A total of 51 myxomycete isolates were identified as

belonging to 18 species (Table 2). The simultaneous presence

of two plasmodia was observed in only 5.4% of the positive

moist chambers, occurring the following possibilities: (i) both

plasmodia were aphanoplasmodia, (ii) one aphanoplasmo-

dium and one phaneroplasmodium, or (iii) both were of

Table 3 eDiversity indices of trees andmyxomycetes communities in the three transects in a seasonally dry tropical forest
in Brazil.

Trees Myxomycetes

T1 T2 T3 T(1, 2, 3) T1 T2 T3 T(1, 2, 3)

Species 8 7 7 18 7 10 10 18

Individuals 39 41 41 121 11 19 17 51

Diversity (H0) 1.91 1.39 1.35 1.81 1.29 2.06 2.04 2.42

Evenness (J) 0.79 0.67 0.69 0.65 0.80 0.89 0.93 0.84

Chao 13.7 12 8 20.2 9.5 19 21.5 31.5

Notes: T1: Transect 1; T2: Transect 2; T3: Transect 3; T(1, 2, 3): Total value of each variable in all the transects.

Fig. 1 e Rarefaction curve of the number of tree species

against the number of samples in each transect. Thick

lines: sample-based species and thin jagged lines: Chao 2

(mean) estimator of expected tree species richness for the

first transect (black lines), second transect (red lines) and

the third transect (green lines). (For interpretation of the

references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 2 e Rarefaction curve of the number of myxomycete

species against the number of samples in each transect.

Thick lines: sample-based species and thin jagged lines:

Chao 2 (mean) estimator of expected myxomycetes species

richness for the first transect (black lines), second transect

(red lines) and the third transect (green lines). (For

interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this

article.)
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intermediate (or trichiaceous) form. The myxomycete species

were distributed among the following orders: Stemonitales

(38.9%), followed by Physarales (22.2%), Trichiales (22.2%),

Liceales (11.1%) and Echinosteliales (5.6%). Arcyria cinerea was

the most frequent species, followed by Physarum serpula,

which were the only two species that occurred in all the three

transects.

The myxomycete assemblages sampled in the three tran-

sects were associated with 118 host trees, which belonged to

16 species and 16 genera of 15 distinct families of angiosperms

(Table 1). The plant species Caesalpinia pyramidalis (Legumi-

nosae) andAverrhoidium gardnerianum (Sapindaceae) exhibited

the highest cover value, relative frequency, dominance, and

density not only in the totality of sampled area but also in

each transect. Nevertheless, most A. gardnerianum individuals

occurred in transects 1 and 2 rather than in the transect 3

whereas the opposite spatial distribution pattern was exhibi-

ted by C. pyramidalis (Table 1). Both tree species showed rough

and hard barks with lenticels. The tree community diversity

and richness were similar in all transects (Table 3).

The species accumulation curve did not reach an asymp-

tote for any transect for both trees (Fig. 1) and myxomycetes

communities (Fig. 2), indicating that the total number of ex-

pected specieswas not captured. The sampling effort, based on

ACE and Chao2 estimator, was 87.3% and 79.4% for trees, and

72.1% and 57.1% for myxomycetes, respectively. The Shannon

diversity index were similar in all transects whereas the

evenness value was slightly lower in the third transect (Table

3). The mean number of myxomycetes species per genus (S/

G) was two, and the lowest diversity and evenness values of

myxomycetes were found in the first transect (Table 3).

The ordinate axis in Fig. 3 represents the mean percentage

of isolating a myxomycete species in accordance to the tree

species (abscissa axis). Only three tree species harbored more

than one myxomycete species (Fig. 3): Caesalpinia pyramidalis,

A. gardnerianum and Sideroxylon obtusifolium showed the

highest number of distinct myxomycete species whereas A.

polyneuron, B. spectabilis, Schinopsis brasiliensis, Goniorrhachis

marginata, harbored only one species. There were no myxo-

mycete species exclusively isolated from any tree species

(Fig. 3).

The MRM analysis allowed us to evaluate the independent

contribution of the geographic distance and environmental

variables to the community structure of the myxomycetes.

The results (Table 4) showed that geographic distance was

statistically significant in all transects, and bark pH had an

effect on community similarity in the third transect.

4. Discussion

Ecological studies of corticolous myxomycetes and the

unveiling of factors influencing their distribution have been

largely performed in temperate and boreal biomes

(Novozhilov et al. 2007; Everhart and Keller 2008; Everhart

et al. 2008; Clayton et al. 2014; Takahashi 2014; Schnittler

et al. 2016). Few studies were carried out in Neotropical

seasonally dry tropical forests (Maimoni-Rodella and

Gottsberger 1980; Schnittler and Stephenson 2000; Wrigley

de Basanta et al. 2012). According to the species accumula-

tion curves, the sampling effort was not sufficient to

adequately capture tree and myxomycete species richness

(69.2% and 78.3%) respectively. Although the plateau was not

reached, other studies conducted in SDTFs had similar results

(Schnittler and Stephenson 2000; Wrigley de Basanta et al.

2012).

The Brazilian SDTF had a higher myxomycetes diversity as

measured by both Shannon and the S/G index. The Shannon

index (H' ¼ 2.53) for myxomycetes was higher than that of the

Costa Rican SDTF (H' ¼ 1.11) (Schnittler and Stephenson 2000).

The mean number of myxomycetes species per genus (S/G)

was also higher than in Costa Rica site (S/G: 1.78) (Schnittler

Fig. 3 e The plots represent the mean percentage of myxomycete species obtained by tree species. A.po: Aspidosperma

polyneuron, Av.ga: Averrhoidium gardnerianum, B.sp: Bougainvillea spectabilis, C.py: Caesalpinia pyramidalis, G.ma:

Goniorrhachis marginata, S.br: Schinopsis brasiliensis, Sch.br: Schoepfia brasiliensis, Sid. ob: Sideroxylon obtusifolium.
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and Stephenson 2000) and both were lower than in

Madagascar site (Wrigley de Basanta et al. 2012) (S/G ¼ 3.1).

The lower number of species per genus (2) indicates a greater

taxonomic diversity.

The dispersal of a microorganism is the transport and

successful establishment of either the entire organism or its

propagules (spores) from one location to another (Hanson

et al. 2012). Most species of myxomycetes produce a high

number of small and light spores that are air dispersed

(Tesmer and Schnittler 2007), implying that, there is no

dispersal limitation (Black et al. 2004). However, the MRM

analysis showed that myxomycete community similarity

decayed with increasing distance when all transects were

considered (Table 4). This suggests that environmental factors

select for the myxomycetes that are better adapted to the

conditions of the substrate they reach (Liu et al. 2015).

The geographic distance, bark pH and tree diameter were

still not sufficient to explain most of the variability in myxo-

mycete species distribution, suggesting that other factors

must be assessed to better clarify this question. Furthermore,

there is no association between myxomycetes assemblages

and distinct tree species, as well as in other studies (Snell and

Keller 2003). However, bark pH was statistically significant to

explain the myxomycetes species distributions along one of

the transects. Individual trees within this section had a lower

bark pH, irrespective of taxonomy. Two of the transects were

near a stream and had a denser and higher canopy, while the

third transect had a sparse and lower canopy, allowing for

direct sunlight and, consequently, dryer conditions. The

following myxomycete species only occurred in the third

transect: Clastoderma debaryanum, Comatrichia elegans, and

Comatrichia pulchella. Clastoderma debaryanum and Comatrichia

spp. are acidophilic species and have been found on acidic tree

barks (Schnittler 2001; H€ark€onen et al. 2004; Schnittler et al.

2016). Therefore, bark pH acts as a selective factor for the

establishment of an acidophilic myxomycete assemblage in

the third transect.

5. Conclusion

This work revealed a high diversity of corticolous myxomy-

cetes in a seasonally dry tropical forest in Brazil. The small

and light spores of Myxomycetes suggest that there is no

dispersal limitation. However, in our work, the myxomycetes

community composition was influenced by geographic dis-

tance. Then, even if the spores can disperse, the abiotic and

biotic factors they encounter influence their establishment.

One such factor, bark pH, was able to explain the species

exclusively recorded in only one of the three transects.

Nevertheless, future studies are necessary to understand the

influence of other environmental variables on the structure of

myxomycetes assemblages in seasonal dry tropical forests.
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