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Perovskite photovoltaics are efficient and inexpensive, yet their performance is

dynamic. In this Perspective, we examine the effects of H2O, O2, bias, temper-

ature, and illumination on device performance and recovery. First, we discuss

pivotal experiments that evaluate perovskites’ ability to go through a reap-

rest-recovery (3R) cycle, and how machine learning (ML) can help identify the

optimum values for each operating parameter. Second, we analyze perovskite

dynamics and degradation, emphasizing the research challenges surrounding

this 3R cycle. We then outline experiments that could identify the impact of envi-

ronmental factors on recovery for different perovskite compositions. Finally, we

propose an ML paradigm for maximizing long-term performance and predicting

device performance recovery, including a shared-knowledge repository. By re-

framing perovskites’ optoelectronic transiency within the context of recovery

rather than degradation, we highlight a set of research opportunities and the

artificial intelligence solutions needed for the commercial adoption of these

promising solar cell materials.

Introduction

Hybrid organic-inorganic perovskite (HOIP) photovoltaic (PV) devices are an

emerging technology with substantial promise, indicated by a record power conver-

sion efficiency (PCE or h) of 23.3%1 and an average increase of �2.4% PCE/year.1

The general perovskite structure is represented as ABX3, with a monovalent cation

placed at the A site, a divalent metal, most often Pb2+, at the B site, and a halide

or halide mixture (I�, Cl�, or Br�) occupying the X site. Regarding composition,

the A site is predominantly organic, typically formamidinium CH3(NH2)2
+ and/or

methylammonium CH3NH3
+. In the last 2 years, researchers have discovered that

the addition of small amounts of Cs, and/or Rb, stabilizes the PV thermal and elec-

tronic responses.2,3 This stability enhancement results in more than an order of

magnitude increase in the PCE lifetime.3–5 Concerning other material options,

Pb-free alternatives are also being pursued by incorporating Sn, Ti, or Sb as the

B site metal,6–8 in order to allay toxicological concerns.9

Despite the above-mentionedmeteoric rise in performance, HOIPs present dynamic

electrical10 and optical11 responses and, often, critical instabilities under the intrinsic

and extrinsic working conditions shown in Figure 1A. The effects of extrinsic param-

eters (the presence of H2O and O2) can be potentially mitigated through suitable

encapsulation and fabrication strategies. Conversely, the intrinsic parameters are

unavoidable during device operation, and defined here as bias, temperature, and

light. Therefore, identifying, understanding, and controlling the influence of each

one of these factors (as well as their combined effects) toward the stability of HOIPs

from the macro- to the nanoscale will continue to be a major thrust in the research

community. For instance, there are 31 possible combinations between the five pa-

rameters (for each perovskite chemical composition), without considering the order
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of exposure and the range of values for each. In our opinion, the use of machine

learning (ML) is essential to track and predict the influence of each intrinsic and

extrinsic parameter on the performance of perovskite solar cells. Thus, the realiza-

tion of stable perovskite PVs that can deliver reliable power will certainly benefit

from the implementation of artificial intelligence (AI) computational methods, as

we discuss later.

In this Perspective, we discuss the pressing need for additional research into perov-

skites to identify and control the reap-rest-recovery (3R) cycle through ML, in both

established and emerging material combinations (e.g., Pb-free options) that will

lead to reliable PV devices (see Figure 1B). Here, we define recovery in a solar cell

device as the ability to restore its PCE after a given amount of time spent under

resting conditions, e.g., in the absence of light and bias. A perovskite device initially

performs under standard operating conditions, defined here as the reap part of the

cycle, where the solar energy is harvested and produces the cell’s output power.

However, the electrical efficiency of these devices usually deteriorates as a function

of time and, therefore, it needs to enter the second phase of the cycle: rest, to avoid

permanent material degradation. Given a sufficient rest period under appropriate

conditions, the solar cell will have completed the cycle, as it optimally recovers its

initial power output. Then, the reap phase begins again. Lastly, we address in detail

the powerful role of ML methods for uncovering the ideal 3R operating parameters

for HOIP PV over 100 s and eventually 1,000 s of performance cycles. Through this

contribution, we provide a framework for an ML approach for obtaining reliable

HOIP PV solar cells, which could be expanded to commercial modules.

The Need for Research in HOIP Dynamics and Recovery

Additional research, both fundamental and applied, is required to fully understand

and control the dynamics throughout the 3R cycle in state-of-the-art perovskite PV.

Degradation in this class of materials has been viewed as a challenge to surmount,

with modest attention to the existence and enhancement of performance recovery.

HOIP devices of various absorber-layer compositions now have the ability to

perform for >1,000 hr,4–6 without dramatic performance losses (T80 > 2,000 hr).12

Importantly, resting the device without illumination can restore the power output

A B

Figure 1. Perovskite Photovoltaic Route to Reliability

(A) Clockwise: extrinsic (H2O and O2) and intrinsic (bias, temperature, and light) factors governing

dynamics in perovskite solar cells.

(B) The reap-rest-recovery (3R) cycle for obtaining long-term power output from hybrid perovskite

solar cells. Operating conditions previously assumed to promote irreversible deterioration need to

be reevaluated within the framework of the 3R cycle.
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of some devices to >95% initial values (assuming an inert environment).13 Regardless

of these initial experiments, the amount of work focusing on degradation mecha-

nisms far outweighs the quantity addressing recovery pathways in perovskites of

different chemical compositions. Device performance in HOIP is often path depen-

dent with respect to ambient conditions,11 and degradation studies rarely optimize

rest and/or recovery steps. In this section, we outline how micro- and macroscopic

methods have been used to tackle perovskite dynamics under distinct environ-

mental factors, emphasizing rest and recovery when appropriate. This discussion

is followed by suggestions for future experiments that can provide a robust descrip-

tion of the transient optoelectronic behavior across the entire 3R cycle. Due to the

extensive number of perovskites suitable for PV (>9,000),14 and how each chemical

composition has distinct stability limits (i.e., performance response when exposed to

the intrinsic and extrinsic parameters displayed in Figure 1A), the implementation of

supervised and unsupervised ML routines for the experiments highlighted in this

section will enable timely feedback about the conditions for optimizing both rest

and recovery.

As expected, an extensive variety of macroscopic measurements addressing the

primary factors affecting perovskite dynamics, H2O, O2, bias, temperature, and

illumination, have been performed.15,16 In Figure 2, we highlight a subset wherein

the 3R cycle has been partially addressed. For example, device efficiency half-life

depends substantially on the surrounding ambient, with samples aged in N2 last-

ing more than 603 longer than those aged in air containing 100% relative humidity

(rH) (see Figure 2A––representing the reap phase). This implies that HOIP solar

cells performing in an inert or encapsulated environment can perform longer

before needing to rest, as anticipated. Because device performance often de-

creases as a function of time due to material degradation, the devices must rest

for an amount of time that depends on the perovskites’ chemical composition,

and the environment (including the five parameters displayed in Figure 1A). A

rest process for an HOIP solar cell based on a CH3NH3PbI3-xClx absorber is shown

in Figure 2B. Here, the residual photovoltage in the dark results from the migration

of ionic species to the electron transport layer interface, where they act as

recombination sites.17 The rest phase time for this voltage condition strongly de-

pends on the electron transport layer (TiO2 or Al2O3) and injection levels (named

low-I0 and high-I0). Concerning recovery, this phase heavily depends on the rest

conditions. When properly rested, all figures-of-merit of the device can be

restored to >70% of their initial values (see Figure 2C for a recovery example).18

This work shows that the required duration of the rest phase depends on how

much performance is lost during the actual solar cell operation. For an HOIP de-

vice that decays to 80% (aged to its T80 lifetime) of its initial PCE (in blue in the

left graph), only 3 hr of rest returns all figures-of-merit to >90% of their starting

values. Contrastingly, the same device at 50% of initial power output (see right

graph, corresponding to T50) needs more than 30 hr to recover to �80%.18 Re-

searchers have also identified HOIP cells with contrary fatigue behavior that

recover their performance while under illumination, instead of under dark conti-

tions.19 Moreover, the restoration behavior can strongly depend on the environ-

mental conditions during aging, where both dark-recovery and light-recovery

can occur.20 These results emphasize the need to comprehensively explore recov-

ery under the five parameters displayed in Figure 1A (both in isolation and when

combined) for >100 hr. Because the time and conditions for an effective rest phase

strongly depends on the type and the ‘‘usage’’ of the cells, supervised ML is ideal

to help deciding the precise values of the extrinsic and intrinsic parameters, as will

be discussed in the next section.
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To date, the impact of the extrinsic environmental parameters (H2O and O2) on the

prototypical methylammonium lead triiodide (MAPbI3) composition is relatively well

understood compared with other perovskite chemical compositions. Under illumina-

tion, O2 initially passivates this perovskite’s defects, but also promotes deterioration

of the device’s optoelectronic properties.21 The deleterious effect of O2, with and

without light, is far greater than that of N2.
22 Macroscopically, the influence of

rH has been determined across a range of cation and halide compositions in HOIPs,

capturing the rate at which the figures-of-merit diminish.4,12,23,24 In addition, with in

situ X-ray diffraction (XRD) analyses, the timescales for emergence of hydrate phases

were captured.25 In situ photoluminescence (PL) spectroscopy has also revealed the

time-dependence of a perovskite’s bandgap on exposure to humidified N2.
26

Research investigating bias and light (intrinsic parameters) on MAPbI3 found an

approximate doubling in both short-circuit current density (Jsc) and PCE within

2 min of operation.27 Long-term measurements have shown that holding triple-

cation perovskite devices at Voc, Jsc, and maximum power operation point for

Figure 2. 3R Cycle in Perovskite Solar Cells

(A) In the reap phase, devices provide power. There is an initial exponential decay in performance

regardless of ambient gas composition or relative humidity (rH) level. The subsequent performance

trend depends on the O2 and H2O levels (extrinsic parameters), where devices aged in (1)

N2 (green) shows a clear linear regime, (2) dry air with 5% rH (blue) and with 0% rH (red) continue the

decay, and (3) the dry air with 100% rH (black) experiences immediate performance deterioration. In

all cases, the shaded area represents the standard deviation. Adapted by permission from

Domanski et al.,12 Springer Nature: Nature Energy, Copyright 2018.

(B) During the rest phase of the cycle, the solar cells are not operational. Here, the rest duration

corresponds to the time it takes for the residual voltage under dark conditions to stabilize. Adapted

with permission from Hu et al.,17 copyright 2017 American Chemical Society.

(C) The recovery phase of this cycle takes place when all figures-of-merit return to a substantial

fraction of their original values. In this example, greater than 70%, regardless of whether the device

was used through its T80 or T50 lifetime. Adapted with permission from Khenkin et al.,18 Copyright

2018 American Chemical Society.
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<100 hr yields PCE retention of �55%, >60%, and 75%, respectively.12 Using tem-

perature as the variable parameter (also an intrinsic factor), researchers have identi-

fied the negative effects of temperature extremes (�10�C to 65�C) during 500 hr of

logging12 and the reversibility of MAPbI3 PCE throughout thermal cycles of different

bounds.28 PL spectroscopy has been used extensively to evaluate the dependence

of optical stability on both cation and halide composition29,30 and the influence of

wavelength on dynamic photodegradation and photobrightening.31 In addition,

cycling light excitation density under different ambient environments (vacuum, N2,

and air) influences the extent of luminescence recovery, revealing that changes to

the PL quantum yield are path and composition dependent.11,32 In particular, UV

light has been shown to cause degradation of perovskite PV output over the course

of 1,000 hr. However, these losses can be �40% recoverable over 10 cycles by alter-

nating between UV and AM1.5G illumination.33Note that while we define UV light as

an intrinsic parameter, we recognize that it could be considered extrinsic given the

option of using UV-blocking encapsulant layers.12 The substantial variation in perfor-

mance as a function of illumination conditions urges the realization of supervised

and unsupervised ML on perovskite thin films (prior to full device development),

where PL measurements are sufficient to determine the conditions for radiative

recombination recovery.11

Because most perovskites present inhomogeneities at the nano- and microscale,

microscopic techniques must be further developed to resolve the relationship

between composition, morphology, optical response, and electrical behavior at

the intragrain and intergrain length scales.34–38 Figure 3 displays examples of how

microscopic methods have been implemented to help elucidate the dynamic

response of this emerging material. Through environmentally controlled micro-PL,

the effect of ambient gas and vacuum was identified, showing that the presence

of O2 can lead to an order of magnitude increase in radiative recombination; how-

ever, as shown in Figure 3A, not all grains behave identically and the phenomenon

is facet dependent.39 Using wide-field PL imaging, the role of an electric field (bias)

on ion migration has been captured in real time.40 The real-time light-induced

dynamics at the nanoscale are accessible through Kelvin-probe force microscopy,

identifying intragrain voltage variances of �300 mV that decay over 128 s after re-

turning to dark conditions (Figure 3B).10 Photoconductive atomic force microscopy

(pc-AFM) has revealed intragrain variations in MAPbI3 device figures-of-merit that

can be correlated with surface microstructure.41 In addition, pc-AFM has been

used to image the photoinactive surface regions in temperature-cycled MAPbI3 so-

lar cells.42 Concerning electron microscopy, temperature-controlled scanning trans-

mission electronmicroscope holders now allow formapping halide and Pbmigration

in aMAPbI3 solar cell.
28 The influence of light has also been resolved at the intergrain

level through PL microscopy, shown in Figure 3C, providing evidence of the non-uni-

form distribution of trap states across a MAPbI3 film.43 Hyperspectral luminescence

imaging has been extended to spatially quantify the quasi-Fermi splitting and iden-

tify regions of poor carrier extraction.44 While MAPbI3 has been used as a ‘‘model

system’’ for stability analysis, there is a pressing need to extend these microscopic

experiments to other perovskites, including Pb-free options. Thus, we foresee scan-

ning probe and electron microscopies becoming essential characterization tools for

in situ monitoring of the distinct phases comprising the 3R cycle. The extensive

amount of data generated by these microscopic methods requires ‘‘big data’’

analytics36,45 to correlate the perovskites’ structural properties (e.g., grain size

and morphology) with the physical quantities that define a high-performance and

reliable solar cell. Here, we suggest the creation of a worldwide data repository

that would combine information about the types of perovskites and the microscopy
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measurement performed, in analogy to the screening of 5,456 oxygen evolution

catalysts for artificial photosynthesis.46 AI routines could perform image analysis in

the search for correlation between the datasets acquired by different research

groups; see the next section for more details about our proposed approach.

Together, macro- and nanoscale characterization can quantitatively identify the

timescale at which rest occurs, as well as how much time is needed for an effective

recovery (and the required conditions). Importantly, high-spatial resolution micro-

scopy and diffraction techniques, applied to solar cells throughout their 3R cycle to-

ward recovery, could extract and/or correlate the role of interfaces, grain

morphology, size, and composition on the dynamics of device performance.

Research into rest will likely shorten the time needed between consecutive reap

phases. Given that the bias conditions have an impact on the T80 lifetime,12 it may

be possible to use small reverse bias to more quickly return the ionic species to their

initial positions. In addition, newer techniques for resolving the local chemical

composition, such as photo-induced force microscopy or AFM with infrared spec-

troscopy, could be applied to device cross-sections at different moments

Figure 3. Capturing the Microscopic Optoelectronic Dynamics of Perovskites

(A) The effect of illumination duration (light ON = green and light OFF = white) on the

photoluminescence (PL) intensity of different crystal facets. MAPbI3 grains varying in size show

radically different dynamics under illumination cycling. Adapted with permission from Tian et al.,39

published by The Royal Society of Chemistry.

(B) Illuminated-Kelvin-probe force microscopy is used to determine the time-dependent changes

in local Voc (1 ms/pixel with 128 3 128 frames). Even within a single grain, the MAPbI3 perovskite

exhibits ion motion. Reprinted with permission from Garrett et al.,10 Copyright 2017 American

Chemical Society.

(C) PL imaging establishes the intergrain heterogeneity in MAPbI3 films, and time-dependent

measurements reveal the light-emission stabilization. The relative brightness of the grain provides

indication of trap state density. Reprinted from deQuilettes et al.,43 Copyright the authors, some

rights reserved; exclusive licensee to Macmillan Publishers Ltd. Distributed under a Creative

Commons Attribution Noncommercial License 4.0 (CC BY-NC) http://creativecommons.org/

licenses/by-nc/4.0/.
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throughout the 3R cycle to map ion accumulation and depletion at the perovskite-

transport layer interfaces. Control of the solar cell’s temperature during rest likely

impacts the timescales for recovery, and, to date, its effect, static or cycled, remains

considerably unexplored. Thus, we propose device cycling with temperature varia-

tions during rest (under dark conditions) to determine if the migration rate of ionic

species can be controlled. The lowering of temperature while an HOIP device rests

without illumination should result in slower recovery as vacancy-mediated ion mo-

tion encounters a large activation barrier.47 Ideally, such temperature cycles would

accurately simulate the climate in a number of regions around the world, and thus

help predict the behavior of future perovskite PV modules.

ML to Identify and Optimize Device Recovery

ML encompasses the use of algorithms for predictive analysis capable of adapting to

the broad scope of the input data. It draws aspects from both computer science and

statistics, and has allowed for a number of key advances spanning from humanities to

engineering, including speaker recognition,48,49 autonomous vehicles,50 traffic

predictions,51 computer vision,52 protein fold classification,53 wireless communica-

tions,54 and solar technologies.55 With the development of user-friendly tools and

programming frameworks such as Google’s TensorFlow,56 ML has been applied

to an increasingly large set of problems in sustainability that continues to grow in

diversity. For instance, engineers have used these techniques to estimate solar

module performance under varied cloud conditions, using video streams of the

sky as input.55 AI has been applied toward screening materials for light-absorbing

applications, where high-throughput XRD measurements enabled the identification

of the phase diagram for a family of Nb-V-Mn oxides from their composition and

structural characterization data.57 Overall, ML has the potential to hasten the

energy-related materials development timeline by R10 times, if infrastructure and

human-capital investments are adequately placed.58

ML is starting to be implemented in perovskite research, with a modest number of

very insightful publications.14,59 To date, all AI-driven approaches described in the

literature focus on the screening of potentially stable chemical compositions. Using

a statistical learning model, the evaluation of �1,300 double perovskite oxides

(AA’BB’O6) has shown that their bandgap is largely determined by the lowest occu-

pied energy levels of the A site and by the electronegativities of the B site elements,

respectively.60 The race for non-toxic Pb-free alternatives and the large number of

options for the organic and inorganic constituents (>8) has triggered the combina-

tion of density functional theory-based high-throughput computational screening

with experimental validation.61 While thus far the effort has been on finding thermo-

dynamically stable perovskites,59 the community recognizes that this ML method

can be expanded to the ‘‘characterization’’ of key physical properties and processes,

such as optical response and carrier density. Moreover, ML has been used via unsu-

pervised clustering to resolve the relationship between perovskite structure and the

temporal changes in voltage upon light excitation at the nanoscale.45 These

applications highlight the leap enabled by ML in elucidating the perovskites’ new

chemical compositions and their stability. Yet, tracking the effect of each intrinsic

and extrinsic parameter (H2O, O2, bias, temperature, and light) on the performance

of perovskite solar cells could allow unprecedented control of the conditions for

material and device recovery upon rest. Because the influence of each factor on

both material stability and device PCE (h) varies if acting alone or when associated

with others, it is vital to implement AI routines that can determine the effect of all

possible combinations in a timely manner, accelerating knowledge generation for

the ultimate commercialization of perovskite PV.
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Our proposedML framework for optimizing the 3R cycle of perovskite solar cells and

future modules considers two parts: one focused on supervised learning of labora-

tory-scale PV devices, and another where the rest and recovery of modules could

be monitored and controlled, as displayed in Figure 4. Initially, the computational

framework for the supervised learning steps is optimized using data from thin-film

perovskites and laboratory-scale solar cell aging measurements under the five

relevant environmental conditions (see Figures 1A and 4A). The training data from

devices allow for supervised learning, wherein the model parameters are fitted by

comparing its predictions with the known physical outcome as measured using a

solar simulator (represented as the left half of Figure 4, in blue). Note that, prior to

full device development, an effective characterization of perovskite thin films using

ML can identify the relationship between their structural, optical, and electrical

properties (including the role of defects and grain boundaries), accelerating the

selection of the most promising options to be interrogated as full devices.

While the discussion below is focused on full device characterization, we emphasize

that the ML methodology proposed could, and should, be expanded to quantifying

the effects of the environmental stressors on perovskite materials.

The term ‘‘training data,’’ typical to ML applications, refers to data that have known

input(s) and output(s) (e.g., PCE). In juxtaposition, ‘‘test data’’ are used to evaluate

the smart network software’s ability to predict the best operating factors tomaximize

A D

E

C

B

Figure 4. A Machine Learning Framework for a Perovskite 3R Cycle

(A) Time-series laboratory data including the effect of each intrinsic and extrinsic parameter (H2O,

O2, bias, temperature, and illumination) on device efficiency is used for training the algorithm.

(B) A feature vector is extracted out of the environmental sensor output, together with the solar cell

efficiency, h.

(C) An artificial neural network (ANN) is tuned to maximize long-term stability and overall power

output.

(D) After the neural network weights are optimized, data from solar modules can be used to

determine the rest phase conditions that will lead to recovery and sustained reap.

(E) The future PV module’s real-time conditions and performance are displayed onto an internet-

connected device, enabling consumers to monitor its 3R cycle.
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performance over themodule’s lifetime. During preprocessing, the most meaningful

attributes (including all environmental stressors: H2O, O2, bias, temperature, light,

and the solar cell/module efficiency, h) will be extracted using factor analysis

methods (Figure 4B), such as principal-component analysis, and constructed into a

feature vector containing the most explanatory aspects of the data. The derived

values are then used as input to an artificial neural network (ANN),62 a system of con-

nected nodes with activation functions that change state depending on input (see

Figure 4C). Thus, the number of input nodes will match the number of entries in

the feature vector. For example, under illumination, O2 hastens degradation.21,22

Hence, if its presence would be detected by a gas sensor, (1) the corresponding acti-

vation function would change state, and (2) altering the ANN’s output to predict the

effect on PCE. TheMLmonitoring framework we outline can be expanded to include

active control of the environmental stressors based on device performance. For

instance, the applied bias might be lessened or the temperature increased when

the algorithm detects the end of the reap phase. The input node for all environ-

mental sensor data can have an activation function that suits the performance

dynamics under that condition. While training the ANN with laboratory data, the

weights of the various nodes are tuned to maximize performance against a chosen

cost function. This metric informs the quality of the prediction by comparing and

quantifying the network’s output with the known one, i.e., the ‘‘real life’’ values of

the training PV devices. After optimization, the ANN is ready to be validated by pre-

dicting the performance and operating conditions of an even larger set of solar cells

from any laboratory. This step is critical in assessing the algorithm’s generality prior

to real-world application of our proposed method and informs the need to change

the network architecture for better predictions. We suggest the realization of ANNs

for this time-series prediction problem given its ability to handle complex non-linear

behavior,51 high-predictive power,54,55 and the ease of automation.63

We envision the adoption of separate ANNs for different perovskite compositions,

given the range of performance dynamics for each. For instance, some emerging

Pb-free options exhibit efficiencies that increase as a function of time,6 in contrast

to the exponential decay of the reap phase often seen in Cs-mixed HOIPs.

Further, we suggest an architecture (i.e., the number of layers and their manner of

connectivity) similar to the standard long short-termmemory (LSTM) recurrent neural

networks,64 a specific type of ANN, for the outlined approach, given their success in

time-series prediction.50 The use of recurrent ANNs is critical, as the embedded

loops within them will provide memory of earlier sections of the PV time-series

data. The LSTM algorithm can increase performance further, through the use of a

repeating design with four distinct layers. This feature of the network offers

improved recall between temporally distant data points. Prior efforts have demon-

strated the ability of LSTM networks to make predictions of financial markets,65

and in our opinion, the cyclic nature of perovskite recovery dynamics fall within

the scope of this approach. Recent ML algorithms connecting the Akaike information

criterion with sparse identification of non-linear dynamics must also be considered,

given their ability to automatically recognize the models that best balance error and

overfitting out of a large pool of candidates.66

For the second part of our ML framework, we anticipate that, after laboratory-scale

validation, a network of solar panels could be tested, and eventually routinely moni-

tored, when deployed in the field (represented by the right half of Figure 4, in gray).

These modules (Figure 4D) would be equipped with the necessary detectors to

monitor the magnitude of the five parameters. Then, the sensor output would be

fed into the previously optimized ML algorithm, where all phases of the 3R cycle
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are predicted according to the ANN’s calculation. We foresee consumers moni-

toring the performance of the PV modules, as well as the reap, rest, and recovery

stages independently, from any internet-connected device, as suggested in Fig-

ure 4E. The assessment of the financial viability of the proposed ML approach for

PV modules is outside the scope of this Perspective as we choose to emphasize

the proficiency of AI to tackle the 3R cycle of perovskites, instead of the costs

associated with it. Nevertheless, transitioning ML from the academic world to the

real word must be accompanied by a careful cost analysis of human-capital

investments.58

Recent aging measurements on perovskite PV indicate that the instrumentation

already exists to develop the necessary training datasets across a wide volume of

the parameter space, including the subset required by the relevant IEC 61215 solar

cell standard.67 These lab-sourced data are well suited for the development of our

ML paradigm as it can inform the system about a PV module’s ideal conditions for

resting toward its recovery. While some environmental thresholds for rapid perfor-

mance deterioration have already been established (e.g., 90% rH leading to loss

of all PCE in less than 3 hr12), still others require additional evaluation. Capturing

the influence of all intrinsic parameters on the 3R cycle for the supervised learning

stage is critical to the success of the ML approach. Temperature plays a critical

role and researchers must perform dark/light cycles with thermal conditions varied

to mimic the real-world environments of different regions. For example, the desert

areas during the day (�40�C) potentially have shorter reap phases, while their

cold nights (�0�C) lengthen recovery. In equatorial regions, the coupling between

temperature and humidity is of special interest. Earlier experiments on MAPbI3
found that 24 hr of combined exposure to 85�C and 60% rH led to 4-fold reduction

in PCE,42 stressing the need for (1) robust encapsulation, (2) humidity and tempera-

ture tolerant materials and device architectures, and (3) a complete understanding of

how this combined effect influences the 3R cycle. Similar experiments need to be

replicated on a wide variety of modern perovskite compositions that remain stable

both optically and structurally above 85�C.3 We also note that intermittent or

spatially non-uniform illumination of PV modules regularly occurs during operation,

but remains predominantly uninvestigated in perovskite solar cell laboratory tests.

Heterogeneous illumination presents a serious issue, as shaded regions of a single

solar cell experience reverse bias, in contrast to other areas in the device that are un-

der illumination.68,69 Concerning light treatments, the substantial variety of possible

illumination conditions must be emulated at the laboratory scale first in order for the

ML analysis to perform well in real-world situations.

The challenges of applying ML to experimental materials science include: (1) collect-

ing sufficient information for the input, (2) aggregating the large amount of data

produced from different laboratories, and (3) ensuring that the experimental results

are comparable. Here, we suggest that data from laboratories around the world be

anonymized and aggregated into a repository database that will eventually lead to

supervised knowledge extraction concerning the 3R cycle. Specifically, researchers

would share the parameters used for synthesizing the perovskites and the conditions

for both the perovskite material (from the macro- to the nanoscale, e.g., XRD and

PL microscopy) and full device characterization (e.g., light IV under AM1.5 global

illumination)––all valuable input information. Inspired by a recent work on the

relevance of failed experiments for ML,70 we advocate that the success of this

shared-knowledge tactic lies in researchers reporting both ‘‘positive’’ and

‘‘negative’’ results: the information concerning high-performance devices and

non-working ones is equally important for ML trained on performance data to
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predict the 3R cycle conditions as function of perovskite composition. We anticipate

that as long as the synthesis and characterization are carefully annotated, the input

data will provide rich enough information to validate ML, enabling supervised

learning to generate valuable knowledge of perovskite PV.

Summary

State-of-the-art perovskite PV materials often exhibit dynamics, decaying in perfor-

mance over time. With our proposed 3R cycle combined with an ML paradigm,

researchers can begin to take advantage of this HOIP solar cell cyclability feature.

Macro- to nanoscale characterization can complement one another to correlate

structural, electrical, optical, and chemical properties throughout the perovskite

3R cycle. More importantly, these tools will allow the scientific community to identify

the most influential environmental parameters, as well as the cutoff between recov-

ery and degradation. Using this information, advanced computational frameworks

based on ML could be quickly developed that maximize overall long-term power

output, minimizing material degradation. We foresee AI strategies facilitating rapid

knowledge transfer between perovskite laboratory-scale behavior throughout the

3R cycle and PV modules, ultimately enabling reliable perovskite solar cells.
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