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2
AHEP Group, Institut de Física Corpuscular—C.S.I.C./Universitat de València,
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We propose an extension of the Standard Model (SM) based on the SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX (3-3-1)
gauge symmetry and scale invariance. Maintaining the main features of the so-called 3-3-1 models, such as
the cancellation of gauge anomalies related to the number of chiral fermion generations, this model exhibits
a very compact scalar sector. Only two scalar triplets and one singlet are necessary and sufficient to break
the symmetries dynamically via the Coleman-Weinberg mechanism. With the introduction of an Abelian
discrete symmetry and assuming a natural hierarchy among the vacuum expectation values of the neutral
scalar fields, we show that all particles in the model can get phenomenologically consistent masses. In
particular, most of the standard fermion masses are generated via a seesawmechanism involving some extra
heavy fermions introduced for consistency. This mechanism provides a partial solution for the fermion
mass hierarchy problem in the SM. Furthermore, the simplicity of the scalar sector allows us to analytically
find the conditions for the potential stability up to one-loop level and show how they can be easily satisfied.
Some of the new particles, such as the scalarsH,H and all the non-SM vector bosons, are predicted to get
masses around the TeV scale and, therefore, could be produced at the high-luminosity LHC. Finally, we
show that the model features a residual symmetry, which leads to the stability of a heavy neutral particle;
the latter is expected to show up in experiments as missing energy.
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I. INTRODUCTION

The discovery of the Higgs boson [1,2], with a mass
mh ¼ 125.38 0.14 GeV [3], and the measurements of its
main properties [3–7] have shown that the Standard Model
(SM) predictions from the spontaneous symmetry breaking
mechanism—the Higgs boson couplings to the other SM
fields leading to its production cross section and branching
fractions—are in agreement with the current experimental
observations. It is expected that further data on the Higgs
boson properties will improve our understanding about the
effectiveness of the mechanism of spontaneous symmetry
breakdown in the SM and constrain even more the
extensions of the SM containing, in particular, additional

scalar bosons. In fact, this has already been done with two-
Higgs-doublet models and the minimal supersymmetric
standard model, for example, but no significant deviation
from the SM predictions has been observed so far [6,7].
This can be interpreted as a hint that any successful new
high energy theory must have in one of its low energy limits
an effective scalar sector that recovers the one in the SM,
with one Higgs boson. Nonetheless, a major theoretical
drawback of the SM is intrinsically associated with the
ad hoc negative mass term in the scalar potential leading to
spontaneous symmetry breaking, which lacks a quantum
dynamical origin.
The spontaneous symmetry breaking in the SM is

arguably our best understanding of how the masses of
all the known fermions except neutrinos arise. It, however,
does not provide an explanation for the hierarchy in the
value of the fermion masses. For the quarks, we have from
the top quark mass mt ¼ 172.9 0.4 GeV to the u-quark
mass mu ¼ 2.16þ0.49

−0.29 MeV [8] a hierarchy of 5 orders of
magnitude. Regarding the leptons, between the mass of the
taum

τ

¼ 1776.86 0.12 MeV and the upper bound on the
sum of neutrino masses

P

ν

m
ν

< 0.15 eV (the lower
bound is

P

ν

m
ν

> 0.06 eV) [8], the hierarchy is even
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larger spanning 10 orders of magnitude at least.
Furthermore, the SM cannot account for neutrino oscil-
lation phenomena, once it neither generates small neutrino
masses nor large mixing angles (for a review on neutrino
physics, see [9,10]). This has been one of the main
motivations to investigate possible extensions of the SM.
In this work, we propose a scale-invariant model in

which symmetry breaking occurs dynamically according to
the Coleman-Weinberg (CW) mechanism [11]. The scale
invariance implies that no dimensionful parameter is
present in the classical Lagrangian so that the tree-level
scalar potential contains only quartic terms. Following the
dynamical symmetry breaking, a seesaw mechanism takes
place leading to a hierarchical mass generation for part of
the SM fermions, including neutrinos. Our theoretical
construction is based on a type of 3-3-1 model [12–17],
where the SUð2ÞL ⊗ Uð1ÞY symmetry of the SM electro-
weak sector is extended to the SUð3ÞL ⊗ Uð1ÞX symmetry
in a particular way which relates the cancellation of gauge
anomalies with the number of the observed families of
chiral fermions. Different versions of the 3-3-1 models can
be classified according to the choice of the β parameter
defining the electric charge operator in Eq. (1), and we
work with a model for which β ¼ 1=

ffiffiffi

3
p

, however with
important differences with respect to the first proposals
[18,19]. Models invariant under the SUð3ÞL ⊗ Uð1ÞX
symmetry we consider here have been explored in many
contexts, such as that of dark matter [20–28], neutrino mass
generation and mixing [29–35], the strong CP problem
[36–39], muon anomalous magnetic moment [40,41], and
effects of flavor changing neutral currents [42–48].
The proposed model breaks dynamically both the scale

invariance and the SUð3ÞL ⊗ Uð1ÞX symmetry down to the
Uð1ÞQ electromagnetic one with a minimal set of scalar
fields, two triplets plus a complex singlet, in comparison to
typical 3-3-1 models. As a consequence, this minimal
scale-invariant 3-3-1 model has a simpler potential and a
more compact scalar spectrum. For this simple potential,
we establish the stability conditions by imposing the
copositive criteria on the matrix of couplings according
to the developments in Refs. [49–51].
To study the dynamical symmetry breaking via the CW

mechanism, we apply the method of Gildener and
Weinberg [52], which is suitable for obtaining the effective
potential in a model with multiple scalar fields. The
Gildener-Weinberg method assumes the existence of an
energy scale, where the coupling constants are such that
there is a flat direction in the tree-level potential. The
effective potential, at the one-loop approximation, is then
obtained along this flat direction determining the condition
for having a dynamical symmetry breaking. Such a con-
dition requires that the sum of the bosonic field mass to the
fourth power times its degrees of freedom must be greater
than the corresponding sum for fermionic fields. This fact
has been an impediment for the implementation of the CW

mechanism in the SM since the dominant contribution
from the top quark makes its one-loop effective potential
unstable (higher-order corrections can make the effective
potential stable but for a Higgs boson mass still incom-
patible with the experimental value [53,54]). It has also
been observed that the dynamical symmetry breaking of
scale-invariant theories can resolve the hierarchy problem
since only corrections involving logarithms of the scalar
fields are expected for the effective potential [55], which
can be made stable up to the Planck scale in simple
extensions of the SM [56–62]. For a discussion about
technical issues of scale invariance and minimal scale-
invariant extensions of the SM, see [59,63].
Each one of the scalar field multiplets of the model is

allowed to get a vacuum expectation value (vev) defining,
thus, the three energy scales, v

φ

, w, and v. The scale v
φ

,
coming from the scalar singlet, is assumed to be the largest
in the model: v

φ

≫ w, v. The other vevs are due to the
scalar triplets and trigger the breaking of the gauge
symmetries; w breaks the 3-3-1 gauge symmetry down
to the SM group, whereas v is identified with the electro-
weak scale so that w ≫ v ≃ 246 GeV. These hierarchies
among the energy scales, along with the field content in the
model, lead to interesting features in the particle mass
spectrum. The model contains just one scalar boson, h, at
the electroweak scale identified with the discovered mh ≈

125 GeV Higgs boson. At the intermediate 3-3-1 breaking
scale, w, which is assumed here to be around w ≃ 10 TeV,
the model predicts a heavy Higgs boson, H, and a charged
scalar,H, whose masses could be of few TeV. Completing
the scalar particle spectrum, there are two scalar bosons
with masses proportional to v

φ

≃ 103 TeV, with one of
them being the scalon, i.e., the pseudo-Nambu-Goldstone
of the scale invariance breakdown, and the other one, a CP-
odd scalar, which plays a major role in making the one-loop
effective potential bounded from below. At this point, it is
important to emphasize that the scalar spectrum up to the
TeV scale, with only three scalars h, H, and H, is more
compact than other popular SM extensions, such as the
two-Higgs-doublet model [64].
In conventional 3-3-1 models [12–17], it is not possible

to generate consistently masses for all the known fermions
with a scalar sector containing only two triplets. This
happens essentially due to the presence of an accidental
chiral symmetry [39,65–67]. We surpass this problem with
the introduction of a set of vectorlike fermions that get their
dominant mass contribution through their coupling to the
complex scalar singlet whose vev is v

φ

=
ffiffiffi

2
p

. These very
heavy fermions, with masses proportional to v

φ

, mix with
the standard ones, allowing for the implementation of a
seesaw mechanism generating masses not only for the
active neutrinos but also for most of the known charged
fermions. In addition, a hierarchical mass pattern for the
standard fermions can be naturally obtained. All these
features are more easily noticed with the imposition of a Z8

DIAS, LEITE, SÁNCHEZ-VEGA, and VIEIRA PHYS. REV. D 102, 015021 (2020)

015021-2



symmetry, the smallest discrete group for our purposes, on
the tree-level scalar potential and the Yukawa Lagrangian.
Thus, our model is, in fact, based on the SUð3ÞC ⊗

SUð3ÞL ⊗ Uð1ÞX ⊗ Z8 symmetry group. As a conse-
quence of the Z8 symmetry imposition, an accidental
global Uð1ÞN symmetry arises. This symmetry is broken
spontaneously, but there still remains in the model a
residual global symmetry, associated with a linear combi-
nation of the generators of SUð3ÞL andUð1ÞN , that leads to
the stability of the lightest new field which does not mix
with the SM ones. We show that, although such a particle
cannot, by itself only, explain the observed relic abundance
of dark matter in the Universe, it participates in decay
processes of the new fermions into SM particles plus
missing energy that could be observed at the high lumi-
nosity LHC or the future circular collider.
It is worth pointing out that the issue of fermion mass

hierarchy and mixing in 3-3-1 models has already been
explored by some of us in Refs. [68,69]. Other interesting
solutions to this issue have also been proposed by other
authors with the use of discrete symmetries in Refs. [70–
73] as well as via the Froggatt-Nielsen mechanism in
Refs. [74–76].
This work is organized as follows. In Sec. II, we review

the 3-3-1 model with two scalar triplets and show that it
does not account for a phenomenologically viable fermion
spectrum. We then present, in Sec. III, a minimal scale-
invariant extension of such a 3-3-1 model, featuring a
consistent dynamical symmetry breakdown which leads to
a mechanism of mass generation for all fermions. We study,
in Sec. IV, the scalar sector of the model and derive the
stability conditions and the flat direction of the scalar
potential. In Sec. V, we consider the fermion sector and
show the mass generation mechanism, which includes a
seesaw mechanism for most of the standard fermion
masses. Using the results derived in the previous sections,
in Sec. VI, the effective potential leading to the dynamical
symmetry breaking through the CWmechanism is obtained
with the use of Gildener-Weinberg method. In Sec. VII, we
describe the presence of a residual symmetry and its
phenomenological consequences. Finally, our conclusions
are presented in Sec. VIII.

II. AN OVERVIEW OF THE

3-3-1 MODEL WITH

TWO SCALAR TRIPLETS

When extending the SM gauge symmetry to
SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX, the SM SUð2ÞL doublets
need to be embedded into representations of SUð3ÞL.
This can be achieved in an economical manner by embed-
ding each SM doublet into a multiplet transforming in
the (anti)fundamental representation of the extended

non-Abelian group. Generically, the 3-3-1 models are
defined through its field content and the electric charge
operator defined as

Q ¼ T3 þ βT8 þ X; ð1Þ

where T3 and T8 are the diagonal SUð3ÞL generators,
and X is the generator of Uð1ÞX. For the current case, we
assume β ¼ 1=

ffiffiffi

3
p

.
For the leptons, the left-handed (lh) fields are arranged

into three triplets (one for each family) and the right-handed
(rh) charged leptons into SUð3ÞL singlets,

ψ iL ¼ðνi; ei; EiÞTL∼ ð1;3;−2=3Þ; esR∼ ð1;1;−1Þ; ð2Þ

where i ¼ 1, 2, 3; s ¼ 1;…; 6; with e4;5;6R ≡ E1;2;3R; and
the three numbers in parenthesis represent how the fields
transform under SUð3ÞC, SUð3ÞL, and Uð1ÞX, respectively.
Notice that the third component of each triplet is an extra
field, EiL, and its rh partner, EiR, is a SUð3ÞL singlet. From
Eq. (1), we see that the electric charge of such fields is
qE ¼ −

1
3
ð2þ

ffiffiffi

3
p

βÞ ¼ −1, i.e., the same electric charge as
the SM charged leptons.
The quark sector is organized differently. The first two

families of the lh quarks are SUð3ÞL antitriplets, while the
third transforms as a triplet; the rh quarks are SUð3ÞL
singlets,

QaL ¼ ðda;−ua; UaÞTL ∼ ð3; 3; 1=3Þ;
Q3L ¼ ðu3; d3; DÞTL ∼ ð3; 3; 0Þ;
dnR ∼ ð3; 1;−1=3Þ; umR ∼ ð3; 1; 2=3Þ; ð3Þ

where a ¼ 1; 2, n ¼ 1;…; 4 and m ¼ 1;…; 5. We also
define the extra quarks as d4 ≡D and u4;5 ≡ U1;2 carrying
the same electric charges as the up-type and down-type
quarks, respectively. This unusual arrangement with two
quark families transforming in the antifundamental repre-
sentation is necessary for the cancellation of gauge anoma-
lies in this minimal setup.
When it comes to the scalar sector, at least two triplets

are required to perform the expected symmetry breaking
which we define as

ρ ¼ ðρ01; ρ−2 ; ρ−3 ÞT ∼ ð1; 3;−2=3Þ;
χ ¼ ðχþ1 ; χ02; χ03ÞT ∼ ð1; 3; 1=3Þ: ð4Þ

The symmetry breaking process can take place sponta-
neously in two steps. The first step occurs when χ03 acquires
a nonvanishing vacuum expectation value (vev), w=

ffiffiffi

2
p

,
and the second step takes place through the vev of ρ01, v=

ffiffiffi

2
p

with w ≫ v,
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SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⟶

hχ0
3
i¼w=

ffiffi

2
p

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⟶

hρ0
1
i¼v=

ffiffi

2
p

SUð3ÞC ⊗ Uð1ÞQ; ð5Þ

where Uð1ÞQ is the Abelian group generated by the electric
charge operator Q, as defined in Eq. (1). Note that the case
where both neutral components of χ get vev is physically
indistinguishable from the current one due to a reparamet-
rization symmetry connecting the second and third com-
ponents of the triplet; see Ref. [68] for more details.
The tree-level scalar potential takes the following simple

form:

Vðχ; ρÞ ¼ μ

2
ρ

ðρ†ρÞ þ μ

2
χ

ðχ†χÞ þ λ

ρ

ðρ†ρÞ2 þ λ

χ

ðχ†χÞ2

þ λ

ρχ

ðχ†χÞðρ†ρÞ þ λ

0
ρχ

ðχ†ρÞðρ†χÞ: ð6Þ

Its simplicity is also appreciated by noticing that, in
addition to the electroweak-scale neutral scalar, h, identi-
fied with the Higgs boson found at the LHC, the scalar
spectrum contains only a heavier CP-even neutral field, H,
and a heavy charged scalar H, with masses given,
respectively, by

m2
h ≃ ð2λ

ρ

− λ

2
ρχ

=2λ
χ

Þv2; m2
H ≃ 2λ

χ

w2;

m2

H

≃ λ

0
ρχ

w2=2: ð7Þ

Meanwhile, all the remaining scalar degrees of freedom are
absorbed in the Higgs mechanism as shown in Ref. [68].
Therefore, the scalar spectrum is very compact. In fact, it is
more compact than in other well-motivated SM extensions,
such as left-right [77–81] and two-Higgs-doublet models
[64]. If scale invariance is additionally taken into account,
the scalar potential in Eq. (6) is further simplified, since the
terms governed by the dimensionful constants μ

ρ

and μ
χ

are
forbidden. However, without the quadratic terms in the
tree-level potential, the calculation of quantum corrections
is needed for a clearer understanding of the model as a
whole. This will be investigated later in this paper taking
into account the symmetry breakdown via the CW mecha-
nism [11].

A. The gauge sector

As the local gauge group is extended, extra gauge bosons
appear. As usual, their masses are obtained from the
covariant derivatives acting on the scalar triplets when
the scalars acquire vevs. Specifically, from the
ðD

μ

ρÞ†ðDμ

ρÞ and ðD
μ

χÞ†ðDμ

χÞ terms in the Lagrangian,
in which the covariant derivative is Dμ ¼ ∂

μ

−

igW
μ

aT
a
− igXXB

μ, where the gauge coupling constants
of Uð1ÞX and SUð3ÞL groups are related through the
electroweak mixing angle θW according to

t2 ¼ g2X
g2

¼ sin2 θW
1 − 4

3
sin2 θW

; ð8Þ

we find that the complex vector bosons,

W

μ

¼ W1μ ∓ iW2μ
ffiffiffi

2
p ; V

μ

¼ W4μ ∓ iW5μ
ffiffiffi

2
p ;

V
0ð†Þ
μ

¼ W6μ ∓ iW7μ
ffiffiffi

2
p ; ð9Þ

have the following masses:

m2

W

¼ g2v2

4
; m2

V

¼ g2

4
ðv2 þ w2Þ; m2

V0 ¼
g2

4
w2:

ð10Þ

Furthermore, there are three other vector bosons, the
massless photon, Aμ, and two massive neutral bosons,
Z
μ

1 and Z
μ

2,

Aμ ¼
ffiffiffi

3
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4t2
p



tW
μ

3 þ
t
ffiffiffi

3
p W

μ

8 þ Bμ



;

Z
μ

1 ¼ NZ2
ð−3m2

Z2
W

μ

3 þ
ffiffiffi

3
p

ð3m2
Z2

− g2w2ÞWμ

8 þ g2w2tBμÞ;
Z
μ

2 ¼ NZ1
ð−3m2

Z1
W

μ

3 þ
ffiffiffi

3
p

ð3m2
Z1

− g2w2ÞWμ

8 þ g2w2tBμÞ;
ð11Þ

where

NZ2;Z1
¼ ½ðg2w2tÞ2þð3m2

Z2;Z1
Þ2þ3ð3m2

Z2;Z1
−g2w2Þ2−1=2;

ð12Þ

and the approximate masses are given by

m2
Z1

¼ g2v2

4cos2θW
þO



v2

w2



;

m2
Z2

¼ g2cos2θWw2

3 − 4sin2θW
þO



v2

w2



: ð13Þ

There are some interesting algebraic relations coming from
the symmetry breaking structure of this model which we
want to remark. At the tree-level approximation, the vector
boson masses satisfy
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m2

V

−m2

V0 ¼ m2

W

and

m2
Z2

m2

V0

¼ cos2 θW
3
4
− sin2 θW

þO



v2

w2



≈ 1.48; ð14Þ

where we have used sin2 θW ≃ 0.231.

B. The Yukawa sector

The attractive features of such an economical
3-3-1 model are, however, not enough to make it

phenomenologically viable. An important issue is revealed
upon the derivation of the fermion spectrum. In contrast
with experimental evidence, some SM fermions remain
massless. In the following, we obtain the fermion mass
matrices and show that this problem has its origins in a
global symmetry which appears accidentally when the
economical setup is considered.
With the fermion and scalar contents presented above,

we can write down the Yukawa interactions for leptons and
quarks,

L0
l ¼ ψ iLχðyeijejR þ yEijEjRÞ þ H:c:;

L0
q ¼ QaLχ

ðyuabubR þ y
u3
a3u3R þ yUabUbRÞ þQ3Lχðyd3bdbR þ y

d3
33d3R þ yD34DRÞ

þQaLρ
ðhdabdbR þ h

d3
a3d3R þ hDa4DRÞ þQ3Lρðhu3bubR þ h

u3
33u3R þ hU

3bUbRÞ þ H:c:; ð15Þ

where the different y’s and h’s represent the Yukawa
coupling matrices.
A straightforward calculation shows that the model has

three massless charged leptons and three massless quarks.
More specifically, in the basis ðe; EÞT

LðRÞ, we can write the
charged-lepton mass matrix as

ME ¼ w
ffiffiffi

2
p



0 0

ye yE



; ð16Þ

where all the entries correspond to 3 × 3 block matrices.
Needless to say, ME has three massless eigenvalues
associated with the SM charged leptons which is obviously
in disagreement with experimental evidence.
Similarly, in the bases ðda; d3; DÞL;R and ðua; u3; UaÞL;R,

we can write the down-type and up-type quark mass
matrices, respectively, as

MD ¼ 1
ffiffiffi

2
p

0

B

B

@

hd½2×2v h
d3
½2×1v hD½2×1v

0½1×2 0 0

yd½1×2w yd3w yDw

1

C

C

A

; MU ¼ 1
ffiffiffi

2
p

0

B

B

@

0½2×2 0½2×1 0½2×2

hu½1×2v hu3v hU½1×2v

ya½2×2w y
u3
½2×1w yU½2×2w

1

C

C

A

; ð17Þ

and, where not specified, the matrix entry is 1 × 1. From
these matrices, we see that one down-type and two up-type
quarks are massless which brings phenomenological issues.
The presence of massless charged leptons and quarks can

be traced back to an accidental global symmetry, Uð1ÞPQ,
which is a Peccei-Quinn like symmetry in the sense that it is
associated with a ½SUð3ÞC2 ⊗ Uð1ÞPQ anomaly. As shown
in Ref. [68], a residual symmetry associated with Uð1ÞPQ
remains unbroken after spontaneous symmetry breaking.
Such an unbroken symmetry is chiral with respect to the
second components of the fermion (anti)triplets and their rh
singlet counterparts, forbidding, in this way, the appearance
of mass terms for these fields. In general, we can see that
this is expected in models with minimal scalar sectors in
which the families of fermions appear in different repre-
sentations of the gauge group. Thus, in the present case,
when one attempts to reduce the number of scalar triplets to
two and takes into account only renormalizable terms in the

classical Lagrangian, accidental chiral symmetries arise in
the fermion sector. Other 3-3-1 models with similar
behavior can be found in Refs. [39,65,66]. The issue of
fermion masslessness in these models has been solved in
Refs. [82–84] with the introduction of effective operators.
To generate mass for all fermions, the global Uð1ÞPQ

symmetry must be broken. This is usually achieved by
introducing a third scalar triplet, η, with transformation
properties identical to those of χ, but that acquires a vev in
its second component. Then, it becomes possible to
generate a mass for all charged fermions, except neutrinos.
Nevertheless, as in the SM, neutrino masses and mixings
can be generated in a number of ways in 3-3-1 models
similar to the one we take into account here [30,31,34]. One
could simply add three right-handed neutrino singlet fields
with large Majorana mass terms to implement the type-I
seesaw mechanism [85–89], as in Ref. [68].
In the next sections, we present a model extension in

which the symmetries are broken dynamically via the CW
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mechanism [11]. This is done adding a scalar singlet field, a
set of vector fermions, three right-handed neutrino fields,
and assuming scale invariance. We will see that besides
breaking the symmetries in a consistent way, with a scalar
potential bounded from below, the massless fermions in the
model above get masses through a seesaw mechanism.

III. THE MINIMAL SCALE-INVARIANT

3-3-1 MODEL

In order to address the phenomenological issue of the
massless fermions in the 3-3-1 model with two scalar
triplets discussed above, in this section, we propose an
extension of the model keeping the scalar sector as simple
as possible. As discussed in the previous section, to obtain a
consistent mass spectrum for all fermions, the accidental
Uð1ÞPQ symmetry must be broken. This is achieved with
the introduction of extra fermions instead of the usual extra
scalar triplet. The quantum numbers of the extra fermions
must allow for operators, in the Yukawa Lagrangian, that
break any undesirable accidental chiral symmetry. The
main advantage of this approach is that we preserve all of
the appealing features of the effective 3-3-1 model with two
scalar triplets, which were discussed above. Moreover, we
impose scale invariance on the total Lagrangian. In this way,
we further simplify the model since all the dimensionful
parameters, such as the arbitrary μ terms in the scalar
potential, are no longer allowed. In the scalar sector, only
a complex singlet is added. This field, as we will see, plays
important roles in both fermion mass generation and pote-
ntial stability at quantum level. Another appealing feature is
that the fermions left massless in the previous setup, e.g., the
charged leptons and the bottom quark, become massive
through a seesawlike mechanism. We call the proposed
model the minimal scale-invariant 3-3-1 model.
In the lepton sector, we introduce

ΨiL;R ¼ ðEþ
i ; N1i; N2iÞTL;R ∼ ð1;3;1=3Þ; νiR ∼ ð1;1;0Þ;

ð18Þ

where Eþ has an electric charge ofþ1, while N1 andN2 are
electrically neutral. In the quark sector, we add

KaL;R ¼ ðAð5=3Þ
a ; U1a; U2aÞ

T
L;R ∼ ð3; 3; 1Þ;

K3L;R ¼ ðBð−4=3Þ;−D1; D2ÞTL;R ∼ ð3; 3;−2=3Þ; ð19Þ

where Að5=3Þ and Bð−4=3Þ are new quarks with respective
electric charges given by the 5=3 and −4=3; whereas U and

D have the same electric charges as the up-type and down-
type quarks, respectively. At last, the scalar sector is
extended by one complex singlet,

φ ∼ ð1; 1; 0Þ; ð20Þ

with hφi ¼ v
φ

=
ffiffiffi

2
p

. The model remains anomaly free since
the fermions introduced are either vectorlike triplets or
gauge singlets.
In Sec. V, we will show in detail that all fermions get

tree-level masses in this extended model. However, we
want to make two remarks in advance. First, the appearance
of trilinear operators, such as Ψ

c
Rρ

eR, ψLΨ
c
Lχ

, QLKRρ,
and Q3LK3Rρ

, explicitly break the accidental Peccei-
Quinn like symmetry. Thus, the introduction of the addi-
tional fermion fields indeed solves the issue of the massless
particles in the 3-3-1 model with two triplets. Second, we
impose a Z8 discrete symmetry, under which the fields
transform according to Table I. This discrete symmetry
simplifies the spectrum analyses performed in the coming
sections by reducing the number of allowed operators in
both the scalar potential and Yukawa Lagrangian.

IV. SCALAR SECTOR

We turn now our attention to the scalar sector composed
of two scalar triplets, ρ and χ, and one complex scalar
singlet, φ, which can be written as

ρ

T ¼


S1þ iA1
ffiffiffi

2
p ;ρ−2 ;ρ

−

3



;

χ

T ¼


χ

þ
1 ;
S2þ iA2

ffiffiffi

2
p ;

S3þ iA3
ffiffiffi

2
p



; φ¼ S
φ

þ iA
φ

ffiffiffi

2
p : ð21Þ

With these fields, the most general renormalizable scalar
potential, at tree level, is

V0 ¼ λ

ρ

ðρ†ρÞ2 þ λ

χ

ðχ†χÞ2 þ λ

ρχ

ρ

†
ρχ

†
χ

þ λ

0
ρχ

ρ

†
χχ

†
ρþ λ

ρφ

ρ

†
ρφ



φþ λ

χφ

χ

†
χφ



φ

þ λ

φ

ðφ

φÞ2 − jλ0
φ

jðφ4 þ φ

4Þ: ð22Þ

TheZ8 symmetry in Table I simplifies the scalar potential by
forbidding non-Hermitian operators, such as λ

0
ρφ

ðρ†ρÞφ2.
Meanwhile, it allows for the term governed by jλ0

φ

jwhich, as
will be shown in Sec. VI, is key for the consistency of
the model.
The most basic condition that we can impose on the

scalar potential couplings comes from the observation that

TABLE I. Field charges under the Z8 symmetry.

ψ iL eiR EiR νiR QaL Q3L uiR UaR diR DR ΨiL ΨiR KaL KaR K3L K3R ρ χ φ

Z8 1 6 0 7 2 3 1 3 4 2 6 4 2 0 3 5 2 1 2
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it has to be bounded from below in order to make physical
sense. In other words, the vacuum has to be stable. To
obtain the constraints associated with such an imposition, it
is convenient to rewrite V0 as a biquadratic form of the

norm of the fields: jρj; jχj; jφj. More specifically, let us
rewrite Eq. (22) in the compact form V0 ¼ hT

Λðjθj; θ
φ

Þh,
where h≡ ðjρj2; jχj2; jφj2ÞT ≥ 0, and Λðjθj; θ

φ

Þ is the
matrix,

Λðjθj; θ
φ

Þ ¼

0

B

B

B

@

λ

ρ

1
2
ðλ

ρχ

þ λ

0
ρχ

jθjÞ λρφ

2

1
2
ðλ

ρχ

þ λ

0
ρχ

jθjÞ λ

χ

λχφ

2

λρφ

2

λχφ

2
λ

φ

− 2jλ0
φ

j cosðθ
φ

Þ

1

C

C

C

A

; ð23Þ

where 0 ≤ jθj ≤ 1 is the orbit parameter defined as
jθj ¼ χ̂



i ρ̂iρ̂


j χ̂j, with i, j ¼ 1, 2, 3, and χ̂i, ρ̂i ¼ χi=jχj,
ρi=jρj. There is another orbit parameter, θ

φ

, defined as
φ ¼ jφj expðiθ

φ

=4Þ. Therefore, the scalar potential, at tree
level, is stable if V0 ¼ hT

Λðjθj; θ
φ

Þh ≥ 0. Because h ≥ 0,
V0 is stable if Λðjθj; θ

φ

Þ is copositive [49,50,67].
To find the conditions behind the potential stability,

we only need to take into account the values of the orbit
space parameters that minimize V0. The fact that V0 is a
monotonic function of jθj and cos θ

φ

makes our analysis

simpler by telling us that the potential reaches its minimum
at the boundaries of their respective spaces. As cos θ

φ

appears multiplied by a negative factor, −2jλ0
φ

j, the value
that minimizes the potential is cos θ

φ

¼ 1. Whereas for jθj,
the chosen value depends on the sign of λ0

ρχ

. For λ0
ρχ

> 0,
then jθj ¼ 0; otherwise, jθj ¼ 1. We now can apply the
copositivity criteria [49,50] on Λðjθj ¼ 0; 1; θ

φ

¼ 0Þ and
obtain the inequalities below, which must be simultane-
ously satisfied by the λ couplings,

λ

ρ

≥ 0; λ

χ

≥ 0; λ

φ

− 2jλ0
φ

j ≥ 0;

λ̄1 ≡ 2

ffiffiffiffiffiffiffiffiffi

λ

ρ

λ

χ

q

þ λ̄

ρχ

≥ 0; λ̄2 ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

ρ

ðλ
φ

− 2jλ0
φ

jÞ
q

þ λ

ρφ

≥ 0; λ̄3 ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

χ

ðλ
φ

− 2jλ0
φ

jÞ
q

þ λ

χφ

≥ 0;

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

ρ

λ

χ

ðλ
φ

− 2jλ0
φ

jÞ
q

þ λ

χφ

ffiffiffiffiffi

λ

ρ

q

þ λ

ρφ

ffiffiffiffiffi

λ

χ

q

þ λ̄

ρχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

φ

− 2jλ0
φ

j
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

λ̄1λ̄2λ̄3

q

≥ 0; ð24Þ

where λ̄

ρχ

takes two values: λ
ρχ

and λ

ρχ

þ λ

0
ρχ

.
Let us now look at the symmetry breaking mechanism

taking place in the scalar sector and the resulting physical
mass spectrum. In principle, due to the scale invariance of
the model, the only stationary point of V0 is attained when
all neutral scalars are zero. Therefore, one-loop corrections
are necessary to shift the tree-level stationary point and, in
this way, to break spontaneously the gauge symmetries.
This is done through the Coleman-Weinberg mechanism
[11]. To implement a consistent symmetry breaking mecha-
nism using perturbation methods, we follow the well-
known Gildener-Weinberg method [52], which generalizes
the CW mechanism to the case of multiple scalar fields.
The Gildener-Weinberg method relies on the assumption

that, at a given renormalization scale μ0, the coupling
constants allow for the existence of a direction in the field
space along which the potential and its first derivative
vanish simultaneously at tree level, known as the flat
direction [52]. Nevertheless, the nontrivial degenerate
minimum along the flat direction is broken by quantum
contributions à la Coleman-Weinberg. Thus, parametrizing
the scalar fields as ϕrN, where ϕr is the radial coordinate

and N is a unit vector in the scalar field space, we start
finding the flat direction, i.e., the direction in the vacuum
surface, N ¼ n, which satisfies: (i) ∇NV0ðNÞjN¼n ¼ 0

and (ii) V0ðnÞ ¼ 0. In addition, the Hessian matrix,
PjN¼n ¼ ∇N∇

T
N
V0ðNÞjN¼n, has to be positive semidefinite

in order for the flat direction to be a local minimum.
From the ∇NV0ðNÞjN¼n ¼ 0 condition, we find

1

4
Λ0:n

2 ¼ 1

4

0

B

B

B

@

λ

ρ

λ

ρχ

2

λ

ρφ

2

λ

ρχ

2
λ

χ

λ

χφ

2

λ

ρφ

2

λ

χφ

2
λ

φ

− 2jλ0
φ

j

1

C

C

C

A

0

B

B

@

n2
ρ

n2
χ

n2
φ

1

C

C

A

¼

0

B

B

@

0

0

0

1

C

C

A

;

ð25Þ

where nT ¼ ðn
ρ

; n
χ

; n
φ

Þ is the unit vector in the scalar field
space evaluated in the vacuum. We also have that n2 stands
for ðn2

ρ

; n2
χ

; n2
φ

ÞT and Λ0 is equal to the quartic coupling
matrix given in Eq. (23) with jθj ¼ 0 and θ

φ

¼ 0,
i.e., Λðjθj ¼ 0; θ

φ

¼ 0Þ.
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As previously mentioned, Eq. (25) has, in general, a trivial solution for n2. In order to find a nontrivial one, the condition,

detΛ0 ¼
1

4
ð4λ

ρ

ðλ
φ

− 2jλ0
φ

jÞλ
χ

− λ

ρ

λ

2
χφ

− λ

2
ρφ

λ

χ

þ λ

ρφ

λ

ρχ

λ

χφ

− λ

2
ρχ

ðλ
φ

− 2jλ0
φ

jÞÞ ¼ 0 ð26Þ

has to be satisfied [51]. This can be seen as if for a given renormalization scale, μ0, the λχφ coupling assumes the value,

λ

χφ

j
μ0
¼

λ

ρφ

λ

ρχ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλ2
ρφ

− 4λ
ρ

ðλ
φ

− 2jλ0
φ

jÞÞðλ2
ρχ

− 4λ
ρ

λ

χ

q

Þ
2λ

ρ

: ð27Þ

Solving Eq. (25) with λ

χφ

j
μ0

obtained above, n2 is

n2
ρ

¼ −λ

χφ

ðλ
ρφ

þ λ

ρχ

Þ þ 2λ
χ

ðλ
ρφ

− 2ðλ
φ

− 2jλ0
φ

jÞÞ þ 2λ
ρχ

ðλ
φ

− 2jλ0
φ

jÞ þ λ

2
χφ

den
;

n2
χ

¼ 2λ
ρ

ðλ
χφ

− 2ðλ
φ

− 2jλ0
φ

jÞÞ − λ

ρφ

ðλ
ρχ

þ λ

χφ

Þ þ 2λ
ρχ

ðλ
φ

− 2jλ0
φ

jÞ þ λ

2
ρφ

den
;

n2
φ

¼ 2λ
ρ

ðλ
χφ

− 2λ
χ

Þ − λ

ρχ

ðλ
ρφ

þ λ

χφ

Þ þ 2λ
ρφ

λ

χ

þ λ

2
ρχ

den
; ð28Þ

where den is defined as

den≡ −4λ
ρ

ðλ
φ

þ λ

χ

− λ

χφ

− 2jλ0
φ

jÞ − 2λ
ρχ

ðλ
ρφ

þ λ

χφ

þ 4jλ0
φ

jÞ
− 4λ

χ

ð−λ
ρφ

þ λ

φ

− 2jλ0
φ

jÞ þ ðλ
ρφ

− λ

χφ

Þ2 þ λ

2
ρχ

þ 4λ
ρχ

λ

φ

: ð29Þ

It is also important to note that due to the scale invariance,
we have that n ·∇NV0ðNÞjN¼n ¼ 4V0ðnÞ. Therefore,
V0ðnÞ ¼ 0 for n given in Eq. (28), with λ

χφ

in Eq. (27),
which is the ii) condition for the flat direction.
For the solution in Eq. (28) to be a local minimum, the

Hessian matrix, Pij, has to be positive semidefinite on the
tangent space of the unit hypersphere at N ¼ n. More
specifically, PjN¼n ¼ diagðΛ0n∘nÞ þ 2Λ0∘ðnnTÞ, where
diagðΛ0n∘nÞ is the diagonal matrix with its diagonal
elements given by Λ0n∘n. Also, ðA∘BÞij ¼ AijBij stands
for the Hadamard product. Taking into account Eq. (25), it
is easy to see that along the flat direction the Hessian matrix

is PjN¼n ¼ 2Λ0∘ðnnTÞ. Thus, since 2nnT is manifestly a
positive semidefinite matrix and the Hadamard product of
two positive semidefinite matrices is also a positive semi-
definite matrix, Pij is positive semidefinite if and only if the
Λ0 matrix is positive semidefinite. In this case,

P ¼

0

B

@

2λ
ρ

n2
ρ

λ

ρχ

n
ρ

n
χ

λ

ρφ

n
ρ

n
φ

λ

ρχ

n
ρ

n
χ

2λ
χ

n2
χ

λ

χφ

n
χ

n
φ

λ

ρφ

n
ρ

n
φ

λ

χφ

n
χ

n
φ

2ðλ
φ

− 2jλ0
φ

jÞn2
φ

1

C

A
ð30Þ

is positive semidefinite if and only if

λ

ρ

≥ 0; λ

χ

≥ 0; λ

φ

− 2jλ0
φ

j ≥ 0; detΛ0 ≥ 0;

−2

ffiffiffiffiffiffiffiffiffi

λ

ρ

λ

χ

q

≤ λ

ρχ

≤ 2

ffiffiffiffiffiffiffiffiffi

λ

ρ

λ

χ

q

; − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

ρ

ðλ
φ

− 2jλ0
φ

jÞ
q

≤ λ

ρφ

≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

ρ

ðλ
φ

− 2jλ0
φ

jÞ
q

;

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

χ

ðλ
φ

− 2jλ0
φ

jÞ
q

≤ λ

χφ

≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

χ

ðλ
φ

− 2jλ0
φ

jÞ
q

: ð31Þ

Notice that from Eq. (26) detΛ0 ¼ 0 in such a way
that the last condition in the first line of the Eq. (31) is
automatically satisfied. It is also important to
compare conditions coming from the vacuum stability,
Eq. (24), to the ones coming from positive semidefiniteness
of the Hessian matrix P, Eq. (31). For λ

0
ρχ

> 0, the

conditions in Eq. (24) are automatically satisfied provided
the conditions in Eq. (31) are. This happens because the
positive semidefinite matrices are a subset of the copo-
sitive matrices. However, for λ

0
ρχ

< 0, the matrix that
governs the scalar potential behavior in the limit of large
fields is Λðjθj ¼ 1; θ

φ

¼ 0Þ instead of Λ0. Hence, both

DIAS, LEITE, SÁNCHEZ-VEGA, and VIEIRA PHYS. REV. D 102, 015021 (2020)

015021-8



conditions, Eqs. (24) and (31), must be simultaneously
considered.
Once the symmetry breaking pattern at tree level was

successfully determined, the scalar mass spectrum can be
found. Apart from the would-be Nambu-Goldstone bosons
eaten by the gauge fields, in the physical charged sector,
there are two mass eigenstates, H, given by

H ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ w2
p ðwρ3 þ vχ1 Þ; ð32Þ

with a squared mass equal to

m2

H

¼ λ

0
ρχ

2
ðv2 þ w2Þ; ð33Þ

where v≡
ffiffiffi

2
p

n
ρ

hϕri, w≡

ffiffiffi

2
p

n
χ

hϕri and hϕri is the
breaking scale of scale invariance. From Eq. (33), we
notice that unless λ0

ρχ

> 0, we would have a tachyonic field.
Therefore, the necessary and sufficient conditions for
vacuum stability are those shown in Eq. (31).
Regarding the CP-even sector, the corresponding mass

matrix can be written in terms of the Hessian in Eq. (30) as
M2

S ¼ hϕriP. Moreover, as previously discussed, PjN¼n ¼
2Λ0∘ðnnTÞ and detΛ0 ¼ 0, so that detM2

S ∝ detΛ0 ¼ 0.
This shows that a massless scalar is present in the tree-level
spectrum. This massless field is the pseudo-Nambu-

Goldstone boson of the scale-invariance symmetry, also
known as scalon, defined by

S ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ w2 þ v2
φ

q ½vS1 þ wS3 þ v
φ

S
φ

: ð34Þ

The remaining CP-even mass eigenstates, h and H, take
the following approximate form when the hierarchy v ≪

w ≪ v
φ

for the vevs is assumed:

h ≃

1

Nh



S1 þ
λ

ρφ

λ

ρχ

− λ

ρφ

v

w
S3 −

v

v
φ

S
φ



;

H ≃

1

NH



λ

χ

λ

ρχ

− λ

ρφ

v

w
S1 þ S3 −

w

v
φ

S
φ



; ð35Þ

where Nh;H are the normalization constants. The exact
analytical expressions for the h and H mass eigenstates are
omitted here as they are too long and do not bring any
essential information at this point. We also have that h and
H have, respectively, the following masses:

m2
h ¼ λ

ρ

v2 þ ðλ
φ

− 2jλ0
φ

jÞv2
φ

þ λ

χ

w2
−m2

Δ

;

m2
H ¼ λ

ρ

v2 þ ðλ
φ

− 2jλ0
φ

jÞv2
φ

þ λ

χ

w2 þm2
Δ

; ð36Þ

in which

m2
Δ

¼ 1

λ

1=2
ρ

½λ3
ρ

v4 þ λ

ρ

v2ðv2
φ

ðλ2
ρφ

− 2λ
ρ

ðλ
φ

− 2jλ0
φ

jÞÞ þ w2ðλ2
ρχ

− 2λ
ρ

λ

χ

ÞÞ þ λ

ρ

ðλ
φ

− 2jλ0
φ

jÞ2v4
φ

þ v2
φ

w2ð2λ
ρ

ðλ
φ

− 2jλ0
φ

jÞλ
χ

− λ

2
ρφ

λ

χ

þ λ

ρφ

λ

ρχ

λ

χφ

− λ

2
ρχ

ðλ
φ

− 2jλ0
φ

jÞÞ þ λ

ρ

λ

2
χ

w4


1=2:

Assuming the vev hierarchy as well as the minimum
conditions given in Eq. (25), it can be seen that the
dominant contributions for the masses are m2

h ≈ 2λ
ρ

v2

and m2
H ≈ 2λ

χ

w2. From the previous asymptotic expres-
sions, we can identify h as the SMHiggs of 125 GeVandH
as an extra scalar with a mass around the 3-3-1 scale. We
see from Eq. (35) that the mixing between h andH is small,
of the orderOðv

w
Þ. Also, under the assumption that w ≪ v

φ

,
used throughout this work, both CP-even scalars have a
small mixing with S ∼ S

φ

. The hierarchy of the vevs, with

v
φ

¼
ffiffiffi

2
p

n
φ

hϕri, implies that in that flat direction n
φ

is the
dominant component.
Finally, in the CP-odd sector, there is only one physical

eigenstate, A
φ

, with mass equal to

m2
A
φ

¼ 8jλ0
φ

jv2
φ

: ð37Þ

The pseudoscalar A
φ

is a component of the gauge singlet φ,
and, as a consequence, it does not have tree-level inter-
actions with the SM particles, except with the Higgs boson.

Nonetheless, the interaction with the latter is suppressed by
the large mass of A

φ

. As we will see below,mA
φ

has to be at
least of the same order of the vector fermion masses, which
along with A

φ

are supposedly the heaviest states in the
model, to ensure the stability the effective potential.

V. FERMION SPECTRUM

In this section, we analyze the fate of the fermion masses
in the minimal scale-invariant 3-3-1 model. We derive the
fermion mass matrices and show that all fermions become
massive. This procedure is simplified by the Z8 symmetry,
presented in Table I, which restricts the allowed Yukawa
interactions, making the mass matrices more manageable.
In particular, we show how the fermions that remained
massless in the model discussed in Sec. II B get tree-level
masses through a seesawlike mechanism, when assuming
the vev hierarchy: v ≪ w ≪ v

φ

. Moreover, the results
found in the section will allow us to calculate the one-
loop effective potential in Sec. VI.
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A. Lepton masses

Taking into account all fields and symmetries, we can
write down all the renormalizable Yukawa terms involving
leptons as

Ll¼yEijψ iLχEjRþhνijψ iLρνjRþheijΨ
c
iRρ

ejRþyijψ iLΨ
c
jLχ



þ
fνij

2
φν

c
iRνjRþfΨijφΨiLΨjRþH:c:; ð38Þ

where h, y, and f matrices are 3 × 3, and fν can be taken as
a 3 × 3 diagonal matrix with real entries without a loss of
generality. Furthermore, the term yijψ iLΨ

c
jLχ

, which
contains three SUð3ÞL triplets, is implicitly contracted with
the totally antisymmetric tensor ϵklm [k, l, m are SUð3ÞL
indices]. For simplicity, we use this convention from
here on.
Considering the charged leptons first, we find that EL

and ER do not mix with the other fields and get the
following mass term:

ME ¼ w
ffiffiffi

2
p yE; ð39Þ

where family indices have been omitted. The remaining
charged leptons, when grouped in the basis ẼLðRÞ≡

ðe; EþcÞT
LðRÞ, share the 6 × 6 the mass matrix below,

M
Ẽ
¼ 1

ffiffiffi

2
p



0 −yw

hev fΨv
φ



; ð40Þ

which is written according to the convention: ẼLMẼ
ẼR.

Note that the Z8 symmetry forbids terms like ψ iLχy
e
ijejR,

which mix eL and ER and would lead to a 9 × 9 mass
matrix instead. On the other hand, the vanishing entry in
M

Ẽ
, Eq. (40), does not follow from the Z8 symmetry but

the gauge invariance. It is also important to observe that the
terms involving ΨiL;R are essential to solve the issue of the
massless fermions present in the original model, thus
justifying the introduction of such fields.
The seesawlike structure of the mass matrix in Eq. (40)

becomes evident when we assume that the vevs are hierar-
chical. By block diagonalizing, the squared charged lepton
mass matrixM

Ẽ
M†

Ẽ
, i.e., writing it as diagðM2

e0 ;M
2
E0 Þ, using

the methods developed in Refs. [90,91], we find

M2
e0 ≃

v2w2

2v2
φ

yðfΨÞ−1he½yðfΨÞ−1he† and M2
E0 ≃

v2
φ

2
fΨfΨ†;

ð41Þ
written, respectively, in the bases,

e0L ≃ eL þ w

v
φ

yðfΨÞ−1ðEþcÞL and

ðE0þcÞL ≃ ðEþcÞL −

w

v
φ

ðfΨ†Þ−1y†eL: ð42Þ

Notice that the primed variables are used to distinguish the
intermediate states, which are obtained after the block
diagonalization, from the initial flavor states (unprimed).
Thus, the primed variables do not yet correspond to the
massive physical states, which can only be obtained once
one diagonalizes the matrices in Eq. (41). This convention is
used throughout the manuscript.
From Eq. (41), we observe that the largest scale in the

model, v
φ

, gives mass to the heavy charged leptons viaME0

and, at the same time, suppresses the masses of the standard
charged leptons inMe0 à la the seesaw mechanism. In order
to estimate the mass scale of the light leptons, let us assume
that w ≃ 10 TeV and v

φ

≃ 103 TeV. Thus, in Me0 , the
electroweak scale v ¼ 246 GeV is suppressed by a factor
of w=v

φ

≃Oð10−2Þ. In this case, the mass of the τ lepton,
the heaviest among the standard leptons, can be naturally
obtained for couplings of order 1. The remaining lepton
masses can be fitted by adjusting the relevant Yukawa
couplings. Finally, from Eq. (42), we note that the mixing
between standard and nonstandard leptons is also sup-
pressed by the factor w=v

φ

.
When it comes to the neutral leptons of the model, we

can write two independent mass matrices. First, the flavor
states N2L and N2R form Dirac fermions, with mass matrix
given by

MN2
¼ v

φ

ffiffiffi

2
p fΨ: ð43Þ

Second, using the convention ð1=2ÞÑLMÑ
ðÑLÞc, where

ÑL ≡ ðνL; νcR; N1L; N
c
1RÞT , we can write M

Ñ
as

M
Ñ
¼



0 MT
D

MD M
φ



; ð44Þ

with

MD ¼ 1
ffiffiffi

2
p ð hνv yw 0 ÞT and

M
φ

¼ v
φ

ffiffiffi

2
p

0

B

@

fν 0 0

0 0 fΨ

0 fΨT 0

1

C

A
: ð45Þ

Although most of the zero entries in these mass matrices are
due to the gauge invariance, the Z8 symmetry also plays an
important role in simplifying them. For instance, Z8 forbids
terms such as ΨiLχνjR, and, consequently, N2L and N2R do
not mix with the other neutral leptons. The compact
structure of the matrix in Eq. (44) and the fact that the
energy scale of M

φ

is larger than the MD one reveal the
seesaw structure of such a mass matrix. Upon diagonalizing
it by blocks, we get
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M
ν

0
≃ −

v2
ffiffiffi

2
p

v
φ

hνðfνÞ−1hνT and MN0
≃M

φ

; ð46Þ

written in the bases,

ν

0
L ≃ νL −

v

v
φ

hνðfνÞ−1ðνRÞc −
w

v
φ

yðfΨTÞ−1ðN1RÞc;

N0
L ≃ fðνRÞc; N1L; ðN1RÞcg

þ


v

v
φ

ðfνÞ−1hν†; 0; w
v
φ

ðfΨÞ−1y†


νL: ð47Þ

Note that for v ¼ 246 GeV and v
φ

≃ 103 TeV, as before,
active neutrinos have sub-eV masses for fν ≃Oð1Þ and
hν ≃Oð10−4Þ, for example. The remaining neutral leptons
have masses around the v

φ

scale, and similar to the charged
lepton case, the mixing angles between active and sterile
neutrinos are suppressed by the largest scale in the model,
v
φ

, and are, consequently, small.

B. Quark masses

The quark masses can be obtained from the Yukawa
Lagrangian below,

Lq ¼ yUabQaLχ
UbR þ yD34Q3LχDR þQaLρ

ðhdabdbR þ h
d3
a3d3RÞ þQ3Lρðhu3bubR þ h

u3
33u3RÞ

þ h̃abQaLKbRρþ h33Q3LK3Rρ
 þ KaLχðỹuabubR þ ỹ

u3
a3u3RÞ þ K3Lχ

ðỹd3bdbR þ ỹ
d3
33d3RÞ

þ f
Ka

abφKaLKbR þ f
K3

33φ
K3LK3R þ H:c: ð48Þ

First, we consider the up-type quarks for which we obtain two independent mass matrices. If we choose as bases: Uð1Þ
L;R ≡

ðua; u3;U2aÞL;R and U
ð2Þ
L;R ≡ ðUa;U1aÞL;R, we can write a 5 × 5 and a 4 × 4 mass matrix,

M
ð1Þ
U

¼ 1
ffiffiffi

2
p

0

B

B

B

@

0½2×2 0½2×1 −h̃½2×2v

hu½1×2v h
u3
½1×1v 0½1×2

ỹu½2×2w ỹ
u3
½2×1w f

Ka

½2×2vφ

1

C

C

C

A

and M
ð2Þ
U

¼ 1
ffiffiffi

2
p
 

yU½2×2w −h̃½2×2v

0½2×2 f
Ka

½2×2vφ

!

: ð49Þ

Similar to the lepton sector, the Z8 symmetry simplifies the
mass matrices in the quark sector. For example, the terms
QaLχ

yuabubR and Q3Lρh
U
3bUbR are not allowed by Z8, and

the mass matrices M
ð1Þ
U

and M
ð2Þ
U

become independent.
Furthermore, we must emphasize the importance of the
extra quark triplets KbL;R in solving the masslessness
problem in the up-type quark sector. The introduction of
KbR allows for the term h̃abQaLKbRρ, which mixes uaL,
originally massless, and UaR. Meanwhile, the presence of

KaL, in addition to contributing to the cancellation of
anomalies, allows for the term f

Ka

abφKaLKbR, which pro-

vides a large mass scale for M
ð1Þ
U
, leading to a seesaw

mechanism, as described below.
The matrix M

ð1Þ
U

contains three light quarks mixed with

two heavy quarks. We block diagonalize M
ð1Þ
U
M

ð1Þ†
U

by
rotating the left-hand fermions to separate the ordinary
from the exotic quarks and find

M2
u0 ¼

1

2

 ðvw
v
φ

Þ2h̃ðfKaÞ−1ðYuÞ2ðfKa†Þ−1h̃† v2w
v
φ

hðfKaÞ−1ðỹuhu† þ ỹu3hu3Þ

⋆

† v2A2
u



;

M2
U

0 ¼
v2
φ

2
fKafKa†; ð50Þ

with ðYuÞ2 ¼ ỹuỹu† þ ỹu3 ỹu3 and A2
u ¼ huhu† þ hu3hu3, where M2

u0 is written in the basis,

u0aL ¼ uaL þ v

v
φ

½h̃ðfKaÞ−1abU2bL;

u03L ¼ u3L −

vw

v2
φ

ðhuỹu† þ hu3 ỹu3†ÞaðfKafKa†Þ−1abU2bL; ð51Þ
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whereas the basis for M2
U

0 is

U 0
2aL ¼ U2aL −

v

v
φ

½ðfKa†Þ−1h̃†abubL

þ vw

v2
φ

ðfKafKa†Þ−1abðỹuhu† þ ỹu3hu3Þbu3L: ð52Þ

For simplicity, the sizes of the Yukawa matrices, originally
shown in Eq. (49), have been omitted in Eqs. (50), (51),
and (52).
From M2

u
0 in Eq. (50), we can see that while the third

family gets a mass proportional to the electroweak scale v,
the first two families get masses proportional to ðw=v

φ

Þv ≪

v due to a seesawlike mechanism that takes place as a result
of the mixing with the heavy up-type quarks. In this way, a
mass hierarchy between the third and the other families is
present.
The other matrix in Eq. (49), Mð2Þ

U
, is approximately

diagonal as the off diagonal terms are much smaller than
the diagonal ones. From it, we obtain two heavy up-type
quarks with masses proportional to w, and the other two are
even heavier with masses proportional to v

φ

, while the
mixing angles are very suppressed.
With the down-type quarks, we find a similar situation.

The corresponding fields can be grouped into two indepen-
dent bases: Dð1Þ

L;R≡ðda;d3;D2ÞL;R and D
ð2Þ
L;R≡ðD;D1ÞL;R,

according to which the respective 4 × 4 and 2 × 2 mass
matrices can be written

M
ð1Þ
D

¼ 1
ffiffiffi

2
p

0

B

B

B

@

hd½2×2v h
d3
½2×1v 0½2×1

0½1×2 0½1×1 h½1×1v

ỹd½1×2w ỹ
d3
½1×1w f

K3

½1×1vφ

1

C

C

C

A

and

M
ð2Þ
D

¼ 1
ffiffiffi

2
p
 

yD½1×1w h½1×1v

0½1×1 f
K3

½1×1vφ

!

: ð53Þ

Once again, the Z8 symmetry simplifies the mass matrices,

and, here, it makes Mð1Þ
D

and M
ð2Þ
D

independent. Moreover,
the introduction of K3L;R allows for the appearance of the
necessary terms to make all the down-type quarks massive,
e.g., h33Q3LK3Rρ

 and f
K3

33φ
K3LK3R.

Upon block diagonalization of Mð1Þ
D
ðMð1Þ

D
Þ†, we find

M2
d
0 ¼

1

2

 

v2ðAdÞ2 −

v2w
v
φ

ðhdỹd† þ hd3 ỹd3ÞðfK3Þ−1h

⋆

† ðvw
v
φ

Þ2hðfK3Þ−1ỹd3Y2
dðfK3Þ−1h

!

;

M2
D0 ¼

v2
φ

2
fK3fK3; ð54Þ

with ðAdÞ2 ¼ hdhd† þ hd3hd3† and Y2
d ¼ ỹdỹd† þ ỹd3 ỹd3.

The states associated with the new mass matrices are,
respectively,

d0aL ¼ daL −

vw

v2
φ

ðhdỹd† þ hd3 ỹd3Þa
fK3fK3

D2L;

d03L ¼ d3L −

v

v
φ

h

fK3
D2L; ð55Þ

and

D0
2L ¼ D2L þ vw

v2
φ

ðỹdhd† þ ỹd3hd3†Þa
fK3fK3

daL þ v

v
φ

h

fK3
d3L:

ð56Þ
In contrast to the up-type quark case, the first two

families of the ordinary quarks get masses proportional to
v, while the third one gets a mass proportional to ðw=v

φ

Þv.
Therefore, in order to get the observed down-type quark
masses, the Yukawa couplings need to be finely adjusted.
The remaining down-type quarks mix according to the

mass matrixMð2Þ
D

in Eq. (53). As the off diagonal terms are
much smaller than the diagonal ones, the dominant con-
tributions to the mass eigenvalues are the diagonal terms
themselves. Therefore, we have two heavy quarks with
masses proportional to w and v

φ

, and small mixing angles.
Finally, for the quarks with exotic charges, Að5=3Þ

a and
Bð−4=3Þ, we obtain the following mass matrices:

MA ¼ v
φ

ffiffiffi

2
p f

Ka

½2×2 and MB ¼ v
φ

ffiffiffi

2
p fK3 : ð57Þ

VI. ONE-LOOP EFFECTIVE POTENTIAL

In this section, we return to the study of the scalar
potential, now at loop level. As explicitly shown in Sec. IV,
the CP-even scalar field S in Eq. (34), defining the flat
direction of the potential, remains massless at tree level. In
what follows, making use of all the tree-level masses
derived in the previous sections for the different sectors
of the model, we calculate the one-loop effective potential
along the flat direction. Finally, we analyze the stability of
the effective potential and show that the field S, the scalon,
becomes massive as a result of the breaking of scale
invariance at loop level.
A small curvature in the scalar potential along the radial

coordinate, ϕr, is produced when one-loop terms, V1−loop,
are included. It implies that the tree-level minimum, hϕrin
in Eq. (28), picks a definite value hϕri, and its direction
shifts in a δΦ direction in the field space. In other words,
the one-loop minimum turns out to be hϕrinþ δΦ. The
basic equation determining hϕri is

0 ¼


∂V1−loopðϕrnÞ
∂ϕr



hϕri
: ð58Þ

Once hϕri is calculated using the previous equation, δΦ can
be found to first order in perturbation theory using
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0 ¼ PijδΦjhϕri2 þ


∂V1−loopðΦÞ
∂Φi



hϕrin
; ð59Þ

where Pij is the Hessian matrix in Eq. (30). Thus, we must
first find V1−loop. In the MS renormalization scheme, this is

V1−loopðϕrnÞ ¼ Aϕ4
r þ Bϕ4

r ln



ϕ

2
r

μ

2
0



; ð60Þ

where μ0 is the same renormalization scale in Eq. (27).
Moreover, the dimensionless coefficients A and B are

A ¼ 1

64π2hϕri4


X

S

nSm
4
S



ln
m2

S

hϕri2
−

3

2



þ 3
X

V

nVm
4
V



ln
m2

V

hϕri2
−

5

6



− 4
X

F

nCnMTr



M4
F



ln
M2

F

hϕri2
− 1



; ð61Þ

and

B ¼ 1

64π2hϕri4


X

S

nSm
4
S
þ 3
X

V

nVm
4
V

− 4
X

F

nCnMTr½M4
F 



; ð62Þ

where S ¼ H; h; H; A
φ

, V ¼ W; V; V0ðÞ; Z1;2, and
F ¼ E; Ẽ; N2; Ñ;U

ð1Þ;Uð2Þ;Dð1Þ;Dð2Þ;A;B. We also have
that mS, mV are the tree-level masses of the scalars and
vector bosons, respectively, as given in Eqs. (10), (13),
(33), (36), (37). Similarly,MF represents the mass matrices
of the fermions, leptons, and quarks, given in Eqs. (39),
(40), (43), (44), (49), (53), (57). Furthermore, nS;V ¼ 2 for
S ¼ h and V ¼ W; V; V0ðÞ, and equal to 1 otherwise.
nC ¼ 3 for F ¼ Uð1Þ;Uð2Þ;Dð1Þ;Dð2Þ;A;B, and equal to 1
otherwise. Finally, nM ¼ 1=2 for Majorana fermions, and 1
otherwise.
After obtaining V1-loopðϕrnÞ, we can use Eq. (58)

to find

hϕri ¼ μ0 exp



−

1

4
−

A

2B



; ð63Þ

showing that the scale of the symmetry-breaking parameter
hϕri is set by the renormalization scale μ0. Now, we can use
Eq. (63) to eliminate the explicit dependence of the
effective potential, V1−loopðϕrnÞ, on the renormalization
scale μ0, i.e.,

V1−loopðϕrnÞ ¼ Bϕ4
r



ln



ϕ

2
r

hϕri2


−

1

2



; ð64Þ

which is valid for B ≠ 0. It is important to realize that the
stationary point, hϕrin, is not a minimum unless B > 0,
because V1−loop is not bounded from below if B < 0. Note
that in the case of B ¼ 0, the scalar potential is purely
quartic, cf. Eq. (60). Therefore, as can be seen from
Eq. (62), the B > 0 condition imposes a constraint on
the masses of the particles in the model. More specifically,
the fermion masses must not dominate since they contribute
negatively to B.
Additionally, as a consequence of the scale-invariance

breaking, the following scalon mass is obtained from the
effective potential in Eq. (64):

m2
S ¼ 8Bhϕri2; ð65Þ

which is positive for a bounded-from-below potential since,
in this case, B > 0.
To determine the condition for the stability of the

effective potential, let us estimate B by taking into account
the vev hierarchy used throughout this paper, i.e.,
v ≪ w ≪ v

φ

ð≃hϕriÞ. Within this hierarchy, we can
neglect, at leading order, contributions coming from
particles with masses around the scales v and w, such as
all of those coming from the vector bosons. Thus, the
dominant contributions to B come from the heaviest
particles in the model and can be written as

B ≃

1

64π2v4
φ



m4
A
φ

− 4Tr



M4
E0 þM4

N2
þ 1

2
M4

N0

þ 3



X

2

i¼1

ðMðiÞ4
U

þM
ðiÞ4
D

Þ þM4
A
þM4

B



; ð66Þ

where the scalar field mass is given in Eq. (37), the
lepton masses come from Eqs. (41), (43), and (46), and
the quark masses can be obtained from Eqs. (49), (53),
and (57).
From Eq. (66), we see that the potential stability at one-

loop level can be determined by the interplay between the
heavy masses of the pseudoscalar A

φ

and the extra fermions
in the model. In order for B to be positive, the pseudoscalar
mass, mA

φ

, must be large enough to compensate for the

negative contributions coming from several heavy fields in
the fermion sector. To see how this can be achieved without
resorting to unnatural assumptions, we consider a simple
scenario where the Yukawa couplings associated with the
fermion masses proportional to v

φ

in Eq. (66) are of order
one. In this case, we obtain

B ≃

1

64π2



64jλ0
φ

j2 − 75

2



; ð67Þ

which is positive for jλ0
φ

j ≳ 0.77, a value still well within
the perturbative region. For such coupling constant values,
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the heavy fermions and pseudoscalar A
φ

have masses
around v

φ

¼ 103 TeV and therefore, lie outside the energy
range of current and near-future colliders. Similarly, for
jλ0

φ

j ≃ 1, the scalon mass is mS ≃ 580 TeV, which is also
too large to be produced at colliders in the foreseeable
future. Therefore, in this scenario, all the fields added to the
model in Sec. III, i.e., the scalar singlet and the vectorlike
fermions, which play a crucial role in the generation of SM
fermion masses as well as in the consistent breaking of
scale invariance, can be integrated out. The resulting
effective theory contains only the same degrees of freedom
as the 3-3-1 model with two scalar triplets shown in Sec. II.
However, contrary to what we have seen in Sec. II, all
particles are now massive as required by experimental
evidence.

VII. RESIDUAL SYMMETRY AND

PHENOMENOLOGICAL IMPLICATIONS

In addition to the conservation of the baryon number,
Uð1ÞB, the minimal scale-invariant 3-3-1 model presents
another accidental global symmetry, Uð1ÞN , which follows
from the imposition of the Z8 discrete symmetry. Although
the Uð1ÞN is spontaneously broken when the scalar triplets
acquire vevs, a residual symmetry Uð1ÞG, generated by

G ¼ −4T3 þ 2
ffiffiffi

3
p

T8 þ N; ð68Þ

where N represents the Uð1ÞN charge, remains exactly
conserved. In Table II, we show how the fields transform
under Uð1ÞN and Uð1ÞG.
Let us point out two important differences between

Uð1ÞG and the residual symmetry present in the 3-3-1
model with two Higgs triplets, discussed in Sec. II. First,
contrary to what happens in the model in Sec. II, neither
Uð1ÞN nor Uð1ÞG are Peccei-Quinn-like symmetries since
the associated ½SUð3ÞC2 ⊗ Uð1ÞN anomaly coefficient
vanishes identically. Second, Uð1ÞG is not chiral with
respect to any left-handed fermion triplet component and
its right-handed singlet counterpart; thus, as shown in
Sec. V, all fermions become massive.
Another distinctive feature arising from the residual

Uð1ÞG symmetry is the stabilization of the lightest among
the new particles that do not mix with the SM ones. This
can be more easily understood by considering the linear
combination of the two conserved global symmetries
generated by G0 ¼ G − 3B, where B is the field’s baryon
number. It is straightforward to see that the symmetry
generated by G0, Uð1ÞG0 , is conserved and so is its parity
subgroup defined by P ¼ ð−1ÞG0

. In Table III, we show
how the fields transform under Uð1ÞG0 and P. We see that
all the SM fields transform trivially under P. Consequently,
the lightest amongst the P-odd fields cannot decay into SM
particles and is stable. A parity symmetry resembling the

one obtained here has been observed and explored in the
context of dark matter stability in different 3-3-1 realiza-
tions [23,92–95].
If the lightest parity-odd field is electrically neutral, as it

is the case of N2 and V0, it can play the role of a stable dark
matter candidate1. As shown in the previous sections, the
assumed vev hierarchy implies thatmN2

ðv
φ

Þ ≫ mV0ðwÞ, so
that the complex neutral vector field V0 is the lightest
P-odd field. Despite its stability, the vector boson V0 could
only compose a small fraction of the dark matter in the
Universe, as pointed out in Refs. [21–23] for a different
model but which contains the same V and V0 vector
bosons. Nonetheless, V0 appears as missing energy in the
production process signals of the new heavy fermions, as
we comment in what follows.
At this point, it is important to note the expected signals

of the new fermions production predicted at the TeV scale.
Due to the hierarchy of the vevs, the new fermions that
could be first observed are those whose masses are directly
proportional to the scale w. These are the two Ua quarks
(which mix with the U1a quarks), the D quark (which mix
with theD1 quark), and the heavy Ei leptons, whose masses
are given, respectively, by Eqs. (49), (53), and (39). Such
fermions carry nontrivial charges under the Uð1ÞG0 sym-
metry and are odd under the parity P, as shown in Table III,
implying that they can only be produced in pairs. Also,
these fermions cannot decay into a final state containing
only SM particles, since all SM particles are P even.
Being the neutral complex gauge field V0 the lightest
P-odd particle, the production of the new fermions has a
signature of final states with SM particles plus missing
energy.
The model has then some characteristic signals that

could be studied at colliders. Let us assume that the D
quark is the lightest P-odd fermion and that its main decay
modes are those involving the gauge interactions,D → bV0

and D → tV−. Then, the pair production of the D quark
would lead to the following final states:

pp → DD̄ → bV0b̄V0†;

→ bV0 t̄Vþ
→ bV0 t̄tb̄V0†;

→ tV−b̄V0†
→ tt̄bV0b̄V0†;

→ tV−t̄Vþ
→ tt̄bV0 t̄tb̄V0†; ð69Þ

with the decay modes V−ðVþÞ→ t̄DðtD̄Þ→ t̄bV0ðtb̄V0†Þ,
where DðD̄Þ is a virtual intermediary state. Considering
the SUð3ÞL ⊗ Uð1ÞX symmetry breaking scale being
w ≃ 10 TeV, as in Sec. V for the SM fermion mass

1Notice that χ02, the only parity-odd neutral scalar, is the would-
be Goldstone boson absorbed by V0 and should not be considered
in this analysis.
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generation mechanism, assuming g ≃ 0.653, we have
mV0

≃ 3.264 TeV for the V0 mass, and, therefore,
mD ≥ mV0 þmb > 3.264 TeV. The first production signal
in Eq. (69) gives two b jets plus missing energy in the form
of V0, V0† vector bosons. Such a signal is similar to the one
in the searches of the bottom squark pair production, with
the missing energy carried by the lightest supersymmetric
particle (the neutralino), that has been investigated by the
CMS and ATLAS Collaborations within the contest of
simplified models [96,97]. But the limits resulting from
these experiments for the masses of the bottom squark and
the lightest supersymmetric particle are well below the D

quark and V0 masses we are considering here and, there-
fore, cannot be used to constrain the model. The remaining
three production signals in Eq. (69) would be more difficult
to observe because they involve more than two b jets, once
t → bWþ, plus decays fromW bosons. The production of
V0 in the next LHC run is, however, very unlikely due to
the assumed value for mV0. Nevertheless, direct signals of
the new fermions and vector bosons, whose masses are
directly related to the scale w, i.e., Ei, Ua, D and V, V0,
Z2, could show up in the high-luminosity LHC and the
projected future circular collider. It would be worthwhile to
perform a dedicated study of such signals, but this is
outside the scope of this work.
As observed in Sec. IV, the spectrum of the scalar

particles at the w scale is composed of the CP-even H,
which has a small mixing with the 125 GeV Higgs boson h,
and the charged scalar H. Their approximate masses,

mH ≈

ffiffiffiffiffiffiffi

2λ
χ

p

w and mH

≈

ffiffiffiffiffi

λ

0
ρχ

2

q

w, as given in Eqs. (36) and

(33), depend on the free parameters λ
χ

and λ0
ρχ

of the scalar
potential. The charged scalar H, defined in Eq. (32), is a

linear combination of ρ3 and χ1 and therefore, according to
Table III, is odd under P. Consequently, H must be
heavier than the assumed lightest P-odd particle V0. The
neutral scalar H, on the other hand, is P even and, as such,
it might be the lightest particle at the scale w. Such a
particle could be produced in the next run of the LHC. Due
to the hierarchy among the vevs, H couples mostly to the
new fermions Ei, Ua, and D, as seen from Eqs. (38) and
(48). Thus, in a proton-proton collider, the principal
production channel of H would be through gluon fusion,
as it happens in the case of the 125-GeV Higgs boson, with
the production cross section given by the sum of terms
directly proportional to the Yukawa couplings yUaa and yD34

in the operators yUaa
ffiffi

2
p HUaUa and

yD
34
ffiffi

2
p HDD. Although it is not

the aim of the present work, it would be interesting to
perform a phenomenological study of the distinct signals of
heavy Higgs boson H along with the other predicted
particles at the scale w. At last, we present in Table IV a
benchmark for the particle spectrum at the assumed scale
w ¼ 10 TeV. For the scalars, we obtain mH ¼ 800 GeV
and mH ¼ 3.5 TeV by assuming that λ

χ

¼ 3.2 × 10−3

and λ

0
ρχ

¼ 0.245, whereas for the fermion masses of
3.535 TeV, we took yE ¼ yU ¼ yD ≃ 0.5. Notice that,
despite being P even, it follows from Eq. (14) that the

TABLE III. Field charges under Uð1ÞG0 and its parity subgroup P ¼ ð−1ÞG0
. The fields not displayed here transform trivially under

these symmetries.

ψ iL eiR EiR QaL Q3L uiR UaR diR DR ΨiL;R KaL;R K3L;R ρ χ Wþ
μ

Vþ
μ

V0
μ

Uð1ÞG0
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!

4 −1
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!  

−2
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−3

!
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!  
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−3

2

!  
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!  

1
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!
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 þ
þ
−

!

þ −

 þ
þ
−

!  þ
þ
−

!

þ − þ −

 þ
þ
−

!  

−

−

þ

!  

−

−

þ

!  þ
þ
−

!  

−

−

þ

!

þ − −

TABLE IV. Mass benchmarks for the particles at the 3-3-1 scale
w ¼ 10 TeV. See the text for details.

H H V0
μ

V

μ

Z2μ Ei, Ua, D

Mass (GeV) 800 3500 3264 3265 3974 3535

TABLE II. Field charges under the Uð1ÞN and Uð1ÞG symmetries. The fields not shown above do not carry charges under these
symmetries.

ψ iL eiR EiR QaL Q3L uiR UaR diR DR ΨiL;R KaL;R K3L;R ρ χ Wþ
μ

Vþ
μ

V0
μ

Uð1ÞN 1 4 −1 2 0 −1 4 3 −2 −3 1 1 1 2 0 0 0

Uð1ÞG
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4

−1

!

4 −1

 

3

−1

4

!  

−1
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−2

!

−1 4 3 −2
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3
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0
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5
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neutral vector boson Z2 is necessarily heavier than the
lightest P-odd field V0.

VIII. CONCLUSIONS

In this paper, we have proposed the minimal scale-
invariant 3-3-1 model, based on the SUð3ÞC ⊗ SUð3ÞL ⊗

Uð1ÞX gauge symmetry and scale invariance. It extends the
effective 3-3-1 model with two scalar triplets [68], reviewed
in Sec. II, which, despite the attractiveness of a very
compact scalar spectrum, is not phenomenologically via-
ble. The issue being the existence of an accidental chiral
symmetry that forbids some of the standard fermions to
become massive. To generate tree-level masses to all the
fermions, in Sec. III, we have introduced vectorlike quark
and lepton triplets and lepton singlets, the latter necessary
for the generation of neutrino masses. Furthermore, the
scalar sector is kept as minimal as possible with only an
extra singlet being added to allow for consistent mecha-
nisms of dynamical symmetry breaking and fermion mass
generation.
The study of the fermion spectrum in Sec. V has shown

that, with the inclusion of the extra fermions, no accidental
chiral symmetry remains present, and all the fermions
become massive. This is easier to see with the use of the Z8

symmetry in Table I, which has at least two important
roles. First, it greatly simplifies the Yukawa and scalar
Lagrangians. Second, together with the gauge and scale
symmetries, the Z8 symmetry makes evident the seesaw
texture in most of the fermion mass matrices provided that
v
φ

≫ w ≫ v, where v
φ

is the scale associated with the
scalar singlet, w is the 3-3-1 breaking scale, and v is the
electroweak scale. This point is useful to mitigate possible
phenomenological issues associated with flavor changing
neutral currents because, in this case, the suppressed
mixing between light and heavy fermions are proportional
to v=v

φ

, vw=v2
φ

, or w=v
φ

. Thus, if, for instance, w ¼
10 TeV as expected for the 3-3-1 models, then v

φ

¼
103 TeV largely reduces such undesirable phenomena
without resorting to fine-tuning on the parameters of
the model.
Interestingly, once the seesaw mechanism takes place,

the heavy masses of the extra fermions, proportional to v
φ

,
suppress the masses of some of the standard ones. For
instance, the first two families of up-type quarks get seesaw
suppressed masses∝ ðw=v

φ

Þv, while the third family gets a
mass proportional to the electroweak scale v, providing
thus an explanation for the mass hierarchy between the
third and first two families when assuming, e.g., that v

φ

¼
103 TeV and w ¼ 10 TeV as previously shown. Similarly,
charged leptons get seesaw suppressed masses ∝ ðw=v

φ

Þv
suggesting an origin for the hierarchy between their masses
and the electroweak scale.

The minimal scalar sector, containing two triplets and
one singlet, is one of the most appealing features of the
proposed model. In Sec. IV, we have derived the analytical
conditions at tree level that must be satisfied by a bounded-
from-below potential, cf. Eq. (24), using the copositivity
method. We have seen that such conditions are automati-
cally satisfied when the Hessian matrix, Eq. (31), and
the scalar masses, Eq. (33), are positive semidefinite.
Moreover, we have shown that the potential exhibits a flat
direction, which defines the scalon field S. To assess the
consistency of the dynamical symmetry breaking à la

Coleman-Weinberg, in Sec. VI, we have calculated the
one-loop effective potential along the flat direction using
the Gildener-Weinberg method. In the limit v

φ

≫ w ≫ v,
we have shown that the stability of the effective potential is
basically determined by the interplay between the masses
of the pseudoscalar A

φ

and the heavy extra fermions. We
have found that the potential stability can be naturally
assured for couplings of order 1. In such a case, since
v
φ

¼ 103 TeV, the scalon, with a mass of ≈580 TeV, the
CP-odd A

φ

and the new fermions with masses ∝ v
φ

are too
heavy to be produced at current or near-future experiments.
Nonetheless, the 3-3-1 fields with masses proportional to
w ¼ 10 TeV—all the non-SM vector bosons, the scalars H
and H, and the fermions Ei, Ua, and D—could be
produced at the LHC and the Future Circular Collider.
Most of these fields, with the exception of H and Z0, are
odd under the residual parity symmetry P and as such
cannot decay into the P-even SM particles only. Thus, an
expected signature following the production and sub-
sequent decay of the P-odd particles in colliders is the
presence of the complex neutral vector boson V0, the
lightest P-odd particle, as missing energy.
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