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Resumo

Seja f um difeomorfismo dinamicalmente coherente sobre uma variedade Rieman-

niana fechadaM com folheação centralWc de classe C1 e λcpfq “max ||Df |Ec ď 1.

Conseguimos mostrar que a entropia topológica de f coincide com o crescimento

exponencial de pseudo-órbitas periódicas respeitando a folheação central Pern.

Aplicando plaque expansividade da folheação central e a propriedade de center es-

pecificação, mostramos que hpfq “ limnÑ8 frac1n log#Pern. Além disso, quando

f é um elemento regular de uma ação de grupo hiperbólica, mostramos a existência

de uma única medida que maximiza a entropia.

Palavras Chave: Folheação central, plaque expansividade, entropia topológica,

ações de grupo, medida de máxima entropia, placa central.



Abstract

Let f be a dynamically coherent partially hyperbolic diffeomorphism on a closed

Riemannian manifold M with the central foliation Wc of C1 class and λcpfq “max

||Df |Ec ď 1.

We managed to show that the topological entropy of f coincide with the growth

exponential of periodic pseudo-orbits respecting the central foliation Pern. Apply-

ing the plaque expansiveness of the central foliation and the center specification

property, we show that hpfq “ limnÑ8
1
n
log#Pern. Moreover, when f is an regu-

lar element of a hyperbolic action group, the existence of an unique measure that

maximizes entropy is shown.

Key words: Central foliation, plaque expansiveness, topological entropy, group

actions, measure of maximal entropy, center plaque.
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Introduction

At the end of the 19th century, H. Poincaré began the study of chaotic dynamical

systems while he was trying to understand the behavior of celestial bodies. He

realized that small differences in initial conditions propagated during time, and

produced widely different behaviors of the orbits. In fact, this allowed him to

show the non-existence of analytic solutions of the 3-body problem, contrary to

what was believed at the time (even by him). For the complete story, together

with the digitalized documents of Poincaré the reader could check http://www.

mittag-leffler.se/library/henri-poincare.

The problem stayed almost neglected (with perhaps the important work of Birkhoff)

until around 1960, when S. Smale and his collaborators proposed to understand

these “chaotic systems” from a qualitative point of view. Keeping the story short,

this was the beginning of the concept of hyperbolicity, a cornerstone of modern

mathematics.

Hyperbolic systems are by now very well (but not completely) understood, both

from the geometrical and ergodic point of views. For example, if a diffeomor-

phism is Axiom A (see [28]), then its non-wandering set can be decomposed intro

finitely many transitive pieces. Restricted to these pieces the map is expansive, has

dense periodic points and satisfies the specification property. Regarding its ergodic

properties, we can cite for example the existence of a unique entropy maximizing

measure on each piece (see [7]).

Our goal in this work is to extend the above-cited results to a class of partially

hyperbolic diffeomorphisms. Roughly speaking, a partially hyperbolic system has,

in addition to contracting and expanding directions, an intermediate ”center” di-

rection whose behavior is dominated by the other two. The study of partially

http://www.mittag-leffler.se/library/henri-poincare
http://www.mittag-leffler.se/library/henri-poincare
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hyperbolic systems began independently with Hirsch, Pugh and Shub at [20], and

with Brin and Pesin at [9] in the early 70’s.

The existence of a center direction introduces a series of complications with respect

to completely hyperbolic diffeomorphism. For instance, it may not be integrable,

(see [19], [29]), it may fail to be smooth, and in general, since in principle the

center direction is not dynamically defined (in contrast with the strong bundles),

the analysis becomes much harder.

If the central direction is integrable to a smooth foliation then the system is milder:

for example, a classical result due to Hirsch, Pugh and Shub guarantee that in this

case the C1 perturbations of the original map have also integrable center bundles

(although the resulting foliations fail to be smooth in general). To prove this they

realized that a key concept shared by smooth center foliations and its perturbations

is plaque expansivity, a generalization of the classical expansivity property. At the

moment of writing there is no known example of partially hyperbolic system which

does not satisfy plaque expansivity. In any case, in order to make initial progress,

we restrict to systems with smooth center foliations. It is possible that with

additional work the techniques can be extended to other situations.

We give here an overview of each chapter, pointing out the main results. In

Chapter 1, we discuss a variety of definitions and results from foliation theory

(inluding holonomy) and partially hyperbolic systems. The Chapter 2 is dedicated

to the study of pseudo-orbits respecting to the central foliation. To this end,

we denote by Pcpδq the space of such δ-pseudo-orbits, and establish some of its

properties.

In [7] R. Bowen showed that, for an expansive system with the specification prop-

erty, the topological entropy of the system coincides with the exponential growth

of the periodic points. On the other hand, in [30], Wang and Zhu have showed that

if the system is partially hyperbolic with a uniformly compact central foliation,

then it admits the specification property, and its topological entropy is bounded

by the sum of the growth rate of center periodic leaves with the entropy of the

center foliation. In our case, we restrict ourselves to partially hyperbolic systems

with λcpfq “ max ||Df |Ec || ď 1. We show that this type of system is h-expansive

and has center specification property. As a result, we obtained results analogous

of those theorems.
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To state it we give the following definition. First, we fix some appropriate δ ą 0

and consider Pc
perpδq (the closure in the product topology) of the set of δ-pseudo-

orbits. We say that a set E Ă tx P Pc
perpδq; σnpxq “ xu is said to be n-centrally

separated if for any x, y P E there is a j P t0, ¨ ¨ ¨ , n ´ 1u such that dpxj, yjq ě δ.

Denote by #Pern the cardinal of any n-centrally separated set of maximal size.

We need to assume one of the following conditions.

Hypothesis 1. For any α ą 0 there exists ρ “ ρpαq ą 0 so that: for any

x P M, z, w P Dsupxq, y P W cpxq, it holds

dpz, wq ě α ñ dphc
y,xpzq, hc

y,xpwqq ě ρ

(and in particular, hcpzq, hcpwq is well defined.)

Hypothesis 2. f is a regular element of an hyperbolic action.

Theorem A. Let f : M Ñ M be a dynamically coherent partially hyperbolic

diffeomorphism satisfying the following hypotheses

• foliations Wc,Wcs are of class C1;

• the strong unstable foliation Wu is minimal;

• λcpfq “ max ||Df |Ec || ď 1.

If f satisfies either Hypothesis 1 or 2, then

htoppfq “ lim
nÑ8

1

n
log#Pern.

Next we consider the ergodic theory part.

Theorem B. Let f : M Ñ M be a regular element of a hyperbolic action, and E

be a family of maximally n-plaque periodic sets. Then

νE
n “

1

n

n´1
ÿ

k“0

fk
˚µ

E
k

weakly
ÝÝÝÑ
nÑ8

µMME

where µMME is the unique entropy maximizing measure of f .

Uniqueness of this measure can be deduced by the work of Climenhaga, Pesin and

Zelerowicz in [14]. Our theorem gives a precise description, very much as in the

case of the entropy maximizing measure for hyperbolic systems (Bowen measure).
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Our contribution is given a precise description of this measure, very much as in

the classical Anosov case.

We finish by giving an important application. We say that an hyperbolic action

α : G ˆ M Ñ M is strongly Axiom A if there exists a regular element g in the

center of G such that f “ αpg, ¨q is a regular element, and if the set of closed leaves

is dense in M.

Theorem C. If α : G ˆ M Ñ M is a strongly Axiom A action then there exists

µ probability measure on M that is

1. G-invariant: for every measurable A Ă M and g P G, µpαpg, Aqq “ µpAq.

2. µ is ergodic,

3. supppµq “ M .

This Theorem is proven by completely different methods in the recent paper of

Y. Bonthonneau, C. Guillarmou and T. Weich [4]. It can be also obtained (again,

with different methods) as consequence of the P.D. Carrasco and F. Rodriguez-

Hertz [12]. Theorems A, B and C are proved in Chapter 3, which is the main part

of the thesis.
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Chapter 1

Preliminaries

In this chapter we present a brief review of the necessary definitions and properties

that will be used throughout the work. We start with the concept of foliation.

After this we introduce the notion of holonomy and list some of its properties that

will be useful in the future. Lastly, we define partially hyperbolic systems, and

review some of their properties. For a more detailed reading we suggest [10], [17],

[20] and [24].

In this work we denote M as a closed (compact, without boundary) differentiable

n-manifold.

1.1 Foliation

We recall some basic facts of foliation theory and related concepts. For more

details see [10]. Take some r ě 1, s ě 0 and 1 ď q ď n ´ 1.

Definition 1.1.1. A foliated atlas of class Cr,s and codimension q for M is an

atlas U “ tpUα, φαq; φα : Uα Ñ Rn´q ˆ Rqu such that if Uα X Uβ ‰ H, then the

coordinate changes φαβ : φβpUα X Uβq Ñ φαpUα X Uβq are of the form

φαβpx, yq “ pxαβpx, yq, yαβpyqq,

where xαβ : φβpUα X Uβq Ñ Rn´q is of class Cr, and yαβ : φβpUα X Uβq Ñ Rq is of

class Cs.

Definition 1.1.2. A foliation of class Cr,s and co-dimension q on M is a maximal

foliated atlas of class Cr,s and co-dimension q on M . In addition, a Cr,s-foliation
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W is said to be a Cr-foliation if there is a foliated atlas for W whose coordinate

changes are Cr.

Definition 1.1.3. A fiber bundle is a structure pK,B, πq that consists of differ-

entiable manifolds K,B of dimension n, n ´ k, respectively, a differentiable map

π : K Ñ B, an open neighborhood Ux of x in B and a commutative diagram

π´1pUq
ϕ

//

π

��

U ˆ F

p

��

U
Id

// U

where ϕ is a diffeomorphism, p is the canonical projection onto the first factor and

F is a manifold of dimension k named fiber. In terms of nomenclature, K is the

bundle space (or only, bundle), B is the base space.

It is important to remark that each subspace π´1pxq with x P B is an imbedded

k-manifold diffeomorphic to F.

An example of fiber bundle is the tangent bundle TM of M defined by

TM “
ď

xPM

TxM “ tpx, vq : x P M and v P TxMu,

and π : TM Ñ M is given by πpx, vq “ x for all v P TxM.

A sub-bundle TN of TM is a subset TN Ă TM so that TN is a tangent bundle

and for each x P M, the fiber at x, π´1pxq P TxN, is a subspace of π´1pxq “ TxM

Definition 1.1.4. A foliation W of class Cr,0 on M is said to be of class Cr,0`

if each leaf W is C1-immersed, and the inclusion TW ãÑ TM embeds TW as a

C0 p-plane sub-bundle of TM .

A foliation W “ tpUα, φαqu is nice if every Uα is a cube1 and if Uα XUβ ‰ H, then

there is a cube in W containing Uα X Uβ.

According to [10, Lemma 1.2.17, p. 30], every foliated atlas has a nice refinement,

hence we can assume in this work that every foliation is nice.

1Uα is called a cube if φαpUαq is a cube in Rn.
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Definition 1.1.5. A plaque of Uα containing x is the set

Px “ ty P Uα; πqpφαpyqq “ πqpφαpxqqu,

where πq : Rn´q ˆ Rq Ñ Rq denotes the projection.

We say that two points x, y P M are related if there is a sequence tP0, P1, . . . , Pmu

of plaques satisfying: x P P0, y P Pm, and Pi X Pi´1 ‰ H when 1 ď i ď m. Such a

sequence is called a plaque chain.

It is important to notice that being related is indeed an equivalence relation. Each

equivalence class L is a union of plaques, and is called a leaf of the foliation; locally,

it is a topologically immersed sub-manifold of M of dimension n ´ q.

1.2 Partially Hyperbolic Diffeomorphism

In this section we present the definition of partially hyperbolic systems. We will

denote the continuous Riemannian metric on M by } ¨ }.

Definition 1.2.1. A C1-diffeomorphism f : M Ñ M is said to be partially hyper-

bolic if there is a nontrivial continuous splitting of the tangent bundle

TM “ Es
‘ Ec

‘ Eu,

that is df -invariant and it satisfies

}dxfpvsq} ă }dxfpvcq} ă }dxfpvuq}

for every x P M and all unitary vector v˚ P E˚
x (˚ “ s, c, u). Moreover,

λ :“ maxt||df |Es
||, ||df´1

|Eu
||u ă 1.

The bundles Es, Ec and Eu are called the stable, center and unstable bundle,

respectively. We will also consider the following bundles: Ecs “ Ec ‘ Es and

Ecu “ Ec ‘ Eu. Besides, we can take a Lyapunov inner metric (see for instance

[24, p.12]) such that, for every x P M , the subspaces Es
x, E

c
x and Eu

x are mutually

orthogonal.

Notice that, for each x P M , the derivative of f contracts uniformly in the stable

direction Es
x (with contraction rate λs “ λ), and expands uniformly in the unstable
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direction Eu
x (with expansion rate λu “ λ´1). In the central direction Ec

x, it can

contract or expand but with smaller rates.

Next we present some of the main examples of partially hyperbolic diffeomor-

phisms. For a wider range of examples and properties, we suggest [17].

1.2.1 Examples

1. Skew-products: Let f : M Ñ M be an Anosov diffeomorphism and ϕ : M Ñ

Diff1
pNq2 be a family of diffeomorphisms of a compact manifold N , satisfying

}dxf |Es} ă mpdyϕxq,

and

}dyϕx} ă mpdxf |Euq,

for all x P M and y P N , where m denotes the conorm3. The skew-product

F : M ˆN Ñ M ˆN given by F px, yq “ pfpxq, ϕxpyqq is partially hyperbolic,

where Es
F “ Es

f , Eu
F “ Eu

f and Ec
F “ TN . (we identify T pM ˆ Nq “

TM ‘ TN).

An example of skew-product is obtained by taking N “ S1 and Rϕx : S1 Ñ

S1 to be the rotation by an angle ϕx. Hence, the skew-product

F : M ˆ S1
Ñ M ˆ S1

px, yq ÞÑ pfpxq, Rϕxpyqq,

is a partially hyperbolic diffeomorphism with central direction compact and

one-dimensional.

2. Time-one maps of Anosov flows: A flow ϕt : M Ñ M is called Anosov if

there is a dϕt-invariant decomposition TM “ Es ‘ X ‘ Eu, where X is the

direction tangent to the flow, and Es, Eu are the contracting and expanding

directions.

The time-one map of the geodesic flow on negative-curvature surfaces is a

partially hyperbolic diffeomorphism. In this example, the Anosov flow is

topologically mixing. In addition, it is accessible, meaning that, given any

2Diff1
pNq denotes the set of all C1-diffeomorphism of N

3The conorm of a matrix A is defined as mpAq “ inft}Av} : }v} “ 1u
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two points in the manifold, one can take a piecewise C1-curve connecting

the two points, and whose derivative is always tangent to either the stable

or the unstable bundle.

Another example of Anosov flow, called the suspension flow, can be seen

as follows. Let f be a hyperbolic diffeomorphism on T2 and consider in

T2 ˆ R the equivalence relation px, t ` 1q „ pfpxq, tq. Then M “ T2 ˆ R{ „

is a compact manifold and F prx, tsq “ rx, t ` 1s is a partially hyperbolic

diffeomorphism. In this case, the distribution Es ‘ Eu is integrable (see

[25]).

3. Linear Automorphisms on Tori: Consider a matrix A P SLpn,Zq, and de-

note by fA the map induced by A on the torus Tn “ Rn{Zn. Notice that fA

is differentiable. Indeed, the derivative DfApxq at each point x is canonically

identified with A. If A has no eigenvalues that are roots of the identity, then

fA is partially hyperbolic. In this case, the bundles Es, Ec and Eu are the

direct sum of the eigenspaces corresponding to the eigenvalues of norm less

than, equal to and bigger than one, respectively.

The stable manifold theorem (see Theorem 7.3 in [29]) states that the bundles Es

and Eu are both integrable, which means that there are two f -invariant continuous

foliations, denoted by Ws and Wu, whose leaves are of class C1, and satisfy Es “

TWs and Eu “ TWu. The transversal regularity of these foliations is only Hölder

(see [27]).

On the other hand, the central foliation may not be integrable as can be seen in

the example (see [17] and [29]). One of the main problem in the area is to establish

necessary and sufficient conditions for integrability. Some results on this can be

found in [3], [8] and [18].

However, for most of the known examples the central foliation is integrable. For

this reason we are going to assume that Ec is integrable throughout this text. We

actually ask that f be dynamically coherent, which the definition is the following.

Definition 1.2.2. A partially hyperbolic map f is dynamically coherent if:

• Ec, Ecs “ Ec‘Es and Ecu “ Ec‘Eu are integrable to continuous f -invariant

foliations Wc, Wcs and Wcu, respectively; and

• Wc sub-foliates Wcs and Wcu.
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In [19]. F. Rodriguez Hertz and et. al. presented a example of a non-dynamically

coherent partially hyperbolic diffeomorphism with one-dimensional center bundle.

However, almost every known example satisfies this hypothesis, therefore we as-

sume, in this work, that f is a partially hyperbolic diffeomorphism dynamically

coherent.

A good characteristic of dynamically coherent partially hyperbolic diffeomorphisms

is that they have geometric properties that improve the comprehension of its dy-

namics, e.g., local product structure, that we are going to define at the end of this

section.

For an invariant foliation W˚ (where ˚ “ s, c, u, cs, cu), a point x P M and a

constant r ą 0, we denote

W ˚
px, rq “ ty P W ˚

pxq : d˚
px, yq ď ru

where d˚ is the intrinsic distance in the corresponding leaf W ˚pxq.

Hence, for a center leaf L P Wc and a constant r ą 0, we can define

W s
pL, rq “

ď

xPL

W s
px, rq

and

W u
pL, rq “

ď

xPL

W u
px, rq.

Finally, the concept of local product structure is as follows.

Definition 1.2.3. We say that the map f has local product structure if there is a

constant clps ą 0, called the constant of local product structure, such that whenever

dpx, yq ă clps, then W spW cpx, clpsq, 2clpsq intersects W upW cpy, clpsq, 2clpsq along a

plaque of Wc of radius at least
clps
2
.

Dynamically coherence is easily seen to imply local product structure (see for

example Proposition 1.4 in [13]).

In summary, throughout this work f is a dynamically coherent partially hyperbolic

diffeomorphism on a closed manifold M , and the central foliation Wc is of class

C1.
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1.3 Holonomy

We are going to present in this section some basic notations, the concept of holon-

omy and how it will be used in this work.

Let M be a closed differentiable Riemannian n-manifold and W a continuous

foliation of M. Moreover, we consider the bundle E “ TW and the perpendicular

bundle F :“ pEqK.

We will also need the definition of vector bundle, which is given below.

Definition 1.3.1. A vector bundle is a fiber bundle pK,B, πq such that for every

x P B the fiber π´1pxq is a vector space.

Given ϵ ą 0 we define the ϵ-disc sub-bundle of K as

Kpϵq :“
ğ

xPB

tv P Kx : }v} ă ϵu,

where, Kx “ π´1pxq.

Also, we denote by

TvK :“
ğ

xPM

TKx,

where v P π´1pxq.

Now, let us to consider the vector bundle pTM,M, πq.

Definition 1.3.2. Let p P M, V a neighborhood of p in M and ϵ ą 0 small

enough. We denote the open set U P TM as

U :“ tpq, vq P TM : q P V, v P TqM and }v} ă ϵu

and consider the map

γ : p´2, 2q ˆ U Ñ M

then, the exponential map exp: U Ñ M is defined by

exppq, vq “ γp1, q, vq “ γ
`

}v}, q,
v

}v}

˘

, pq, vq P U .

Geometrically, expqpvq ´ exppq, vq is the point of M obtained by traversing a path

of length equal to }v}, from q, on the geodesic passing through q with velocity v
}v}

.
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We will denote by Rinj the injectivity radius of exp : U Ñ M . It means that,

given a point q P M , then Rinj is the largest radius for which the exponential map

applied to Bp0, Rinjq Ă TqM is a diffeomorphism over its image.

Let W be a leaf of foliation W . We define

NW “
ğ

xPW

Fx,

and the map πW : NW Ñ L where πW pFxq “ x is the map projection of NW in W.

Definition 1.3.3. NW is the unwrapping bundle of the leaf W .

Then, NW inherits the differentiable structure from F , and one can show that pW

is a submersion. Therefore, W lifts to a foliation WW in NW .

We would like to observe that WW is transverse to the fibers of πW , and also that

NW has a natural Riemannian metric (indeed, it is induced by the restriction of

the Sasaki metric to F ).

Now, we consider γ : r0, ks Ñ W a path contained in W with |γ1| “ 1, and define

the map

hγ : Γpγq Ă Fγp0q Ñ Fγpkq

u ÞÑ hγ
puq,

where Γpγq is a neighborhood of γp0q in Fγp0q and hγpuq is the terminal point of

the unique curve γu : r0, ks Ñ NW satisfying:

(a) γup0q “ u;

(b) γ1
u P TWW ;

(c) πW pγuptqq “ γptq for every t P r0, ks.

Since WW intersects pW transversely (denoted here by WW&pW ), then γu is well

defined, and so we can choose Γpγq such that Im γu Ă FγpkqpRinjq.

Therefore, it follows that the exponential map

expphγ
puqq :“ holγx,ypzq

denotes the holonomy relating to the foliation W in M defined by γ, from the disc

Dpxq “ exppFxpRinjqq to Dpyq “ exppFypRinjqq, where x “ γp0q, y “ γpkq and

z “ exppuq.
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Remark 1. Since M is compact, the set Γpγq can be chosen depending only on k,

that is, Γpγq “ Γpkq.

By continuity of the tangent space TW , given α ą 0, there is an ϵ ą 0 such that

|>pTWW , TvNW q ´ π{2| ă α for points in NW pϵq and for all W .

From now on, ϵ ą 0 is fixed and Γpkq is chosen so that every u P Γpkq Ă Fγptq

satisfies Impγuq Ă Bpγpkq, ϵq Ă Fγpkq.

Notice that each w P TNW can be written uniquely as the direct sum w “ wv‘wH ,

with wv P TvNW and wH P pTvNW qK.

Let

m “ supt}wv
} : w P TvNW ,W P W and }DπW

pwq} “ 1u.

Given any γ : r0, ks Ñ W and u P Γpkq Ă Fγp0q, we define:

Xγ : r0, ks ˆ Fγp0qpΓpkqq Ñ Fγpkq

pt, uq ÞÑ γ1
uptq,

where hγpuq “ Xγpk, uq.

Comparing Xγ with its vertical component we deduce that

}hγ
puq} ě }u}e´mk if }u} ă Γpkq.

More generally, the previous bound condition holds whenever Impγuq Ă Bpγpkq, ϵq Ă

Fγpkq. This proves the following result.

Proposition 1.3.1. For all curve γ tangent to a leaf in W it holds the following

dichotomy: either

1. there are y P F pΓpγqq and z P Impγq such that dpholγz,xpyq, zq ě ϵ

or

2. dpholγptq,xpyq, γptqq ě dpx, yqe´mt (assuming |γ1| “ 1).

Corollary 1.3.1. If the foliation W is C1, then it satisfies the Proposition 1.3.1.

Furthermore, any C1-perturbation in the foliation also satisfies.
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In this work, we will consider the center holonomy, that is, the holonomy map

is defined in a disk contained in the foliation transversal to central foliation Wc.

More specifically:

We fix a leaf W c in the center foliation Wc and consider a smooth family of discs

W c Q x ÞÑ Dsupx,Rinjq completely transverse to Wc, here it is understood that

the angle of TDsupx,Rinjq with Es ‘Eu is (uniformly) small. Given x, y P M such

that y P W cpx,
clps
2

q we consider the holonomy transport

hc
x,y : D

su
px,Rinjq Ñ Dsu

py, clpsq.

• Case 1: If y P W cspx,
clps
2

q we can consider

hc
x,y|Ws : W s

px,Rinjq Ñ W s
py, clpsq

• Case 2: If y P W cupx,
clps
2

q we can consider

hc
x,y|Wu : W u

px,Rinjq Ñ W u
py, clpsq

(hopefully the abuse in notation won’t cause any confusion).

Since Wc is C1 the holonomy maps are Lipschitz: there exist L ą 0 so that

z, z1
P Dsu

px,Rinjq ñ dphc
x,ypzq, hc

x,ypz1
qq ď Ldpz, z1

q.

By reducing Rinj, and by eventually modifying the discs Dsupx,Rinjq we can take

L arbitrarily close to 1. In particular we can assume that

λsL ă 1

λ´1
u L ă 1.

1.4 Entropy

We will recall the definition of topological entropy.

Let f : M Ñ M be a continuous function on a compact metric space M.

Definition 1.4.1 (Separated set). Given ϵ ą 0 and n P N we say that E Ă M

is pn, ϵq-separated for f if: for any x, y P E, we can find a j P t0, . . . , n ´ 1u

such that dpf jpxq, f jpyqq ą ϵ. We denote by spn, ϵq the largest cardinality of the

pn, ϵq-separated sets.
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Definition 1.4.2 (Generator set). Given ϵ ą 0 and n P N we say that G Ă M

is a pn, ϵq-generator for f if: for any x P M , we can find an a P G such that

dpf jpxq, f jpaqq ă ϵ for every j P t0, . . . , n ´ 1u. We denote by gpn, ϵ, fq the

minimum cardinality of the pn, ϵq-generator sets.

Denote

spϵ, fq “ lim sup
nÑ8

1

n
log spn, ϵq

gpϵ, fq “ lim sup
nÑ8

1

n
log gpn, ϵq.

Definition 1.4.3. The topological entropy of f is given by

htoppfq “ lim
ϵÑ0

spϵ, fq “ lim
ϵÑ0

gpϵ, fq.

For the proof that the two limits coincide see for instance [23, Proposition 10.1.6,

p. 307]).

Definition 1.4.4. Given a closed set K Ă M , the topological entropy of K is given

by

htoppf |Kq “ lim
ϵÑ0

gKpϵq

where

gKpϵq “ lim sup
nÑ8

1

n
log gKpn, ϵq,

and gKpn, ϵq denotes the smallest cardinality of a pn, ϵq-generator with respect to

for f |K .

If x P M and ϵ ą 0, we denote

Bn
px, ϵq “

n´1
č

i“0

f´i
pBpf i

pxq, ϵqq,

the n-dynamical ball cantered at x and of radius ϵ; here Bpx, ϵq is the closed ball

centered at x of radius ϵ. We extend the definition to

B8
px, ϵq :“

č

iPZ

f´i
pBpf i

pxq, ϵqq

Under our working hypotheses it holds that our map is h-expansive.
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Definition 1.4.5. We say that a map f is h-expansive if there exists ϵ ą 0 such

that

htop pf,B8
px, ϵqq “ 0 for all x P M.

This will be used in the proof Proposition 3.1.1.

Remark 2. In [6] it is showed that if f is h-expansive, then there exists some ϵ0 so

that for 0 ď ϵ ď ϵ0 it holds

htoppfq “ gpf, ϵq “ spf, ϵq. (1.1)
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Chapter 2

Dynamics of Center Plaques

In this chapter we will introduce our object of study, which is the space Pcpδq of

δ-pseudo-orbits respecting the central foliation. We will discuss some basic results

about it, such as compactness and some type of shadowing property. Addition-

ally, we present some important subsets of Pcpδq, like the space Pc
perpδq periodic

δ-pseudo orbits, and Pc
recpδq of recurrent δ-pseudo-orbits respecting the central fo-

liation. Finally, we define the stable and unstable sets of a pseudo-orbit respecting

the central foliation.

The work in this Chapter was done in collaboration with Catalina Freijó.

Recall that M is a closed Riemannian manifold and d denotes the corresponding

induced metric on it.

Definition 2.0.1. Let f : M Ñ M be a partially hyperbolic diffeomorphism.

Consider a sequence x “ pxnqnPZ P MZ “
8
ś

i“´8

M and δ ą 0. We say that x is a

δ-pseudo-orbit for f if

dpfpxnq, xn`1q ď δ for every n P Z.

We say that a δ-pseudo-orbit x respects the central foliation or that is a center

pseudo-orbit if

fpxnq P W c
pxn`1, δq for every n P Z.

Whenever the size δ of the pseudo-orbit is not relevant for the discussion we will

omit the explicit reference.
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Let

Ppδq “ tx P MZ : x is a δ-pseudo-orbitu

and

Pc
pδq “ tx P Ppδq : x respects the central foliationu.

We remark that if 0 ă δ̂ ă δ, then Pcpδ̂q Ă Pcpδq. We fix some 0 ă δ˚ ă
clps
2
,

whose precise size will be given later and denote

Pc
“ Pc

pδ˚q.

We denote by π : Pc Ñ M the natural projection, that is,

Pc
Q x ÞÝÑ πpxq “ x0.

Clearly π is continuous.

On MZ we consider the distance

dpropx, yq “
ÿ

iPZ

1

2|i|

dpxi, yiq

1 ` dpxi, yiq
.

It is well known that dpro is compatible with the product topology induced fromM ,

hence by Tychonoff’s theorem pMZ, dproq is a compact metric space. The subsets

Ppδq Ă MZ will we endowed with the subspace metric.

Before we state the first property of the space Pc, let us define the following.

Definition 2.0.2. The center plaque centered at x P M with radius δ ą 0 is

defined to be

Pδpxq “ W c
px, δq.

In the next result, we show that the set of pseudo-orbits respecting the central

foliation is compact in MZ with respect to the metric dpro. By the discussion

above it suffices to show that Pcpδq is a closed set, for 0 ă δ ď δ˚

Lemma 2.0.1. The space Pcpδq is closed in MZ.

Proof. Let txkukPN be a sequence in Pcpδq converging to some x. Since the limit

of δ-pseudo-orbits is still a δ-pseudo-orbit, it is enough to show that x respects the

central foliation.
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The map x ÞÑ W cpx, δq, that associates each x P M to the plaque W cpx, δq con-

taining x, is continuous. Hence, the sequence W cpxk
n, δq converges to W cpxn, δq

for every n P Z. Analogously, W cpfpxk
nq, δq converges to W cpfpxnq, δq and, since

fpxk
nq P W cpxk

n`1, δq, we conclude that fpxnq P W cpxn`1, δq. ˝

2.1 Shadowing

Since the idea is to extend some of the theory of Anosov maps to partially hyper-

bolic diffeomorphism, we will need an analogue of the classical Shadowing Lemma

(see, for instance, [28, Proposition 8.20, p.109]). To explain this we need some

definitions.

Definition 2.1.1. Let x and y be two pseudo-orbits. Given an ϵ ą 0, we say that

y ϵ-shadows x if dpxn, ynq ă ϵ for all n P Z.

Now we can state the above-mentioned lemma involving pseudo-orbits.

Theorem 1 (Shadowing Lemma). Let f : M Ñ M be a dynamically coherent

partially hyperbolic diffeomorphism. Then there exists C ą 0 so that for any δ ą 0

such that Cδ ă clps it holds: any δ-pseudo-orbit x for f can be Cδ-shadowed by a

Cδ-pseudo orbit y respecting the central foliation. Moreover, if x is periodic then

y can be taken periodic as well.

This is a variation of [20, Lemma 7A.2, p.133]. In this work however, we will require

a finer control in the size of the shadowing pseudo-orbit, and on its distance to

the original one. This was pointed out by Javier Correa, whom we would like to

thank.

Definition 2.1.2. Let 0 ă η ď δ. We say that the δ-pseudo-orbit x is a pδ, ηq-

quasi-center pseudo-orbit if for all n P Z

dpxn`1,W
s
pxn`1, clpsq X W cu

pfpxnq, δqq ă η

dpxn`1,W
u
pxn`1, clpsq X W cs

pfpxnq, δqq ă η.



26

W cspfpxnq, δq

W cupfpxnq, δq

η

Wupxn`, clpsq

η

xn`1

fpxnq

W spxn`, clpsq

Then we have the following version of the Shadowing theorem.

Theorem 2 (Shadowing Lemma’). Let f : M Ñ M be a dynamically coherent

partially hyperbolic diffeomorphism with smooth center foliation. Then there exist

0 ă δ0 ă clps, C ą 0 such that if 0 ă δ ă δ0 then there exist ηδ ą 0 and

Dδ : p0, ηδq Ñ r1, 2s verifying

1. Dδ is continuous and limηÑ0Dδpηq “ 1.

2. If x is a pδ, ηq-quasi-center pseudo-orbit then it can be shadowed by a center

pseudo-orbit y and verifying for all n P Z:

(a) dpfpynq, yn`1q ă Dδpηqδ, and

(b) dpxn, ynq ă Cη.

If x is periodic then y is periodic.

For the proof see [11].
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Naturally, one could ask about the uniqueness of the shadowing pseudo-orbit in

Lemma 1. The concept of plaque expansivity (that we introduce next) will provide

an answer to this question.

Definition 2.1.3. The central foliation Wc is plaque expansive if there is a con-

stant cexp ą 0 such that for any x, y P Pcpδq satisfying dpxn, ynq ă cexp for every

n P Z, we have that xn and yn are always in the same center plaque.

Under the hypothesis of Wc being C1, the condition of plaque expansivity is sat-

isfied (see [20, Theorem 7.2, p.119] for a proof). Actually, there are not known

counterexamples to this fact, although a variation of the examples in [2] is sus-

pected to give such a counterexample.

Putting everything together, by eventually reducing δ0 in Theorem 2, we get the

following.

Corollary 2.1.1. Assume that f is a dynamically coherent partially hyperbolic

diffeomorphism with smooth center foliation. Then the shadowing pseudo-orbit

given in Theorem 2 are unique in the following sense: if x is a pδ, ηq-quasi-center

pseudo-orbit which is Cη-shadowed by the Dδpηqδ-center pseudo-orbits y, z, then

yn and zn are in the same center plaque for every n P Z.

Bookeeping of constants. From now on we redefine δ˚ so that δ˚ ă δ0
100

.

2.2 Recurrence

Next we investigate the concept of recurrence in Pc
per.

Definition 2.2.1.

1. A pseudo-orbit x is said to be periodic if there exists k P N such that for all

n P Z, xk`n “ xn. The smallest of such k is called the period of x.

We denote Pperpδq the set of all δ-periodic pseudo-orbits, and by

Pc
perpδq “ Pperpδq X Pc

pδq

the set of all δ-periodic pseudo-orbits respecting the central foliation.

2. A point x P M is called chain-recurrent if for every ϵ ą 0 there exists an

ϵ-periodic pseudo-orbit x with x0 “ x. The set of all chain-recurrent points

of M is the chain-recurrent set of f and is denoted CRpfq.
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According to Conley’s theory [15], the chain-recurrent set is the most general

(invariant) set relevant for the dynamics. Still, even when dealing with true orbits

of a map f : M Ñ M it is important to consider other sets with good recurrent

properties, like

• the set of periodic points of f , Perpfq “ tx P M : Dk P N with fkpxq “ xu,

• the set of non-wandering points of f , NWpfq “ tx P M : @ open U Q x Dk ą

0; fkpUq X U ‰ Hu, or

• the set of bi-recurrent points of f , Rec˘
pfq “ tx : x P ωpxq X αpxqu, where

ωpxq “ ty P M : D a sequence ni Ñ 8; fnipxq Ñ yu

and

αpxq “ ty P M : D a sequence ni Ñ ´8; fnipxq Ñ yu

It is a basic fact of topological dynamics that the sets NWpfq,CRpfq are closed,

and the following sequence of inclusions hold:

Perpfq Ă Rec˘
pfqX Ă NWpfq Ă CRpfq.

A more subtle fact is that C1 generically, Perpfq “ CRpfq: see [1]. For pseudo-

orbits however, analogous notions to non-wandering and chain-recurrence seem to

lead to very restricted situations. Because of this, we will opt to work with the

sets

Pc
perpδq.

Let us show Pc
perpδq contains sets with good recurrence properties.

Definition 2.2.2. Let x be a δ-pseudo-orbit. We say that x is recurrent if for

every N ą 0 there exist k, k1 ą N so that x´k1 “ x0 “ xk.

We denote by Precpδq the set of δ-recurrent pseudo-orbits and by

Pc
recpδq “ Precpδq X Pc

pδq

the set of all δ-recurrent pseudo-orbits respecting the central foliation.

Example 1. For x P M let x “ pfnpxqqnPZ and δ ą 0. It is direct to check that

• if x is periodic then x P Pc
perpδq;
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• if x is bi-recurrent then x P Pc
recpδq.

The following inclusion is direct

Pperpδq Ă Precpδq ñ Pc
perpδq Ă Pc

recpδq Ă Precpδq.

Lemma 2.2.1. For all δ ą 0 there exists δ1, with δ1 ą δ such that

Pc
recpδq Ă Pc

perpδ
1q.

Proof. Note that we are taking δ ą 0 much smaller than the constant δ0 given

in Theorem 2 and consider δ1 ą δ (which we could assume close to δ). Consider

ηδ, C,Dδ as given in that Theorem 2.

Now, fix x P Pc
recpδq and ϵ ą 0. Take n0 P N so that

ÿ

|i|ąn0

1

2|i|
ă

ϵ

2
.

Since x is recurrent we can find k, k1 ą n0 so that xk “ x0 “ x´k1 . We define

yn “ xn ´ k1
ď n ď k

and complete to a bi-infinite periodic sequence y “ pynqnPZ. Note that dpropx, yq ă

ϵ
2
.

On the other hand, since x preserves the center foliation, it is in particular a pδ, ηq-

quasi-center pseudo-orbit, for every 0 ă η ď ηδ. We reduce η even further so it

satisfies

• Dδpηqδ ď δ1.

• Cη ă ϵ
2n0`1

Due to Theorem 2 it follows that we can find zη satisfying

1. zη P Pc
perpδ

1q.

2. dpropy, z
ηq ă ϵ

2
.

In particular dpropx, z
ηq ă ϵ. This shows that x P Pc

perpδ
1q. ˝



30

Corollary 2.2.1. Let f : M Ñ M be a dynamically coherent partially hyperbolic

diffeomorphism with smooth center foliation. Then for every δ sufficiently small,

Rec˘
pfq Ă πpPc

perpδqq.

Proof. Indeed, for any δ ą 0 it holds Rec˘
pfq Ă πpPc

recpδ{2qq (Example 1), hence

by continuity of π and the lemma above,

Rec˘
pfq Ă π

`

Pc
rec

`

δ{2
˘˘

Ă πpPc
recpδ{2qq Ă πpPc

recpδ{2qq Ă πpPc
perpδqq.

From here follows. ˝

Remark 3. It is not hard to construct partially hyperbolic systems without periodic

points. In this regard, the corollary above gives a mechanism to obtain recurrent

points from periodic structures inherent to the system.

2.3 Stable and Unstable sets of plaques

It will be convenient to introduce the natural (shift) dynamics on Pcpδq, namely

σ : Pc
pδq Ñ Pc

pδq

x ÞÑ y with yi “ xi`1 for every i P Z.

For two δ-pseudo orbits x and y in Pcpδq we define the quantities d` and d´,

d`
px, yq “ lim sup

nÑ8

dHauspW
c
pxn, δq,W c

pyn, δqq

d´
px, yq “ lim sup

nÑ´8

dHauspW
c
pxn, δq,W c

pyn, δqq.

In the definition above we are considering the Hausdorff distance1.

Remark 4. Since the map M Q x ÞÑ W cpx, δq is continuous, we have that if, for

any x, y P Pcpδq,

dpxn, ynq Ñ 0 when n Ñ 8 then d`
px, yq “ 0

and

dpxn, ynq Ñ 0 when n Ñ ´8 then d´
px, yq “ 0.

1For any sets X,Y Ă pM,dq, their Hausdorff distance is dHauspX, Y q “ inftϵ ě 0: X Ă

Yϵ and Y Ă Xϵu, where Xϵ :“
Ť

xPX

tz P M : dpz, xq ď ϵu.



31

Definition 2.3.1. If x P Pcpδq its stable set is

Sδpxq “ ty P Pc
pδq : d`

px, yq “ 0u,

while its unstable set is

Uδpxq “ ty P Pc
pδq : d´

px, yq “ 0u.

Remark 5. When x P Pc
perpδq with period k we have that if y P Sδpxq then σn¨kpyq

also belongs to Sδpxq for every n ą 0. Analogously, if y P Uδpxq then σn¨kpyq P Uδpxq

for every n ă 0.

The next result assures us that stable and unstable sets of pseudo-orbit x P Pcpδq

are nonempty.

Lemma 2.3.1. For 0 ă δ ă
clps
2

it holds: for any δ ă δ1 ă
clps
2

there exists ζ ą 0

so that for every x P Pcpδq,

@ y P W cs
px0, ζq, D y P Sδ1pxq; y0 “ W c

pyq X W s
px0, ζq,

and

@ y P W cu
px0, ζq, D y P Uδ1pxq; y0 “ W c

pyq X W u
px0, ζq.

Proof. Fix δ1 with 0 ă δ ă δ1 ă
clps
2

and consider 0 ă ζ ă δ to be determined.

For y P W cspx0, ζq, define y0 “ W cpyq X W spx0, ζq, we are going to generate a

pseudo-orbit y P Sδ1pxq recursively:

yj “ f j
pyq for every j ď 0

yj “ hc
xj ,fpxj´1qpfpyj´1qq for every j ą 0.

We will prove simultaneously that yj is well defined for j ě 0, limjÑ8 dpxj, yjq “ 0,

and that y P Pcpδ1q. This in turn will show that y P Sδ1pxq.

First we use the (uniform) continuity of the stable foliation: for z, w P M , z P

W cpw, δq there exists ζ ą 0 so that z1 P W spz, ζq, w1 P W spw, ζq X W cpz1q then

dpz1, w1q ă δ1.

We now proceed by induction, remember that λL ă 1, and assume that,

• yj P W spxj, ζpλs ¨ Lqjq, where L is Lipschitz constant of center holonomy.

• dpfpyj´1q, yjq ă δ1.
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Then dpfpxjq, fpyjqq ă ζpλs ¨ Lqjλs implies

dpxj`1, yj`1q “ dphc
xj`1,fpxjqpfpxjqq, hc

xj`1,fpxjqpfpyjqqq

ď Ldpfpxjq, fpyjqq

ă Lζpλs ¨ Lq
jλs

“ ζpλs ¨ Lq
j`1

and yj`1 “ hc
xj`1,fpxjq

pfpyjqq P W spxj`1, ζpλs ¨Lqj`1q. By choice of ζ it follows that

y is a δ1-pseudo-orbit.

The case when y P W cupx0, ζq is analogous. ˝

Remark 6. What the lemma above says is that the stable and unstable sets of any

x P Pcpδq are non-empty, if we allow to slightly increase δ.

Corollary 2.3.1. Given 0 ă δ ă δ1 ă
clps
2

there exists ζ ą 0 so that for every

x, y P Pcpδq with dpxi, yjq ă ζ for some i, j P Z we have

Sδ1pxq X Uδ1pyq ‰ H

and

Uδ1pxq X Sδ1pyq ‰ H.

Proof. For 0 ă ζ ă clps and any x, y P M with dpx, yq ă ζ both W cspx, ζq X

W cupy, ζq and W cspy, ζq X W cupx, ζq are nonempty. Therefore, by Lemma 2.3.1 is

possible to obtain z P Sδ1pxq X Uδ1pyq and w P Uδ1pxq X Sδ1pyq. ˝

Given x, y P M such that dpx, yq ă δ, where 0 ă δ ď clps, we define the bracket

between x and y as follows

rx, ys “ W s
px, 2clpsq X W cu

py, 2clpsq.

We finish this part by noting that Pc
perpδq satisfies a weak “local product structure”.

Proposition 2.3.1. Given 0 ă δ ă δ1 ă
clps
2

it holds: for every x, y P Pc
perp

δ
2
q such

that dpx0, y0q ă clps the point z “ rx0, y0s is in πpPc
perpδ

1qq.
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Proof. First, suppose x and y are δ
2
-periodicals with period k1, k2 respectively. Let

z “ rx0, y0s and z1 “ ry0, x0s, by Lemma 2.3.1 there is

z P S δ1

2
pxq X U δ1

2
pyq

and

z1
P S δ1

2
pyq X U δ1

2
pxq.

Consider ηδ, C,Dδ as given in Theorem 2. Since x and y respecting the central

foliation, they are p δ
2
, ηq-quasi-center, for every 0 ă η ď ηδ. We fix η ą 0 small

enough to satisfy η ă δ1 ´ δ.

By uniform continuity of f, there is an ϵ0 so that dpfpxq, fpyqq ă η whenever

dpx, yq ă ϵ0. Moreover, by periodicity of x and y there is N0 P N large enough such

that, if n ą N0 then

dpzn¨k1,, x0q ă
ϵ0
2
, dpz´n¨k2,, y0q ă

ϵ0
2

and

dpz1
´n¨k1,

, x0q ă
ϵ0
2
, dpz1

n¨k2,
, y0q ă

ϵ0
2

Now, we define q as follows:

q0 “ z0 . . . qnk1 “ znk1 ,
qnk1`1 “ z1

´nk1`1 . . . qp2k1`k2qn “ z1
nk2

,
qnp2k1`k2q`1 “ z´k2n`1 . . . q2npk1`k2q “ z0.

Notice that q is 2pk1`k2qn-periodic. We would like to prove that dpfpqnq, qn`1q ď δ1

for every n P Z. For this, it is enough to show that dpfpznk1q, z1
´nk1`1q ď δ1 and

dpfpz1
nk2

q, z´nk2`1q ď δ1.

Indeed, the triangular inequality gives us that

dpfpznk1q, z1
´nk1`1q ď dpfpznk1q, fpz1

´nk1
qq ` dpfpz1

´nk1
q, z1

´nk1`1q ă δ1.

The other case is analogous.

Furthermore, q é pδ1, ηq-quasi-center. Indeed, observe that,

dpzn¨k1 , x0q ă
ϵ0
2

ùñ dpfpqn¨k1q, fpx0qq ă
η

2
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and

dpqn¨k1`1, x1q “ dpz1
´n¨k1`1, x1q ď dpz1

´n¨k1`1, fpz1
´n¨k1

qq ` dpfpz1
´n¨k1

q, fpx0qq ` dpfpx0q, x1q

ď dpqn¨k1`1, fpqn¨k1qq ` dpfpqn¨k1q, fpx0qq ` dpfpx0q, x1q

ă
δ1

2
`

η

2
`

δ

2

dpqnk1`1,W
s
pqnk1`1, clpsq X W cu

pfpqnk1q, δ1
q ă η.

Then, by Theorem 2, there is a periodic D1
δpηqδ1 pseudo-orbit p respecting the

central foliation and shadowing q.

˝
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Chapter 3

Entropy of f

We recall the following classical Theorem due to Bowen [7].

Theorem 3. Let f : X Ñ X be a homeomorphism of a compact metric space. If

f is expansive and satisfies the specification property then it holds

1. htoppfq “ limnÑ8
1
n
log#tx : fnpxq “ xu.

2. There exists a unique entropy maximizing measure µMME. That is,

(a) htoppfq “ hµMME
pfq.

(b) If µ ‰ µMME is any other invariant measure for f , then hµMME
pfq ą

hµpfq.

3. The system pf, µMMEq is isomorphic to a Bernoulli Shift.

In this Chapter we will consider an analogous Theorem for some class of partially

hyperbolic diffeomorphism. Namely, we will assume that

f : M Ñ M is a dynamically coherent partially hyperbolic diffeomorphism

with C1 bundles Ec, Ecs, minimal unstable foliation and

λc
“ }Df |Ec} ď 1.

In this setting it is a result of Climenhaga, Pesin and Zelerowicz that f has a

unique entropy maximizing measure [14], but our methods are different and seem

to give a more concrete representation of this measure.The fact that pf, µMMEq is

isomorphic to a Bernoulli scheme is proven in [12].
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Bookeeping of constants. The constants clps, cexp, η “ ηδ keep the same meaning as

in Chapter 2. We fix 0 ă δ ă δ0
2
and write

Pc
“ Pc

pδq.

3.1 h-expansivity and Center specification prop-

erty

In the following proposition we will show that plaque expansivity and λc ď 1 imply

h-expansivity.

Proposition 3.1.1. If f : M Ñ M is plaque expansive and satisfies that λcpfq ď 1,

then f is h-expansive.

Proof. Fix 0 ă ϵ ă
cexp
2

(where cexp is a constant of plaque expansivity of f) and

x P M . For any y, z in B8px, ϵq we have,

dpfn
pyq, fn

pzqq ď dpfn
pyq, fn

pxqq ` dpfn
pxq, fn

pzqq ă 2ϵ ă cexp @ n P Z.

Thus, by plaque expansivity, y P W cpz, cexpq. Therefore, the entropy of the set

B8px, ϵq is dominated by the c-topological entropy of f , which is zero since λc ď

1. ˝

Bookeeping of constants. From now on, and by reducing ϵ0 we assume that ϵ0 ď

cexp.

Minimality of the unstable foliation gives us the next consequence.

Proposition 3.1.2. If the unstable foliation Wu is minimal then f is mixing.

Proof. Let U, V be two non-empty open sets in M and x P V. Take ϵ ą 0

small enough such that W upx, ϵq Ă V. We have W upxq “ M and W upxq “
Ť

ně0

fnpW upf´npxq, ϵqq.

Therefore,

M “ W upxq “
ď

ně0

fnpW upf´npxq, ϵqq Ă
ď

ně0

fnpV q Ă M,

then M “
Ť

ně0

fnpV q and since M is compact there is N P N large enough such

that for every n ą N, fnpV q X U ‰ H. ˝
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The fact that f is mixing implies that f has the center specification property,

which is define below.

Definition 3.1.1. We say that f satisfies the center specification property (at scale

δ) if for every ϵ ą 0 there exists Npϵq P N satisfying the following property: given

k ě 2 points

x1, . . . , xk
P M,

integers

a1 ď b1 ă a2 ď b2 ă ¨ ¨ ¨ ă ak ď bk

with ai ´ bi´1 ě Npϵq @2 ď i ď k, and p ě Npϵq ` bk ´ a1, then one can find a

p-periodic pseudo-orbit x P Pcpδq satisfying

dpxi
n, xnq ď ϵ for ai ď n ď bi, 1 ď i ď k, xi

n “ fn
pxi

q.

x1
a1

x1
b1

xb1

xa2

x2
a2

xb2

x2
b2

x0 “ xp

xa1

ϵ

ϵ

ϵ
ϵ

Lemma 3.1.1. Under the hypotheses considered, the f has the center specification

property at scale δ0.

Proof. Consider δ “ δ0
2

and let η “ ηδ, D “ Dδpηq, C as given in Theorem 2.

Without loss of generality, assume that Dδ ă δ0. Fix 0 ă ϵ ă Cη.

Let U “ tU1, ¨ ¨ ¨Ulu be a finite cover of M with meshpUq ă ϵ. Since f is topolog-

ically mixing, for any Ui, Uj P U , there is an Nij ą 0 such that fnpUiq X Uj ‰ H
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for all n ą Nij. Define N “ maxtNij : i, j “ 1, . . . , lu, and denote by Upxq the set

U P U containing the point x.

To prove the specification property, take x1, . . . , xk points in M , and integers

a1 ď b1 ă ¨ ¨ ¨ ă ak ď bk with aj ´ bj´1 ą N , for j “ 2, . . . , k. Now, let p be a

natural number with p ´ pbk ´ a1q ą N . Consider ak`1 “ p ` a1 and xk`1 “ x1.

Observe that, for each j “ 1, . . . , k, there is an yj satisfying yj P Upf bjpxjqq and

faj`1´bjpyjq P Upfaj`1pxj`1qq. Now define z “ tziu as follows:

1. zi “ f ipxjq when aj ď i ă bj;

2. zi “ f i´bjpyjq when bj ď i ă aj`1; and

3. zi`p “ zi when i P Z.

We claim that z is a pδ, ηq-quasi-center pseudo-orbit. In fact, it is sufficient to

check dpfpzbj´1q, zbjq ă η and dpfpzaj`1´1q, zaj`1
q ă η. This follows by direct

computation:

dpfpzbj´1q, zbjq “ dpfpf bj´1
pxj

qq, f bj´bjpyjqq

“ dpf bjpxj
q, yjq

ă Cη ă η

and

dpfpzaj`1´1q, zaj`1
q “ dpfpfaj`1´1´bjpyaj`1´1

qq, faj`1pxj`1
qq

“ dpfaj`1´bjpyaj`1´1
q, faj`1pxj`1

qq

ă Cη ă η.

The conclusion is obtained by Theorem 2 (Shadowing Lemma’): there exists a

pseudo-orbit x such that

dpfpxnq, xn`1q ă Dδ ă δ0

and

dpzn, xnq ă Cη, @n P Z.

and therefore

dpfn
pxi

q, xnq ď ϵ ă Cη for ai ď n ď bi, 1 ď i ď k.
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˝

The idea now is based in [7], where the expansive case is considered.

Definition 3.1.2. For p P M , Γppq “ W upp,
clps
2

q.

Our interest is computing htoppf |Γppqq. We will add the superscript “u” to de-

note that we are working with sets inside the unstable foliation, and extend the

notations in the natural way. For example

suKpn, ϵq

denotes the cardinal of a maximally pn, ϵq-separated set inside K, where K is

relatively compact inside a leaf of Wu. To simplify we also write

supn, ϵ, pq “ suΓppqpn, ϵq.

Since f |Wu is uniformly expanding one sees directly that for every n ě 0, E Ă

f´npΓppqq is pn, ϵq separated if and only if fnpEq Ă Γppq is separated (meaning,

dpx, yq ě ϵ for all x ‰ y P fnpEq).

Lemma 3.1.2. There exists N0 ą 0 and k ą 0 constants (not depending on p)

such that for every p P M the set fN0pΓppqq can be covered with at most k sets

Γpq1ppqq, ¨ ¨ ¨ ,Γpqkppqq, where qi is a point in fN0pΓppqq for every i “ 1, ¨ ¨ ¨ , k.

This is direct. From here it follows that for any given p, supn, ϵ, pq is uniformly

comparable with supn, ϵ, qippqq. Pushing a little more the same argument, this

implies the following.

Lemma 3.1.3. For N1 ě N0 there exists CN1 ą 0 so that for every p P M and

q P fN1pΓppqq it holds

Γpqq Ă fN1pΓppqq ñ supn, ϵ, f´N1Γpqqq ď CN1s
u
pn, ϵ, pq.

There exists p1, ¨ ¨ ¨ , pl so that

M “

l
ď

i“1

W cspΓppiq,
clps
2

q “

l
ď

i“1

Bi. (3.1)

By minimality of Wu there exists N2 ě N1 so that for every p P M , there is

a connected component Eippq of fNpΓppqq X Bi whose cs-projection on Γppiq is
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surjective. Using that the center stable holonomy is Lipschitz, and since λc ď 1

we can compare

supn, ϵ, pq „ suEippqpn, ϵq „ supn, ϵ, piq

where a „ b means that a
b
is bounded above and below by some constant (inde-

pendent of n and ϵ).

Corollary 3.1.1. There exists C1 ą 0 so that for every p, q P M , n P N and ϵ ą 0,

supn, ϵ, pq ď C1s
u
pn, ϵ, qq.

In particular, htoppf |Γppqq “ htoppf |Γpqqq.

By the work of Hu, Hua and Wu [21] it is known that (in our working conditions,

with λc ď 1)

htoppfq “ sup
pPM

htoppf |Γppqq

hence we deduce that for every p P M ,

htoppfq “ htoppf |Γppqq.

Nonetheless, in our particular case we can obtain a refinement. Indeed, considering

the decomposition (3.1), and by an analogous argument as the one written above

we get that

spn, ϵq „ sBi
pn, ϵq „ supn, ϵ, piq.

Corollary 3.1.2. There exists constants C2, C3 ą 0 so that for any p P M , n P N
and ϵ ą 0,

spn, ϵq ď C2s
u
pn, ϵ, pq ď C3spn, ϵq

To study the behavior of tspn, ϵqu we can instead look at tsupn, ϵ, pqu (for some

fixed p). Note in particular that, since f |Wu is uniformly expanding, the analysis

is much simpler.

Lemma 3.1.4. Given 0 ă ϵ ă ϵ˚ ă
clps
4

there exists Cpϵ, ϵ˚q ą 0 so that for every

n ě 0

spn, ϵq ď Cpϵ, ϵ˚
qspn, ϵ˚

q

Proof. The existence of C 1pϵ, ϵ˚q satisfying

supn, ϵ, pq ď Cpϵ, ϵ˚
qsupn, ϵ˚, pq

is simple to check. From here and the previous corollary we get the result. ˝
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Exactly the same argument (working with Γppq instead of the whole manifold)

allow us to deduce the following two lemmas.

Lemma 3.1.5. For any ϵ ą 0 like in Lemma 3.1.4, there is a constant Dϵ such

that

spn1 ` ¨ ¨ ¨ ` nk, ϵq ď

k
ź

i“1

Dϵspni, ϵq,

whenever n1, . . . , nk ě 1.

Lemma 3.1.6. For any ϵ ą 0 like in Lemma 3.1.4, there is a constant Eϵ such

that

spn1 ` ¨ ¨ ¨ ` nk, ϵq ě

k
ź

i“1

Eϵspni, ϵq

whenever n1, . . . , nk ě 1.

With the above we can prove the following precise estimate for the numbers spn, ϵq.

Proposition 3.1.3. Consider h “ htoppfq. For a sufficiently small ϵ ą 0, the

constants given by Lemmas 3.1.5 and 3.1.6 satisfy:

D´1
ϵ enh ď spn, ϵ, fq ď E´1

ϵ enh

for every n ě 0.

Proof. Suppose, by contradiction, that spn, ϵ, fq ă D´1
ϵ enh for some n P N. By

Lemma 3.1.5, we have that spkn, ϵ, fq ď pDϵspn, ϵ, fqqk and hence

1

kn
log spkn, ϵ, fq ď

1

kn
logpDϵspn, ϵ, fqq

k

ď
1

n
plogDϵ ` log spn, ϵ, fqq.

Using h-expansivity, we know that h “ lim
kÑ8

1

kn
log spkn, ϵ, fq, if ϵ is sufficiently

small. Thus,

h ď
1

n
plogDϵ ` log spn, ϵ, fqq ă

1

n
plogDϵ ` logpD´1

ϵ enhqq “ h

that is a contradiction. The other inequality is obtained in a similar way. ˝
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3.2 Topological entropy

Our goal in this section is to compute the entropy of a partially hyperbolic diffeo-

morphism in terms of the growth of the periodic pseudo-orbits.

Theorem A. Let f : M Ñ M be a dynamically coherent partially hyperbolic

diffeomorphism satisfying the following hypotheses

• foliations Wc,Wcs are of class C1;

• the strong unstable foliation Wu is minimal;

• λc “ max ||df |Ec || ď 1.

Suppose that either

• the central foliation Wc satisfies Hypothesis 1

or

• Hypothesis 2: f is a regular element of an C1 hyperbolic action.

Then,

htoppfq “ lim
nÑ8

1

n
log#Pern.

The quantity #Pern is, roughly speaking, the number of different orbits of n-

periodic plaques. Since formalizing this concept precisely seems difficult, we will

opt to work with n-periodic δ-pseudo-orbits. We explain this later.

Now let us discuss the meaning of Hypothesis 1 and Hypothesis 2, and their

role in the proof of Theorem A. Recall that Hypothesis 1 mentioned in above

theorem is given by

Hypothesis 1. For any α ą 0 there exists ρ “ ρpαq ą 0 so that: for any

x P M, z, w P Dsupxq, y P W cpxq, it holds

dpz, wq ě α ñ dphc
y,xpzq, hc

y,xpwqq ě ρ

(and in particular, hcpzq, hcpwq is well defined.)

This is equivalent to what we wrote in the introduction. It essentially means that

the center foliation is “almost parallel”, in the sense that its leaves do not stray

away too much (when lifted to its unwrapping bundle as in the introduction). We
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will use this to estimate, given periodic pseudo-orbits x, y P Pc
perpδq, the distance

between fnpx0q, f
npy0q in terms of the distance between xn and yn. Observe that in

principle the center (intrinsic) distance dcpxn, f
npx0qq could be large. Hypothesis

1 gives us control in the transverse direction, even for far away points.

To elaborate on this observe that simply by continuity of the center foliation one

gets the following.

Lemma 3.2.1. Given β ą 0 consider γ ą 0 so that for every x, y P M with

y P W cpx, βq the holonomy map hc
y,x : Dsupx, γq Ñ Dsupyq is well defined. Then

for every α ą 0 there exists ρpα, βq so that z, w P Dsupx, γq,

dpz, wq ě α ñ dphc
y,xpzq, hc

y,xpwqq ě ρpα, βq.

What we are requiring with Hypothesis 1 is independence of ρ with β.

Note the following simple lemma.

Lemma 3.2.2. Assume that λc ă 1. Then there exists γ ą 0 so that: for every

0 ă α ă γ there exists ρ “ ρpαq so that if x, y P Pc
perpδq are of the same period

with dpxk, ykq ď γ then

dpxk, ykq ě α ñ dpfk
px0q, f

k
py0qq ě ρ.

Proof. Indeed, note that for every x P Pc
perpδq we have

dcpfk
px0q, xkq ď δ

k
ÿ

l“1

pλc
q
l

ď
δ

1 ´ λc

where dc is the intrinsic distance inside W cpxkq. Now we just apply Lemma 3.2.1.

˝

Remark 7. The case when λc ă 1 corresponds to the situation when f is Anosov.

Under these hypotheses it is known that

htoppfq “ lim
nÑ8

1

n
log#tx : fn

pxq “ xu.

When applied to this case, our methods permit to obtain the entropy of (transi-

tive) Anosov maps in terms of the number pseudo-orbits that preserve the center

foliation. This means that in some sense we are allowed to make small “mistakes”
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when looking at periodic orbits, and count pseudo-periodic orbits instead. This

fact may be suitable to be implemented in software in order to obtain estimates

for the entropy of an Anosov map.

Example 2 (Rigid skew-products). We say that two dynamically coherent par-

tially hyperbolic systems f : M Ñ M and g : M Ñ M are centrally conjugated if

there exists an homeomorphism h : M Ñ M such that hpW cpx; fqq “ W cphpxq; gq,

for every x P M .

Note that if f is centrally conjugated to a system g with linear center foliation,

then it satisfies Hypothesis 1. Assuming further differentiability of Wc,Wcs,

minimality of Wu and λc ď 1 then we are in the hypothesis of Theorem A. In spite

of appearing two restricted (which it is), this case contains interesting examples.

As a concrete one, we can consider an Anosov extension f0 : T3 Ñ T3 as described

in the first example of the Preliminaries (Chapter 1). Clearly f0 satisfies the

hypotheses. On the other hand, it is a classical result of Hirsch, Pugh and Shub

(Corollary 8.3 in [20]) that small C1 perturbations f of f0 are centrally conjugated

to f0; considering the subset of these that have

• differentiable bundles,

• λc ď 1,

• minimal Wu,

we get examples where Theorem A applies. The first two conditions are not difficult

to get (albeit being serious restrictions), while the latter can be controlled with a

result of Katok (Theorem 1 in [22]).

Example 3 (Rigid absolute partially hyperbolic diffeomorphisms). If f : T3 Ñ T3

is absolutely partially hyperbolic diffeomorphism, meaning

supt}Dxf |Es : x P T3
}u ă inft}Dxf |Ec : x P T3

}u ď λc
ď 1 ă inft}Dxf |Eu : x P T3

}u

then f is centrally conjugated to a linear matrix (cf. [16]), and a similar argument

as the previous example can be carried.

The Hypothesis 2, that is, when f is a regular element of an Anosov action,

requires introducing some well known notions.
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Definition 3.2.1. Let G be a Lie group and α : G ˆ M Ñ M a C1 action. We

say that α is hyperbolic if the following holds.

1. The action is foliated, meaning that its orbits form a foliation whose leaves

have the same dimension as G.

2. There exists g0 P G such that f “ αpg0, ¨q P Diff1
pMq is partially hyperbolic,

with center foliation given by the orbit foliation of G. In this case f is called

a regular element of the action.

If f is a regular element of an Anosov action, then its center leaves are homogeneous

spaces, and (modulo changing the metric to an equivalent one) f acts isometrically

on each one of them (in particular λc “ 1). See for example the introduction of

[12] for a quick review on this type of maps, and references.

Bookeeping of constants. Recall that cexp denotes the size of a plaque expansivity

constant, and we assume (with no loss of generality ) that cexp ď δ. Note that any

ϵ ď cexp is also a plaque expansivity constant for δ-pseudo orbits.

Definition 3.2.2. A set E Ă Pcpδq is called

1. n-plaque periodic if every x P E is n-periodic.

2. Separated if it is n-plaque periodic for some n and satisfies x ‰ y P E implies

that for some i, xi R Pδpyiq or yi R Pδpxiq with i P t0, ¨ ¨ ¨ , n ´ 1u.

The following proposition guarantees that every separated set in Pcpδq is finite.

Proposition 3.2.1. If E Ă Pcpδq is a separated set, then #E ă 8. Moreover,

for a given period this cardinality is uniformly bounded from above.

Proof. Cover
8
ś

n“1

M with l sets such that their diameter in the maximum distance

is less than cexp
2
. If E Ă Pcpδq is separated then necessarily #E ď l ` 1.

˝

Definition 3.2.3. We denote by #Pern the cardinal of any n-plaque periodic

separated set En of maximal size. Such a set En is said to be maximally n-plaque

periodic.
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Remark 8. Let Pc
per,n “ tx P Pc

per : x is n ´ periodicu. Note that the cyclic group

Zn acts naturally on the set Pc
per,n,

rms P Zn ñ rms ¨ x “ σm
pxq.

It follows that if E is n-plaque periodic, separated and it does not contain fixed

pseudo-orbits (meaning pseudo-orbits with xn “ x0@n) then Zn ¨E is also n-plaque

periodic and separated.

Fixed pseudo-orbits do not contribute to entropy. It is thus safe to assume (and

we will do so from now on) that any maximally n-plaque periodic set does not

contain fixed pseudo-orbits, and in particular it is saturated by cyclic permutations

(x P E ñ σpxq P E).

Lemma 3.2.3. Let En be a maximally n-plaque periodic set. Then for every

x ‰ y P En, there is a k “ kpx, yq with 0 ď k ď n´1 and such that dpxk, ykq ą cexp.

Proof. Otherwise the bi-infinite pseudo-orbits xi, xj stay closer than the plaque

expansitivity constant at all times, which implies that xi
0, y

j
0 are in the same plaque,

contradicting the fact that En is separated. ˝

The next lemma will give us a relationship between the topological entropy of f

and #Pern.

Proposition 3.2.2. There are constants 0 ă D ă E such that

D ¨ ehn ď #Pern ď E ¨ ehn

for any sufficiently large n.

Proof. Fix En a maximally n-plaque periodic set. First we will show the following

inequality:

#En ď spn, ϵq.

Given two distinct pseudo-orbits x, y P En, Lemma 3.2.3 gives us a constant k

with 0 ď k ď n ´ 1 and such that

dpxk, ykq ě ϵ.
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Thus, denoting x “ x0 and y “ x0, we obtain:
#

fkpxq P W cpxkq; and

fkpyq P W cpykq.

We split the proof into two cases, depending on whether Hypothesis 1 or Hy-

pothesis 2 hold.

Case. Hypothesis 1. Since all considered quantities are small, and due to our

assumption, we deduce

dpfk
pxq, fk

pyqq ě ρ

which in turn implies that E is ρpϵq separated, therefore

#E ď spn, ρpϵqq ď Eρpϵqe
nh

due to Proposition 3.1.3. It suffices thus to take any (fixed) ϵ sufficiently small

and consider E as the corresponding constant for such ϵ.

Case. Hypothesis 2. Now f “ αpg0, ¨q is a regular element of a hyperbolic action

α : G ˆ M Ñ M . We recall that f acts as an isometry on each center leaf (which

it fixes). The typical way to obtain this is to consider a left invariant metric on

G, induce the metric on Ec
f , and complete to an adapted metric on the remaining

bundles. With this we get that for every x, α : G ˆ txu Ñ W cpxq is a Riemannian

isometry (and a covering map). Going back to our case, observe that we can write

xk “ αpgk,x, xq

for some gk,x P G. Using the referred metrics, it follows that

k|g0| ´ kδ ď |gk,x| ď k|g0| ` kδ (3.2)

where |g| denotes the distance in G from g to the identity. Needless to say, we are

assuming that |g0| ąą δ.

Fix ϵ small (we’ll be explicit shortly), and for x ‰ y P E consider k to be the first

index such that dpxk, ykq ě ϵ. We can assume that ϵ is sufficiently close so that

for z P W cpw, |g0| ` δq the holonomy hc
z,w is well defined in a transverse disc of size

ϵ. It follows that, maybe sliding along Wc the points x, y so they lie in the same

transverse disc (which is no loss of generality), the segments W cpx, kp|g0|`δqq and

W cpy, kp|g0| ` δqq do no stray away, when looked in the unwrapped bundle NW cpxq
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(cf. introduction), and in particular the holonomy transport hc
xk,x

is defined on y.

From this we deduce the existence of k0 (uniform) such that if y P W cspx,
clps
2

q then

necessarily k ą k0: indeed, if y P W cspxq we have that f contracts exponentially the

distance between nearby plaques, and obtain that for sufficiently “long” holonomy

transports the image of x, y will be closer than ϵ, provided that their orbits did

the did not separate along the center direction. In this case,

dpx, yq ě ρpϵ, k0q.

Cover the manifold with sets similarly as in (3.1)

M “

l
ď

i“1

W cspΓppiq,
clps
2

q “

l
ď

i“1

Bi.

and consider n ąą k0. Fix Bi and look at F i
n, the set of pseudo-orbits of En whose

initial points lie in Bi, and such that the first time that they separate more than

ϵ occurs at time ě k0. Then

#tx P En : x0 P Biu ď #F i
n ¨ spk0, ρq, (3.3)

and by our previous discussion, for each x P F i
n we can project x0 onto Γppiq and

obtain x1
0, in such a way that the assignment x0 Ñ x1

0 is injective. Now the rest

is simple: the set tfk0px1
0q : x P F i

nu is pn ´ k0, ρpϵqq-separated (same argument as

before), hence

#En ď l ¨ maxt#F i
n : 1 ď i ď lu ¨ spk0, ρq ď l ¨ supn ´ k0, ρ, f

k0ppiqqspk0, ρq ď enhEpϵq

by Corollary 3.1.2 and Proposition 3.1.3.

Next we prove the other inequality:

Dehn ď #En.

For it, we will use strongly the center specification property of f proved in Lemma

3.1.1.

Take ϵ small so that f has the specification property at size δ and let N “ Npϵq

be as in the definition of that property. We fix Bp “ W cspΓppq,
clps
2

q. Take any set

E Ă Γppq which is pn ´ N, 3ϵq-separated for f..
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By center specification, for each z P E, there is an n-periodic δ-pseudo-orbit xpzq

respecting the central foliation such that

dpf i
pzq, xipzqq ď ϵ for all 0 ď i ď n ´ N ´ 1.

We claim that the set #Pern ě #E. Note first that the map E Q z ÞÑ xpzq is

injective. Indeed, if we assume that this does not happen, then we could find

points z ‰ z1 satisfying xpzq “ xpz1q. Thus,

dpf j
pzq, f j

pz1
qq ď dpf j

pzq, xjpzqq ` dpxjpz
1
q, f j

pzqq

ă 2ϵ

ă cexp

for every 0 ď j ď n´N ´ 1, which contradicts our initial hypothesis. In principle

the set txpzq : z P Eu is not separated; on the other hand, arguing as in the

previous part we could guarantee that for z ‰ z1, either xpzq, xpz1q start in the

same center stable plaque, or they have to separate for n ě n0, for some uniform

n0.

Therefore, for some uniform C,

#En ě C ¨ spn ´ N, 3ϵq

and, by Lemma 3.1.3,

#Pern ě Dehn

where D “ D´1
3ϵ e

´NhC. ˝

Remark 9. Observe that in the previous proof we are able to change the size of

adjust the determine the size of ϵ first, and then determine the size δ of the pseudo-

orbits needed to shadow/specify at this scale. The non-trivial argument showing

independence of these choices is given by Lemma 3.1.3.

Theorem B is direct consequence from the Proposition above.
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3.3 Entropy maximizing measure

In this section we present the second most important theorem of this chapter. It

gives a concrete construction of the unique measure of maximal entropy. The proof

of this result is based in Bowen’s work for the hyperbolic case [5], [7].

In this part we will assume Hypothesis 2, namely that f “ αpg0, ¨q is a regular

element of an hyperbolic action α : G ˆ M Ñ M . The methods used seem to

be applicable also in the other case, but the bookkeeping of constants becomes

cumbersome and hinders the clarity. In any case, the case considered is of more

interest, and we will thus focus on it.

Recall that for any x the center plaque P2δpxq is obtained as αpBGp2δq, xq, where

BGp2δq is the ball in G of radius 2δ centered at the identity. Now we cheat: by

re-scaling the metric we assume that the measure of BGp2δq is equal to 1, and in

particular (since the metric on center leaves is induced from the one on G) we have

that

µc
pP2δpxqq “ 1, @x P M.

Above µc denotes the corresponding (Riemannian) measure on W cpxq. These type

of simplifications are lacking in the non-homogeneous case, and the reason why we

are focusing in the setting of group actions.

Given x P Pc
per,npδq we consider the measure ωx on M given by

ωxpAq “
1

n

n´1
ÿ

i“0

µc
pP2δpxiq X Aq.

Consider a family E “ tEk : k ě 1u where each Ek is maximally k-plaque peri-

odic,and define the measure

µE
k “

1

#Perk

ÿ

xPEk

ωx. (3.4)

Clearly µE
k is a probability measure on M .

Definition 3.3.1. We say that tµE
k u is a family of empirical plaque-periodic mea-

sures.
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Remark 10. If x P En then σpxq, ¨ ¨ ¨ , σn´1pxq are in En as well, and

ωx “ ωσpxq “ ¨ ¨ ¨ “ ωσn´1pxq.

In the sum (3.4) we are counting each one of these measures separately.

Given such a family we define

νE
n “

1

n

n´1
ÿ

j“0

f j
˚µ

E
k

Note that by the classical Krillov-Bogolyubov argument, any weak accumulation

point of tνE
n u is f -invariant.

Theorem B. Let f : M Ñ M be a regular element of a hyperbolic action, and E

be a family of maximally n-plaque periodic sets. Then

νE
n

weakly
ÝÝÝÑ
nÑ8

µMME

where µMME is the unique entropy maximizing measure of f .

This tells us that we can detect the entropy maximizing measure by information

on periodic pseudo-orbits.

Fix ϵ ą 0 small (whose size will be elucidated as we go on): the size δ of the

pseudo-orbits is chosen so f has the central specification property at scale δ.

We will be interested in computing the measure of pn, ϵq-Bowen balls. Since f is

isometric on its center, we see that for every n ě n0 and every x P M

W s
pf´nW cu

pfn
pxq, ϵq, ϵq Ă Bn

px, 2ϵq Ă W s
pf´nW cu

pfn
pxq, 3ϵq, 3ϵq.

In view of this, it’s typical to work with the sets W spf´nW cupfnpxq, ϵq, ϵq instead

of Bowen balls, and it is useful then to think

Bn
px, ϵq“ “ ”W s

pf´nW cu
pfn

pxq, ϵq, ϵq.

Next observe the following.

Lemma 3.3.1. There exists a constant Bϵ ą 0 so that for every family E “

tEk : k ě 1u of maximal k-plaque periodic sets the induced family of measures

tµE
k : k ě 1u satisfies:

µE
k pBn

px, ϵqq ď Bϵ ¨ e´nh,

for every x P M and n ě 1, provided that k ą n.
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Proof. The proof is essentially contained in Proposition 3.2.2. Indeed, by a mini-

mal adaptation of the argument of the last part of Case 2, we deduce that for any

given family E “ tEk : k ě 1u of maximally k-plaque periodic sets,

#tx P Ek : xi P Bn
px, δqu ď B0 ¨ supk ´ n, ρpδqq

for some uniform B0, provided that n is sufficiently large (say, larger than n0);

here we emphasize that we are assuming δ small. Hence, since ϵ ă δ,

µE
k pBn

px, ϵqq “
#tx P Ek : xi P Bnpx, δqu

#Perk
µc

pW c
pxi, ϵqq ď

B0B1e
pk´nqh

B2ekh
“ Bϵe

´nh

due to Lemma 3.1.4 and Proposition 3.1.3. ˝

We are interested in obtaining the opposite inequality.

Lemma 3.3.2. There is an Aϵ ą 0 such that for every family E “ tEk : k ě 1u

of maximal k-plaque periodic sets the induced family of measures tµE
k : k ě 1u

satisfies:

µE
k pBn

px, ϵqq ě Aϵe
´nh

for all x P M and n ě 1.

Proof. The idea is again given Proposition 3.2.2, and consists of using the center

specification property. We fix p P M and denote Bp “ W cspΓpp,
clps
2

q, clpsq.

It is no loss of generality to assume that 0 ă ϵ ă ϵ˚

3
ă δ, and f has the center

specification property at scale ϵ˚. Let N “ Npϵq as in the definition of that

property

Given k “ n ` 2N ` m we choose E an pm, 3ϵq separated set inside Bp with the

property that no two points are in the same center stable of the other, as we did

in Proposition 3.2.2. Take x P M .

Note that for each y P E there is a k-periodic ϵ˚-pseudo-orbit zpyq respecting the

central foliation such that

dpzjpyqq, f j
pxqq ď ϵ for all 0 ď j ă n; and

dpzn`N`jpyq, f j
pyqq ď ϵ for all 0 ď j ă m,
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Observe that if Ek is a maximally k-plaque periodic then for any zpyq we can find

one (and only one) element in Ek so that they share the same δ-plaque. Since

3ϵ ă δ, we get

µE
k pBn

px, ϵqq ě
spm, 3ϵq

#Perk
µc

pW c
px, 3ϵqq ě A0 ¨

emh

epn`2N`mqh
“ Ae´nh

˝

Remark 11. In the lemmas above, the constants A,B do not depend on the family

E , and depend only on ϵ (and δ), of course.

For a x P Pc denote fx :“ tfpxnq : n P Zu; since f preserves the center foliation

we get that x P Pc
per,n ñ fx P Pc

per,n. If E is maximally n-plaque periodic, then

fpEq is maximally n-plaque periodic as well. With this we see that given a family

E “ tEn : n ě 1u of maximally n-plaque periodic sets, then fE :“ tEn : n ě 1u is

of the same type.

On the other hand, f acts as an isometry on its center and therefore of any x P Pc
per

f˚ωx “ ωfx,

which in turn implies that

f˚µ
E
k “

1

#Perk

ÿ

xPEnk

f˚ωx “
1

#Perk

ÿ

yPfEnk

ωfx “ µfE
k .

Lemma 3.3.3. Let A,B be as given in Lemmas 3.3.1,3.3.2, and consider a family

of plaque-empirical measures tµE
k u. Then any accumulation point ν of the corre-

sponding measures tνE
k u satisfy, for every x P M and n ě 1

Ae´nh
ď νpBn

px, ϵqq ď Be´nh.

Proof. Fix n, k ą n and x P M . Then

νE
k pBn

px, ϵqq “
1

k

n´1
ÿ

i“0

µf iE
i pBn

px, ϵqq `
1

k

k´1
ÿ

i“n

µf iE
i pBn

px, ϵqq ď
n

k
` Be´nh

where we have used Remark 11. Now comes a small subtle point: given ν an

accumulation point of tνE
k u, we want to use Alexandrov’s theorem to pass to
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the limit in the previous inequality, but since Bnpx, ϵq is closed we cannot argue

directly. This is by-passed by slightly increasing ϵ so that Bnpx, ϵq Ă intpBnpx, ϵ˚qq,

and noticing that in the proof of Lemma 3.3.1, the value of B is unaffected by such

small change. Then

νE
k pBn

px, ϵqq ď νpintpBn
px, ϵ˚

qqq ď lim inf
kÑ8

νE
k pintpBn

px, ϵ˚
qqq ď Be´nh

The other inequality is analogous, and direct from Alexandrov’s theorem. ˝

Given any f -invariant measure µ, the function

hµ,locpf, ¨q “ lim
ϵÑ0

lim sup
n

´
1

n
log µpBn

p¨, ϵqq

is the local entropy of f with respect to µ at the point x. Due to the Brin-Katok

formula this function is in L1pµq and

hµpfq “

ż

hµpf, xqdµpxq.

In our case it follows, by the previous Lemma, that if ν is any accumulation point

tνE
k u then

hνpfq “ h “ htoppfq :

observe that even though A,B depend on ϵ we are taking lim in n first, and already

lim sup
n

´ 1
n
log µpBnp¨, ϵqq “ h.

This shows that ν is an entropy maximizing measure: its metric entropy coincides

with the topological entropy of the system. Due to work of [14] we know that in

our setting the map f has a unique entropy maximizing measure µMME, hence:

Corollary 3.3.1 (Theorem B). Let E be a family of maximally n-plaque periodic

sets, and let tµE
k : k ě 1u be the corresponding plaque empirical measures. Then

t 1
n

řn´1
k“0 f

k
˚µ

E
k un converges weakly to µMME.

Remark 12. For a probability measure µ its support supppµq is defined as the set

of all points x P M such that µpUxq ą 0, for all open neighborhood Ux of x. From

the corollary above it follows directly that supppµq is δ-dense. Observe however

that the same arguments can be carried by reducing δ, hence supppµq is δ-dense

for every δ ą 0 small, and therefore dense.

We finish with the proof of Theorem C.
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Theorem C. If α : G ˆ M Ñ M is a strongly Axiom A action then there exists

µ probability measure on M that is

1. G-invariant: for every measurable A Ă M and g P G, µpαpg, Aqq “ µpAq.

2. µ is ergodic,

3. supppµq “ M .

Proof. Let f be a regular element of the action. Due to [26] we know that the

unstable foliation of f is minimal; let µ “ µMME its entropy maximizing measure.

We already know that µ has full support.

Take any E “ tEn : n ě 1u of maximally n-centrally periodic sets. Now, since

f commutes with every other f̃ “ αpg, ¨q, we get if x P Pc
per,n, then f̃x P Pc

per,n:

indeed

dpfpf̃xnq, f̃xn`1q “ dpf̃pfxnq, f̃xn`1q “ dpfxn, xn`1q ă δ.

In the last part we’ve used that f̃ acts isometrically on center leaves of f . It follows

also that f̃E is a family of maximally n-plaque periodic sets (for the dynamics of

f).

Again using that f̃ |Wc acts isometrically, by arguing as in the case of f we get that

f̃µE
k “ µf̃E

k .

From this and Theorem B (in particular, the uniqueness part) we obtain that

f̃µ “ lim
nÑ8

f̃
1

n

n´1
ÿ

i“0

f i
˚µ

E
k “ lim

nÑ8

1

n

n´1
ÿ

i“0

f i
˚µ

f̃E
k “ µ.

This concludes the result.

˝



56

Bibliography

[1] Christian Bonatti and Sylvain Crovisier. Recurrence et genericite. Inventiones

mathematicae, 158(1), 2004.

[2] Christian Bonatti, Andrey Gogolev, Andy Hammerlindl, and Rafael Potrie.

Anomalous partially hyperbolic diffeomorphisms iii: abundance and incoher-

ence. Geometry & Topology, 24(4):1751–1790, 2020.

[3] Christian Bonatti and Amie Wilkinson. Transitive partially hyperbolic dif-

feomorphisms on 3-manifolds. Topology, 44(3):475–508, 2005.

[4] Y. Bonthonneau, C. Guillarmou, and T. Weich. SRB measures for Anosov

actions. preprint at Arxiv:2103.12127, 2021-03-22.

[5] R. Bowen. The Equidistribution of Closed Geodesics. American Journal of

Mathematics, 94(2):413, 1972.

[6] Rufus Bowen. Entropy-expansive maps. Transactions of the American Math-

ematical Society, 164:323–331, 1972.

[7] Rufus Bowen. Some systems with unique equilibrium states. Mathematical

systems theory, 8(3):193–202, 1974.

[8] Michael Brin. On dynamical coherence. Ergodic theory and dynamical sys-

tems, 23(2):395–401, 2003.

[9] Michael I Brin and Ja B Pesin. Partially hyperbolic dynamical systems. Math-

ematics of the USSR-Izvestiya, 8(1):177, 1974.

[10] Alberto Candel and Lawrence Conlon. Foliations. i, volume 23 of graduate

studies in mathematics. American Mathematical Society, Providence, RI, 5,

2000.



57

[11] P. D. Carrasco. Shadowing of pseudo-orbits, 2023.

[12] P. D. Carrasco and F. Rodriguez-Hertz. Equilibrium states for center isome-

tries. arXiv 2103.07323, 2021.

[13] Pablo Daniel Carrasco Correa. Compact Dynamical Foliations. PhD thesis,

2011.

[14] Vaughn Climenhaga, Yakov Pesin, and Agnieszka Zelerowicz. Equilib-

rium measures for some partially hyperbolic systems. arXiv preprint

arXiv:1810.08663, 2018.

[15] Charles Conley. Isolated invariant sets and Morse index. AMS, 1976.

[16] A. Hammerlindl. Leaf conjugacies on the torus. Ergodic Theory and Dynam-

ical Systems, 33(3):896–933, 2013.

[17] F Rodriguez Hertz, MA Rodriguez Hertz, and Raul Ures. A survey of par-

tially hyperbolic dynamics. Partially hyperbolic dynamics, laminations, and

Teichmüller flow, 51:35–87, 2007.

[18] F Rodriguez Hertz, MA Rodriguez Hertz, and Raul Ures. On existence and

uniqueness of weak foliations in dimension 3. Contemp. Math, 469:303–316,

2008.

[19] F Rodriguez Hertz, MA Rodriguez Hertz, and Raul Ures. A non-dynamically

coherent example on t3. In Annales de l’Institut Henri Poincaré C, Analyse
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Brazil, pages 3–12, 2014.



58

[24] Yakov B Pesin. Lectures on partial hyperbolicity and stable ergodicity, vol-

ume 34. European Mathematical Society, 2004.

[25] Joseph F Plante. Anosov flows. American Journal of Mathematics, 94(3):729–

754, 1972.

[26] Charles Pugh and Michael Shub. Axiom A actions. Inventiones mathematicae,

29(1):7–38, 1975.

[27] Charles Pugh, Michael Shub, and Amie Wilkinson. Hölder foliations. Duke
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