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Abstract

Production scheduling is a challenge and opportunity for many industries seeking to

improve their resource utilization and decrease their manufacturing costs. Despite that,

there are still companies conducting this complex decision-making process manually, with

limited business analysis. In this context, and aligned with the actual digital revolution,

this research focuses on solving a scheduling problem in a multinational steel heat treatment

line. A bi-objective model is proposed to minimize the line total energy costs and total

tardiness. The solution is carried out through a matheuristic – a technique that combines

metaheuristics and mathematical programming – which allows getting alternative solutions

for production planning. A Mixed Integer Linear Programming model is designed to

generate initial solutions to a Multi-objective Variable Neighborhood Search algorithm.

Also, a fix-and-optimize heuristic is recommended to polish the algorithms’ solutions,

pulling them to the optimal front. One benefit of this proposed approach is handling

large-scale problems, common in practical production scheduling cases, with reasonable

computational time, alternative quality planning, and eligible scalability. The suggested

matheuristic is proven to be statistically superior to the metaheuristic alone, taking

as performance metric the final approximated Pareto solutions’ hypervolume. Tests

performed with real data from the industry showed improvements in the scheduling of the

heat treatment line with reductions of energy costs and tardiness up to 14% and 100%,

respectively. The methodology can also extend to other production lines of the company

in the future.

Keywords: Scheduling. No-wait flow shop. Matheuristic. Multi-objective optimization.

Energy consumption. Steel industry.



Resumo

O sequenciamento da produção é um desafio e uma oportunidade para muitas indústrias

que buscam melhorar a utilização de seus recursos e diminuir seus custos de fabricação.

Apesar disso, ainda existem empresas que conduzem esse complexo processo de tomada de

decisão de forma manual, limitando as análises dos negócios. Nesse contexto, e alinhado

com a atual revolução digital, esta pesquisa tem como foco a solução de um problema de

sequenciamento em uma linha de tratamento térmico de uma siderúrgica multinacional.

Um modelo bi-objetivo é proposto para minimizar os custos totais por consumo de energia e

o tempo total de atraso na produção. A solução da formulação é realizada por meio de uma

heurística matemática - técnica que combina metaheurística e programação matemática -

permitindo a obtenção de soluções alternativas para o planejamento da produção. Um

modelo de Programação Linear Inteira Mista é projetado para gerar soluções iniciais para

um algoritmo Variable Neighborhood Search multiobjetivo. Além disso, uma heurística

fix-and-optimize é apresentada para polir as soluções dos algoritmos, puxando-as para a

fronteira Pareto ótima. Um benefício desta abordagem proposta é lidar com problemas

de grande escala, comuns em casos práticos de programação de produção, com tempo

computacional razoável, oferecendo planejamentos alternativos de qualidade e desejada

escalabilidade. A heurística matemática sugerida provou ser estatisticamente superior

a uma abordagem puramente metaheurística, tomando como métrica de desempenho o

hipervolume final das soluções do Pareto aproximado. Testes realizados com dados reais

da indústria mostraram melhorias no sequenciamento da linha de tratamento térmico

com reduções de custos de energia e atrasos de até 14 % e 100 %, respectivamente. A

metodologia também pode ser estendida a outras linhas de produção da empresa no futuro.

Palavras-chave: Sequenciamento. No-wait flow shop. Heurísticas matemáticas. Otimiza-

ção multiobjetivo. Consumo de energia. Indústria siderúrgica.
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1 Introduction

1.1 Motivation

In 2019 the steel industry was responsible for producing 1.8 billion tons of steel

(WORLD STEEL ASSOCIATION AISBL, 2020) widely used in construction, automotive

industries, oil and gas sectors, and other consumer products. Despite its primary impor-

tance, manufacturers have faced challenges over the past years due to the decrease in

demand and market overcapacity, forcing them to look for solutions to increase reliability,

efficiency, and productivity.

In this scenario, production scheduling arises as an essential tool to promote an

adequate use of the manufacturing resources. It is not easy to find the optimal allocation

of people, machines, stocks, and tasks over time. The combinatorial nature of these

problems includes an extensive search throughout possible solutions that, depending on the

problem size, cannot be done in a feasible time, even with the use of computer algorithms.

Therefore, many real scheduling problems require the use of optimization techniques.

This research is motivated by a real scheduling case in a multinational steel factory.

Figure 1.1 shows the industry’s production stages: ironmaking, steelmaking, continuous

casting, rolling mill, heat treatment, and finishing lines. The first three processes are

responsible for the iron extraction from ores, its conversion to melted steel, and later

solidification through the continuous casting machine. The following rolling stage conforms

the metal and adjusts its dimensions. Next, the material goes over the heat treatment for

improving mechanical properties and, finally, through finishing lines to be forged, beveled,

and cased in consonance with the customer’s specifications. The focus of this study is the

heat treatment production line and its particular scheduling goals.

The heat treatment (HT) production line is an energy-intensive process that impacts

clients’ delivery dates and profits for this specific industrial unit. However, it has not

drawn as much attention as steelmaking and continuous casting in the scheduling literature

(TANG et al., 2001; LI, 2014). For this reason, it was chosen as a pilot project with

the possibility of later dissemination into lines that have similar characteristics, such as

rolling mill and finishing. The research is part of a strategic Industry 4.01 initiative of the

company that has invested in the development of global planning solutions with elaborated

information systems and optimization.

1 Industry 4.0 is a new manufacturing paradigm that empowers smart production with the adoption of
intelligent equipment, Internet of Things (IoT), big data analytics, and integrated systems, as detailed
in Chien, Liao, and Dou (2018). Harjunkoski et al. (2014) explains how production scheduling solutions
can be a part of this industrial transformation.
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Figure 1.1 – Steel industry manufacturing processes.

The HT line is a flow shop in which four machines (three furnaces and one

intermediate cooling bed with a water immersion system), set up in series, process n jobs.

The process is continuous, and once the steel pieces of a job go inside the line, they flow

through the machines by walking beams in the same order without interruption. Operations

must follow one another immediately to avoid the degradation of the high-temperature

materials and reprocessing. There are no waiting times between two successive devices.

This no-wait restriction is frequent in metallurgical processes and other environments like

chemical industries (ARABAMERI; SALMASI, 2013).

Products with different treatment settings require a setup to change the furnaces’

temperatures. These equipment have heating rates faster than their cooling rates, so their

preparation times vary according to the jobs’ scheduling. When poorly planned, these

sequence-dependent setup times can increase the process idle times, the total completion

time, and the energy consumption.

This work aims to find scheduling solutions for the HT line modeled as a no-wait

flow shop with sequence-dependent setup times (NWFSP-SDST). The goal is to minimize

the production total energy costs (TEC) and total tardiness (TT).

The steel pieces in the HT line are heated in combustion furnaces powered by

natural gas (NG). This fuel represents the bigger portion of changeable costs in this

manufacturing line, and there is a maximum consumption per month agreed with the

supplier. Minimization of this consumption can reduce production expenses, contractual

fines for excessive demand, and environmental impacts. According to Zhang and Chiong

(2016), investment in new equipment and hardware can contribute to industrial energy

saving, but it is often costly. On the other hand, using techniques such as scheduling

optimization can also promote energy saving with manufacturing reduced costs. The same

concern is also present in recent steel industry applications from Hadera et al. (2015),
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J. Wang et al. (2016) and Zhao, Grossmann, and Tang (2018).

The HT short-term schedules are manually calculated and often restricted to two

or three days to avoid rework from unexpected events, such as machine breakdowns.

The scheduling decisions are made to increase the overall equipment efficiency (reduce

setup times) and meet the due dates to hand over the products to the finishing lines. A

master plan defines these due dates to coordinate the manufacturing stages and accomplish

the clients’ final delivery requirements. A delay in the HT line can postpone finishing

production and final material dispatch, which can generate contractual fines – so far, not

distinguished by the client – and customer complaints.

The total energy costs and total tardiness objectives represent a trade-off, which

is common in many real scheduling applications. When conflicting objectives must be

achieved simultaneously, a multi-objective optimization framework is applicable. The

advantage of using a multi-objective approach is presenting to the decision-makers a set

of compromise solutions from which they can choose the more appropriate one (SILVA;

BURKE; PETROVIC, 2004). In the HT line, this can be useful because client demands

can vary over time, and the natural gas consumption can become a bigger problem at the

end of the months when its supply gets closer to the contractual limits. One objective

aims at the specific HT line’s financial results, and the other targets a global result with a

focus on client satisfaction.

In this work, we propose a multi-objective matheuristic to solve the NWFSP-SDST

scheduling problem’s practical variant. Matheuristics, or mathematical heuristics, are

hybrid algorithms that combine heuristics and metaheuristics (MH) with mathematical

programming (MP) to solve real and complex optimization problems. Metaheuristics

are high-level strategies that guide non-specific problem searches to find near-optimal

solutions within a reasonable time. Mathematical programming is a branch of operations

research that relies on mathematical formulations and techniques to find optimal decision-

making solutions. These methods ensure that the solutions found are optimal, but, in

general, they are restricted to small instances, when dealing with complex and challenging

problems (RAIDL; PUCHINGER, 2008). Matheuristics lie on exploring the strength of

these optimization methods concerning the quality of solutions and the search time used

to find them (CROCE; GROSSO; SALASSA, 2014; TALBI, 2016).

For a long time, mathematical programming was an isolated research field from

metaheuristics, being studied by distant communities. However, in the last few years,

researchers have recognized the potential of combining these two methods in complex

problems (RAIDL; PUCHINGER, 2008). Despite its potential, few works apply matheuris-

tics in the scope of multi-objective optimization. Ehrgott and Gandibleux (2008) cites

four successful cases of this hybridization in multi-objective combinatorial optimization

problems, and this author is not aware of any article or work solving the multi-objective
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NWFSP-SDST problem with the use of mathematical heuristics. Therefore, this research

is original.

The proposed matheuristic is a sequential execution of an exact method, a MILP

heuristic, and a local search metaheuristic. In the exact method, a commercial solver

is used to solve two single-objective problems. The focus is to introduce two initial

solutions, one minimizing the total tardiness and the other the total energy costs, to

map the Pareto front. The MILP heuristic is a fix-and-optimize approach that works

as a solution polishing to improve TT and TEC. Finally, the local search metaheuristic

is a Multi-objective Variable Neighborhood Search (MOVNS) algorithm, responsible for

exploring the search space to map the complete approximated Pareto front.

The steel industry scheduling instances are too large (minimum of 30 jobs) to

be solved exactly within a reasonable time. Thus, we propose a strategy to reduce the

problem’s size in the first step of the matheuristic. It provides the optimal solution in terms

of energy costs, good enough cost functions for the total tardiness, and good computational

time (median runtimes of around 60 seconds for each objective).

Tests conducted with real data from the steel industry indicate that the MOVNS

algorithm benefits from the initial solutions generated with mathematical programming.

They support the MOVNS diversity and convergence in terms of the approximated Pareto

front hypervolume. Moreover, the matheuristic execution time scales well for all instances,

with a complete runtime of 2.5 hours for the worst case, with almost 100 jobs.

1.2 Goals

The following general objective guides this research: mathematical heuristic devel-

opment for solving a multi-objective no-wait flow shop scheduling problem with sequence-

dependent setup times with application in a practical steel industry scheduling problem.

Other specific objectives are drawn to achieve the main goal:

• Study of mathematical models for the NWFSP-SDST problem and definition of a

multi-objective formulation for the heat treatment total energy costs (TEC) and

total tardiness (TT) minimization;

• Study and proposition of exact methods and MILP heuristics to generate and improve

solutions in terms of TT and TEC;

• Suggestion of a Multi-objective Variable Neighborhood Search algorithm with suitable

configurations to solve the HT scheduling problem;

• Application of the proposed matheuristic and analysis of the results over the decision-

making process of the steel industry production planning.
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1.3 Thesis Contributions

The primary contributions of this thesis are:

• Making a more in-depth study of the heat treatment scheduling problem for steel

industries;

• Defining mathematical models for the HT problem adapted from classical no-wait

flow shop formulations;

• Creating a multi-objective matheuristic general enough to be easily adapted to

similar NWFSP-SDST processes;

• Designing a strategy to reduce the problems resolution size to solve them exactly,

reaching energy-cost optimal solutions;

• Developing a solution polishing strategy based on MILP heuristics to improve a

solution in the direction of the desired objective function;

• Demonstrating the benefits of using mathematical programming with local search

metaheuristic in multi-objective real scheduling applications that require good

solutions within a reasonable computational time;

• Estimating the gains of applying the methodology in the steel industry by comparing

the matheuristic solutions with the real executed sequence.

1.4 Text Organization

This document has six chapters, including this introduction that presents the

research motivations, specific objectives, and contributions.

The second chapter explains the heat treatment scheduling problem in detail, as it

is relatively new in the scheduling literature. Examples, figures, and equations justify the

problem classification and demonstrate its parameters.

The third chapter reviews two classical formulations – based on the permutation

flow shop – for the NWFSP. It also reports a simplified formulation as a Traveling Salesman

Problem. Finally, there is a literature survey of multi-objective NWFSP solving approaches

and mathematical heuristics.

The fourth chapter details the heat treatment multi-objective model and the

proposed matheuristic, describing the generation of the initial solutions, the MILP heuristic

polishing, and the local search metaheuristic.
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The fifth chapter shows the results of computational experiments held with data

from the steel industry. Two HT scheduling formulations are compared, and the solution

polishing benefits are evaluated. The designed MOVNS performance is also tested and

compared to common configurations of combinatorial scheduling problems. Lastly, the

expected gains for the steel industry of the proposed multi-objective matheuristic are

simulated.

The final chapter synthesizes this work with a critical analysis of its results. It also

suggests possible research topics for the continuity of this work.
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2 The Scheduling Problem

2.1 The Heat Treatment Process

Heat treatments (HT) are tightly controlled operations in which metals are heated

and cooled at specific rates to obtain particular mechanical properties, such as hardness,

strength, toughness, ductility, and elasticity. There are several types of heat treatments

for metals and alloys, and each of them has a specific technique and objective to make

the material suitable for a particular application. Some of the different processes are

normalizing, annealing, stress relieving, surface hardening, quenching, and tempering

(DOSSETT; BOYER, 2006). The last two are the relevant ones in this study.

The quenching and tempering (QT) process can be divided into three steps:

austenitizing, quenching, and tempering. In the first phase, the metal is heated above

the steel transformation temperature starting to change its microstructure. Next, it is

rapidly cooled down to achieve the desired hardiness property, the primary objective of

the quenching process. Finally, in the tempering stage, the hardened steel is reheated to

increase its ductility and toughness and then slowly cooled (DOSSETT; BOYER, 2006).

Figure 2.1 illustrates the temperature curve of a material during a QT treatment.

Figure 2.1 – Desired temperature profile during quenching and tempering.

(Redrawn from source: tec-science (2018))

Figure 2.2 shows the layout of the studied QT line. The process begins in the

hardening furnace (HF), also known as the austenitizing furnace. Immediately after the

material is heated, each steel piece goes into a water cooling system, where it is rapidly

cooled down. After the water immersion, the material goes through a cooling bed (CB)

and then enters the tempering furnaces (TF1 and TF2). Finally, the material is slowly

cooled down by still air in the subsequent cooling line (CL).

The furnaces and cooling beds are scaled for high production, and they are capable

of treating more than one steel piece with the same process conditions simultaneously, as
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Figure 2.2 – Schematic of the heat treatment production line.

The colored rectangles represent the steel pieces that move through the line walking beams
(white rectangles) following the directions of the arrows. The gray rectangles exemplify cold
pieces that turn red once they are heated up. The presented machines are hardening furnace
(HF), water cooling system (WC), cooling bed (CB), and tempering furnaces (TF1 and TF2).

After the last furnace, the pieces leave to a cooling line (CL).

in batch processes. In Figure 2.2, there are two jobs in the process. The first one has 31

pieces in the tempering furnaces, and the second one has nine pieces in the hardening

furnace and water cooling system. Each machine has its capacity, which is the number of

walking beams inside the equipment (each beam moves only one steel piece at a time).

The white rectangles of Figure 2.2 represents the walking beams.

In the steel industry quenching and tempering line, a client request for some steel

pieces of a particular product generates a production job with specific process parameters,

that are: production flow rate for each piece and treatment temperatures in the HF

and TF furnaces. The combination of these parameters establishes the desirable heating

and cooling curves of the treated material, as presented in Figure 2.1. A steel piece is

reprocessed if it does not comply with the adequate curve.

The discrete process is without interruption, and once a material goes inside the

HF, it flows through the machines in the same order without interruption, according to

the arrows shown in Figure 2.2. Operations must follow one another immediately to avoid

the degradation of the high-temperature materials. There are no waiting times between

two successive devices. This no-wait restriction is frequent in metallurgical processes and

other environments like chemical industries (ARABAMERI; SALMASI, 2013).

Products with different treatment settings require a line setup, which is needed to

change the furnaces temperatures. These equipment have heating rates faster than their

cooling rates, so their preparation times vary according to the jobs’ scheduling. When
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poorly planned, these sequence-dependent setup times can increase the process idle times,

the total completion time, and the energy consumption.

2.2 Scheduling in the Heat Treatment

In this work, the HT line is modeled as a no-wait flow shop with sequence-dependent

setup times (NWFSP-SDST). The following sections detail the problem classification and

scheduling particularities.

2.2.1 Problem Classification

Scheduling problems are described and distinguished in the literature by a triplet

α|β|γ. This notation was proposed by Graham et al. (1979) to represent, respectively, its

machine environment, processing characteristics, and optimality criteria. The machine

environment α is normally expressed by an uppercase letter and the number of machines.

The β field can have multiple entries to show different aspects of the process such as

permutation, precedence constraints, no-wait restrictions, and sequence-dependent setup

times. The γ field specifies the scheduling objectives, which can be one or more.

The HT scheduling problem three field representation is F4|nwt, sirk|TT, TEC: a

flow shop of four machines (F4) with no-wait (nwt) and sequence-dependent setup times

(sirk) restrictions to minimize the production total tardiness (TT) and total energy costs

(TEC).

A flow shop (FSP) is a well-known machine environment, typical in many man-

ufacturing facilities, in which m machines are set up in series, and they process n jobs

following the same route (PINEDO, 2012). Figure 2.3 illustrates in a Gantt chart1 the

progress of two jobs in a three-machine flow shop in which it can be seen that the kth

operation of a job is performed in the kth machine, and for each pair of job and machine

there is a specific processing time.

A no-wait flow shop (NWFSP) is a particular case of a FSP where the operations of

a job from machine 1 to m cannot be interrupted, and there are no waiting times between

two successive devices. In Figure 2.3 it is possible to see that the second job (J2) has

to wait for the availability of machine three (M3) after processing in machine two (M2).

This cannot happen in the quenching and tempering line because the steel would lose

its temperature, harming its mechanical properties. Therefore, in the no-wait scenario,

additional time has to be added before the start of the second job in the first machine

(M1) so that all of its operations can continuously follow each other.

1 A Gantt chart is a type of bar chart used to illustrate a schedule. The vertical axis displays the tasks
and the horizontal axis the time intervals. The width of the parallel bars shows the duration of each
activity.
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Figure 2.3 – Flow shop Gantt chart.

Figure 2.4 exemplifies the effect of the no-wait constraints in the flow shop Gantt

chart, in which three units of time delay the start of the second job. This characteristic is

frequent in many practical cases (plastic production, chemical industries, and metallurgical

processes), in which the wait between machines can damage the products, and it also

appears in just-in-time manufacturing, which does not maintain inventories between the

stages of production (NAGANO; MIYATA, 2016). Another singularity of a NWFSP is

that the order of the tasks for all machines is the same, so the first material that goes

into production is also the first to get out (PINEDO, 2012). This last feature is called

permutation flow shop.

Figure 2.4 – Flow shop Gantt chart with no-wait constraints.

Another common feature in manufacturing processes is the preparation time for

each machine, also known as setup time. This time can be used to change a piece of

equipment to treat a new product, adjust them with new device parameters, among other

activities. They are classified as sequence-independent or sequence-dependent, in which the

preparation time of a job changes according to what has been processed before. The latest

is the case of the HT scheduling problem because it takes longer to setup up the furnaces’

temperature from a material with a high temperature to a low one than otherwise.

Sequence-dependent setup times (SDST) interferes with line productivity and,

when poorly planned, can increase the process idle times and total completion time. This

is demonstrated in Figure 2.5 that includes SDST (hashed rectangles) in the NWFSP

shown in Figure 2.4. The setups from J1 to J2, shown in 2.5a, are longer than the setups
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from J2 to J1, shown in 2.5b. Therefore, the idle times and the completion time of the

jobs in the machines are bigger in the first scenario. Because of its importance and impact,

in the mid-1960s, SDST were explicitly considered in production scheduling researches,

mainly driven by industrial and services applications (ALLAHVERDI, A., 2015).

(a) Setups from job 1 to job 2.

(b) Setups from job 2 to job 1.

Figure 2.5 – Effect of sequence-dependent setup times in a no-wait flow shop Gantt chart.

2.2.2 Scheduling Parameters

A job i in the QT line represents a set of steel pieces, yi, requested by a client.

These pieces require the same process settings: the furnaces temperatures, tik, and the

walking beam cycle time, ci (given in seconds), which is the same in all the m machines

(the material speed is constant during the whole process). For each job, i, there is a

due date, di, which represents the maximum date the next production stage expects to

receive the treated steel pieces. Table 2.1 illustrates these process parameters in a five jobs

fictitious instance. These values were created to clarify the process and do not represent

the study case reality, in order to protect company sensitive information. The temperatures

of columns 4 to 7 were defined based on the QT typical ranges presented in Dossett and

Boyer (2006).

Figure 2.6 shows a schedule view of the heat treatment line for the fictitious instance

of Table 2.1. The jobs are sequenced in the same order they appear in the table. The

x-axis, on the top of the graph, displays the machines with a scale band proportional to

the machine capacity. The hours are on the vertical axis, and the parallelograms represent

the five consecutive jobs.
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Table 2.1 – Fictitious instance with five jobs for demonstration of the QT scheduling
problem.

i yi ci[s] ti1[
◦C] ti2[

◦C] ti3[
◦C] ti4[

◦C] di

1 45 40 825 0 300 400 1
2 90 20 850 0 325 475 1
3 70 20 850 0 325 475 2
4 60 30 850 0 325 475 2
5 30 30 815 0 325 475 2

The triangles presented in the HF quadrant and over the first job represent the

time the first steel piece entered and left the hardening furnace. The circles represent

the time the last steel piece of that job entered and left the same furnace. In traditional

batching processes and Gantt charts, a job has a unique starting and ending time in a

machine (e.g. Figure 2.5). For the QT line, there are two starting and two ending times.

Figure 2.6 – Schedule view of the heat treatment with a demonstration of its parameters.

Each machine appears on the horizontal axis, with the width proportional to its capacity, and
the time is on the vertical axis. The parallelograms represent five consecutive jobs, respectively,

J1, J2, J3, J4, and J5 (Table 2.1). The hashed rectangles show the machines setup times
between the jobs, and the gray rectangles are the total idle times.

The gray rectangles represent the idle times on the machines, and the hashed

rectangles the setup times. Four scenarios for two consecutive jobs are exemplified in

Figure 2.6. The first scenario is between J1 and J2, which have different treatment
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temperatures for all furnaces and different cycle times. As J2 is faster than J1 (shorter

cycle time), waiting time is needed in machine 1 to guarantee that the first steel pieces

of J2 will arrive in the TF2 furnace only after the last steel piece of J1 left and the

temperature changed. The second scenario is between J2 and J3. They have the same

cycle time and temperatures for all furnaces, being considered as in the same job family.

There is no need to wait for the last piece of a job to leave the furnace. Their steel pieces

can go into the machines one after the other without waiting times. In these cases, two

different jobs can be in the same machine at the same time. It reduces the production line

overall energy costs and completion time. The third scenario is when there are no changes

in the furnaces temperatures, but there is a change in the cycle time, as it happens for J3,

followed by J4. The first steel piece of J4 can only enter the furnace after the J3 is done.

As job J4 is slower, this leads to idle times in the TF furnaces. Finally, if the cycle time is

the same, but at least one treatment temperature is different, there will be idle times in

the machines, as we can see in the sequence J4-J5.

A job processing time through the entire line, pi, is the total hours between the

first steel piece that goes into production and the last one that goes out:

pi = p′
i +

m
∑

k=1

p′′
ik, (2.1)

in which p′
i = ciyi/3600 represents the total time spent to enter (or exit) all the yi pieces

to be produced in job i in the production line. It depends on the production rate (walking

beams cycle time) of the material, ci, and defines the height of the job parallelogram in

the QT schedule view. All the process times are in hours; thus, the division by 3600. The

processing time of the last steel piece of the job - time between its charge in machine 1

and its discharge in machine m -, p′′
ik = ciqk/3600, is proportional to the inclination of the

parallelograms of Figure 2.6, and qk is the capacity of machine k.

Each furnace has its own setup time, sirk, that depends on its cooling and heating

rates (respectively, rc
k and rh

k in °C/h) and the difference in the consecutive jobs, i and r,

treatment temperatures:

sirk =























(tik − trk)/rc
k if tik > trk

(trk − tik)/rh
k if tik < trk

0 if tik = trk

. (2.2)

The furnaces’ cooling rates are smaller than the heating rates, therefore, the condition of

tik > trk causes longer setup times.

Equation 2.3 denotes the necessary waiting time between the start of two consecutive

jobs, i and r, in the first machine, to guarantee the no-wait restrictions. It is based on the
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no-wait flow shop transformation into a traveling salesman problem (TSP) that will be

further reviewed in the next chapter.

wir = p′
i + max

k∈{1,...,m}

(

k
∑

l=1

p′′
il + sirk −

k−1
∑

l=1

p′′
rl, 0

)

. (2.3)

If two consecutive jobs have the same process settings - that require neither setups

nor idle times - they can be produced one immediately after the other; therefore, wir = p′
i.

In the course of production, the furnaces regularly burn natural gas (NG). A

furnace consumes NG constantly while processing the steel pieces from a job and also

when it is empty, preparing itself for the entrance of new material. The time each furnace

k stays idle, between two consecutive jobs i and r, is

uirk = wir +
k−1
∑

l=1

p′′
rl −

(

p′
i +

k
∑

l=1

p′′
il

)

. (2.4)

The total NG volume consumed by job i, given in Nm3, is sequence-dependent and

depends on two terms. The first one is the total volume consumed during the material

processing,

v′
i =

m
∑

k=1

(p′
i + p′′

ik)fik, (2.5)

which depends on the constant NG flow, fik, required to keep the furnace at temperature

tik. The second term is the volume consumed during the idle times,

v′′
ir =

m
∑

k=1

uirkfirk, (2.6)

which depends on the NG flow required to change the furnace temperature, firk, from

tik to trk. This flow is smaller when there is a decrease in the furnaces’ temperatures

(tik > trk). As a consequence, schedules with lower energy consumption may have longer

setup times harming its total tardiness.

The scheduling parameters presented here are important for understanding the

HT mathematical models that will be introduced in Chapter 4. The next chapter reviews

mathematical formulations and multi-objective solving approaches for the no-wait flow

shop problem. They will allow a better comprehension of this work proposed methodology

and its contributions.
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3 Literature Review

3.1 Mathematical models for No-Wait Flow Shop Problems

This chapter begins with a literature review of mathematical models that can

represent the no-wait flow shop (NWFSP) problems. It will start with an overview of

flow shop formulations that will allow the evaluation of different variables to address the

problem. Next, these models will be extended to engage the no-wait restrictions bounded

by its representation as a traveling salesman problem (TSP).

The mathematical models presented here will focus on the total tardiness (TT) and

makespan (Cmax) objectives, that are extensively explored in the literature. The proposed

multi-objective model for the heat treatment scheduling problem, with the total energy

costs objective, will be presented in Chapter 4, based on the following review.

3.1.1 Overview of Permutation Flow Shop Formulations

As mentioned in Chapter 2, the NWFSP is a variant from the permutation FSP

problem. In the literature, there are different formulations for the exact solution of

permutation FSP. According to Pan (1997) and Tseng, Stafford, and Gupta (2004), the

three models that better represent this class of problems are from Wagner (1959), Wilson

(1989), and Manne (1960). The first two are appointed as positional-based models due to

their assignment of jobs in the sequence through the binary variable zij, which is equal

to 1 if job i goes into position j of schedule or 0 otherwise. The last one is known as a

precedence-based model as it uses a binary variable xir to establish the precedence relation

between two jobs, that is, xir is equal to 1 if job i is scheduled before job r or 0 otherwise.

The three models are described next, and the indices and parameters used by them

are:

i, r - indices for jobs,

j - index for position in sequence,

k - index for machine,

n - number of jobs,

m - number of machines,

di - due date of job i,

pik - processing time of job i in machine k,

M - a very large constant.

The total tardiness objective taken into consideration in this section is calculated



36 Chapter 3. Literature Review

by

Ti = max (Cim − di, 0), (3.1)

in which Cim is the completion time of job i in the last machine m.

The first model proposed by Wagner (1959) is an all integer formulation for the

solution of a three machine FSP. Later, Stafford (1988) suggested some improvements

for environments with more than three machines and transformed the model in a mixed

formulation. Variables of the improved model are:

zij - 1 if job is assigned to position j of sequence or 0 otherwise,

Ijk - idle time on machine k between jobs in sequence position j and j + 1,

Wjk - waiting time of job in sequence position j between machines k and k + 1,

Cjk - completion time of job in sequence position j at machine k,

Tj - tardiness of job in sequence position j.

The original formulation is based on the minimization of the makespan. Below is

the formulation of the model for a Fm|prmu|
∑

Tj, as shown in Ronconi and Birgin (2012).

Min
n

∑

j=1

Tj (3.2)

s.t.
n

∑

j=1

zij = 1 ∀ i ∈ {1, . . . , n},

(3.3)
n

∑

i=1

zij = 1 ∀ j ∈ {1, . . . , n},

(3.4)

Ijk +
n

∑

i=1

zi,j+1pik + Wj+1,k =

Wjk +
n

∑

i=1

zijpi,k+1 + Ij,k+1 ∀ j ∈ {1, . . . , n − 1}, k ∈ {1, . . . , m − 1},

(3.5)

Wjk ≥ 0 ∀ j ∈ {1, . . . , n}, k ∈ {1, . . . , m − 1},

(3.6)

Ijk ≥ 0 ∀ j ∈ {1, . . . , n − 1}, k ∈ {1, . . . , m},

(3.7)

C1m =
m−1
∑

k=1

(

n
∑

i=1

zi1pik + W1k

)

+
n

∑

i=1

zi1pim, (3.8)

Cjm = Cj−1,m + Ij−1,m +
n

∑

i=1

zijpim ∀ j ∈ {2, . . . , n},

(3.9)
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Tj ≥ Cjm −
n

∑

i=1

zijdi ∀ j ∈ {1, . . . , n},

(3.10)

Tj ≥ 0 ∀ j ∈ {1, . . . , n},

(3.11)

zij ∈ {0, 1} ∀ i, j ∈ {1, . . . , n}.

(3.12)

Equation 3.2 represents the total tardiness minimization objective. Constraints 3.3

and 3.4 are classic from assignment problems and ensure that job i is assigned to only one

position in schedule and that each position j has only one job assigned to it. Constraint set

3.5 ensures that job j cannot be processed in machine k + 1 until it has finished processing

in machine k and that machine k cannot process the job j + 1 until it has finished job

j. Figure 3.1 exemplifies this constraint and shows the relationship between processing

times, idle times, and waiting times. The last two must be non-negative, hence, there

are constraint sets 3.6 and 3.7. The completion time of all the n jobs in the last machine

m is determined by constraint 3.8 and constraint set 3.9. The total tardiness, shown in

equation 3.1, of the job allocated in sequence position j is linearized at constraints 3.10

and 3.11. Finally, constraint set 3.12 guarantees the binary integrity of the positional

variable zij.

Figure 3.1 – Graphical representation of Wagner’s model constraint set 3.5.

(RONCONI; BIRGIN, 2012).

The second positional model considered for the solution of the permutation FSP

was proposed by Wilson (1989) and is based on Wagner’s formulation. Instead of dealing

with idle and waiting times, Wilson introduced a continuous start time variable Sjk for

each job in position j and each machine k. Wilson’s model is obtained by removing

constraints 3.5, 3.6, 3.7, 3.8, and 3.9 of Wagner’s model and including constraints for the

start time variable, as shown below.

Min
n

∑

j=1

Tj (3.2)



38 Chapter 3. Literature Review

s.t.
n

∑

j=1

zij = 1 ∀ i ∈ {1, . . . , n}, (3.3)

n
∑

i=1

zij = 1 ∀ j ∈ {1, . . . , n}, (3.4)

S11 ≥ 0, (3.13)

Sj,k+1 ≥ Sjk +
n

∑

i=1

zijpik ∀ j ∈ {1, . . . , n}, k ∈ {1, . . . , m − 1}, (3.14)

Sj+1,k ≥ Sjk +
n

∑

i=1

zijpik ∀ j ∈ {1, . . . , n − 1}, k ∈ {1, . . . m}, (3.15)

Cjm = Sjm +
n

∑

i=1

zijpim ∀ j ∈ {1, . . . , n}, (3.16)

Tj ≥ Cjm −
n

∑

i=1

zijdi ∀ j ∈ {1, . . . , n}, (3.10)

Tj ≥ 0 ∀ j ∈ {1, . . . , n}, (3.11)

zij ∈ {0, 1} ∀ i, j ∈ {1, . . . , n}. (3.12)

Constraint 3.13 states that the start time of the first job of the sequence in the first

machine is at least zero. Constraint set 3.14 guarantees that a job only starts in machine

k + 1 after finishing its process in machine k and constraints 3.15 ensures that machine k

only starts processing the job in position j + 1 after finishing the previous j job. At last,

constraint set 3.16 shows that the completion time of a job in the last machine is the start

of that job in the machine plus its processing time.

The third model considered for the solution of the permutation FSP was proposed

by Manne (1960) to solve job shop scheduling problems for minimization of makespan.

Variables of this model are:

xir - 1 if job i is scheduled any time before job r or 0 otherwise,

Cik - completion time of job i at machine k,

Ti - tardiness of job i.

Below is its formulation for the minimization of total tardiness, also based on

Ronconi and Birgin (2012).

Min
n

∑

i=1

Ti (3.17)

s.t. Ci1 ≥ pi1 ∀ i ∈ {1, . . . , n}, (3.18)

Cik ≥ Ci,k−1 + pik ∀ i ∈ {1, . . . , n}, k ∈ {2, . . . , m}, (3.19)

Cik ≥ Crk + pik − Mxir ∀ i, r ∈ {1, . . . , n}, k ∈ {1, . . . , m}, (3.20)

Crk ≥ Cik + prk − M(1 − xir) ∀ i, r ∈ {1, . . . , n}, k ∈ {1, . . . , m}, (3.21)
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Ti ≥ Cim − di ∀ i ∈ {1, . . . , n}, (3.22)

Ti ≥ 0 ∀ i ∈ {1, . . . , n}, (3.23)

xir ∈ {0, 1} ∀ i, r ∈ {1, . . . , n}. (3.24)

Total tardiness minimization is expressed in equation 3.17 and, different from the

positional models, it is indexed by the job itself. Constraint set 3.18 secures that the

completion time of job i in the first machine is at least its processing time in that machine

and constraints 3.19 guarantee that the completion time of job i in machine k is at least

the completion time of the job in the machine before and its processing time in machine k.

Constraint sets 3.20 and 3.21 are disjunctive constraints that insures job i either precedes

job r or follows it and its completion time is dependent on the completion time of the

precedence job. Linearization of the tardiness calculation by job appears in constraints

3.22 and 3.23. Finally, constraint set 3.24 guarantees the binary integrity of precedence

variable xir.

In a first analysis, Manne’s model was considered by Pan (1997) as the best

formulation to solve the permutation FSP because it has the least number of binary

variables. However, Tseng, Stafford, and Gupta (2004) showed that the computational

time of positional models overcomes the precedence one due to the absence of disjunctive

inequalities that enlarge matrix sizes and makes the set of constraints less tighten. The

second conclusion of this study was that Wagner’s model performed better than Wilson’s

for having fewer constraints. The paper from Tseng, Stafford, and Gupta (2004) focuses in

the minimization of makespan, but same results were found by Ronconi and Birgin (2012)

for the total tardiness objective. Naderi et al. (2012) also showed that positional models

have more performance in the solution of a multi-objective no-wait flow shop problem.

3.1.2 Formulation as a Traveling Salesman Problem

In the literature, both positional and precedence models appear on the resolu-

tion and representation of no-wait flow shop problems. Chen, Wang, and Peng (2019),

Samarghandi and ElMekkawy (2014), and Liu, Song, and Wu (2013) present positional

models to solve, respectively, the NWFSP for the minimization of energy consumption,

makespan, and total tardiness. Differently, Komaki and Malakooti (2017) and Lin and

Ying (2016) propose precedence models to solve the minimization of makespan. What

these papers – and the majority of the NWFSP researches – have in common is that the

problem formulation relies on its representation as a special case of the traveling salesman

problem (TSP).

The TSP is a well-known combinatorial optimization problem studied in operations

research. Given a set of n cities, the problem consists of finding the minimum distance

tour that visits each city once, starting and ending at the same point. The problem can



40 Chapter 3. Literature Review

be classified into symmetric when the distance between two cities is independent of the

direction taken, and asymmetrical when the distance depends on the direction. Figure 3.2

exemplifies an asymmetrical traveling salesman problem (ATSP) graph with four cities.

The circles represent the cities and the directed arcs the distance between them. In this

case, considering the start in city 1, the optimal tour, highlighted in red, is the one that

visits the cities in the following order: 1, 3, 4, 2, 1. The ATSP applies to many real

logistics and scheduling problems. In the latter, it can be used to solve single machine

problems with sequence-dependent setup times and no-wait flow shop problems, both with

a makespan objective (CAMPUZANO; OBREQUE; AGUAYO, 2020).

Figure 3.2 – Example of an ATSP graph with four cities and the minimum distance tour
highlighted in red.

The ATSP is typically formulated as an integer problem with the binary variable

yir, which indicates whether the path from city i to r, represented by the arc(i, r), is

part of the tour. Below is the basic formulation, in which [cir] is the asymmetric intercity

distance matrix.

Min
n

∑

i,r=1

yircir (3.25)

s.t.
n

∑

i=1

yir = 1 ∀ r ∈ {1, . . . , n}, (3.26)

n
∑

r=1

yir = 1 ∀ i ∈ {1, . . . , n}, (3.27)

SECs (3.28)

yir ∈ {0, 1} ∀ i, r ∈ {1, . . . , n}. (3.29)

Equation 3.25 is the objective function that minimizes the total distance traveled

between the cities. Constraint sets 3.26 and 3.27 are the assignment constraints, which
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ensure that each node is visited and departed only once. Constraints 3.28 are known as

the sub tour elimination constraints (SECs) to avoid isolated loops in the tour. Constraint

sets 3.29 guarantees the binary integrity of variable yir.

There are several SECs formulations for the traveling salesman problem, as shown

by Öncan, Altınel, and Laporte (2009) in his extensive survey over the asymmetrical case.

Two of the classical representations are from Dantzig, Fulkerson, and Johnson (1954) and

Miller, Tucker, and Zemlin (1960), known, respectively, as the DFJ and MTZ formulations.

The latter was proposed based on the Vehicle Routing Problem and will be the one applied

in this work. The choice was based on its polynomial-length and compact formulation.

The MTZ formulation uses the continuous variable ui to enumerate the order in

which the cities are visited in the tour. The constraints are:

ui − ur + nyir ≤ n − 1 ∀i, r ∈ {1, . . . , n}, (3.30)

1 ≤ ui ≤ n − 1 ∀i ∈ {1, . . . , n}. (3.31)

The first time the NWFSP was noticed as a special case of the ATSP was by

Piehler (1960) in the minimization of makespan (MUCHA; SVIRIDENKO, 2013), which

was later reinforced by Wismer (1972). They defined a waiting time parameter, wir, that

represents the minimum delay necessary between the start of two consecutive jobs, i and

r, in the first machine. This time guarantees the continuous flow of job r through all the

machines when job i immediately precedes it.

Figure 3.3 shows the Gantt chart of three jobs and three machines no-wait flow

shop. The hashed rectangles are the waiting times between jobs J1-J2 and J2-J3. From

the example, it is possible to see that J2 must wait 6 units of time after the start of J1

to go into machine 1. Otherwise, machine 3 will not be available when J2 finishes in the

second machine and there will be an interruption in its production. On the contrary, J3

can enter machine 1 right after J2, so its waiting time is only the processing time of J2 in

machine 1. This parameter has also been exemplified in Figure 2.6 for the HT scheduling

particular case.

Generalizing, the waiting time between two jobs in a NWFSP can be calculated by

wir = pi1 + max
k∈{1,...,m}





k
∑

q=1

piq −
k−1
∑

q=1

prq, 0



 , (3.32)

where pik is the process time of job i in machine k.

The former equation can also be modified to consider sequence-dependent setup

times, sirk, as shown in the works from Bianco, Dell’Olmo, and Giordani (1999), and
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Figure 3.3 – Gantt chart of a three jobs and three machines NWFSP with its waiting
times.

Nagano and Araújo (2014):

wir = pi1 + max
k∈{1,...,m}





k
∑

q=1

piq + sirk −
k−1
∑

q=1

prq, 0



 . (3.33)

Equation 3.33 supported the definition of the heat treatment waiting time parameter

presented in Chapter 2. The main difference is that Equation 2.3 takes into consideration

the two processing times (p′
i and p′′

ik) of our real scheduling case.

From Figure 3.3, it can be observed that the makespan of sequence 1, 2, and 3 is

equal to the sum of the waiting times with the total processing time of J3 in all machines

(6 + 5 + 4 + 3 + 3 = 21). Therefore, introducing a dummy job n + 1, that indicates the

start and end of the sequence, and defining

wi,n+1 =
m

∑

k=1

pik, (3.34)

and

wn+1,i = 0, (3.35)

the makespan of the sequence can be calculated by

Cmax =
n+1
∑

i,r=1

yirwir, (3.36)

in which variable yir is equal to 1 when job i immediately precedes job r. This variable is

different from Manne´s xir variable due to the definition of the immediate precedence.

3.1.2.1 Precedence-based Model

Considering the waiting time matrix as the intercity distances matrix, and given

a new set of jobs, n′ = n + 1, the Fm|nwt|Cmax and Fm|nwt, sirk|Cmax problems can be

formulated as an ATSP:
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Min
n′

∑

i,r=1

yirwir (3.37)

s.t.
n′

∑

r=1

yir = 1 ∀ i ∈ {1, . . . , n′}, (3.38)

n′

∑

i=1

yir = 1 ∀ r ∈ {1, . . . , n′}, (3.39)

ui − ur + n′yir ≤ n′ − 1 ∀ i, r ∈ {2, . . . , n′}, (3.40)

1 ≤ ui ≤ n′ ∀ i ∈ {1, . . . , n′}, (3.41)

yir ∈ {0, 1} ∀ i, r ∈ {1, . . . , n′}. (3.42)

Equation 3.37 represents the minimization of the makespan objective. Constraint

sets 3.38, 3.39, and 3.42 are the same assignment constraints from ATSP, and the subtour

elimination constraints are given by 3.40 and 3.41.

The model presented above is used for the solution of the makespan. However, the

waiting time parameter can also support a NWFSP positional-based formulation for the

minimization of the total tardiness.

3.1.2.2 Positional-based Model

Through equation 3.32 it is possible to define the relationship between the start

of two consecutive jobs in the first machine of the NWFSP. Considering that job r is

processed after job i and that the start time of job i in the first machine (Si1) is known,

the start time of job r in machine 1 is determined by

Sr1 ≥ Si1 + wir. (3.43)

Since the operations of a job in a no-wait flow shop are uninterrupted, from the

start time of job r in machine 1 it is possible to determine the completion time of this job

in the last machine:

Crm = Sr1 +
m

∑

k=1

prk. (3.44)

Equation 3.44 can then be simplified where pr is the sum of all the processing times

of job r in all the m machines, Sr is the start time of job r in the first machine and Cr is

the completion time of the same job in the last machine:

Cr = Sr + pr. (3.45)

Based on the equations above, a simplified formulation is proposed for the solution

of the Fm|nwt, sirk|
∑

Tj. It takes into consideration the model proposed by Wilson, due
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to the direct association of the waiting time calculation with the start time continuous

variable. A new variable, birj, is added to define the precedence relationship between two

jobs i and r. These variables are necessary due to the no-wait and sequence-dependent

setup times restrictions of the problem, as can be seen in the studies of Stafford and Tseng

(2002).

Min
n

∑

j=1

Tj (3.2)

s.t.
n

∑

j=1

zij = 1 ∀ i ∈ {1, . . . , n}, (3.3)

n
∑

i=1

zij = 1 ∀ j ∈ {1, . . . , n}, (3.4)

birj ≥ zij + zr,j+1 − 1 ∀ i, r ∈ {1, . . . , n}, i Ó= r, j ∈ {1, . . . , n − 1}, (3.46)

birj ≤ zr,j+1 ∀ i, r ∈ {1, . . . , n}, i Ó= r, j ∈ {1, . . . , n − 1}, (3.47)

birj ≤ zij ∀ i, r ∈ {1, . . . , n}, i Ó= r, j ∈ {1, . . . , n}, (3.48)

birj ≥ 0 ∀ i, r ∈ {1, . . . , n}, i Ó= r, j ∈ {1, . . . , n}, (3.49)

S1 ≥ 0, (3.50)

Sj ≥ Sj−1 +
n

∑

i,r=1;iÓ=r

bir,j−1wir ∀ j ∈ {2, . . . , n}, (3.51)

Cj = Sj +
n

∑

i=1

zijpi ∀ j ∈ {1, . . . , n}, (3.52)

Tj ≥ Cj −
n

∑

i=1

zijdi ∀ j ∈ {1, . . . , n}, (3.53)

Tj ≥ 0 ∀ j ∈ {1, . . . , n}, (3.11)

zij ∈ {0, 1} ∀ i, j ∈ {1, . . . , n}. (3.12)

Variable birj is equal to 1 when job i of sequence position j immediately precedes

job r, that is, job r is in position j + 1 of sequence. This variable is continuous and

constraints 3.46, 3.47, 3.48 and 3.49 guarantees that their values are either 0 or 1, so the

integrality of the problem is not compromised (NOGUEIRA et al., 2019). Constraint 3.50

set the start time of the first job of the sequence to zero and constraint set 3.51 defines the

start time of the other jobs based on equation 3.43 and variable birj. The completion time

of the job at the last machine and its tardiness is given, respectively, by the constraint

sets 3.52 and 3.53. The other constraints are the same as presented in the section of

permutation flow shop problem.

The proposed formulation is independent of the number of machines, that is,

constraints do not depend on m, which simplifies the formulation resolution and size.

Despite the higher complexity size that the variables birj bring to the positional-based
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model, Stafford and Tseng (2002) showed that this formulation has a competitive execution

time for the solution of an NWFSP-SDST problem. They compared it to a precedence-

based model. Similar results are also demonstrated for single machine formulations

(NOGUEIRA et al., 2019).

Two models for the NWFSP were presented in this section based on its rep-

resentation as a traveling salesman problem: a precedence-based formulation for the

Fm|nwt, sirk|Cmax, and a positional-based formulation for the Fm|nwt, sirk|
∑

Tj. In the

next chapter, both will be extended for the bi-objective HT scheduling problem to mini-

mize the production line’s total energy costs and total tardiness. Despite the mentioned

strengths of the positional formulations, a comparative study will be held for the practical

scheduling case.

The following section formally defines a multi-objective optimization problem and

explores existing solving approaches for multi-objective no-wait flow shop problems. It

clarifies how the integration of the presented models and mathematical programming can

support the steel industry.

3.2 Multi-objective No-Wait Flow Shop Problems

A multi-objective optimization problem (MOP) can be generally described as:

Min f(x) = {f1(x), f2(x), . . . , fo(x)}, (3.54)

s.t. g(x) = {g1(x), g2(x), . . . , gp(x)} ≤ 0, (3.55)

h(x) = {h1(x), h2(x), . . . , hq(x)} = 0, (3.56)

where x is the set of decision variables, belonging to the feasible region X, which is a

subset of the search space; o is the number (≥ 2) of objective functions; whereas p and q

are respectively the numbers of inequality constraints and equality constraints functions

(LEI, D., 2008).

The notion of optimality in multi-objective problems is different from that seen

in single-objective problems, since it is not possible to find a single alternative solution

x∗ = (x∗
1, x∗

2, . . . , x∗
o)T that optimizes simultaneously all existing objectives, which are now

naturally in conflict condition. To enable a strict comparison of solutions in a MOP and

to identify which are the optimal solutions in solving these problems, it is necessary to

define the concept of dominance:

Definition 1 - Dominance Criterion - given two solutions x1 and x2, belonging to

the set of viable solutions X, it is said that x1 dominates x2 (x1 ≺ x2) in the space of

objectives if, and only if:
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• ∀i ∈ {1, 2, . . . , o}, fi(x
1 ≤ x2 - x1 is not worse than x2 in any of the objectives;

• ∃i ∈ {1, 2, . . . , o} | fi(x
1 < x2 - in at least one of the objectives x1 is better than x2.

The dominance criterion presented allows partial ordering in the objective space,

which means that some solutions can be compared, while others are incomparable. Solutions

that are not dominated by any other are called Pareto-optimal solutions (or efficient

solutions) and are strictly defined as:

Definition 2 - Pareto-optimal solution - a x∗ solution is said to be Pareto-optimal

if, and only if:

• ∄x ∈ X | x ≺ x∗ - if there is no other feasible point that dominates it.

The definitions made lead to an immediate consequence: it is impossible to seek

improvement in any of the objectives of a Pareto-optimal solution without deteriorating

at least one of the other objectives. Therefore, the entire set of efficient solutions in the

decision variables space (known as the Pareto-optimal set) are solutions to the multi-

objective optimization problem. When viewed in the objective space, this set is called the

Pareto front, since the solutions are distributed only in part of the ends of the feasible

region.

Following is a literature review of MOP solving approaches that support the

methodology proposed in this work.

3.2.1 Solving approaches

An extensive survey on no-wait flow shop scheduling problems can be found in Ali

Allahverdi (2016). From this review, it is possible to observe that multi-objective NWFSP

(MONWFSP) studies appeared in the literature at the beginning of the 21st century and

are much less extensive than single-objective ones. The comprehensive review also shows

that metaheuristics (either local search or population-based ones) are the preferred solving

methods.

Table 3.1 shows examples of recent papers that solve the MONWFSP problem.

The problems are described by the triplet α|β|γ, such as stated in Graham et al. (1979).

In this notation, the greek letters represent, respectively, the scheduling problem machine

environment, processing characteristics, and optimality criteria. The F stands for flow

shop. The β field can have multiple entries to show different aspects of the process, such

as the no-wait restrictions (nwt). The γ field specifies the scheduling objectives, which

can be one or more. Examples of the objectives of Table 3.1 are the total completion time

(Cmax - makespan), total tardiness (TT ), total weighted tardiness (
∑

wjTj), and total

energy costs (TEC).
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Table 3.1 – Recent papers (last three years) on MONWFSP.

Reference Problem Methodology (com-
ments)

Jingjing Wang et al. (2017) F |nwt|Cmax, TEC Cooperative algorithm
that combines random
and NEH population
initialization, and lo-
cal search intensifica-
tions.

Lin, Lu, and Ying (2018) F |nwt|Cmax,
∑

wjTj Cloud theory-based It-
erated Greedy algo-
rithm with initializa-
tion through NEH-
based heuristic.

Allahverdi, Aydilek, and Aydilek (2018) F |nwt|Cmax, TT Combination of Sim-
ulated Annealing
and insertion algo-
rithm with EDD
(Earliest Due Date)
initialization.

Yeh and Chiang (2018) F |nwt|Cmax, TT MOEA/D with
problem specific
crossover operations
and population initial-
ization through EDD
and combination of
heuristics.

Wu and Che (2019) F |nwt|Cmax, TEC Multi-objective Vari-
able Neighborhood
Search with speed
scaling heuristic and
initial solutions gen-
erated by problem
specific heuristics.
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Table 3.1 suggests that most recent approaches combine different heuristics and

metaheuristics for the solution of the MONWFSP. However, these hybrid methods do not

consider using mathematical programming, which is the strategy explored in this work.

Some recent works have already applied matheuristic methodologies for solving

single-objective problems in the scope of production scheduling. Fonseca, Nogueira, and

Ravetti (2019) recommends a Lagrangian relaxation technique combined with heuristics

to solve a cross-docking scheduling problem, reaching tight bounds for small and large

instances. M’Hallah (2014) proposes a hybrid Variable Neighborhood Search and Mixed

Integer Programming to solve difficult instances of a m-stage permutation flow shop.

Ta, Billaut, and Bouquard (2018) use a mathematical heuristic to minimize the total

tardiness of a m-machine flow shop scheduling problem. It integrates a neighborhood-based

algorithm with iterative executions of a MILP solver to re-optimize small windows of

jobs (fix-and-optimize approach) in the metaheuristic course. Lin and Ying (2016), in the

solution of an NWFSP to minimize the makespan, use a constructive heuristic for the

generation of an initial solution that is later simplified, modeled, and solved as a Traveling

Salesman Problem to optimality. Mönch and Roob (2018) design a matheuristic framework

to solve a parallel batch machine scheduling problem with incompatible job families. First,

using MP to solve a batch formation problem and, later, running a population-based

heuristic that will schedule the batches in the machines to minimize the total weighted

tardiness. The successful approaches listed above suggest that matheuristic can take

advantage of exact method/metaheuristic different search properties for solving complex

problems and large instances, making it promising for the solution of real scheduling

applications.

Different metaheuristics have been recently applied to solve multi-objective schedul-

ing problems. Some examples are genetic algorithms (ZHENG et al., 2019; ANJANA;

SRIDHARAN; RAM KUMAR, 2019), and multi-objective estimation of distribution

algorithms (SHAO; PI; SHAO, 2019; LIU; YANG, et al., 2020). The metaheuristic

employed in this research is a multi-objective version of the Variable Neighborhood Search

(VNS) algorithm presented by Mladenović and Hansen (1997). This method relies on

systematically changing neighborhoods while searching for solutions in the exploration

space. Its efficiency is based on three factors: the local minimum of a neighborhood is

not necessarily the local minimum of another; the global minimum is a local minimum

for all neighborhoods; in several problems, the local minimum between neighborhoods is

relatively close (HANSEN et al., 2010).

MOVNS has shown good results in the solution of scheduling problems since

its proposal by Geiger (2004) to solve the permutation FSP. It also appears in recent

researches on multi-objective no-wait flow shop (WU; CHE, 2019), multi-objective two

agent flow shop (LEI, Deming, 2015), multi-objective hybrid flow shop (JIANG et al.,
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2015), multi-objective hybrid flow shop with sequence-dependent setup times (TIAN;

LI; LIU, 2016; SIQUEIRA; SOUZA; SOUZA, 2018) and multi-objective blocking flow

shops (WANG, F. et al., 2018). Results from these manuscripts suggest that MOVNS

can outperform multi-objective state-of-art algorithms Non-dominated Sorting Genetic

Algorithm II (NSGA-II) and Strength Pareto Evolutionary Algorithm (SPEA2) in FSP

related applications. However, there are no researches that combine this multi-objective

metaheuristic with mathematical programming, as will be presented next. In terms of

the energy consumption, the mechanism applied in this work has lead to optimal energy

solutions, which is appointed by Wu and Che (2019) and Fucai Wang et al. (2018) as an

important investigation point for industries.

3.3 Matheuristics

Matheuristics, or mathematical heuristics, are hybrid algorithms that combine

heuristics and metaheuristics (MH) with mathematical programming (MP) for the solution

of real and complex optimization problems. Heuristics are solving methods that employ

simple rules to find good enough solutions for a specific problem, based on its prior

observation and experience. Metaheuristics are high-level strategies that guide the search

on non-specific problems, although they can also rely on heuristics knowledge, to find

near-optimal solutions within a reasonable time (RAIDL; PUCHINGER, 2008). They

are separated into local search and population-based methods (BLUM; ROLI, 2003).

Mathematical programming is a branch of operations research that relies on mathematical

formulations and techniques to find optimal solutions in decision-making tasks. These

methods ensure that the solutions found are optimal, but are restricted to small instances

in NP-Hard problems (RAIDL; PUCHINGER, 2008). Matheuristics lie on the idea of

exploring the strength of these optimization methods concerning the quality of solutions

and the search time used to find them (CROCE; GROSSO; SALASSA, 2014; TALBI,

2016).

Puchinger and Raidl (2005), in one of the first reviews of matheuristics for combi-

natorial optimization problems, highlight the combined use of local search and population

algorithms with integer and linear programming methods (e.g., Branch and Bound, Branch

and Cut, Dynamic Programming, and Lagrangian relaxation). They show examples in

the solution of scheduling, assignment, routing, and cutting problems, widely applied in

industrial fields, and known for their NP-hard complexity. They also propose a taxonomy

for this recent research field that separates the combined methods into collaborative or

integrative, as exploited in Figure 3.4.

In the collaborative combinations, the algorithms exchange information among

themselves but are not part of each other. They can be executed sequentially, parallel,
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Figure 3.4 – Classification of matheuristics.

Proposed by Puchinger and Raidl (2005).

or intertwined. The opposite occurs in the integrated combinations, where there is a

main algorithm, which can be an exact method or a metaheuristic, and at least one slave

algorithm, which optimizes subproblems. Below are some examples of approaches in these

four sub-classifications.

• Sequential Execution: normally evolves two phases, in which the first is executed by

the exact method and the second by the metaheuristic, or vice-versa. In some cases,

the first algorithm is a preprocessor, and it is used to generate initial solutions or

bounds for the second algorithm. There are other cases in which the second method

is a postprocessor that improves the already found solutions. Examples of these

approaches are: Feltl and Raidl (2004) solves a general assignment problem with

the initialization of the Genetic Algorithm population through Linear Programming

Relaxation (LP-Relaxation), and Applegate et al. (1998) runs multiple Iterated Local

Search algorithms to find a set of solutions for a traveling salesman problem later

merged into a restricted graph and solved to optimality. In some cases more than

two phases are presented, such as in Lin and Ying (2016) that alternates executions

between two constructive heuristics and a relaxed Mixed Integer Programming model

to solve the makespan minimization of a no-wait flow shop.

• Parallel or Intertwined Execution: this topology is the less frequent combination of

algorithms. Puchinger and Raidl (2005) cites two frameworks for the solution of

combinatorial problems. One of them is a job shop scheduling problem, in which

multiple agents, from different classes of algorithms, are called asynchronously to

exchange information or to alter a set of solutions present in shared memory.

• Incorporating Exact Algorithms in Metaheuristics: mathematical programming

is integrated into a metaheuristic and can be used, for instance, to explore large

neighborhoods in local search algorithms and as decoders in support of evolutionary
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algorithms operations. Examples of the first approach are demonstrated by Haouari

and Ladhari (2003), that introduces a new neighborhood in a local search algorithm,

based on a Branch and Bound tree search, for the solution of a permutation flow

shop, and also by Fleszar, Charalambous, and Hindi (2012), that uses Mixed Integer

Programming in a Variable Neighborhood Descent large search procedure for the

solution of parallel machine scheduling. In the evolutionary field, Jahuira (2002)

solves a traveling salesman problem with a Genetic Algorithm whose crossover

operations are performed by a Branch and Bound algorithm and by a Minimum

Spanning Tree heuristic.

• Incorporating Metaheuristics in Exact Algorithms: the main algorithm is an exact

method embedded with metaheuristics. MH usually supports the selection of nodes,

generation of upper bounds, and cutting planes in Branch and Bound methods

(JOURDAN; BASSEUR; TALBI, 2009). An example of these approaches is presented

by Kostikas and Fragakis (2004) as a nested Genetic Programming algorithm that

improves the node selection of a general Branch and Bound algorithm. In this class,

there are also MP algorithms that apply the spirit of local search metaheuristics,

although they are not hybrid. These methodologies are known as MILP based

heuristics, and two renowned procedures of this class are Local Branching, from

Fischetti and Lodi (2003), and Relaxation Induced Neighborhood Search (RINS),

proposed by Danna, Rothberg, and Pape (2005).

The ideas of Puchinger and Raidl (2005) were expanded in papers from Jourdan,

Basseur, and Talbi (2009) and Talbi (2016), that propose a different classification for

the hybridization of MH and MP. Other reviews of matheuristics can also be found in

Dumitrescu and Stützle (2003) and Blum, Puchinger, et al. (2011). Despite the different

taxonomies and emphasis of each paper, Figure 3.5 shows the common sense of information

exchanged from one method to another. Usually, the exact methods are favored by the

upper bounds, incomplete solutions, and subproblems solved by the metaheuristics in

lower computational time. On the other hand, metaheuristics can take advantage of exact

methods lower bounds, relaxed optimal solutions, and partial solutions to improve the

quality of the local searches and the solutions of population-based algorithms.

Jourdan, Basseur, and Talbi (2009) accentuates the growth of matheuristics from

the end of the 20th century to the beginning of the 21st century. However, in their survey

few researchers are dealing with this methodology in multi-objective problems. Ehrgott

and Gandibleux (2008) also emphasize how marginal are these strategies in multi-objective

contexts, despite their importance in many practical problems, which enhance the research

possibilities in this subject.

There are different techniques to solve multi-objective problems and to find a set
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Figure 3.5 – Information exchanged between metaheuristics and exact methods.

of solutions that show the trade-offs between the objectives. The methodology chosen

depends on the decision-making process, classified in a priori1, iterative2, and a posteriori

(SILVA; BURKE; PETROVIC, 2004). In the last one, which will be the focus of this work,

the decision-maker analyzes its preferences after optimization. Therefore, the optimization

result is a set of solutions with interesting trade-offs among the objectives. These solutions

are called non-dominated3 and their set is known as the Pareto front.

Examples of mathematical heuristics for the a posteriori resolution of multi-objective

combinatorial optimization problems are found in Gandibleux and Freville (2000), Basseur

et al. (2004), and Przybylski, Gandibleux, and Ehrgott (2010). The first is applied to a

0 − 1 knapsack problem and introduces the exact method as a preprocessing algorithm to

reduce the search space of a Tabu Search process. In Basseur et al. (2004), a bi-objective

flow shop problem is solved through the use of MP and evolutionary algorithms. The

exact approach is a Two-Phase Method proposed by Ulungu and Teghem (1995) that

is combined with an Adaptive Genetic/Memetic algorithm in three different ways: in

a sequential execution (MH for initial solutions and MP for polishing), in a very large

search neighborhood, and for the exploration of regions of the Pareto front found by the

metaheuristic. The third work also deals with the Two-Phase Method in an assignment

problem but expands the procedure to more than two objectives.

In this research, a sequential execution between a MILP solver and a MOVNS

algorithm is proposed for the solution of the bi-objective no-wait flow shop problem. The

mathematical programming is used to find good initial solutions that are further explored

by the local search metaheuristic. A solution polishing procedure, based on a MILP

heuristic, is also presented and is used to improve the initial solutions first generated and

1 The decision-makers express their preferences for each objective before the optimization, and one or
various executions are performed to find satisfying solutions.

2 Decision makers are consulted during the optimization process to adjust the preferences and guide the
search through satisfying solutions.

3 It is said that a solution is dominated in multi-objective optimization if there is another solution that
is better than it in at least one objective without being worse in the other ones.
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also to improve the Pareto front solutions found by the metaheuristic.
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4 Proposed Multi-Objective Matheuristic

4.1 Introduction

The multi-objective matheuristic proposed to solve the HT scheduling problem

consists of five main steps. The first step is the generation of two initial solutions through

mathematical programming. Following, these solutions go through MILP heuristics for

the improvement of the total tardiness and total energy cost objectives. These procedures

will be referred to in this text as solution polishing. Then, the two solutions are used to

start a Multi-objective General Variable Neighborhood Search algorithm. Finally, some

solutions are chosen from the final approximated Pareto to go through final polishing.

Figure 4.1 shows the proposed matheuristic flowchart.

Figure 4.1 – Flowchart of proposed matheuristic.

The next sections detail the main steps of the proposed methodology, starting by

presenting the bi-objective models for the minimization of the total tardiness and total

energy costs of the heat treatment production line.

4.2 HT Scheduling Mathematical Models

The first and second steps of the proposed matheuristic are based on two particular

Mixed Integer Linear Programming (MILP) models for the HT scheduling problem. The
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first model stands on the no-wait flow shop positional-based formulation, presented in

Section 3.1.2.2, and the second is found on the TSP formulation introduced in Section

3.1.2.1, being a precedence-based model. The parameters and variables used in both

models are summarized in Table 4.1 and Table 4.2.

Table 4.1 – Notation for the heat treatment scheduling parameters.

n number of jobs.
m number of machines.
di due date of job i.
pi total process time of job i throughout all machines [h].
wir waiting time at start of job r, when job i precedes job r [h].
v′

i total volume of gas used during execution of job i throughout all machines [Nm3/h].
v′′

ir total volume of gas used to setup all machines for job r, when job i precedes job r
[Nm3/h].

g cost of natural gas per volume [$/Nm3].
M very large number.

Table 4.2 – Notation for the heat treatment scheduling variables.

zij positional variable of jobs in sequence. It is equal to 1 when job i is in position j
or 0 otherwise.

birj precedence variable of the positional model. It is equal to 1 when job i at sequence
position j immediately precedes job r, that is, job r is in position j + 1.

Sj start time of the job in position j at machine 1.
Cj completion time of the job in position j at machine m.
Tj tardiness of the job in position j.
Vj total volume of gas consumed by the job in position j.
yir precedence variable for the jobs in sequence. It is equal to 1 when job i immediately

precedes job r or 0 otherwise.
ui variable to avoid sub tour in the TSP formulation.
Si start time of job i at machine 1.
Ci completion time of job i at machine m.
Ti tardiness of job i.

4.2.1 Bi-objective Positional Model

The positional-based model of the quenching and tempering line is based on the

classical Wilson (1989) permutation FSP formulation. The job assignment is modeled

through binary variables zij, which is equal to 1 when job i goes into position j of the

schedule, otherwise is 0. Index j represents the position of a job in the sequence. Below is

the model.

Min
n

∑

j=1

Tj (4.1)
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Min g
n

∑

j=1

Vj (4.2)

s.t.
n

∑

j=1

zij = 1 ∀ i ∈ {1, . . . , n},

(4.3)
n

∑

i=1

zij = 1 ∀ j ∈ {1, . . . , n},

(4.4)

birj ≥ zij + zr,j+1 − 1 ∀ i, r ∈ {1, . . . , n}, i Ó= r, j ∈ {1, . . . , n − 1},

(4.5)

birj ≤ zr,j+1 ∀ i, r ∈ {1, . . . , n}, i Ó= r, j ∈ {1, . . . , n − 1},

(4.6)

birj ≤ zij ∀ i, r ∈ {1, . . . , n}, i Ó= r, j ∈ {1, . . . , n},

(4.7)

S1 ≥ 0, (4.8)

Sj ≥ Sj−1 +
n

∑

i,r=1;iÓ=r

bir,j−1wir ∀ j ∈ {2, . . . , n},

(4.9)

Cj = Sj +
n

∑

i=1

zijpi ∀ j ∈ {1, . . . , n},

(4.10)

Tj ≥ Cj −
n

∑

i=1

zijdi ∀ j ∈ {1, . . . , n},

(4.11)

V1 ≥
n

∑

i=1

zi1v
′
i, (4.12)

Vj ≥
n

∑

r=1

zrjv
′
r +

n
∑

i,r=1;iÓ=r

bir,j−1v
′′
ir ∀ j ∈ {2, . . . , n},

(4.13)

Tj ≥ 0 ∀ j ∈ {1, . . . , n},

(4.14)

Vj ≥ 0 ∀ j ∈ {1, . . . , n},

(4.15)

birj ∈ {0, 1} ∀ i, r ∈ {1, . . . , n}, i Ó= r, j ∈ {1, . . . , n},

(4.16)

zij ∈ {0, 1} ∀ i, j ∈ {1, . . . , n}.

(4.17)
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Equations 4.1 and 4.2 are, respectively, the total tardiness (TT) and the total

energy costs (TEC) objectives, indexed by the job at sequence position j. The TEC is

given by the total volume of gas consumed during the entire sequence execution (sum of

Vj), multiplied by the industrial cost of natural gas per volume, g ($/Nm3). Constraints

4.3 and 4.4 are classic from assignment problems and ensure that job i is assigned to only

one position in schedule and that each position j has only one job assigned to it. Variable

birj is equal to 1 when job i of sequence position j immediately precedes job r, that is,

job r is in position j + 1 of sequence. This variable is naturally binary but it can be

relaxed since constraints 4.5, 4.6, 4.7, and 4.16 ensure that its value is either 0 or 1, not

compromising the integrality of the problem (NOGUEIRA et al., 2019). Constraint 4.8

sets the start time of the first job of the sequence to at least zero and constraint set 4.9

defines the start time of the other jobs. This value is calculated based on the precedence

variable birj. If job i is at position j of sequence and immediately precedes job r (birj = 1),

then the start time of job r is at least the start time of job i with the waiting time, wir,

defined in equation 2.3, that will guarantee the no-wait requirement. The completion time

of the job at the last machine and its tardiness is given, respectively, by the constraint sets

4.10, 4.11, and 4.14 (see (RONCONI; BIRGIN, 2012)). Constraint 4.12 defines the total

volume of NG consumed by the first job in the sequence, that has no setup. The constraint

set 4.13 defines the total volume of NG consumed from the second to the last job. In this

case, the precedence variable, birj, is important to determine the gas consumption during

idle times (includes setups) while the furnaces are changing their temperatures from job i

(position j − 1) to r (position j). The non-negative value of variable Vj are guaranteed by

the constraint set 4.15. Finally, constraint set 4.17 guarantees the binary integrity of the

positional variable zij. This formulation complexity is O(n2).

4.2.2 Bi-objective Precedence Model

The precedence model of the heat treatment line is based on the no-wait flow shop

formulation as an asymmetrical traveling salesman problem. Here, a dummy job is also

introduced to identify the start and end of the sequence. Therefore, the number of jobs for

this model is given by n′ = n + 1. Similarly to the makespan model, presented in Section

3.1.2, the total volume of gas consumed during a sequence can be calculated given the

precedence variable, yir, and the volume of gas consumed during production:

Vtotal =
n+1
∑

i,r=1

yir(v
′
i + v′′

ir), (4.18)

where, v′
i is the volume of gas consumed to produce job i, and v′′

ir is the volume of gas

consumed during the furnace setup from job i to job r, when job i immediately precedes

job r (yir = 1). For the dummy job n + 1, v′
n+1 = 0 and v′′

n+1,r = 0.

Below is the precedence-based bi-objective model for the HT scheduling problem.
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Min
n′

∑

i=1

Ti (4.19)

Min g
n′

∑

i,r=1

yir(v
′
i + v′′

ir) (4.20)

s.t.
n′

∑

r=1

yir = 1 ∀ i ∈ {1, . . . , n′}, (4.21)

n′

∑

i=1

yir = 1 ∀ r ∈ {1, . . . , n′}, (4.22)

Si ≥ 0 ∀ i ∈ {1, . . . , n}, (4.23)

Sr ≥ Si + wir − M(1 − yir) ∀ i, r ∈ {1, . . . , n}, (4.24)

Ci = Si + pi ∀ i ∈ {1, . . . , n}, (4.25)

Ti ≥ Ci − di ∀ i ∈ {1, . . . , n}, (4.26)

Ti ≥ 0 ∀ i ∈ {1, . . . , n}, (4.27)

ui − ur + n′yir ≤ n′ − 1 ∀ i, r ∈ {2, . . . , n′}, (4.28)

1 ≤ ui ≤ n′ ∀ i ∈ {1, . . . , n′}, (4.29)

yir ∈ {0, 1} ∀ i, r ∈ {1, . . . , n′}. (4.30)

Equations 4.19 and 4.20 are, respectively, the total tardiness (TT) and the total

energy costs (TEC) objectives. The total tardiness variable is indexed by the job, and the

total energy costs is given by Equation 4.18, multiplied by the industrial cost of natural

gas per volume, g ($/Nm3). Constraint sets 4.21 and 4.22 are the assignment constraints

of the ATSP formulation presented on Section 3.1.2.1. Constraint 4.23 sets the start time

of all the jobs to at least zero and constraints 4.24 guarantees that, if job i immediately

precedes job r, given a very large number, M , the start of job r is at least the start of job

i added by the waiting time, wir. The completion time of the job at the last machine and

its tardiness is given, respectively, by the constraint sets 4.25, 4.26, and 4.27. Constraints

4.28 and 4.29 are the subtour elimination constrains from the ATSP formulation. Finally,

constraint set 4.30 guarantees the binary integrity of the precedence variable yir. This

formulation complexity is O(n′).

4.3 Generation of Initial Solutions

The first step of the proposed matheuristic is the generation of two initial solutions

by exact resolution. The goal is to find good solutions in terms of total tardiness and

total energy cost, which can map the Pareto front extremes and support the multi-

objective local search algorithm. The bi-objective models presented are split into two

single-objective models to generate the two initial solutions that minimize TT and TEC.
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They are constructed by removing the objective function, constraints, and variables that

are not related to the minimization goal.

These problems can be solved exactly with the use of a MILP solver. However, the

steel industry scheduling instances are too large (minimum of 30 jobs) to be determined

within a reasonable time. Thus, a grouping strategy of the jobs, that reduces the problem

resolution size, is suggested.

Jobs in the QT line that have the same process settings, regardless of their due

dates, can be processed together without the need for any machine setup or idle time.

They are considered as being from the same job family. As a consequence, in scheduling

terms, they can be considered a single job. Figure 4.2 shows an example of how ten jobs

can be grouped as three jobs in this steel industry real case. The schedule view is the same

as in Figure 2.6. Each machine appears on the horizontal axis, with the width proportional

to its capacity, and the time is on the vertical axis. In Figure 4.2a each production lot

appears in a different color. In Figure 4.2b, the colors identify the groups of jobs that can

be processed together.

(a) Schedule view of ten jobs. (b) Schedule view of three jobs.

Figure 4.2 – Example of ten jobs scheduled in the QT line considered as three.

The jobs are grouped according to their process characteristics. In the x-axis are the machines
and in the y-axis the time.

To illustrate the grouping strategy, a fictitious instance of 10 jobs is presented

in Table 4.3. The process settings listed per job i are the number of steel pieces to be

produced, yi, the walking beam cycle time, ci, given in seconds, the furnaces temperatures,

tik, per machine k, and the due date, di.

The jobs are grouped by furnace temperatures and cycle time to solve the minimiza-

tion of TEC. Considering the fictitious instance presented in Table 4.3, the following jobs

would be grouped: 1-9, 2-3-8-10, 4, and 5-6-7. Therefore, the minimization of TEC runs
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Table 4.3 – Fictitious instance with 10 jobs for demonstration of the procedures based on
the job families.

i yi ci[s] ti1[
◦C] ti2[

◦C] ti3[
◦C] ti4[

◦C] di

1 45 40 825 0 300 400 1
2 90 20 850 0 325 475 1
3 70 20 850 0 325 475 2
4 60 30 850 0 325 475 2
5 30 30 815 0 325 475 2
6 50 30 815 0 325 475 2
7 80 30 815 0 325 475 2
8 25 20 850 0 325 475 2
9 85 40 825 0 300 400 1
10 90 20 850 0 325 475 2

for an instance of four jobs. In this case, the new group of jobs would have, respectively,

130, 275, 60, and 160 steel pieces to be produced. The due date is used to sequence the

group’s jobs, following an Earliest Due Date (EDD) approach.

For the TT minimization, the jobs are grouped by due dates, temperatures, and

cycle time. Jobs 1 and 2 of the fictitious instance have the same due date; however, they

cannot be grouped, because they have different process settings. Therefore, the groups

would be: 1-9, 2, 3-8-10, 4, and 5-6-7, with, respectively, 130, 90, 185, 60, and 160 steel

pieces to be produced. Then, the minimization of TT would proceed with five jobs.

The total energy costs of a schedule in the HT line depends on the volume of natural

gas consumed during the steel pieces manufacture (equation 2.5) and the amount of gas

consumed during the furnaces idle times (equation 2.6). In the proposed simplification, the

volume of gas consumed by a group of jobs during the steel pieces production results from

its processing times sum, which is constant and independent of the order of jobs inside the

group. Therefore, the minimization of TEC will only be affected by the sequence of the

groups. Consequently, if there is an optimal solution for the minimization of TEC in the

reduced scenario, this solution is optimal for the original problem. Thus, a Pareto front

extreme value for the total energy costs can be known, provided that the reduced problem

can be solved. The latter postulate does not apply for the total tardiness minimization

problem. In this context, the order of the jobs inside the groups interferes directly in

the individual job delays, so there is no guarantee that an optimal solution found for

the reduced problem is optimal for the original one. Despite that, it is expected that a

good enough TT solution can be found, helping to map the Pareto front extreme for total

tardiness.

The next section explains a solution polishing method, also based on grouping the

jobs by family, to improve a solution in terms of total tardiness and total energy costs.

It is applied over the initial solutions generated to bring them as close as possible to the
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Pareto front extremes of the problems.

4.4 MILP Heuristics for Solution Polishing

In this work, we define two fix-and-optimize approaches to improve a solution total

tardiness and total energy costs. In the fix-and-optimize strategy, a significant part of

the variables is fixed, with the expectation that the resolution of the model considering

only the remaining ones can lead to an improved solution within a reasonable time. The

number of fixed variables is set in such a way that the resultant model can be solved

exactly into a given target time.

The MILP heuristics for the solution polishing are based on grouping the jobs by

temperature, cycle time, and due date (similar grouping strategy to minimize TT). Each

group will be referred to as a family. To exemplify this concept, Table 4.4 shows the 10

jobs of Table 4.3 and the families they belong, also identified by numbers.

Table 4.4 – Demonstration of the jobs families for fictitious instance of Table 4.3

jobs 1 2 3 4 5 6 7 8 9 10
families 1 2 3 4 5 5 5 3 1 3

When two jobs from the same family immediately precede each other, they can be

processed together, as shown in the previous section. Each group of jobs with the same

process characteristics, and due date, will be referred to as a batch. Table 4.5 illustrates a

possible sequence for the jobs of Table 4.4 with its correspondent batches. The batches

are defined based on the families.

Table 4.5 – Demonstration of the batches for a random sequence of jobs

sequence 2 3 8 10 4 1 9 5 6 7
batches 1 2 2 2 3 4 4 5 5 5

The total tardiness of the sequence is minimized if the TT of a batch is minimized.

Therefore, using the positional-based model and a fix-and-optimize approach, it is possible

to iterate over the sequence batches to try to improve the overall solution total tardiness.

At each iteration, a batch is selected, and the position of the jobs outside the group is

fixed. With that, the MILP solver works on a smaller problem. Also, since the order of

the jobs inside a batch does not affect the sequence total energy costs, a single objective

model, with only the variables and constraints related to TT, can be run.

Differently, from the total energy costs minimization perspective, only the order of

the batches is relevant. Therefore, a fix-and-optimize approach is applied based on the

HT precedence model. The precedence of the jobs inside the batches are kept fixed and

the MILP solver can only change the precedence relation between the batches to try to
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further minimize the TEC. In this case, the total tardiness of the sequence can be affected

by the TEC minimization. Therefore, the precedence bi-objective model is modified to a

single-objective model, and the total tardiness objective becomes the constraint shown in

equation 4.31, in which TTmax is the total tardiness of the original solution.

n′

∑

i=1

Ti ≤ TTmax. (4.31)

Both fix-and-optimize approaches reduce the problem resolution size. However,

there may be cases in which the number of jobs inside a batch is too large to minimize

the TT, or that there are too many batches, being difficult to run the solver for the

minimization of TEC. For this scalability issue, a complementary heuristic based on the

AXB framework proposed from Ta, Billaut, and Bouquard (2018) is used.

Figure 4.3 illustrates how the AXB framework works. At first, a sequence S is

divided into three parts: A, X, and B. The A and B parts are fixed, and the X are the

variables of the sequence that will be re-optimized. The X set has a fixed size h and goes

from sequence position r to r+h−1. Re-optimization of X leads to X ′ and a new sequence

S ′ = AX ′B. The AXB framework is iterative, and the X window moves from position 1

of the sequence up to n − h position, one position at a time if there is no improvement

in the objective function of S. If an improvement appears, the re-optimization window

moves h positions, and the next re-optimization starts from position r + h − 1.

Figure 4.3 – Illustration of proposed fix-and-optimize algorithm.

Based on the AXB framework from Ta, Billaut, and Bouquard (2018).

Based on the AXB framework concept, Algorithm 4.1 details the complete steps of

the solution polishing for the total tardiness objective. The parameters of the algorithm

are a sequence S, a vector G = {G1, G2, . . .}, where Gf = {g1, g2} indicates, respectively,

the start index and size of a batch f , the total number of jobs n, the maximum size of

the fixed windows h and the maximum solver execution time for the re-optimization, tmax.

The procedure runs until all the batches are re-optimized, and batches with only one job

are ignored (line 5). Given a batch f , the re-optimization window starts, r, will be equal
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to the batch starting index. The window size will be the smaller value between the batch

size and the user-defined parameter h. If the batch size is higher than parameter h a

re-optimization loop goes on, as described in the AXB framework, from the beginning of

the batch until its end, replacing sequence S whenever its total tardiness is reduced.

Algorithm 4.1 Pseudocode of the solution polishing for the total tardiness objective.

1: function Solution-Polishing-TT(S, G, n, h, tmax)
2: f ← 1
3: repeat

4: {rb, hb} ← Gf

5: if hb > 1 then

6: r ← rb

7: h ← Min(hb, h)
8: repeat

9: S ′ ← Fix-And-Optimize(S, n, r, h, tmax)
10: if TT (S ′) < TT (S) then

11: S ← S ′

12: if r + h ≤ rb + hb − h then

13: r = r + h − 1
14: end if

15: end if

16: r = r + 1
17: until r > rb + hb − h
18: end if

19: f = f + 1
20: until f > |G|
21: return S
22: end function

Figure 4.4 illustrates how the total tardiness solution polishing works for a sequence

of ten jobs and a maximum re-optimization window of 2 jobs. The red rectangle highlights

the batch under re-optimization, and the gray squares are the fixed sequence positions.

Algorithm 4.2 details the complete steps of the solution polishing for the total

energy costs. The parameters are the same from the TT procedure, but there are not

iterations over batches. The batches are considered as single jobs, and the AXB framework

is applied straight over the batches.

Figure 4.5 illustrates how the total energy costs solution polishing works for a

sequence of ten jobs and a maximum re-optimization window of 2 jobs. The red rectangles

highlight the group of batches that are being re-optimized, and the gray squares represent

the pair of jobs that have their precedence fixed at each iteration.

This solution polishing is applied in the two initial solutions generated by math-

ematical programming and also in the approximated Pareto solutions found by the

multi-objective local search metaheuristic described in the next section. First, the TT
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Figure 4.4 – Demonstration of TT solution polishing.

Algorithm 4.2 Pseudocode of the solution polishing for the total energy cost objective.

1: function Solution-Polishing-TEC(S, G, n, h, tmax)
2: if |G| > 1 then

3: h ← Min(|G|, h)
4: f ← 1
5: repeat

6: rb ← Gf [0]

7: hb ←
∑f+h−1

p=f Gp[1]
8: S ′ ← Fix-And-Optimize(S, n, rb, hb, tmax)
9: if TEC(S ′) < TEC(S) then

10: S ← S ′

11: if f + h ≤ |G| − h + 1 then

12: f = f + h − 1
13: end if

14: end if

15: f = f + 1
16: until f > |G| − h + 1
17: end if

18: return S
19: end function
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Figure 4.5 – Demonstration of TEC solution polishing.

polishing is applied, then the TEC.

4.5 Multi-objective Metaheuristic

The metaheuristic employed in this research is based on the Multi-objective General

Variable Neighborhood Search (MOGVNS) algorithm proposed by Duarte et al. (2015).

The MOGVNS is split into three consecutive steps: (i) shaking of the solution to

get out of possible local valleys; (ii) variable neighborhood descent search for solution

refinement; (iii) neighborhood change until the reach of the stop criterion. Algorithm 4.3

shows the flow between these steps.

The main difference between the MOGVNS and its single-objective version lies

in the solution concept. In the mono-objective algorithm, we focus on finding the best

possible solution, a single point/vector. In the multi-objective version, our focus is on

finding a set of efficient points (non-dominated solutions), represented in Algorithm 4.3 by

the parameter E. The other parameters of the procedure are the neighborhood size for

shaking moves (qmax), the neighborhood size for descent search (lmax), and the maximum

execution time (tmax), which will be the stop criterion.

Given the initial set of non-dominated solutions E, generated with the use of

mathematical programming, the qmax shaking neighborhoods are visited repeatedly until

the stop criterion is reached. A new set of solutions E ′ is generated from the q shaking

neighborhood of set E. This set goes later for a search with lmax descent neighborhoods.

Finally, the set E ′′ generated by the descent method is compared to the original set E,

and the current shaking neighborhood q is changed. The initial set E is updated with the

non-dominated solutions found, and the loop starts all over again.

A solution x is represented by a permutation of jobs, and four neighborhoods are
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Algorithm 4.3 Pseudocode of MOGVNS.

1: function MOGVNS-FI(E, qmax, lmax, tmax)
2: repeat

3: q ← 1
4: repeat

5: E ′ ← MOShake(E, q)
6: E ′′ ← MOVND-FI(E ′, lmax)
7: E, q ← MONeighborhoodChange(E, E ′′, q)
8: until q > qmax

9: t ← CpuTime()
10: until t > tmax

11: return E
12: end function

considered for MOGVNS. The first two are standard neighborhoods for machine scheduling

problems. They represent a set of permutation operations over the n jobs of the solution x.

The first one (N1) consists of exchanging the position of two jobs i and r of the sequence

and the second (N2) on removing job i from its position and inserting it at the position of

job r. The cardinalities of the neighborhoods are, respectively, n(n − 1)/2 and (n − 1)2.

The next two neighborhoods, N3 and N4, consist, respectively, of the same movements,

but they are performed over the batches (the jobs from the same batch cannot be moved

separately). This batching approach appears on papers from Schaller (2012) and Shen,

Gupta, and Buscher (2014) to solve single-objective flow shop problems to minimize,

respectively, the total tardiness and makespan. Figure 4.6 exemplifies the movements from

the four neighborhoods. All neighborhood movements lead to viable solutions.

Figure 4.6 – Example of the four neighborhoods.

The multi-objective version of the shaking procedure, MOShake, is presented in

Algorithm 4.4. Its primary goal is to perturb the set of efficient points to promote searches

on new spaces. The Shake function is responsible for disturbing each solution of set E,

according to neighborhood q, to create a new set of points E ′, that, in this case, may be

dominated. The shaking strategy to create a new x′ solution can vary from problem to
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problem. In this research, a solution is perturbed by q random movements of the sequence.

Each procedure is an exchange, or an insert operation over the batches, which are chosen

at random (considering a uniform probability distribution). This random selection of both

neighborhoods and switching jobs benefits the search space exploration to escape from

local-optimal valleys.

Algorithm 4.4 Pseudocode of multi-objective shake.

1: function MOShake(E, q)
2: E ′ ← ∅
3: for all x ∈ E do

4: x′ ← Shake(x,q)
5: E ′ ← E ′ ∪ {x′}
6: end for

7: return E ′

8: end function

Figure 4.7 shows an example of the MOShake procedure for a set E of two solutions

with ten jobs and q = 2. Two random permutation operations are demonstrated for each

solution. The first one is an exchange of batches in positions 2 and 4, and an insert of the

batch in position 4 to position 5. In the second, two insert operations: the first one moves

the batch in position 2 to position 5 and the batch in position 1 to position 3. All the

permutation movements proposed in these neighborhoods generate feasible solutions for

the HT scheduling problem.

Figure 4.7 – Example of the MOShake procedure with parameters E and 2.

The set E has two solutions, represented as the permutation of six jobs. Two permutation
operations (q = 2), chosen at random, are performed in each solution. For the first one, there is

an exchange of batches in positions 2 and 4 and then an insert of the batch in position 4 to
position 5. In the second solution, two insert operations are performed. The first one is moving
the batch from position 2 to position 5. In the second one, the batch in position 1 is moved to

position 3. This procedure defines the two new solutions of set E′.

Algorithm 4.5 elucidates how the multi-objective neighborhood change procedure

works. As in the single objective version, a neighborhood q moves to q + 1 when there
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are no further improvements in the current search. Improvements are checked in function

MOImprovement through the comparison of the current set of efficient points E and the

new one, E ′, found by the exploration and exploitation procedures. An improvement

is assumed true if at least one solution x′ of E ′ is not dominated by any of the current

efficient points E. The improvement leads to the update of the approximated Pareto

front and restarts the search from the first neighborhood q = 1 (lines 3 and 4). The

dominance comparison between the sets of solutions can be computationally demanding

when they are too large (DUARTE et al., 2015). In those cases, the neighborhood change

algorithm should have an efficient procedure to reduce the set of Pareto points without

degrading the front (this operation is standard in many population-based metaheuristics

such as NSGA-II (DEB et al., 2002) and SPEA2 (ZITZLER; LAUMANNS; THIELE,

2001). Nevertheless, this approach was not necessary in the HT scheduling resolution.

Algorithm 4.5 Pseudocode of multi-objective neighborhood change.

1: function MONeighborhoodChange(E, E ′, q)
2: if MOImprovement(E, E ′) then

3: q ← 1
4: E ← Update(E, E ′)
5: else

6: q ← q + 1
7: end if

8: return E, q
9: end function

The descent search adopted in this work is based on first-improvement. Although

most of the multi-objective VND algorithms found in literature use best-improvement

(GEIGER, 2004), our preliminary tests indicated that the first-improvement strategy could

lead to superior results in the considered problem, taking into account the execution time

limits assumed (support information file available at Gomes (2020)).

Algorithm 4.6 shows the multi-objective VND based on first-improvement (MOVND-

FI). Its parameters are the set of points E and the neighborhood size lmax. A set of

exploited solutions is also maintained in variable D to avoid repeated search effort and to

stop the method once all the points on E have been visited (respectively, lines 5 and 13).

While there are still unvisited solutions in E, a random x ∈ E is chosen (line 4), and then

MOFirstImprovement inspects the neighborhood Nl(x) until it finds a non-dominated

solution, to add to the approximated Pareto set E. If no non-dominated points are found,

function MONeighborhoodChange moves the neighborhood. In case of improvement, the

new point x′ replaces the current solution in a new local search (line 10).

The approximated Pareto front solutions found by the MOGVNS algorithm are

then selected and polished.
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Algorithm 4.6 Pseudocode of multi-objective first improvement VND.

1: function MOVND-FI(E, lmax)
2: D ← ∅
3: repeat

4: x ← SelectRandom(E \ D)
5: D ← D ∪ {x}
6: repeat

7: x′ ← MOFirstImprovement(x, E, l)
8: E, l ← MONeighborhoodChange(E, {x′}, l)
9: if l = 1 then

10: x ← x′

11: end if

12: until l > lmax

13: until E \ D = ∅
14: return E
15: end function

4.6 Solutions Selection

Given the computational effort required for the solution polishing, before the

final step of the proposed matheuristic, N solutions are selected from the MOGVNS

approximated Pareto front. The selection is based on a measure commonly used in

multi-objective algorithms, the crowding distance (CD). This metric is used to compare

the solutions’ fitness in the non-dominated front, considering a criterion of diversity

maintenance in the objective space. The CD value of a solution provides a density

estimation of solutions surrounding it and is calculated considering the average distance

of its neighboring solutions (DEB et al., 2002).

In Figure 4.8, the crowding distance value of the solution x (blue circle) is the

average side length of the cuboid formed by its nearest neighbors, represented by the black

dashed rectangle.

Figure 4.8 – Crowding distance calculation for a bidimensional objective space.
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The crowding distance computation requires sorting the population according to

each objective function value in ascending order of magnitude. For each objective function,

the boundary solutions (solutions with the smallest function values) are assigned an infinite

distance value. All other intermediate solutions are assigned a distance value equal to

the absolute normalized difference in the function values of two adjacent solutions. This

calculation is continued with other objective functions, and the overall crowding distance

value is calculated as the sum of individual distance values corresponding to each objective

(DEB et al., 2002).

Once the crowding distance of all the solutions of the MOGVNS approximated

Pareto front is calculated, they are sorted in descending order and the N solutions with

higher CD value (top of the sorted list) are selected for polishing.

4.7 Summary

To summarize the complete matheuristic execution, Figure 4.9 demonstrates how

the approximated Pareto solutions evolve over the detailed steps. The first chart shows the

two initial solutions generated through mathematical programming. One gives the optimal

value for the total energy costs. In the second chart, these solutions appear as hashed

circles as they have been improved and replaced by the solutions achieved from the MILP

heuristics polishing. The red arrows indicate that the solutions have first moved towards

the minimization of the total tardiness and then for the minimization of the total energy

cost, in this case, only one of them. The third chart exemplifies the MOGVNS execution

and its exploration of the search space mapping an approximated Pareto front. In the

fourth step, five solutions of the front are selected, based on the crowding distance metric,

for subsequent polishing. The fifth chart shows that one solution has improved its total

energy costs from the solution polishing. This new solution dominates two solutions of the

previous front that appear as hashed circles. The final approximated Pareto front has four

solutions, as shown in the sixth chart, highlighted in a red box, and the matheuristic ends.

In the next chapter, the multi-objective matheuristic proposed is tested in real

instances of the heat treatment scheduling case.
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Figure 4.9 – Example of the approximated Pareto front evolution over the matheuristic
steps.
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5 Results and Discussion

5.1 Computational Experiments

The efficiency of the proposed multi-objective matheuristic, in the resolution of

the heat treatment scheduling problem, was tested on 24 instances based on real data

from the steel industry line. Each case represents six to seven days of production from the

second semester of 2017. Figure 5.1 shows the number of jobs of the 24 instances. The

smallest case has 37 jobs, and the biggest one has 112 jobs.

Figure 5.1 – Test instances with real data from second semester of 2017.

For each test instance, it is given the number of steel pieces to be produced, the

material cycle time, the furnaces’ treatment temperatures, and the due date (exemplified

in Table 2.1). The parameters described in Section 2.2.2 were calculated from these inputs.

The real sequence executed in the HT line is also known. It was used to validate the gains

of the suggested methodology.

The proposed algorithms were executed in an 8GB RAM Ubuntu 20.04 LTS server

and developed in C#, with .NET Core framework (MICROSOFT, 2019), following the

software development standards of the steel industry. The solver used for MILP resolution

was Gurobi 9.0.3 (GUROBI OPTIMIZATION, LLC, 2019) and the statistical analysis of

the results was performed in R 3.6.3 (R CORE TEAM, 2016).

The experiments were split into four segments. First, the models presented in

Section 4.2 were compared to define which one would be used to generate the matheuristic

initial solutions. Second, the initial points were generated - by the selected models - and

polished according to the methodology described in Section 4.4. The third part of the
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experiment focuses on the MOGVNS performance in terms of the configuration imple-

mented and the initial solutions generated through mathematical programming. Finally,

the last results of these experiments explore the solution polishing of the approximated

Pareto fronts.

Five metrics are used to analyse the experiments and compare the algorithms:

• RT - runtime for the MILP solver (RTsolver), solution polishing (RTpolish), and

MOGVNS (RTmogvns);

• GAP - final percentage gap between the lower and upper bounds of the MILP solver;

• PI - percentage improvement between two solutions according to each objective

(PIT EC and PIT T );

• HV - normalized hypervolume of the approximated Pareto front solutions;

• NS - number of non-dominated solutions at the approximated Pareto front.

Hypervolume is a metric used in multi-objective optimization to access the per-

formance of optimizers regarding convergence and diversity. It was proposed by Zitzler

and Thiele (1999) to stipulate the total volume existing between the approximated Pareto

solutions and a reference point. A higher hypervolume indicates a better Pareto-front

approximation. This metric was chosen because it does not depend on prior knowledge

of the optimal Pareto front. The hypervolume values to be presented in this chapter

are all normalized. The non-dominated points generated in the different executions were

normalized between 0 and 1, and the estimated Nadir point was set as 1.1 for both

objectives (the exact Nadir value is unknown).

The instances cost functions are not displayed to protect company information.

Therefore, a percentage improvement (PI) measure was determined. This metric can

be calculated for any solution S, taking as reference a solution S0. The percentage

improvement is calculated for both objectives by equations 5.1 and 5.2. The TT0 and

TEC0 are, respectively, the total tardiness and total energy costs of the solution S0.

PIT T (%) =
(

1 −
TT

TT0

)

100. (5.1)

PIT EC(%) =
(

1 −
TEC

TEC0

)

100. (5.2)

The following four sections detail these experiments’ results. The expected gains

for this methodology applied in the steel industry are presented at the end of the chapter.

5.2 Comparison of Mathematical Models

Two tests were performed to define which model - positional, or precedence - would

be more appropriate to generate the two initial solutions of the HT scheduling problem.
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As explained in Section 4.3, this step is based on a grouping strategy of the jobs, and they

also use the single-objective version of the models. They are constructed by removing

the objective function, constraints, and variables that are not related to the minimization

goal. Therefore, the comparison presented next is based on the single-objective models

that minimize the total energy costs or the total tardiness.

Each model ran five times for each objective resolution, and the MILP solver

runtime was limited to two hours. For each model, it is compared the execution average

runtime and the solver final gap.

Table 5.1 shows the comparison between the positional and precedence model in

the minimization of the TEC objective. The first three columns, from left to right, have

the instance identification name and size (n) and the number of jobs considered in the

minimization of TEC (nT EC) - after applying the grouping strategy. The two following

sections show the average runtime, in seconds, and the percentage gap, respectively, for

the positional and precedence models.

Table 5.1 – Comparison between the positional and precedence model in the minimization
of the total energy cost objective.

Instance n nT EC
Positional model Precedence model

RT (s) GAP (%) RT (s) GAP (%)
1 37 6 0.0542 0 0.0069 0
2 46 7 0.2042 0 0.0061 0
3 47 3 0.0044 0 0.0047 0
4 48 6 0.0702 0 0.0031 0
5 50 8 0.2097 0 0.0069 0
6 59 8 0.4331 0 0.106 0
7 60 5 0.0232 0 0.0031 0
8 62 7 0.1398 0 0.0091 0
9 63 6 0.046 0 0.0044 0
10 66 4 0.012 0 0.0018 0
11 69 6 0.1108 0 0.0027 0
12 70 10 1.3248 0 0.0061 0
13 71 14 71.3522 0 0.0298 0
14 73 4 0.0057 0 0.0019 0
15 74 14 237.0979 0 0.0555 0
16 80 8 0.2621 0 0.007 0
17 81 8 0.6846 0 0.0085 0
18 83 14 67.6489 0 0.0225 0
19 86 7 0.1403 0 0.0033 0
20 89 6 0.0553 0 0.0079 0
21 104 6 0.0918 0 0.0058 0
22 105 7 0.1982 0 0.0174 0
23 109 9 0.8962 0 0.0307 0
24 112 5 0.0298 0 0.0018 0



76 Chapter 5. Results and Discussion

Table 5.1 attests that both models were able to solve the TEC minimization

problem at its optimality, as they all reach a 0 gap within 2 hours of execution. It also

can be observed that the grouping strategy can reduce the problem size significantly with

instances that go from 3 to a maximum of 14 jobs. Except for instance 3, the precedence

model showed a better runtime, as highlighted in bold. It was able to solve all problems

in less than 1 second, while the positional model reached 237 seconds for the worst case,

with an average runtime of 16 seconds. These results can be explained by the TEC

single-objective model’s reduced size, based on the TSP formulation.

The results were different for the total tardiness minimization, as shown by Table 5.2.

The columns are the same from Table 5.1, except for the number of jobs considered in the

minimization of TT (nT T ).

Table 5.2 – Comparison between the positional and precedence model in the minimization
of the total tardiness objective.

Instance n nT T
Positional model Precedence model

RT (s) GAP (%) RT (s) GAP (%)
1 37 8 0.0376 0 0.0043 0
2 46 13 1.1504 0 0.338 0
3 47 5 0.0256 0 0.0018 0
4 48 10 65.9862 0 201.8528 0
5 50 10 39.6113 0 132.6202 0
6 59 13 893.8634 0 7200 100
7 60 11 14.8249 0 63.8586 0
8 62 10 31.2019 0 120.5439 0
9 63 10 46.5832 0 82.3899 0
10 66 8 1.9029 0 0.7467 0
11 69 9 0.0517 0 0.0047 0
12 70 14 4211.707 0 7200 99.5
13 71 18 7200 100 7200 100
14 73 13 0.2159 0 0.0379 0
15 74 19 7200 66.05 7200 100
16 80 12 341.9848 0 7200 98.17
17 81 11 64.5496 0 515.2027 0
18 83 19 7200 92.27 7200 92.27
19 86 17 4.2663 0 0.0633 0
20 89 11 266.9994 0 2714.1802 0
21 104 11 148.3003 0 1585.8836 0
22 105 11 81.9815 0 941.6375 0
23 109 13 1660.303 0 7200 66.12
24 112 10 7.6249 0 3.2823 0

Comparing Table 5.1 and Table 5.2, it is possible to see that, for all test instances,

the number of grouped jobs for the solution of the TT minimization is bigger than for

TEC (nT T > nT EC). The fact that the number of grouped jobs for TT is larger results in

longer runtimes. For 13 instances, the positional model runtime was smaller compared to
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the precedence model. For three instances, both models reached the solver execution time

limit, and, in one of these cases, the positional model presented a better gap. Instances 6,

12, 16, and 23 were not solved by the precedence model, with relevant gap values. The

results also indicate that the positional model performs better when the problem size

increases, with a big difference in the average runtime compared to the precedence model,

which can be related to its disjunctive constraints.

Given the results shown by Table 5.1 and 5.2, the single-objective precedence model

was selected to generate the initial solution that minimizes the total energy cost objective.

For the total tardiness objective, the positional model was selected due to its capacity to

solve bigger problems, which gives the methodology better scalability.

5.3 Initial Solutions with Polishing

The second experiment investigated the matheuristic initial solutions generation

through the selected mathematical models, and the polishing mechanism. The initial

solution generated by the precedence model, for minimization of TEC, will be referred

to as S1. Solution S2 is the one given by the positional model in the minimization of

TT. They are represented by the hashed circles of Figure 5.2. The subsequent solution

polishing generates the final initial solutions (black circles). The red arrows indicate the

percentage improvements in S1 and S2 after the polishing.

Figure 5.2 – Demonstration of the initial solutions generated by mathematical program-
ming and subsequent polishing.

The MILP runs to generate S1 and S2 were limited to one hour, sufficient time to

solve most of the problems, as presented in the previous section. Table 5.3 summarizes the

outcomes of the 24 instances at this first step of the proposed matheuristic. The columns of

the table are divided into three sections. The first one, from left to right, has the instance

identification name and size. The second and third sections display the mathematical
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programming parameters and outputs for the generation of each solution. The first column

of these sections shows the number of jobs considered in the single-objective minimization

problems (nT EC and nT T ). In the second and third columns it is shown the MILP solver

runtime in seconds (RTsolver) and its final gap (GAP ).

Table 5.3 – Summary of the MILP solver runs in the initial solutions generation for the
24 instances.

Instance n
S1 S2

nT EC (s) RTsolver (s) GAP (%) nT T (s) RTsolver (s) GAP (%)
1 37 6 0.006 0% 8 0.03 0%
2 46 7 0.0073 0% 13 1.68 0%
3 47 3 0.0082 0% 5 0.03 0%
4 48 6 0.0028 0% 10 92.24 0%
5 50 8 0.0032 0% 10 40.54 0%
6 59 8 0.1263 0% 13 1203.62 0%
7 60 5 0.0046 0% 11 21.93 0%
8 62 7 0.0158 0% 10 46.98 0%
9 63 6 0.0051 0% 10 69.75 0%
10 66 4 0.002 0% 8 2.76 0%
11 69 6 0.0031 0% 9 0.05 0%
12 70 10 0.0091 0% 14 3600.01 50%
13 71 14 0.0359 0% 18 3600.01 100%
14 73 4 0.0019 0% 13 0.24 0%
15 74 14 0.0905 0% 19 3600.01 68%
16 80 8 0.0066 0% 12 327.63 0%
17 81 8 0.0054 0% 11 69.25 0%
18 83 14 0.0202 0% 19 3600.01 92%
19 86 7 0.0026 0% 17 1.38 0%
20 89 6 0.0071 0% 11 250.74 0%
21 104 6 0.0057 0% 11 163.88 0%
22 105 7 0.0067 0% 11 84.85 0%
23 109 9 0.0221 0% 13 1817.11 0%
24 112 5 0.0022 0% 10 7.78 0%

Table 5.3 attests that the MILP solver can give the optimal solution S1 for all

instances within less than 1 second. In 4 cases (12, 13, 15, and 18), the solver reached the

maximum execution time limit in the generation of S2. Based on Table 5.2, instance 12

could have been solved with a zero-gap within 4211.7 seconds, however, this effort was left

to the solution polishing mechanism.

The solution polishing maximum solver execution time, tmax, was limited to 1

minute to avoid a long iterative process. The maximum size of the fixed windows, h,

was defined as 10 for the polishing of the total tardiness objective, and 20 for the TEC

objective. In Table 5.2 it is possible to see that most of the instances with nT T less than

10 were solvable within 60 seconds. For the TEC objective, this size was doubled, since

the precedence model was able to solve through optimality instances up to 14 jobs.
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To check the efficiency of the solution polishing, the initial solutions of the matheuris-

tic were generated five times for each instance. Table 5.4 shows the polishing results.

The columns of the table are divided into four sections. The first one is the instance

identification name. The second section displays the average polishing runtime, in seconds,

for both objectives. The polishing runs first to improve the total tardiness of S1 and

S2 and then the total energy costs. The third and fourth sections show the percentage

improvement in each objective reached for both solutions, S1 and S2, respectively.

Table 5.4 – Initial solutions polishing average results for the 24 instances.

Instance
RTpolish (s) S1 S2

TT TEC PIT T PIT EC PIT T PIT EC

1 26.28 0.31 11.3% 0% 0% 4.3%
2 211.4 60.05 1.9% 0% 0% 4.4%
3 301.69 0.05 2% 0% 3.4% 0.6%
4 269.64 20.5 13.9% 0% 20.1% 2%
5 78.18 5.01 1.6% 0% 25.5% 4.6%
6 169.88 60.09 3.6% 0% 25.7% 0.6%
7 205.64 3.27 19.2% 0% 19.3% 1.7%
8 898.71 41.75 1.5% 0% 2.1% 0.1%
9 251.73 1.28 2.7% 0% 5.2% 0.5%
10 1046.85 0.34 8.7% 0% 0.9% 0%
11 608.07 0.3 0% 0% 0% 5.4%
12 276.16 60.17 4.8% 0% 5.7% 1.9%
13 351.51 60.09 6.1% 0% 6.3% 1.5%
14 212.98 34.57 1.9% 0% 0% 8.1%
15 1553.53 60.17 0.2% 0% 2.1% 0.5%
16 1394.51 60.16 1.3% 0% 10.1% 0.2%
17 1054.88 2.81 0.8% 0% 7.3% 1.1%
18 786.72 60.21 2.1% 0% 11.1% 2.6%
19 484.01 60.23 1.5% 0% 0% 5.6%
20 1156.75 60.18 1.5% 0% 4.6% 0.9%
21 1374.64 5.11 1.2% 0% 12.9% 0.9%
22 958.14 0.65 3.6% 0% 6.8% 1.1%
23 3464.36 60.24 0.5% 0% 6.6% 0.9%
24 3762.57 2.79 7.5% 0% 8.7% 1.9%

The average runtime of the TT polishing, for both solutions, is 870 seconds, and for

the TEC polishing is 30 seconds. The runtime for TEC has reached more than 1 minute

for ten instances, indicating that the maximum solver execution time was reached - the

process for S1 is quick, given that the solution is already optimal (0% of PIT EC for all

instances). Therefore, an increase on tmax for future TEC polishing executions could be

evaluated. Despite this, the polishing mechanism reduced the solutions’ cost functions

for most of the cases. The mean percentage improvements in S1 for the total tardiness

objective was 4.1%. The mean percentage improvements in S2 for the TT was 9.7% and
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for TEC it was 2.1%. These results support the use of polishing to generate better initial

solutions.

5.4 MOGVNS Performance

After the initial solutions were generated, 30 executions of the MOGVNS algorithm

were performed. The multi-objective metaheuristic parameters were set based on pre-

liminary experiments, which are described in a support information file (GOMES, 2020).

Their values are as follows:

• Size of descent search neighborhood (lmax): it is the number of neighborhoods visited

during the descent search, which are the four represented in Figure 4.6;

• Extent of shaking neighborhood (qmax): up to three random exchange or insert

operations over the batches;

• Maximum execution time (tmax): the execution time of MOGVNS was modeled as

a linear function of the instance size. The chosen value was 15 × n, which is time

enough to run, at least, five descent searches of the MOVND.

For each execution of the MOGVNS, it was calculated the final approximated

Pareto front normalized hypervolume. Table 5.5 shows the best results - in terms of

hypervolume for each instance. The first two columns are the instances identification name

and size, and the other columns show the MOGVNS runtime in minutes, and the number

of non-dominated solutions in the final approximated Pareto front.

Results from this step of the matheuristic show that the MH runtime is lower than

30 minutes in the worst case. Therefore, even if the generation of the initial solution takes

over one-hour each, the matheuristic total runtime is still an adequate time to perform

a one week schedule. The number of efficient points found also varies from 1 to 30. A

regression analysis shows that the number of jobs grouped by process characteristics -

nT EC - linearly correlates NS (R2 of 70%), while the total number of jobs - n - does not

influence it (R2 of 0.7%). So, the number of solutions found in the approximated Pareto

fronts are more strongly related to the product mixes. Consequently, a set of jobs with

different process settings can be more difficult to solve, giving higher trade-offs between

the objectives.

Figure 5.3 shows examples of two instances with the approximated Pareto front

obtained by the algorithm: instances 15 and 18. In both charts, the blue triangles are

the solutions found by the multi-objective metaheuristic, and the red squares are the two

initial solutions generated by mathematical programming. This visualization demonstrates

the importance of MOGVNS in the search space exploration. As the initial solutions that

minimize TEC are optimal, there are no blue triangles with a lower TEC value. However,

this is not the case for the TT, so the local search can further improve this objective. It is
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Table 5.5 – Summary of MOGVNS results for the 24 instances.

Instance n RTmogvns (min) NS
1 37 9.25 3
2 46 11.5 5
3 47 11.75 3
4 48 12 25
5 50 12.5 30
6 59 14.75 19
7 60 15 2
8 62 15.5 24
9 63 15.75 4
10 66 16.5 2
11 69 17.25 2
12 70 17.5 30
13 71 17.75 30
14 73 18.25 3
15 74 18.5 30
16 80 20 16
17 81 20.25 27
18 83 20.75 30
19 86 21.5 8
20 89 22.25 25
21 104 26 5
22 105 26.25 17
23 109 27.25 29
24 112 28 6

also possible to see the trade-off between objective functions for each solution.

(a) Instance 15. (b) Instance 18.

Figure 5.3 – Examples of approximated Pareto fronts obtained by the MOGVNS for two
instances.

Two comparative experiments were also conducted with the MOGVNS. The first,

to evaluate the shaking and neighborhood configurations based on batches. The second, to

estimate the benefit of using mathematical programming to generate its initial solutions.

In the first comparison, MOGVNS was executed 30 times with two different
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configurations. The first configuration, traditional in scheduling problems, uses two

neighborhood sets, insert and exchange, and a shaking method that randomly does these

operations over the jobs. Gomes, Ravetti, and Carrano (2021) implement this strategy

for the solution of the HT scheduling problem. This configuration is referred as N2. The

second configuration, proposed in this work, uses insert and exchange moves over the

jobs and the sequence batches. The latter is also used in the shaking operations. This

configuration is referred to as N4.

The hypervolume of the approximated Pareto fronts found by the two MOGVNS

configurations were calculated for each execution. Figure 5.4 shows their distribution per

instance. It is noticeable from the boxplots that configuration N4 presented a higher

median hypervolume for most cases. For six instances, the median hypervolume reached is

the same, and in other four problems, the observed difference was small (difference in the

third decimal value).

To precisely compare the MOGVNS configurations, a statistical one-sided paired t-

test was performed. The null hypothesis assumes that the mean hypervolume differences of

configurations N4 and N2 are zero, and the alternative hypothesis assumes that the mean

differences (µN4 - µN2) are greater than zero (CAMPELO, 2018). The results indicated

the rejection of the null hypothesis with a level of confidence of 95% (p-value=0.00032).

It means that configuration N4 outperforms N2 with a relevant statistical hypervolume

difference.

The four neighborhoods and the batches in the shaking method also improved the

MOGVNS convergence - taking the normalized hypervolume calculated over the total

execution time in seconds. Figure 5.5 shows how the solutions hypervolume changed over

the algorithm iterations in two instances, 12 and 13. The blue curve shows the results

from the N4 configuration (MOGVNS-N4) and the red from the N2 (MOGVNS-N2). In

the first case ( 5.5a), configuration N2 seems to be trapped in local optimum solutions

at the beginning of the iterations, which does not happen in N4. In the latter case

( 5.5b), configuration N2 took almost double of the time to reach the hypervolume of

configuration N4. Despite that, both techniques present asymptotic convergence with

quicker improvements in solutions over the first iterations and slower at the end.

To show the advantage of using mathematical programming to find good initial

solutions, we implemented a different method. In this method, two heuristics define the

initial solutions: the first is the well-known Earliest Due Date (EDD), and the second

is a simple ordering of the jobs from the highest treatment temperatures to the lowest,

which requires less energy during setup. The MOGVNS algorithm was initialized by these

heuristics and the designed MILP and was executed 30 times for each test instance.

The boxplots of Figure 5.6 show the distribution per instance of the normalized

hypervolumes calculated for both methods. The blue series represents the multi-objective
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Figure 5.4 – Distribution per instance of the hypervolume calculated over 30 executions
of the MOGVNS with two different configurations - (N2) and (N4).
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(a) Instance 12. (b) Instance 16.

Figure 5.5 – Comparison of normalized hypervolume calculated over the total execution
time (seconds) of MOGVNS algorithm with N2 and N4 configurations.

matheuristic, and the red series the comparative technique. The median hypervolume

of the suggested methodology is greater than the metaheuristic alone for most of the

instances. It indicates that the approximated Pareto solutions found by the multi-objective

matheuristic present a better convergence and diversity. For instances 3 and 7, the

hypervolume distribution is the same for both methods. For instances 6, 16, and 20, the

median values of the proposed matheuristic are lower than the MOGVNS with simple

heuristics.

A one-sided paired t-test was performed to make sure that the overall hypervolume

differences are statistically significant. The null hypothesis assumes that the mean

differences between the two sets are zero (CAMPELO, 2018). The results indicated

the rejection of the null hypothesis with a level of confidence of 95% (p-value=0.01335).

It means that the proposed matheuristic outperforms the simple MH with a relevant

statistical difference in terms of the hypervolume performance metric.

Figure 5.7 presents two examples of approximated Pareto fronts found by the

different initialization methods. They are from instances 6 and 23 and demonstrate how

far the initial solutions from mathematical programming strategy (red squares) are from

the solutions defined by the heuristics (green diamonds). As a result of the quality of

the initial solutions, the matheuristic final approximated Pareto fronts (blue triangles)

presented, in general, better diversity (Figure 5.7a) and convergence (Figure 5.7b). Figure

5.7b shows the MOGVNS-Heuristics solutions (orange circles) being dominated by the

matheuristic front. These results justify the computational effort to find the initial points

with the use of MP.

Figure 5.8 demonstrates the comparative convergence curves between the two

techniques for instances 6 and 23. The blue curve shows the results from the proposed

matheuristic (MOGVNS-FI-MILP) and the red from the MH with the simple heuristic

initialization (MOGVNS-FI-Heuristics). They show that the matheuristic convergence

is faster due to the use of MILP in the first phase of optimization that prioritizes the
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Figure 5.6 – Distribution per instance of the hypervolume calculated over 30 executions
of the multi-objective matheuristic (MILP for initial solutions + MOGVNS)
and MOGVNS with simple heuristics to generate the initial solutions.
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(a) Instance 6. (b) Instance 23.

Figure 5.7 – Comparison of the approximated Pareto fronts found by the proposed
matheuristic and by the simple heuristics to generate the initial solutions.

definition of good approximated Pareto extreme solutions. From the red curve, it is also

possible to notice that the hypervolume reached by the only MOGVNS execution is smaller

than the one from the combination of MP and MH. This result favors the conclusions

shown above regarding the convergence of the methods.

(a) Instance 6. (b) Instance 23.

Figure 5.8 – Comparison of normalized hypervolume calculated over the total execution
time (seconds) of MOGVNS algorithm with MILP initialization and simple
heuristics.

5.5 Approximated Pareto Polishing

The final steps of the proposed multi-objective matheuristic are the MOGVNS

crowding based selection, and the solution polishing application. The results from this

section are from five complete matheuristic executions for each instance. Ten solutions

were selected through the crowding distance to avoid the polishing of solutions with close

function values. Table 5.6 shows, per instance, the final number of non-dominated solutions

and the total runtime spent to try to improve them - first for the TT objective, and then

for the TEC. The last column of the table shows if there was an improvement in the

selected solutions hypervolume after the polishing.
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Table 5.6 – Summary of the approximated Pareto fronts polishing for the 24 instances.

Instance NS
RTpolish (min)

Improved HV?
TT TEC

1 3 0.39 0.01 N
2 5 7.36 0.12 N
3 3 42.7 0.71 N
4 10 45.34 0.76 N
5 10 36.22 0.6 N
6 10 11.35 0.19 N
7 2 6.67 0.11 N
8 10 105.03 1.75 N
9 4 16.52 0.28 N
10 2 18.89 0.31 N
11 2 8.74 0.15 N
12 10 42.89 0.71 Y
13 10 47.16 0.79 N
14 4 18.3 0.3 N
15 10 211.63 3.53 Y
16 10 113.49 1.89 Y
17 10 138.61 2.31 N
18 10 85.94 1.43 N
19 8 55.38 0.92 N
20 10 115.28 1.92 Y
21 5 120.33 2.01 N
22 10 441.34 7.36 N
23 10 358.86 5.98 Y
24 6 241.48 4.02 N

The mean runtime for the total tardiness and the total energy costs polishing was,

respectively, 95.4 minutes, and 1.6 minutes. The execution time is proportional to the

number of solutions to be polished. However, the number of batches in a sequence can also

interfere with this result. Only five instances showed improvements in its hypervolume

after the polishing. Figure 5.9 shows the approximated Pareto fronts for the five instances

- 12, 15, 16, 20, and 23 - that presented improvement after the polishing. The orange

circles represent the original solutions generated by the MOGVNS and selected through

crowding distance. The red squares represent the solutions that went through the TT

polishing, and the blue triangles are the solutions after going through the TEC polishing.

In all five cases, the TT polishing did not improve any solution. Notwithstanding,

the TEC polishing improved the total energy cost of some solutions, which also upgraded

their total tardiness. These results can be further explored in the future by executing the

TEC polishing before the TT. It may support better outcomes. Otherwise, only the TEC

polishing application is justified in the proposed method.
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(a) Instance 12. (b) Instance 15.

(c) Instance 16. (d) Instance 20.

(e) Instance 23.

Figure 5.9 – Approximated Pareto front after polishing of the five instances that showed
improvement.
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5.6 Gains for the Steel Industry

This section focuses on estimating this work’s benefits for the steel industry. The

goal is to check if the alternative schedules found by the proposed multi-objective matheuris-

tic are better than the ones executed in practice. Therefore, the approximated Pareto

front extreme points were compared to the executed plans. The maximum improvement

for the total tardiness objective (PImax
T T ) was calculated from the solution of minimum

TT. The same value was calculated for the total energy costs (PImax
T EC) from the solution

of minimum TEC.

Table 5.7 shows the best results - in terms of hypervolume for each instance.

The first column is the instance identification followed, respectively, by the maximum

percentage improvement found for both objectives, (PImax
T EC and PImax

T T ), in comparison to

the solution executed in the HT line.

Table 5.7 – Expected gains for the application of the multi-objective matheuristic in the
HT production line.

Instance PImax
T EC PImax

T T

1 6.8% 100%
2 11.9% 100%
3 1.8% 50.1%
4 6.2% 52.7%
5 4.5% 67.4%
6 2.9% 69.9%
7 4.2% 89.1%
8 6.8% 73.5%
9 2.3% 41.2%
10 2.2% 91.4%
11 13.3% -
12 6.6% 56.3%
13 7.1% 99.5%
14 11.6% 100%
15 7.6% 85.2%
16 2.3% 71.8%
17 6.5% 77.9%
18 10.5% 73.1%
19 13.7% 100%
20 2.5% 56.1%
21 4.7% 74.1%
22 4.1% 80%
23 7.4% 83.5%
24 6.9% 92.9%

Regarding the maximum percentage improvement in objectives, observed gains are

between 1.8% and 13.7% for the total energy costs and 41.2% up to 100% regarding the

total tardiness (100% meaning TT of 0h after optimization). In instance 11, both real
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sequence and optimized sequence had no tardiness. Table 5.7 shows that the median gain

for TT is 74.1% and the mean improvements in TEC are 6.4%. These values are relevant

in practice and represent a substantial annual reduction for the heat treatment production

line.

Figures 5.10 and 5.11 present all the solutions found by the proposed matheuristic

in comparison to the company real executed sequence. The orange circles represent the

real schedule solution, and the axes are on percentage. The approximated Pareto fronts

found by the matheuristics are an improvement in the heat treatment schedule planning, as

the real sequence executed is dominated for several of the solutions found in all instances.

(a) Instance 1. (b) Instance 2. (c) Instance 3.

(d) Instance 4. (e) Instance 5. (f) Instance 6.

(g) Instance 7. (h) Instance 8. (i) Instance 9.

(j) Instance 10. (k) Instance 11. (l) Instance 12.

Figure 5.10 – Approximated Pareto fronts of instances 1 to 12 with the real company
sequence execution.
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(a) Instance 13. (b) Instance 14. (c) Instance 15.

(d) Instance 16. (e) Instance 17. (f) Instance 18.

(g) Instance 19. (h) Instance 20. (i) Instance 21.

(j) Instance 22. (k) Instance 23. (l) Instance 24.

Figure 5.11 – Approximated Pareto fronts of instances 13 to 24 with the real company
sequence execution.



92 Chapter 5. Results and Discussion

All the experimental data and a support information file are publicly available at

Gomes (2020).
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6 Conclusions

6.1 Synthesis and main results

This research investigated a real scheduling production problem in a steel industry

heat treatment (HT) line, which concerns the minimization of the total tardiness and total

energy costs. It is a critical pilot study for a multinational company that has invested in

developing an integrated scheduling system with optimization procedures to reduce its

costs and increase its competitiveness worldwide.

A multi-objective matheuristic is proposed for the solution of the HT scheduling

problem. The combination of metaheuristics and mathematical programming is a field

of increased interest not explored enough for multi-objective problems. Therefore, this

research examined the sequential execution of an exact solver and a multi-objective

metaheuristic. The first generates two initial solutions to map the Pareto front extremes.

The second scrutinizes the search space for non-dominated solutions that show compromises

between the TT and TEC objectives.

The definition of the HT mathematical model was based on well-known formulations

of no-wait flow shop scheduling problems. The intention was to find a model that could

represent the heat treatment line characteristics and restrictions. For that, the classical

parameters of NWFSP-SDST formulations were adapted to the heat treatment line reality,

being extendable to similar problems. The steel company is also adopting this approach

for the rolling mill and finishing lines.

For the success of the matheuristic, it was important to define a model that could be

partially solved by an exact method during the generation of the initial solutions. For that,

two different formulations were analyzed: a positional-based and a precedence-based model.

They were tested in two HT single-objective problems: minimization of TT and TEC

separately. The computational results revealed that the precedence model was capable

of solving the TEC problem in less than 1 second for all instances, outperforming the

positional model. Differently, the latest was more suitable for the TT problem resolution,

presenting a better runtime and gap within the solver two hours execution limit. The

positional model also presented better results for the TT minimization when the instances

increased.

The HT scheduling instances are too big to be solved exactly. Therefore, to support

the selected models’ resolution, this work applied a strategy to reduce the instances’ number

of jobs, grouping them in batches. The jobs from the same batch are executed immediately

after the other, without any setup. The experiments showed that this simplification proved
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to be essential for the generation of the initial solutions, the MOGVNS performance, and

the polishing mechanism.

The solution polishing strategy proposed was based on a fix-and-optimize approach.

It showed expressive improvements in the initial solutions generated by the MILP solver

and a few in the final approximated Pareto fronts found by the local search metaheuristic.

Therefore, this technique could be explored in different settings and at distinct stages

of the matheuristic. The solution polishing has the potential to improve the scheduling

optimization scalability. Thus, other practical scheduling problems could rely on the same

approach.

Using mathematical programming to generate the initial solutions for the MOGVNS

algorithm allows improvements in the final approximated Pareto fronts of the MH in terms

of convergence and diversity. Different from population-based metaheuristics, local search

algorithms highly benefit from good quality initial solutions. Therefore, the computational

efforts of the multi-objective matheuristic first stages - with MILP solvers - are justified.

The computational simulations showed that the steel industry could gain, on

average, almost 7% of reduction in the HT line total energy costs and 80% in its total

tardiness by applying the proposed methodology. They also endorsed the compromise of

the two objectives, sustaining the multi-objective approach.

6.2 Future work

Based on the synthesis and analysis of the results presented, some complementary

topics could be considered for deeper investigation of the HT scheduling problem:

• Evaluation of different polishing configurations (e.g., fix-and-optimize window size,

maximum iteration execution time) to further improve the initial solutions, the ap-

proximated Pareto fronts polishing and the final methodology scalability (considering

instances that are not so reduced by the grouping strategy);

• Study of an integrated multi-objective matheuristic (e.g., using the fix-and-optimize

approach as a MOGVNS neighborhood) to upgrade the final solutions hypervolume;

• Analyze the furnace thermodynamics giving an overall sequence temperature profile,

and consider an objective or neighborhood rule to prevent aggressive temperature

changes;

• Adaptation of the mathematical models and methodology to solve the problem with

different scheduling characteristics (e.g., including the release date restriction and

adding other objectives, such as minimization of the total completion time).
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In the integrated steel industry broad planning context, other trending approaches

could be considered in future works, such as the integration between the individual

production lines scheduling and the corporate macro production planning, and the use of

machine learning techniques (e.g., neural networks) to model the problem in a scenario

of constant changes in the clients’ demands that require more production flexibility and

faster adaptation of the production planning and scheduling.

6.3 Publications

The following paper, produced during this thesis, was published in a scientific

journal:

GOMES, Ana Cristina Lima; RAVETTI, Martín Gómez; CARRANO, Eduardo G. Multi-

objective matheuristic for minimization of total tardiness and energy costs in a steel

industry heat treatment line. en. Computers & Industrial Engineering, v. 151, Jan.

2021.

The following paper was published and presented in a national conference of Oper-

ational Research:

GOMES, Ana Cristina Lima; CARRANO, Eduardo Gontijo. A Multiobjective Approach

for Scheduling a Quenching and Tempering Production Line. en. In: XLIX Simpósio

Brasileiro de Pesquisa Operacional. [S.l.: s.n.], 2017. P. 1285–1295.
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