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Abstract

The development of simulation-based methods, such as Markov chain Monte Carlo
(MCMC), has contributed to an increased interest in the Bayesian framework as an al-
ternative to deal with factor models. Many studies have used Bayesian factor analysis to
explore gene expression data. We are particularly interested in the application of a sparse
latent factor model (SLFM) based on sparsity priors (mixtures) to assess the significance
of factors. The SLFM measures how strong the observed coherent expression pattern is
in the data, which is an important source of information to evaluate gene activity. In the
literature, this type of model has shown better results than other approaches intended for
identification of patterns and metagene groups related to the underlying biology. However,
a full Bayesian factor model relying on MCMC algorithms has an expensive computational
cost, which makes it unattractive for general users. In this paper, we present the package
slfm which uses C++ implementation via Rcpp to improve the computational performance
of the SLFM within the widely used statistical tool R. We investigate real and simulated
microarray data related to breast cancer.
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1. Introduction

Markov chain simulation methods have been widely used to approximate the target posterior
distribution in a Bayesian statistical analysis; see Gamerman and Lopes (2006) for details.
These methods are general in the sense that they can be applied to explore different model-
ing strategies, including multilevel hierarchical structures with many parameters and latent
variables. The MCMC algorithms are based on iterations where samples are drawn sequen-
tially to build a Markov chain, the distribution of the current draws depends on the last
generated values. Therefore, the computational cost can be a challenge when applying these
algorithms to elaborated models. Naturally, this cost is also expensive for the analysis of
high-dimensional data sets (e.g., gene expression data).
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In large data set studies, most users would prefer to fit a simple model whose implementa-
tion runs faster than a robust model version proposed for the same problem. The lower the
computational speed of the algorithm, the less attractive is the gain in terms of inference
performance. As a possible solution for this difficulty, one could try to use computer clusters
to accelerate the analysis by separating (if possible) the calculations in parts to be run inde-
pendently in parallel, however, this solution may not be feasible for many reasons (e.g., no
access to a cluster, limited machine memory). Another strategy is to consider programming
languages that handle more efficiently the speed problem (e.g., C++).

Most programs for implementing and running C++ (e.g., OxEdit; Doornik and Ooms 2006)
do not have the resources and popularity of R (R Core Team 2019) for a full statistical
analysis. R is a well-known tool for statistical computing and inference, it runs in the main
operational systems with supporting packages being constantly updated/created by users. In
this paper, our main computational goal is to take advantage of the C++ speed together
with the R resources through the well known package Rcpp (Eddelbuettel and François 2011;
Francois and Eddelbuettel 2018; Eddelbuettel 2013) to implement Gibbs sampling (Gelfand
and Smith 1990) for a factor model designed to study presence/absence of gene activities. This
is a classification problem based on large expression data sets from Affymetrix microarrays.

In the literature, there are several studies using Bayesian factor analysis to identify patterns
and underlying structures in genomic data, they often show interesting results. For example,
West (2003) introduced the sparse latent factor models as a natural extension of sparse
regression models. The study applies variable selection priors to test the significance of
latent factors, which configures a mechanism to detect signature patterns in expression data.
Lucas, Carvalho, Wang, Bild, Nevins, and West (2006) assume sparsity hierarchical priors for
the detection of complex correlation patterns among genes. Carvalho, Chang, Lucas, Nevins,
Wang, and West (2008) use sparsity priors to deal with dimensionality reduction in latent
factor models.

We consider the sparse latent factor model structure proposed in Mayrink and Lucas (2015)
to take advantage of the information about the behavior of expression values across samples
(arrays). A consistent expression pattern suggests presence, whereas a random configuration
indicates absence of gene activity. The paper shows a superior performance of the factor
model over simpler classification methods: the usual MAS 5.0 P/A (Affymetrix 2001) and
the alternative PANP approach (Warren, Taylor, Martini, Jackson, and Bienkowska 2007).
Following this study, Duarte and Mayrink (2015) considered a more flexible version of the
model assuming individual priors for each loading, however, the trade-off for the superior
classification performance of the Bayesian model is a high computational cost, preventing its
practical application.

The main contribution of this paper is to present and explore the R package slfm (Duarte and
Mayrink 2019) created as a result of our efforts to use C++ within R via Rcpp to implement
and thus improve the computational performance of the Bayesian factor analysis for large gene
expression microarray data sets. This package includes functions for: model fitting, standard
preprocessing procedures, graphical and descriptive outputs. The package is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=

slfm. Here, we explain how to use the package and how to interpret its results.

The outline of this paper is as follows: Section 2 describes the microarray data and the detec-
tion problem motivating the factor analysis. This section also presents the sparse latent factor
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model and discusses the MCMC algorithm and some inference aspects. Section 3 shows results
confirming the good performance of the factor model and compares the computational cost
of three implementation versions (MATLAB, The MathWorks Inc. 2018, and R with/without
Rcpp). Section 4 explains how to use the R package slfm and includes some real data results.
Finally, Section 5 indicates the main conclusions and final remarks.

2. SLFM model

In this section, we briefly describe the data, the motivation of the study and the chosen model.

2.1. Microarray data

We work with oligonucleotide Affymetrix GeneChip microarrays containing the expression of
22,283 genes (or probe sets) with respect to a tumor under investigation (e.g., breast cancer).
In short, the data is obtained through a hybridization procedure involving complementary
nucleic acids. Single RNA nucleotide strands, 25 bases long, are extracted from the tumor
and labeled with fluorescent tags. These single strands are expected to connect to its comple-
mentary sequence, if found, in a specific spot within the small chip (array). The sequence in
each array spot was built in a lab, i.e., they are known. Next, the array is washed to remove
unmatched material and a laser is applied to activate the fluorescence. The light intensity
is scanned and translated into an expression measurement, a high observed intensity may
indicate many connections and thus the presence of gene activity.

In fact, a single observation in our data set is the light intensity registered for a probe (fraction
of a gene) represented in the array. In this study, the term “gene” is used as a reference to
a group of 11–20 probes (a probe set). In order to evaluate the presence of gene activity
one should evaluate the common behavior of all intensities belonging to a probe set in a
microarray (high brightness for all probes indicates presence). A combination of low and high
values, within the same array, suggests noise observations originated by different reasons:
cross-hybridization, dust, chip defect, etc.

We work with many arrays, i.e., we observe replications for the intensity of each probe. The
microarrays are treated as independent samples of expression values produced under the same
conditions, for the same type of tumor, but for different individuals. Given this configuration,
the coherent expression pattern observed across the arrays is a powerful source of information
to study the gene activity. We have strong evidence of gene activity, if all probes within a
probe set exhibit a similar pattern of intensities across arrays. Figure 1 presents two matrices
with distinct expression patterns across the columns. The left panel shows a strong coherent
pattern indicating presence of gene activity. The random pattern, exhibited in the right panel,
suggests absence of activity. The factor model is an appropriate tool to deal with these data
structures.

2.2. Preprocessing the data

Besides the elements affecting the observations within a chip (indicated in the previous sec-
tion), the intensities between chips are subject to distortions due to: the amount of RNA in
the sample, camera exposure time, scanner calibration, etc. As a result, it is necessary – this
is a standard procedure for microarray data – to preprocess the raw intensities to remove
unwanted noise effects before fitting any model.
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Figure 1: Image of data matrices displaying a strong (left) and random (right) patterns.

Let Y (k) be a (m(k) ×n) matrix, containing the raw data related to the probe set k, such that
each row represents a probe and each column represents a microarray. Following Mayrink and
Lucas (2015); Duarte and Mayrink (2015), we use the preprocessing steps: (i) organize the big
matrix Y = [Y (1), Y (2), . . . , Y (K)]⊤ with K being the total number of probe sets, (ii) divide
the probe intensities on each array by the global mean intensity of that array, (iii) apply the
log transformation, (iv) standardize the rows, (v) obtain the first principal component (pc1)
of Y and subtract it from each row of Y , i.e., Yi − Yi pc1 p⊤

c1. As a result, consider X(k) as the
preprocessed data matrix for the kth probe set (we will omit the “(k)” index in the further
notation).

The step (v) is required to remove a systematic effect common to all probe sets. This effect
could be modeled through a dependency parameter affecting all X(k)’s, which would bring
computational difficulties to fit the Bayesian model since its posterior distribution depends on
the whole data set. The preprocessing step (v) allows us to model each X(k) separately. If K
is too large (e.g., 22,283), the pc1 computation can be cumbersome due to lack of memory to
load Y . In this case, we randomly select a subset of Y (k) matrices for the principal component
analysis.

There are other preprocessing methods available in the literature, the most popular being
the robust multi-chip average (RMA) method; see Irizarry et al. (2003). We are not using
the RMA procedure for three main reasons: first, it includes a summarization step through
median polish producing a single probe set intensity, the RMA background adjustment step
relies on parametric modeling assumptions involving the exponential and normal distributions
to separate signal from noise terms and, finally, RMA does not use mismatch probes, which
also contain important information for the coherent pattern analysis. The adopted non-
parametric preprocessing method in our study retains both mismatch and perfect-match
probes.

2.3. SLFM-U model

The factor model presented here was evaluated in Duarte and Mayrink (2015). Let X be an
(m × n) preprocessed data matrix for some probe set. Again, the ith row represents a probe
and the jth column represents a sample (microarray). Consider the model X = αλ + ǫ, with
α being the (m×L) loadings matrix, λ is the (L×n) factor scores matrix and ǫ is the (m×n)
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noise matrix. Assume ǫij ∼ N(0, σ2
i ), i.e., each row has a different variance. In terms of

notation, consider that L is the number of factors in the model, σ2 = (σ2
1, σ2

2, . . . , σ2
m)⊤ and

σ2
−i = (σ2

1, . . . , σ2
i−1, σ2

i+1, . . . , σ2
m)⊤.

We want to evaluate how coherent the patterns in the rows of X are. As indicated in Mayrink
and Lucas (2015); Duarte and Mayrink (2015) a model assuming L = 1 would be appropriate
for this task, i.e., the coherent pattern in X could be explained by a non-null vector α
multiplying the scores in λ (vector λ represents the underlying pattern). The single factor
specification has lower computational cost, which is the main focus of this paper.

In a conjugate analysis, we assume the priors: σ2
i ∼ IG(a, b) (Inverse Gamma) and λj ∼

N(0, 1). The latter choice is a standard strategy in factor analysis to control the magnitude
of λ within the product αλ. We consider a univariate (U in SLFM-U) spike and slab mixture
prior for each loading. These bimodal sparsity promoting priors are key elements in the
structure of the model. Their formulation originated in the context of Bayesian variable
selection, and it has been the subject of substantial research; see George and McCulloch
(1993, 1997); Geweke (1996). There are two types of mixtures that can be used:

• A mixture with degenerated and normal components (MDN): The spike part of the mix-
ture is a distribution degenerated at 0. Consider the formulation: αi ∼ (1 − Zi)δ0(αi) +
ZiN(0, ω1), where ω1 > 0 is fixed, δ0(αi) means P(αi = 0) = 1.

• A mixture with two normal components (MNN): The spike part of the mixture is a
normal distribution with very small variance. Consider the formulation: αi ∼ (1 −
Zi)N(0, ω0) + ZiN(0, ω1), with ω0 > 0 small and ω1 large with fixed values chosen by
the researcher. As opposed to MDN, this mixture allows the classification of loadings
too close to zero as not significant.

Also, Zi ∼ Bernoulli(qi) and qi ∼ Beta(γ1, γ2). Note that qi is a prior probability weight
for the component indicating αi 6= 0. In contrast to this configuration, Mayrink and Lucas
(2015) model the whole vector α through a multivariate mixture.

The likelihood can be expressed in two different ways. Depending on the parameters being
evaluated, one version is more suitable than the other to simplify the posterior calculations.

• Likelihood 1: Denote X·j as the jth column of X, then (X·j |α, λj , σ2) ∼ Nm[αλj , D]
with D = diag(σ2

1, σ2
2, . . . , σ2

m). Assuming conditional independence between columns
of X, we have p(X|α, λ, σ2) =

∏n
j=1 p(X·j |α, λj , σ2).

• Likelihood 2: Let Xi· be the ith row of X, then (X⊤
i· |αi, λ, σ2

i ) ∼ Nn[λ⊤αi, σ2
i In]. The

conditional independence between rows provides p(X|α, λ, σ2) =
∏m

i=1 p(Xi·|αi, λ, σ2
i ).

The full conditional posterior distributions, required in Gibbs sampling, are:

• Likelihood 1 provides
(λj |α, λ−j , σ2, X) ∼ N(Mλ, Vλ)

with Vλ = (α⊤D−1α + 1)−1 and Mλ = Vλ(α⊤D−1X·j).

• It holds
(σ2

i |α, λ, σ2
−i, X) ∼ IG(A, B),

with A = a + (n/2) and B = b + (1/2)(Xi·X
⊤
i· − 2αiλX⊤

i· + αiλλ⊤α⊤
i ).
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• If Zi = 1 (using Likelihood 2),

(αi|α−i, λ, σ2, Z, X) ∼ N(M[α,1], V[α,1])

with V[α,1] = [ 1
ω1

+ 1
σ2

i

∑n
j=1 λ2

j ]−1 and M[α,1] = V[α,1][
1

σ2
i

∑n
j=1 λjXij ].

• If Zi = 0,

– with MDN,
(αi|α−i, λ, σ2, Z, X) ∼ δ0(αi);

– with MNN and using Likelihood 2,

(αi|α−i, λ, σ2, Z, X) ∼ N(M[α,0], V[α,0])

with V[α,0] = [ 1
ω0

+ 1
σ2

i

∑n
j=1 λ2

j ]−1 and M[α,0] = V[α,0][
1

σ2
i

∑n
j=1 λjXij ].

• It holds
(qi|Zi) ∼ Beta(γ∗

1 , γ∗
2),

with γ∗
1 = γ1 + Zi and γ∗

2 = γ2 + 1 − Zi.

• The mixture posterior distribution for αi has the probability weight:

– If MDN,

q∗
i = p(Zi = 1|α, λ, σ2, qi, X) =

qi

qi +
N [0|M[α,1],V[α,1]]

N [0|0,ω1] (1 − qi)
. (1)

– If MNN,

q∗
i = p(Zi = 1|α, λ, σ2, qi, X) =

qi

qi + N [0|0,ω0]
N [0|M[α,0],V[α,0]]

N [0|M[α,1],V[α,1]]

N [0|0,ω1] (1 − qi)
. (2)

2.4. MCMC algorithm

We apply the Gibbs sampling algorithm to sample from the joint posterior distribution
p(α, λ, σ2|X). The required full conditional distributions are given in the previous section. In
terms of prior specifications, slfm allows the user to set custom values for the hyperparame-
ters: a, b, γ1, γ2, ω0 and ω1. The user can also select the type of mixture (MDN or MNN) to
model the loadings.

The first step of the algorithm is to set initial values for all parameters. Next, conditional on
the current values of other parameters, consider the updating sequence:

[1st] sample σ2
i from IG(A, B),

[2nd] sample Zi from Bernoulli(q∗
i ) with (1) (if MDN prior) or with (2) (if MNN prior),

[3rd] sample qi from Beta(γ∗
1 , γ∗

2),

[4th] if Zi = 1, sample αi from N(M[α,1], V[α,1]),
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[5th] if Zi = 0 and MDN, set αi = 0, otherwise (Zi = 0 and MNN) sample αi from
N(M[α,0], V[α,0]),

[6th] sample λj from N(Mλ, Vλ).

Repeat this updating sequence until convergence is observed and the posterior sample is
obtained.

A fast convergence can be observed for all parameters of the factor model proposed for the
detection problem evaluated in this paper. A convergence study is presented in Section 3.1.

2.5. Estimation and interpretation

Assuming a quadratic loss function, we consider the posterior mean to estimate the parameters
and thus minimize the corresponding expected loss. For σ2

i , λj , Zi and q∗
i the posterior

sample includes the values generated after the burn-in period. An integer lag argument may
be specified by the user to select spaced observations for the final sample, which is a well
known strategy to reduce the chain’s autocorrelation. If the lag is set to 1, all iterations are
saved after the burn-in.

For each αi, the generated value in the current iteration – taking into account the lag separa-
tion – is saved together with the indicator Zi. The inference for the ith loading is developed
separately for each group (samples with Zi = 1 and Zi = 0). This strategy prevents a deceiv-
ing inference based on a combined chain involving MCMC draws from both posterior mixture
components. In order to test, whether αi is “Significant” (S), “Inconclusive” (I) or “Not
significant” (N), we evaluate the 95% highest probability density (HPD) credible interval of
q∗

i . Let Linf and Lsup be the interval’s lower and upper limits. The ith loading is said: “S”
if 0.5 < Linf (take the posterior mean to estimate αi), “I” if Linf < 0.5 < Lsup, and “N”
if Lsup < 0.5 (αi is estimated as 0). Looking at all αi’s classifications, the most frequent
response will indicate “Presence” (P), “Marginal” (M) or “Absence” (A) of gene activity. In
this work, we consider the package coda (Plummer, Best, Cowles, and Vines 2006) to compute
HPD intervals.

3. MCMC implementation

R can be very slow for iterative simulation-based algorithms such as Gibbs sampling and other
MCMC methods. This is because R is an interpreted language and every instruction must
be compiled to native machine code at runtime. Compiled languages such as C/C++ are a
faster alternative for this type of algorithm.

In order to improve the computational performance and avoid MCMC iterations, one may also
think about fitting the proposed factor model through the approximate Bayesian inference
produced by the INLA method (Rue, Martino, and Chopin 2009). This alternative is not
feasible here for two main reasons: (i) INLA only works for a subclass of structured additive
regression models (latent Gaussian models) and the proposed factor model has a multiplicative
structure involving αi and λj , (ii) we assume a sparsity prior (mixture) for αi which cannot
be implemented in INLA.

Despite the inferior computational performance, R has attractive benefits such as functions
that make it easy to read data, produce graphical results and generate summary statistics.
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Implementation Minimum 25% percentile Median 75% percentile Maximum

Rcpp 143.94 148.10 149.85 152.18 160.70
R 6201.09 6311.93 6345.47 6402.57 6573.78

MATLAB 4228.16 4231.26 4238.36 4249.24 4257.55

Table 1: Execution times (in milliseconds) to fit the SLFM-U MNN to 100 data matrices
(20 × 100).

Rcpp is an R package allowing the user to embed C++ code into R, thus combining the
advantages of C++ speed and the R utilities. Note that it is possible to write C code to be
used in R without Rcpp, but this package provides a clean interface making this task easier.
In addition to Rcpp, we consider the R package RcppArmadillo (Eddelbuettel and Sanderson
2014) which integrates the Armadillo templated linear algebra library to simplify the code in
terms of matrix and vector operations.

The usual Gibbs sampling implementation of the proposed factor model in R, without Rcpp,
is extremely simple. If working in the R environment with gene expression data, the user
can take advantage of several contributed packages available on CRAN or integrated into the
Bioconductor project (https://www.Bioconductor.org/), a collaborative effort providing
softwares for computational biology (Gentleman et al. 2004). Another interesting program-
ming language simple to implement and widely used in gene expression research is MATLAB.
The Bioinformatics Toolbox, in MATLAB, provides functions and algorithms for microarray
analysis and other bioinformatics workflows. MATLAB can be faster than R, especially in
applications involving large matrices operations such as singular value and Cholesky decom-
positions, however, the combination R with Rcpp will be computationally superior for the
factor model explored in this study (see next section).

3.1. Comparative studies

All studies developed in this section consider the following prior specifications: σ2
i ∼ IG(a =

2.1, b = 1.1) with expected value 1 and variance 10, qi ∼ Beta(γa = 1, γb = 1) = U(0, 1) and
the components N(0, ω0 = 0.01) (for MNN) and N(0, ω1 = 10) (MNN and MDN).

The first study comparing the three implementation options (R, Rcpp and MATLAB) involves
100 randomly generated (20 × 100) data matrices with Xij ∼ N(0, 1), for i = 1, . . . , 20 and
j = 1, . . . , 100. The focus here is to investigate the execution time required to fit the SLFM-U
(MNN version) to the 100 simulated random matrices. We consider 1,000 iterations of the
Gibbs sampling algorithm. Table 1 shows a summary of the results obtained using the auxil-
iary functions (system.time in R) and (cputime in MATLAB) to measure the computational
time. All simulations were performed on the same computer with Intel Core i5 processor and
4.00 GB memory.

Table 1 indicates that the R implementation is the slowest option, whereas Rcpp is remarkably
the fastest implementation. The MATLAB version for the SLFM-U is slightly faster than the
usual R version (the median indicates 33% less time to complete the task). There is a large
gap between the median execution time of the Rcpp version and the other two, i.e., Rcpp

takes 97.6% and 96.5% less time than R and MATLAB, respectively.

Now, we present a convergence analysis focused on the Rcpp implementation of the SLFM-U.
The main aim is to show that the Gibbs sampling algorithm is converging, as expected, to
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Figure 2: Trajectory of two chains (gray and black) generated for α1, λ1 and σ2
1 via the

factor model, with mixture MNN, applied to the simulated data matrix with strong pattern
in Figure 1. The horizontal line indicates the true parameter value.

MDN prior MNN prior

Param. Strong Weak Strong Weak

α 100.0% (1.0450) 97.5%∗ (1.0475)∗ 100.0% (1.1727) 97.5% (1.0292)
λ 88.0% (1.0067) 94.4% (1.0004) 98.8% (1.0880) 99.2% (1.0017)
σ2 95.0% (1.0006) 100.0% (0.9999) 92.5% (1.0002) 90.0% (1.0002)

∗Value obtained for a chain mostly constant at zero due to δ0(αi).

Table 2: Percentages of Geweke z score statistics within the interval (−1.96, 1.96). In paren-
theses, Gelman and Rubin potential scale reduction factor estimate based on two chains for
α1, λ1 and σ2

1.

the target distribution. Consider here the following MCMC setup: burn-in period with 500
iterations, lag = 1 and a posterior sample of size 5,000. The relatively short burn-in was chosen
based on preliminary analyses evaluating graphs displaying the trajectory of the chains. They
indicate that the convergence status is visually true after few iterations (less than 500) for all
parameters. Figure 2 shows trace plots representing the trajectory of two independent chains
generated for α1, λ1 and σ2

1 in the scenario “MNN + Strong pattern”. The behavior of the
chains for λ1 and σ2

1 are quite similar in other mixture and pattern configurations. The chain
of α1 also behaves, in terms of autocorrelation, as shown in Figure 2 for the scenario “MDN +
Strong pattern”. In “MNN + Weak pattern” the mixing of α1 resembles the Figure 2 scenario,
but the trajectory is concentrated around zero, as expected for weak pattern data. In “MDN
+ Weak pattern”, most values (≈ 98% of the iterations) are 0 due to δ0(α1), therefore, the
corresponding trace plot is mostly constant at zero.

In this convergence study, we have also applied, for some parameters, the diagnostic methods
proposed in Geweke (1992) and Gelman and Rubin (1992); they are available in the R package
coda. We remind the reader that Geweke’s diagnostic is based on a test for equality of the
means of the first and last part of a Markov chain after a burn-in period (by default the first
10% and last 50%). If the posterior sample is drawn from the stationary distribution, the two
means are equal and the test statistic asymptotically follows the N(0, 1). Gelman and Rubin’s
diagnostic is based on the analysis of more than one chain generated for the same parameter.
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Implementation Experiment execution Average execution time
time (min) per matrix (sec)

Rcpp 4.67 0.56
R 169.02 20.28

MATLAB 159.67 19.16

Table 3: Execution times for the three SLFM-U implementations. Column 2: time (in
minutes) required to fit all X matrices. Column 3: average time (in seconds) required to
fit a single X matrix. These matrices may differ in number of rows (number of columns =
251).

In brief, a “potential scale reduction factor” is calculated for each chain and convergence is
confirmed when this statistic is close to 1.

Table 2 presents results for both convergence diagnostic methods. For the chain of each θi in
θ (general notation), we calculate the Geweke z scores and then evaluate the percentage of
these z scores within the N(0, 1) symmetric 95% interval around zero. Note that the smallest
percentage is 88.0% suggesting that most chains have passed the convergence test. In order
to improve these results, the user can fit the model assuming a longer chain and a larger lag.
Table 2 also shows (in parentheses) the Gelman and Rubin’s diagnostic statistic for the chains
of α1, λ1 and σ2

1. As can be seen, most values are close to 1 suggesting convergence. The
largest statistic (1.1727) is obtained for α1 in the scenario “MNN + Strong pattern”.

Before moving to the second comparative study, we advise the reader that the final posterior
estimates may differ when fitting the proposed model to the same data matrix in two con-
secutive and independent runs of the MCMC. This result is expected and it is a consequence
of the MCMC method, which generates different chains for the same parameter in each run.
Figure 2 shows this difference and also highlights the fact that both chains converge to the
same region in the parameter space. The estimates tend to be more consistent with longer
runs of the Gibbs sampler.

In our second comparative study, we have simulated 500 matrices based on the data set
presented in Miller et al. (2005), which involves 251 Affymetrix oligonucleotide microarrays
representing independent samples containing information about the expression of genes in
breast cancer tumors. The following steps were considered to generate the data:

1. Compute the correlation matrix displaying the linear association between rows (probes)
of X for each one of the 22,283 real data matrices. This strategy gives us an insight
about the pattern strength in each X.

2. Select 500 matrices, 200 with overall low correlations and 300 with overall moderate to
high correlations.

3. Fit the SLFM-U to each of those selected 500 matrices and then obtain the posterior
means {α̂, λ̂, σ̂2}. The MCMC setup is as follows: burn-in = first 500 iterations, lag
argument = 1, posterior sample size = 1,500.

4. Simulate 500 matrices using X = α̂λ̂ + ǫ, with ǫ ∼ N(0, diag{σ̂2}). Set α = 0 for the
200 matrices with low correlation.

Table 3 shows again that the Rcpp version is the fastest option. The conclusions here are the
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same as those obtained from Table 1. It is important to emphasize that the Rcpp implemen-
tation spends, on average, less than 1 second to run the MCMC for a single X.

In this simulation study involving 200 weak pattern and 300 strong pattern matrices, we have
observed that all weak pattern cases were correctly detected as “Absent” by both models
(MDN and MNN mixture). All strong pattern cases were correctly identified as “Present” by
the MNN model, whereas the MDN mixture provided 98% of correct classification “Present”,
0.33% of incorrect “Absent” (1 matrix out of 300) and 1.67% “Marginal”. The strong pattern
group involves matrices with intermediate to strong patterns. The MNN model can manage
well intermediate cases, on the other hand, the MDN model has some difficulty to estimate
q∗

i for a close to random pattern matrix. In this case, the 95% HPD interval of q∗
i is too

wide (including 0.5) due to the δ0(αi) component, which favors “I” calls for several loadings.
A majority of rows with “S” calls is thus not observed given that some of these rows have
received the “I” call. These results are similar for all three implemented versions of the factor
model.

In order to evaluate the inference and MCMC performances of all implemented versions of the
SLFM-U, we have considered the two (40×251) simulated matrices shown in Figure 1. These
matrices were simulated using the same procedure indicated in Steps 3 and 4 of the previous
analysis involving 500 matrices. Here, consider an MCMC setup with burn-in period of 2,000
iterations, lag argument = 1 and posterior sample size = 1,000. We explore results using two
statistics: mean squared error (MSE) and effective sample size (neff). Their formulations are
given by:

MSE(θ) =
1

d

d∑

i=1

(θi − θ̂i)
2 and neff =

N

1 + 2
∑H

h=1 ρ̂h

. (3)

Denote θ = (θ1, . . . , θd) as the vector of the true values for d parameters of the model, and θ̂ is
the corresponding vector of posterior estimates. We evaluate the bias of the model through the
MSE (large MSE means high bias). The statistic neff in (3) summarizes the autocorrelation
of the chain. Let N be the size of the posterior sample (after burn-in period) and

ρ̂h =

∑N
t=h+1[θ

(t)
i − θ̄i][θ

(t−h)
i − θ̄i]

∑N
t=1[θ

(t)
i − θ̄i]2

with θ̄i =
N∑

t=1

θ
(t)
i

is the estimated autocorrelation of lag h = 1, . . . , H for a suitably large value of H < N . In

our analysis, we set H = 50. Finally, consider θ
(t)
i as the tth value of the chain for θi.

An important issue in the analysis of serial data (e.g., a Markov chain) is to decide whether
the observations come from a process based on independent random variables. In practice,
a chain obtained via MCMC has an autocorrelation structure defining dependence between
near observations. A strong autocorrelation can compromise the quality of the posterior
estimates. In a random sample, autocorrelations are 0, and thus neff = N . In most cases,
the denominator of neff is larger than 1 resulting in neff < N , which suggests that the actual
amount of information available is lower than that of a random sample. The neff statistic,
explored in this paper, is obtained from chains built with lag argument 1. The user may
choose a larger lag to reduce autocorrelation and increase neff. Further details and examples
regarding the neff statistic can be found in Gamerman and Lopes (2006) and Mayrink and
Gamerman (2009).

Figure 3 compares the posterior means of some parameters obtained from each implemented
version of the model. The graphs also include the true values and horizontal bars (from
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αi (a) αi (b)

λj (c) λj (d)

σ2
i (e) σ2

i (f)

Figure 3: Posterior means (three black circles, one for each implementation), Rcpp posterior
distribution (horizontal bars) and true values (vertical bar mark). Estimates are obtained for
a matrix with strong pattern (Panels: a, c, e) and a matrix with random pattern (Panels: b,
d, f). In each panel we have: MDN (left) and MNN (right).
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Median amp. MSE Median neff (%)

Implemen. Prior α λ σ2 α λ σ2 α λ σ2

Rcpp MDN 0.231 0.256 0.054 0.004 0.007 0.040∗ 1.327 3.252 117.895
MNN 0.223 0.257 0.056 0.002 0.006 0.040∗ 1.340 3.503 107.271

R MDN 0.202 0.247 0.054 0.006 0.006 0.035∗ 1.467 4.640 116.404
MNN 0.185 0.259 0.055 0.001 0.003 0.035∗ 1.533 5.204 104.560

MATLAB MDN 0.174 0.235 0.054 0.006 0.006 0.035∗ 2.104 9.305 111.982
MNN 0.174 0.244 0.053 0.001 0.003 0.035∗ 2.179 10.131 100.489

∗Value should be multiplied by 10−2 for original scale.

Table 4: Median amplitude of the 95% HPD intervals, mean squared error (MSE) and median
effective sample size relative to the posterior sample size (100 neff/N %) for the SLFM-U
fitted to a simulated strong pattern matrix. Results for MATLAB were obtained with version
R2010a.

Median amp. MSE Median neff (%)

Implemen. Prior α λ σ2 α λ σ2 α λ σ2

Rcpp MDN 0.000 3.862 0.051 0.899 0.735 0.023∗ 100 136.899 120.662
MNN 0.197 3.342 0.054 0.878 0.556 0.024∗ 4.434 7.322 81.480

R MDN 0.000 3.840 0.049 0.899 0.740 0.023∗ 100 106.571 123.693
MNN 0.202 3.411 0.053 0.887 0.666 0.026∗ 3.394 5.925 72.402

MATLAB MDN 0.000 3.855 0.051 0.899 0.745 0.023∗ 100 107.828 110.247
MNN 0.201 3.355 0.054 0.885 0.632 0.026∗ 3.482 8.172 82.349

∗Value should be multiplied by 10−2 for original scale.

Table 5: Median amplitude of the 95% HPD intervals, mean squared error (MSE) and median
effective sample size relative to the posterior sample size (100 neff/N %) for the SLFM-U fitted
to a simulated random pattern matrix. Results for MATLAB were obtained with version
R2010a.

the Rcpp version) summarizing the posterior distribution. The results are similar for the
parameters not included in these graphs. The posterior estimates displayed in Figure 3 for
the three implemented versions are, as expected, close to each other and, in most cases, close
to the targeted true value. In addition, the majority of true values are within the interval
region covered by the posterior distribution. Panels (a) and (b) summarize the αi samples
from the posterior mixture component with the highest probability. As can be seen, in the
strong pattern scenario (a) the model correctly generates values from the Gaussian component
with large variance. Panel (b) shows the weak pattern data analysis, with posterior estimates
concentrated at (MDN) or around (MNN) zero. Panel (d) shows that the range of the posterior
distribution is too wide compared to those exhibited in Panel (c). This can be explained by
the fact that the loadings in the weak pattern analysis are estimated as 0 (or too close to 0)
and they multiply the λj ’s, therefore, the magnitude of the factor scores does not matter for
the model fit, which makes these latent variables difficult to estimate in this scenario.

Tables 4 and 5 show summary statistics for all parameters, i.e., not only those exhibited in
Figure 3. We evaluate the MSE in (3), the median HPD amplitude and the median percentage
100 neff/N%. As an example, we calculate the HPD amplitude (or the effective sample size
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percentage) for each αi, i = 1, . . . , m, and take the median of these results to report in the
tables. The same procedure is applied to λ and σ2. The median is chosen for the analysis
since it is less affected by outliers and this is a concern when fitting the mixture for the
loadings. Note that if few elements in α are related to the degenerated component, their
HPD amplitudes will be 0 (the chain is constant at 0) configuring atypical values among the
amplitudes computed for other αi’s.

Looking at each parameter, Table 4 shows that the amplitude of the HPD intervals for Rcpp,
R and MATLAB are, as expected, similar and small. The biases are also small, suggesting
a good performance of the model in terms of inference (the largest MSE is 0.007). Table 5
correctly indicates MSE and median amplitude as 0 for loadings associated with the degen-
erated component of the MDN mixture. In the random pattern configuration, the median
HPD amplitudes for λ are larger than those for other parameters. This can be explained by
the product issue in αiλj (with αi ≈ or = 0) as mentioned above. In both pattern scenarios,
the smallest median HPD amplitude and MSE are observed for σ2.

In some cases, not often, negative (near zero) estimates ρ̂h may be obtained (for some h)
leading to −1 < 2

∑H
h=1 ρ̂h < 0. As a consequence, we may observe neff slightly larger than

N . This result does not compromise the conclusion about the autocorrelation. Here, the
autocorrelation level should be regarded as low. One may consider an alternative version of
(3) using |ρ̂h|, however, this will ignore possible negative associations between observations
and determine smaller effective sample sizes.

Tables 4 and 5 also present the median effective sample size percentage for each vector of
parameters, type of implementation and mixture model. Results of this statistic for αi are
based only on the iterations having values generated from the mixture component with the
highest probability. Note that the autocorrelation is higher for the loadings, especially for
the strong pattern scenario. Here, the largest percentage is 2.179% indicating that the level
of information in the posterior sample corresponds to a small portion of the information in a
completely random sample with the same size. In the MDN model fit for both data matrices,
the chains autocorrelations for σ2 are low (neff percentage near 100%). This is also true for
the MNN model in the strong pattern scenario, but the percentage is smaller (72.4 to 83.3%)
for the MNN model in the weak pattern case.

In Table 5, for a weak pattern matrix and assuming MDN, the median neff percentages for
the loadings are 100%. In this case, most iterations are related to δ0(αi) defining a chain
constant at zero (few iterations are associated with the normal component). Given the higher
probability for δ0(αi) in this situation, we assume the number of iterations such that αi = 0
(i.e., Zi = 0) as the effective sample size. Table 5 also shows that, assuming MNN, the effective
sample sizes for α and λ (weak pattern model fit) tend to be larger than the corresponding
results for a strong pattern model fit.

In summary, all versions of the model (MDN and MNN) indicate good inference results
with small HPD amplitude and MSE. Again, the autocorrelation can be considered high in
some chains, however, the user may choose a larger lag argument to reduce the association
between consecutive observations. As expected, all implementation versions show similar
results reinforcing the fact that, in this paper, the same model has been implemented in
Rcpp, R and MATLAB.



Journal of Statistical Software 15

4. Package usage

In this section, we show how to use the slfm package taking into account the same real data
set for breast cancer (Miller et al. 2005) with 251 microarrays evaluated in the previous sec-
tion. The latest version of slfm should always be available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=slfm. Run the following com-
mands to install and load the package.

R> install.packages("slfm")

R> library("slfm")

The main functions are process_matrix, slfm and slfm_list. Both slfm and slfm_list fit
the SLFM-U model, however, the first function evaluates a single preprocessed matrix and the
second one evaluates a group of preprocessed matrices fitting the factor model to each one of
them. The function slfm returns an object containing MCMC outputs that can be explored
through coda for inference. The function slfm_list returns the P/M/A classification and a
measure of the pattern strength.

Before fitting the SLFM-U, it is necessary to preprocess the available data matrices; see Sec-
tion 2.2 for details. Recall that the preprocessing procedure takes into account the information
from all probe sets and all available samples to background correct and normalize the observed
light intensities, thus removing noise effects within and across the arrays. In other words,
we cannot preprocess a single matrix representing a probe set, the function process_matrix

requires a set of matrices to work properly. Each matrix should be in a tab-separated val-
ues (TSV) file inside a directory accessible to R. Those files can be distributed in different
sub-directories, under the same main directory, in order to overcome the operating system
limitation for the number of files under a single directory. The command to preprocess a set
of matrices is given below:

R> process_matrix("original_folder", "processed_folder", sample_size)

The preprocess function will calculate the first principal component (pc1) based on a random
sample (size sample_size) of data matrices. The matrices to be selected are those available in
the folder "original_folder". A big matrix, used to compute the pc1, is created allocating
each selected matrix below the others. The random selection is a strategy to avoid problems
related to the computer memory limitations, for example, Miller et al. (2005) investigate a
data set with 251 microarrays representing 22,283 probe sets (matrices X), which would be
problematic to load and manipulate with ordinary computers. The larger the value specified in
sample_size, the more information is used to determine the pc1. The preprocessed matrices
are saved in the folder "processed_folder" with the same folder structure established in the
original directory. After the preprocessing procedure, we can evaluate the patterns and get
the SLFM-U P/M/A classifications using the next command:

R> slfm_list("processed_folder")

This is a short version of slfm_list assuming default values to configure the SLFM-U and
the MCMC. A detailed description of all arguments is as follows:

• path: directory containing the set of preprocessed matrices for classification;



16 slfm: Evaluate Coherent Patterns in Microarray Data in R

• recursive: Boolean indicating whether to look inside sub-directories (default = TRUE);

• a: shape parameter of the Inverse Gamma prior distribution (default = 2.1);

• b: scale parameter of the Inverse Gamma prior distribution (default = 1.1);

• gamma_a: 1st shape parameter of the Beta prior distribution (default = 1);

• gamma_b: 2nd shape parameter of the Beta prior distribution (default = 1);

• omega_0: variance of the “spike” component in the mixture prior (default = 0.01),
unused if MDN;

• omega_1: variance of the “slab” component of the MDN or MNN prior (default = 10);

• sample: size of the posterior sample (default = 1,000);

• burnin: size of the burn-in period (default = nearest integer to sample × 0.25);

• lag: size of the lag to select observations for the posterior sample (default = 1). The
total number of iterations is burnin + lag × sample;

• degenerate: Boolean indicating whether the MDN mixture is used (default = FALSE).

Note that the default prior specifications are the same vague priors considered in the study
developed in Section 3.1. The output of the function is a ‘data.frame’ containing the names
of the X matrix files, their P/M/A classifications and the percentage of “Significant” loadings
indicating the strength of the coherent pattern:

File Classification Significant %

1 X_001 Absent 0.0000

2 X_002 Absent 0.0000

3 X_003 Absent 0.0000

4 X_004 Absent 0.0000

5 X_005 Absent 0.0000

6 X_006 Absent 0.0000

7 X_007 Marginal 0.1250

We have applied the function slfm_list to the data set in Miller et al. (2005) to generate
detection calls for 22,283 probe sets. Consider the default prior specifications and MCMC
configurations. Both models (MDN and MNN) were fitted to the real data and their percent-
age of significant loadings were investigated. Figure 4 shows an output based on artificial data
resembling the behavior of the real case. It took 4.54 hours to generate all detection calls.
As can be seen, Panel (b) indicates that these models tend to agree in terms of magnitude
of percentages, i.e., an increasing pattern can be observed in both columns. Panel (a) shows
that, for both models, the proportion of significant αi’s is larger than 50% for most probe
sets (approximately 90.3% of the probe sets for MNN and MDN). Recall that the criterion
to define the P/M/A calls in slfm is the most frequent S/I/N loading classification. This
strategy provides 97.7% and 94.1% of “P” calls for MNN and MDN, respectively. The user
is free to choose a more restrictive criterion, for example, one may assume a “P” call for a
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(a) (b)

Figure 4: Percentages of significant loadings for each probe set in a simulation resembling
Miller et al. (2005). Panel (a): percentages for the MNN model (continuous line), MDN model
(dashed line) and the 50% level (horizontal line). Here, the values were sorted separately for
each model. Panel (b): Image of percentages sorted with respect to the MNN model.

probe set only if the percentage of significant loadings is higher than say 90% (in this case,
we have MNN = 15.4% and MDN = 37.1 % of “P” calls).

The package also provides a function plot_matrix to create an image graph for a visual
assessment of the data pattern. The main argument of this function is the data matrix under
study; see the command below. Other optional arguments, and their default values, are:
standardize.rows = TRUE to standardize the rows of the target matrix, reorder.rows =

TRUE and reorder.cols = TRUE to reorder the rows and columns of X with respect to their
median values, and high.contrast = TRUE to improve the color contrast. The images shown
in Figure 1 were obtained via plot_matrix.

R> plot_matrix(single_matrix)

The function slfm fits the SLFM-U for a single X matrix (m × n) and returns a ‘slfm’
object with the following elements: (i) x containing the data matrix X, (ii) alpha, lambda

and sigma2 displaying coda summary statistics for the chains of αi, λj and σ2
i , respectively

(i = 1, . . . , m and j = 1, . . . , n), (iii) alpha_matrix, lambda_matrix, sigma2_matrix and
q_star containing the chains (after burn-in period) for αi, λj , σ2

i and q∗
i , (iv) z_matrix

indicating for each iteration whether αi comes from the spike (Zi = 0) or slab (Zi = 1)
component of the mixture and (v) classification showing the S/I/N statuses for each row
of X. The same arguments and default values presented for slfm_list are also valid for slfm.
As an example, consider the data matrix with strong pattern in Figure 1 and the MCMC
setup related to the chains in Figure 2, we can apply the function slfm as follows:

R> X_matrix <- read.table(file.path("datasets", "X_matrix.txt"))

R> slfm_obj <- slfm(X_matrix)

R> slfm_obj$classification

var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

S S S S S S S S S S
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var11 var12 var13 var14 var15 var16 var17 var18 var19 var20

S S S S S S S S S S

var21 var22 var23 var24 var25 var26 var27 var28 var29 var30

S S S S S S S S S S

var31 var32 var33 var34 var35 var36 var37 var38 var39 var40

S S S S S S S S S S

Levels: S

The output objects from slfm containing the MCMC chains are in fact ‘mcmc’ objects from
coda, which means that we can use native functions from coda to explore these results. This
includes the options: autocorr, geweke.diag, geweke.plot, heidel.diag and heidel.plot

to name a few. For instance, the user can apply the Geweke diagnostic test, evaluated in
Section 3.1, for the chains generated for each loading as follows:

R> library("coda")

R> slfm_obj <- slfm(X_matrix)

R> geweke.diag(slfm_obj$alpha_matrix)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

0.7839 0.8263 1.0330 0.8588 0.7525 0.9893 0.9050 1.2625 0.7709 0.8064

var11 var12 var13 var14 var15 var16 var17 var18 var19 var20

0.7764 0.7922 0.8532 0.8465 0.8191 0.8625 0.8190 0.7424 0.8602 0.6719

var21 var22 var23 var24 var25 var26 var27 var28 var29 var30

0.7791 0.7875 0.6747 0.7557 0.7617 0.6811 0.7358 1.0044 0.8330 0.7921

var31 var32 var33 var34 var35 var36 var37 var38 var39 var40

0.7359 0.7602 0.7948 1.1011 0.9467 0.8651 0.8195 1.0986 0.8104 0.9298

5. Conclusions

In this work, we have presented the R package slfm comprising tools for the analysis of
Affymetrix GeneChip oligonucleotide microarrays. The main output are detection calls indi-
cating whether the sequence represented by a probe set – denoted here as a gene – should be
regarded as “Present”, “Marginal” or “Absent”. These categories indicate the status of the
corresponding gene activity, with “Marginal” defining lack of evidence to determine either
presence or absence of activity in the explored samples. The detection method, considered
in slfm, takes advantage of the information available in terms of coherent patterns of probe
expressions across microarrays. The probes are expected to exhibit similar (coherent) levels
of expressions within the same array, if their target sequence is found in a sample.

This data structure can be well evaluated through a Bayesian factor model assuming a single
factor λ and a mixture prior to test the significance of the loadings α. If αi is significant
for most probes, the estimated λ will affect most rows of the expression matrix resulting
in a coherent pattern display. Looking at the credible interval for the posterior probability



Journal of Statistical Software 19

of the large variance Gaussian component (for each i) we can compute the proportion of
significant loadings, which measures the strength of coherent pattern in the data. According
to the literature, Bayesian factor analysis has superior performance compared to other simple
(fast and thus attractive) detection methods. Our study confirms the good inference results
provided by the factor model through an extensive analysis involving simulated data.

A drawback, related to the proposed Bayesian model, is the use of Gibbs sampling to indi-
rectly sample from the joint posterior distribution of the parameters, which is known only up
to a normalizing constant. The main issue, in this case, is the computational cost associated
with the algorithm, making the Bayesian method unattractive for a user willing to trade
inference performance for computational speed. Package slfm circumvents this difficulty tak-
ing into account the faster performance of C++ integrated to R through the Rcpp package.
The present paper shows that the Rcpp version of the factor model, using RcppArmadillo,
is approximately 42 and 28 times faster than the usual R and MATLAB implementations, re-
spectively. This result, together with the superior inference performance of the factor model,
makes the detection method based on coherent patterns in slfm an interesting, effective and
viable alternative.

The main reason to use Rcpp is its close relationship with R allowing us to easily take
advantage of this software resources for a full statistical analysis. Besides working in the R

environment and using the Bayesian factor model for detection calls through a fast MCMC,
slfm also includes a nonparametric preprocessing routine for raw expression data, a graph to
visualize the data and summary statistics as outputs to interpret the main inference results.
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