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Resumo

Neste trabalho são estudadas as propriedades estruturais, eletrônicas e mecânicas de uma
bicamada de SiO2 bidimensional, considerando defeitos pontuais nativos e impurezas sub-
stitucionais: Al, B e P, assim como alguns defeitos topológicos. Este estudo é realizado
usando a metodologia da teoria do funcional da densidade (DFT) como implementado nos
softwares SIESTA e VASP. Identificamos uma marcada tendência à formação de estados de
defeito fortemente localizados no gap de energia assim como ressonâncias fortemente local-
izadas nas bandas de valência e de condução, com certa independência do fato dos estados
ser rassos ou profundos dentro do gap. Estes estados altamente localizados são consequência
do confinamento quântico e o fortalecimento da interação de Coulomb, en este sistema bidi-
mensional. A rede da silica 2D responde localmente às deformações inducidas pelos defeitos
pontuais estudados, que temos explicado postulando excitações de baixa energia: modos de
tissoura e de rotação. Acreditamos que estes modos estão em profunda relação com a resposta
mecânica da silica 2D. As vacâncias de oxigênio e o oxigênio intersticial se comportam como
centros de captura de carga anfotéricos na silica 2D. A impureza de Al induce separação de
spin, mostrando um grau diferente de localização para cada canal de spin. O defeito Stone-
Wales(SW) mostra um comportamento inesperado: é energeticamente mais favorável virar
as duas camadas, que virar somente uma. Usando a metodologia proposta por Wu, Zhang e
Pantelides (WZP), mostramos que, quando dopado com fósforo, são permitidos unicamente o
estado neutro e o negativamente carregado. A silica 2D exhibe um comportamento mecânico
singular: como os silicatos 3D (α-quartz), na região linear mostra dois regimes diferentes de
elasticidade, e em contraste, a silica 2D mostra uma ampla faixa de resposta elástica, tendo
a capacidade de retornar ao estado fundamental não deformado partindo de altos valores de
deformação, tanto na direção ZZ quanto na direição AC. A superficie de energia deste sistema
possui muitos estados metaestáveis, e a transição entre eles pode ser explicada pelo envolvi-
mento dos graus de liberdade associados aos modos de tissoura e rotação das ligações Si-O-Si.
Neste trabalho propomos que uma especie de hiperelasticidade neste material é dirigida, não
pelos mecanismos usuais, tais como formação de discordâncias ou fluxo plástico, mas por
transições inducidas pela deformação, onde o sistema começa uma nova resposta elástica a
partir de um mínimo novo oferecido pela superfície de energia.

Palavras-chave: Silica 2D. Estrutura eletrônica de defeitos pontuais. Propriedades mecânicas
em silica bidimensional. Resposta mecânica anômala. Stress-strain em sílica 2D. Hiperelas-
ticidade. Native defects. Defeitos substitucionais. Estados rassos. Estados profundos.



Abstract

Structural, electronic and mechanical properties of pristine 2D-SiO2 bilayer, considering neu-
tral native defects, and substitutional impurities: Al, B and P, and also some topological de-
fects, have been addressed, by employing the Kohn-Sham DFT approach as implemented in
SIESTA and VASP softwares. We identify a marked tendency for the appearance of strongly
spatially localized defect states in the energy gap and resonances in the valence and conduc-
tion bands, with some independence of being shallow or deep within the band gap. This
highly located states are consequence of quantum confinement and enhanced Coulombic ef-
fects in this 2D system. The 2D-SiO2 lattice responds locally to the induced deformation
in the studied point defects, and we propose low energy structural excitations: scissor and
rotation modes as responsible. We believe these soft modes are in deep relation with the
mechanical response of 2D-SiO2. Oxygen vacancies and single interstitials are found to be
amphoteric trapping centers in 2D-SiO2. The aluminium impurity induces spin separation,
showing a different degree of localization of each spin channel. The Stone-Wales (SW) de-
fect shows an interesting behaviour: it is energetically more feasible to turn both layers than
to turn just one. Using the Wu, Zhang and Pantelides’s (WZP) methodology we show that
only neutral and negative charged states are allowed in the phosphorus impurity. The 2D-
SiO2 bilayer displays a singular mechanical behaviour: as in the 3D counterpart (α-quartz),
exhibits two different elastic linear regimes; and in contrast, 2D-SiO2 exhibits a wide range
of elastic response, being able to return to the unstrained ground state starting from large
strains in ZZ and AC directions. The energy surface of this system exhibits many available
metastable states, and the transit between them can be driven by scissor and rotation degrees
of freedom associated with the Si-O-Si bonds. We propose a kind of hyperelasticity in this
material is driven not by usual mechanisms such as formation of dislocations or plastic flow,
but by strain-induced transitions, where the system starts a new elastic response from a new
minimum offered by the many-minima energy surface.

keywords: 2D silica. Electronic structure of point defects. Mechanical properties in 2D ma-
terials. Anomalous mechanical response. Stress-strain in 2D silica. Hyperelasticity. Native
defects. Substitutional defects. Shallow states. Deep states.
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Introduction

Looking at the many material structures presents in nature, additionally enriched with im-
mense variety of colors, textures and hardnesses would lead us, in a first sight, to suppose that
this unbelievable diversity is irreducible to a few fundamental bricks. Overstating the ideia,
and based in the external differences, we would conclude that there are as many materials as
objects in nature. However, after Mendeleiev’s periodic table, and subsequent developments,
this immense variety was reduced to 118 chemical elementary bricks or atoms, each one of
them, in turn, is reduced to protons, electrons and neutrons. This tremendous reduction from
diversity in direction to unity, is made by paying a price: the number of individual identi-
ties of each substance is diminished. The fact that the positive charge is concentrated in a
point, as was proved in the classical Rutherford’s alpha-scattering experiments, allows each
atomic species to carry its own chemical identity. On the other hand, the electronic cloud ex-
hibits a more delocalized nature, leading the chemical identity in the hands of the electronic
charge distribution, when a molecule or solid is built. This observations support the Dalton’s
atomic hypothesis: atoms retain their identity even when in chemical combination with other
atoms. Thus, to define atoms in molecules is an identity problem that is in the root of density
functional theory, and has been discussed by remarkable authors [1, 2], leading to other DFT
schemes [3–5]. The prize of binding atoms is to deform the electronic cloud, more or less
far from the spherically symmetric configuration. On the other side, the identity ambiguity
introduced by the distortion of the free atom, being placed in a solid or molecule, lead us
again to the world of rich multiplicity.

Within the atomic hypothesis, to build a piece of quartz, for instance, we join together
∼ 1023 SiO2 units in a regular arrangement. Each atom offers two types of electrons: those
strongly bonded to the atomic nucleus, characterized by a more localized nature and by be-
ing chemically inert (core electrons); and the valence electrons, of a more delocalized nature,
responsible for building the chemical bonds. Atoms are glued together with the valence elec-
tronic "jelly", through the cohesion energy coming from the compromise between: the attrac-
tive Coulomb force between electrons and ions, the repulsive force between electrons, the re-
pulsive force between the ions and the electronic kinetic energy, leading to a stable minimum
energy structure. This picture, modeled within the standard density Functional theory (DFT)
is able to explain a great variety of physical properties: crystal structure, electrical behaviour,
deformation response and mechanical properties, lattice vibrations, absortion spectrum, etc.

Stackings of two-dimensional (2D) materials that interact through van der Waals interac-
tions (usually called van-der-Waals stackings) are the current paradigm for the investigations
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of prospective electronic devices built from 2D materials, because they offer the possibility of
modulating the electronic and structural properties of the ensuing materials along the stacking
direction.

Over the last decade, SiO2 has been synthetized in 2D forms (2D-SiO2) [6–9], with poten-
tial applications as a highly permselective membrane and also as a prototype material where
the glass transition can be directly observed [10]. This 2D-SiO2 bilayer is the thinnest possi-
ble system with SiO2 stoichiometry that is fully chemically saturated, i.e., devoid of dangling
bonds. It interacts weakly with the substrates on which it is grown, via van der Waals inter-
actions [6].

Being the thinnest possible chemically-saturated SiO2 layer, and a mechanically- and
chemically-stable van-der-Waals-interacting 2D-material with an experimental band gap of
6.7 eV [6], the most important prospective application of a 2D-SiO2 bilayer should be as an
ultrathin insulating layer in van-der-Waals stackings.

As in most of the three-dimensional (3D) polymorphs of silica, 2D-SiO2 is built from a
structural motif of corner-sharing tetraheda, where oxygen atoms in each of the four shared
vertices are bonded to two silicon atoms in the centers of adjoining tetrahedra, resulting in a
SiO2 stoichiometry. In the case of 2D-SiO2, this motif is structured as a bilayer consisting of
two mirror-image layers of SiO2 tetrahedra sharing an oxygen layer in the middle. Oxygens
in this middle layer sit on the vertices shared by the mirror-image tetrahedra from the “top”
and “bottom” external layers, as shown in Fig. 1. On the two external layers, each oxygen
atom sits on a vertex shared by two adjoining tetrahedra.

Systematic investigation of the fundamental physical properties of silicate-based 3D com-
pounds have been of paramount importance in the development of silicon-based technology,
ranging from fiber optics to semiconductor devices. In the solid form, three-dimensional SiO2

(3D-SiO2) appears in several crystalline phases such as α-quartz and β-quartz, among others,
and also in amorphous phases such as natural silica, glass, and opal. Most of these 3D solids
consist of networks of the aforementioned structural motif of corner-sharing tetrahedra. In
the following paragraphs we will present results already obtained in this work in relation with
the pristine 2D SiO2 bilayer.

The equilibrium structure of crystalline 2D-SiO2 is a bilayer composed of two (top and
bottom) mirror-image external layers, with nominal Si2O3 stoichiometry, sharing an interme-
diate (or middle) layer of oxygen atoms. Oxygen atoms in the middle layer are bonded to
two Si atoms, one directly above it in the top layer and another directly below it in the bottom
layer, resulting in the overall SiO2 stoichiometry, as shown in Fig. 1. The Si atoms in each of
the two external layers form AA-stacked honeycomb structures, with one oxygen atom in the
middle of each Si-O-Si link, forming oxygen external sublayers. Overall, the lattice structure
of 2D-SiO2 is a hexagonal lattice with twelve atoms per primitive cell, belonging to the D6h

symmetry group, the same as graphene. The resulting values from our ab initio calculations
for the structural parameters shown in Fig. 1 are included in Table 1. Si-O bonds involving
a middle-layer O atom (dmid

Si−O = 1.65 Å) are slightly smaller than Si-O bonds involving an
external-layer O atom (dext

Si−O = 1.67 Å), both values being slightly larger than Si-O bonds
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(a) (b)

  

(c)

αSi−O−Si
mid

βO−Si−O

mid

βO−Si−O

ext

αSi−O−Si
ext

dSi−O
z

dSi−Si

Figure 1: Atomic structure of a 2D-SiO2 bilayer. (a) Side view of the structural motif of
mirror-image tetrahedra sharing a vertex. Oxygen atoms (red spheres) sit on the vertices and
silicon atoms (green spheres) at the center of each tetrahedron. (b) Top view of the 2D-SiO2
bilayer. Si atoms form top and bottom AA-stacked honeycomb sublattices with an O atom in
the middle of Si-O-Si links. The diamond-shaped primitive 12-atom cell, a rectangular 24-
atom unit cell, and the 192-atom [(4× 2)× the rectangular unit cell] supercell used in most of
our calculations are indicated by black lines. (c) Side view showing the structural parameters
of the 2D-SiO2 bilayer. Definitions and values of the bond angles and bond lengths shown in
the figure are included in Table I.

in 3D α-quartz (1.61 Å). The tetrahedral O-Si-O angles involving one middle-layer O atom
(βmid

O−Si−O = 110.2◦) are slightly larger than the O-Si-O angles with both O atoms on a external
layer (βext

O−Si−O = 108.8◦). The former (latter) are larger (smaller) than the ideal tetrahedral
angle of 109.5◦ by 0.7◦ only. The Si-O-Si angle is αmid

Si−O−Si = 180◦ for bonds joining Si
atoms in the two sublayers, with an oxygen atom in the middle layer, and αext

Si−O−Si = 139.6◦
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Table 1: Geometric parameters of the structure of a 2D-SiO2 bilayer. Distances in Å and angles in
degree. Available experimental values, in parenthesis, are from Refs. [11, 12]. dSi−Si ≡ distance be-
tween the two external Si honeycomb layers. dext

Si−O ≡ distance between nearest-neighbor Si and O
atoms in the same external layer. dz

Si−O ≡ distance between Si and O sublayers in the same exter-
nal layer. αext

Si−O−Si ≡ Si-O-Si angle at external-layer O atom vertex. αmid
Si−O−Si ≡ Si-O-Si angle at

intermediate-layer O atom vertex. βext
O−Si−O ≡ tetrahedral O-Si-O angle involving external-layer O-

atoms. βmid
O−Si−O ≡ tetrahedral O-Si-O angle involving one middle-layer O-atom.

dSi−Si dext
Si−O dz

Si−O
3.30 1.67 0.58

(1.67±0.08, 1.66±0.06) (0.55±0.04)

αext
Si−O−Si αmid

Si−O−Si βext
O−Si−O βmid

O−Si−O
139.6 180 108.8 110.2
(140.5) (180) (109.4±8.1, 110.1±5.7)

for the Si-O-Si bonds with the three atoms on the same external layer. The distance between
the two Si honeycomb sublayers is 3.30 Å. On each external layer, the O-atom sublayer is at a
distance of 0.58 Å from the Si sublayer. All structural values are in very good agreement with
the scanning-tunneling-microscopy (STM) results from Refs. [12], also included in Table 1.

The band structure and DOS of 2D-SiO2 are shown in Fig. 2. In the top we show the
electronic bands in the (−11.7,2.0) eV interval, with the DOS shown on the right. In the
lower panels we show separately the DOS for the valence (left panel) and conduction bands
(right panel) in the corresponding energy intervals, as well as the PDOS of the atomic orbitals
that give significant contributions to the electronic bands shown in the figure.

Unlike the case of α-quartz, that has an indirect band gap (top of the valence band at the
K and M points and bottom of the conduction band at the Γ-point, in the Brillouin zone) [13],
in 2D-SiO2 we obtain a direct gap with the two band extrema at the Γ-point. We recall that a
transition from indirect to direct band gap, on going from the 3D to the 2D forms, occurs also
in the case of 2D hexagonal metal dichalcogenides [14, 15].

The Kohn-Sham-GGA value we obtaing for the fundamental band gap is 5.6 eV. An
important difference we obtain, between the electronic bands of the 2D and 3D forms of SiO2,
is the width of the highest part of the valence band, which is 3.2 eV in 3D α-quartz [13] and
only 0.9 eV in 2D-SiO2, which is indicative of enhanced correlation effects in the 2D form.
Moving down in energy in the valence band, this narrow band is followed by a pseudogap of
∼0.2 eV, related to a region populated solely by highly dispersive bands (hence the low DOS).
Moving further down in energy, we find another rather narrow (∼0.3 eV) set of bands folowed
by another pseudogap, and yet another narrow set of bands, with a width of ∼1.2 eV. In this
latter set of bands, at -1.73 eV below the top of the valence band (εvb), we observe a very
strong van Hove singularity, associated to a set of flat bands in this energy range, that should
give rise to a strong peak in the ultraviolet absorption signal of a 2D-SiO2 layer. A true gap
of ∼0.3 eV separates these bands from another set of bands, that display another pseudogap
in their highest part.

The orbital composition of the valence bands, shown in Fig. 2(c) and Fig. 3(a), is similar
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Figure 2: (a) Band structure and (b) density of states (DOS) of a 2D-SiO2 bilayer. (c) DOS and
orbital-projected density of states (PDOS) of the valence bands. (d) DOS and PDOS of the conduction
bands. In all panels, the zero of the energy scale is at the top of the valence band.

to that of 3D-SiO2, being mostly derived from the nonbonding orbitals of the oxygen atoms.
The orbital character of the strong van Hove singularity is essentially the nonbonding orbitals
of the oxygen atoms from the external layers, with a small contribution from bonding orbitals
of the midlle-layer O atoms. This observation can be assured with more detail examining the
local density of states of the van Hove singularity 1, we find that effectively, the strong peak
comes mainly from pz-like orbitals on the external layer oxygens (see figure 4 and blue line
in figure 2c), with a little contribution from middle layer oxygens (see figure 4 and red line
in figure 2c). This is the only feature of the DOS of the three highest set of valence bands
that has some contribution from bonding oxygen orbitals. Note that, overall, Si orbitals give

1We use a 0.02 ev energy window
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(a) (b)

Figure 3: Isosurfaces of charge density for bands at (a) the top of the valence band and (b) bottom
of conduction band. The top of the valence band shows an orbital composition dominated by the
nonbonding orbitals from oxygen atoms, while the bottom of the conduction band is composed mainly
of silicon bonding orbitals.

  

(a)

(b)

Figure 4: Isosurfaces of charge density at the van Hove singularity. (a) Top view of the van Hove
orbitals. (b) Side view of the van Hove orbitals. The van Hove singularity comes mainly from pz -
like orbitals from oxygens on the external layers, plus a small contribution from pz -like orbitals from
oxygens in the middle layer.

a negligible contribution to the valence bands.
Regarding the conduction bands, the scenario is also similar to quartz, with the conduction

bands being derived primarely from the s and p orbitals of the Si atoms, as shown in Fig. 2(d)
and Fig. 3(b), for an interval of ∼2.4 eV up from the bottom of the conduction band (εcb).
States at the bottommost part of the conduction band are nearly entirely derived from the Si
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s orbitals, and the conduction bands remain mostly of s character up to ∼1.7 eV above εcb.
Moving up from this point, the states develop a predominant Si p-orbital character, with a
progressively decreasing contribution of the Si s orbitals. Starting at ∼2.4 eV above εcb, the
nonbonding orbitals of the external-layer O atoms give a small but sizeable contribution to
the conduction-band states.

Several interesting properties emerge due to the 2D nature of the 2D-SiO2 bilayer in con-
trast with α-quartz, considered as a representative of the 3D behaviour. This work drew
attention to the fact that defect states induced by point defects are influenced by quantum
confinement and enhanced Coulombic effects. It is known that, often, exciton binding en-
ergies in lower dimensional systems are one or two orders of magnitude larguer than in 3D
crystals [16, 17], as a consequênce to the weakened electronic screening associated with the
2D nature, leading to a more strong binding energy associated. Thus as our results have sug-
gested to the 2D-SiO2 silica, the defect’s wave function of the elecronic states introduced in
the fundamental band gap and ressonances induced into the edge of the valence and condic-
tion bands, shown a strongly localized nature.

More interesting yet is to think of mechanical properties in the context of reduced dimen-
sionality. 3D forms of quartz, glass and ceramics are known to be brittle materials [18], where
the fracture induced by strain is nucleated by the preexisting microscopic cracks, leading to
sudden fracture or also slow crack growth. The 2D-SiO2, in strike contrast with the brittle
quartz, glass and ceramics, shows a wide range of elastic response. Just to have an ideia, the
elastic limit before plastic deformation, for a metal is ∼0.2 % [19], while our 2D-SiO2 ex-
hibits ∼30 % or more. In intuitive terms, the elastic range is governed by the "memory" that a
material has respect to the unstrained structure, that acts as reference to the stored elastic en-
ergy and determines the restorative force, being able to lead the material to the initial relaxed
geometry. This peculiar elastic behaviour, we have explained as driven by strain-induced
transitions, with the capacity to recover the pristine geometry starting from a nanotube con-
figuration or a high strained structure. It would be interesting to say that in shape memory
alloys, such as Ni-Ti (nitinol) an emblematic example of superelasticity, the reversible strain
rests on the happening of a martensitic transformation as a consequence of stress-induced
transition [18,20–22]. So it could be interesting doing more studies to mapping the complete
stress-strain curve in the quasi-static(QS) regime, to 2D-SiO2, through ciclical loading and
unloading sequences.

Our work has been divided in two main parts: the first, covering the theoretical founda-
tions; and the second is devoted to the results. Within the theoretical foundations, we begin
with the density functional theory, showing that the electronic density n0(𝑟) determines com-
pletely the problem. In what follows, within the elasticity theory are presented the basics
of deformation theory and a remark of units and orders of magnitude. Subsequently, on the
theory of defects chapter, we introduce the main ideias related with point defects in solids,
states induced by point defects (in the gap and into the bands - ressonances) and mass effec-
tive states. Finally, is introduced the theory of charged defects in two subsections: the first,
describing the ad hoc method, that corrects the spurious Coulomb interactions, when exter-
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nal charge are insered; the second, introducing the more fundamental and consistent method
developed by Pantelides et. al. [23] where external charges are not insered in the system,
but allowing the exchange of charges between the localized defect states and the delocalized
states of the bands.

The results section, begins with the structure and charge density of defect states corre-
sponding to several native defects. After this, as representatives of substitutional impurities,
results involving Al and B in the place of Si are presented. Next, the anomalous response of
this 2D material is studied, in contrast with some α-quartz stress-strain behaviour, followed
by the bending stiffness of 2D-SiO2 bilayer, obtained through of building silica nanotubes.
In what follows, study of quasi-static uniaxial strain-stress curves are presented. Consecu-
tively, some preliminary results in formation energies from topological defects, observed in
graphene and in other hexagonal two dimensional materials are presented. Finally, results to
charged defects are presented in the case of substitutional phosphorus, taking into account the
spin polarization, within the Wu, Zhang and Pantelides’s fundamental approach [23].

Each results section is followed by partial conclusions, and at the final of the text general
conclusions and perspectives of future developments are stablished.
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Part I

Theoretical Foundations
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Chapter 1

Density functional theory

The electric and mechanical behavior of a general system, as a molecule or solid is driven by
the electric repulsion between strongly localized positive charges, partially screened by the
’electronic quantum glue’ creating a stable structure with a minimum energy. The hamiltonian
of the multielectronic system, in the Born-Oppenheimer approximation, is given by the kinetic
electronic energy (T̂), the negative energy due to the attractive potential from the atomic
nucleus (V̂ ), and the positive energy from the coloumb repulsion between the electrons (Û):

Ĥ = −

N∑
i=1

~2

2m
∇2

i −
∑
i,J

Ze2

|𝑟i −𝑅J |
+

1
2

∑
i, j

e2

|𝑟i − 𝑟 j |
. (1.1)

We are looking for the ground state of the system:

Ĥ |Ψ0〉 = E |Ψ0〉. (1.2)

The Density Functional Theory (DFT) is established on the fortunate fact that the ground
state electronic density n0(𝑟), contrary to expectactions, contains exactly the same informa-
tion that the ground state wave function Ψ(𝑟1,𝑟2,...,𝑟N ) [24]. In the Kohn-Sham (KS) scheme,
the DFT metodology constructs the electronic density starting with single electron atomic or-
bitals, minimizing the energy of the system.

In the following, we present a review of the two fundamental theorems of Hohenberg e
Kohn (HK), where it is demonstrated the formal equivalence between the Schrödinger equa-
tion and the DFT approach.

1.1 Hohenberg-Kohn theorems

In order to get a clear understanding about what is new in the DFT methodology, it is crucial
to consider briefly the usual path to solve a quantum-mechanical problem [25]. To solve the
Schrödinger equation, it is equivalent to solve the variational problem:

δ[〈Ψ|Ĥ |Ψ〉 − λ(〈Ψ|Ψ〉 − 1)] = 0, (1.3)
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Where Ĥ is the hamiltonian of the system, Ψ is the wavefunction, δ means the func-
tional derivative of the quantity between the square braquets, and λ is the Lagrange multiplier
that garantees the extremization subject to the constrain required by the normalization of
the wavefunction. The eigenstates of the Schrödinger equation are just those that make the
energy of the system stationary, over variations of any wavefunction parameter. In the varia-
tional formulation, the true wavefunction of the ground-state is the only one which minimizes
the energy functional. This functional depends on the external potential v(𝑟) and the total
number of electrons N, i.e., the energy is a functional of the N and v(𝑟).

E = E[N,v(𝑟)] (1.4)

The hamiltonian for a system of N electrons is completely determined by the external
potential and the number of electrons. Further, the ground-state wavefunction is also so de-
termined, and as a consequence, any observable of the system is fully determined. Different
potentials v(𝑟) produce different hamiltonians, leading to different ground-state wavefunc-
tions, determining a unique solution of the system.

In the DFT method, we switch the couple N,v(𝑟) as the independ variables to the elec-
tronic density n0(𝑟).

E = E[n0(𝑟)]. (1.5)

The ground-state electronic density n0(𝑟) is enough to determine the problem. In the first
place, the electronic density determines the total number of electrons:

N =

∫
n0(𝑟)d𝑟. (1.6)

Secondly, the first HK theorem establishes that the external potential is determined uniquely
(one to one) by the electronic density.

Theorem 1 First HK Theorem: the external potential has a one to one relationship with the
ground-state electronic density. The external potential v(𝑟) it is determined uniquely, except
for an aditive constant, by the electronic density of the ground-state n0(𝑟). The external
potential is a unique functional of the density.

The demonstration is suspiciously simple, it consists in supposing that two different poten-
tials lead to the same density. This hypothesis leads to a mathematical inconsistency [26] [27],
and to the conclusion that each ground state density has one and only one associated exter-
nal potential. This result assures the complete equivalence between the DFT method and the
Schrödinger equation. The DFT method has to guarantee that the ground-state density n0(𝑟)
is as good as the wavefunction to describe the ground-state, i.e., it is mandatory the existence
of a unique density associated with a given external potential to have a unique solution that
determines the problem without ambiguities.

This theorem has two corollaries: in the first place, determining the external potential
without ambiguities, determines also the hamiltonian, and as a consequence the ground-state
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wavefunction, i.e., the wavefunction is also an unique functional of the density. Secondly,
since it is given that all observables can be calculated as the expected value in the ground
state, it follows that all observables are also unique functionals of the density.

Between the physical observables, we can consider the energy of the system. Here it
appears the second theorem of HK, affirming that the ground-state energy, as a functional of
the electronic density, follows a variational principle [26] [27]. The energy calculated with
any trial density, is bigger or equal than the true ground-state energy, obtained of course with
the true ground-state density. This theorem is crucial to guide the practical way to get the true
density.

Theorem 2 Second HK Theorem: variational energy principle.
To any trial density n(𝑟) such that n(𝑟) ≥ 0 and

∫
n(𝑟)d𝑟 = N,

E0 ≤ E[n(𝑟)], (1.7)

where

E[n(𝑟)] =

∫
n(𝑟)v(𝑟)d𝑟 + FHK [n(𝑟)], (1.8)

and

FHK [n(𝑟)] = 〈Ψ|T̂ + Û |Ψ〉. (1.9)

To demonstrate this theorem looks, at the first sight unnecessary, because we already have
a variational principle to the energy establishing the existence of the lower bound (equation
1.3). However it has to be demonstred, because it has already been established considering the
energy as a wavefunction functional, but right now we have the energy as a density functional.
The proof was presented initially by Hohenberg and Kohn in their foundational paper [26],
yet Levy [28] [29] and Lieb [30] give a more explicit and compact proposal, extending the
functional domain from v-representable potentials to N-representable ones, also including the
possibility of degenerate ground-states.

It is important to note that the FHK functional is universal, i.e., it is independent of the
external potential, relying only on the electronic kinetic energy and their mutual interactions.
For this reason its functional form has to be the same for atoms, molecules and solids, likewise
the finctional form of the Hartree energy is the same for any system without dependence on
the number of electrons.

To summarize we can say that to each external potential, for instance the periodic potential
from the ions in a crystalline solid, there is associated a unique ground-state electronic density.
Therefore the DFT presents an alternative, exact in principle, and efficient procedure to find
the ground-state of a quantum many particle system. But yet there remains an important
issue: how to build the electronic density? which wavefunctions can be used as a starting
point? This question is answered by the Kohn-Sham scheme, that builds the density from
single electron orbitals.
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1.2 Kohn-Sham equations

In the winter of 1964, Kohn and Sham (KS) [31] [27], inspired by Hartree’s job, had the
ideia to deal with the interacting many-electron system employing an auxilar system of non-
interacting electrons which includes all the interacting many body effects as an effective po-
tential. The starting point of KS is the energy functional written in a convenient way:

Ev[n] =

∫
n0(𝑟)V (𝑟)d𝑟 + F[n], (1.10)

where,

F[n] =
1
2

∫ ∫
n(𝑟)n(𝑟′)
|𝑟 − 𝑟′ |

d𝑟d𝑟′ + G[n], (1.11)

with G[n] given by,

G[n] = Ts[n] + Exc[n]. (1.12)

Where Ts[n] is the kinetic energy functional related to a non-interacting electron system
and Exc[n] is the exchange-correlation functional that will be explained in more detail in the
subsection 1.4. The key point of KS was to suggest as ansatz to the kinetic energy part, the
expression valid for a non-interacting electron system:

n(𝑟) =

N∑
i=1

ψ∗i (𝑟)ψi (𝑟) (1.13)

Ts[n] = −
~2

2m

N∑
i=1

∫
ψi (𝑟)∗∇2ψi (𝑟). (1.14)

The energy functional can be written as:

E[n] = T[n] + U[n] + V [n] = Ts[n[ψi]] + UH[n] + Exc[n] + V [n]. (1.15)

With these definitions, we can see that the exchange-correlation energy is, by definition:

Exc[n] = T[n] − Ts[n] + U[n] −UH[n]. (1.16)

By the first HK theorem, the density of the auxiliar non-interacting system has to lead to
the same electron density of the interacting system. The minimization of the energy functional
with respect to the density (now depending implicitly on the single electron orbitals), leads to
the true electronic density of the interacting system. We aim to solve the variational problem:

δ[E[n] −
N∑

i=1

ε i (ψ∗i (𝑟)ψi (𝑟) − 1)] = 0 (1.17)

where ε i are the Lagrange multipliers that take into account the constraint imposed by
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having a fixed number of electrons N. The variational principle of HK lead us to the KS
equations: {

−
1
2
∇2 + Ve f f (𝑟)

}
ψi = ε iψi, (1.18)

where:

n(𝑟) =

N∑
i=1

|ψi (𝑟) |2, (1.19)

and

ve f f (𝑟) = v(𝑟) +

∫
d𝑟′

n(𝑟′)
|𝑟 − 𝑟′ |

+ vxc(𝑟). (1.20)

The KS equations are a set of N coupled equations, one for each electronic orbital. They
have to be solved selfconsistently, with respect to the electronic density. The selfconsistent
condition is the convergence of the density, i.e., the electronic density has to be the same on
the input and the output of the selfconsistent cicle 1.

To describe explicitly the KS equations, we need a basis of single electron wavefunctions
to be used as starting point for the selfconsistency process. We can commonly consider two
kinds of basis functions to expand the electronic density employed in electronic structure:
plane waves and atomic orbitals.

1.3 Two kinds of electrons and two kinds of basis: wave
planes and atomic orbitals

Looking for the physics of the chemical bonds, we can simplify further the problem by real-
izing that involved in the bonds are essentially the valence electrons, while the core electrons
remain chemically unactive, just screening the nucleus, thus providing an effective Coulomb
potential where the valence electrons move in 2. The behavior of the valence electrons give to
the solids their crystalline structure and electric properties. For instance, the valence electrons
in diamond and graphene form covalent σ bondings that are strongly oriented and localized,
and the π bonds explain the special electrical behavior of graphene. This split of the electrons
in two types lead us naturally to think of two basis to expand the electronic density: associ-
ated with the core electrons that are strongly localized we can think of atomic orbitals; and
associated with the valence electrons, that are more or less localized we can think of plane
waves.

1The same in the computational sense, i.e., the difference between the input/output densities have to be less
than some convergence criterium, tipically ≤ 10−6

2In some special cases, some of the core electrons have to be considered as valence electrons, as in the case of
bismuth (cite), where 10 electrons belonging to the 3d orbital are taked from the core and placed in the valence,
this kind of electrons are called semicore.
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If we think of a solid as a stable structure built by the approximation of isolated atoms
(Figure 1.1), the overlap of the Coulomb potentials due to each atomic nucleus leads to two
domains: the interstitial-valence one, where almost cancelation between the ionic forces (over
the eectrons) leads to a potential relatively small, almost constant, generating a nearly-free
electron region; and the ionic-core region, where the electrons are strongly localized and
bounded to the ions, experiencing a strong atractive potential. Thus, the valence electronic
wavefunction has to be of ’plane wave’ kind on the instersticial region and ’atomic orbital’
kind on the core region. In the core region the valence electrons have a more oscillatory
behavior than in the instersticial one, indicating high kinetic energy. As a consequence, inside
the core region the valence wavefunctions have to have oscillations carefully chosen in order
to have states ortogonalized to the electronic core states. It is the physical origin of the old
rule: eigenstates of the same hamiltonian with different eigenvalues must be ortogonal [32].
These considerations, guided Herring in 1940 to introduce the concept of ortogonalized plane
wave [33], that according to Zeman [34] "has been of the most fruitful developments in solid
state theory since the work of Bloch in the early 1930’s". This useful concept was the origin of
the theory of the pseudopotential developed originally by Phillips and Kleinman in 1959 [35].

Figure 1.1: Solid builded as aproximation of isolated atoms. Source: [34]

The concept of pseudopotential has been successfully implemented in routine DFT calcu-
lations due to several reasons: in first place, the problem was simplified from the all electron
problem to consider only the valence electrons under the influence of a ’pseudo-atom’ made
by the nucleus plus the core electrons. Secondly, in practice the pseudopotential is a data file
minimizing computational costs. Thirdly, because we are interested only in the valence wave-
function in the interstitial region, the pseudopotential tecnique switchs the oscillatory part in
the core region by a smooth function that has the same behaviour starting from an appropriate
cutoff radius.

Going back to the basis to expand the Kohn-Sham states, it is important to realize that the
choice of plane waves or atomic orbitals to expand the eigenstates of KS has advantages and
drawbacks: firstly, the wave plane basis is apropriated to describe a bulk material, because
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the periodicity of the potential leads to a periodic electronic density that can be delineated
with high resolution allowing a enough number of waves. Plane waves, also let transform the
KS equations from differential to algebraic, that are easier to implement. As drawback, to
deal with finite systems (monolayers, nanoribbons, molecules) the vacuum space between the
periodic images have a high computational cost. The softwares Quantum Espresso [36] and
VASP [37] use wave plane basis. Secondly, the atomic orbitals basis is localized and goes
to zero to long distances (sparcity of the density matrix), as a result, it don’t give aditional
computational cost dealing with vacuum space, so it is highly recomended to finite systems.
One typical drawback is the appearing of ficticius forces due to the basis dependence on the
atomic position. The SIESTA software [38] uses atomic orbital basis.

1.4 Exchange and correlation functional

The total energy of the system is a unique functional of the electronic density and can be
expressed like:

E[n(𝑟)] = T[n(𝑟)] + V [n(𝑟)] + U[n(𝑟)] ≡ F[n(𝑟)] + V [n(𝑟)]. (1.21)

Is is necessary to define the exchange-correlation energy in terms of Hartree and Hartree-
Fock energy. Hartree equations already contain in the hamiltonian all the interactions, but
these use as ansatz a wavefunction of distinguishable electrons (direct product of single elec-
tron wavefunctions). In adition, the Hartree-Fock approach takes into account the indistin-
guishability of identical particles, using as a trial wavefunction a Slater determinant, which
is a wavefunction of a system of identical particles yet non-interacting. Hartree and Hartree-
Fock equations are aproximations to the complete problem where the wavefunction leaves to
be a non-interacting one, due to the electronic correlation. To summarize, the Hartree problem
isn’t considering the electronic correlation nor the indistinguisability, and the Hartree-Fock
approach isn’t taking in count the electronic correlation. This regards allow us to define, in
first place, the exchange energy Ex[n] as the difference in the energy expected value obtained
between the Slater determinant |ΨHF〉 and a direct product of single electronic wavefunctions
|ΨH〉, isolating the exhange effect:

Ex[n] = 〈ΨHF |Ĥ |ΨHF〉 − 〈ΨH |Ĥ |ΨH〉. (1.22)

Next, we define the correlation energy as a difference in the energy expected value ob-
tained between the true ground-state |Ψ〉 and the one get with the Slater determinant|ΨHF〉,
isolating the correlation effect:

Ec[n] = 〈Ψ|Ĥ |Ψ〉 − 〈ΨHF |Ĥ |ΨHF〉. (1.23)

We can restate the energy functional as:

E[n] = T[n] + U[n] + V [n] = Ts[n] + UH[n] + Exc[n] + V [n], (1.24)
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where, Ts[n] is the energy kinetic functional of a non-interacting electronic system (equa-
tion 1.14), UH[n] is the Hartree energy, i.e., the electric classic energy between two electronic
charge densities n(𝑟) and n(𝑟

′

), given by:

UH[n] =
e2

2

∫ ∫
n(𝑟)n(𝑟

′

)
|𝑟 − 𝑟

′
|

d𝑟d𝑟
′

, (1.25)

and Exc[n] is the exchange-correlation functional defined as:

Exc[n] = T[n] − Ts[n] + U[n] −UH[n]. (1.26)

The exchange-correlation energy contains the difference between the kinetic energies with
and without interaction, and the difference between the total interacting electronic energy and
the Hartree one. Said otherwise, the effect of the interaction between the electrons is to
introduce an aditional energy term coming from the indistinguishability and from the corre-
lation that modificates the total wavefunction. Handling with the exchange-correlation term
is a subtle problem, and according to the spatial behaviour of the density it lead to differ-
ent aproximations, by example: the local density aproximation (LDA), generalized-gradient
aproximation (GGA) and others [24] [39].
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Chapter 2

Theory of elasticity

Matter is discontinuous, atomic positions are marked with by the high density atomic nu-
clei surrounded by an electronic quasi-continuous ’jelly’, with a much lower density. As it
is known, the valence electronic cloud behaves as a "spring media" joining the high density
nuclei and being responsible for the electronic and mechanical properties of all materials.
Looking at materials in this way, the first principles Density Functional Theory, appears as a
well suited approach to describe a continuous of "spring media", taking into account, simul-
taneously, the continuous nature of the electronic jelly and the discrete nature of the ions.

2.1 Basics in theory of elasticity

Within the continuous media approximation [40–42], the deformation of a material is de-
scribed by the displacement vector 𝑢 or in components ui. It describes the displacement of
a point of the body, from the initial position before the deformation xi to a new position x′i,
as a result of an applied stress, defined as the force applied by unit area (usually measured in
Pascals (Pa): Newtons per square meter - see section 2.3).

ui = x′i − xi . (2.1)

The 𝑢 vector is a function of the coordinates xi before the deformation.
The differential squared distance between two points after the deformation dl′2, in terms

of the non deformed squared distance dl2 is:

dl′2 = dl2 + 2uik dxidxk . (2.2)

Where the tensor uik defined by:

uik =
1
2

(
∂ui

∂xk
+
∂uk

∂xi
+
∂ul

∂xk

∂ul

∂xk

)
, (2.3)

is called the strain tensor 1. It is symmetrical, so it can be diagonalized in such a way that

1Those expressions use the sum convention: repeated index sum over all the values 1,2,3.
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the mechanical response of a material to any applied stress can be expressed as compressions
or extensions along the principal axes. As is usual in the elastic theory when the body is
subjected to small deformations the second derivatives can be neglected 2, so the strain tensor
becomes:

uik =
1
2

(
∂ui

∂xk
+
∂uk

∂xi

)
(2.4)

In general, we have two types of strain: normal, when the deformation compresses (or ex-
pands) the material in the same direction of the stress; and shear, when the deformation tends
to slide the material. Considering an one-dimensional normal strain and the displacement
vector as a continuous variable of the position, the normal strain component is given by:

uxx =
∂ux

∂x
. (2.5)

In the case of shear strain, we expect the displacement in the x direction to be proportional
to the variation of the y coordinate in relation to x:

uxy =
1
2

(
∂uy

∂x
+
∂ux

∂y

)
. (2.6)

According with the Hooke law, experimental results shown that, to small deformations,
the stress applied has a direct proportionality to the strain:

σi j = Ci j klukl , (2.7)

where σi j is the stress tensor with units of force per unit area, or energy per unit volume,
meaning that the deformed body is storing elastic energy. Ci j kl are the elastic constants. There
are, in principle, 34=81 elastic constants, however, this number can be strongly reduced by
symmetry considerations. Considering the undeformed body as the equilibrium state where
the forces experimented by each ion are zero, we have a quadratic expression to the energy
stored by a deformed body, in terms of normal and shear deformations:

F = F0 +
1
2
λu2

ii + µu2
ik , (2.8)

where λ is called the Lame’s constant and µ is the shear modulus. This statement is the
tensor version of the familiar F = −k x, that expresses the force in the harmonic oscillator, and
the energy expression is nothing more than the familiar E = − k X2

2 , expressing the equilibrium
condition, caracterizing zero internal forces, that excludes the linear term.

From any symmetric tensor three invariants can be defined [40,42], one of them being the
sum of the diagonal elements:

uii = −
p
K
. (2.9)

2It is worthy to note that it approximation requires the variations to be small, not the displacement vector
itself.
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The sum of the diagonal elements is proportional to the net change in the volume. As
a consequence, it is proportional to the pressure p, with a minus sign because an increase in
pressure implies a decrease in volume. The constant of proportionality is called the coefficient
of hydrostatic compression or bulk moduli, B = 1

K , that measures the relative variation of the
volume of a material submitted to hydrostatic pressure, according to:

B =
1
K

= −
1
V

(
∂V
∂p

)
T
. (2.10)

In the case of isotropic materials it can be shown [40, 42] that the 81 elastic constants
are reduced to only two independent elastic constants: λ, called the Lame’s constant, and
µ known as shear modulus. Because expansion on some direction combined with the mass
conservation determine the contraction on both perpendicular directions, the volumetric and
unidirectional elastic constants are all related:

E =
9K µ

(3K + µ)
, ν =

1
2

(3K − 2µ)
(3K + µ)

, (2.11)

where E is the Young modulus that determines extension in one direction; ν is known
as Poisson’s ratio, and meassures the ratio between transverse compression to longitudinal
extension. According to the continuum elastic theory, since K and µ are always positive, the
Poisson’s ratio ranges between -1 (for K = 0, meaning an infinitelly compressible solid) and 1

2
(for µ = 0, meaning an incompressible solid). It is expected that, in the majority of materials,
the poisson ratio is positive, meaning that to stretch the material in some direction causes
contraction along the perpendicular direction coming from the mass conservation. However
there are materials exhibiting anomalous behaviour, expanding in the perpendicular direction
while being stretched, or contracting while being compressed. This class of materials is
called auxetic. For example, in the silicates context, the α-crystobalite polimorph of 3D silica
exhibits a negative Poisson’s ratio [43–45].

2.2 Information contained in stress-strain curves

Characterization of mechanical proprties of materials is done by performing load experiments
that lead to stress-strain curves. In such experiments a cilindrical sample is loaded axially. As
it was mentionated in the previous section, the behaviour under small deformations is usually
linear, characterized by the Young or uniaxial extension modulus:

σxx = E
(

l − l0

l0

)
= Eµxx; (2.12)

where l0 is the equilibrium length, l is the deformed length, and E is as before, the Young
modulus or extension coefficient. If we continue applying uniaxial stress, the material falls
into the elastic non-linear region, where it is still able to recover its original form, but the
relationship between stress and strain is not linear. Going further, eventually leads the material
to the plastic region, where the deformation becomes permanent. The point at which the
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nonelastic behaviour begins is called yield point. Brittle materials (like cast iron) do not show
large plastic deformation before failure. On the other hand, aluminium, for example, expands
in a wide interval, reducing substantially its cross sectional area before failure (see figure
2.1). Finally, the stretch breaks the material at a certain critical value of stress, characteristic
of each material.

Figure 2.1: Typical uniaxial stress-strain curves for three structural metals. Source: [46]

Metal Measured B
Li 11.5
Na 6.42
K 2.81
Rb 1.92
Cs 1.43
Cu 134.3
Ag 99.9
Al 76.0

Table 2.1: Bulk moduli in GPa for some typical metals. Source: [32].

In the 2D-materials case, it makes sense to consider not the elastic energy per volume unit,
but the elastic energy stored per unit area. We then define the 2D Young modulus, in units of
newtons per meter.

2.3 Units and orders of magnitude

It will be useful to do a brief revision of units. In the atomic orders of magnitude, the unit
usually used for force is eV

Å
, and for stress is eV

Å3 , meaning stored elastic energy per unit
volume. To have an idea, the force between an electron and a proton in a hydrogen atom is ∼82
nanonewtons (nN) or 51.5 eV

Å
. A common criterion to consider that a supercell is relaxed is

that the force on any atom is less than 0.01 eV
Å

(∼16 piconewtons). This residual force is of the
order of 0.02% of the force between the electron and proton in the hydrogen atom. Comparing
with orders of magnitude of forces in atomic force microscopy (AFM), where between the
tip and the sample, there appears atractive forces, in the non-contact mode (coming from
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Van der Waals forces), or strongly repulsive in the contact-mode (coming from interatomic
forces). In the non-contact mode, forces are in the ∼ 10−12 N (piconewton) range, and in the
contact mode in the ∼ 10−8-10−6 N, i.e., 10-103 nN. Thus, the force between a proton and an
electron in a hydrogen atom is, as expected, contained in the contact-AFM-mode range, and
the residual forces in the geometry relaxing criterion are in the non-contact-mode range [47].
Also useful is the conversion factors from eV

Å
to GPa, or to N

m that is appropriated for 2D
materials:

σ(GPa) = σ

(
eV

Å3

)
160.22 (2.13)

and

σ

(
N
m

)
= σ

(
eV

Å3

)
c(Å)16.022 (2.14)

where c(Å) is the length of the supercell in the direction normal to the 2D-material layer in
our calculations, and the 160.22 and 16.022 factors, come from the energy in joules contained
in 1 eV, that is numerically the electron charge: 1.6022 x 10−19. The relaxed pressure in a
typical relaxed supercell will be in the range of ∼0.01 kbar or 9.87 atm. 1 GPa is equal to
9870 atm. Typical values of bulk modulus of metals are in the range of 1-10 GPa (see Table
2.1).
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Chapter 3

Theory of defects

3.1 General theory of point defects

The semiconductor technology underwent a broad development driven by challenges during
the World War II [48–52], for example for use in microwave detectors and radar technology.
Initial research was focused on the growth of high-quality crystals and on manipulating the
conductivity, while adding impurities in a non-homogeneous way, giving origin to semicon-
ductor junctions (n-p, n-p-n, p-n-p), that are the bricks of the modern silicon technology. The
huge semiconductor industry and multiple applications rest on the extensive range of resistiv-
ities that can be reached in semiconductors at room temperature, through impurity dopping,
as we can see in Table 3.1.

Table 3.1: Orders of magnitude electrical resistivity to different materials. Source: [53].

Type of material Resistivity (Ω-m) Example
Metal 10−8 cooper

Semimetal 10−5 bismuth
Semiconductor 10−4 to 10−11 silicon

Insulator 1016 to 1024 diamond

Physical properties of semiconductors are deeply affected by defect engineering, in such a
way that semiconductor development would have been irrelevant, if were not by a wide range
of properties associated with the introduction of defects. In general terms, lattice defects can
be classified in terms of the dimensionality of the disturbance to the crystal matrix, in three
main categories: in first place, zero-dimensional point defects, i.e., vacancies, impurities and
complexes of this defects 1. In second place, one-dimensional line defects, as in the case of
dislocations. Finally, two-dimensional planar defects, as in the grain boundaries and stacking
faults. In the case of point defects we have: vacancy, when a atom is missing; interstitial,
when a native atomic species occupies a place between the crystalline regular positions. A
third class of point defect is the impurity, when a different atomic species replaces one of

1An interesting example is the NV−1 nitrogen-vacancy center in diamond, of interest in quantum information
science [54]
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the host atoms. In the case of SiO2, by example, a silicon atom can be replaced by a group
III specie, such as boron (B) or aluminium (Al), or by a group V specie, such as nitrogen
(N) or phosphorus (P). When comparing a vacancy with an impurity, it would be natural to
expect that the impurity represents a lesser perturbation to the host crystal, because a complete
atomic absence will affect the atomic crystal neighborhood more than an atomic specie that
is contribuing esentially with one electron or one hole to the solid.

Impurities can contribute to the host semiconductor with electrons (donor impurity) or
holes (acceptor impurity), according to the valence of the dopant specie, and the position of
the defect levels in the semiconductor gap. As a simple example consider a phosphorus (P)
atom in a matrix of crystalline silicon. Its valence orbital configuration is s2p3. Eight electrons
fill the four sp3 hybrid orbitals surrounding the phosphorus ion. Four electrons come from
each silicon atom around and 4 electrons from the phosphorus impurity, having 2 electrons
with antiparallel spin, in each covalent bond. In principle, the guest atom is pentavalent, so
it contributes with 4 electrons, just as a Si host atom, leading one free electron that acts as a
negative charged carrier. This electron remains weakly bounded to the dopant ion, having a
very small binding energy (tipically of tents of meV, little in comparison with a electron in
the ground state of a hydrogen atom: -13.6 eV) building a hidrogen-like atom, with a smaller
effective mass and a higuer dielectric constant. Physically what is happening is that the effect
of the solid (silicon matrix) on the guest atom is to create a polarization around the P atom,
diminishing the interaction between the screened ion and the "free" electron. One of the
effects of the solid polarization around the P atom is that the wave functions of the hydrogen-
like atom are more extended, however, yet localized. So an impurity can originates a fascinant
class of ’extended hydrogen-like’ atoms. These shallow states are called effective mass states,
and are described by the effective mass theory (EMT) valid only for shallow states, and it will
be described in section 3.2.1.

3.2 States induced by point defects

The physical phenomena behind the electronic structure theory is the multiple quantum scat-
tering experienced by valence electrons interacting with the ions of the solid. In this complex
process the wave behaviour of the electrons leads to spatial regions of interference destructive
and constructive, caused by the ionic periodic potential and the electronic repulsion. These
regions are able to confine the electrons in places where the density is supported, as hap-
pens in the chemical bonds that give origin to the crystalline structure of the material and
to the conduction electrons, in metals, that flows through the solid. Electrons in a solid are
described by Bloch states, that describe the free movement of the electrons in metals. The
periodic potential effect is incorporated in the new ’free’ Bloch states. In this scenario a point
defect behaves as a scattering center for the ’free’ Bloch states, just as an atom can scatter a
free electron. A point defect can create new bound states and also new scattering states such
as ressonances and anti-ressonances. The mathematical background of quantum scattering is
the complex analysis and the Sturm-Liouville theory of differencial equations.
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In spite of the complexity of the quantum multiple scattering physics, the quantum me-
chanics of the electrons in periodic lattices has been adressed at the beggining of the twenty
century by Felix Bloch a swiss-american physicist [55]. Under the Ph.D. advisory of Werner
Heisenberg, he was oriented by one main question: why conduction electrons in metals can
be treated as an ideal gas?, how can them flow almost freely through the solid, despite of
the ion scattering process? As the Bloch himself writes in his memorial notes [56]: “When I
started to think about it, I felt that the main problem was to explain how the electrons could
sneak by all the ions in a metal to avoid a mean free path of the order of atomic distances.
Such a distance was much too short to explain the observed resistances which even demanded
that the mean free path become longer and longer with decreasing temperature. But Heitler
and London had already shown how electrons could jump between two atoms in a molecule
to form a covalent bond, and the main difference between a molecule and a crystal was only
that there were many more atoms in a periodic arrangement. To make my life easy, I began
by considering wave functions in a one- dimensional periodic potential. By straight Fourier
analysis, I found to my delight that the wave differed from a plane wave of free electron only
by a periodic modulation. This was so simple that I didn’t think it could be much of a dis-
covery, but when I showed it to Heisenberg he said right away, "That’s it." Well, that wasn’t
quite it yet, and my calculations were only completed in the summer when I wrote my thesis
on "The Quantum Mechanics of Electrons in Crystal Lattices"

The Bloch’s answer was simple, just using straight Fourier analysis, he found that elec-
trons in a periodic solid act as a plane wave enveloped by a periodic modulation. In the
perfect crystal the wavefunctions are completely deslocalized, extending over all the crystal,
as expected for Bloch functions. Once, the perfect periodicity of the crystal, is broken, by
an impurity for instance, localized states are allowed. The presence of the point defect in the
crystal region where the electronic density departs from the periodic scheme inherited from
the Bloch theorem’s.

Going back to periodic point defects, we have essentially a similar result for the shallow
gap states, for which the electron is weakly bonded to the defect, and behaves as a Bloch
state enveloped by a weakly decaying exponential envelope. In general, we have to solve he
Schrödinger equation that describes the states in the crystal with the impurity:

Ĥ |Φn〉 = En |Φn〉, (3.1)

where the hamiltonian is composed by the electronic kinetic energy, and a one-electron
potencial that includes the perturbation imposed by the impurity:

Ĥ = Ĥ0 + V̂inp, (3.2)

The pristine part of the crystal is contained in Ĥ0. Just as it happens in the hydrogen
atom, this equation has two types of solutions: states whose energy fall into the allowed
energy bands - states of continuum, and states where the energy fall into the band gap - bound
states. In general, due to the localized nature of the impurity-induzed states, these appear
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in the band structure, as non-dispersive states. For states inside the gap, Pantelides [57]
distinguishes two cases: impurity potentials with a finite range, and Coulomb-kind impurity
disturbances with a 1

r nature. In the first case, the resulting states have wavefunctions with
an exponential decay, far from the defect, giving rise to strongly localized states. Usually
their energies are deep in the gap, distant to the bands edges more than 0.1 eV. In the second
case, we have a hydrogenic-like spectrum and also hydrogenic-like bound wavefunctions,
of two types: if the potencial is attractive we have infinite states near the conduction band
minimum (CBM); and if repulsive, we have infinite states near the valence band maximum
(VBM). In both cases, the wavefunctions in the n → ∞ limit merge in a continuous way
with the respective band edge. Now, in the case of impurity states within the region of the
bands of the perfect crystal, we have scattering solutions that approach asymptotically the
non-perturbed solutions. This solutions can give rise to ressonances. If we have an attractive
potential in combination with the centrifugal barrier, quasi-bound states may emerge [58,59].
In the ressonance condition, the incident electrons coming from the conduction or valence
band band have a large probability of becoming temporarily trapped within the impurity state,
tunneling through the centrifugal barrier.The ressonance condition is verified in the density
of states as a "hump" or "peak" that appears in comparison with the density of states from
the crystal without the impurity. It is also possible to have antiressonances, that manifests as
a "reduction peak" in the density of states coming from certain region in the real space that
avoids electrons. Just to have a intuitive sense of this phenomena, it is worth to recognize that
in the dynamics of the planets, governed by an inverse square law of movement, a ressonance
is the temporary trapping of an object (as a comet for example) orbiting in some region of
space; and an antiressonance is the forbiden ocupation of a certain space region.

Concerning the bound states, deep within the gap, they play a completely different role:
while shallow states control the conductivity, deep states act as carrier trapping centers. Deep
states work as recombination centers, controling the lifetime of carriers, that can be useful in
photocells for instance.

3.2.1 Effective Mass Theory: EMT states

This aproximation is made following the Madelung’s approach [60]. Semiconductor conduc-
tion properties are driven by shallow defects. In this kind of electronic states the potential
coming from the defect can be considered as a weak perturbation in comparison with the
periodic potential from the crystal. This perturbing potential gives origin to hydrogenic-like
atoms displaying orbits with large radii. Taking into account that the electron travels throught
several unit cells, the screening effect of the crystal, over the potential originated from the
defect, can be considered introducing a dielectric constant ε in the perturbing potential:

U (r) = −
e2

4πεε0r
. (3.3)

The wave function describing an electron in presence of the potential can be built as a
wave packet of Bloch functions ψn(k,r):
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ψ(r) =
∑
n,k

cn(k,r)ψn(k,r). (3.4)

Insering in the Schrödinger equation we have:∑
n,k

cn(k)(En(−i∇) + U)ψn(k,r) = Eψ. (3.5)

Note that in this equation the periodic crystal potential no longer appears, being ’ab-
sorbed’ by the −i∇ operator (see Madelung [60] section 2.2.9). If the energy of the bounded
electron is small in comparison with the band-gap energy, the energy denominators, in a typi-
cal perturbed wavefunction coming from valence band wavefunctions are negligible. So only
Bloch states coming from the conduction band contribute. In case of a strong bounded elec-
tron, Bloch states from all the Brillouin zone have to be considered, and we depart from the
shallow defect zone to the deep defect one, where the perturbing approach fails and Green
function methods have to be applied [57, 61]. Within this approximation the band index dis-
appears:

[E(−i∇) + U]ψ = Eψ (3.6)

Because to the extended spatial character of the wavefunction of a shallow state, we have
to have a very narrow character in the reciprocal space as is expected according to the uncer-
tainty relation between the momentum and the position for a quantum mechanical particle.
Taking vantage of this observation, our wave packet coming from a very narrow conduction
band states, and considering the minimum of the conduction band as the zero energy, we can
aproach the whole packet as being essentially builded by the zero k = 0 vector as the greatest
contribution, leaving to:

ψ = [
∑

k
c(k)eik.r]ψ(0,r) ≡ F (r)ψ(0,r), (3.7)

and, the Scrödinger equation finally becomes a equation to the ’envelope function’F (r):

[E(−i∇) + U]F (r) = EF (r). (3.8)

This equation is just a hydrogenic equation and has as solution to the ground state the
wavefunction:

F (r) =
1√
π(a∗0)3

e
− r

a∗0 , (3.9)

with a effective Bohr radius given by:

a∗0 =
4πε0~

2

me2

m
m∗

ε (3.10)

and hydrogenic energies given by:
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E = Ec − 13.6
m∗

mε2

1
n2 (3.11)

Tipically, while an hydrogen’s electron in the ground state has a binding energy of -13.6
eV and a Bohr radius extension of 0.53 Å, a mass effective electron has a binding energy of
-13.6 meV and a quite large radius 53Å, one hundred times larger. This qualitative approach
to study impurity electronic levels is valid for states shallow enough that their wave functions
are almost electron Bloch states, where the potential due to the impurity can be considered as a
weak perturbation. Instead of we could initially think, despite of the orbit of the electron (that
extends over hundreds of crystal cells) being larger, the hydrogen-like schrödinger equation
descreves more accurattely the state, because in this case the electron is far away of the region
where the impurity can be more perceived [62]. Completely analogous considerations, as in
the donors can be made having acceptors, in this case related to the wavefunction and energies
of the hole loosely bound to the impurity atom. If we have boron (B) in the site of silicon,
for instance, it configures in principle an acceptor impurity, with a defect level placed inside
the gap, near to the top of the valence band. Because boron belongs to the group III, we can
expect a deficiency of one electron, i.e., a hole weakly bonded to the impurity ion.

3.2.2 Ressonant scattering - states within the bands

States within the energy bands, i.e., ressonant (or antiressonant) scattering, can be described
in therms of Green functions including the impurity potential, defined by analogy with the
Green function for the pristine crystal [57], as

G(E) =
1

E − H
, (3.12)

Where H is the hamiltonian operator containing the perturbing potential. The density of
states, i.e., the number of states per unit energy lying in the energy range between E and
E + dE, is related with the Green function as:

D(E) =
1
π

Im
d

dE
lndetG(E), (3.13)

E is considered as a complex variable. The introduction of the impurity causes a change
in the density of states, with respect to the cell without the point defect:

D(E) = D0(E) + ∆D(E), (3.14)

Where ∆D(E) is given by:

∆D(E) =
1
π

Im
d

dE
lndet(1 − G0U), (3.15)

There are conservation of the number of states (Levinson’s theorem [57]) derived by ana-
lytical properties of the operator 1 − G0U (cite):
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∫ ∞

−∞

∆D(E)dE = 0 (3.16)

So when defect states appear into the gap, them come from missing states in the bands, or
in other words, the emergence of defect states in the gap have to be necessarily balanced with
the happening of antiressonances within the bands. The number of bound states apearing into
the gap are equal to the states missing from the bands:∫

bands
∆D(E)dE = −Nb (3.17)

The electrical behavior of a doped semiconductor, n or p type, is drived by states near to
the band’s edge descreved by the mass effective theory. The degree of deslocalization of this
hydrogen-like state stimulates the possibility to transit between the shallow defect state and
the edge of the band (the minimum of the conduction band to electrons, or the maximum of
the valence band to holes).

Just to mention, it would be interesting to think about all the spectrum of the solutions
and in the transitions between them. Ta a point defect we have three types of solutions:
scattering states - ressonances in the bands,and bounded gap states: shallow and deep. The
transitions between the solutions in this regions are called studies of analytical properties of
the solutions, this approach have been worked, for example, by Walter Kohn [63] and D. Van-
derbilt [64], studying what happens with the Bloch functions and the energies if we extend the
dominium of the function from real wave vector values to complex values (analytic contin-
uation). Intuitively, we can expect, that sometimes we have as k an pure imaginary number,
that reduces the oscillatory exponential function to a simple exponential decaying. Rougly
speaking, real k values lead to ressonant (or antiressonant) scattering states; complex k values
leads to shallow states, where the rate of the decaying is governed by the imaginary part; and
pure imaginary k vectors, leads to strongly localized states driven by a fast exponential law
of decay as is it expected to deep states.

A few words about the relationship between symmetry and point defects. The symmetry
of the defect is deeply related with the defect’s states. The main ideia is that when we have
broken symmetries in the crystal lattice, the states initially degenerated may unfold appearing
with different energy and symmetry, stablishing the number of electrons that can be located
in them. In covalently bounded solids, as is the case for group IV semiconductors, and c-BN
and also our 2D silica, are based in a tetrahedral structure. That defect states come from
hibridation of s, px,py and pz orbitals in a four-dimensional subspace. Initially them are
degenerated, but in the case of a single vacancy or a substitutional impurity occurring in the
tetrahedra center, the tetrahedral symmetry Td is broken, so the four-dimensional subspace
generated by the sp3 orbitals becomes reductible in two irreductible representations: A1 ant
T2. The defect levels are splitted in: one single level of A1 symmetry (s-like) and a threefold
degenerate level with T2 symmetry (p-like) [65] [66].
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3.3 Theory of charged defects

One of the main results of the existence of localized states within the gap is that the impurity
can exist as an ionized ion in various charge states. When an impurity is insered in a host crys-
tal, and a mass effective state occurs, we have as starting point a neutral defect: the charge of
the localized state is neutralized by the charge of the delocalized electrons comming from the
bands. A neutral defect isn’t yet a doped semiconductor, but if (supose a state near to the con-
duction band) an electron occupying the impurity state, jump to the conduction band, we have
as a result an empty localized state charged positively, because the lost of a negative charge.
In the same way, consider a impurity state near to the valence band, in this case an electron
jump from the valence band to the defect state filling a localized state initially empty, so the
localized defect state is now charged negatively. It observation pointed by Pantelides [57]
allows to define clearly charged states in semiconductors:"positively charged states are de-
fined as donor states, and negatively charged states are defined as acceptor states". Somehow,
charged states of an impurity ion are more like excited states, where the ground state are the
neutral impurity. The neutral nature of the matter, will be considered deeply in the Pantelides
fundamental approach (section 3.4), within the framework of the first principles simulation.
In short, this approach take in acccount that a charged defect is created transfering electrons
from (or to) the bands to (or from) the defect state without the introduction of ficticious exter-
nal charges, making ad hoc corrections unnecessary. A key point to the understanding of this
problem is the partition of the system complete in two subsistems: the point defect, consid-
ered as a little subsistem with localized wavefunctions, and the rest of the solid, considered
as a bigger subsystem with delocalized wavefunctions.

Eventually to a defect state can be energetically favorable having charge states different
from neutral. This possibility open new complexities and challenges to be solved by the
metodological approaches used. In the framework of Kohn-Sham DFT, the approach to study
this problem is to construct supercells big enough to isolate the defect and avoid interaction
between the periodical images. This scheme works fine to neutral defects and allow to ob-
tain formation energies withouth ambiguity, taking in count the computational cost increased
with the supercell size. But in the charged defects case, this methodology introduce spurious
Coulomb interactions between the periodic defect images, than can’t be avoided increasing
the supercell size. This problem divide our presentation in two main approaches: firstly, many
literature papers and efforts to obtain the correct formation energy, substracting from the total
energy the spurious electrostatic Coulomb energy, called ad hoc method. In a second place,
Pantelides et. al. [23, 67] present a deeply theoretical revision about this subject, leading to a
surprissing and simple statement: the ad hoc approach is based in a wrong energy formation
expression and in violation of the principle of charge neutrality, because the charged defect
is formed by charge exchange between the defect states and the solid bands, without external
charges, so keeping the charge neutrality at the supercell. This last procedure is more con-
vincing and consistent, so we apply this constrained DFT to study charged defects in silica
2D.



3.3. Theory of charged defects 42

Just to have a main idea about the way to deal with this problem, it is necesary understand
the path taken until here. This part is a resume of O’Hara - Pantelides considerations exposed
in [67]. Neutral defects can be dealed using different size supercells until having convergence
in the energy withouth no ambiguity. But, in the case of charged defects the long range
of Coulomb interactions lead to a divergence in the energy. A way to facing with it, is to
use the jellium approximation, dealing with the ions as a continuum of positive charge to
neutralize the system, setting V(G=0)=0. This method eliminates the divergence, but not
remove the long range Coulomb interactions between the periodic images. Leslie and Gillian
[68] shown that formation energies not converge with the supercell size, being mandatory
to extrapolate the energies to the limit of infinite supercell. This finite size scaling method
uses the finite supercell energies to extrapolate the value to L infinite using some hipotetical
scaling expression [69] [70], as can see in figure 3.1.

Figure 3.1: Scaling of unrelaxed (x) and relaxed (+) formation energies. Curves are fits to a mutipolar
scaling with n=3, similar to equation 3.18. The main ideia is to fit the formation energy, from different
supercells size (8,64,216,512 atoms), in order to find the extrapolated infinite supercell limit. It is the
best value to the formation energy. Figure from [69].

Later more sofisticated ways to correct the energies were developed, deserve special aten-
tion the Makov-Payne [71] and Lany-Zunger [72] schemes. Makov-Payne propose a multipo-
lar correction that relates the energy not corrected ET (L) with the right energy ET (L → ∞):

ET (L) = ET (L → ∞) −
αq2

2εL
−

2πqQ
3εL3 + O[L−5] (3.18)

where q is the defect charge, Q is the quadripole moment, ε is the dielectric constant
relative to the medium where charges are inserted, α is the Madelung constant and L is the
supercell size. This expression is valid only to 3D materials. Lany and Zunger [72] shown
that the Makov-Payne correction term that scales as 1

L remove long range interactions if other
finite size effects are eliminated.

Transition to 2D materials lead to additional complexities, by example, in using the jel-
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lium approximation appears new spurious interactions between the defect charge and the
possitive jellium filling the vacuum in the z direction, leading to linear divergence in the
formation energies with the supercell size [73], as can see in the figure 3.2.

Figure 3.2: Calculated formation energy of charged C−N and C−B in 2D BN and 3D BN. To 2D BN the
formation energy diverges. Figure from [73].

However, more analitical expressions to correct the energy in the case of 2D systems were
presented: Wang et al [74] developed a efficient expression to obtain the ionization energy to
a monolayer as a function of supercell side S and the vacuum size Lz, which asymptotic form
is:

IE(S,Lz) = IE0 +
α
√

S
+
β

S
Lz; (3.19)

where IE0 is the ionization energy (i.e., the energy required to free electrons or holes from
the dopants),α is a defect specific madelung constant, β =

q2

24ε0
is a constant that accompanies

the 2D divergent term ,and Lz is the size of the vacuum of the 2D supercell. After, the same
authors generalize the expression to 2D systems with supercell side and arbitrary thickness
d0 [75]:

Etotal =
q2

24γL2
xε0sinθ

[(Lz−4d0)−2d0(1−
1
ε⊥

)]+
q2d3

0

3γL2
xε0sinθ

(
1
ε⊥
−1)

1
L2

z
+

q2d2
0

4γL2
xε0sinθ

(2−
4

3ε⊥
)

1
Lz

(3.20)
Constants are explained carefully at the reference [75]. After this brief ’state of the art’ in

relation with ad hoc correction methods, we are going to consider the more deeply analysis
proposed by Pantelides.
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3.4 Fundamental approach: Wu, Zhang and Pantelides (WZP)

Y. Wu, X. Zhang and S. Pantelides [23] [67] shown that: first, the expression commonly
accepted to calculate formation energy of defects is more a ansatz or hipotese, but is not
derived from fundamental principles. This expression, uses Fermi level as reference to the
electrons energy, assumes that in fact electrons are removed from or added to the crystal, cri-
ating defects truly charged, and leading to spurious long range Coulomb interactions between
the defect’s periodic images. This interactions are cause of the cited divergences. Second,
physicaly speaking, neutral defects become charged defects while electrons are exchanged
between the defect states and the energy bands of the solid, so charged defects are charged in
the sense them are ionized states keeping charge neutrality over the supercell. Third, schemes
with truly charged defects violate a key statistical mechanics principle: the Fermi energy is
determined by charge neutrality (the sum of electron charges in CB plus holes in the valence
band plus charge in the defect levels must be zero (equation (6) from [67]):

p − n +
∑

q

qCq + q
′

Cq
′

dop = 0, (3.21)

where the neutral crystal carries: concentration p of holes, concentration n of electrons,

concentration Cq of the different charge states q of a defect, and concentration Cq
′

dop of ion-
ized dopants carrying charge q

′

. In practical terms, the metodology proposed by Pantelides et.
al. uses the usual selfconsistent electronic density convergence, as DFT do, but constraining
the electronic population in the defect levels to obtain the charge state deserved. In the self-
consistent relaxing process the electronic states are mixed enabling the charge neutralization
between electrons in the bands and electrons at the defect states. Just to have a single clear ex-
ample let’s consider the defect states to phosphorus P substituing Si in the 2D SiO2. Finding
the electronic density that minimizes the energy of the system, we calculate the bands struc-
ture (in a non polarized calculation) and find that the neutral defect state is a single semi-filled
state just at the Fermi energy (see figure 3.3a).

This neutral defect state can change only to 2 charge states: q=+1, coming from the trans-
ference of one electron from the defect state to the conduction band minimum, leading the
defect state empty of electrons and charged positively with charge=+1 (see figure 3.3b); and
q=-1, coming from the transference of one electron from the valence band maximum to the
only one available state in the neutral defect, leading the defect state filled and charged nega-
tively with charge=-1 (see figure 3.3c). More charge states are not available, because we have
just one defect state that admits only two electrons, according to Pauli’s exclusion principle.
In this first principles method we have two novelties, that were impossible in the old scheme
where arbitrary number of charges can be added or removed from the crystal violating charge
neutrality: in first place, given a point defect, we have charge states not allowed because of
the number of defect states and the available electronic states. In second place, having more
defect states in the gap, and more available states, we can have charge-degenerate states, i.e.,
identical value of charge builded with different electronic level populations.
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Figure 3.3: Scheme of energy levels of substitutional phosphorus in a Spin Unpolarized (SU) cal-
culation.(a) Neutral defect.(b) Positively charged defect state, builded transfering a electron from the
localized defect state to the conduction band minumim (CBM). (c)Negatively charged defect state,
builded transfering a electron from the conduction band maximum (CBM) to the defect state.
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Chapter 4

Native defects

Introduction

We begin to reviewing shortly main 3D silica electronic features as matter of reference in
silica compounds and to do qualitative comparisons between 2D and 3D scenarios. The 3D
polimorphs of silicate based compounds, range from several cristalline quartz phases (by
example α and β quartz) to amorphous phases such as, opal and glass.Them have been ex-
tensively studied in the literature [76–84]. Between native defects the oxygen vacancy in
3D-SiO2 is the main defect and is also responsible by deterioration of SiO2 based electronic
devices [85,86]. Electron paramagnetic ressonance (EPR) is a powerfull technique that relies
in the existence of unpaired electrons that absorb energy from a microwave field of radiation,
signaling the identity of some point defect. In particular the most recurrent O-vacancy defect
in quartz is the so called E′ EPR center, consisting in an unpaired electron (S=1/2). Also an
E′′ center with two unpaired electrons in a triplet (S=1) state has also been reported. [79].

In amorphous 3D-SiO2 (a-SiO2), an Eδ defect shows a very similar EPR profile as the E′

center. Both E′ and Eδ have been assigned to the positively charged O-vacancy, based on the-
oretical ab initio calculations. [86] A more recent first principles study [87, 88] suggests that
Si2 dimers could be responsible for an unidentified paramagnetic center in vitreous 3D-SiO2

(v-3D-SiO2). By examining nondimer configurations in positively-charged states, these au-
thors consider puckered, unpuckered, doubly puckered, and forward-oriented configurations
and find that the calculated EPR parameters of the puckered and unpuckered configurations
support the assignment of an E′δ center in v-3D-SiO2 to an unpaired spin localized at a three-
fold coordinated silicon dangling bond. Moreover, the forward-oriented configurations are
suggested as the assignment of an E′α center in v-3d-SiO2.

A feature of oxygen vacancies in the 3D polymorphs of SiO2 that deserves mention, in the
context of the present work, is the bistability of this defect in α-quartz: in the neutral state,
the O vacancy is stable in a dimer configuration, where a Si-Si bond is formed between the
two Si dangling bonds that appear due to the removal of the O atom, while in the positively-
charged state the defect assumes the so-called puckered configuration, where one of the Si
atoms relaxes across the plane of its other three oxygen nearest neighbors and bonds with
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another O-atom in the 3D network, to restore its fourfold coordination. [79, 80, 86].
The 3D polymorphs of SiO2 are prone to carrier trapping and polaron formation. In-

trinsic (involving polaron formation) and extrinsic (involving Ge or Li impurities) electron-
trapping phenomena have been investigated using ab initio methods in α-quartz and amor-
phous SiO2. [89, 90] In the case of 2D crystals, an issue that requires attention in the context
of defect states is the influence of quantum confinment and enhanced Coulombic effects on
the character of the wavefunction of the electronic states introduced in the fundamental band
gap (and possibly strongly-localized resonances and antiresonances in the valence and con-
duction bands) by native defect and impurities. Regarding the issue of enhanced Coulombic
effects, it is well know that, often, exciton binding energies in lower dimensional systems are
one to two orders of magnitude larger than in 3D crystals. [16, 17].

4.1 Methodology

In our ab initio calculations, we have employed DFT in the Kohn-Sham framework, as imple-
mented in the SIESTA software [38]. In order to model the structural and electronic properties
of the pristine 2D-SiO2 bilayer, a 12-atom primitive cell was used, with tight convergence pa-
rameters to obtain well converged structural properties, band structure, and density of states:
a mesh cutoff of 800 Ry, with a 128x128x1 Monkhorst-Pack (MP) grid [91], and a gaussian
smearing of 0.01 eV to draw curves for the density of states (DOS) and orbital-projected
DOS (PDOS). For the structural relaxation of internal parameters, a tolerance on the residual
forces of ≤ 0.001 eV/Å was imposed. All calculations in this work were performed using the
experimetal lattice constant of 5.42 Å, obtained by LEED, STM, and AFM measurements on
ordered films of 2D-SiO2 grown on Ru(0001) substrates [6, 7].

For the calculations of the properties of native defects, very good convergence with re-
spect to supercell size was obtained with 192-atom supercells, except for the case of the
external-layer oxygen vacancy, that required a 432-atom supercell in order to avoid spurious
overlap between the defect states and their periodic images. For the self-consistency of the
electronic charge density and the convergence of structural parameters, a 2x2x1 MP k-point
grid and a mesh cutoff of 250 Ry were used in the 192-atom-supercell calculations, and a Γ-
point sampling was used for the 432-atom calculation. In all supercell calculations, tolerance
of ≤ 0.01 eV/Å was imposed on the residual forces in every atom. In order to obtain well
converged DOS and PDOS for the defect supercells, MP grids of 16x16x1 k-points were em-
ployed. In all cases, a double-ζ pseudoatomic basis set augmented with polarization orbitals
(DZP basis) was employed, with an energy cutoff of 0.01 Ry, and the PBE-GGA functional
to account for exchange and correlation effects [92]. Interactions between valence electrons
and ionic cores were described by Troullier-Martins pseudopotentials [93]. Spin-polarization
was considered in all cases.

In what follows, we discuss the spatial distribution of the electronic states that appear in
the band gap due to the formation of each native defect we consider. We also discuss some
examples of resonances that appear in the valence and conduction bands. We propose a simple
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scheme to analyze the spatial structure of the defect-state wave functions, based on the orbital-
projected density of states, that is described in detail in the Supplementary Information. In a
few words, we analyze the PDOS to quantify and add up the contributions of the atomic-basis
orbitals of each atom to the defect states (and resonances, in some cases), and plot this as a
function of the distance of the atom from the defect center. We refer to these defect-state plots
as wavefunction spatial profile, Pwf (R).

With this simple scheme, we can distinguish between gap states and resonances that are
very strongly localized, usually within ∼5 Å from the defect center, and effective-mass-theory
(EMT) states that show weaker exponential decay. EMT states, which are the standard de-
scription of shallow doping gap states in 3D crystals, are more delocalized, extending over a
much larger portion of the lattice, away from the defect center. Furthermore, plots of isosur-
faces of the charge density of the defect-state wavefunctions are also analyzed.

4.2 Vacancies
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Figure 4.1: Schematic representation of the single-particle energy levels introduced in the fundamen-
tal band gap by oxygen and silicon vacancies in 2D-SiO2. To the silicon vacancy are showed the defect
levels from spin polarized (SP), and spin unpolarized (SU) calculations.

We start our discussion of native defects in crystalline 2D-SiO2 by examining the energy
levels and the spatial distribution of the defect states generated by O and Si vacancies. As
described above, in a freestanding bilayer of crystalline 2D-SiO2 there are two inequivalent
O-atom positions: (i) an interlayer one, in the intermediate layer of oxygen atoms connecting
a Si atom on the top external layer to a Si atom on the bottom external layer; (ii) an intralayer
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one, connecting two adjacent Si atoms on the same external Si honeycomb sublayer. In the
case of Si, symmetry dictates that there is only one site, since all Si positions are symmetry
related.

The defect levels of the three neutral vacancies are shown in Fig. 4.1. The labeling of the
defects is as follows: Vmid

O is the interlayer oxygen vacancy that is formed by removing one
oxygen atom from the middle (intermediate) layer. Vext

O is the external-layer oxygen vacancy
that is formed by removing one oxygen atom from either one of the two external layers. VSi

is a vacancy that is formed by removing a Si atom from either one of the two external layers.

4.2.1 Middle-Layer Oxygen Vacancy: Vmid
O

Let us first consider oxygen vacancies, the primary native defect center in crystalline and
amorphous 3D-SiO2. [79] In the relaxed geometry of the Vmid

O defect, the local symmetry of
the host lattice is only slightly broken at the defect site, due to small outwards in-plane shifts
of the three middle-layer O atoms that are nearest to the vacant site, as shown in Figs. 4.2(a)
and (b). Note that the top and bottom Si atoms, formerly bonded to the vacant O atom, move
inwards towards the middle layer and form a 2.39Å-long interlayer bond, 0.91 Å shorter than
the original Si-O-Si chain and only 1.6% larger than a Si-Si bond in the diamond-structure
bulk of a Si crystal (2.35 Å). These two Si atoms at the defect core are shown as grey spheres
in Figs. 4.2(c) and (d).
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Figure 4.2: Relaxed geometry of the middle-layer oxygen vacancy, Vmid
O . (a) Top and (b) side views.

Si (O) atoms are shown as green (red) spheres. (c) Top and (d) side views showing only the Si hon-
eycomb sublayers. In (c) and (d), the two Si atoms that rebond at the defect core are shown as grey
spheres, and the lines joining the Si atoms do not represent real bonds, and are drawn to show that the
structure of the Si sublattices remain mostly undisturbed.

In Figs. 4.2(c) and (d), we show only the Si atoms in their positions in the Vmid
O configura-

tion. We draw lines joining the Si atoms (that do not represent real bonds in 2D-SiO2) to show
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that, after the removal of one middle-layer O atom, the lattice deforms very slightly and only
in the very near vicinity of the defect core, and that the local structure of the Si honeycomb
sublattices is very much unaffected after relaxation of the atomic structure of the defect.

Thus, we observe that the response of the atomic lattice to the formation of the Vmid
O defect

consists essentially of two types of displacements of the O atoms in the middle of the Si-O-Si
chains: (i) rotation about the axis joining the two Si atoms; (ii) displacements which change
the angle at the O vertex in a Si-O-Si chain (a scissor mode). These rotation and scissor
modes are low-energy structural excitations of the 2D-SiO2 atomic lattice, and constitute the
mechanism by which the 2D-SiO2 lattice responds to the formation of all native defects in
the present study. In a forthcoming publication, we will discuss the ubiquitous role of these
structural modes in the response of 2D-SiO2 lattice to external stresses and deformations.

    

    

Figure 4.3: (a) Wave-function spatial profile as a function of the distance to the defect center, Pwf (R),
of a strongly-localized shallow defect state introduced in the band gap by the middle-layer oxygen
vacancy, Vmid

O . (b) Pwf (R) of a strongly-localized shallow defect state introduced in the band gap by
the external-layer oxygen vacancy, Vext

O . (c) Pwf (R) of the strongly-localized spin-split pair of states
introduced in the higher part of the band gap by the silicon vacancy, VSi. Spin is indicated by arrows
in the legend. The inset shows an isosurface of charge density of the majority-spin (spin up) state. (d)
Pwf (R) of the rather shallow VSi majority-spin state, at εvb +0.06eV, and of its spin-split minority-spin
partner at εvb + 0.48eV. The inset shows an isosurface of charge density of the shallow state. In (a),
(b), and (d) insets display isosurfaces of the charge density of the shallow states, as another view of
their strongly-spatially-localized character. In all cases, contributions to Pwf (R) from Si (O) orbitals
are shown as dark and light green (red and magenta) symbols and guide-to-the-eye lines.
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This Vmid
O defect geometry corresponds to the dimer configuration of O vacancies in 3D

quartz and amorphous SiO2. We recall that in the crystalline forms of 3D-SiO2, positively-
charged O vacancies have another stable geometry, the so-called puckered configuration [79,
80, 86], where one of the Si atoms relaxes across the plane of its other three oxygen nearest
neighbors and bonds with another O-atom in the 3D network, such as to restore its fourfold
coordination. In the 2D-SiO2 case, no other layer of O atoms is available, hence this puckered
configuration cannot exist, since upon puckering the Si atom would find the vacuum above
(below) the top (bottom) layer.

Figure 4.1(a) shows the band edges of the conduction and valence bands and the singly
degenerate shallow level, at εvb + 0.10 eV that is introduced in the gap by the Vmid

O defect
in the neutral charge state. This level is fully occupied by two electrons with opposite spins,
therefore Vmid

O is EPR inactive in the neutral state.
Considering only the energy eigenvalue for this defect state, we would be tempted to

classify it as, potentially, a shallow acceptor doping level. However, the wave function of this
state, shown in Fig. 4.3(a), displays a fast exponential decay, and is very strongly localized
on the atoms in the immediate vicinity of the vacant O-atom site: orbitals from the two
silicon atoms, nearest neighbors to the vacant site, account for 33% of the DOS peak of
the defect state and the six nearest oxygen atoms (three on each of the two external layers)
account for 51% of the defect-state DOS. Overall, the full wavefunction for the defect state
is localized within ∼5 Å of the vacant site, as shown in Fig. 4.3(a). The inset in Fig. 4.3(a)
shows an isosurface of the defect-state charge density, and provides another view of the strong
localization of the shallow defect state. Therefore, despite being shallow in energy, the defect
state is not an EMT state, and may act as a trapping center of carriers from the active layer in
a prospective device employing 2D-SiO2 as an isulating layer in a van der Waals stack.

This “pseudoshallow” Vmid
O defect state underscores a fairly general trend that we observe

in the present work: a marked prevalence for the formation of strongly localized defect levels,
be their energy shallow or deep within the band gap. Another trend we identify is the forma-
tion of localized states that are resonant within the bulk bands, near the edges of the valence
and/or conduction bands.

In the case of Vmid
O , by zooming in on the electronic bands of the defect supercell, we

identify three resonant states near the bottom of the conduction bands that are very strongly
localized, within 4 Å from the defect center. This ressonant states can be appreciated in
detail looking to a highly converted density of states (DOS), identifiyng three plane states
(indicated by red lines in the inset of the figure 4.4) and measuring the spatial localizations
of the wavefunction of two of these resonances while the projected density of states Pw f (see
figure). (the lowest and the highest in energy) The inset in this figure shows the bands for an
interval of ∼1.5 from the bottom of the conduction band.

4.2.2 External-Layer Oxygen Vacancy: Vext
O

By removing an oxyen atom from either one of the external layers, the intralayer Vext
O defect,

shown in Figs. 4.5(a) and (b), is formed. Its relaxed geometry shows an intralayer Si-Si
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Figure 4.4: (a)Density of states (DOS) of the Middle-layer oxygen vacancy (red line) overlapped on
the density of states from the bulk pristine supercell (black line). The defect state appears as a well
defined peak near to the top of the valence band (defined as zero of energy). Three resonant states
are showed in the botom of the conduction band. (b) Wave function spatial profiles, as a function of
distance Pwf(R), of the three strongly-localized defect-induced resonant states, neat to the bottom of
the conduction bands, shown by red lines in the inset. In the inset, defect bands are shown as blue lines
and bulk bands are shown as black lines.

bond, with a 2.50 Å bond length replacing the Si-O-Si chain from which the O atom is
removed. In this case also, the rotation and scissor modes of the O-atom sublattices dominate
the response of the 2D-SiO2 lattice to the introduction of the defect, and the symmetry of the
Si sublattices is very nearly maintained, with a small symmetry reduction at the defect site
due to the formation of the Si-Si bond, as shown in Fig. 4.5(c) and (d).

The Vext
O defect is, in some respects, a reciprocal of the Vmid

O , in the sense that it introduces
a singly-degenerate shallow defect state at εcb − 0.12 eV. The defect level is empty in the
neutral charge state of the defect, i.e., the neutral Vext

O is also EPR inactive.
This is also a strongly localized pseudoshalllow defect state, with most of its wavefunction

concentrated on the orbitals of Si atoms within ∼5 Å of the vacant site. In this case, ∼62%
of the defect-state wavefunction derives from the atomic orbitals of the two silicon atoms
that rebond after the removal of the oxygen atom, the four nearest oxygen atoms and the
four next-nearest-neighbor silicon atoms, all in the same sublayer of the removed oxygen,
as shown in Fig. 4.3(a). The figure shows the wavefunction fast spatial decay and the inset
shows an isosurface of charge denstiy for this gap state.

Again, despite being shallow in energy, the Vext
O state in the topmost part of the band gap

is not an EMT state, and may trap electron carriers from the active layer in a prospective
2D-semiconductor device employing 2D-SiO2 as an insulating layer. Also in this case we
identify strongly localized resonances near the bottom of the conduction band, as we can see
examining the density of states of the supercell with the oxygen vacancy, zooming the bottom
of the conduction band and also in the projected density of states that show the degree of
localization of the wavefunction of the defect (see figure 4.6). That both oxygen vacancies
display resonant states near the edge of the conduction band is related to the fact that a Si-
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Figure 4.5: Relaxed geometry of the external-layer oxygen vacancy, Vext
O . (a) Top and (b) side views.

Si (O) atoms are shown as green (red) spheres. (c) Top and (d) side views showing only the Si honey-
comb sublayers - see caption in Fig. 4.2. In (c) and (d), the two Si atoms that rebond at the defect core
are shown as grey spheres.

Si bond is formed in the relaxed atomic structure of both defects, and the bottom of the
conduction band derives entirely from Si orbitals.
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Figure 4.6: (a)Density of states (DOS) of the External-layer oxygen vacancy (red line) overlapped on
the density of states from the bulk pristine supercell (black line). The defect state appears as a well
defined peak near to the bottom of the conduction band. Two resonant states are showed in the botom
of the conduction band. (b) Wave function spatial profiles, as a function of distance Pwf(R), of the two
strongly-localized defect-induced resonant states, neat to the bottom of the conduction bands, shown
by red lines in the inset. Defect bands are shown as blue lines and bulk bands are shown as black lines.

From the above discussion, we conclude that oxygen monovacancies are amphoteric trap-
ping centers in 2D-SiO2, with activation of the nominally donor or acceptor states depending
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on the Fermi level position and on whether the vacant site is on one of the external layers or
in the middle oxygen layer.

4.2.3 Silicon Vacancy: VSi

As discussed below, a silicon vacancy VSi is a high-formation-energy defect, markedly so
in Si-rich growth conditions. However, one must bear in mind that irradiation with high-
energy electron beams has been used to introduce carbon vacancies (also high-formation-
energy defects) in graphene, [94] and the same process may prove effective to engineer such
defects in 2D-SiO2. Moreover, non-negligible concentrations of frozen-in Si vacancies result
from rapid cooling of amorphous precursors, in 3D-SiO2 samples. [79]
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Figure 4.7: Relaxed geometry of the silicon vacancy, VSi. (a) Top and (b) side views. Si (O) atoms
are shown as green (red) spheres. In (a) the blue arrows show the two undercoordinated O atoms in the
core of the defect. (c) Top and (d) side views showing only the Si honeycomb sublayers - see caption
in Fig. 4.2.

Regarding the atomic structure, the relaxed geometry shows symmetry reduction over a
somewhat larger portion of the surrounding lattice, when compared with Vmid

O and Vext
O , and

displays a partial reconstruction of the four broken bonds that appear due to the vacant Si
atom. Figures 4.7(a) and (b) show the geometry of the partially reconstructed defect, after
the removal of a Si from the top layer. As described above, in the pristine 2D-SiO2 lattice
each Si atom bonds to three O atoms in the same external sublayer and to one O atom in the
intermediate layer. Upon removal of a Si atom, a bond is formed between an external layer O
atom and the middle-layer O atom, such that a Si-O-O-Si chain is formed at the defect core,
and each one of the other two external layer O atoms, formerly bonded to the vacant Si, are
now undersaturated. The presence of O-atom dangling bonds, and the Si-O-O-Si bonding
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chain, not present in the host lattice, are the main reasons for the high-formation energy of
this defect.

Figures 4.7(c) and (d) show that even after the removal of a Si atom, substantial rebonding,
and formation of the Si-O-O-Si chain, the two Si honeycomb sublattices are only mildly
perturbed, being deformed more strongly only at the very core of the defect. Once again, we
observe that in the relaxed geometry of the VSi defect, besides the formation of the Si-O-O-Si
chain, the scissor and rotation displacements of nearby O atoms constitute the mechanism by
which the surrounding lattice responds to the perturbation.

Figure 4.1 shows the VSi energy levels in the gap obtained from spin-unpolarized and
spin-polarized calculations. The calculation without the inclusion of spin polarization yields
five singly-degenerate defect states introduced in the fundamental band gap by the VSi defect,
four of them in the lower half and one in the upper half of the band gap. In the neutral state of
VSi, the three lower levels are fully occupied with two electrons of opposite spins, and the two
higher levels are empty. These defect states are composed essentially of atomic orbitals of the
two undersaturated external-layer oxygen atoms (indicated by blue arrows in Fig. 4.7), and
the atoms in the Si-O-O-Si chain at the core of the defect. In the spin-unpolarized calculation,
all five gap states of the VSi defect are very strongly localized in the immediate neighborhood
of the defect center, regardless of being shallow or deep in the band gap.

From a spin-polarized calculation, the inclusion of exchange splitting has a dramatic ef-
fect. In the minority-spin channel, shown as blue lines in Fig. 4.1, we obtain three occupied
and three unoccupied gap states, while the majority spin channel has only three energy levels
in the band gap, two of which are occupied. The VSi defect has a net spin of 1 µB (one Bohr
magneton) in the neutral state.

In order to understand this defect-level structure, we must consider that spin splitting has
pushed majority spin states downwards, such that they become resonant within the valence
band. The VSi defect is a telling example of the occurrence of strongly-localized defect-
induced resonances in a 2D-SiO2 bilayer. Below, we describe a spin-split pair consisting of a
minority-spin gap state and a majority-spin valence-band resonance.

Overall, for the VSi defect we have the following scenario:
(i) the two defect states with opposite spins in the higher part of the gap, in Fig. 4.1(c)

result from a small spin splitting (72 meV) of the higher gap state from the spin-unpolarized
calculation in Fig. 4.1(d). These states are composed essentially of orbitals from the two
O and two Si atoms (predominantly from the O atoms) forming the Si-O-O-Si chain at the
core of the defect. The wave-function spatial profiles for these defect states are shown in
Fig. 4.3(c). They mirror each other and show strong localization near at defect core. The
inset shows an isosurface of charge density for the majority-spin gap state, providing another
perspective on its strong spatial localization.

(ii) The suite of four gap states spanning a small energy interval in the bottom part of
the gap, from the spin unpolarized calculation, gives rise to complex effects of exchange spin
splitting that push majority-spin states into the valence band as resonances and pulls one
resonant minority-spin state from the valence band into the gap.
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Figure 4.3(d) shows the wavefunctions of the rather shallow VSi defect level, a majority-
spin state with an energy of εvb + 0.06 eV, and of its spin-split minority-spin partner at
εvb + 0.48 eV. Both states are composed mainly of the dangling bond orbitals of the O atom
indicated by a blue horizontal arrow in Fig. 4.7. An isosurface of charge density for the shal-
low majority-spin state is shown in the inset. This is a prototype example of the tendency
of formation of shallow states with strongly localized wavefuncitons that we identify in the
2D-SiO2 bilayer.

By examining the band structure of the defect supercell, we are able to identify a strongly
localized majority-spin valence-band resonance at εvb − 0.20 eV and its spin-split partner in
the band gap, a minority spin state at εvb + 0.26eV, both states derived mainly from dangling
bonds of the other undercoordinated O atom in the core of the VSi defect, indicated by a
blue vertical arrow in Fig. 4.7. The density of states of the silicon vacancy, the wavefunction
profiles for these spin-split partners and an isosurface of charge density for the minority-spin
gap state are shown in figure 4.8. Note that the resonant state does not decay to zero away
from the defect center due to some degree of hybridization with the delocalized states in the
valence band. Moreover, the spin-splitting energy is much larger for these latter spin-plit pairs
of states (0.42 and 0.46 eV) than for the states in the higher part of the gap.
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Figure 4.8: (a)Density of states (DOS) of the silicon vacancy (red and blue lines) overlapped on the
density of states from the bulk pristine supercell (black line). The defect states appear as very well
defined blue and red peaks on the gap, most of them near to the valence band. Blue lines indicate the
spin minority channel and red lines the spin mayority channel. Two resonant states are showed in the
botom of the conduction band. (b) Pwf(R) of a maiority-spin valence-band resonance at ε vb-0.2 eV
and of ots spin-split partner in the band gap, a minority spin state at ε vb+0.26 eV, both states derived
mainly from dangling bonds of the other undercoordinated O atom in the core of the VSi defect. The
inset shows an isosurface of charge density of the minority spin (spin down) state in the gap.

4.3 Interstitials

We shift gears now and consider single O and Si interstitials. Figure 4.9 shows the initial
positions that we consider for an interstitial Si or O atom before geometry optimization: (a) an



4.3. Interstitials 58

additional O (Si) atom placed on an interstitial site in the oxygen middle layer; (b) additional
Si atom placed at the center of an external-layer hexagon; (c) additional O atom placed on an
external-layer hexagon.

  
(a) (b) (c)

Figure 4.9: Detail of the initial positions of interstitial atoms at the start of the geometry-relaxation
procedure. The figure shows only the hexagon where the interstitial atom is initially placed, and not
the full supercell.(a) Top and side views of the initial position of a Si or an O interstitial (gray sphere)
in the middle layer. (b) Top and side views of the initial position of a Si interstitial in the external layer.
(c) Top and side views of the initial position of an O interstitial in the external layer. Si (O) atoms are
shown as green (red) spheres.

Oxygen atoms are usually stabilized in low-coordination environments, such as in 2D-
SiO2 where each O atom is twofold coordinated. As a result, from the initial positions de-
scribed above we obtain two stable configurations of oxygen split interstitials in 2D-SiO2.
On the other hand, Si atoms prefer higher coordination environments, and for that reason, in
the case of a single Si interstitial, we obtain only one equilibrium position where the Si atom
moves inwards and bonds with the nearest O atom in the middle layer, for both initial posi-
tions shown in Fig. 4.9. We emphasize that even when initially placed on the external layer,
an interstitial Si atom migrates to the middle layer and bonds with the closest middle-layer
O atom, the driving force being the low-coordination of available external-layer sites that
renders the puckered configuration of the oxygen vacancy unstable in 2D-SiO2, as discussed
above.

The defect levels introduced in the fundamental band gap by the three interstitial species
are shown in Fig. 4.10. Below, we discuss the geometry and electronic structure of each case
separately.



4.3. Interstitials 59

  

CBM

VBM

IO
mid IO

ext ISi

0.92 eV

0.72 eV 0.45 eV

0.65 eV

0.26 eV

0.03 eV
(EMT)

Figure 4.10: Schematic representation of the single-particle energy levels introduced in the funda-
mental band gap by oxygen and silicon intestitials in 2D-SiO2.

4.3.1 Oxygen Split-Interstitials: Iext
O and Imid

O

For both initial positions we consider, after relaxation the interstitial O atom forms split inter-
stitials in Si-O-O-Si chains at the defect core. Starting from the initial position in Fig. 4.9(a),
a stable O-insterstitial configuration is obtained, the Imid

O , where the interstitial O atom bonds
with a middle-layer O atom, forming a Si-O-O-Si chain with one Si atom from each of the
external layers, as shown in Fig. 4.11. From the external layer position, the Iext

O defect is
formed, where the interstitial O atom bonds with the O atom from an external-layer Si-O-Si
chain and with an external-layer Si atom, as shown in Fig. 4.12. The Iext

O is the more stable
form of an oxygen interstitial, with a formation energy that is 2.27 eV lower than Imid

O , as
discussed below.

In both cases, the positions of the two O atoms making up the split interstitial are very
nearly symmetric with respect to the original position of the O atom in the Si-O-Si chain to
which the intestitial atom attachs itself. Again, in both cases the local symmetry breaking
induced by the formation of the interstitials is localized in the immediate neighborhood of
defect core, and involves essentially scissor and rotation modes of the O atoms in the near
vicinity of the defect core, along the zigzag line of Si-O-Si bonds where the interstitial is
formed. The symmetry of the Si sublattice is only disturbed at the very core of the defects, as
shown in Figs. 4.11(c) and (d) and 4.12(c) and (d).

The electronic structures of the two O interstials are very similar. In both cases we obtain
a pair of deep gap states, one in the lower half of the gap and the other in the upper half
of the gap. The energies are, respectively, εvb + 0.91 eV and εcb − 0.72 eV, for the Imid

O , and
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Figure 4.11: Relaxed geometry of the middle-layer oxygen interstitial, Imid
O . (a) Top and (b) side

views. Si (O) atoms are shown as green (red) spheres. (c) Top and (d) side views showing only the Si
honeycomb sublayers - see caption in Fig. 4.2.
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(b)

(c)

(d)

Figure 4.12: Relaxed geometry of the external-layer oxygen interstitial, Iext
O . (a) Top and (b) side

views. Si (O) atoms are shown as green (red) spheres. (c) Top and (d) side views showing only the Si
honeycomb sublayers - see caption in Fig. 4.2.

εvb +0.65eV and εcb−0.45eV for the Iext
O . Hence, both IO centers we identify are amphoteric,

with deep donor and acceptor levels.
No spin splitting of the defect levels results from our spin-polarized calculations in either
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Figure 4.13: (a) Wave function spatial profile, Pwf(R), of the two strongly-localized gap states intro-
duced by the external-layer oxygen interstitial, Iext

O . The inset shows an isosurface of charge density of
the state in the lower part of the gap. (b) Pwf (R) of the two strongly-localized gap states introduced
by the middle-layer oxygen interstitial, Imid

O . The inset shows an isosurface of charge density of the
state in the higher part of the gap. (c) Pwf (R) of the very shallow gap state at ε vb + 0.03 eV, intro-
duced by the silicon interstitial, ISi. The inset shows an isosurface of charge density of this shallow
state. The effective-mass-theory nature of the state is displyed by a wave-function that extends over
the entire supercell. (d) Pwf (R) of the strongly-localized marginally-shallow gap state at ε vb +0.15eV,
introduced by ISi. The inset shows an isosurface of charge density of this shallow state. In all cases,
the contributions to Pwf (R) from Si (O) orbitals are shown as dark and light green (red and magenta)
symbols and guide-to-the-eye lines.

Imid
O or Iext

O . The wavefunctions for the two gap states, for both IO species, are essentially the
bonding and antibonding combinations of the O-O bond at the cores of the two IO species.
The orbitals in these two O atoms account for nearly the full wavefunction of both defect
states, in each case. Figure 4.13(a) and (b) shows that these are very localized deep defect
states, with their wavefunctions decaying to zero within ∼ 3.5 Åf̃rom the defect center. The
inset in Figure 4.13(a) shows a charge-density isosurface for the εvb +0.65eV level of Iext

O and
Fig. 4.13(b) shows the isosurface for the εcb − 0.72 eV of Imid

O . Finally the density of states
corresponding to both oxygen interstitials are showed in figure 4.14.
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Figure 4.14: (a) Density of states (DOS) of the Middle interstitial oxygen (red lines) overlapped on
the density of states from the bulk pristine supercell (black line). The defect states appear as two
very well defined red peaks, each one near to the edge of each band.(b) Density of states (DOS) of
the External interstitial oxygen (red lines) overlapped on the density of states from the bulk pristine
supercell (black line). The defect states appear as two very well defined red peaks, each one near to
the edge of each band.

4.3.2 Silicon Interstitial: ISi

A Si interstitial in crystalline 2D-SiO2 is stable only in an interstitial site of the intermediate
oxygen layer, as shown in Fig. 4.15, where the relaxed configuration of the ISi defect is dis-
played. In the figure, it is observed that a Si-O bond from the prisitine bilayer, between a Si
atom in the top layer and the O atom in the middle layer, is replaced by a Si-Si bond between
the interstitial and the top layer Si atom, while the middle-layer O atom also bonds with the
Si interstitial, forming a Si-Si-O-Si chain at the core of the defect. All core atoms but the
interstitial Si atom itself recover their pristine-lattice coordination.

Again, the surrounding lattice retains the symmetry of the pristine system, with symmetry
reduction confined to a small region surrounding the defect core. Thus, even in this case,
where a large interstitial atom is inserted in the 2D-SiO2 bilayer, we observe that the lattice
responds to the perturbation through scissor and rotation modes of the O atoms in the vicinity
of the defect, with the external honeycomb sublattices of Si atoms being disturbed only in a
very small region surrounding the defect center.

The ISi is in a rather low twofold coordination, which explains a plethora of five defect-
state energy levels in the band gap associated with the ISi defect, as shown in Fig. 4.10.
Unlike in the case of the Si vacancy, in the neutral charge state no spin polarization effects are
observed in this case, hence the neutral ISi center is EPR inactive.

Of the five ISi gap states in Fig. 4.10, the lowest one is a very shallow level at εvb +

0.03 eV, which wave function is shown in Fig. 4.13(c). The figure clearly shows an EMT
state displaying a slow decay away from the defect center, with sizeable contributions to the
wavefunction from atoms over the entire supercell, a profile that is confirmed by the charge-
density isosurface in the inset. As expected, the wavefunction of this EMT state is dominated



4.4. Formation energy of vacancies and interstitials 63

  

(a)

(b)

(c)

(d)

Figure 4.15: Relaxed geometry of the silicon interstitial, ISi. (a) Top and (b) side views. Si (O) atoms
are shown as green (red) spheres. Interstitial Si atom is shown as grey sphere. (c) Top and (d) side
views showing only the Si honeycomb sublayers - see caption in Fig. 4.2.

by the p-orbitals of the external layers atoms, which is the character of the states at the top of
the valence band.

Moving up in energy, in the band gap, we find a marginally shallow state at εvb + 0.15eV,
followed by a very deep level at εvb + 2.23 eV. The shallow state at εvb + 0.15 eV derives
its wavefunction from atomic orbitals of the interstitial Si atom, the Si atom that bonds to
it, the three middle-layer O atoms that are nearest to the interstitial Si, and the two top-
layer O atoms that are nearest to the interstitial Si, as shown in Fig. 4.13(d). This is another
example of a shallow state that is not an EMT state, being actually a very localized state with
a wavefunction that is confined within ∼ 3.5Åf̃rom the defect center.

Further up in the higher part of the gap, we find another deep level at ε cb − 0.42 eV,
and another marginally shallow level ε cb − 0.26 eV. Overall, except for the very shallow
EMT state described above, the other four gap states introduced by the ISi defect are strongly
localized, within ∼3.5Åf̃rom the defect center. In particular the two marginally shallow levels,
the acceptor at εvb + 0.15 eV and the donor at ε cb − 0.26 eV, display strongly localized
wavefunctions, as shown in figure 4.16b, i.e., despite being shallow states, neither is an EMT
state. Also the density of states of the interstitial silicon is showed in fig 4.16a.

4.4 Formation energy of vacancies and interstitials

The formation energy of a neutral defect is essentially the difference between the energy of
a supercell with the defect and that of a pristine supercell without the defect, taking into
account the chemical potentials of each atomic species, in order to properly compare systems
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Figure 4.16: (a)Density of states (DOS) of the Interstitial silicon (red line) overlapped on the density
of states from the bulk pristine supercell (black line). The defect states appear as very well defined blue
and red peaks on the gap. The true EMT state appear as the first peak just in the edge of the valence
band.(b) Pwf(R) of the strongly-localized marginally shallow gap state at εcb-0.26 eV, introduced by
ISi . The inset shows an isosurface of charge density of this gap state.

with different stoichiometries, as follows:

Ed
f = Ed

tot − Ebulk
tot +

∑
i

niµi ; (4.1)

where Ed
tot is the total energy of a supercell with defect d, Ebulk

tot is the total energy of the
corresponding (same supercell size) pristine bulk supercell, and ni and µi are the quantities
and chemical potentials of the atoms exchanged with the corresponding chemical-potential
reservoirs, when the defect is created. In the cases we consider in this work, there is only
one atom exchanged with the chemical-potential reservoirs: one atom is removed from the
2D-SiO2 bilayer in the case of single vacancies, and one atom is added in the case of single
interstitials.

The chemical potentials of Si and O are determined by imposing a condition of ther-
modynamical equilibrium between the 2D-SiO2 bilayer and the reservoirs of Si or O atoms
employed in the synthesis of the bulk material. The 2D-SiO2 bulk is obtained by electron
beam deposition (EBD) where a Si sample is exposed to an electron beam that heats it up,
creating a vapour of silicon atoms in a gaseous O2 environment [6]. The thermodynamical
equilibrium condition requires:

µSiO2 = µSi + µO2 = µSi + 2µO ; (4.2)

where µSiO2 is the calculated total energy per formula unit of a pristine SiO2 bilayer. We
define two limits for the synthesis: Si-rich and O-rich conditions.

In the Si-rich scenario, a gas of Si atoms in equilibrium with a bulk Si is present, and the
value of µSi is obtained from the calculated total energy per atom of diamond-lattice bulk Si.
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Table 4.1: Chemical potentials of silicon and oxygen and formation energies (in eV) of neutral
native defects in 2D-SiO2, for Si-rich and O-rich conditions.

Si-rich limit (eV) O-rich limit (eV)
µO -439.10 -434.74
µSi -245.02 -253.74

Vmid
O 0.59 4.95

Vext
O 1.03 5.39

VSi 13.23 4.53
Imid
O 7.97 3.61
Iext
O 5.70 1.34
ISi 4.02 12.72

In this condition, the oxygen chemical potential is obtained from the equilibrium condition,
Eq. 4.2, as

Si−rich : µSi =
ESi

tot

NSi
;

µO =

(
µSiO2 − µSi

)
2

. (4.3)

where ESi
tot is the total energy of an NSi-atom Si-bulk unit cell.

On the other hand, in the O-rich scenario, the oxygen chemical potential µO is obtained
from a calculations for an O2 molecular gas, and the Si chemical potential is given by the
equilibrium condition, Eq 4.2, as

O−rich : µO =
EO2

tot

2
;

µSi =
(
µSiO2 − 2µO

)
. (4.4)

where EO2
tot is the total energy of a calculation for an O2 molecule in a supercell with large

vacuum regions in all three directions.
More specifically, for the the formatiom energy of a vacancy in the neutral charge state,

from the total energy of a 2D-SiO2 supercell with NSi formula units and one missing O (Si)
atom, we obtain:

EVO
f = EVO

tot + µO − ESiO2
tot (NSi) , (4.5)

EVSi
f = EVSi

tot + µSi − ESiO2
tot (NSi)

= EVSi
tot + µSiO2 − 2µO − ESiO2

tot (NSi) ; (4.6)

where ESiO2
tot (NSi) is the total energy of a pristine 2D-SiO2 cell with NSi formula units.
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In the case of interstitials, we obtain:

EIO
f = EIO

tot − µO − ESiO2
tot (NSi) , (4.7)

EISi
f = EISi

tot − µSi − ESiO2
tot (NSi)

= EISi
tot − µSiO2 + 2µO − ESiO2

tot (NSi) . (4.8)

The values we obtain for µSi and µO in the two limits are included in Table 4.1. The
table also includes the values of E f in the two limits for all native defects we consider, and
Figure 4.17 shows E f as a function of µO over the chemical potential range between the
Si-rich and O-rich limits. The results in Table 4.1 show that while oxygen vacancies are
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Figure 4.17: Formation energy, E f , as a function of the oxygen chemical potential, µO, for the six
defect species considered in this work. µO values range from a Si-rich value on the left up to an O-rich
value on the right, as explained in the text.

more stable in the intermediate layer of O atoms than in the external layers, by 0.44 eV, the
opposite is true for the oxygen interstitials, which are much more stable in the external layer,
by 2.27 eV, than in the intermediate layer.

Figure 4.17 and Table 4.1 show that the Vmid
O vacancy is the most stable defect over the

first three fifths of the range of chemical potentials we consider, starting from the Si-rich
limit, and that the Iext

O becomes the most stable defect from there up to the O-rich limit.
These trends are expected, since in O-poor conditions we expect higher concentration of O
vacancies and in O-rich conditions we expect higher concentrations of O interstitials, but the
intervals of chemical potential values where each these two defect species are stable must
be determined from the calculations such as presented here. Another non-straightforward
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conclusion from our calculations is that in O-rich conditions, hence Si-poor conditions (given
the SiO2-bulk thermodynamical constraint on the sum of chemical potentials), O interstitials
are more abundant then Si vacancies, and in O-poor conditions, hence Si-rich conditions, O
vacancies are more abundant then Si interstitials. Note that in the Si-rich limit of chemical
potentials we consider, the E f values of the oxygen vacancies are much smaller (by at least
3 eV) than that of the silicon interstitial. Similar considerations apply in the O-rich limit,
where E f for the Iext

O interstitial is smaller than E f for the silicon vacancy by 4.2 eV.
To summarize, among the single native defects we consider, oxygen native defects are

expected to be the most abundant species in thermal equilibrated samples under the synthesis
conditions encode in our choices of chemical potentials.

4.5 Partial Conclusions - native defects

In general, native point defects in 2D-SiO2 introduce in the gap shallow levels strongly local-
ized, and exhibit ressonances near to the edge of the bands with a strongly localized nature.
Comparing α-quartz, as a representative of 3D silica crystals, we conclude that this peculiar
behaviour is caused by quantum confinement and enhanced Coulomb interactions coming
from the 2D nature of the bilayer silica. Despite of many shallow defect levels founded in the
vacancies and interstitials studied, only one (in the silicon interstitial) is a truly mass effec-
tive state (EMT state), showing a typical more delocalized nature. Adittionally, the narrow
sub-band at the top of the valence band, as was mentioned above, joint with local distortions
at the trapping site and excess of localized charge in a lattice site, suggest the possibility of
polaron formation [95, 96].

  

(a) (b)

Figure 4.18: Soft modes proposed as the dominant mechanism the 2D-SiO2 lattice responds to native
defects. (a) Scissor mode. (b) Rotation mode.

The mechanical response to native point defects has been in all studied cases, a local
deformation, leading the two honeycomb sublattices of Si atoms nearly unaffected by the
presence of the defects, except in the very near vicinity of the defect core. We propose the
system responds to point defects in a local way drived by two main low-energy structural
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excitations of the SiO2 lattice, or soft modes present in the Si-O-Si chains: a scissor mode,
where the Si-O-Si angle changes; and a rotation mode, where the Si-O-Si bond turns about
the minimal distance between silicon atoms (see figure 4.18). It simple fact is believed to be
in deeply relation with the anomalous behaviour of 2D silica.

Finally, oxygen monovacancies and single interstitials are found to be amphoteric trapping
centers in 2D-SiO2, displaying acceptor and donor levels in the fundamental band gap of 2D-
SiO2. Both silicon native defects we have considered introduce several strongly localized
states spanning a large fraction of the gap. The energy of formation of the native defects
shows that oxygen vacancies are the most abundant defect species in the thermal equilibrium,
for the range of chemical potentials we have considered. The middle layer oxygen vacancy is
the most stable defect over the first three-fifths of the range of chemical potentials considered,
after this range, the interstitial oxygen appears as the most stable defective configuration until
the O-rich limit.
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Chapter 5

Substitutional impurities

Introduction

A next step in the study of point defects in a 2D-SiO2 bilayer silica is to consider the effect
of replacing a native species atom by an impurity atom. In order to have a reference and to
analyze and compare our results in the case of a 2D-SiO2 bilayer silica, we consider previous
results in the literature for α-quartz as a representative of 3D-SiO2. Aluminium is by far
the most typical substitute of Si in quartz [79] and it acts as a deep trapping center, and
the "culprit" for the known color of smoky quartz, that can be produced by irradiation of
natural or synthetic quartz. [97] Götze et. al. explore in an extensive review several types
of dopants already present in varieties of quartz, determining optical emission bands and
their correlation with point defects, as follows: a blue emission band (∼ 450 nm - 2.75 eV)
associated to oxygen deficiency centers (ODC); a red emission band (∼ 620 - 650 nm - 1.95
- 1.9 eV) showing recombination of electrons in the non-bridging oxygen, with holes in the
band gap; a yellow emission band (∼ 570 nm - 2.15 eV) of hydrothermal origin; and finally,
a blue emission band at ∼ 385 nm (3.15 eV) coming from Al paramagnetic centers. [79]. In
the neutral charge state, the Al0Si center traps a hole in one of the nearest-neighbor O atoms
that bond to the Al impurity, [79, 89, 98, 99]. Electron paramagnetic resonance (EPR) studies
by Nuttall and Weil [100] report also the occurrence of a positively-charged Al+Si center that
traps two holes, in a S=1 triplet spin state, on symmetry related oxygen atoms bonded to
the Al impurity. While phosphorous and boron are found in lower concentrations in quartz,
incorporation as substituional impurities for Si has been proven in both cases. [79]

In the case of the Al0Si, d’Avezac and collaborators, employing a density-functional-thery
(DFT) ab initio approach, with a correction for electronic self-interaction effects, have ex-
amined the wavefunction of the trapped hole associated with this impurity in α-quartz. The
trapped-hole state was found to be strongly localized on one of the O atoms that bond to the
Al impurity, in agreement with EPR evidence. [98,101,102] Intrinsic and extrinsic (involving
Ge or Li impurities) electron trapping phenomena have also been investigated using ab initio
methods in α-quartz and amorphous SiO2. [89, 90] Han and et al. [103], employing first-
principles calculations, conclude that substitutional AlSi and PSi would be the best candidates
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for p-type and n-type doping of α-quartz, respectively, despite the fact that in both cases car-
rier ionization levels are rather deep in the band gap, 0.86 eV and 0.74 eV, when compared to
the room temperature thermal excitation energy of ∼26 meV, and that both exhibit strongly-
localized defect-state wavefunctions that do not show an effective-mass-theory profile, being
susceptible to trapping and polaron formation. [89, 90, 96, 98]

One of the consequences of deep defect states is the electron trapping, that has strong
effects on the performance of electronic devices that employ SiO2 as substract or gate insula-
tor. It happens, for instance, in GeSi impurities in α-quartz and amorphous SiO2. However,
describing the electron and hole trapping, within of framework of DFT is a challenge, due to
the self-interaction error. In brief, the electrostatic repulsion between electrons in not exactly
chancelled by the exchange and correlation energy, leading to a spurius self-interaction of an
electron with itself. As a consequence, the energy of the system in function of the number of
electrons appears as a convex function, preferring partial ocupations over integer ocupations,
leading to a delocalized charge density [95]. This problem has been identified and adressed
by several authors considering Al impurities in alpha-quartz [89, 97, 101, 102]. Furthermore,
DFT interactions can shown assymetry between the behaviour of electrons and holes in point
defects [102], in the case of 3D- SiO2 the electron trapping is correctly described but it fails to
describe holes, DFT predicts a deslocalized hole spreaded over the four oxygen neighbohrs of
the AlSi impurity, but experiments of electron paramagnetic resonance espectroscopy (EPR)
shown the Al hole localized at one of the neighboring oxygen [97,101]. d’Avezac et al. solve
this problem while an self corrected interaction (SIC) scheme [104].

As matter of reference it is known that 3D-SiO2 has a very large band gap of 9.7 eV [13],
it leads to consider this inorganic material as an insulator. Although, Han et. al examine
the possibility of doping 3D-SiO2 to become a semiconductor for future ultraviolet optical
devices, through systematic first principles calculations in the DFT and DFT+U framework
[103]. Taking into account the valence electrons we expect as a general behaviour group III
elements (B and Al) would lead to shallow acceptor gap states coming from a free hole; and
group group V elements (N and P) would lead to shallow donnor states, coming from an free
electron. According to Han et. al. the best candidate to p-type doping in 3D-SiO2 is AlSi

(with an acceptor defect level placed at 0.86 eV above the VBM), and to n-type doping is PSi

(with a donnor defect level placed at 0.74 below the CBM) [103]. In 2D-SiO2 bilayer silica,
due to quantum confinement and enhanced coulombic effects [16, 17], we expect deeper
defect levels. Within Kohn-Sham DFT we find to AlSi a shallower 0.018 eV above the VBM,
and in the PSi case: 2.13 eV below the CBM. The hole state, founded in our 2D material, is a
shallow level strongly localized, that can not be considered an effective mass state.

The above examples of shallow levels and ressonances with strongly localized wavefunc-
tions motivate us to investigate this issue in the context of doping crystalline 2D-SiO2 by
chemical substitution. Several experimental and theoretical works have addressed the issue
of doping of the 3D forms of 2D-SiO2 with column III and column IV impurities [103].

The discovery of the giant magnetoresistance (GMR) [105] and the modern magnetic
tunnel junction device (MTJ) [106,107] as the building blocks of modern memory multilayer
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devices lead to search for 2D materials that can be used as ultrathin electrical insulators be-
tween the magnetic layers. The tunneling magnetoresistance (TMR), induced by the insertion
of a very thin insulator, results in a higher read-out signal [108] increasing the sensitivity and
the density of magnetic information stored by unit of surface. We could to think in 2D-SiO2 as
a candidate for the insulating barrier in building ferromagnetic multilayers. 2D silica bilayer
has several chemical advantages: high degree of chemical stability; it is the thinest material
with SiO2 stoichiometry without dangling bonds interaging with the substract through van
der Waals forces; and it is also hydrophobic and shows the higuest gap among 2D materials
of 6.5 eV [6, 10].

In this work, we examine two cases of column III atoms, aluminum (AlSi) and boron (BSi)
and phosphorous (PSi) as an case of column V atoms. All of them, considered as substitu-
cional impurities for a Si atom in the 2D-SiO2 lattice. Below, we discuss each case separately.

5.1 Substitutional Aluminium

  

(a)

(b)

(c)

(d)

Figure 5.1: Relaxed geometry of the substitutional boron in place of silicon BSi . (a) Top and (b) side
views. Si (O) atoms are shown as green (red) spheres and B atom is yellow color. (c) Top and (d) side
views showing only the Si honeycomb sublayers. In (c) and (d), the two Si atoms that rebond at the
defect core are shown as grey spheres, and the lines joining the Si atoms do not represent real bonds,
and are drawn to show that the structure of the Si sublattices remain mostly undisturbed.

Aluminium substitutional is one of the group III possible acceptors. Figure 5.5 shows
that Al substitutional in the Si place disturbs lightly the lattice. As we have shown in a
previous work [109], point defects in 2D silica only changes the lattice locally, and it is
a peculiar characteristic of this material, that we think is in relation with the existence of
easy modes: scissor and rotation (see fig 4.18). The Al atom push gently away the three
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surface oxygen atoms diminuing the pristine angle αext
Si−O−Si from 139.6 ◦ to 135.17 ◦. For

the sake of clarity the electronic defect-level structure we will consider spin-unpolarized and
spin-polarized calculations.

  

(a) (b)

(c) (d)

Figure 5.2: Band structure of Al and B substituing Si in 2D-SiO2 bilayer. The effect of spin polar-
ization is split the EMT state in the aluminium impurity from two plane defect states, while in the B
substitutional the EMT state merges with the two states strongly localized. (a) and (b) show gap states
near to the valence band induced by Al in the spin-unpolarized and spin-polarized calculation.(c) and
(d) show the defect states induced by B in the spin-unpolarized and spin-polarized calculation. Blue
line signals minority spin energy levels, and red line indicates maiority spin levels.

In a spin-unpolarized calculation (see figure 5.2 a), the Al impurity creates four shallow
defect states near to the top of the valence band. One of them is strongly localized and empty
located at εv+0.12 eV. Also two states are almost degenerate in energy, located at εv+80
meV, and the last one shows a dispersion characteristic of a truly mass effective state (EMT),
located at εv+ 95 meV (at Γ. The EMT state shows hibrydation with one of the plane states.
The charge density shows the degree of localization of each state, signaling the EMT state
(see figure 5.3 b).

When the spin polarization is taked in count the EMT state (located at εv+70 meV at
Γ) separates from the almost degenerate plane states located at εv+36 meV , and the spin
minority chanel stay empty, at εv+0.16eV, while the ’partner’ state go to the valence band
leading to a remaining spin polarization of 1µB, as we can see at the figure 5.2 b.

Examining carefully the EMT state we can see some degree of delocalization (figure 5.3
b). Now, examining the spin density, we can apreciate how the Al impurity induces a spin
texture, where the minority spin population dominates the surface where the impurity is lo-
cated, and the maiority spin population occupates the middle oxygen and the other surface,
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(a) (b)

Figure 5.3: Charge density isosurfaces of defect states induced by the Al impurity in the spin-
unpolarized regime. (a) Single state (b) hybridation of a truly EMT state and two plane almost de-
generate states.

showing two different rates of spatial decaying (see figure 5.4).

  

(a)

(b)

(c)

Figure 5.4: Net spin density showing the spin separation induced by Al substitutional on 2D-SiO2
bilayer.(a) Top view; (b) and (c), side views. Blue color shows the density of the minority spin channel
and red shows the density of the maiority spin channel.
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5.2 Substitutional Boron

  

(a)

(b)

(c)

(d)

Figure 5.5: Boron substitutional (yellow). Relaxed geometry. (a) Top view;(b) Side view ; (c) Top
view (only silicon);(d) Side view (only silicon)

Figure 5.5 shows that when boron substitutes for Si in crystalline 2D-SiO2, the symmetry
of the lattice is only very mildly disturbed in the neighborhood of the B center, due to B-O
bonds that are smaller than the Si-O bonds in the pristine lattice by ∼0.2 Å, reflecting the
difference in covalent radius between Si and B atoms. Such mild distortions are suggestive
of a weak perturbation of the lattice potential-energy function due to the BSi impurity, with
the concurrent emergence of a shallow EMT defect state. Our calculations, however, show
otherwise. In order to understand the defect-level structure associated with the BSi (and AlSi)
impurities, we discuss the results from spin-unpolarized and spin-polarized calculations

Starting with some general observations, we recall that states at the top of the VB are
derived entirely from 2p states of O atoms in the external layers, with sizeable contributions
from the 2p states of middle-layer O atoms starting deeper in the VB, at 0.5 eV below the
top of the VB. In the higher 1.0 eV portion of the VB, Si-atom orbitals give negligible con-
tributions to the band states. This character is mostly inherited by the BSi defect states. In
particular, orbitals from the substitutional B impurity do not contribute to the defects states.

From a spin-unpolarized calculation, we obtain four shallow defect levels near the top
of the valence band, as shown in Fig. 5.2(c), three of which are strongly localized. The
shallowest level at εv + 74 meV (at the Γ point) is a genuine EMT level, with a wavefunction
displaying the characteristic EMT envelope, extending out to ∼15Å from the defect center, as
shown in Fig. 5.6(d). Interestingly, this EMT state is nearly entirely derived from the p-states
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of the O atoms in the bottom layer, and shows the same orbital character of the bulk states at
the top of the VB. In the neutral state of BSi this nondegenerate level is fully occupied.

(a) (b)

(c) (d)

Figure 5.6: Charge density isosurfaces, induced by the boron impurity inside the energy gap,
in the spin-unpolarized regime.(a) Localized deep state at εvb + 0.148eV(b). (b) and (c) are
two strongly localized states almost degenerate, located at εvb + 0.125eV and εvb + 0.126eV
respectively. (d) Truly EMT state showing a extended charge density at εvb + 74meV.

The other three defect levels are shallow levels at εv + 0.125 eV, εv + 0.126 eV, and
εv + 0.148 eV. The very small splitting of 1 meV between the first two of these levels is
within the precision of the DFT calculations, and could be of numerical origin, since the lattice
retains enough symmetry (only the additional mirror plane symmetry that coincides with the
middle layer of O atoms is absent) about the impurity site to sustain a doubly degenerate level.
The spin-polarized calculations and the case of the aluminum impurity that we discuss next,
indicate that the splliting is probably not a numerical artifact. The highest nondegenerate
level at εv + 0.148 eV is partially occupied. The wave functions of these three defect states
are very strongly localized on the O atoms in the near vicinity of the BSi, and are also derived
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from Oxygen p states (see figure 5.6(a),(b),(c)).
In the case of a column III impurity such as BSi substituting for Si in 3D α-quartz, previous

theoretical studies obtain a single acceptor level with a (0/-) transition state at 1.18 eV above
the VB edge. In order to understand the occurrence and occupations of four defects states
associated with the neutral BSi in 2D-SiO2, we recall that at 0 K integration of the density of
states up to the Fermi level must account for the total number of electrons in the system, so it
may appear strange that we find three fully occupied defect states near the top of BV. Charge
conservation implies that such a plethora of occupied defect states in the band gap must be
accompanied by the presence of antiresonances in the valence bands.

We also expect carrier trapping in the case of the BSi defect, due to the strongly localized
states that are close in energy to the EMT state.

5.3 Formation Energy of substitutional impurities

The density of point defects in the thermal equilibrium is controled by the energy of forma-
tion. It is the diference between the energy of a supercell with the defect and the energy of
the non-defective bulk supercell, regarding that take off or to insert some atomic specie, is
taking in count with the respective chemical potential in order to compare systems with the
same number of atoms. In general, to neutral defects, we have:

Ed
f = Ed

tot − Ebulk
tot +

∑
i

niµi ; (5.1)

where Ed
tot is the total energy of a supercell with defect d, Ebulk

tot is the total energy of the
corresponding (same supercell size) pristine bulk supercell, and ni and µi are the quantities
and chemical potentials of the atoms exchanged with the corresponding chemical-potential
reservoirs, when the defect is created. In the special case of Al impurity we have:

E AlSi
f = (E AlSi

tot − µAl ) − (Ebulk
tot − µSi); (5.2)

and, to the B substitutional impurity we have:

EBSi

f = (EBSi
tot − µB) − (Ebulk

tot − µSi). (5.3)

The chemical potentials of native species are determined by the thermodynamical equilib-
rium condition between the 2D-SiO2 bilayer and the sources of O and Si atoms. If the oxygen
chemical potential is obtained from the diamond-lattice bulk Si, throught the thermodynam-
ical equilibrium condition, we have the called Si-rich situation. On the other hand, if the
oxygen chemical potential is determined from an O2 molecular gas, it fixes the silicon chem-
ical potential stablishing the O-rich limit to the reaction.The chemical potential to Al was
calculated from a aluminium bulk in the standard one atom face-centered-cubic structure, and
the chemical potential to B was obtained from a bulk of α-rombohedral boron, builded from
icosahedral nanocages - 12 atoms unit cell (a more detailed explanation can be found in the
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previous section 4.4).
The values we obtain for µSi and µO in the two limits and, the values for µAl and µB are

included in Table 5.1.Formation energies to substitutional Al and B are presented in TABLE
5.1 with previous calculations of native neutral defects previously displayed in table 4.1 and
published in [109]. Them are presented again for comparison purpose.

Table 5.1: Chemical potentials of silicon, oxygen, aluminium and boron and formation ener-
gies of neutral defects in 2D-SiO2, for Si-rich and O-rich conditions. Formation energies of
native defects were previously calculated. [109]

Si-rich limit (eV) O-rich limit (eV)
µO -439.10 -434.74
µSi -245.02 -253.74
𝜇Al −70.62 −70.62
𝜇B −103.79 −103.79

Vmid
O 0.59 4.95

Vext
O 1.03 5.39

VSi 13.23 4.53
Imid
O 7.97 3.61
Iext
O 5.70 1.34
ISi 4.02 12.72

AlSi −0.23 −8.95
BSi 1.28 −7.44
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Figure 5.7: Formation energy of neutral defects in 2D silica bilayer as a function of the oxygen chem-
ical potential µO. Horizontal axis indicate the limit values of µO for si-rich and O-rich environments.

In comparison with native defects, the formation energies from substitutional impurities
have the same order of magnitude of the oxygen vacancies. Also, Al substitutional displays
a more stable configuration in all the range of environment presented. Furthermore, in the
Si-rich limit of chemical potentials we consider, the oxygen vacancies (at the middle and ex-
ternal) are still the more stable defects, but rapidly in the most of the range the B substitutional
shows lower energy.
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5.4 Partial Conclusions - substitutional impurities

Properties of electronic states induced by group III impurities: Al and B, in 2D silica, within
Kohn-Sham DFT frame work are presented. Relaxed geometries from Al and B impurities
strengthen our previous adressed conclusions [109]: point defects in this 2D material generate
only local geometric perturbations. Both impurities have a defect induced magnetization
coming from the energy spin-spliting of defect levels in the gap. Aluminium impurity induces
spin separation in the 2D-SiO2 bilayer, showing different degree of localization to each spin
channel, and readjusting the spin population such as we have one spin channel in each 2D-
SiO2 surface. The absence of dangling bonds, chemical stability and wide gap of the ultrathin
insulator 2D-SiO2 suggests the possibility to use the pristine bilayer as tunneling barrier in
magnetic multilayer memory devices. The spin separation, induced by the Al impurities in
our 2D-SiO2 silica, could lead to interesting phenomena in magnetic multilayers technology.
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Chapter 6

Anomalous mechanical response of
two-dimensional SiO2

Introduction

The 3D crystalline and glassy forms of silica are brittle materials at room temperature, mean-
ing that they do not undergo plastic deformation upon tensile or shear stresses. There is a vast
number of experimental and molecular dynamics (MD) studies of the mechanical properties
of 3D-SiO2. Results are not always consistent, varying among different studies due to vary-
ing experimental conditions and, in the case of MD studies, due to different MD numerical
protocols and the use of classical potentials in many of these simulation works.

Another important mechanical property of 2D materials is the bending stiffness, which is
the elastic constant that determines the linear-response of the material to bending deforma-
tions. In the case of graphene, for example, the bending stiffness can be obtained by studying
the scaling of the curvature energy of nanotubes of different diameters, as a function of diam-
eter, and extrapolating to the case of a nanotube of very large radius, with a curvature that is
small enough for the response to bending to be linear.

In what follows, we argue that bending of 2D-SiO2 is anomalous based on the tendency
of 2D-SiO2 high-curvature SiO2 nanotubes to form kinks and on a quite unexpected nearly
degeneracy in energy of several SiO2 nanotubes of different chiralities and diameters. These
kinks are another manifestation of the scissor and rotation modes of O atoms that we discussed
in section 4.5 (see figure 4.18).

A stress-strain (σ × ε) relation for α-quartz, obtained using molecular dynamics with a
classical potential in Ref. [110], is shown in Fig.6.1. The top panel shows the curve for three
different “samples” in the MD simulations at room temperature. The sudden drop to zero
stress at 30% strain signals the fracture (formation of a crack) of the brittle material without
the onset of plastic deformation. In the lower panel, effects of temperature are displayed,
which amount to a decrease in the strain and stress at the onset of the crack with increasing
temperature.

A σ×ε curve for silica glass, also from an MD simulation, is shown in Fig. 6.2 (from Ref.
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Figure 6.1: Uniaxial tensile stress-strain curves for α-quartz. Top panel, molecular dynamics simula-
tion of different numerical samples showing the brittle nature of the 3D silica with a critical strain of
30%. Lower panel, the maximum values of stress and strain are reduced when temperature increases.
Source: [110].

[18]). The relevant curve in this figure is the continuous one. It shows failure at 30% strain,
as in the 300 K curve in Fig. 6.1, but with a stress that is smaller by ∼10 GPa compared to
the α-quartz failure stress at the same temperature. Several different works on the mechanical
properties of crystalline and glassy or amorphous forms of 3D-SiO2 present similar stress x
strain relations.

In the context of the results for the mechanical response of 2D-SiO2, that we discuss next,
we call attention to the following features of the σ × ε relations in Fig. 6.1: (i) the occurrence
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Figure 6.2: Stress-strain curve for silica glass (amorphous-cristobalite) strained along the [001] di-
rection in which the [100] directions and [010] directions were constrained to initial values (dashed
line) or free to relax (solid line). Source: [18].

of two linear regimes of elastic deformation, a first one at small strains 0 ≤ ε ≤ 7%, and a
second one with a larger stiffness (the inclination of the σ × ε curve) that extends from about
8% strain up to the breaking point at ∼30% strain. Moreover, as already mentioned above, no
plastic deformation is observed.

6.1 The structural ground state of 2D-SiO2: methodological
issues

Before addressing the response of 2D-SiO2 to bending and uniaxial tensile strains, we present
here a discussion on the structural ground state of this material. In all, but one geometry
figures in this section, the plane of the layers is the xy plane, the armchair direction is along
the x-axis and the zigzag direction is along the y-axis. The one exception is the auxetic
structure we describe below, which lattice is not honeycomb as the other ones.

Figure 6.3(a) shows a top view of the structure that is proposed as the equilibrium geome-
try of a 2D-SiO2 bilayer in the experimental works [6,111]. In this geometry, which we label
G1, an oxygen atom from an external layer appears, on projection, as making a straight line
with the two Si atoms it is connected to. We recall that in both external layers, the O-atom
sublayer is 0.58 Åãbove (below) the plane formed by the Si atoms. Thus, it is the projected
position of the O atom onto the plane of the Si sublayer that is aligned with the Si atoms.

Figures 6.4(a) and 6.5(a), show top views of two alternative structures we have identified
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Figure 6.3: Experimental equilibrium geometry of 2D SiO2, characterized by stright Si-O-Si bonds
(labeled G1 geometry). (a)Top view. (b) Front and (c) side views.
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Figure 6.4: Equilibrium geometry of SiO2, characterized by "puckered" Si-O-Si bondings (labeled
G2).(a)Top view. (b) front and (c) side views.

in our calculations, where the projected positions of the O atoms are not aligned with the two
Si atoms. We label these as G2 and G3, respectively. The two geometries are related by a
60◦ rotation of the “bottom” external layer with respect to the “top” external layer, but the
transformation leading from the geometry in Fig. 6.4 to the one in Fig. 6.5 is a rotation of the
oxygens in one of the layers. More specifically, note that in Fig. 6.4(a), if we take one of the
Si-atom hexagons in the top layer as a reference, the six O atoms along the hexagon edges
alternate on inwards and outwards positions, and the O atoms on the bottom layer follow the
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Figure 6.5: Equilibrium geometry of SiO2, characterized by alternating up and down "puckered"
Si-O-Si bondings (labeled G3).(a)Top view. (b) front and (c) side views.

same pattern. In the G3 geometry in Fig. 6.5(a), the oxygen atoms on the bottom layer rotate
around the axis joining the two Si atoms it connects, such that O atoms in the bottom layer,
originally in a inward position are now in a outward position, and vice versa.

In our highly-converged calculations employing the SIESTA code, with 8x8x1 k-point
grids, and a MeshCutoff of 700 Ry, the G2 and G3 geometries are degenerate equilibrium
geometries, with a lattice constant of 5.27 Å. The STM experimental work in Ref. [6, 111],
authors conclude that the G1 structure is the equilibrium geometry, with a lattice constant of
5.42Å. When using the VASP and QE codes with, we obtain G1 as the equilibrium geometry,
with a lattice constant of 5.31 Å and 5.30 Å respectively. The cohesion energy of the three
structures, G1, G2, and G3 differ by only a few meV per atom. Specifically, in the VASP code
we have a 10x10x1 k-points grid and a energy cutoff (ENCUT) of 500 eV, and in the QE code
we have also a 10x10x1 k-points grid and a energy cutoff of 55 Ry (∼750 eV).

Table 6.1: Comparison between G1 and G2 geometries using several codes. SIESTA code preserves
the initial geometry. VASP and QE codes give as final relaxed geometry the straight Si-O-Si bonds
characteristic of G1 geometry. The "puckered" Si-O-Si bonds or G2 geometry has lower energy.

Software Ecut Kpoints grid Energy (eV) Inp/Out Geometry PP
SIESTA 400 Ry 64x64x1 -4492.86 eV G1/G1 PBE-GGA
SIESTA 400 Ry 64x64x1 -4492.91 eV G2/G2 PBE-GGA
VASP 500 eV 10x10x1 -94.7986 eV G1/G1 PBE-PAW
VASP 500 eV 10x10x1 -94.7849 eV G2/G1 PBE-PAW

QE 55 Ry 10x10x1 -521.5220 Ry G1/G1 PBE-PAW
QE 55 Ry 10x10x1 -521.5219 Ry G2/G1 PBE-PAW

Also using the SIESTA, VASP and QE codes (see Table 6.1), we did a comparison be-
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tween final geometries as a function of the initial geometry. In the SIESTA code, if the initial
positions were in a G2 geometry ("puckered" Si-O-Si bonds), the final geometry will be also
a G2 geometry; and if the initial geometry were of type G1 ("stright" Si-O-Si bonds), the final
Geometry will be also a G1 geometry. The energy difference between this two structures is
0.0125 meV per SiO2 unit, approximately one half of the thermal fluctuation energy at room
temperature. The "puckered" geometry (G2) show less energy that the "stright" geometry
(G1). In the VASP and QE code the final relaxed geometry is always G1 type, regardless of
the initial configuration.

Thus, there is an inconsistency between plane wave (VASP, QE) and localized orbitals
(SIESTA) codes, which may be related to the different basis functions and/or the pseudopo-
tentials employed in the two calculations. The SIESTA code employs an atomic-orbital basis
and norm-conserving pseudopotentials, and no systematic procedure for convergence with
respect to the basis function is available. The VASP and QE codes employ PAW pseudopo-
tentials, which are more adequate to treat hard-core atoms such as oxygen, and a plane-wave
basis which allows for systematic convergence.

Table 6.2: Comparison between DZP and TZP basis in SIESTA code. The TZP basis leads to a more
"straight" Si-O-Si bonds as can see in figure 6.6.

Software Basis Ecut Kpoints grid Energy (eV) Inp/Out Geometry PP
SIESTA DZP 400 Ry 64x64x1 -4492.91 eV G2/G2 PBE-GGA
SIESTA TZP 400 Ry 64x64x1 -4495.58 eV G2/G2 PBE-GGA

This suspect was tested by highly converged calculations made in SIESTA code (see Table
6.2), also with a Meshcutoff of 400 Ry, and a very dense kpoints-grid of 64x64x1. In this case
we take a type G2 structure (puckered bonds Si-O-Si) as initial geometry, but we compare the
results between a double polarized basis (DZP or standard SIESTA basis) and a triple zeta
polarized basis (TZP). The DZP basis provides 13 basis function per atom, and the TZP
furnishes 17 basis functions by atom. The TZP basis results in more ’straight’ bonds in
comparison with the DZP basis (see figure 6.6), indicating that the inconsistency may be due
to the lack of completeness of the atom-centered orbitals.

We remark, however, that if we apply a biaxial tensile strain of 2.5% or larger to both the
G2 and G3 geometries, and perform SIESTA calculations for these strained geometries, they
transform onto the G1 geometry. We are currently investigating this methodological issue in
more detail, but it is safe to conclude that most likely the G1 geometry is the equilibrium
geometry, and the G2 and G3 should be the stable geometry for small compressive strains of
-2.5% or larger (in magnitude).

Besides the G1, G2, and G3 geometries, in the course of the quasistatic calculations, for
the response of the 2D-SiO2 bilayer to an uniaxial tensile strain, we describe in the following,
we identified a transformation, under a quasistatic strain of 36%, to the geometry shown in
Fig. 6.7. This is precisely the β-2D auxetic silica structure obtained in the work of Gao and
collaborators [112] using an evolutionary algorithm.

In our SIESTA calculations, the total energy of the β-2D-SiO2 is only 30 meV per atom
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Figure 6.6: Top view of relaxed geometries of 2D SiO2, using two basis:(a)DZP and (b)TZP. It can
be seen the TZP basis ’straighten out’ more the Si-O-Si bondings.
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Figure 6.7: Equilibrium geometry of SiO2 (β-2D silica), characterized by a "squared" top view.(a)Top
view. (b) front and (c) side views.

higher than that of the SIESTA ground-state (G2 e G3) geometries. Gao et al. report a
β-2D-SiO2 energy that is 70 meV higher than that of the G1 geometry. The difference is
probably related to the methodological issues discussed above. At any rate, the energy dif-
ference between the β-2D-SiO2 and the G1, G2, and G3 geometries is of the order of the
thermal fluctuation energy per atom at room temperature.

For the sake of completeness, we report also another structure that we obtained at even
larger strains in our tensile-strain numerical simulations, shown in Fig. 6.8. This geometry
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Figure 6.8: Equilibrium geometry of SiO2, reached to high tensile strain (labeled tetraoctite-2D sil-
ica).(a)Top view. (b) Only Si atoms top view. (c) frontal and (d) side views. Most of the green bonds
between Si atoms in (b) are ficticius, but allow to appreciate clearly the 4-8 geometric pattern.

resulted from the relaxation of a highly-strained bilayer 2D-SiO2 structure. The side views in
the bottom panels show that relaxation has transformed the highly-strained 2D-SiO2 bilayer
into essentially a puckered monolayer. The scissor and rotation modes of the oxygen atoms,
that we aludded to in the introduction of our paper [109] (or more explicitly in the section 4.5,
figure 4.18), have driven the transformation.

In the top panel on the right (FIG. 6.8), we show only the Si atoms in this geometry. Most
of the “bonds” shown in this figure are not really bonds (much longer than a Si-Si bond) but
lines that were drawn to show the tetraoctite nature of this geometry. We observe that this is
very similar to the so-called tetraoctite tiling of the plane, a geometry that has been considered
as an alternative graphene structure and the motif of a fourfold plus an eightfold ring has been
considered as a grain boundary in graphene and two-dimensional boron nitride [113, 114].
This tetraoctite structure is 0.21 eV per atom higher in energy than the G1, G2, and G3
geometries.

6.2 Anomalous response of 2D-SiO2 to bending deforma-
tions

In order to obtain the bending stiffness of 2D-SiO2, we built several nanotubes of different
chiralities and diameters, by rolling up a 2D-SiO2 bilayer. These structures were fully relaxed,
using the Siesta code. A DZP basis, with MeshCutoffs (MC) of 250 Ry, were employed in
these calculations. For the majority of the nanotube structures we consider, relaxation with
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larger cutoffs of MC = 350 or 450 Ry were also performed, and these have shown rather small
changes in the energy of the tubes. So, results with MC = 250 Ry are already converged.

We performed two relaxation protocols: (i) in the first case we performed an initial relax-
ation with a small cutoff, MC = 150 Ry, and a single-zeta basis (SZ), and then the resulting
structure was further relaxed with MC = 250-450 Ry and a DZP basis; (ii) in the second case,
we relaxed the initial structure directly with DZP and MC = 250-450 Ry, without a previous
relaxation. This has led to more than one relaxed geometry for each nanotube.

Furthermore, we have observed a tendency for the formation of kinks in the nanotubes,
as discussed in more detail below, specially in nanotubes with smaller radii, hence larger
surface curvatures. For that reason, we have attemped to modify the initial structure of some
of the nanotubes with larger radii (smaller curvatures) in attempts to induce the formation
of such kinks. This was done by flattening the initial geometry of the tubes, such that they
show an elliptical cross section, and in some cases a kink was also introduced by hand on
the flattened geometry. These procedures have also led to the formation of new metastable
nanotube geometries in some cases, as discussed in the following.

The resulting relaxed structures of the (n,0) zigzag (ZZ) tubes are shown in Fig. 6.9, and
Figs. 6.10- 6.11 show the structures of the (n,n) armchair (AC) nanotubes. The three rightmost
panels in the lower line in Fig. 6.11 show three nanotubes of mixed chiralities (MC): (n,m) =

(10,4), (12,3), and (16,4).

(16,0) (20,0) (22,0)

(24,0) (26,0) (28,0)

Figure 6.9: Relaxed geometries of 2D-SiO2 nanotubes, zigzag (ZZ) quirality (n,0). The picture shows
the ocurrence of different final configurations to the same quirality. Some of them are characterized by
the formation of kinks and plane regions to reduce the final energy.

As can be observed in the figures, our different numerical protocols have produced several
different metastable morphologies for AC, ZZ, and mixed-chirality tubes. We observe more
than one kink morphology, in these different nanotube morphologies, particularly so for tubes
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(10,10) (14,14)(8,8)

(12,12) (16,16)

Figure 6.10: Relaxed geometries of 2D-SiO2 nanotubes, arm-chair (AC) quirality (n,n). The (12,12)
nanotube shows an almost square morphology with one kink at each vertex: introduction of kinks has
very small energy cost. The nanotubes find various compromisses between a curved surface and a
kinked one.

with smaller radii. In particular, the process of inducing kink formation by flattening the
nanotube cross section and/or imposing a kink in the structure by hand, have led to three
different morphologies in the case of (16,16) AC tubes, in addition to the circular-cross-
section tube.

The case of the (12,12) AC nanotube is a telling one: this tube shows an almost square
morphology, with one kink at each vertex. It is clear from this example that when a 2D-SiO2

bilayer is rolled up to form a tube, formation of these kinks allow the tube to maintain large
almost flat portions that entail very small energy cost with respect to the flat bilayer. Overall,
it appears that the tubes find various compromisses between a curved surface and a kinked
one, due to the small energy cost of the kinks in this system.

The formation of these kinks is driven by the structural “easy modes” involving rotation
and scissor displacements of the oxygen atoms. In the higher curvature tubes, it appears that
the kinks form spontaneously, without an energy barrier. As the tube diameter increases,
the curvature decreases, and it appears that kink formation becomes an activated process.
We expect this process to be one that involves small barriers, given the very small energy
barriers involved in the rotation and scissor modes of “structural excitations” in this system.
This hypothesis will be tested in the near future by means of ab initio molecular dynamics
simulations.
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(18,18)

(26,26)

(20,20) (22,22) (24,24)

(16,4)(12,3)(10,4)

Figure 6.11: Relaxed geometries of 2D-SiO2 nanotubes, some of them with mixed quirality (n,m).
Low radius nanotubes show a tendency to ’amorphize’ to reduce the final energy. Small radii nanotubes
are prone to form kinks spontaneously (without an energy barrier).

We now argue that kink formation may render the response to bending anomalous in
2D-SiO2, as follows. Figure 6.12 shows the total energy per formula unit of the tubes as a
function of the radius. For comparison, the lower panel shows the energy of carbon nanotubes
as a function of radius, from Ref. [115]. The red line in the upper panel shows the energy per
formula unit of the flat 2D-SiO2 bilayer, which is the limiting energy as the nanotube radius
tends to infinity.

Note that the energy of all 32 2D-SiO2 nanotubes in our study fall within a very small
interval of ∼0.360 eV per formula unit, i.e., 0.120 eV per atom. Moreover, the energies for
different morphologies of the same tube [same (n,m) indices] differ by less than the thermal
fluctuation energy per atom at room temperature (3kT

2 = 0.04 eV).
In comparison with the case of the carbon nanotubes in the lower panel, the energy versus

radius curves for the SiO2 tubes is not smooth, and differs substantially in the behavior at
small radius, where the energies of the carbon nanotube tend to large values due to the large
uniform curvature of a small-radius carbon nanotube. In the SiO2, this energy divergence at
small radius is avoided by the formation of the low-energy kinks. Furthermore, the presence
of various different morphologies for each tube is absent in the case of carbon nanotubes.

The bending rigidity of 2D-SiO2 has been measured in Ref. [116] through inelastic helium
atom scattering (HAS). The authors report a value of κ = 8.8 ± 0.5 eV. The main ideia of
the inelastic helium atom scattering (HAS) is to bombard the elastic surface of the material
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Figure 6.12: Upper Panel: Total energy per SiO2 unit of 2D-SiO2 nanotubes, as a function of nanotube
radius. The red line signals the energy per unit of the flat 2D-SiO2 bilayer. In the lower panel, to
purpose of comparison, total energy per atom versus the radius of single-wall carbon nanotubes with
different rolling up directions. The presence of different geometries associated to the same nanotube
are absent. Source of the lower panel: [115]

with helium atoms exciting transversal vibrations of the 2D layer, measuring the change of
momentum experiencied by the helium atoms we can get the bending rigidity. This technique
is well suited to investigate mechanical properties of fragile insulating materials, because the
low energy of helium atoms assures that only the surfacial atomic layer interacts with the low
energy He atoms, also without sample damage. Additionally, it prevents deeper interactions
with the substract, doing a mapping of the topmost surface layer. In Fig. 6.12 we plot the
formation energy E f of SiO2 nanotube as a function of 1/R2, where R is the tube radius.

In Ref. [115], the authors use the following parameterization for the energy of per atom
of the carbon nanotubes:

E = E0 +
S0κ

2R2 ; (6.1)

where E0 is the energy of the flat layer, S0 is the area per atom of graphene, and κ is the
bending rigidity.

In Fig. 6.13, we plot the formation energy per formula unit of the SiO2 tubes, and the red
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Figure 6.13: Total energy of 2D-SiO2 nanotubes, as a function of the curvature radius ( 1
R2 ). The

red line indicates the energy per SiO2 unit corresponding to the flat SiO2 bilayer. Red circles signals
the first seven nanotubes with larger radii, and with more circular cross section, leading to a bending
rigidity κ=18.5 eV. Green crosses indicates 24 nanotubes with larger radii and less scattered energies,
leading to a bending stiffnessκ=18.5. Finally, a fitting of all nanotubes leads to a bending rigidity value
of κ=13.31 eV.

line shows the energy per formula unit of the flat SiO2 bilayer. The formation energy is the
excess energy of the nanotube with respect to the flat bilayer. We use the area per formula
unit of the bilayer (S0 = 6.01 Å2) and fit the energy by Eq. 6.1 above to obtain the bending
rigidity of 2D-SiO2.

We computed three different fittings of the numerical data in Fig. 6.13: in the first one
we fit only the energies of the seven nanotubes with larger radii (shown as red circles in the
figure), that show a more circular cross section. This yields κ = 18.5 eV. A second fitting
considers only 24 nanotubes with larger radii (R−2 < 0.004 Å−2) and less scattered energies,
shown by green crosses in the figure. This yields a value κ = 18.5 eV. A fitting of all 32
nanotubes produces κ = 13.31 eV, but it is quite clear from the figure that no straight line fits
well the scatter of energy values of all tubes.

Therefore, our more reliable theoretical results are about twice as large as the experimen-
tal results. We conclude this section by speculating that interactions with the substrate may
reduce or eliminate the likely existing barrier for kink formation in the flat SiO2 layer, and
the response to bending of the bilayer, even in the linear regime, may not follow the usual
quadratic behavior of the energy with curvature and 2D-SiO2 may show anomalous bend-
ing behavior. This would be the reason for the discrepancy between the experimental and
theoretical values of the bending stiffness.
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6.3 Response of 2D-SiO2 to quasi-static(QS) tensile uniaxial
strain

We have also performed numerical ab intio simulations for the response of 2D-SiO2 to a
quasi-static(QS) uniaxial tensile strain, in the armchair and zigzag directions of the SiO2

bilayer. The protocol for these simulation is as follows: we apply strain increaments of 1%,
starting from the equilibrium geometry. At each step, we allow the bilayer to relax in the
direction perpendicular to the applied strain. In this way, the system is allowed to fully relax
under the constraint of the applied strain. In the next step, the 1% increase in strain is applied
to the strained-equilibrium geometry obtained in the previous step.

energy minima

Figure 6.14: Illustration of the quasi-static(QS) process of application of a tensile strain to the 2D-
SiO2 bilayer. Starting from the equilibrium geometry, steps of tensile uniaxial strain of 1% are ap-
plied, generating a concatenated sequence of geometries of minumum energy (blue arrows), taking
the last relaxed geometry as a starting point of the next step. Each equilibrium structure (blue points)
corresponds to a constrained uniaxial strain, and the "red parables" correspond to the unconstrained
direction, in which the relaxing process are allowed.

In this procedure, illustrated in Fig. 6.14, the system follows a path of quasi-static min-
ima, as defined above. It corresponds to the physical process of tensile-strain experiments
at sufficiently, low temperatures, at the tensile strain rates at which strain is applied in such
experiments. A more conservative approach would use even smaller strain steps, but most, if
not all, of the results we obtain are not affected by the somewhat large strain increase in our
calculations, as described in the following. Figure. 6.15 shows the σ × ε curve from our QS
calculations. The following observations emerge from the figure:

(1) similarly to the σ × ε for three-dimensional SiO2 in Fig. 6.1, we observe two linear
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Figure 6.15: Stress-strain curve of 2D-SiO2 bilayer, generated in the quasi-static(QS) sequence ex-
plained before. Tensile uniaxial strain is applied in the zig-zag(ZZ) and arm-chair(AC) directions. To
small deformations ε ≤ 5% AC and ZZ response overlap. As it happens in the 3D (α-quartz) case, the
mechanical response exhibits two linear elastic-deformation regimes.

elastic-deformation regimes, for both AC and ZZ directions;
(2) as expected due to hexagonal symmetry of 2D-SiO2, in the linear regime at small

strains, the response to tensile strain is isotropic, and the AC and ZZ curves overlap for ε ≤
5%;

(3) in the second elastic regime of deformation, the lattice is stiffer in the AC direction
than in the ZZ direction;

(4) the 2D-SiO2 shows an elastic response over a large interval of tensile strains, in both
directions. The QS strain-constrained equilibrium structure at a strain ε = 30% relaxes back
to the ground-state, if the applied strain is released. Below we propose a mechanism for the
plastic response of 2D-SiO2 based on instabilities of the QS minima at higher strains, that
we observe in our calculations. But even in the regime of high strains, higher than ε = 30%,
the QS minima relax to the strain-free ground state, for tensile strains in both AC and ZZ
directions.

(5) at approximately the same value of strain, ∼ ε = 30%, where the σ× ε relation for the
3D case in Fig. 6.1 indicates the onset of failure, the σ × ε curve for the 2D lattice suggests
the onset of plastic deformation, for tensile strain in the ZZ direction. We comment on the
case of the AC direction in the following.

Let us now examine the last one of the above observations in more detail. In what fol-
lows, we argue that the scissor and rotation modes of the 2D-SiO2 lattice provide what would
amount to a mechanism of plasticity without plastic flow for the material, at very small tem-
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Figure 6.16: Quasi-static(QE) energy of the 2D-SiO2 as a function of the strain in the arm-chair(AC)
direction, corresponding to a fixed value of strain of 20% in the zig-zag(ZZ) direction. The strained
situation leads to two branches of deformation labeled as ZZ1 and ZZ2, whose different geometries
can be appreciated in the fig 6.18.
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Figure 6.17: Quasi-static(QE) energy of the 2D-SiO2 as a function of the strain in the arm-chair(AC)
direction, corresponding to a fixed value of strain of 31% in the zig-zag(ZZ) direction. The strained
situation leads to two branches of deformation labeled as ZZ1 and ZZ2, whose different geometries
can be appreciated in the fig 6.19. The green circles indicate instabilities of the QS branches.
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peratures (0 K is the temperature in our QS calculations).
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Figure 6.18: Equilibrium geometries corresponding to ZZ1 and ZZ2 branches from figure 6.16. The
diference between the two geometries shows the role played by the scissor and rotation modes in
allowing several low-energy structures available.

We start from the case of tensile strain along the ZZ direction. Figures 6.16 and 6.17
show the numerical results for the relaxation procedure illustrated in Fig. 6.14 for two values
(20% and 31%) of applied strain in the ZZ direction. In the ZZ case, we recall that the curves
shown in the figures display the energy as a function of the strain in the AC direction, for a
fixed value of the strain in the ZZ direction.

By exploring high values of negative and positive of strain in the AC direction, we were
able to identify two branches of deformation, which we label as ZZ1 and ZZ2, shown as red
and blue circles in the figures. Fig. 6.16 shows the case of a fixed strain of 20% in the ZZ
direction. The zero of the energy axis is at the minimum value of energy between the two
curves. In the minimum of each curve, the strain vanishes in the AC direction.

In Fig. 6.18 we display a top view (xy-plane) of the QS minima for the two branches, as
well as side views along the AC (x-axis) and ZZ (y-axis) in both cases. In the ZZ1 branch,
the response to the applied strain involves the scissor and rotation modes of the external-layer
oxygen atoms only. The middle-layer O atoms remain aligned with their two nearest-neighbor
Si atoms from the external layers. On the other hand, in the ZZ2 branch, the middle-layer O
atoms are also involved in the structural response to strain, being no longer aligned with their
nearest neighbor Si atoms. Another difference is that, in the ZZ2 branch, O atoms joining
Si atoms in a external layer along the AC direction are now on the same plane as the Si
atoms, while O atoms joining Si atoms along the ZZ direction remain off plane. At a strain of
εZ Z = 27% the two branches remain distinct but become degenerate near the QS minimum.
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Figure 6.19: Lower energy geometries from unstable structures coming from the ZZ1 and ZZ2
branches. At the left, a final structure coming from a ZZ2 unstable geometry, characterized by a
complex arrangement of SiO2 tetrahedra, not cracked. At the right, the unstable structure coming from
the ZZ2 branch converges in a disordered low energy geometry, characterized by undercoordinated O
atoms, also not cracked.

Figure 6.17 shows the ZZ1 and ZZ2 branches for εZ Z = 31%. The ZZ1 branch is slightly
lower in energy and for εAC =≥-11% the ZZ1 and ZZ2 branches become structurally identi-
cal. The green circles shows instabilities of the QS branches. In the ZZ1 branch, the insta-
bility occurs for εAC =≥-2%, and for εAC =≤-19% in the ZZ2 branch. Unstable structures
in the ZZ1 branch undergo a structural transition towards the lower-energy structure show
on the left in Fig. 6.19. This is an ordered structure composed of a complex arrangement of
SiO2 tetrahedra, and is certainly a stiff, not cracked, lattice. In the ZZ2 branch, the unstable
structures undergo a transition towards the structure show on the right in Fig. 6.19. This is a
disordered structure, that shows undercoordinated O atoms. It is also a stiff lattice, with no
fully formed crack.

Our view of the role of these instability in the response of 2D-SiO2 is as follows. At
εZ Z = 31%, there is an energy difference of 55 meV/atom between the QS minimum of the
ZZ1 branch and the structure with εAC =≥-3%, the stable structure immediately to the left
of the unstable geometry of the ZZ1 branch. In the ZZ2 branch, there is an energy difference
of 25 meV between the minimum and the structure with εAC =≥-18%, the stable structure
immediately to the right of the unstable geometry. Both values are of the order of thermal-
energy fluctuation per atom at room temperature (1.5kT = 39 meV). Thus, rather than remain
in the QS minimum until the lattice fractures, the 2D-SiO2 lattice undergoes transformation
to lower energy structure that are more stable at the high strains in our numerical experiment.

This picture of the problem rests on the availability of several low-energy structures in
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Figure 6.20: Quasi-static(QE) energy of the 2D-SiO2 as a function of the strain in the zig-zag(ZZ)
direction, corresponding to a fixed value of strain of 20% in the arm-chair(AC) direction. The behavior
in the AC direction is different from the ZZ orientation, the QS curve develops two aditional minima
for high compressive strains.

the potential energy surface of the 2D-SiO2 atomic lattice, connected with the low-energy
structural excitations involving the scissor and rotaion modes of the O atoms. Therefore,
rather than forming a crack, the system makes a transition to a structure that is better adapted
to the applied strain, and a should start a new σ × ε elastic response with respect to the new
minimum. Plasticity in this case would be embodied not in the formation of dislocations and
occurrence of plastic flow, but in the strain-induced transition to many available minima in
the energy surface of the system.

Let us shift now to the case of the response of the 2D-SiO2 bilayer to tensile strains in
the AC direction. Figures 6.20 e 6.21 show the QS energy as a function of the strain in
the ZZ direction, for two fixed values of the strain in the AC direction, εAC =≥20% and
εAC =≥25%, respectively. Note that in the AC direction, the process evolves differently with
strain. In Fig. 6.20, for εAC =≥20%, we do not observe two deformation modes, but the
QS energy curve develops two additional minima for very high compressive strains in the ZZ
direction.

Because the two minima to the left of the QS minimum in Fig. 6.20 merge and become the
same at an AC strain εAC =≥25% where instabilities set in, we concentrate the discussion on
the QS minimum at εZ Z =≥-6% and the second minimum at εZ Z =≥-36%. For εAC =≥20%
in Fig. 6.20, the barrier between these two mimima is 57 meV/atom, already of the order of
the thermal fluctuation energy per atom at room temperature.

The QS energy as a function of ZZ strain, for εAC =≥25%, is shown as blue circles in
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Figure 6.21: Quasi-static(QE) energy of the 2D-SiO2 as a function of the strain in the zig-zag(ZZ)
direction, corresponding to a fixed value of strain of 25% in the arm-chair(AC) direction (blue circles).
Red circles show the QS curve derived from the numerical instability in the attraction basin of the
lower minimum of the blue QS curve. Green circles indicate the QS energy derived from a instability
in the attraction basin of the first higher-energy QS minimum of the blue curve.
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Figure 6.22: Structures associated with the two minima of the QS curve in fig 6.20. Strain in the AC
direction involves displacements of O atoms from the middle layer, showing a tendency for corruga-
tion.
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Figure 6.23: Structures associated with the two minima of the QS curve in fig 6.21. Strain in the AC
direction involves displacements of O atoms from the middle layer, showing a tendency for corruga-
tion.

Fig. 6.21. Numerical instabilities set in and we obtain two new deformation paths at much
smaller energies. The QS energy curve shown as red circles in Fig. 6.21 derives from the
numerical instability in the attraction basin of the lower minimum of the blue QS curve,
while the green circles show the QS energy for a geometry that derives from an instability in
the attraction basin of the first higher-energy QS minimum of the blue curve.

The structures for the two minima of the (blue) QS curve are shown in Fig. 6.22, and the
QS minimum for the green and red curves are shown in Fig. 6.23. Response to tensile strain
in the AC direction in general involves displacements of O atoms from the middle layer and
show a tendency for corrugation in the external sublayers of the O atoms.

Therefore, again we observe that the 2D-SiO2 lattice makes transition to lower-energy
geometries at high AC-direction strains, and a “plasticity” mechanism operates, where the
lattice rather than undergo fracture, makes a structural transition to another stiff configuration
of the atomic lattice.

One final observation is that in all quasi-static energy curves we investigated here, the QS
minimum relaxes back to the ground-state, even for very large strains in both directions.

6.4 Partial conclusions - anomalous mechanical response of
two-dimensional SiO2

A singular mechanical behaviour of 2D-SiO2 bilayer, within the framework of Kohn-Sham
DFT, has been presented and adressed. The ground state geometry, experimentally stablished
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as a straight bonds geometry (labeled G1 in the text), characteristic of the hexagonal pristine
2D-SiO2 bilayer, has become matter of enlightment in this work. Here we presented three
different possible geometries to the ground state (labeled G1,G2 and G3), all of them with
little energy differences and related between them through transformations involving our so
called "soft modes". Our results sugest that however the three geometries are possible, the
different final geometries, produced by plane waves and localized atomic orbitals codes, come
from the incomplete nature of the localized basis. However, the happening of this three
almost degenerate geometries, joint with two new equilibrium geometries (β-2D auxetic and
tetraoctite-2D silica) shown early evidences of a very general statement observed in all our
work: the existence of an energy surface characterized by many metastable states.

Our Study in the anomalous response to bending deformations, through building of 2D-
SiO2 nanotubes, showed the possibility of different final geometries associated with the same
nanotube and almost degenerate energies. Also, we observe a pronounced trend despite of
the quirality, to form kinks in small radius nanotubes, in a competitive compromisse between
to curve continuously or to form a kink, leading to plane regions with very little stored elastic
energy. In small radius nanotubes (high curvature) there are no energy barriers to form a
kink, while in big radius nanotubes (small curvature) the kink formation process need to be
activated. In contrast with graphene, where the energy per SiO2 unit diverges to small radius,
the 2D-SiO2 nanotubes don’t show divergent behaviour, precisely due to the kinks formation.
Fitting the elastic energy to a quadratic expression in the deformation we obtain to the bending
stiffness a medium value of κ = 18.5 eV, using larger radii nanotubes, and κ = 13.31 eV with
all nanotubes, being clear that no straight line fits well the scatter of energy values. This value
aproximates acceptably well to the experimental value of κ = 8.8 ± 0.5 eV obtained using
inelastic helium atom scattering (HAS).

Finally, our studies in quasi-static(QS) tensil uniaxial strain, showed that the 2D behaviour
shares with the 3D (α-quartz) the interesting characteristic of two different linear regimes. In
a second place, this material exhibits a pretty wide range of elastic response, being able to
relax to the pristine geometry coming from strained geometries as far as ε=30 %, and more
surprisely, our observations shown that in all quasi-static energy curves investigated here the
QS minimum relaxes to the ground state (pristine 2D SiO2), even for very large strains in
both directions, zig-zag(ZZ) and arm-chair(AC). This 2D material offers the possibility of
several low-energy structures accesible in the termal energy range, we propose scissor and
rotation modes as the microscopic mechanisms of transit between this local minima. In this
context, our system have a "crack avoiding", because it prefers to do a structural transition to
more favorable geometry that acts as a new starting point for the mechanical strain, allowing
the possibility of stretching withouth to crack. We propose that plasticity in this material is
driven no by usual mechanisms such as formation of dislocations or plastic flow, but by the
strain-induced transition to many available minima in the energy surface of the system.



101

Chapter 7

Topological defects

Stone-Wales (SW) and other topological defects are regularly observed in two dimensional
materials [117], it consists in rotating a 16 atoms unit (or a Si-O-Si bond) 90◦ around the
center, changing the pristine four hexagons arrangement to two units of pentagon-hexagon
(so called 57 defect) (see FIG.7.1a). This bond rotation can be used to build supercell models
of amorphous 2D silica, with distributions of poligons with diferent number of sides (from 4
to 9) [7] [9] [6]. At this time we did six models of topological defects: SW (complete and su-
perior 7.1a,7.1b), 585 (complete and superior 7.1c,7.1d), and 555777 (complete and superior
7.1e,7.1f), the term superior means to rotate only the first layer of the bilayer and the term
complete means to rotate both layers. In general terms, the effect of this kind of topological
defects was to reduce the band gap through the introduction of plane states or narrow bands
near to the conduction band. As expected, the defect states show a more delocalized nature
highlighted in being necessary taking in count more and more atoms to determine atomic
contributions to the defect states.

In the case of defects SW and SW-sup, the formation energy is just the difference between
the supercell’s energy with de defect and without it (the pristin bilayer), on the other cases
(585, 585-sup, 555777 and 555777-sup) the formation energy is obtained substracting the
potential energy associated to two and four units of SiO2, to take into account the supercells
have different number of atoms. Obtained formation energies are presented in TABLE 7.1.

Majority energies of formation are between 0.59 and 5.70 eV. The defect more energet-
ically favorable are the oxygen monovacancy at the middle of the bilayer with 0.59 eV. The
less probable defects are: the Si monovacancy with a big 13.23 eV formation energy,and the
585 and 555777 topological defects, with 14.18 eV and 10.84 eV respectively. It is very inter-
esting, comparing the formation energy of SW and SW-sup, contrary to common sense, that
is more easy to turn both layers to build a SW complete defect that to turn only one layer, with
a 1.45 eV difference. the 585 defect behaves as expected: is easier to turn just one layer that
twist both layers. Finally, the defects 555777 and 555777-sup show almost the same energy.
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(a) SW (b) SW-sup (c) 585

(d) 585-sup (e) 555777 (f) 555777-sup

Figure 7.1: Relaxed geometry of Topological defects. The ’-sup’ label means that only the uppermost
layer of 2D SiO2 is involved in the built defect.

Table 7.1: Formation energy of neutral defects. In bold mode formation energies associated
with topological defects.

Defect Si-rich limit (eV) O-rich limit (eV)
V mid

O 0.59 4.95
V ext

O 1.03 5.39
VSi 13.23 4.53
Imid
O 7.97 3.61
Iext
O 5.70 1.34
ISi 4.02 12.72

AlSi -0.23 -8.95
BSi 1.28 -7.44

𝑆𝑊 − 𝑠𝑢𝑝 4.34 4.34
585− 𝑠𝑢𝑝 10.63 10.63

555777− 𝑠𝑢𝑝 10.66 10.66
𝑆𝑊 2.89 2.89
585 14.18 14.18

555777 10.84 10.84
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Chapter 8

Charged defects

As it was emphasized in the theory of charged defects, a doped semiconductor is a ionized
state of a neutral defect where charge has been transfered between the bands and the defect
states, located in the band gap. This charge transfer is usually explained as a consequence of
the more delocalized nature of the EMT states, this allows charge transfer due to the coupling
between the defect state and the edge of the bands: in a doped type n semiconductor, with
the edge of the conduction band; and in a type p doped semiconductor, with the edge of the
valence band.

As a prototype of a complete study of charged defect we present the P substitutional impu-
rity in 2D silica. The methodology used to study this defect is the usual DFT as implemented
in the VASP software [37], but constraining the electronic population, in order to create the
desired charged defect, using the Pantelides fundamental approach [23], avoiding the wide
spread method of ad hoc corrections, of the spurious Coulomb interactions between charges
from periodic images. Fixing electronic populations is a particular case of a more general
method called constrained DFT (CDFT), that minimizes the functional of the energy, usually
constrained to the number of electrons, but introducing a new Lagrange multiplier associated
with the new constrain. In this case, the electronic population in the defect level, see for
instance [118–120]. To charged defects calculations was used a 192 atoms supercell,with a
vacuum dimension of 15 Ang to avoid interaction between the periodical images. A 400 eV
Plane wave cutoff in a single Γ k-point grid. The Forces between the atoms were relaxed to
values less than 0.01 eV/A. To describe the exchange and correlation effects was used the
Perdew-Burke-Ernzehof generalized gradient approximation (GGA), while the VASP plane
augmented wave pseudopotentials, provided by the VASP distribution. The Plane Augmented
Wave (PAW) method was originally developed by Blöchl in 1994 [121], and the main ideia is
to combine the pseudopotential method with the augmented plane wave approach, in a such
way that through a transformation, between the pseudo wavefunctions and the true wavefunc-
tions, it is possible to recover the complete nodal structure into the atomic core, allowing an
efficient and precise manipulation of valence orbitals considered ’core’ as the 2p oxygen, or
the d or f orbitals to the first row of periodic table, with a less number of plane waves. About
PAW see for instance [37, 121, 122].

Just to understand in detail the emergence of defect levels induced by P substitutional,
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we start with the bands structure without spin polarization. The effect of P is to introduce a
deep level located at ε c-1.74 eV , partially ocupated with energy equal to the Fermi energy
(see figure 8.1 left). In the spin polarized calculation the defect level splits in two levels,
one occupied and other unoccupied, around the Fermi energy, the split value is 1.32 eV. The
unbalanced spin populations leads to a magnetic behavior of the P impurity.
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Figure 8.1: Scheme of energy levels of substitutional phosphorus to each charge state. Neutral defect.
Spin unpolarized (SU) and spin polarized (SP) calculations. In the spin unpolarized calculation the
defect level is half filled. In the Spin polarized case, we have a 1.32 eV spin-splitting, leading to a spin
maiority state filled and a spin minority state empty.
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Figure 8.2: Scheme of energy levels of substitutional phosphorus to each charge state. Positively
charged defect. Spin unpolarized (SU) and spin polarized (SP) calculations. In the spin unpolarized
(SU) calculation the defect level is fill, because one electron initially in the defect state was promoted
to the conduction band, leading the localized defect state positively charged. In the spin polarized (SP)
case, we have a 0.11 eV spin-splitting. One electron was promoted to the conduction band, leading the
localized defect positively charged.
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Figure 8.3: Scheme of energy levels of substitutional phosphorus to each charge state. Negatively
charged defect. Spin unpolarized (SU) and spin polarized (SP) calculations. In the spin unpolarized
(SU) calculation the defect level is full, one electron initially in the valence band was promoted to the
defect state, leading the localized defect state negatively charged. In the spin polarized (SP) case, we
have a 0.09 eV spin-splitting. One electron was promoted from the valence band, leading the localized
defect negatively charged.

(a) P0 (b) P+1 (c) P-1

Figure 8.4: Detail of relaxed geometry of substitutional phosphorus to each charge state. a) Neutral
defect b) Positively charged c)Negatively charged.

The formation energy is essentially the difference between the supercell with the defect
and the pristine bulk, taking into account the energy insered or drawn to the system by the
replacement of the host for the impurity through the chemical potential of each atomic specie:

Ed
f = (Ed

tot − µP) − (Ebulk
tot − µSi); (8.1)

where µP and µSi are the chemical potentials associated with each atomic specie. To
charged defects the formation energy depends additionally on the position of the Fermi en-
ergy, that accounts the energy added or substracted to the system associated by the addition
or substraction of an electron:
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Ed
f = (Ed

tot − µp) − (Ebulk
tot − µSi) + q(µe + εv); (8.2)

where, q is the electronic charge corresponding to the number of electrons added or sub-
stracted, and εv is the energy of the top of the valence band, it taked generally as reference,
and can be defined as zero.

The positively charged defect (q=+1) is builded from the neutral, taking as starting point
the wavefunctions and density previously converged in the neutral charge state, but con-
straining or fixing by hand the electronic populations to guarantee the defect to be positively
charged. In the P impurity case, we have to promote the only one electron in the defect level
to the conduction band. To get a negatively charged defect we need to promote an electron
from the valence band to the only one unocuppied state on the defect level. Is it worthy recall
that in creating charge states plays an essential role the localized character of the defect level
in contrast with the totally delocalized nature of the scattering solutions from the bands.

Looking to the relaxed geometries, the q=+1 geometry fits in the original geometry with-
outh appreciable distortion, and shows a lower energy that the q=-1 charge state. The neutral
defect appears most like middle way between these two extremes. Is result is not surprising,
the positively charged defect resembles the original electronic valence of the Si host atom.

Note that are not more possible charge states to this defect level, because the defect level
only has two states to occupate. However, in general, other charge states with more states
in the gap, allow higuer charge states just promoting electrons to the conduction band to
generate positively charged states (q=+2,+3,..); or from the valence band to the defect levels
to generate negatively charged states (q=-2,-3,..). Of course, the energy is increased to higuer
charge states and eventually those will be unstable.

According to the chemical environment we hace two limiting conditions: Si-rich con-
dition and O-rich condition. To each one we have different formation energies and stability
conditions to the defect. In the Si-rich condition, the q=+1 defect, despite of being possible in
terms of available states, presents high energy in the disposable electronic chemical potential,
that runs from zero to the gap value (Eg=5.6 eV), so is unstable. Only neutral and negatively
charged states are possible (see figure 8.5(a)).Furthermore, on the O-rich condition, is also
unstable the q=+1 charge state, in comparison with the neutral and negatively charged states
(see figure 8.5(b)).

8.1 Partial Conclusions - Charged defects

The energy of formation of neutral defects is well defined and it does not offer a challenge, un-
less the natural computational cost associated with the number of atoms in the supercell. The
problem of determine formation energy of charged defects, within first principles DFT su-
percell approach, deals with the Coulomb interaction between the periodical images, induced
by the boundary periodic conditions. There are two basic methods to face with this problem:
in first place, ad hoc corrections, through multipolar fittings of total energy from supercells
with different size in the infinite supercell limit; and the fundamental WZP method [23, 67],
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Figure 8.5: Formation energies, as a function of the Fermi level (µe), for P substituing Si in 2D SiO2
bilayer. a)For silicon-rich condition.b)For oxygen-rich condition. The slope shows the charge state
according with 8.2. Neutral:0 (black horizontal line) ,q=+1 (red line), q=-1 (blue line).

avoiding spurious introduction of truly charged defects, keeping the charge neutrality in the
supercell, allowing the charge transfer between the localized defect states and the delocalized
bands.

We study the charge states induced by a phosphorus impurity, substituing silicon in 2D
SiO2, thought the WZP method. This metodology uses the usual DFT approach, but con-
straining the electronic population at the defect states by hand, transfering charge between
the defect and the bands. The phosphorus (P) impurity generates an only one defect state
half filled in the gap. In the neutral impurity this state is spin splitted, in two spin levels:
the maiority spin state is filled and the minority state is empty. Transfering charge between
the localized defect level and the delocalized wavefunctions of the bands we attain a state
positively charged, where both spin levels in the gap are empty; and a negatively charge state
where both spin splitted defect levels are filled.

The minimum energy DFT algoritm, leads the supercell to three different relaxed geome-
tries: The neutral defect, tilts two of the three Si-O-Si bonds in the external layer where
the guest phosphorus is located; the positively charged defect leads the geometry almost un-
changed, what is expectable because a positively ionized phosphorus have the same silicon’s
valence ; finally, the negatively charged defect, where the geometry is strongly distorted orig-
inating oxygen and phosphorus dangling bonds. Analizing the formation energies as a func-
tion of the electronic chemical potential, ranging through the gap (5.6 eV), show that only the
neutral and the positively charged states are allow, in both chemical environments considered:
Si-rich and O-rich conditions.
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Chapter 9

Publications

Our study of 2D-SiO2 originated the following publications:

Figure 9.1: Publication about structural and electronic properties induced in 2D-SiO2 by native de-
fects.
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Chapter 10

Conclusion and perspectives

Structural, electronic and mechanical properties of the 2D-SiO2 bilayer has ben studied,
within the Kohn-Sham DFT framework, using the PBE-GGA functional to describe exhange
and correlation effects. The pristine bilayer is a ultrathin insulator with a direct band gap of
5.6 eV, understimating the experimental value (6.7 eV) only in 16 %. In this insulator, dan-
gling bonds are absent, displaying chemical bonds completely saturated. The valence band
comes from non bonding p-like orbitals from the oxygen atoms located at the external lay-
ers, and the conduction band is derived from s and p orbitals from silicon atoms. As part of
the valence band, 2D SiO2 displays a strong van Hove singularity from pz-like orbitals from
the external oxygens. This singularity should give rise to a strong peak in the ultravioleta
absortion.

2D SiO2 reacts locally to all the studied point defects: natives and substitutionals. The
two honeycomb lattices remain practically unafected by the presene of the defects, unless at
the core region. In this study we propose the system responds to point defects while low-
energy structural excitations: a scissor mode, where the Si-O-Si bonds change the angle, and
a rotation mode where the Si-O-Si bond turns around the Si-Si minimal distance. we believe
those soft modes are in deeply relation with the anomalous behaviour of 2D SiO2.

In terms of electronic structure, oxygen monovacancies and single interstitials act as am-
photheric trapping centers in 2D-SiO2. The novelty of this study rests in the strongly localized
nature of shallow states induced by the defects. In a 3D material, the behaviour expected is
shallow defects being EMT states, with certain degree of delocalization, and deep defects to
be strongly localized. in 2D SiO2 we find shallow states and ressonances strongly localized,
due to quantum confinement and enhanced Coulomb interactions. According with forma-
tion energies, we expect oxygen vacancies as the most abundant defect in 2D SiO2, in the
range of chemical potentials considered. The middle layer oxygen vacancy is the most stable
defect over the three-fifths of the energies ranging through the gap, from the valence to the
conduction energies. Interstitial oxygen appears as the more stable defect in the O-rich limit.

In the study of Al and B as group III impurities, substituing the Si atom, Al shows a
more stable configuration. Both substitutional species show spin-splitting of the levels in
the gap. Strikingly, the Al impurity induces a spin separation, showing a diferent degree of
localization to each spin channel. The chemical stability of the 2D silica permits, in principle,



110

the use of ultrathin 2D SiO2 as insulating layers in magnetic tunnel junction devices, based
in the tunneling magnetoresistance (TMR), indiced by the insertion of a very thin insulator.
Additionally, considering the spin separation, the insering of a P doped 2D silica would to
lead to interesting phenomena.

Considering topological defects, builded in the silica bilayer, starting with the pristine
cell and introducing stone-wales rotations, we find the SW as the more stable defect. It is
interesting that in the SW and SW-sup defects, contrary to the common sense, it is more easy
to turn both layers than to turn just one.

The phosphours substitutional is studied in their several charge states, through the Wu,
Zhang and Pantelides’s methodology, that avoids the spurious introduction of truly charged
defects, keeping the charge neutrality in the supercell, transfering charge as happens in the
nature: between the defect state and the bands. It admits only three charge states, neutral,
positively and negatively charged. Only neutral and negatively charged states are allow in the
range of considered chemical potentials.

A Singular mechanical behaviour was founded in 2D-SiO2 silica. In first place, we iden-
tify three possible geometries to the ground state, in contrast with the only one reported by
the experiments. This difference was adressed as a effect of the localized basis incomplete-
ness. However, this numerical artifact showed early evidences of a very general statement
observed throughout the entire work: the existence of an energy surface characterized by
many metastable states. The study of bending stiffness, through building 2D silica nanotubes
eliminates the divergent behaviour to small radius nanotubes, as observed in graphene for
instance, due to the kink formation that reduces the energy of the system. To the bending
stiffness we obtain a medium value of κ=13.31 eV in a acceptably well agreement with the
experimental value (κ=8.8±0.5 eV), obtained from a simple quadratic fitting. Finally, con-
sidering the quasi-static sequence where a tensile uniaxial strain is applied to the 2D silica,
we found two linear elastic regimes, agreeing with the 3D (α-quartz) behaviour obtained with
molecular dynamics. Also our 2D silica exhibits a wide range elasticity, being able to re-
cover to the unstrained ground state starting from: high tensile values of strain, or from a
nanotube curved geometry. Overviewing all deformation tests applied, we conclude that the
2D silica has an energy surface offering many minima or metastable states, we propose the
transit between them could be driven by the scissor and rotation low energy modes. The crack
avoiding behaviour (kind of superelastic) is not driven by dislocations or plastic flow, but we
propose a strain-induced transition that takes a more favorable energy as a starting point of a
new deformation cicle, in certain way "resetting" the strained memory, thus allowing a highly
flexible behaviour.

As perspectives, 2D SiO2 silica bilayer despite its apparent simplicity hiddens many in-
teresting details and potential applications. Along the way working with it in the computer
DFT simulation, it leave a trace of interesting problems to be adressed:

In first place, as was stated in the introduction, to do a complete quasi-static cicles of
loading and unloading to explore the complete stress-strain curve, taking into account the
anomalous mechanical response and the wide elastic behaviour founded in this material.
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Formation energies of topological defects (585, 555777) builded complete or only in the
superior surface, appear higher that previous published results [117]. Where is the problem?
Maybe the supercell size and interaction between the periodic images, give the size of the
topological defects, far from point defects studied in the first part. In the paper they use
thousands atoms supercell, while we use at most 432 atoms.

The Pantelides metodology is clean and appears more correct than doing ad hoc correc-
tions. However, in the VASP code it was dificult to converge the calculations to the charge
states in all the other defects studied (the only one converged quickly and easy was the P
impurity).

Would be interesting to implement the Pantelides methodology in the SIESTA code (in
fact it has a paper that claims to have made it), to take advantage of the previously converged
supercells with all the point defect studied.

Quartz is a piezoelectric material. Silica 2D as a material based in the building tetrahedral
units [SiO4] could be also enhanced piezoelectric response, it also doesn’t have inversion sym-
metry. By other side, monolayer transition metal dichalcogenides (TMDC) exhibit stronger
piezoelectric response [123]. it would be interesting to calculate piezoelectricity in 2D-SiO2

using the modern polarization methodology (Vanderbilt-Resta).
To calculate polaronic behaviour in 2D-SiO2. It shows characteristics (such as the narrow

top of the valence band) that could be interesting for polaron formation.
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