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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Fungal infections are underestimated threats that affect over 1 billion people, and Candida

spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. TheAU : PleaseconfirmthattheeditstothesentenceThetreatmentoftheseinfectionsisperformedwithalimited:::didnotaltertheintendedthoughtofthesentence:treatment of

these infections is performed with a limited arsenal of antifungal drugs, and the class of the

azoles is the most used. Although these drugs present low toxicity for the host, there is an

emergence of therapeutic failure due to azole resistance. Drug resistance normally devel-

ops in patients undergoing azole long-term therapy, when the fungus in contact with the

drug can adapt and survive. Conversely, several reports have been showing that resistant

isolates are also recovered from patients with no prior history of azole therapy, suggesting

that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance

also happens in the environment since resistant strains have been isolated from plant mate-

rials, soil, decomposing matter, and compost, where important human fungal pathogens

live. As the resistant fungi can be isolated from the environment, in places where agrochemi-

cals are extensively used in agriculture and wood industry, the hypothesis that fungicides

could be driving and selecting resistance mechanism in nature, before the contact of the fun-

gus with the host, has gained more attention. The effects of fungicide exposure on fungal

resistance have been extensively studied in Aspergillus fumigatus and less investigated in

other human fungal pathogens. Here, we discuss not only classic and recent studies show-

ing that environmental azole exposure selects cross-resistance to medical azoles in A. fumi-

gatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important

human fungal pathogens found in the environment. We also examine data showing that fun-

gicide exposure can select relevant changes in the morphophysiology and virulence of

those pathogens, suggesting that its effect goes beyond the cross-resistance.
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1. Introduction

Candida spp., Cryptococcus spp., and Aspergillus spp. are among the 3 most lethal human path-

ogenic fungi [1] as they can cause severe systemic infections, which may be fatal even when

treated [2]. The treatment relies on a limited arsenal of antifungal drugs from 3 classes: poly-

enes, echinocandins, and azoles [2,3]. The main antifungal effect of polyenes (for example,

amphotericin B) is through binding to a conserved ergosterol region forming large extramem-

braneous aggregates that remove ergosterol from lipid bilayers [4,5], while echinocandins (cas-

pofungin, anidulafungin, micafungin, and, more recently, rezafungin) disrupt the cell wall as

they inhibit noncompetitively the 1,3-D-glucan synthase, an important enzyme for cell wall

biosynthesis. Azoles, which are classified as imidazoles (ketoconazole and miconazole), and

triazoles (fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole), interrupt

ergosterol synthesis by inhibiting lanoterol-14α-D-demethylase encoded by the orthologous

ERG11 (in yeasts) and cyp51 (in Aspergillus fumigatus) [2,6,7]. This prevents the conversion of

lanosterol into 4,4-dimethyl-8,14,24-trienol, reduces the ergosterol levels on the cell mem-

brane, and accumulates toxic sterols, affecting the membrane integrity and permeability, ulti-

mately inhibiting fungal growth [6–8].

One of the reasons for treatment failure and the high number of deaths caused by systemic

mycoses is the emergence of resistance [9–11]. Microbiological resistance is defined as the

inability of an antifungal to kill or inhibit the fungal growth in vitro [6,12,13] and can be

divided into 2 classes: (i) primary or intrinsic resistance, when a microorganism is naturally

resistant to a drug, without previous exposure; and (ii) secondary resistance, when resistance

mutations evolve in the population and are selected upon exposure to an antifungal [6].

Several cases of isolation of azole-resistant strains from patients with no prior antifungal

therapy have been reported, suggesting that other routes might be driving antifungal resistance

[14–18]. Intriguingly, antifungal resistance also happens in the environment since resistant

strains have been isolated from plant material, soil, decomposing matter, and compost [19–

27]. This fact raises an important question: How does resistance to azoles arise in environmen-

tal isolates?

One answer to this question is based on the massive use of fungicides during preharvest in

grain- and grass-growing environments and postharvest to prevent spoilage [26,28]. In addi-

tion, azoles are used for preserving paintings, coatings, and wallpaper pastes and are typically

applied to mattresses to avoid fungal growth [26]. Environmental triazoles also share the same

mechanism of action as medical triazoles and have been extensively used for controlling fungal

phytopathogens [29,30]. Because of that, and since certain potential human pathogens can be

easily isolated from plant material and soil, the most accepted hypothesis is that agrochemicals,

especially 14α-demethylase inhibitors (DMIs), operate as a selection pressure for the emer-

gence of resistant strains in the environment (fungicide-driven drug resistance route) [26,31].

Based on that, this review discusses classic and recent studies showing that environmental

azole exposure selects cross-resistance to medical azoles in A. fumigatus, with a focus on the

mechanisms involved. In addition, we also discuss how this phenomenon can affect Candida

and Cryptococcus, other 2 important human fungal pathogens found in the environment.

2.Aspergillus fumigatus

2.1 Habitat, clinical manifestations, treatment, and resistance prevalence

Aspergillus fumigatus is a saprophytic fungus found in soil, crops, seeds, air, leaves, flowers,

and indoor environments [15,17,19–21,26,32–36]. It also causes a wide range of chronic and

life-threatening infections, such as allergic bronchopulmonary aspergillosis (ABPA), chronic
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pulmonary aspergillosis (CPA), and invasive pulmonary aspergillosis (IPA) [37]. Such diseases

are treated with a restricted arsenal of antifungals from 3 classes: azoles, polyenes, and echino-

candins [37–39]. Specifically, the triazoles (voriconazole, itraconazole, posaconazole, and isa-

vulconazole) are the most indicated as the first-line therapy [38,40] and liposomal

amphotericin B (polyene) and echinocandins as second-line choices [38,40,41]. Unlike echino-

candins and polyenes, resistance to azoles is relatively common and has been increasing since

the first A. fumigatus azole-resistant strains were reported in 1997 [42].

The incidence of clinical A. fumigatus triazole resistance varies according to the country

and the patient from which it is isolated. In European countries, clinical resistance ranges

from 0.6% to 30%, having reached the highest rate (>20%) in the Netherlands, United King-

dom, and Germany [43,44]. Outside Europe, azole resistance has been detected in China

(5.5%), India (1.7%), Iran (3.5%), Japan (12.7%), Thailand (3.2%), Australia (2.6%), and the

United States (0.6% to 11.8%) [15,32,43,45–48]. In South America, Brazil, Peru, Mexico, and

Argentina have also reported triazole-resistant isolates [24,49–53]. The clinical implications of

an infection caused by an antifungal-resistant strain are not totally revealed and not always

related to therapeutic failure [43]. Nonetheless, some studies have shown that resistance may

ultimately lead to a poor outcome [9–11,54].

Triazoles are not mutagenic compounds, which means that resistance occurs when genetic

changes in the progeny of A. fumigatus are selected during reproduction. In A. fumigatus, 3

modes of reproduction can happen: asexual, sexual, and parasexual. Through asexual sporula-

tion, common in nature, A. fumigatus produces an abundant number of spores (conidia).

Even though the progeny from asexual reproduction is clonal, many conidia may harbor spon-

taneous mutations, ensuring genetic diversity. If one or more mutations give the conidia a bet-

ter ability to survive and grow under certain stresses (for example, triazole exposure), the

mutant will proliferate and might surpass the growth of the wild-type spore. This selective

pressure can happen in any environment containing azoles [55,56].

Although many studies have proved that azole therapy can drive inpatient resistance to

emerge in Aspergillus spp. clones [57–66], this route does not explain all cases observed in the

genus. Actually, it is estimated that only one-third of the resistant strains arise from in-host

adaptation, remarkably those suffering from aspergilloma, allergic or chronic aspergillosis,

and predisposing conditions as lung cavities or cystic fibrosis (CF) [11,64]. The main evidence

indicating another route is the azole-resistant A. fumigatus isolated from azole-naive patients,

which accounts for 64% to 71% of the multiresistant A. fumigatus isolates [16,67,68]. Mellado

and colleagues recovered 13 multiple triazole-resistant A. fumigatus strains from patients at

different hospitals in the Netherlands—4 of them from individuals with no history of azole

treatment [16]. In those cases, the isolates were not only resistant to itraconazole but also had

high MIC values of voriconazole, posaconazole, and ravuconazole [16,69]. Subsequently,

many studies in different countries have also identified azole-resistant isolates from patients

not previously treated with these drugs [46,68,70,71].

Two main hypotheses have been raised to explain this phenomenon: (i) person-to-person

transmission of resistant strains; or (ii) infection by an isolate that acquired the resistance

mechanism in the environment [26,30]. The first hypothesis has little scientific support

because person-to-person or person-to-environment transmissibility has been considered rare

or inexistent. In the past, it was thought that transmission happens only through direct donor-

to-recipient contact and infected wounds, as most of the transmission happens via aerosolized

spores [30]. However, Engel and colleagues proved that A. fumigatus could be recovered from

cough aerosols from CF patients [72], thus opening the possibility of patient-to-patient and

patient-to-environment transmission. Further experiments, however, are still necessary to bet-

ter detail the transmission of A. fumigatus by coughing. Nevertheless, aerosolized A. fumigatus
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conidia from patients could not explain all the resistance found in azole-naive patients due to

its frequency, and the aerosolized conidia from environmental sources seem to represent a vas-

ter and more constant source of infection [72].

2.2 Fungicide-driven resistance: Epidemiological, experimental, and field
data

Many epidemiological and experimental data corroborate the theory that the DMIs used in the

wood and textile industries, and especially those employed in agriculture, may select azole

resistance in A. fumigatus in the environment [29,33,46,73,74] (Fig 1A). These studies present-

ing data supporting fungicide-driven resistance can be categorized into 4 groups: (i) those in

which resistant strains were found in both patients and environment [19–24,32–34,49,68,73–

81]; (ii) studies attesting cross-resistance between environmental and medical azoles in isolates

from both sources [20,22,30,33,46,75,82]; (iii) investigations demonstrating that susceptible

isolates could become resistant when exposed to environmental azoles [29,74,83–85]; and (iv)

those proving that more resistant strains could be recovered from places or periods at which

the fungicides were applied [20,86].

Classically, the studies in the Netherlands started to shed light on how environmental azole

exposure could lead to cross-resistance to medical azoles [26,30]. First, they demonstrated that

itraconazole-resistant A. fumigatus could be isolated from indoor environments (including

patient rooms at hospitals), as well as from cultivable soils, seeds, leaves, and compost—but

never from azole-naive soils. These resistant strains also posed high resistance to 2 fungicides,

metconazole and tebuconazole, thus demonstrating cross-resistance between medical and

environmental azoles [26]. Interestingly, 13 out of the 15 resistant strains isolated from the

environment had the same mutation in the gene that encodes the azole-target enzyme

(cyp51A) [26], which was identical to the isolate identified in the clinical isolates [14]. Such

mutations led to a leucine replaced by histidine at position 98 (L98H) in the enzyme CYP51A,

along with a pair of 34-base pair (bp) sequence (in tandem) in the gene promoter region

(TR34) (TR34/L98H) [16]. The 34-bp sequence in tandem in the cyp51A promoter induces

overexpression of cyp51A (about 8-fold) [16], and the point mutation hinders the interaction

between the drug and the target enzyme [30] (Fig 1B). This combination of mechanisms

results in a consistent itraconazole resistance and variable voriconazole, posaconazole, and isa-

vuconazole susceptibility [30,34,68]. Frequently, TR34/L98H also confers a pan-azole resis-

tance, both to medical and environmental azoles [26,30]. Coincidentally, the first resistant

clinical isolate carrying TR34/L98H was reported infecting a patient in 1998 [14,30], just a few

years after triazole fungicides had been introduced into the Netherlands [30], which suggests

that this mutant could had emerged after azole fungicide contact in the field. Eventually, the

TR34/L98H mutation was identified in many other European countries, and also in Asia,

North and South America, Australia, and Africa [25,43].

The tandem repeat mutation was also identified in DMI-resistant phytopathogens [82,87],

strongly suggesting that this is a common resistance mechanism among molds exposed to

these fungicides. Penicillium digitatum, for example, contains tandem repeat mutations vary-

ing from 126 bp to 199 bp, which have been associated with DMI resistance [88,89]. However,

other resistant isolates of plant pathogens, such as Pyrenopeziza brassicae,Monilinia fructicola,

and Venturia inaequalis, have fragments inserted in cyp51A promotor (fragments from 65 bp

to 553 bp) [90–92] instead of tandem repeat alteration. In general, both genetic variations

result in overexpression of cyp51A as in A. fumigatus [82,87].

If DMIs are really the stressors leading to selection of these mutations in the environment,

they should probably share similar molecular structures to clinical azoles and dock similarly to
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Fig 1. Fungicide exposure effects on Aspergillus fumigatus. (a) Azole-susceptible and azole-resistant A. fumigatus can be identified
in both fungicide-free and fungicide-containing soils and plant-based materials. There is an enrichment, however, of azole-resistant A.
fumigatus in niches containing fungicides. (b) Azole-resistant A. fumigatus isolated from places holding fungicides may present some
alterations compared to susceptible isolates that confer them cross-resistance with medical azoles, such as overexpression of efflux
pumps and the azole-target enzyme, CYP51A, and CYP51A with a reduced azole affinity. The last 2 physiological changes are due to
mutations in the gene cyp51A. The most commonmutations are a pair of 34-bp sequence (in tandem) in the gene promoter (TR34),
which lead to overexpression of cyp51A, together with a mutation that results in leucine replacement by histidine at position 98
(L98H) in the enzyme CYP51A, reducing the affinity of the enzyme to the azole drugs. (c) Other tandem repeat mutations combined
or not with point mutations in the gene cyp51A conferring cross-resistance between environmental and medical azoles also can be
detected in azole-resistant A. fumigatus isolated from fungicides-containing places. ItAU : PleaseconfirmthattheeditstothesentenceItisimportanttonoticethatthealterationsrepresentedcorrespond:::didnotaltertheintendedthoughtofthesentence:is important to notice that the alterations
represented correspond to amino acids and not in the DNA and that other tandem repeat mutations have already been observed in the
clinical sets, but only TR34, TR46, and TR53 have been describing in environmental strains.

https://doi.org/10.1371/journal.ppat.1010073.g001
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them at the azole-target enzyme in A. fumigatus. In order to address these questions, Snelders

and colleagues carried out molecule alignment and docking studies using homology modeling

of cyp51A. They identified 5 DMIs, propiconazole, bromuconazole, tebuconazole, epoxicona-

zole, and difenoconazole, which share structural molecular characteristics to medical triazoles,

suggesting that they could select cross-resistance in A. fumigatus. These DMIs also assume a

similar configuration when docking to the target enzyme and act against wild-type but not

against multi-triazole-resistant A. fumigatus [30], further supporting the idea of DMI as a

selection pressure.

Other resistance mechanisms involving promotor duplications, either combined or not

with single nucleotide polymorphisms (SNPs), have been described in clinical and environ-

mental strains (Fig 1C). TR53 (2 copies of a 53-bp sequence in tandem in cyp51A) was the sec-

ond mechanism discovered [30] and thought to be restricted to clinical isolates until it was

identified in resistant A. fumigatus strains isolated from flower fields in Colombia [49]. TR46/

Y121F/T289A (with 2 copies of a 46-bp sequence in tandem in cyp51A, combined with 2

SNPs) (Fig 1C) was also identified in both clinical and environmental isolates

[20,48,49,51,71,73,74,93,94]. This mutation provides resistance especially to voriconazole and

in some cases to other medical azoles and environmental fungicides [73]. TR46/Y121F/T289A

was first reported in the Netherlands [93] and subsequently in Belgium [95], India [73], Den-

mark [71], Germany [96], Colombia [24,49], and China [86]. The spreading of TR46/Y121F/

T289A is worrisome, as it can cause high resistance to voriconazole, which is recommended as

the first-line therapy for many aspergillosis [97].

Recently, another promoter-repeat mutation (a triple 46-bp promoter repeat), combined

with 4 SNPs (TR463/Y121F/M172I/T289A/G448S), which leads to a pan-triazole resistance,

was discovered (Fig 1C) [20]. The isolates harboring these mutations came from compost

heaps containing azole fungicides and A. fumigatus clinical isolates from the Netherlands [20].

Moreover, additional tandem repeats in cyp51A gene, either combined or not with SNPs, were

reported in environmental azole-resistant strains, such as TR464/Y121F/M172I/T289A/G448S

[20], TR34/L98H/S297T/F495I [22,86], TR46/Y121F/M172I/T289A/G448S [19], TR92/

Y121F/M172I/ T289A/G448S [19], and point mutations without tandem repeat alterations, for

example, P216L [33], A284T, G448S, P222Q [74], G54R [34], G138S, Y433N, and N248K [85].

In the environment, azole-resistant isolates harboring the aforementioned genetic modifi-

cations have been isolated from several places and materials, including leaves, plant seeds, soil

samples, flowerbeds, compost, hospital surroundings, and air samples

[19,20,22,24,26,34,49,93,98]. In this way, some researchers have been reporting potential hot-

spot to isolate those mutants (especially TR34/L98H and TR46/Y121F/T289A), including soils

from strawberry fields in China [22]; azole-exposed compost [20], flower bulb waste, green

waste material, and wood chippings in the Netherlands [19]. These environments contain sev-

eral characteristics that may facilitate not only the emergence of azole-resistant strains, but

also their maintenance, and spread [19,20]. Such chacharacteristic are beyond the scopus of

this review and has been recentely well discussed by Burks and colleagues [98]. Besides the fact

that not all the soil or culture seems to be favorable for the emergence of resistant strains, it

appears that are some DMIs more prone to select mutations in A. fumigatus and cause cross-

resistance with medical azoles, such as propiconazole, bromuconazole, tebuconazole, epoxico-

nazole, difenoconazole, prothioconazole, and azaconazole [19,30].

Mutations in the cyp51A promoter and its open reading frame (ORF) causing overexpres-

sion and/or significant changes in the conformation of lanosterol 14α-demethylase are the pri-

mary azole resistance mechanisms in clinical and environmental A. fumigatus isolates.

However, azole-resistant strains with wild-type cyp51A have been found, suggesting other

resistance means unrelated to cyp51Amodifications [29,81,86]. Cui and colleagues exposed
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azole-susceptible strains to liquid culture medium and soil treated with tebuconazole and then

recovered 12 resistant isolates without any alteration in the cyp51A gene [29]. The mRNA

quantitative analysis showed that some of these isolates overexpressed the genes encoding a

transcription factor involved in resistance (AtrF), 2 efflux pumps (AfuMDR1, AfuMDR2), and

paralogue genes for the azole-target enzyme (cyp51A and cyp51B) [29]. Another study also

demonstrated that the fungicide propiconazole could select resistance by causing overexpres-

sion of cyp51A and the efflux pump genes AfuMDR3 and AfuMDR4 [85]. Overall, these data

show how diverse the mechanism behind azole resistance in A. fumigatus is (Fig 1B) and that

researchers should also look for alterations beyond the cyp51A gene.

The role of asexual reproduction and in vitro and in vivo resistance acquisition in A. fumi-

gatus is already well defined and discussed in this paper. In contrast, the importance of sexual

and parasexual cycles are not totally revealed. There is building evidence showing that sexual

cycle of A. fumigatus plays a vital part in its resistance development, thus accounting for the

genetic diversity. In this sense, Camps and colleagues verified that TR34/L98H strains could

outcross with wild-type isolates with diverse genetic backgrounds [99], and Zhang and col-

leagues obtained TR46
3 mutation outcrossing 2 TR46 strains that were isolated from the same

azole-containing compost, possibly through unequal crossing over between the double tandem

repeats (TRs) during meiosis [20]. Sexual reproduction, which requires 2 different mating

types, results in new genotypes, which may be a source of diversity within azole-resistant iso-

lates in vitro [86]. In turn, the parasexual cycle, performed through the hyphal plasmogamy,

nuclear exchange and fusion, and subsequent haploidization, plays a role in azole resistance

development in diploid A. fumigatus isolated from CF patients [100]. Nevertheless, its function

in environmental resistance acquisition is still unknown.

3. The other side of the story

The hypothesis that DMI could be prompting resistance in A. fumigatus is not unanimously

accepted. Hollomon, for instance, stated that it was unlikely that selection for resistance

occurred in soil [28]. He verified that the levels of fungicides available at the upper 10 cm of

soil were very low (maximum exposure concentrations (MECs), between 0.3 and 0.4 mg/kg),

especially when compared to the exposure concentrations of triazole drugs in patients

(approximately 11 mg/L of blood serum) [28]. Indeed, some studies have proved that higher

concentrations of fungicides are required to obtain resistant isolates from azole-contaminated

soils (1.0 to 10.0 mg/kg of propiconazole and 0.5 to 5.0 mg/kg of tebuconazole) [29,85]. Never-

theless, in his critical analysis, Hollomon considered the results from a single-spray application

[28]. In turn, other authors demonstrated that, for example, the level of propiconazole depos-

ited in the soil was approximately 0.5 to 2.0 mg/kg when it was sprayed on plants 2 to 3 times,

with an interval of 7 to 10 days, which is the recommended application regimen for this DMI

[101]. Therefore, it is plausible to imagine that the residual DMI in the soil might be enough to

select resistant isolates.

Another critical point raised by Hollomon was the lack of experimental data detecting any

preexisting resistant isolates in the cultivable fields and showing how their frequency rose after

the azole spraying [28]. Recently, Barber and colleagues conducted a systematic study, in

which they sampled 10 agricultural sites in Germany over 3 years [102]. In their research, they

consider both conventionally managed fields, where azole fungicides were applied, and those

in organic farming systems, which did not use these compounds. Although they were able to

isolate azole-resistant strains carrying the most common mutations, the results exhibited only

a modest decrease in azole susceptibility after the growing season and azole exposure [102].

Hence, this study did not prove a direct and incontestable link between azole application in
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the field and increased azole resistance in A. fumigatus. Other studies have also failed in con-

necting fungicide usage and A. fumgiatus increasing resistance. van der Torre and colleagues

recovered over 86 A. fumigatus from soil-covered root vegetables and other fresh produce in

the UK, and none was azole resistant [103,104]. Similarly, Astvad did not detect resistance

from any of the 113 isolates from soil in Denmark. AdditionallyAU : PleaseconfirmthattheeditstothesentenceAdditionally; nopan� azole� resistantmutantðTR34orTR46Þwas:::didnotaltertheintendedthoughtofthesentence:, no pan-azole-resistant mutant

(TR34 or TR46) was found from 180 strains isolated from soil samples in UK (90 from

untreated wheat crops and 90 from plots sprayed with foliar fungicides), neither other 30

strains isolated from permanent grass land [104].

On the other hand, some authors showed consistent data attesting that azole-resistant iso-

lates are significantly more common in DMI-containing places, such as sawmills that use fun-

gicides to preserve wood compared to the ones that do not [33], soils from azole-treated

agricultural sites versus urban areas [23], and compost heaps containing azoles in relation to

azole-free ones [20]. Furthermore, Cao and colleagues, in a comprehensive study aiming to

isolate resistant A. fumigatus from paddy soils, found that the prevalence of azole-resistant iso-

lates is positively correlated with the residual levels of azole fungicides in the soil [86] (Fig 1A).

Overall, these data indicate that the DMI used in the agriculture and wood industry could

be the main responsible for selecting resistant strains of A. fumigatus. Nonetheless, this process

depends on some factors, such as the amount of azole applied and remaining in the environ-

ment (residual azole), the frequency of application, the type of azole employed, whether the

azoles are used in a mixture or as an individual drug, and the interval between applications

[29,33,86].

3.1 Fungicide effects on morphology, physiology, and virulence: What we
know and it is missing?

Other aspects of A. fumigatus exposure to fungicides have been scarcely studied, such as its

effect on virulence, metabolism, morphology, and fitness cost. Resistance mutations usually

happen at a cost, as in the absence of an antifungal drug, the resistant genotype is less fit than

the wild-type isolates [56]. Consequently, the mutant can disappear in the drug-free environ-

ment or become less virulent due to the fitness cost. Faria-Ramos reported that prochloraz-

adapted colonies of A. fumigatusmacroscopically became mostly white, losing the typical pig-

mentation due to nonconidiation, which must affect spreading and infectiveness [83,105]. In

contrast, strains carrying cyp51Amutations, as TR34/L98H and TR46/Y121F/T289A, appar-

ently do not have any fitness cost, as they are found dispersed worldwide in both azole-con-

taining and azole-naive environments, coexisting with wild-type strains [105,106].

Nonetheless, little is known about the apparent absence of fitness cost in these and other

fungicide-exposed mutants. Some hypotheses that still need scientific proof have been raised

as follows: (i) resistant strains exhibit fitness cost in some particular environments, and the

strains have only been tested under optimal laboratory conditions; (ii), TR34/L98H and TR46/

Y121F/T289A could have developed a compensatory evolutionary mechanism, meaning that

mutations might have counterbalanced any fitness cost by exposition to an azole-free environ-

ment; and (iii) tandem repetitions in the promoter could have been the compensatory muta-

tion for the point mutations in cyp51A [56].

In summary, recent data have filled some gaps and reinforced the theory of fungicide-

driven azole resistance in A. fumigatus. However, future research should also consider cyp51A-

independent mechanisms and other fungal aspects (fitness cost, virulence, and metabolism) of

azole resistance development.
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4.Candida spp.

4.1 Habitat, clinical manifestations, treatment, and resistance incidence

Candida is a medically important polyphyletic fungal genus with more than 300 different spe-

cies, of which 20 are potentially pathogenic to humans and other mammals [107,108]. Candida

albicans, Candida glabrata, Candida parapsilosis, and Candida. tropicalis are part of human

microbiota responsible for most of infections involving this fungus [109–113]. These infec-

tions, collectively called candidiasis, range from superficial mycoses and deep-seated (intra-

abdominal abscesses, peritonitis, and osteomyelitis) to invasive infections (candidemia)

[110,114].

Candidiasis can be treated with polyenes, echinocandins, and, especially, azoles [115]. How-

ever, the azole therapy has been presenting an increasing limitation due the number of clinical

azole-resistant strains that have been isolated lately, especially among the non-albicans Can-

dida species [111,116–118]. This can be linked to the massive use of fluconazole as prophylaxis

(in patients considered at risk of infection) that could be selecting secondary resistance [119–

122]. Intriguingly, although in-host resistance acquisition is the main route of azole resistance

development in Candida spp., the isolation of azole-resistant strains from patients with no

prior history of antifungal treatment has become common [123–128]. One of the explanations

for this phenomenon may be in the environment [129].

Although the environment is not the primary reservoir for most of the Candida spp., they

are also found in soils, trees, fruits, and water [129–132]. Indeed, it seems that some species are

more related to specific niches, as C. tropicalis in soils, while others, such as C. albicans, can be

found in multiple niches (fruits, soil, and plant matter) [129].

4.2 Fungicide-driven resistance: Epidemiological, experimental, and field
data

Similar to A. fumigatus, Candida isolates from the environment may present reduced suscepti-

bility or resistance to clinical azoles [129,131]. This fact raises the question if any environmen-

tal factors exist acting as a selecting pressure and affecting the fungus before contact with the

host. Considering that Candida spp. is found in the environment and may acquire resistance

in that place, the hypothesis that fungicides, especially environmental azoles, could be the

stressor-selecting pressure has gained more attention.

Some observations support the link between the agricultural use of azole agrochemicals and

the emergence of Candida spp. resistance [133]. First, it has been shown that the fluconazole

MIC values are higher in Candida isolated from the surface of nonorganic fruits (sprayed with

fungicides) compared to those collected from organic ones (without agrochemical) (16 to 64 g/

L versus 1 to 8 mg/L) [134]. Secondly, C. tropicalis from the soil of Taiwan had a reduction in

fluconazole susceptibility and showed genetical relatedness with clinical and less azole-suscep-

tible strains. In addition, these isolates were more resistant to agricultural azoles, suggesting a

cross-resistance between environmental and clinical azoles [131]. The cross-resistance

between these substances has been also shown in C. albicans obtained from the oropharynx of

HIV–positive people, which had resistance to fluconazole and high MIC to agricultural azoles

(fluquinconazole, penconazole, tebuconazole, and triadimenol) [135].

Obtention of cross-resistance can also be achieved in vitro to exposing yeasts to agricultural

azoles. Fluconazole and posaconazole resistance, for example, were selected in C. glabrata after

a previous exposure to the fungicide prochloraz [136]. In addition, susceptible C. parapsilosis

species complex became more resistant to fluconazole, itraconazole, and voriconazole after
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being cultured in a medium supplemented with the fungicides tetraconazole and tebuconazle,

similarly as happened in the positive control using fluconazole [137,138].

The idea that fungicide-driven resistance in human pathogens has also been used to explain

the origin of new multidrug resistance in Candida species, such as Candida auris [139,140]. C.

auris is an emerging yeast, frequently resistant to fluconazole, and recently reported in clinical

settings worldwide that may have its origin in the environment [141]. This hypothesis is sup-

ported by the new study of Arora and colleagues, who, for the first time, isolated this species

from the environment. C. auris was found in salt marsh virgin habitats (areas with no human

activity) and sandy beaches, which suggests that prior to its recognition as a human pathogen,

it existed as an environmental fungus [141]. One isolate demonstrated to be less antifungal

resistant, which could reinforce the hypothesis that drug resistance in clinical strains isolated

in other parts of the world emerged from induction by fungicides [130]. However, so far, it is

not known if C. auris lives in cultivable soils or in plant materials, where they could be in con-

tact with fungicides. Even though, due its multidrug resistance, it has been proposed that agro-

chemical exposure may be related to the C. auris resistance [139,140]. In fact, distribution

maps of azole fungicides usage within the US matched the reported scattering of C. auris

[142]. More experiments and field data are necessary to test such hypothesis.

Primary and secondary azole resistance mechanisms are well studied and understood in

Candida spp. Several mechanisms have been described, being the most important the overex-

pression of ERG11 and efflux pumps (MDR, CDRs) genes and alterations in ERG11p [111].

Coincidently, agricultural azoles select cross-resistance by using the exact mechanisms under-

lying fluconazole resistance (Fig 2A) [137,138]. Prochloraz induces the up-regulation of the

ATP binding cassettemultidrug transporter genes (PDH1) and the transcription factor that

may regulate them (PDR1) but seems to not select any important mutation in ERG11 [136].

Alike, Rocha and colleagues demonstrated that C. parapsilosis exposed to tetraconazole and

with cross-resistance to clinical azoles increased drug efflux through pumps, such as MDR1p

and CDRp [143] (Fig 2A). Lately, Brilhante and colleagues showed that tebuconazole- and tet-

raconazole-exposed C. parapsilosis species complex strains had cross-resistance due to overex-

pression of ERG11 but not of efflux pump genes [137]. Also, sterol composition in C.

parapsilosis (sensu stricto) and Candida orthopsilosis tend to be different after fungicide expo-

sure [137], what may be related to azole resistance if it supports the membrane integrity. Alto-

gether, these data show the diverse azole mechanisms that can be selected by fungicides (Fig

2A).

4.3 Fungicide effects on morphology, physiology, and virulence: What we
know and it is missing?

In addition to cross-resistance, agrochemicals can affect the morphophysiology and virulence

of Candida spp. (Fig 2B). Tebuconazole altered the metabolism of C. parapsilosis (sensu

stricto) at the time of adhesion and decreased the metabolic activity of biofilms [137]. Species

of azole-tolerant biofilm-producing non-wild-type C. albicans were found colonizing agricul-

tural soils cultivated with azole fungicides [144]. The influence of fungicides on the develop-

ment phases of Candida spp. may mimic the state of an in vivo infection of yeast colonies

occurring in a natural environment. Specifically, C. albicans and Candida pulcherrimaAU : Pleaseconfirmthattheexpandedgenus“Candida”forspecies“pulcherrima”iscorrect; andamendifnecessary:showed

an expanded cell size after exposure to different concentrations of Tango Star (epoxiconazole

and fenpropimorph), and C. albicans was not able to form hyphae (Fig 2B). Tango Star, which

inhibits ergosterol synthesis, may contribute to depleting the intracellular pool of ergosterol

while blocking the transition of blastospores during hyphae formation [145]. The overall

response to agrochemical stress in C. glabrata and to a lesser extent in C. tropicalis was the
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Fig 2. Cellular alterations induced by fungicides exposure in Candida spp. (a) Mechanisms of resistance induced by fungicides in
Candida spp. Azole resistance triggered by fungicide exposure shows up-regulation of ABCmultidrug transporters, such as PDH1. In
addition, amino acid substitution Y132F in the erg11 gene can occur, suggesting that this selected resistance is mainly associated with
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selection of subpopulations with increased fatty acid unsaturation rates [145]. Treatments with

Tango Star also aggravated the total DNA damage in C. pulcherrima cells (Fig 2B) [146].

In summary, there is some field and experimental data demonstrating that fungicides may

be inducing resistance to clinical azoles in Candida spp. mainly through activation of overex-

pression of efflux pumps and ERG11 genes. They are also affecting its morphophysiology;

however, it is unclear, if those alterations impact Candida virulence. Based on that, the use of

azoles in human medicine and the environment requires surveillance and restrictions to mini-

mize the risk of selecting azole resistance in Candida.

5.Cryptococcus spp.

5.1 Habitat, clinical manifestations, treatment, and resistance incidence

Cryptococcus neoformans and Cryptococcus gattii (also called C. neoformans and C. gattii com-

plex) are encapsulated basidiomycetous yeasts and the most medically relevant species within

the genus Cryptococcus, causing infections called cryptococcosis [147]. Although C. neofor-

mans has been typically found in association with birds, isolated from their nests and excre-

ments [147–149], both species live predominately in niches related to plant material, such as

bark and trunk cavities of trees, fruits, underlaying soil, and decaying wood. They can be iso-

lated from trees of Eucalyptus spp. (eucalyptus), Olea (olive trees), Ceratonia (carob trees),

Pinus, Aesculus, and several others [149–151]. From the environment, patients inhale basidio-

spores or desiccated yeasts. Once the propagules reach the lungs, they might develop, multipli-

cate, and disseminate to other organs, especially to the central nervous system [148,152–154].

The treatment for cryptococcosis is performed with amphotericin B combined with flucon-

azole and/or 5-flucytosine [148,155–157]. Although resistance is not considered an issue in

Cryptococcus spp. [157], secondary resistance to azoles has been recurrently reported

[149,158–164]. The observations include a study showing that the MIC50 and MIC90 values of

fluconazole have increased 2-fold in a comparison between C. neoformans isolated in 2017 and

strains obtained 10 years earlier in Africa [159], and another that reported that the mean

MIC50 of fluconazole for clinical cryptococcal isolates increased 2-fold over time, from 4 μg/

mL in 2000 to 2012 to 8 μg/mL in 2014 to 2018 [165].

5.2 Fungicide-driven resistance: Epidemiological, experimental, and field
data

Differently from A. fumigatus and Candida spp., C. gattii and C. neoformans do not usually

occur in crops, flower beds, and commercial plant-based products. They are found in associa-

tion with Eucalyptus and other trees, especially in trunk hollows [151,166,167]. Thus, it is

unusual to link these species with fungicide exposure in the environment, as these chemicals

are often employed to preserve and treat plant diseases of commercial relevance [26,28,33].

Nonetheless, it is worth remarking that Eucalyptus and other trees are valuable assets for the

wood industry, which also uses fungicides for wood preservation [33]. Moreover, Chowdhary

and colleagues isolated azole-resistant A. fumigatus from trunk hollows in Tanzania [75], the

same niche of pathogenic Cryptococcus [151,166]. On that account, Del Poeta and Casadevall

increased drug efflux through ATP-dependent pumps. Sterol composition and DNA damage are also consequences of fungicide
exposure. (b) Alterations in morphophysiology and virulence of Candida spp. caused by fungicides. Candida spp. exposure to
fungicides showed an expanded cell size, inability to form hyphae, and significantly altered time of adhesion and decreased the
metabolic activity of biofilms. ABC, ATP-binding cassette.

https://doi.org/10.1371/journal.ppat.1010073.g002
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hypothesized that fungicides could also be driving cryptococcus virulence and resistance evo-

lution [168].

Trying to prove this hypothesis, Bastos and colleagues evaluated the effect of the environ-

mental antifungals tebuconazole and pyraclostrobin (a strobilurin that acts as mitochondrial

respiration inhibitor) on C. gattii and C. neoformans strains. The exposure to agrochemicals

caused cross-resistance to medical azoles, remarkably fluconazole. The cross-resistance was

permanent in some exposed strains, lasting even after several cultures in agrochemical-free

media, and temporary in others, then returning to the original susceptibility when the contact

with the fungicide ceased [31,169]. Other studies using a similar methodology and the same

strains also demonstrated that exposure to the fungicide benomyl (mitotic inhibitor) and the

herbicides flumioxazin (inhibits protoporphyrinogen oxidase, an enzyme that is important for

the synthesis of chlorophyll), isoxaflutole (inhibits the 4-hydroxyphenyl pyruvate dioxygen-

ase), and pendimethalin (inhibits root and shoot growth by preventing plant cell division and

elongation) reduced the susceptibility to agrochemicals and clinical antifungals (https://www.

epa.gov/caddis-vol2/caddis-volume-2-sources-stressors-responses-herbicides) [170,171].

Although herbicides have different mechanisms of action compared to fungicides, they may

activate pathways that increase fungal fitness, which probably alter the way that fungal cells

behave in the presence of clinical antifungals. Cross-resistance to fluconazole was also verified

in an in vivo murine model for cryptococcosis. The drug proved ineffective in controlling the

infection caused by cells previously adapted to tebuconazole, pyraclostrobin, and benomyl,

compared to cells nonexposed to fungicides [31,169,171].

Cryptococcus spp. usually become more tolerant to azoles through 3 mechanisms: (i)

enhanced expression of ERG11p; (ii) mutation in the ERG11 gene; and (iii) overexpression of

efflux pumps [155,172–175]. The molecular mechanism behind cross-resistance selected by

environmental azoles, strobilurins, and benzimidazoles, however, has not been fully uncov-

ered. Nonetheless, it seems that fungicide exposure selects mutations in some strains whose

resistance strengthens permanently [31,169,171]. It is still unclear the role of mutations in

these phenotypes. Epigenetic changes cannot be ruled out since in C. neoformans, for example,

they can remain for a long time in the absence of a stressor agent [176]. On the other hand, the

expression analysis of ERG11 and the efflux pump genes AFR1, PDR11, andMDR11 revealed

that exposure to tebuconazole, pyraclostrobin, and benomyl boosted their expression in C. gat-

tii and C. neoformans (Fig 3A) [31,169,171]. Besides, Carneiro and colleagues performed a rho-

damine 6G assay and observed that benomyl-exposed cells pumped out the dye more than the

nonexposed control, thus reinforcing this mechanism as a probable factor in the cross-resis-

tance to medical azoles [171].

These data demonstrate that not only DMIs structurally similar to medical azoles select

cross-resistance to clinical drugs in Cryptococcus spp., but also other fungicides with different

targets, and herbicides [31,169–171]. However, a question remains: If fungicide-driven resis-

tance occurs in Cryptococcus spp., which are widely spread over natural areas, why has such a

small number of azole-resistant Cryptococcus been isolated from the environment? The answer

may be related to specific conditions that apparently select cross-resistance between fungicides

and clinical azoles, such as the temperature [31,169].

The role of temperature in the antifungal tolerance process becomes evident when analyz-

ing cross-resistance. In this case, Bastos and colleagues observed that exposing C. gattii and C.

neoformans strains to fungicides at 30˚C increased the number of colonies that became more

resistant to fungicides, compared to when this process was executed at 37˚C [31,169]. In addi-

tion, the temperature influenced the MIC of azoles used as clinical drugs and fungicides.

When the MIC of drugs was determined at 37˚C using colonies previously exposed to fungi-

cides at 30˚C, the MIC values was lower than when the experiment was carried out at 30˚C
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[31,169]. Another study recently confirmed the connection between resistance acquisition and

lower temperature as they proved that adaptation in drugs as fluconazole and amphotericin B

at lower temperatures selects resistance to these drugs in C. neoformans, which does not

Fig 3. Fungicide exposure effects on Cryptococcus spp. (a) Exposure to fungicides can select cross-resistance to clinical azoles
especially through overexpression of efflux pumps (MDR11 and AFR1) and ERG11 genes, the azole target. (b) Different fungicides
also can induce important alterations in the cell morphophysiology of Cryptococcus cells that may be related to virulence.

https://doi.org/10.1371/journal.ppat.1010073.g003
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happen at a higher temperature [177]. Overall, temperature probably influences the survival

and adaptation of Cryptococcus spp. in the presence of fungicides and clinical drugs, as well as

the manifestation of this resistance in a host with high body temperature. It suggests that if the

resistance acquisition happens in the environment due to fungicide, Cryptococcusmay not

express it in vivo [31,169].

5.3 Fungicide effects on morphology, physiology, and virulence: What we
know and it is missing?

It has been proved that fungicides also affect the morphology and virulence of Cryptococcus

spp [31,169]. As in other fungi, the cell morphology of Cryptococcus is crucial to resist environ-

mental stresses and for virulence. Remarkably, the capsule, which is very characteristic of this

genus, is deemed as the primary virulence factor [178]. In general, cells with a large capsule

tend to be more virulent than those with a small one or acapsular mutants [179]. The surface–

volume (S/V) ratio of the yeast is another factor that plays an essential role in the pathogenesis

of these species. Yeasts with a high S/V also appear to be more virulent since they replicate fast

and migrate to the CNS to a great extent [171,180].

When C. gattii R265 was exposed to tebuconazole, the cell body expanded (decreased S/V),

compared to nonexposed controls (Fig 3B). This phenomenon coincided with a reduced viru-

lence of these cells in the murine model for cryptococcosis, achieving an avirulent status since

they were unable to kill any mice [31]. Tebuconazole-exposed C. neoformansH99 [31] and

pyraclostrobin-exposed C. gattii R265 [169] were also less virulent than non-fungicide-

exposed cells, which demonstrated that there is a fitness cost of being more resistant to drugs.

In those cases, the decrease in virulence was related to pseudohyphae formation in tebucona-

zole-adapted C. neoformansH99 [31] and a reduced expression of ion transporters in pyraclos-

trobin-exposed C. gattii (Fig 3B) [169]. Conversely, C. gattii L24/01, previously nonvirulent,

became hypervirulent after exposure to benomyl (Fig 3B). It rapidly translocates to the brain,

survives and multiply inside macrophages, and kills mice. This phenotype was associated with

the inscrease in the S/V ratio, and an improved replicative capacity, both in vitro and inside

phagocytes [171]. Together, these results show how complex could be the fungicide exposure

effects on C. neoformans and C. gattiimorphophysiology and virulence, besides its effect on

antifungal resistance.

In summary, these data indicate that fungicide exposure affects the resistance, morphology,

and virulence of Cryptococcus spp. in a fungicide- and strain-dependent manner. There is also

a fitness cost translated as a decrease or loss of virulence in some strains. In contrast, others

can become surprisingly more adapted to the host, resulting in a virulence boost.

6. Conclusions and perspectives

Several studies have demonstrated that there is an environmental route driving resistance to

medical azoles in A. fumigatus due to fungicide use, especially the use of DMIs. Field and labo-

ratory data revealed that resistant strains found in patients and in the environment could

develop cross-resistance to environmental and medical azoles via the same mechanism. Like-

wise, susceptible isolates can become resistant when exposed to environmental azoles. How-

ever, the existing literature is not unanimous on whether or not resistant A. fumigatus strains

hold predominance in azole-contaminated or fungicide-sprayed soils [20,86,102]. One theory

rejects the possibility of spontaneous emergence of azole resistance in the soil by suggesting

that the phenomenon would be triggered by crop waste gathered up in the surroundings. This

hypothesis explains the findings of some authors who observed the prevalence of resistant

strains in compost material [20] but not in arable soils [104]. In fact, A. fumigatus is commonly
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found in compost piles, plant material in decomposition, and wastewater from urban areas

[98]. Thus, studies that did not detect resistant strains eventually assume the soil as hotspot of

resistance emergence, when it might actually be importing this condition.

Further studies should clarify why there is an enrichement of resistant isolates in some

places containing azoles but not in others. In addition, they should provide a better under-

standing of the roles of the fungicide application regimen, the accumulation of these sub-

stances in the soil, and their influence on resistance development. Other unanswered

questions, such as the importance of sexual and parasexual cycles in the process of resistance

acquisition, the reasons why TR34/L98H and other mutants do not seem to present fitness

costs, and how fungicide exposure affects the physiology and virulence of A. fumigatus strains

should also be adressed.

Despite scarce, the existing evidence of an environmental route triggering resistance in

pathogenic yeasts (such as Candida and Cryptococcus) should not be neglected. Most of the

current data are based on in vitro studies pointing out that agrochemicals could select cross-

resistance to medical azoles. Nonetheless, comprehensive fieldwork comparing the isolation of

resistant strains from azole-containing environments versus azole-free ones is still necessary.

The studies must also focus on revealing the molecular mechanisms of resistance selected by

fungicides and how extrinsic and intrinsic conditions interfere with this phenomenon.

One of the main problems with the environmental drug acquisition is that measures to pre-

vent and control the emergence of resistant strains in clinical practice, including the rational

use of drugs, have overall proved to be inefficient, which reinforces the need for new perspec-

tives. The one-health approach has been successful in dealing with antibiotic resistance, as

indiscriminate use of these drugs in veterinary medicine and especially as growth promoters

for animals has been perceived as a source of acquired bacterial resistance. Thus, there is a

great international effort and pressure for the rational use of antibiotics in animal medicine

and restriction of their use as growth promoters [181]. In this case, antifungal resistance

should also be looked after since the origin of this problem could be in the environment out-

side the hospital.

Fungicides and other pesticides are indivisible parts of current food production and supply,

but assuring human health is paramount, despite productivity claims. Therefore, the sensible

use of fungicides with the potential for selecting cross-resistance with clinical drugs is a top

priority in future discussions.
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