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Resumo

Seja f um difeomorfismo dinamicalmente coherente sobre uma variedade Rieman-

niana fechada M com folheacao central W¢ de classe C' e \°(f) =max ||D f|ge < 1.

Conseguimos mostrar que a entropia topoldgica de f coincide com o crescimento
exponencial de pseudo-orbitas periddicas respeitando a folheacao central Per,.
Aplicando plaque expansividade da folheacao central e a propriedade de center es-
pecifica¢ao, mostramos que h(f) = lim, ., fraclnlog#Per,. Além disso, quando
f é um elemento regular de uma agao de grupo hiperbélica, mostramos a existéncia

de uma tnica medida que maximiza a entropia.

Palavras Chave: Folheacao central, plaque expansividade, entropia topoldgica,

acoes de grupo, medida de méxima entropia, placa central.



Abstract

Let f be a dynamically coherent partially hyperbolic diffeomorphism on a closed
Riemannian manifold M with the central foliation W¢ of C! class and \¢(f) =max

I|1Df|ge < 1.

We managed to show that the topological entropy of f coincide with the growth
exponential of periodic pseudo-orbits respecting the central foliation Per,. Apply-
ing the plaque expansiveness of the central foliation and the center specification
property, we show that h(f) = lim, %log #Per,,. Moreover, when f is an regu-
lar element of a hyperbolic action group, the existence of an unique measure that

maximizes entropy is shown.

Key words: Central foliation, plaque expansiveness, topological entropy, group

actions, measure of maximal entropy, center plaque.
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Introduction

At the end of the 19th century, H. Poincaré began the study of chaotic dynamical
systems while he was trying to understand the behavior of celestial bodies. He
realized that small differences in initial conditions propagated during time, and
produced widely different behaviors of the orbits. In fact, this allowed him to
show the non-existence of analytic solutions of the 3-body problem, contrary to
what was believed at the time (even by him). For the complete story, together
with the digitalized documents of Poincaré the reader could check http://www.

mittag-leffler.se/library/henri-poincare.

The problem stayed almost neglected (with perhaps the important work of Birkhoff)
until around 1960, when S. Smale and his collaborators proposed to understand
these “chaotic systems” from a qualitative point of view. Keeping the story short,
this was the beginning of the concept of hyperbolicity, a cornerstone of modern

mathematics.

Hyperbolic systems are by now very well (but not completely) understood, both
from the geometrical and ergodic point of views. For example, if a diffeomor-
phism is Axiom A (see [2§]), then its non-wandering set can be decomposed intro
finitely many transitive pieces. Restricted to these pieces the map is expansive, has
dense periodic points and satisfies the specification property. Regarding its ergodic
properties, we can cite for example the existence of a unique entropy maximizing

measure on each piece (see [7]).

Our goal in this work is to extend the above-cited results to a class of partially
hyperbolic diffeomorphisms. Roughly speaking, a partially hyperbolic system has,
in addition to contracting and expanding directions, an intermediate ”center” di-

rection whose behavior is dominated by the other two. The study of partially
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hyperbolic systems began independently with Hirsch, Pugh and Shub at [20], and
with Brin and Pesin at [9] in the early 70’s.

The existence of a center direction introduces a series of complications with respect
to completely hyperbolic diffeomorphism. For instance, it may not be integrable,
(see [19], [29]), it may fail to be smooth, and in general, since in principle the
center direction is not dynamically defined (in contrast with the strong bundles),

the analysis becomes much harder.

If the central direction is integrable to a smooth foliation then the system is milder:
for example, a classical result due to Hirsch, Pugh and Shub guarantee that in this
case the C! perturbations of the original map have also integrable center bundles
(although the resulting foliations fail to be smooth in general). To prove this they
realized that a key concept shared by smooth center foliations and its perturbations
is plaque expansivity, a generalization of the classical expansivity property. At the
moment of writing there is no known example of partially hyperbolic system which
does not satisfy plaque expansivity. In any case, in order to make initial progress,
we restrict to systems with smooth center foliations. It is possible that with

additional work the techniques can be extended to other situations.

We give here an overview of each chapter, pointing out the main results. In
Chapter [I we discuss a variety of definitions and results from foliation theory
(inluding holonomy) and partially hyperbolic systems. The Chapter [2|is dedicated
to the study of pseudo-orbits respecting to the central foliation. To this end,
we denote by P¢(d) the space of such d-pseudo-orbits, and establish some of its

properties.

In [7] R. Bowen showed that, for an expansive system with the specification prop-
erty, the topological entropy of the system coincides with the exponential growth
of the periodic points. On the other hand, in [30], Wang and Zhu have showed that
if the system is partially hyperbolic with a uniformly compact central foliation,
then it admits the specification property, and its topological entropy is bounded
by the sum of the growth rate of center periodic leaves with the entropy of the
center foliation. In our case, we restrict ourselves to partially hyperbolic systems
with A\°(f) = max ||Df

and has center specification property. As a result, we obtained results analogous

ge|| < 1. We show that this type of system is h-expansive

of those theorems.



To state it we give the following definition. First, we fix some appropriate 6 > 0
and consider m (the closure in the product topology) of the set of §-pseudo-
orbits. We say that a set E < {z € Pg(); 0"(z) = z} is said to be n-centrally
separated if for any z,y € E there is a j € {0,--- ,n — 1} such that d(x;,y;) > 9.
Denote by #Per, the cardinal of any n-centrally separated set of maximal size.

We need to assume one of the following conditions.
Hypothesis 1. For any o > 0 there exists p = p(a) > 0 so that: for any
re M, z,we D™(x),y € Wx), it holds

Az w) > a = d(hS ,(2), B, (w)) = p

) oy,
(and in particular, h®(z), h°(w) is well defined.)
Hypothesis 2. f is a regular element of an hyperbolic action.

Theorem A. Let f : M — M be a dynamically coherent partially hyperbolic
diffeomorphism satisfying the following hypotheses

e foliations W, W* are of class C*;
e the strong unstable foliation W* is minimal;
o X(f) = max||Df]gel] < L.
If [ satisfies either Hypothesis 1 or 2, then
.1
hiop(f) = lim — log # Per,.
n—o0 M
Next we consider the ergodic theory part.

Theorem B. Let f : M — M be a regular element of a hyperbolic action, and &

be a family of mazimally n-plaque periodic sets. Then
19 i
e _ 1 k, & weakly
Yo = 0 kz—of*ﬂk o HMME

where e 1S the unique entropy mazimizing measure of f.

Uniqueness of this measure can be deduced by the work of Climenhaga, Pesin and
Zelerowicz in [I4]. Our theorem gives a precise description, very much as in the

case of the entropy maximizing measure for hyperbolic systems (Bowen measure).
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Our contribution is given a precise description of this measure, very much as in

the classical Anosov case.

We finish by giving an important application. We say that an hyperbolic action
a: G x M — M is strongly Axiom A if there exists a regular element ¢ in the
center of G such that f = a(g, ) is a regular element, and if the set of closed leaves

is dense in M.

Theorem C. Ifa: G x M — M is a strongly Aziom A action then there exists

i probability measure on M that is
1. G-invariant: for every measurable A < M and g € G, u(a(g, A)) = u(A).
2. is ergodic,

3. supp(p) = M.

This Theorem is proven by completely different methods in the recent paper of
Y. Bonthonneau, C. Guillarmou and T. Weich [4]. It can be also obtained (again,
with different methods) as consequence of the P.D. Carrasco and F. Rodriguez-
Hertz [12]. Theorems A, B and C are proved in Chapter , which is the main part
of the thesis.
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Chapter 1

Preliminaries

In this chapter we present a brief review of the necessary definitions and properties
that will be used throughout the work. We start with the concept of foliation.
After this we introduce the notion of holonomy and list some of its properties that
will be useful in the future. Lastly, we define partially hyperbolic systems, and
review some of their properties. For a more detailed reading we suggest [10], [17],
[20] and [24].

In this work we denote M as a closed (compact, without boundary) differentiable

n-manifold.

1.1 Foliation

We recall some basic facts of foliation theory and related concepts. For more

details see [10]. Take somer>1,s>0and 1 <g<n—1

Definition 1.1.1. A foliated atlas of class C™* and codimension ¢ for M is an
atlas U = {(Un, ¢a); Ya: Us — R"7 x R?} such that if U, n Ug # ¢, then the
coordinate changes @a5: ©3(Us N Up) = ©u(Us N Up) are of the form

Pap(T,Y) = (Tap(T,Y), Yap(y)),

where za5: @(Us N Ug) — R 9 is of class C", and y,5: ¢5(Us N Ug) — RY is of

class C*.

Definition 1.1.2. A foliation of class C™* and co-dimension ¢ on M is a maximal

foliated atlas of class C™* and co-dimension ¢ on M. In addition, a C"*-foliation
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W is said to be a C"-foliation if there is a foliated atlas for VW whose coordinate

changes are C".

Definition 1.1.3. A fiber bundle is a structure (K, B, ) that consists of differ-
entiable manifolds K, B of dimension n,n — k, respectively, a differentiable map

m: K — B, an open neighborhood U, of x in B and a commutative diagram

N U)— 2 U F

U — U

where ¢ is a diffeomorphism, p is the canonical projection onto the first factor and
F' is a manifold of dimension k named fiber. In terms of nomenclature, K is the

bundle space (or only, bundle), B is the base space.

It is important to remark that each subspace 7~!(z) with x € B is an imbedded

k-manifold diffeomorphic to F.

An example of fiber bundle is the tangent bundle T'M of M defined by

T™ = | JT.M = {(z,v): e M and veT,M},

zeM
and m: TM — M is given by 7(z,v) = « for all v e T, M.

A sub-bundle T'N of T'M is a subset TN < T'M so that T'N is a tangent bundle
and for each z € M, the fiber at x, 7~!(z) € T, N, is a subspace of 7~ !(z) = T, M

Definition 1.1.4. A foliation W of class C™® on M is said to be of class C"°*
if each leaf W is C'-immersed, and the inclusion TW < T'M embeds TW as a
C° p-plane sub-bundle of TM.

A foliation W = {(U,, va)} is nice if every U, is a Cubeﬂ and if Uy, nUg # &, then

there is a cube in VW containing U, N Ug.

According to [10, Lemma 1.2.17, p. 30|, every foliated atlas has a nice refinement,

hence we can assume in this work that every foliation is nice.

1U, is called a cube if p,(Uy,) is a cube in R™.
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Definition 1.1.5. A plaque of U, containing x is the set

P, = {y € Us; T(@aly)) = mg(@alr))},

where 7, R"7% x R? — R denotes the projection.

We say that two points =,y € M are related if there is a sequence {Fy, P, ..., Py}
of plaques satisfying: z € Py, y € P,,, and P, n P,_1 # (J when 1 <i < m. Such a

sequence is called a plaque chain.

It is important to notice that being related is indeed an equivalence relation. Each
equivalence class L is a union of plaques, and is called a leaf of the foliation; locally,

it is a topologically immersed sub-manifold of M of dimension n — q.

1.2 Partially Hyperbolic Diffeomorphism

In this section we present the definition of partially hyperbolic systems. We will

denote the continuous Riemannian metric on M by | - ||.

Definition 1.2.1. A C'-diffecomorphism f: M — M is said to be partially hyper-

bolic if there is a nontrivial continuous splitting of the tangent bundle
TM =E°®E°®E",
that is df-invariant and it satisfies

lde f (0*)]| < [ldaf (v)] < [[def (v*)]

for every x € M and all unitary vector v* € E¥ (x = s, ¢,u). Moreover,

A := max{||[df |E°||, ||df " |EY||} < 1.

The bundles E*, E¢ and E“ are called the stable, center and unstable bundle,
respectively. We will also consider the following bundles: E* = E°@® E*® and
E® = E°@® E". Besides, we can take a Lyapunov inner metric (see for instance
[24, p.12]) such that, for every x € M, the subspaces EZ, ES and E* are mutually

orthogonal.

Notice that, for each x € M, the derivative of f contracts uniformly in the stable

direction E? (with contraction rate A; = A), and expands uniformly in the unstable
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direction E¥ (with expansion rate A, = A~'). In the central direction E¢, it can

contract or expand but with smaller rates.

Next we present some of the main examples of partially hyperbolic diffeomor-
phisms. For a wider range of examples and properties, we suggest [17].

1.2.1 Examples

1. Skew-products: Let f : M — M be an Anosov diffeomorphism and ¢ : M —
Diff' (N ) be a family of diffeomorphisms of a compact manifold NV, satisfying

|dzf

< m(dy¢x)7

ES

and
|y < m(dsf

for all x € M and y € N, where m denotes the conormﬁ The skew-product
F: MxN — MxN given by F(x,y) = (f(x)
where B} = E}, Ep = EY and B, = TN
TM@®TN).

E‘“‘))

, 0:(y)) is partially hyperbolic,
. (we identify T(M x N) =

An example of skew-product is obtained by taking N = S' and Ry, : S' —
St to be the rotation by an angle ¢,. Hence, the skew-product

F: MxS'— MxS?
(z,y) = (f(2), Ry, (v)),

is a partially hyperbolic diffeomorphism with central direction compact and

one-dimensional.

2. Time-one maps of Anosov flows: A flow ¢,: M — M is called Anosov if
there is a d¢-invariant decomposition 7'M = E°* @ X @ E", where X is the
direction tangent to the flow, and E*, E" are the contracting and expanding

directions.

The time-one map of the geodesic flow on negative-curvature surfaces is a
partially hyperbolic diffeomorphism. In this example, the Anosov flow is

topologically mixing. In addition, it is accessible, meaning that, given any

2Diff'(N) denotes the set of all C''-diffeomorphism of N
3The conorm of a matrix A is defined as m(A) = inf{|Av|: |jv]| = 1}
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two points in the manifold, one can take a piecewise C''-curve connecting
the two points, and whose derivative is always tangent to either the stable

or the unstable bundle.

Another example of Anosov flow, called the suspension flow, can be seen
as follows. Let f be a hyperbolic diffeomorphism on T? and consider in
T? x R the equivalence relation (z,t + 1) ~ (f(x),t). Then M = T? x R/ ~
is a compact manifold and F([x,t]) = [z,t + 1] is a partially hyperbolic
diffecomorphism. In this case, the distribution E* @ E* is integrable (see
5.

3. Linear Automorphisms on Tori: Consider a matrix A € SL(n,Z), and de-
note by f4 the map induced by A on the torus T™ = R™/Z"™. Notice that f4
is differentiable. Indeed, the derivative D f4(z) at each point x is canonically
identified with A. If A has no eigenvalues that are roots of the identity, then
fa is partially hyperbolic. In this case, the bundles E°, E° and E* are the
direct sum of the eigenspaces corresponding to the eigenvalues of norm less

than, equal to and bigger than one, respectively.

The stable manifold theorem (see Theorem 7.3 in [29]) states that the bundles E*
and E" are both integrable, which means that there are two f-invariant continuous
foliations, denoted by W?* and W, whose leaves are of class C!, and satisfy E* =
TW? and E* = TW?". The transversal regularity of these foliations is only Holder
(see [27]).

On the other hand, the central foliation may not be integrable as can be seen in
the example (see [I7] and [29]). One of the main problem in the area is to establish
necessary and sufficient conditions for integrability. Some results on this can be
found in [3], [§] and [18].

However, for most of the known examples the central foliation is integrable. For
this reason we are going to assume that E° is integrable throughout this text. We

actually ask that f be dynamically coherent, which the definition is the following.
Definition 1.2.2. A partially hyperbolic map f is dynamically coherent if:

o [ F* = E°‘@QFE® and E** = E°@E" are integrable to continuous f-invariant
foliations W¢, W and W, respectively; and

o W¢ sub-foliates W and W¢®.
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In [19]. F. Rodriguez Hertz and et. al. presented a example of a non-dynamically
coherent partially hyperbolic diffeomorphism with one-dimensional center bundle.
However, almost every known example satisfies this hypothesis, therefore we as-
sume, in this work, that f is a partially hyperbolic diffeomorphism dynamically

coherent.

A good characteristic of dynamically coherent partially hyperbolic diffeomorphisms
is that they have geometric properties that improve the comprehension of its dy-
namics, e.g., local product structure, that we are going to define at the end of this

section.

For an invariant foliation W* (where * = s, ¢, u,cs,cu), a point x € M and a

constant r > 0, we denote
Wz, r) ={y e W*(z): d*(z,y) <7}

where d* is the intrinsic distance in the corresponding leaf W*(z).

Hence, for a center leaf L € W and a constant r > 0, we can define

We(L,r) = JW*(z,7)

zeL

and
WH(L,r) = | W*(z,7).

zel
Finally, the concept of local product structure is as follows.

Definition 1.2.3. We say that the map f has local product structure if there is a
constant cjps > 0, called the constant of local product structure, such that whenever
d(z,y) < cps, then W*(We(x, cips), 2¢1ps) intersects W*(We(y, cips), 2¢1ps) along a

plaque of W€ of radius at least %

Dynamically coherence is easily seen to imply local product structure (see for

example Proposition 1.4 in [13]).

In summary, throughout this work f is a dynamically coherent partially hyperbolic

diffeomorphism on a closed manifold M, and the central foliation W¢€ is of class

o
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1.3 Holonomy

We are going to present in this section some basic notations, the concept of holon-

omy and how it will be used in this work.

Let M be a closed differentiable Riemannian n-manifold and W a continuous
foliation of M. Moreover, we consider the bundle £ = TV and the perpendicular
bundle F := (E)*.

We will also need the definition of vector bundle, which is given below.

Definition 1.3.1. A vector bundle is a fiber bundle (K, B, w) such that for every

x € B the fiber 77!(x) is a vector space.

Given € > 0 we define the e-disc sub-bundle of K as

K(e) := |_|{v € K,: |jv]| <€},

zeB
where, K, = 7 ().

Also, we denote by
T,K := | | TK,,

xzeM

where v e 771(x).
Now, let us to consider the vector bundle (T'M, M, ).

Definition 1.3.2. Let p € M, V a neighborhood of p in M and ¢ > 0 small
enough. We denote the open set U € T'M as

U:={(qv)eTM:qeV, veT,M and |[v| < €}

and consider the map
v (=2,2) xU - M

then, the exponential map exp: U — M is defined by

v
exp(q,v) = (1, ¢,v) = v(|v].q, m), (¢,v) eU.

Geometrically, exp,(v) —exp(q, v) is the point of M obtained by traversing a path
of length equal to |v], from g, on the geodesic passing through ¢ with velocity HZ_\I
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We will denote by Riy; the injectivity radius of exp : Y4 — M. It means that,
given a point ¢ € M, then R;,; is the largest radius for which the exponential map

applied to B(0, Ri,;) < T,M is a diffeomorphism over its image.

Let W be a leaf of foliation WW. We define

Nw = | |

zeW

and the map my : Ny — L where my (F,) = z is the map projection of Ny, in W.
Definition 1.3.3. Ny, is the unwrapping bundle of the leaf .

Then, Ny, inherits the differentiable structure from F', and one can show that py,

is a submersion. Therefore, W lifts to a foliation Wy in Ny .

We would like to observe that Wy is transverse to the fibers of 7y, and also that
Ny has a natural Riemannian metric (indeed, it is induced by the restriction of
the Sasaki metric to F).

Now, we consider v: [0, k] — W a path contained in W with || = 1, and define
the map

R T(y) < Fyoy — Fyw
u— h7(u),

where I'(7) is a neighborhood of v(0) in F,(g) and h”(u) is the terminal point of
the unique curve 7,: [0, k] — Ny satisfying:

(a) 7u(0) = u;
(b) 7, € TWw;
(¢) mw(vu(t)) = ~(t) for every t € [0, k].

Since Wy intersects py transversely (denoted here by Wy hpy ), then , is well
defined, and so we can choose I'(y) such that Im~, < Fy ) (Rin;)-

Therefore, it follows that the exponential map
exp(h”(u)) := hol] ()

denotes the holonomy relating to the foliation W in M defined by -, from the disc
D(z) = exp(F,(Rin;)) to D(y) = exp(Fy(Rin;)), where z = v(0), y = v(k) and
z = exp(u).



19

Remark 1. Since M is compact, the set I'(y) can be chosen depending only on k,
that is, I'(y) = I'(k).

By continuity of the tangent space TW, given v > 0, there is an € > 0 such that
| £ (TWw, T,Nw) — 7/2| < a for points in Ny (€) and for all .

From now on, € > 0 is fixed and I'(k) is chosen so that every uw € I'(k) < F,q
satisfies Im(7y,) < B(y(k),€) © Fyu).

Notice that each w € T'Nyy can be written uniquely as the direct sum w = w*@w,

with w® € T, Ny and w* € (T,NW)*.
Let
m = sup{||w”||: we T,Nw, W eW and | D, (w)|| = 1}.
Given any v : [0,k] = W and u € I'(k) < Fy(g), we define:
Xy [0, k] x Eyo)(T'(K)) = Fy)
(t,u) = 7, (%),
where hY(u) = X, (k,u).

Comparing X, with its vertical component we deduce that

|B (@) = Jule™™*" i [ul < T(k).

More generally, the previous bound condition holds whenever Im(v, ) < B(y(k),€) <

F,(x). This proves the following result.

Proposition 1.3.1. For all curve v tangent to a leaf in VV it holds the following

dichotomy: either
1. there are y € F(I'(y)) and z € Im(v) such that d(hol] ,(y), z) = €
or
2. d(holy(+(y),7(t)) = d(z,y)e™" (assuming [y'| = 1).

Corollary 1.3.1. If the foliation W is C*, then it satisfies the Proposition|1.3.1].

Furthermore, any C*-perturbation in the foliation also satisfies.
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In this work, we will consider the center holonomy, that is, the holonomy map
is defined in a disk contained in the foliation transversal to central foliation WE¢.

More specifically:

We fix a leaf W€ in the center foliation WW¢ and consider a smooth family of discs
W¢e s x — D*(z, Ry,;) completely transverse to W€, here it is understood that
the angle of TD*"(x, Riy;) with E*@ E" is (uniformly) small. Given z,y € M such

that y € W¢(z, %22) we consider the holonomy transport
hg., D*(z, Rin;) — D**(y, Cips)-
e Case 1: If y € We(x, %) we can consider

hichy|Ws : Ws(x’ Rinj) - Ws(y7 Clps)

o Case 2: If y € W*(z, °2*) we can consider

e ylwe : W(z, Rigy) — W*(y, cips)

(hopefully the abuse in notation won’t cause any confusion).

Since W¢ is C! the holonomy maps are Lipschitz: there exist L > 0 so that

2,2 € D™(x, Rij) = d(hs, ,(2), h (7)) < Ld(z, 7).

’ x7y

By reducing Ry, and by eventually modifying the discs D*(z, R;n;) we can take

L arbitrarily close to 1. In particular we can assume that

AL <1
ML < 1.

1.4 Entropy

We will recall the definition of topological entropy.
Let f: M — M be a continuous function on a compact metric space M.

Definition 1.4.1 (Separated set). Given ¢ > 0 and n € N we say that £ ¢ M
is (n,€)-separated for f if: for any x,y € E, we can find a j € {0,...,n — 1}
such that d(f7(z), f/(y)) > e. We denote by s(n,€) the largest cardinality of the

(n, €)-separated sets.
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Definition 1.4.2 (Generator set). Given € > 0 and n € N we say that G ¢ M
is a (n,€)-generator for f if: for any x € M, we can find an a € G such that
d(fi(z), f7(a)) < € for every j € {0,...,n — 1}. We denote by g(n,e, f) the

minimum cardinality of the (n, €)-generator sets.

Denote

1
s(e, f) = limsup ﬁlog s(n,€)

n—0o0

1
g(e, f) = limsup —log g(n, €).

n—owo T
Definition 1.4.3. The topological entropy of f is given by

htOp(f) = lims(e, f) = hmg(e, f)

e—0 e—0

For the proof that the two limits coincide see for instance |23, Proposition 10.1.6,
p. 307]).

Definition 1.4.4. Given a closed set K < M, the topological entropy of K is given
by

hiop(flr) = lil%gK(e)
where

1
gx (€) = limsup — log g (n, €),

n—oo T
and gk (n, €) denotes the smallest cardinality of a (n, €)-generator with respect to
for flk.

If x € M and € > 0, we denote

n—1

Bn(x’ 6) = ﬂ f_Z(B(fz(x)>€))a

1=0

the n-dynamical ball cantered at x and of radius €; here B(z,€) is the closed ball

centered at z of radius e. We extend the definition to

B*(x,€) := [ |/ 7(B(f'(x),€))

€7

Under our working hypotheses it holds that our map is h-expansive.
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Definition 1.4.5. We say that a map f is h-expansive if there exists € > 0 such
that

hiop (f, B*(z,€)) =0 for all xe M.
This will be used in the proof Proposition |3.1.1]

Remark 2. In [0] it is showed that if f is h-expansive, then there exists some €; so
that for 0 < € < ¢; it holds

htOP(f) :g<f7 E) = S(f> 6)' (11>
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Chapter 2

Dynamics of Center Plaques

In this chapter we will introduce our object of study, which is the space P¢(J) of
0-pseudo-orbits respecting the central foliation. We will discuss some basic results
about it, such as compactness and some type of shadowing property. Addition-
ally, we present some important subsets of P¢(), like the space Pg,, () periodic
d-pseudo orbits, and P¢

< .(8) of recurrent d-pseudo-orbits respecting the central fo-

liation. Finally, we define the stable and unstable sets of a pseudo-orbit respecting

the central foliation.

The work in this Chapter was done in collaboration with Catalina Freijo.

Recall that M is a closed Riemannian manifold and d denotes the corresponding

induced metric on it.

Definition 2.0.1. Let f: M — M be a partially hyperbolic diffeomorphism.
o]
Consider a sequence z = (Z,)nez € M2 = [ M and § > 0. We say that z is a

1=—00

d-pseudo-orbit for f if

d(f(xp), xpe1) < 6 for every n € Z.

We say that a d-pseudo-orbit z respects the central foliation or that is a center
pseudo-orbit if
f(zn) € WE(xp41,0) for every n € Z.

Whenever the size § of the pseudo-orbit is not relevant for the discussion we will

omit the explicit reference.
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Let
P(6) = {x e M”: z is a d-pseudo-orbit}

and
Pe(5) = {x € P(0): x respects the central foliation}.

We remark that if 0 < & < 4, then PC(S) < Pe(6). We fix some 0 < 0, < <=,

whose precise size will be given later and denote

P° = PY(5,).

We denote by 7 : P — M the natural projection, that is,
Péazx — 7(x)=x.

Clearly 7 is continuous.

On MZ we consider the distance

1 d(zi,y;)
dpro<£7 y) = Z _Z‘—'
It is well known that d,, is compatible with the product topology induced from M,
hence by Tychonoff’s theorem (M?%, d,,) is a compact metric space. The subsets

P(6) =« MZ will we endowed with the subspace metric.
Before we state the first property of the space P¢, let us define the following.

Definition 2.0.2. The center plaque centered at x € M with radius § > 0 is
defined to be
Ps(z) = W¢(x,9).

In the next result, we show that the set of pseudo-orbits respecting the central
foliation is compact in M% with respect to the metric d,,. By the discussion

above it suffices to show that P¢(¢d) is a closed set, for 0 < § < J,
Lemma 2.0.1. The space P¢(9) is closed in M?.
Proof. Let {z"}rew be a sequence in P¢(§) converging to some z. Since the limit

of d-pseudo-orbits is still a §-pseudo-orbit, it is enough to show that x respects the

central foliation.
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The map = — W¢(z,d), that associates each x € M to the plaque W¢(z,d) con-
taining z, is continuous. Hence, the sequence W¢(zk,§) converges to W¢(z,, )
for every n € Z. Analogously, W¢(f(z¥),d) converges to W¢(f(z,),d) and, since
f(zk)y e We(ak, |, ), we conclude that f(x,) € We(x,11,0). o

2.1 Shadowing

Since the idea is to extend some of the theory of Anosov maps to partially hyper-
bolic diffeomorphism, we will need an analogue of the classical Shadowing Lemma
(see, for instance, [28, Proposition 8.20, p.109]). To explain this we need some

definitions.

Definition 2.1.1. Let z and y be two pseudo-orbits. Given an € > 0, we say that
y e-shadows x if d(x,,y,) < € for all n € Z.

Now we can state the above-mentioned lemma involving pseudo-orbits.

Theorem 1 (Shadowing Lemma). Let f: M — M be a dynamically coherent
partially hyperbolic diffeomorphism. Then there exists C' > 0 so that for any 6 > 0
such that Co < cips it holds: any d-pseudo-orbit z for f can be Cd-shadowed by a
Co-pseudo orbit y respecting the central foliation. Moreover, if x is periodic then

y can be taken periodic as well.

This is a variation of [20], Lemma 7A.2, p.133]. In this work however, we will require
a finer control in the size of the shadowing pseudo-orbit, and on its distance to

the original one. This was pointed out by Javier Correa, whom we would like to
thank.

Definition 2.1.2. Let 0 < n < §. We say that the d-pseudo-orbit z is a (d,7n)-

quasi-center pseudo-orbit if for all n € Z

d($n+1a Ws(xn-i-la Clps) N Wcu(f(xn)7 6)) <
d(xn-‘rl? Wu(xn-‘rla Clp5> N Wcs(f(xﬂ>7 5)) < 77
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w (:E’VL‘F > Clps)

wer(f(zn), 9)

we (xTH—’Clps) Tn+1 n

m— \

wes(f(zn),6)

Then we have the following version of the Shadowing theorem.

Theorem 2 (Shadowing Lemma’). Let f : M — M be a dynamically coherent
partially hyperbolic diffeomorphism with smooth center foliation. Then there exist
0 < 0o < caps, C > 0 such that if 0 < § < g then there exist ns > 0 and

Ds : (0,n5) — [1,2] verifying
1. Ds is continuous and lim,_,o Ds(n) = 1.

2. If x is a (9, n)-quasi-center pseudo-orbit then it can be shadowed by a center

pseudo-orbit y and verifying for all n € Z:
(@) d(f(yn); yn+1) < Ds(n)d, and
(b) d(z,,yn) < Cn.
If z is periodic then y is periodic.

For the proof see [11].
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Naturally, one could ask about the uniqueness of the shadowing pseudo-orbit in
Lemma . The concept of plaque expansivity (that we introduce next) will provide

an answer to this question.

Definition 2.1.3. The central foliation W€ is plaque expansive if there is a con-
stant Cexp > 0 such that for any z,y € P°(d) satisfying d(x,,yn) < cexp for every

n € Z, we have that x,, and y, are always in the same center plaque.

Under the hypothesis of W¢ being C*, the condition of plaque expansivity is sat-
isfied (see [20, Theorem 7.2, p.119] for a proof). Actually, there are not known
counterexamples to this fact, although a variation of the examples in [2] is sus-

pected to give such a counterexample.

Putting everything together, by eventually reducing &y in Theorem [2| we get the

following.

Corollary 2.1.1. Assume that f is a dynamically coherent partially hyperbolic
diffeomorphism with smooth center foliation. Then the shadowing pseudo-orbit
given in Theorem@ are unique in the following sense: if x is a (d,n)-quasi-center
pseudo-orbit which is Cn-shadowed by the Ds(n)d-center pseudo-orbits y, z, then

Yn and z, are in the same center plaque for every n € 7Z.

Bookeeping of constants. From now on we redefine d, so that J, < 150—00.

2.2 Recurrence

Next we investigate the concept of recurrence in Pg,,.

Definition 2.2.1.

1. A pseudo-orbit z is said to be periodic if there exists k € N such that for all

n € Z, Tp4n = T,. The smallest of such k is called the period of x.
We denote Ppe;(d) the set of all d-periodic pseudo-orbits, and by

IPC

per

(0) = Pper(6) N P4(3)
the set of all §-periodic pseudo-orbits respecting the central foliation.

2. A point x € M is called chain-recurrent if for every ¢ > 0 there exists an
e-periodic pseudo-orbit z with xg = x. The set of all chain-recurrent points
of M is the chain-recurrent set of f and is denoted CR(f).
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According to Conley’s theory [15], the chain-recurrent set is the most general
(invariant) set relevant for the dynamics. Still, even when dealing with true orbits
of a map f : M — M it is important to consider other sets with good recurrent

properties, like
e the set of periodic points of f, Per(f) = {z € M: 3k e N with f*(x) = 2},

e the set of non-wandering points of f, NW(f) ={ze M:V open U 5z Ik >
0; f*(U)nU # &}, or

e the set of bi-recurrent points of f, Rec™(f) = {z : z € w(x) N a(z)}, where
w(x) ={ye M: 3 asequence n; — w; f"(r)— y}

and

a(z) ={ye M: I asequence n; > —o0; f"(r) — y}

It is a basic fact of topological dynamics that the sets NW(f), CR(f) are closed,

and the following sequence of inclusions hold:

Per(f) < Rec*(f)n < NW(f) = CR(f).

A more subtle fact is that C' generically, Per(f) = CR(f): see [I]. For pseudo-
orbits however, analogous notions to non-wandering and chain-recurrence seem to
lead to very restricted situations. Because of this, we will opt to work with the

sets

Pe_(0).

per

Let us show Ps,.(6) contains sets with good recurrence properties.

Definition 2.2.2. Let z be a d-pseudo-orbit. We say that x is recurrent if for
every N > 0 there exist k, k" > N so that z_p = z¢ = .

We denote by Prec(d) the set of d-recurrent pseudo-orbits and by
Prec(d) = Prec(d) N P(6)

the set of all d-recurrent pseudo-orbits respecting the central foliation.
Example 1. For x € M let z = (f"(x))nez and § > 0. It is direct to check that

e if x is periodic then z € P5,.(6);
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e if x is bi-recurrent then z € P% (9).

The following inclusion is direct

Poer(0) € Prec(d) = Ps

per

(5) - Prcec<5) - 7Drec(5)'

Lemma 2.2.1. For all § > 0 there exists &', with &' > 0 such that

Pc

rec

(0) & Pper(d")-

Proof. Note that we are taking 6 > 0 much smaller than the constant §, given
in Theorem [2| and consider ¢’ > ¢ (which we could assume close to ¢). Consider
ns, C, Ds as given in that Theorem [2|

Now, fix x € P¢

rec

(0) and € > 0. Take ny € N so that

1 €

‘Z“>TLO

Since x is recurrent we can find k, k' > ng so that z, = xg = x_;. We define
Yn =1, —K <n<k

and complete to a bi-infinite periodic sequence y = (yn)nez. Note that dyo(z,y) <

€

s
On the other hand, since x preserves the center foliation, it is in particular a (4, 7)-

quasi-center pseudo-orbit, for every 0 < n < ns. We reduce n even further so it

satisfies
e Ds(n)d <.
o On < giger

Due to Theorem [2] it follows that we can find 27 satisfying
L. 2" e P5.(0).

2. dpo(y,2") < 5.

In particular dy,,(z,2") < e. This shows that z € Pg,, (¢'). o
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Corollary 2.2.1. Let f : M — M be a dynamically coherent partially hyperbolic

diffeomorphism with smooth center foliation. Then for every § sufficiently small,

Rec™ (f) & m(Pge:(0)).

Proof. Indeed, for any § > 0 it holds Rec* (f) = 7(P5.(5/2)) (Example [I), hence

by continuity of 7 and the lemma above,

Rec™ (f) © m(Prc(0/2)) © m(Pec(6/2)) @ m(P5c(0/2)) © m(Pger(9))-
From here follows. o

Remark 3. 1t is not hard to construct partially hyperbolic systems without periodic
points. In this regard, the corollary above gives a mechanism to obtain recurrent

points from periodic structures inherent to the system.

2.3 Stable and Unstable sets of plaques

It will be convenient to introduce the natural (shift) dynamics on P¢(d), namely

o: Pd) — P(9)

x —y with y; = x4 for every i € Z.

For two d-pseudo orbits z and y in P°(5) we define the quantities d* and d—,

d*(z,y) = imsup diaus(W (20, 8), W (Yn, 0))

n—0o0

d(z,y) = lim sup diaus(W* (2, 6), W (yn,0)).

n——aoo

In the definition above we are considering the Hausdorff distancd]

Remark 4. Since the map M 3 x — W¢(z,J) is continuous, we have that if, for

any z,y € P°(0),

d(Zn,yn) — 0 when n — oo then d*(z,y) = 0

and

d(xy,yn) — 0 when n — —co then d™ (z,y) = 0.

For any sets X,Y < (M,d), their Hausdorff distance is dyaus(X, Y) = inf{e > 0: X <

Y. and Y < X}, where X, := |J {z € M:d(z,z) <¢}.
reX
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Definition 2.3.1. If x € P¢(0) its stable set is
Ss(x) = {y € P(0): d"(z,y) = 0},
while its unstable set is

Us(z) = {y € P*(9): d"(z,y) = 0}.
Remark 5. When z € Pf,,(9) with period k& we have that if y € S5(z) then o"*(y)
also belongs to Ss(z) for every n > 0. Analogously, if y € Us(z) then 0™ (y) € Us(z)

for every n < 0.

The next result assures us that stable and unstable sets of pseudo-orbit z € P¢(4)

are nonempty.

Lemma 2.3.1. For 0 < § < 2= 4t holds: for any § < & < 2= there exists ¢ > 0
2 2

so that for every x € P(0),
v ye Wcs(x())C)? 3 g € S(S/(&), Yo = Wc(y) N WS('rOvC):

and

VyeW™(xo,(), FyeUs(z); yo=W<y) nW"(xo,().

Proof. Fix ¢ with 0 < § < ¢’ < 2 and consider 0 < ¢ < 0 to be determined.
For y € W (xy,(), define yo = We(y) n W#(xg, (), we are going to generate a

pseudo-orbit y € Sy (x) recursively:

y; = f/(y) forevery j <0

C

yj = hxj,f(a:j,l)(f(yjfl)) for every j > 0.

We will prove simultaneously that y; is well defined for j > 0, lim;_,,, d(x;,y;) = 0,
and that y € P°(¢"). This in turn will show that y € Sy (x).

First we use the (uniform) continuity of the stable foliation: for z,w € M, z €
We(w,d) there exists ¢ > 0 so that 2’ € W*(z,(),w’ € W*(w,() n W¢(2') then
d(z',w') < ¢

We now proceed by induction, remember that AL < 1, and assume that,

o y; € Wé(x;,((\s - L)), where L is Lipschitz constant of center holonomy.

o d(f(yj-1),y5) <d"
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Then d(f(z;), f(y;)) < ((As - L) \s implies

d(Tj41, Y1) = d(h§j+1,f(xj)(f(xj))a h§j+1,f(xj)(f(yj)))
d(f(z;), f(y;))
< L{(As - LY A,

and yj1 = hg | p, 0 (F(y5)) € W01, ((As - L)), By choice of ¢ it follows that

y is a ¢’-pseudo-orbit.

The case when y € W (zy, () is analogous. o
Remark 6. What the lemma above says is that the stable and unstable sets of any
x € P¢(J) are non-empty, if we allow to slightly increase 4.

Corollary 2.3.1. Given 0 < § < ¢ < % there exists ¢ > 0 so that for every

x,y € PO(0) with d(x;,y;) < ¢ for some i,j € Z we have

Ser(z) N Us(y) # &

and
U(gl(&) M S(;/(g) 75 @

Proof. For 0 < ( < ¢ps and any x,y € M with d(z,y) < ¢ both W(z,{) n
We(y, ) and We(y, () n W (x, () are nonempty. Therefore, by Lemma is
possible to obtain z € Sy (x) N Us(y) and w € Uz (x) N Sy (y). o

Given z,y € M such that d(x,y) < 6, where 0 < 6 < ¢)ps, we define the bracket

between x and y as follows

[z, y] = W*(z, 2e155) 0 W (y, 2¢1ps).

We finish this part by noting that P¢, () satisfies a weak “local product structure”.

per

Proposition 2.3.1. Given 0 < § < & < 2 it holds: for every z,y € P, (2) such

per

that d(xo,yo) < cips the point z = [x0,yo] is in T(PS..(8")).
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Proof. First, suppose z and y are g-periodicals with period k1, ko respectively. Let
z = [xo,yo] and 2’ = [yo, xo], by Lemma there is

Z € S%/(E) N U%’(Q)

and

2 e S%/(g) N U%/(g)

Consider ns, C, Ds as given in Theorem . Since z and y respecting the central
foliation, they are (g,n)—quasi—center, for every 0 < n < n5. We fix n > 0 small

enough to satisfy n < ¢’ — 9.

By uniform continuity of f, there is an ¢y so that d(f(x), f(y)) < n whenever
d(x,y) < €o. Moreover, by periodicity of x and y there is Ny € N large enough such
that, if n > Ny then

€0 €0
d(Zpky ., To) < 2 d(z2—nks,, Yo) < 5
and
€0 €0
/ /
d('zfn-kl,ax()) < E? d(zn-kg,vyo) < 5
Now, we define ¢ as follows:
do = <0 o an:l = znkp
!/ /
nki+1 = Z_pky+1 <o Q2k1tka)n T Ry
An(2k1+k2)+1 = Z—kan+1 -+ Q2n(ki+ke) = 20-

Notice that g is 2(k1+ky)n-periodic. We would like to prove that d(f(qn), gn+1) < ¢’

for every n € Z. For this, it is enough to show that d(f(zu,), 2., +1) < ¢’ and
d(f(zvlzkz)a 2 pkyt1) <O

Indeed, the triangular inequality gives us that

A(f (s )s 2opy 1) < A(f (zany ) f(2y)) + d(F(Zlry)s 2y 40) < 0

The other case is analogous.

Furthermore, g é (¢',7)-quasi-center. Indeed, observe that,

Az 20) < 5 = d( (g, f(0)) <

N |3
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and

2t J () +d(f (2,0, f(20)) + d(f(0), 21)

d(qn'k1+17x1) = d( nk1+17‘x1> d(
< d(@ny 115 f(@nry)) + d(f(@nry), f(w0)) + d(f(70), 1)
)

n 0
+ -+
2 2

d(anlﬂ, WS(anlJrla Clps) N Wcu(f(anl), 5/) <.

Then, by Theorem , there is a periodic Dj(n)d" pseudo-orbit p respecting the

central foliation and shadowing g.
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Chapter 3

Entropy of f

We recall the following classical Theorem due to Bowen [7].

Theorem 3. Let f: X — X be a homeomorphism of a compact metric space. If

f is expansive and satisfies the specification property then it holds

1. hiop(f) = limy oo = log #{z : f"(x) = x}.

2. There exists a unique entropy maximizing measure jiype- That s,

(@) hiop(f) = hurrass (f)-
(b) If i # pvme s any other invariant measure for f, then hy,,,,.(f) >
Pt
3. The system (f, parae) s isomorphic to a Bernoulli Shift.

In this Chapter we will consider an analogous Theorem for some class of partially

hyperbolic diffeomorphism. Namely, we will assume that

f: M — M is a dynamically coherent partially hyperbolic diffeomorphism
with C!' bundles £, E°, minimal unstable foliation and

A = |Df|ge < 1.

Ec

In this setting it is a result of Climenhaga, Pesin and Zelerowicz that f has a
unique entropy maximizing measure [14], but our methods are different and seem
to give a more concrete representation of this measure. The fact that (f, pyyg) is

isomorphic to a Bernoulli scheme is proven in [12].
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Bookeeping of constants. The constants cipg, Cexp, 7 = 75 keep the same meaning as
in Chapter 2. We fix 0 < < %0 and write

Pe = PC(6).

3.1 h-expansivity and Center specification prop-
erty

In the following proposition we will show that plaque expansivity and A¢ < 1 imply

h-expansivity.

Proposition 3.1.1. If f: M — M is plaque expansive and satisfies that \°(f) < 1,

then f s h-expansive.

Proof. Fix 0 < € < %52 (where oy is a constant of plaque expansivity of f) and

x € M. For any y, z in B®(x,€) we have,

d(f"(y), ["(2)) < d(f"(y), ["(x)) + d(f"(2), f"(2)) < 2€ < Cexp VM E L.

Thus, by plaque expansivity, y € W¢(z, Cexp). Therefore, the entropy of the set
B*(z,€) is dominated by the c-topological entropy of f, which is zero since \¢ <
1. O

Bookeeping of constants. From now on, and by reducing ¢y we assume that ¢, <

Cexp-
Minimality of the unstable foliation gives us the next consequence.

Proposition 3.1.2. If the unstable foliation YW* is minimal then f is mixing.

Proof. Let U,V be two non-empty open sets in M and x € V. Take ¢ > 0

small enough such that W*(z,e) < V. We have W¥(z) = M and W*%(z) =
U /W (" (x), €))-

n=0

Therefore,

M =We(z) = | frove(f—r@),e) = | (V) = M,

then M = |J f*(V) and since M is compact there is N € N large enough such

n=0

that for every n > N, f"(V) nU # &. o
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The fact that f is mixing implies that f has the center specification property,

which is define below.

Definition 3.1.1. We say that f satisfies the center specification property (at scale
d) if for every € > 0 there exists N(¢) € N satisfying the following property: given
k = 2 points

ot b e M,

integers

a1<b1<a2<b2<--~<ak<bk

with a; — b;—1 = N(€) V2 < i < k, and p = N(¢€) + by — a1, then one can find a
p-periodic pseudo-orbit x € P¢(¢) satisfying

d(x! x,) <e for a; <n<b;, 1<i

N
&
8
I
—

S
&N

2 ' az
be

Lemma 3.1.1. Under the hypotheses considered, the [ has the center specification
property at scale dg.

Proof. Consider § = % and let n = ns, D = Ds(n),C as given in Theorem

Without loss of generality, assume that D§ < §y. Fix 0 < e < Cn.

Let U = {Uy,--- U} be a finite cover of M with mesh(U) < e. Since f is topolog-
ically mixing, for any U;, U; € U, there is an N;; > 0 such that f"(U;) nU; # &
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for all n > N;;. Define N = max{N;;: ¢,j7 = 1,...,l}, and denote by U(z) the set
U € U containing the point z.

1

To prove the specification property, take z',...,2* points in M, and integers

ap < by < --- < ap < by with aj —bj—; > N, for j = 2,..., k. Now, let p be a

natural number with p — (b, — a;) > N. Consider a4 = p + a; and 2%+ = 1.

Observe that, for each j = 1,... .k, there is an 3/ satisfying 3/ € U(f%(27)) and
fai+1=bi(yi) e U(fo+1(x7*1)). Now define z = {2;} as follows:

Lz = i) when a; <i<by
2. zi = b (y)) when b; <i<aj; and
3. Ziap =2 when ieZ.

We claim that z is a (6, n)-quasi-center pseudo-orbit. In fact, it is sufficient to
check d(f(zp,-1),2,) < n and d(f(2a;.1-1)s Za;.,) < 1. This follows by direct
computation:
d(f(20,1), 2,) = d(F (271 (@), 7 ()
= d(f*(«'),y)
<Cn<n

and

d(f(zaj“*l)’ Z“jﬂ) = d(f(fajﬂilfbj (ya]“rl*l)), fas (Ij+1))
= d(fllj+1—bj (yaj+1—1>7 faj+1(xj+1))
<Cn<n.

The conclusion is obtained by Theorem [2| (Shadowing Lemma’): there exists a
pseudo-orbit x such that

d(f(zn)v xn-i—l) < D(S < 50

and

d(zp, ) < Cn, VnelZ.

and therefore

d(f*(z"),z,) <e<Cn for a; <n<b;, 1<i<k.
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The idea now is based in [7], where the expansive case is considered.
Definition 3.1.2. For pe M, I'(p) = Wu(p, <22).

Our interest is computing Ap(f|r(p)). We will add the superscript “u” to de-
note that we are working with sets inside the unstable foliation, and extend the

notations in the natural way. For example

sic(n, €)
denotes the cardinal of a maximally (n,e)-separated set inside K, where K is
relatively compact inside a leaf of W*. To simplify we also write

Su(nv Evp) = S%(p) (TL, 6)’

Since f|yyw is uniformly expanding one sees directly that for every n > 0, E <
7™ (p)) is (n,€) separated if and only if f"(E) < T'(p) is separated (meaning,
d(x,y) = e for all x # y e f*(E)).

Lemma 3.1.2. There exists Ny > 0 and k > 0 constants (not depending on p)
such that for every p € M the set fNo(I'(p)) can be covered with at most k sets

L(q1(p)), -, T(ak(p)), where g; is a point in fX(I(p)) for everyi=1,--- k.

This is direct. From here it follows that for any given p, s“(n, €, p) is uniformly
comparable with s“(n,€,¢;(p)). Pushing a little more the same argument, this

implies the following.

Lemma 3.1.3. For Ny > Ny there exists C, > 0 so that for every p € M and
qe fM(T(p)) it holds

L(q) = f™(T(p)) = s"(n.e, f7"'T(q)) < Cnys"(n, €, p).

There exists pq,--- ,p; so that

I I
Clps

M = JWes(D(pi), %) = UBi~ (3.1)

= -1

i=1

By minimality of W* there exists Ny > N; so that for every p € M, there is
a connected component E;(p) of fN(I'(p)) n B; whose cs-projection on I'(p;) is
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surjective. Using that the center stable holonomy is Lipschitz, and since \° < 1

we can compare
s (n, e, p) ~ ST (p) (n,€) ~ s“(n,€,p;)
where a ~ b means that { is bounded above and below by some constant (inde-

pendent of n and ¢).
Corollary 3.1.1. There exists Cy > 0 so that for every p,qe M, n e N ande > 0,
s*(n,e,p) < C15"(n, €, q).

In particular, hiop(flrp)) = Prop(flre))-
By the work of Hu, Hua and Wu [21] it is known that (in our working conditions,
with A¢ < 1)
hiop(f) = sup htop(f|F(P))
peM

hence we deduce that for every p e M,

htop(f) = ht0p<f‘1“(p))-

Nonetheless, in our particular case we can obtain a refinement. Indeed, considering
the decomposition (3.1]), and by an analogous argument as the one written above
we get that

S(TL, E) ~ SBi(nv E) ~ Su(n7 Eapi)'

Corollary 3.1.2. There exists constants Co, C5 > 0 so that for anype M, ne N
and € > 0,
s(n,e) < Cys"(n,e,p) < C3s(n,€)

To study the behavior of {s(n,€)} we can instead look at {s“(n,e¢,p)} (for some
fixed p). Note in particular that, since f|yu is uniformly expanding, the analysis

is much simpler.

Lemma 3.1.4. Given 0 < e < €* < 2= there exists C(e, €*) > 0 so that for every
n=0
s(n,e) < C(e, €")s(n, ")
Proof. The existence of C’(e, €*) satisfying
s“(n,e,p) < C(e, €")s"(n, €, p)

is simple to check. From here and the previous corollary we get the result. =
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Exactly the same argument (working with I'(p) instead of the whole manifold)

allow us to deduce the following two lemmas.

Lemma 3.1.5. For any € > 0 like in Lemma there is a constant D, such
that

s(n1 +..._|_nk7€) < Dgs(nia€)7

—.

S
Il
it

whenever ny,...,ng = 1.

Lemma 3.1.6. For any € > 0 like in Lemma there is a constant E. such
that

s(ny+ -+ 4+ ng,e) = HEes(ni,e)

i=1

whenever ny,...,n; = 1.
With the above we can prove the following precise estimate for the numbers s(n, €).

Proposition 3.1.3. Consider h = hiop(f). For a sufficiently small ¢ > 0, the
constants given by Lemmas|3.1.5 and|3.1.6 satisfy:

D7te™ < s(nye, f) < E-te™

for every n = 0.

Proof. Suppose, by contradiction, that s(n,e, f) < D te™ for some n € N. By
Lemma [3.1.5] we have that s(kn, ¢, f) < (Dcs(n,e, f))* and hence

|~

1
k—lOgS(kTL,G,f) < 10g<D€S(n,€, f))k
n

n

< —(log D, + log s(n, €, f)).

S|z

1
Using h-expansivity, we know that h = klim . log s(kn, €, f), if € is sufficiently
—00 n

small. Thus,

1 1
h < —(log D, + log s(n, ¢, f)) < —(log D, + log(D*e™)) = h
n

n

that is a contradiction. The other inequality is obtained in a similar way. =
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3.2 Topological entropy

Our goal in this section is to compute the entropy of a partially hyperbolic diffeo-

morphism in terms of the growth of the periodic pseudo-orbits.

Theorem A. Let f : M — M be a dynamically coherent partially hyperbolic
diffeomorphism satisfying the following hypotheses

e foliations W, W are of class C*;
e the strong unstable foliation YW*" is minimal;

e \° = max||df

<1

Be
Suppose that either
o the central foliation W€ satisfies Hypothesis 1
or
e Huypothesis 2: f is a reqular element of an C* hyperbolic action.

Then,
1
hiop(f) = lim —log # Per,.

n—oo N,

The quantity #Per, is, roughly speaking, the number of different orbits of n-
periodic plaques. Since formalizing this concept precisely seems difficult, we will

opt to work with n-periodic d-pseudo-orbits. We explain this later.

Now let us discuss the meaning of Hypothesis 1 and Hypothesis 2, and their
role in the proof of Theorem A. Recall that Hypothesis 1 mentioned in above

theorem is given by
Hypothesis 1. For any a > 0 there exists p = p(a) > 0 so that: for any
x e M, z,we D%(x),y e W(z), it holds

d(z,w) = a = d(hy ,(2), by . (w)) = p

y oy
(and in particular, h®(z), h°(w) is well defined.)

This is equivalent to what we wrote in the introduction. It essentially means that
the center foliation is “almost parallel”, in the sense that its leaves do not stray

away too much (when lifted to its unwrapping bundle as in the introduction). We
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will use this to estimate, given periodic pseudo-orbits z,y € Pg,,

(0), the distance
between f"(xz¢), f"(yo) in terms of the distance between xz,, and y,,. Observe that in
principle the center (intrinsic) distance d°(z,, f"(zo)) could be large. Hypothesis

1 gives us control in the transverse direction, even for far away points.

To elaborate on this observe that simply by continuity of the center foliation one

gets the following.

Lemma 3.2.1. Given f > 0 consider v > 0 so that for every xz,y € M with
y € Wz, 8) the holonomy map ks, , = D*(x,v) — D*(y) is well defined. Then
for every o > 0 there exists p(c, 5) so that z,w € D*"(x,~),

A(e,w) > 0= (1, (), 15, (w)) = plas, B).

What we are requiring with Hypothesis 1 is independence of p with .

Note the following simple lemma.

Lemma 3.2.2. Assume that \* < 1. Then there exists v > 0 so that: for every
0 < a < vy there exists p = p(a) so that if x,y € P (0) are of the same period
with d(xy, yr) < 7y then

d(zk, yx) = a = d(f*(z0), [*(w0)) = p.

Proof. Indeed, note that for every z € Py,

(6) we have

J

k
A°(f* (o), ox) < 6 33 < =

=1

where d° is the intrinsic distance inside W¢(z). Now we just apply Lemma m

(]

Remark 7. The case when A¢ < 1 corresponds to the situation when f is Anosov.

Under these hypotheses it is known that

heplf) = I “log iz f7(a) = o).

When applied to this case, our methods permit to obtain the entropy of (transi-
tive) Anosov maps in terms of the number pseudo-orbits that preserve the center

foliation. This means that in some sense we are allowed to make small “mistakes”
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when looking at periodic orbits, and count pseudo-periodic orbits instead. This
fact may be suitable to be implemented in software in order to obtain estimates

for the entropy of an Anosov map.

Example 2 (Rigid skew-products). We say that two dynamically coherent par-
tially hyperbolic systems f: M — M and g: M — M are centrally conjugated if
there exists an homeomorphism h: M — M such that h(W¢(z; f)) = We(h(z); g),

for every x € M.

Note that if f is centrally conjugated to a system ¢ with linear center foliation,
then it satisfies Hypothesis 1. Assuming further differentiability of W€, W<,
minimality of W* and A\° < 1 then we are in the hypothesis of Theorem A. In spite

of appearing two restricted (which it is), this case contains interesting examples.

As a concrete one, we can consider an Anosov extension fy : T2 — T2 as described
in the first example of the Preliminaries (Chapter . Clearly f, satisfies the
hypotheses. On the other hand, it is a classical result of Hirsch, Pugh and Shub
(Corollary 8.3 in [20]) that small C! perturbations f of f, are centrally conjugated

to fo; considering the subset of these that have
e differentiable bundles,
o \°< 1,
e minimal W,

we get examples where Theorem A applies. The first two conditions are not difficult
to get (albeit being serious restrictions), while the latter can be controlled with a
result of Katok (Theorem 1 in [22]).

Example 3 (Rigid absolute partially hyperbolic diffeomorphisms). If f : T3 — T3

is absolutely partially hyperbolic diffeomorphism, meaning

sup{|| D, fles : x € T3||} < inf{||D,flee : x € T3||} < A < 1 < inf{|D, f|gu : € T?||}

then f is centrally conjugated to a linear matrix (cf. [16]), and a similar argument

as the previous example can be carried.

The Hypothesis 2, that is, when f is a regular element of an Anosov action,

requires introducing some well known notions.



45

Definition 3.2.1. Let G be a Lie group and o : G x M — M a C! action. We
say that « is hyperbolic if the following holds.

1. The action is foliated, meaning that its orbits form a foliation whose leaves

have the same dimension as G.

2. There exists gy € G such that f = a(go,-) € Diff' (M) is partially hyperbolic,
with center foliation given by the orbit foliation of GG. In this case f is called

a regular element of the action.

If f is aregular element of an Anosov action, then its center leaves are homogeneous
spaces, and (modulo changing the metric to an equivalent one) f acts isometrically
on each one of them (in particular A = 1). See for example the introduction of

[12] for a quick review on this type of maps, and references.

Bookeeping of constants. Recall that cey, denotes the size of a plaque expansivity
constant, and we assume (with no loss of generality ) that cex, < . Note that any

€ < Cexp 15 also a plaque expansivity constant for d-pseudo orbits.
Definition 3.2.2. A set £ < P¢(0) is called
1. n-plaque periodic if every x € E is n-periodic.

2. Separated if it is n-plaque periodic for some n and satisfies x # y € E implies
that for some i, z; ¢ Ps(y;) or y; ¢ Ps(x;) with i € {0,--- ,n— 1}.

The following proposition guarantees that every separated set in P¢(9) is finite.

Proposition 3.2.1. If E < P¢(0) is a separated set, then #E < . Moreover,

for a given period this cardinality is uniformly bounded from above.

0
Proof. Cover || M with [ sets such that their diameter in the maximum distance

n=

=1
is less than 2. If E c P°(0) is separated then necessarily #E <1+ 1.

Definition 3.2.3. We denote by #Per, the cardinal of any n-plaque periodic
separated set E,, of maximal size. Such a set E, is said to be maximally n-plaque

periodic.
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Remark 8. Let P5,. ., = {x € P5,., : x is n — periodic}. Note that the cyclic group
Zy acts naturally on the set Py, ,,

[m] € Z, = [m] -z = o™ (z).

It follows that if E is n-plaque periodic, separated and it does not contain fixed
pseudo-orbits (meaning pseudo-orbits with z,, = z¢¥n) then Z, - E is also n-plaque

periodic and separated.

Fixed pseudo-orbits do not contribute to entropy. It is thus safe to assume (and
we will do so from now on) that any maximally n-plaque periodic set does not

contain fixed pseudo-orbits, and in particular it is saturated by cyclic permutations
(xe E=o(x)e E).

Lemma 3.2.3. Let E, be a maximally n-plaque periodic set. Then for every
T #y€ By, thereis ak = k(z,y) with0 < k <n—1 and such that d(xy, Yx) > Coxp-

Proof. Otherwise the bi-infinite pseudo-orbits z°, 27 stay closer than the plaque
expansitivity constant at all times, which implies that z, yé are in the same plaque,

contradicting the fact that £, is separated. O

The next lemma will give us a relationship between the topological entropy of f

and #Per,,.

Proposition 3.2.2. There are constants 0 < D < E such that
D.e"™ < #Per, < E-e™
for any sufficiently large n.

Proof. Fix E,, a maximally n-plaque periodic set. First we will show the following
inequality:
#E, < s(n,e).

Given two distinct pseudo-orbits z,y € E,, Lemma W gives us a constant k
with 0 < k <n — 1 and such that

d(zg, yr) = €.
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Thus, denoting x = zy and y = x(, we obtain:

[H(x) € We(zy); and
fH(y) € We(y).

We split the proof into two cases, depending on whether Hypothesis 1 or Hy-
pothesis 2 hold.

Case. Hypothesis 1. Since all considered quantities are small, and due to our

assumption, we deduce
d(f*(x), f*(y)) = p

which in turn implies that E is p(e) separated, therefore
#E < s(n, p(e)) < Eye™

due to Proposition It suffices thus to take any (fixed) e sufficiently small

and consider F as the corresponding constant for such e.

Case. Hypothesis 2. Now f = a(go, -) is a regular element of a hyperbolic action
a:G x M — M. We recall that f acts as an isometry on each center leaf (which
it fixes). The typical way to obtain this is to consider a left invariant metric on
G, induce the metric on £, and complete to an adapted metric on the remaining
bundles. With this we get that for every z, a: G x {} — W¢(z) is a Riemannian

isometry (and a covering map). Going back to our case, observe that we can write
Tk = a(Gra, T)
for some g, € G. Using the referred metrics, it follows that
klgo| — k6 < |gr.| < K[go| + K (3.2)

where |g| denotes the distance in G from g to the identity. Needless to say, we are

assuming that |go| >> .

Fix e small (we'll be explicit shortly), and for x # y € E consider k to be the first
index such that d(xy,yx) = €. We can assume that e is sufficiently close so that
for 2 € W¢(w, |go| + &) the holonomy h¢ , is well defined in a transverse disc of size
e. It follows that, maybe sliding along W¢* the points x,y so they lie in the same
transverse disc (which is no loss of generality), the segments W¢(x, k(|go| +9)) and
We(y, k(|go| +0)) do no stray away, when looked in the unwrapped bundle Nyye(y
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(cf. introduction), and in particular the holonomy transport h, . is defined on y.
From this we deduce the existence of ko (uniform) such that if y € W< (z, %) then
necessarily k > kq: indeed, if y € W (z) we have that f contracts exponentially the
distance between nearby plaques, and obtain that for sufficiently “long” holonomy
transports the image of x,y will be closer than €, provided that their orbits did

the did not separate along the center direction. In this case,

d(z,y) = p(e, ko).

Cover the manifold with sets similarly as in (3.1))

l l
M = Jwe(r(p), %) - 5.
i=1 i=1

and consider n >> ky. Fix B; and look at ﬂ , the set of pseudo-orbits of FE, whose
initial points lie in B;, and such that the first time that they separate more than

€ occurs at time > kg. Then
#{z € E, : w9 € B} < #F, - 5(ko, p), (3.3)

and by our previous discussion, for each z € F!’ we can project zy onto I'(p;) and
obtain z{, in such a way that the assignment zq — z is injective. Now the rest
is simple: the set {f*(z}) : x € F'} is (n — ko, p(€))-separated (same argument as

before), hence

#E, <I- max{#ﬂfl 1< <1} s(ko, p) <1-8"(n— ko, p, f¥(ps))s(ko, p) < e Ele)
by Corollary and Proposition [3.1.3

Next we prove the other inequality:

De"™ < #E,,.

For it, we will use strongly the center specification property of f proved in Lemma

B.11

Take € small so that f has the specification property at size § and let N = N ()
be as in the definition of that property. We fix B, = Wes(I'(p), “&=). Take any set
E < T'(p) which is (n — N, 3¢)-separated for f..
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By center specification, for each z € E, there is an n-periodic §-pseudo-orbit z(z)

respecting the central foliation such that

d(f'(2),z:(2)) <e forall0<i<n—N-—1.

We claim that the set #Per,, > #FE. Note first that the map F 3 z — z(z) is
injective. Indeed, if we assume that this does not happen, then we could find

points z # 2’ satisfying z(z) = z(2’). Thus,

d(f7(2), () < d(f(2), 25(2)) + d(z;(2), f(2))
< 2e¢

< Cexp

for every 0 < 7 < n— N — 1, which contradicts our initial hypothesis. In principle
the set {z(z) : z € E} is not separated; on the other hand, arguing as in the
previous part we could guarantee that for z # 2/, either x(z),z(2’) start in the

same center stable plaque, or they have to separate for n > ng, for some uniform

no.
Therefore, for some uniform C,

#E, > C-s(n— N,3e)
and, by Lemma [3.1.3]

#Per,, = De"™

where D = D3 'e N'(C. o
Remark 9. Observe that in the previous proof we are able to change the size of
adjust the determine the size of ¢ first, and then determine the size ¢ of the pseudo-

orbits needed to shadow /specify at this scale. The non-trivial argument showing

independence of these choices is given by Lemma |3.1.3]

Theorem B is direct consequence from the Proposition above.
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3.3 Entropy maximizing measure

In this section we present the second most important theorem of this chapter. It
gives a concrete construction of the unique measure of maximal entropy. The proof

of this result is based in Bowen’s work for the hyperbolic case [5], [7].

In this part we will assume Hypothesis 2, namely that f = a(go,-) is a regular
element of an hyperbolic action o : G x M — M. The methods used seem to
be applicable also in the other case, but the bookkeeping of constants becomes
cumbersome and hinders the clarity. In any case, the case considered is of more

interest, and we will thus focus on it.

Recall that for any x the center plaque Pys(x) is obtained as a(BY(26), ), where
B%(24) is the ball in G of radius 2§ centered at the identity. Now we cheat: by
re-scaling the metric we assume that the measure of B(20) is equal to 1, and in
particular (since the metric on center leaves is induced from the one on G) we have
that

p(Pas(x)) = 1,V € M.

Above p¢ denotes the corresponding (Riemannian) measure on W¢(z). These type
of simplifications are lacking in the non-homogeneous case, and the reason why we

are focusing in the setting of group actions.

Given z € P¢

< orn(0) we consider the measure w, on M given by

wu(A) = =3 e (Po)  A)

Consider a family & = {Ej : k > 1} where each £}, is maximally k-plaque peri-

odic,and define the measure

rg—— (3.4)

#Perk 2eBy

Clearly uf is a probability measure on M.

Definition 3.3.1. We say that {u{ } is a family of empirical plaque-periodic mea-

sures.
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Remark 10. If z € E,, then o(z), -+ ,0" *(z) are in E, as well, and

We = Wo(z) = " = Won—1(g)-

In the sum (3.4]) we are counting each one of these measures separately.

Given such a family we define
e 1 (S Fiué
Vp = n ;) oy
Note that by the classical Krillov-Bogolyubov argument, any weak accumulation
point of {v¢} is f-invariant.

Theorem B. Let f: M — M be a reqular element of a hyperbolic action, and &
be a family of maximally n-plaque periodic sets. Then

& weakly
Vn —— HMME
n—o0

where e 1S the unique entropy maximizing measure of f.

This tells us that we can detect the entropy maximizing measure by information

on periodic pseudo-orbits.

Fix ¢ > 0 small (whose size will be elucidated as we go on): the size § of the

pseudo-orbits is chosen so f has the central specification property at scale 9.

We will be interested in computing the measure of (n,€)-Bowen balls. Since f is

isometric on its center, we see that for every n > ng and every x € M
WE(f"W(f"(x),€),€) < B™(x,2¢) « W (f"W(f"(x), 3¢), 3¢).

In view of this, it’s typical to work with the sets W*(f~"W(f"(z),€),€) instead

of Bowen balls, and it is useful then to think

B (z, ) = "W (f "W (f" (), €), €).

Next observe the following.

Lemma 3.3.1. There exists a constant B, > 0 so that for every family & =
{Ex : k = 1} of maximal k-plaque periodic sets the induced family of measures
{ug « k = 1} satisfies:

W (B2, ) < B.- ™,

for every x € M and n = 1, provided that k > n.
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Proof. The proof is essentially contained in Proposition [3.2.2] Indeed, by a mini-
mal adaptation of the argument of the last part of Case 2, we deduce that for any

given family & = {£} : k > 1} of maximally A-plaque periodic sets,
#{r e Ey :x;€ B"(x,0)} < By - s"(k —n, p(0))

for some uniform By, provided that n is sufficiently large (say, larger than ng);

here we emphasize that we are assuming 0 small. Hence, since € < ¢,

&(pn  #lzeEyixie B"(x,0)} . BoByelt=mh
p (B"(z,€)) = e, 1 (We(zy, €)) < — = B.e
due to Lemma and Proposition (3.1.3] 5

We are interested in obtaining the opposite inequality.

Lemma 3.3.2. There is an Ac > 0 such that for every family & = {E}, : k > 1}
of maximal k-plaque periodic sets the induced family of measures {u§ : k > 1}
satisfies:

HE (B (2,€) > A

forallze M andn > 1.

Proof. The idea is again given Proposition [3.2.2] and consists of using the center

Clps

specification property. We fix p € M and denote B, = W(I'(p, =5*), cips)-

It is no loss of generality to assume that 0 < € < % < 0, and f has the center
specification property at scale €*. Let N = N(e) as in the definition of that
property

Given k = n + 2N + m we choose E an (m, 3¢) separated set inside B, with the
property that no two points are in the same center stable of the other, as we did

in Proposition [3.2.2] Take z € M.

Note that for each y € E there is a k-periodic e*-pseudo-orbit z(y) respecting the

central foliation such that

d(z;(y)), f(z)) < efor all 0 < j < n; and
d(znyn1;(y), F(y) < eforall 0 <j <m,



23

Observe that if Fj is a maximally k-plaque periodic then for any z(y) we can find
one (and only one) element in Ej so that they share the same J-plaque. Since

3e < 9, we get

s(m, 3¢) emh

c c _ —nh
#Perk 1% (W ([L’,gﬁ)) = AQ : m = Ae

Hi (B"(x,€)) =

Remark 11. In the lemmas above, the constants A, B do not depend on the family

&, and depend only on € (and §), of course.

For a z € P¢ denote fz := {f(x,) : n € Z}; since f preserves the center foliation
we get that z € Pg.,,, = fx € Ppe .- If £ is maximally n-plaque periodic, then
f(E) is maximally n-plaque periodic as well. With this we see that given a family
& = {E, : n = 1} of maximally n-plaque periodic sets, then f& := {E, :n > 1} is

of the same type.

On the other hand, f acts as an isometry on its center and therefore of any x € Pf,,

Jewe = Wiy,

which in turn implies that

f*#/f - #Per Z Jawe = #Per Z Whe =

YefEn,,

Lemma 3.3.3. Let A, B be as given in Lemmas|3.3.1 and consider a family
of plaque-empirical measures {us}. Then any accumulation point v of the corre-

sponding measures {v§ } satisfy, for every x € M and n > 1
Ae™™ < y(B™(z,€)) < Be ™.

Proof. Fix n, k >n and x € M. Then
1 k=l
Ve (B™(x,¢€)) Zuz (B"(z,€)) + k;u (B"(z,¢)) < k+B_"h

where we have used Remark [II] Now comes a small subtle point: given v an

accumulation point of {vf}, we want to use Alexandrov’s theorem to pass to



o4

the limit in the previous inequality, but since B™(z,¢€) is closed we cannot argue
directly. This is by-passed by slightly increasing € so that B™(x, €) < int(B"(x, €*)),
and noticing that in the proof of Lemma [3.3.1] the value of B is unaffected by such
small change. Then

v (B™(z,¢)) < v(int(B™(z,¢*))) < liminf v (int(B"(z, *))) < Be ™

k—o0

The other inequality is analogous, and direct from Alexandrov’s theorem. O

Given any f-invariant measure p, the function

1
Putoc(f,+) = lir% lim sup —— log pu(B" (-, €))
e n n

is the local entropy of f with respect to p at the point x. Due to the Brin-Katok

formula this function is in L!(x) and

h(f) = fhu(f, 2)du(a).

In our case it follows, by the previous Lemma, that if v is any accumulation point
{vf} then
hu(f) =h= htop(f) :

observe that even though A, B depend on € we are taking lim in n first, and already

lim sup — £ log o(B" (-, €)) = h.

This shows that v is an entropy maximizing measure: its metric entropy coincides
with the topological entropy of the system. Due to work of [14] we know that in

our setting the map f has a unique entropy maximizing measure pysyg, hence:

Corollary 3.3.1 (Theorem B). Let & be a family of mazimally n-plaque periodic
sets, and let {ug : k = 1} be the corresponding plaque empirical measures. Then

(L300 foug e converges weakly to pine.

Remark 12. For a probability measure p its support supp(u) is defined as the set
of all points z € M such that u(U,) > 0, for all open neighborhood U, of z. From
the corollary above it follows directly that supp(u) is d-dense. Observe however
that the same arguments can be carried by reducing 9, hence supp(u) is d-dense

for every 6 > 0 small, and therefore dense.

We finish with the proof of Theorem C.
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Theorem C. Ifa: G x M — M 1is a strongly Axiom A action then there exists
i probability measure on M that is

1. G-invariant: for every measurable A < M and g € G, u(a(g, A)) = u(A).
2. p is ergodic,

3. supp(p) = M.

Proof. Let f be a regular element of the action. Due to [26] we know that the
unstable foliation of f is minimal; let © = paa g its entropy maximizing measure.

We already know that u has full support.

Take any & = {£, : n > 1} of maximally n-centrally periodic sets. Now, since

f commutes with every other f = a(g,-), we get if z € P¢ then fz € Py

per,n’
indeed

er,n’

d(f(fxn)a f$n+1> = d(f(fxn)a fanrl) = d(frn, Tny1) < 0.

In the last part we've used that f acts isometrically on center leaves of f. It follows

also that f& is a family of maximally n-plaque periodic sets (for the dynamics of
/).
Again using that f lwe acts isometrically, by arguing as in the case of f we get that
; f&
fug = uf’.

From this and Theorem B (in particular, the uniqueness part) we obtain that

= . Nln_lz‘g . 1n_lz‘fo”
fu=gggof5;f*uk=ggg05§f*uk = i

This concludes the result.
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