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Abstract

We study the evolution of a random walker on a conservative dynamic random environ-

ment composed of independent particles performing simple symmetric random walks,

generalizing results of [16] to higher dimensions and more general transition kernels

without the assumption of uniform ellipticity or nearest-neighbour jumps. Specifically,

we obtain a strong law of large numbers, a functional central limit theorem and large

deviation estimates for the position of the random walker under the annealed law

in a high density regime. The main obstacle is the intrinsic lack of monotonicity in

higher-dimensional, non-nearest neighbour settings. Here we develop more general

renormalization and renewal schemes that allow us to overcome this issue. As a

second application of our methods, we provide an alternative proof of the ballistic

behaviour of the front of (the discrete-time version of) the infection model introduced

in [23].
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Higher dimensions

1 Introduction

Random walks on random environments are models for the movement of a tracer

particle in a disordered medium, and have been the subject of intense research for over

40 years. The seminal works [22, 33, 34], concerning one-dimensional random walk

in static random environment (i.e., constant in time), established a rich spectrum of

asymptotic behaviours that can be very different from that of usual random walks. In

higher dimensions, important questions remain open despite much investigation. For

excellent expositions on this topic, see [35, 37]. The dynamic version of the model,

i.e., when the random environment is allowed to evolve in time, has been also studied

for over three decades (see e.g. [14, 27]). However, models with both space and time

correlations have been only considered relatively recently. For an overview, we refer to

the PhD theses [1, 31]. We will abbreviate “RWRE” for random walk in static random

environment, and “RWDRE” for random walk in dynamic random environment.

Asymptotic results for RWDRE under general conditions were derived e.g. in [5, 6, 12,

15, 19, 29, 30], often requiring uniform mixing conditions on the random environment

(implying e.g. that the conditional distribution of the environment at the origin given

the initial state uniformly approaches a fixed law for large times). This uniformity can

be relaxed in particular examples, e.g. [10, 18, 28] (supercritical contact process), or

under additional assumptions, e.g. [2, 3] (spectral gap, weakly non-invariant) and [11]

(attractivity). But arguably, some of the most challenging random environments are

given by conservative particle systems, due to their poor mixing properties. Such cases

have been considered in [4, 7, 8, 21, 32] (simple symmetric exclusion), and in [16, 17]

(independent random walks). Each of these works imposes additional conditions and

explores very specific properties of the environment in question. In particular, the works

[16, 17, 21] introduce perturbative approaches, where parameters of the system are

driven to a limiting value where the behaviour is known.

In the present paper, we consider as in [16] dynamic random environments given

by systems of independent simple symmetric random walks. As mentioned above,

asymptotic results for this model are challenging since the random environment is

conservative and has slow and non-uniform mixing. We extend the results of [16] to

higher dimensions and more general transition kernels. Additional difficulties arise in

this setting due to the loss of monotonicity properties present in the one-dimensional,

nearest-neighbour case. Our main results are a strong law of large numbers, a functional

central limit theorem and large deviation bounds for the position of the random walker

under the annealed law in a high density regime. As an additional application of our

methods, we re-obtain a (slightly improved) ballisticity condition for (the discrete-time

version of) the infection-spread model considered in [23]. Some tools developed in the

present paper will be also used in the accompanying article [13].

1.1 Definition of the model and main results

Denote by N = {1, 2, . . .} the set of positive integers and let Z+ := {0} ∪N. Fix d ∈ N

and let N = (N(x, t))x∈Zd,t∈Z+
be a random process with each N(x, t) taking values in

Z+, which we call the random environment. Let α : Z+ ×Zd → [0, 1] satisfy
∑

x∈Zd

α(k, x) = 1 for every k ∈ Z+. (1.1)

For a fixed a realization of N , the random walker in random environment X = (Xt)t∈Z+

is the Markov chain that, when at position x ∈ Zd at time t ∈ Z+, jumps to x+z ∈ Zd with

probability α(N(x, t), z). Note that the chain is time-inhomogeneous when the random

environment is dynamic. The law of X conditioned on N is called the quenched law, and

the quenched law averaged over the law of N is called the annealed law.
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Higher dimensions

We are interested in the case where N is given by the occupation numbers of a system

of simple symmetric random walks in equilibrium. More precisely, fix ρ ∈ (0,∞) and

let (N(x, 0))x∈Zd be an i.i.d. collection of Poisson(ρ) random variables. From each site

x ∈ Zd, start N(x, 0) independent simple symmetric random walks (which can be lazy or

not). The value of N(x, t), t > 0 is then defined as the number of random walks present

at x at time t. The process N(·, t) is a Markov chain in equilibrium on the state-space

(Z+)
Zd

. As already mentioned, N has relatively poor mixing properties; for example, it

can be shown that Cov(N(0, t), N(0, 0)) decays as t−d/2 when t → ∞.

Let | · | denote the ℓ1-norm on Zd. We will make the following assumptions on α:

Assumption (S): The set of possible steps

S :=
{
x ∈ Zd : ∃ k ∈ Z+, α(k, x) > 0

}
(1.2)

is finite. We set R := maxx∈S |x|, which we call the range of the random walk.

Assumption (D): We assume that

v• := lim inf
k→∞

∑

x∈S
α(k, x)x · e1 > 0, (1.3)

where e1 is the first of the canonical base vectors e1, . . . , ed of Z
d.

Assumption (R): There exists x• ∈ S satisfying x• · e1 > 0 and

lim inf
k→∞

α(k, x•) > 0. (1.4)

Assumption (D) means that, for sufficiently high particle density, the random walker

has a local drift in direction e1. Assumptions (S) and (R) are technical; (S) simplifies

the execution of many technical steps while (R) ensures some regularity for α(k, ·)
over large enough k ∈ N. Note that (R) follows from (D) if either α(k, ·) is constant

for sufficiently large k, or the random walker moves by nearest-neighbour steps, i.e.,

S ⊂ {x ∈ Zd : |x| ≤ 1}.
Denote by Pρ the joint law of N and X and by Eρ the corresponding expectation. We

can now state the main result of the present paper.

Theorem 1.1. For every v⋆ ∈ (0, v•), there exists a ρ⋆ = ρ⋆(α, v⋆) < ∞ large enough

such that, for every ρ ≥ ρ⋆, there exists a v = v(α, ρ) ∈ Rd with v · e1 ≥ v⋆ and:

(i) (Law of large numbers)

lim
t→∞

Xt

t
= v Pρ-almost surely. (1.5)

(ii) (Functional central limit theorem) There exists a deterministic covariance matrix

Σ = Σ(α, ρ) such that, under Pρ,

(
X[nt] − v[nt]√

n

)

t≥0

⇒ BΣ (1.6)

where BΣ is a Brownian motion on Rd with covariance matrix Σ and “⇒” denotes

convergence in distribution as n → ∞ with respect to the Skorohod topology.

(iii) (Large deviation bounds) For every ε > 0, there exists c > 0 such that

Pρ

(∣∣∣∣
Xt

t
− v

∣∣∣∣ > ε

)
≤ c−1 exp{−c(log t)3/2} for all t ∈ N. (1.7)
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Theorem 1.1 may be interpreted as follows: Assumption (D) ensures that the random

walker has a positive local drift in direction e1 inside densely occupied regions of Zd.

Theorem 1.1 shows that, when the density ρ is large enough, this behaviour “takes over”,

i.e., the random walker exhibits a macroscopic drift in direction e1, which introduces

enough mixing for a law of large numbers and a central limit theorem to hold.

Note that the matrix Σ in item (ii) above might be zero; indeed, our assumptions on

α do not exclude the case that X is deterministic. However, Σ will be non-zero as soon

as X is non-trivial, and it will be non-singular under mild ellipticity assumptions such as

e.g. supk∈Z+
α(k,±ei) > 0 for all 1 ≤ i ≤ d; see (5.17). The speed of the decay in (1.7) is

not optimal, and only reflects the limitations of our methods.

As previously mentioned, one of the biggest obstacles to obtain Theorem 1.1 are the

poor space-time mixing properties of the random environment. A method to overcome

this difficulty in ballistic situations was developed in [16] for the high density regime in

one dimension, see also [21] for a similar approach when the random environment is

given by a one-dimensional simple symmetric exclusion process. However, these results

rely on monotonicity properties of the random walker that are in general not valid in

higher-dimensional and/or non-nearest neighbour settings. A coupling method (cf. [20],

[11]) can sometimes be used to deal with this problem, but is limited to cases where α

belongs to a set of at most two transition kernels. Here we follow a different approach,

exploiting properties of the random environment through more general renormalization

and renewal schemes that also bypass the requirement of uniform ellipticity.

As another application of our methods, we provide a short proof of ballisticity for

the one-dimensional discrete-time version of the model for the spread of an infection

studied in [23]. In this model, particles can be of two types: healthy or infected. Fix

ρ ∈ (0,∞). At time zero, we place on each site of Z an independent number of particles,

each distributed as a Poisson(ρ) random variable. Given the assignment of particles to

sites, we declare all particles to the right of the origin to be healthy and all particles

to its left, including those on the origin, to be infected. Then the system evolves as

follows: each particle, regardless of its state, moves independently as a discrete-time

simple symmetric random walk (with a fixed random walk transition kernel), and any

healthy particle sharing a site with an infected particle becomes immediately infected.

We are interested in the position X̄t of the rightmost infected particle at time t ∈ Z+.

Still denoting by Pρ the underlying probability measure, we obtain:

Proposition 1.2. For any ρ > 0, there exist v > 0 and c > 0 such that

Pρ
(
X̄t < vt

)
≤ c−1 exp{−c(log t)3/2} for all t ∈ N. (1.8)

The above proposition offers a slight improvement to the deviation bound given in

[23], which is an important ingredient in establishing finer results about the infection

front. For example, a similar statement was used in [24] to prove a law of large numbers,

and in [9] to establish a central limit theorem for (the continuous-time version of) X̄t.

The rest of the paper is organized as follows. Section 1.2 below contains a short

heuristic description of ideas used in our proofs. In Section 2, we give a particular

construction of our model with convenient properties. In Section 3, we develop a

renormalization procedure for general classes of observables, relying on a key decoupling

result for the environment (Theorem 3.4 below) whose proof is given in Appendix A.

Applications of the renormalization scheme to show ballisticity of the random walker and

of the infection front, including the proof of Proposition 1.2, are discussed in Section 4.

Finally, in Section 5 we define and control a regeneration structure for the random

walker path and finish the proof of Theorem 1.1.

Throughout the text, we denote by c a generic positive constant whose value may

change at each appearance. These constants may depend on all model parameters
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discussed above but, in Section 3 and in Appendix A, they will not be allowed to depend

on ρ, as we recall in the beginning of these sections.

1.2 Proof ideas

The proof of Theorem 1.1 is split into two main steps that can be informally described

as: a ballisticity condition and a renewal decomposition. They are performed respectively

in Sections 4 and 5. Let us now describe them in more detail.

Our first result for the random walker described above is reminiscent of the (T ′)-
condition of Sznitman (see [35]): in Theorem 4.1, we show that, for ρ large enough, Xt ·e1
diverges to infinity in a strong sense, i.e., the random walker is ballistic. This is done via

a renormalization argument. Once ballisticity has been established, our intuition tells us

that, as time passes, the random walker will see “fresh environments” since the particles

of the random environment have no drift; this informal description is made precise by

defining a regeneration structure for the path of the random walker. Here this step must

be performed differently from [16] because of the higher dimensions and non-nearest

neighbour transition kernels. Moreover, because of the lack of monotonicity, the tail of

the regeneration time must also be controlled differently.

Proposition 1.2 is proved using a similar argument as for Theorem 4.1. First, the

problem is reduced to showing that, with large probability, we can frequently find

particles near X̄t, cf. Lemma 4.4. Indeed, this implies the existence of a density of times

where X̄t behaves as a random walk with a drift, which is enough because it always

dominates a simple symmetric random walk. The reduced problem can then be tackled

using the renormalization procedure, driving not ρ to infinity but the size of the window

around X̄t where we look for particles. See Section 4.2.

2 Construction

In this section, we introduce a construction of the environment of simple random

walks in terms of a Poisson point process of trajectories as in [16]. This construction

provides a convenient way to explore certain independence properties of the environment.

We also provide a construction for the random walker and discuss positive correlations

of certain monotone observables of the environment (cf. Proposition 2.2 below).

Define the set of trajectories

W =
{
w : Z → Zd : |w(i+ 1)− w(i)| ≤ 1 ∀ i ∈ Z

}
. (2.1)

Note that the trajectories in W are allowed to jump in any canonical direction, as well

as to stay put. We endow the set W with the σ-algebra W generated by the canonical

coordinates w 7→ w(i), i ∈ Z.

Let (Sz,i)z∈Zd,i∈N be a collection of independent random elements of W , with each

Sz,i = (Sz,i
ℓ )ℓ∈Z distributed as a double-sided simple symmetric random walk on Zd

started at z, i.e., the past (Sz,i
−ℓ)ℓ≥0 and future (Sz,i

ℓ )ℓ≥0 are independent and distributed

as a simple symmetric random walk on Zd started at z (lazy or not).

For a subset K ⊂ Zd ×Z, denote by WK the set of trajectories in W that intersect K,

i.e., WK := {w ∈ W : ∃ i ∈ Z, (w(i), i) ∈ K}. This allows us to define the space of point

measures

Ω =
{
ω =

∑

i

δwi
; wi ∈ W and ω(W{y}) < ∞ for every y ∈ Zd ×Z

}
, (2.2)

endowed with the σ-algebra generated by the evaluation maps ω 7→ ω(WK), K ⊂ Zd ×Z.
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Fix ρ ∈ (0,∞) and let N(x, 0), x ∈ Zd be i.i.d. Poisson(ρ) random variables. Defining

the random element ω ∈ Ω by

ω :=
∑

z∈Zd

∑

i≤N(z,0)

δSz,i , (2.3)

it is straightforward to check that ω is a Poisson point process on Ω with intensity

measure ρµ, where

µ =
∑

z∈Zd

Pz (2.4)

and Pz is the law of Sz,1 as an element of W . Setting then

N(y) := ω(W{y}), for y ∈ Zd ×Z, (2.5)

we may verify that N has the distribution described in Section 1.

We enlarge our probability space to support i.i.d. random variables Uy, y ∈ Zd × Z

sampled independently from ω, where each Uy is uniformly distributed in the interval

[0, 1]. We then define Pρ to be the joint law of ω and U = (Uy)y∈Zd×Z. Our configuration

space may be thus identified as Ω := Ω× [0, 1]Z
d×Z, equipped with the product σ-algebra.

To define our random walker, recall Assumption (R) and let

p•(k) := inf
ℓ≥k

α(ℓ, x•), k ∈ Z+. (2.6)

For each k ∈ Z+, fix a partition of [0, 1] into intervals Ikx , x ∈ S such that |Ikx | = α(k, x)

and [0, p•(k)] ⊂
⋂

ℓ≥k I
ℓ
x•
. Finally, for y ∈ Zd ×Z, we define Y y = (Y y

ℓ )ℓ∈Z+
by

Y y
0 = y, Y y

ℓ+1 = Y y
ℓ +

∑

x∈S
(x, 1)1{

UY
y
ℓ
∈I

N(Y
y
ℓ

)
x

}, ℓ ≥ 0. (2.7)

For y = (x, t) ∈ Zd ×Z we write Xy
ℓ for the projection of Y y

ℓ into Zd, i.e., Y y
ℓ = Y

(x,t)
ℓ =

(Xy
ℓ , ℓ + t). When y = 0 we omit it from the notation. One may verify that the random

walker X = (Xℓ)ℓ∈Z+
is indeed distributed as described in Section 1.

We discuss next an important property of our random environment: the FKG inequality

(cf. e.g. [26] Corollary 2.12 p. 78). It states that monotone functions of ω are positively

correlated. This result will be used in the proof of Lemma 5.4, which is an important

ingredient to control the tail of the regeneration time constructed in Section 5. We first

need the following definition.

Definition 2.1. A measurable function f : Ω → R is called non-decreasing if f(ω′) ≥ f(ω)

whenever ω′, ω ∈ Ω satisfy ω′(B) ≥ ω(B) for all B ∈ W, and it is called non-increasing if

−f is non-decreasing. If either f or −f is non-decreasing, we say that f is monotone.

An event A ∈ σ(ω) is said to be non-decreasing, non-increasing or monotone if the

corresponding property is satisfied by its indicator function 1A.

The inequality reads as follows.

Proposition 2.2 (FKG inequality). Let f, g : Ω → R be bounded measurable functions

that are either both non-decreasing or both non-increasing. Then

Eρ [f(ω)g(ω)] ≥ Eρ [f(ω)]Eρ [g(ω)] . (2.8)

Proof. One may follow the proof of Theorem 3.1 in [36].

We extend the notion of monotonicity to functions defined on Ω as follows.
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Definition 2.3. A measurable function f : Ω → R is called non-decreasing, non-

increasing or monotone if, for all U ∈ [0, 1]Z
d

, the function ω 7→ f(ω,U) satisfies the same

property in the sense of Definition 2.1, and analogously for events in σ(ω,U).

Remark 2.4. Note that monotone functions in the sense of Definition 2.3 are not neces-

sarily positively correlated under Pρ: consider e.g. the indicator functions of the events

{U0 ∈ (0, 1/2)} and {U0 ∈ (1/2, 1)}. However, such monotone functions are positively

correlated under the conditional law given U , as can be deduced from Proposition 2.2.

We give next a few other useful definitions. For a measurable function g : Ω → E

(with E some measurable space), we will abuse notation by writing g to refer also to the

random variable g(ω,U), distributed according to the push-forward of Pρ.

Definition 2.5. We say that the function g : Ω → E is supported on the set K ⊂ Zd ×Z

if

g(ω,U) ∈ σ(N(y), Uy : y ∈ K). (2.9)

For y = (x, n) ∈ Zd ×Z and w ∈ W , define the space-time translation θyw as

θyw(i) := w(i− n) + x, i ∈ Z. (2.10)

For A ⊂ W , θyA is defined analogously, i.e., θyA :=
⋃

w∈A{θyw}. We may then define

space-time translations operating on Ω as follows. For (ω,U) ∈ Ω, let

θy(ω,U) := (θyω, θyU)

where (θyω)(A) := ω(θyA) ∀ A ∈ W, (θyU)u := Uy+u ∀ u ∈ Zd ×Z.
(2.11)

The translations of a measurable function g : Ω → E are then defined by setting

gy = θyg := g ◦ θy. (2.12)

Note that θyN(u) = N(y + u), and that the law of (ω,U) is invariant with respect to the

space-time translations, i.e., θy(ω,U) is distributed as (ω,U) under Pρ for any y ∈ Zd×Z.

In particular, the law of Y y − y in (2.7) does not depend on y since Y y = y + θyY .

3 Renormalization

In this section, we develop an important tool in the analysis of our model, namely,

a multi-scale renormalization scheme. We will keep the setup reasonably general so

that it may be used in future applications. An important consequence of the technique

developed here is the ballisticity of the random walker (cf. Theorem 4.1), which is

an essential ingredient for proving Theorem 1.1. All constants in this section will be

independent of ρ, but may depend on other parameters of the model.

3.1 General procedure

To describe the renormalization procedure, we introduce the sequence of scales

L0 = 1050 and Lk+1 = ⌊L1/2
k ⌋Lk, for k ≥ 0. (3.1)

The choice of constants 1050 and 1/2 appearing above is not crucial; many other choices

would have been equally good for our purposes. Note that

L
1/2
k ≥ ⌊L1/2

k ⌋ ≥ 1
2L

1/2
k for all k ≥ 0. (3.2)

Fix R ∈ N. In the relevant applications, R will be taken as in Assumption (S).

Given a scale k, we will consider translations of the space-time boxes

Bk,0 =
{
[−2RLk, 3RLk)

d × [0, Lk)
}
∩ (Zd ×Z). (3.3)
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More precisely, let

Mk = {k} × (Zd ×Z), k ≥ 0, (3.4)

be the set of indices of scale k and, for k̂ ≥ 0, let

M≥k̂ =
⋃

k≥k̂

Mk (3.5)

be the set of indices of all scales greater or equal to k̂. For m = (k, y) ∈ Mk, we define

the corresponding translation of the box Bk,0

Bm = Bk,0 + Lky. (3.6)

The base of the box Bk,0 is given by the set Ik,0 = ([0,RLk)
d × {0}) ∩ (Zd × Z) and its

corresponding translations are

Im = Ik,0 + Lky, for m = (k, y) ∈ Mk, (3.7)

see Figure 1.

Im

Bm′

Bm

Figure 1: The box Bm for some m ∈ Mk+1. At the bottom we picture the corresponding

base Im and, in the upper left corner, a box Bm′ in the previous scale k.

Having this in place, we introduce the following definition.

Definition 3.1. Fix k̂ ≥ 0 and a collection of events (Am)m∈M
≥k̂
. We say that this collec-

tion is adapted if the indicator function of Am is supported in Bm (as in Definition 2.5)

for each m ∈ M≥k̂.

We aim to bound the probability of certain events Am inductively in k. For this, we

will need another definition, concerning the occurrence of Am in consecutive scales.

Definition 3.2. Fix k̂ ≥ 0 and a collection of events (Am)m∈M
≥k̂
. This collection is said

to be cascading if, for every k ≥ k̂ and m ∈ Mk+1, we have

Am ⊆
⋃

m1↔
m

m2

Am1 ∩Am2 , (3.8)

where m1 ↔m m2 stands for pairs of indices m1,m2 ∈ Mk such that Bm1
, Bm2

⊆ Bm and

such that the vertical distance between the boxes Bm1
, Bm2

is at least Lk.

In the definition above, ifm1 = (k, y1) andm2 = (k, y2) with y1 = (x1, t), y2 = (x2, s) ∈
Zd × Z we say that the vertical distance between the boxes Bm1

and Bm2
is equal to

[(|t− s| − 1)Lk + 1]+.

Intuitively speaking, the above definition says that the occurrence of Am implies that

two similar events happened in well-separated boxes of the smaller scale. The imposition

that the boxes indexed by m1 and m2 in (3.8) are vertically separated will be useful to

decouple the events Am1
and Am2

via Theorem 3.4. Examples of cascading events will

be given in Section 3.2.
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Given a family (Am)m∈M
≥k̂
, we will be interested in the following quantities:

pk(ρ) = sup
m∈Mk

Pρ(Am), k ≥ k̂. (3.9)

Let us also denote

ιk̂ := exp

{
2
∑

k≥k̂

L
−1/16
k

}
∈ (0,∞). (3.10)

The next theorem is the main result that we will use in order to bound pk(ρ).

Theorem 3.3. For any γ ∈ (1, 3/2], there exists ko = ko(d, γ) ∈ Z+ such that the following

holds. Fix k̂ ≥ ko and a collection (Am)m∈M
≥k̂

that is adapted and cascading. Assume

that the Am’s are either all non-increasing or all non-decreasing and that, for some

ρ̂ ≥ L
−1/16

k̂
,

pk̂(ρ̂) ≤ exp{−(logLk̂)
γ}. (3.11)

Then, writing ρ∗ := ιk̂ρ̂ and ρ∗∗ := ι−1

k̂
ρ̂, for all k ≥ k̂ we have

pk(ρ) ≤ exp{−(logLk)
γ}

{
∀ ρ ≥ ρ∗ in the non-increasing case,

∀ ρ ≤ ρ∗∗ in the non-decreasing case.
(3.12)

The upper bound 3/2 appearing in Theorem 3.3 is not sharp; any number β satisfying

(3/2)β < 2 would suffice (see (3.16) below).

The statement of the previous theorem has two different cases, depending on whether

the events Am are non-increasing or non-decreasing. All applications considered in this

paper concern non-increasing events, but we choose to keep the exposition general in

order to be able to use our results in the accompanying paper [13].

One of the main ingredients for the proof of Theorem 3.3 is a recursion inequality

for pk, cf. Lemma 3.5 below. As the cascading property suggests, the key to obtain

such a recursion is to decouple pairs of events Am1
and Am2

supported in boxes that

are well-separated in time. Recall however that the environment of simple random

walks, being conservative, presents poor mixing properties, which makes decoupling

hard. We overcome this difficulty using a “sprinkling technique”, which consists in

performing a change in the density of particles in the environment in order to blur the

dependency between such events. Thus, up to an error term, we bound Pρ̄(Am1
∩Am2

)

by the product Pρ(Am1
)Pρ(Am2

), where ρ is slightly different from ρ̄. This is the content

of Theorem 3.4 below, which has different statements for the cases where the events Am

are non-increasing or non-decreasing.

Theorem 3.4. There exist constants no ∈ N, Co ≥ 1 and co > 0, depending only on d

and on the law of S0,1, such that the following holds. Let B = ([a, b]d × [n, n′]) ∩Zd ×Z

be a space-time box satisfying n ≥ no, and let D = Zd × Z− be the space-time lower

half-space. Let f1, f2 : Ω → [0, 1] be measurable functions supported respectively in D

and B (cf. Definition 2.5). Denote by diam(B) the diameter of B. Then, for all ρ > 0:

(a) If both f1 and f2 are non-increasing (cf. Definition 2.3), then

Eρ(1+n−1/16)[f1f2] ≤ Eρ(1+n−1/16)[f1] E
ρ[f2] + Co

(
diam(B) + n

)d
e−2coρn

1/8

. (3.13)

(b) If both f1 and f2 are non-decreasing (cf. Definition 2.3), then

Eρ[f1f2] ≤ Eρ[f1] E
ρ(1+n−1/16)[f2] + Co

(
diam(B) + n

)d
e−2coρn

1/8

. (3.14)
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The proof of Theorem 3.4 is given in the Appendix A, and is very similar to the proof

of Theorem C.1 in [16].

We may now identify the constant ko appearing in Theorem 3.3. Fix γ ∈ (1, 3/2] and

let no, Co, co as given by Theorem 3.4. Then fix ko = ko(d, γ) ∈ Z+ such that

Lko ≥ no (3.15)

and

CoL
2d+1
k

(
e−(2−(3/2)3/2)(logLk)

γ

+ e−coL
1/16
k +(3/2)3/2(logLk)

3/2
)
< 1 ∀ k ≥ ko. (3.16)

As anticipated, Theorem 3.4 leads to the following recursion inequality for pk.

Lemma 3.5. Fix γ ∈ (1, 3/2] and let ko ∈ Z+ as in (3.15)–(3.16). Fix k̂ ≥ ko and a

collection (Am)m∈M
≥k̂

that is adapted and cascading. Assume that the Am’s are either

all non-increasing or all non-decreasing. For fixed ρ > 0 and k ≥ k̂, define

ρ̄ =

{
ρ(1 + L

−1/16
k ) in the non-increasing case,

ρ(1− L
−1/16
k ) in the non-decreasing case.

(3.17)

Then we have

pk+1(ρ̄) ≤ CoL
2d+1
k

(
pk(ρ)

2 + exp{−coρL
1/8
k }

)
, (3.18)

where Co, co are as in Theorem 3.4.

Proof. We start with the case when the Am’s are all non-increasing. Using that the Am’s

are adapted and cascading and that, by (3.15), Lk ≥ no, we apply Theorem 3.4 to the

indicator functions of Am1
, Am2

to obtain

pk+1(ρ̄) = sup
m∈Mk+1

Pρ̄(Am) ≤ sup
m∈Mk+1

∑

m1↔
m

m2

Pρ̄(Am1
∩Am2

)

(3.1)

≤ ⌊L1/2
k ⌋2(d+1) sup

m∈Mk+1

sup
m1↔

m
m2

Pρ̄(Am1
∩Am2

)

Theorem 3.4

≤ Ld+1
k sup

m1,m2∈Mk

(
Pρ̄(Am1

)Pρ(Am2
) + CoL

d
k exp{−2coρL

1/8
k }

)

Am’s non-increas.

≤ CoL
2d+1
k

(
pk(ρ)

2 + exp{−2coρL
1/8
k }

)
.

(3.19)

This finishes the proof of (3.18) in the first case.

Now assume that the events Am are all non-decreasing. As before, we can estimate

pk+1(ρ̄) = sup
m∈Mk+1

Pρ̄(Am) ≤ sup
m∈Mk+1

∑

m1↔
m

m2

Pρ̄(Am1
∩Am2

)

≤ CoL
2d+1
k

(
pk(ρ)

2 + exp{−2coρ̄L
1/8
k }

)
. (3.20)

Since, by the definition of L0, ρ̄ ≥ ρ/2, (3.18) follows.

Now that we know how large the sprinkling should be as we move from scale k+ 1 to

k in order to obtain a good recursive inequality for the pk’s, we will introduce a sequence

of densities ρk.

Given ρk̂ > 0, define ρk for k ≥ k̂ recursively by setting

ρk+1 =

{
ρk(1 + L

−1/16
k ) when the Am’s are all non-increasing,

ρk(1− L
−1/16
k ) when the Am’s are all non-decreasing.

(3.21)

EJP 24 (2019), paper 80.
Page 10/33

http://www.imstat.org/ejp/



Higher dimensions

Note that, with the above definition, when the Am’s are non-increasing,

log ρk = log ρk̂ +

k∑

i=k̂

log(1 + L
−1/16
i ) ≤ log ρk̂ +

∞∑

i=k̂

L
−1/16
i < log(ιk̂ρk̂) < ∞ (3.22)

while, when the Am’s are non-decreasing, since e−2x ≤ 1− x for all x ∈ (0, L
−1/16
0 ),

log ρk ≥ log ρk̂ − 2

∞∑

i=k̂

L
−1/16
i = log(ι−1

k̂
ρk̂) > −∞. (3.23)

This shows that the sequence of densities ρk is not asymptotically trivial.

We are now in position to prove Theorem 3.3.

Proof of Theorem 3.3. Given γ ∈ (1, 3/2], take ko as in (3.15)–(3.16). The first step in the

proof is to show how one can use (3.18) to transport the bound pk(ρk) ≤ exp{−(logLk)
γ}

to the scale k + 1. This can be summarized by saying that:

if (3.18) holds with ρ = ρk ≥ L
−1/16
k , then

pk(ρk) ≤ exp{−(logLk)
γ} implies pk+1(ρk+1) ≤ exp{−(logLk+1)

γ}. (3.24)

To see why this is true, let us first use (3.18) in order to estimate

pk+1(ρk+1)

exp{−(logLk+1)γ}
≤ CoL

2d+1
k

(
e−2(logLk)

γ

+ e−coρkL
1/8
k

)
exp{(logLk+1)

γ}. (3.25)

Now, since ρk ≥ L
−1/16
k and by (3.1), (3.25) is at most

CoL
2d+1
k

(
e−(2−(3/2)3/2)(logLk)

γ

+ e−coL
1/16
k +(3/2)3/2(logLk)

3/2
)

(3.26)

which is smaller than 1 by (3.16), proving (3.24).

Let us now see how (3.12) follows from (3.24) and Lemma 3.5. Let ρk̂ = ρ̂ (from

(3.11)) and define ρk for k ≥ k̂ through (3.21). We claim that, for all k ≥ k̂,

pk(ρk) ≤ exp {−(logLk)
γ} . (3.27)

Then (3.12) follows since, by the definition of ιk̂ and (3.22)–(3.23), if ρ ≥ ιk̂ρk̂ and

the Am’s are non-increasing (resp. ρ ≤ ι−1

k̂
ρk̂ and the Am’s are non-decreasing), then

pk(ρ) ≤ pk(ρk). Thus we only need to prove (3.27).

To this end, we first claim that, for all k ≥ k̂,

ρk ≥ L
−1/16
k . (3.28)

Indeed, if the Am’s are all non-increasing, then ρk ≥ ρk̂ ≥ L
−1/16

k̂
≥ L

−1/16
k by (3.21)

and our definition of ρk̂ while, if the Am’s are all non-decreasing, then (3.28) follows by

induction using (3.21), (3.1) and the assumption that ρ̂ ≥ L
−1/16

k̂
.

Let us now prove (3.27) by induction on k. The case k = k̂ holds by hypothesis.

Assume now that (3.27) holds for some k ≥ k̂. Noting that ρk+1 ≥ L
−1/16
k+1 by (3.28) and

that (3.18) holds for ρk and ρk+1 replacing ρ and ρ̄ respectively (because the relation

between ρk+1 and ρk is exactly as for ρ̄ and ρ in Lemma 3.5) we conclude by (3.24), that

(3.27) also holds with k + 1 replacing k. This concludes the induction step and the proof

of the theorem.
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3.2 Constructing cascading events

We provide in this section a systematic way to construct certain collections of cascad-

ing events based on averages of functions of the random environment along Lipschitz

paths. Our ultimate goal is to obtain Corollary 3.11 below, which provides in this context

a short-cut to ballisticity-type results with minimal reference to the bulkier technical

setup of the previous section.

Let us first describe the type of paths that we will consider. We say that a function

σ : Z → Zd is R-Lipschitz if for any x, y ∈ Z, we have |σ(x)− σ(y)| ≤ R|x− y|. The set of

R-Lipschitz paths is defined as

S :=
{
σ : Z+ → Zd : σ(0) = 0, |σ(i+ 1)− σ(i)| ≤ R ∀ i ∈ Z+

}
. (3.29)

We will further restrict the class of paths using a function H : Ω×Zd → {0, 1} as follows.
Given such a function H and a path σ : [n,∞) → Zd, we define, for t ≥ n,

hσ(t) := H(θ(σ(t),t)(ω,U), σ(t+ 1)− σ(t)). (3.30)

The interpretation is that hσ(t) = 1 if and only if the jump σ(t+ 1)− σ(t) is allowed by

the random environment according to the rule H. The formal definition is as follows.

Definition 3.6. Given a box index m ∈ Mk, we say that an R-Lipschitz function σ :

[n,∞) ∩ Z → Zd is an m-crossing if (σ(n), n) ∈ Im (recall the definition of Bm and Im
in (3.6) and (3.7)). In addition, if for H : Ω × Zd → {0, 1} we have hσ(j) = 1 for all

j ∈ [n, n+ Lk) ∩Z, we say that σ is an (m,H)-crossing.

Figure 2 illustrates an (m,H)-crossing. Note that an (m,H)-crossing does not exit

Bm through its sides. Furthermore, if m ∈ Mk+1, every (m,H)-crossing induces Lk+1/Lk

(mi, H)-crossings for mi ∈ Mk such that Bmi ⊂ Bm. Note that in the particular case

where H ≡ 1 the notions of m-crossing and (m,H)-crossing coincide.

Remark 3.7. In the remainder of this paper, we will only be interested in applications

where H ≡ 1, which implies that every R-Lipschitz function starting in Im is an (m,H)-

crossing. The more general set-up to be used in [13] will allow us to consider only paths

σ that coincide with the trajectory performed by the random walker.

Im
Bm

Figure 2: The box Bm for some m ∈ Mk+1 and an illustrative m-crossing σ.

The following definition plays a central role in our construction.

Definition 3.8. Given g : Ω → [−1, 1], an index m ∈ Mk and an m-crossing σ : [n,∞) ∩
Z → Zd, we define the average χg

σ of g along σ by

χg
σ(ω,U) :=

1

Lk

n+Lk−1∑

i=n

g(σ(i),i)(ω,U), (3.31)

where gy = θyg as in (2.12).
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Given a scale k̂ ≥ 0 and vk̂ ∈ [L
−1/16

k̂
, 1], recursively define (compare with (3.21))

vk+1 = vk(1− L
−1/16
k ), k ≥ k̂. (3.32)

Note that vk decreases monotonically to (see (3.23))

v∞ := vk̂

∏

k≥k̂

(1− L
−1/16
k ) ∈ (0, 1). (3.33)

Given g : Ω → [−1, 1], H : Ω×Zd → {0, 1} and an integer k ≥ k̂, define the events

Am =
{
there exists an (m,H)-crossing σ such that χg

σ < vk

}
, m ∈ Mk. (3.34)

Note that the events defined by (3.34) are not necessarily adapted or monotone. However,

as already anticipated, we have the following.

Lemma 3.9. The family (Am)m∈M
≥k̂

defined by (3.34) is cascading.

Proof. Fix k ≥ k̂ and recall that we have assumed vk̂ ≥ L
−1/16

k̂
. The first thing we note

is that this inequality holds for all k ≥ k̂. This indeed follows by induction using the

definition of vk exactly as for (3.28).

Next we claim that:

if Am occurs for some m ∈ Mk+1, then there exist at least three elements

mi = (k, yi) in Mk, i = 1, 2, 3, with yi = (xi, si) ∈ Zd ×Z and Bmi
⊂ Bm

satisfying si 6= sj when i 6= j and such that Ami
occurs for i = 1, 2, 3.

(3.35)

Indeed, assume by contradiction that

there are at most two elements m′ = (k, y′), m′′ = (k, y′′) in Mk with

y′ = (x′, s′) and y′′ = (x′′, s′′), s′ 6= s′′ and Bm′ , Bm′′ contained in Bm

for which the events Am′ and Am′′ happen.

(3.36)

Let σ be an (m,H)-crossing. We split its domain into disjoint intervals of length Lk:

{n, . . . , n+Lk+1 − 1} =

J⋃

j=1

{n+ (j − 1)Lk, . . . , n+ jLk − 1}, where J = Lk+1/Lk. (3.37)

Let us denote by σj , j ∈ {1, . . . , J}, the restriction of σ to [n+ (j − 1)Lk, n+ jLk) which

is again an (mj , H)-crossing for an appropriate index mj in Mk, with Bmj
⊂ Bm (see

Figure 2). We now estimate

χg
σ =

1

Lk+1

n+Lk+1−1∑

i=n

g(σ(i),i) =
1

Lk+1

J∑

j=1

n+(j+1)Lk−1∑

i=n+jLk

g(σ(i),i) =
Lk

Lk+1

J∑

j=1

χg
σj

(3.36)

≥ −2
Lk

Lk+1
+ vk

Lk

Lk+1

(
Lk+1

Lk
− 2

)
(3.38)

≥ vk − 4
Lk

Lk+1
= vk+1 + (vk − vk+1)− 4

Lk

Lk+1
,

where, in the first inequality, we used the fact that, if Ami
does not occur for some

i ∈ {1, . . . , J}, then 1 ≥ χg
σ ≥ vk. From the definition of vk, we see that

vk − vk+1 = vkL
−1/16
k ≥ 1

L
1/8
k

≥ 4

⌊L1/2
k ⌋

= 4
Lk

Lk+1
, (3.39)

EJP 24 (2019), paper 80.
Page 13/33

http://www.imstat.org/ejp/



Higher dimensions

where for the second inequality we use Lk ≥ 1050 (cf. (3.1)). Substituting this into (3.38),

we get χg
σ ≥ vk+1 so that Am cannot occur. This proves the claim (3.35).

Thus, on the event Am, we may assume that there exist m1 = (k, y1), m3 = (k, y3)

in Mk where y1 = (x1, s1) and y3 = (x3, s3) with s3 ≥ s1 + 2 (meaning that the vertical

distance between Bm3
and Bm1

is at least Lk) and such that both Am1
and Am3

occur.

This finishes the proof of the lemma.

The events defined by (3.34) may be analysed with the help of Theorem 3.3 whenever

they are adapted and monotone. We next give a complementary result stating that,

whenever the conclusion of Theorem 3.3 holds for (Am)m∈M
≥k̂
, it can be extended by

interpolation to boxes of length L ∈ N (not necessarily of the form Lk). We first need to

extend the above definitions.

For y ∈ Zd ×Z and L ∈ N, let

By,L = y + {[−2RL, 3RL)d × [0, L)} ∩ (Zd ×Z) (3.40)

and similarly

Iy,L = y + ([0,RL)d × {0}) ∩ (Zd ×Z). (3.41)

Given a function H : Ω×Zd → {0, 1} and y = (x, n), we define a (y, L,H)-crossing to be

an R-Lipschitz function σ : [n,∞) ∩ Z → Zd such that (σ(n), n) ∈ Iy,L and hσ(j) = 1 for

every j ∈ [n, n+L)∩Z. If the function H is identically equal to one we simply say that σ

is a (y, L)-crossing.

Finally, given σ a (y, L,H)-crossing, we let

χg
σ(ω,U) :=

1

L

n+L−1∑

i=n

g(σ(i),i)(ω,U). (3.42)

Our interpolation result reads as follows.

Proposition 3.10. Fix k̂ ≥ 0, vk̂ ∈ [L
−1/16

k̂
, 1] and two functions g : Ω → [−1, 1], H :

Ω×Zd → {0, 1}. Define (Am)m∈M
≥k̂

by (3.34). Fix ρ > 0, γ ∈ (1, 3/2] and assume that

pk(ρ) = max
m∈Mk

Pρ (Am) ≤ exp {−(logLk)
γ} ∀ k ≥ k̂. (3.43)

Then, for every ε > 0, there exists c > 0 such that

Pρ (∃ a (0, L)-crossing σ s.t. χg
σ < v∞ − ε) ≤ c−1e−c(logL)γ ∀ L ≥ 1, (3.44)

where v∞ is given by (3.33).

Proof. We follow the proof of Lemma 3.5 in [16]. We may assume L to be so large that,

defining ǩ by 2Lǩ+2 ≤ L < 2Lǩ+3, then ǩ ≥ k̂ and
Lk+1

Lk
> 1 + 2/ε for all k ≥ ǩ.

We first consider multiples of Lk, k ≥ ǩ. Define

M ′
k := {m ∈ Mk : Bm ⊂ Bk+2,0}, (3.45)

Bǩ :=
⋂

k≥ǩ

⋂

m∈M ′
k

Ac
m (3.46)

and Jǩ :=
⋃

k≥ǩ

Lk+2/Lk⋃

l=1

{lLk} ⊂ N. (3.47)

Note that, for some constant c > 0, #M ′
k ≤ c−1(Lk+2/Lk)

d+1 ≤ c−1L
5
4 (d+1)

k .
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Let us now see that Bǩ has high probability. Indeed,

Pρ
(
Bc
ǩ

)
≤
∑

k≥ǩ

∑

m∈M ′
k

Pρ(Am)
(3.43)

≤
∑

k≥ǩ

c−1L
5
4 (d+1)

k e−(logLk)
γ

≤ c−1e−
1
2 (logLǩ)

γ ∑

n≥Lǩ

n
5
4 (d+1)e−

1
2 (logn)γ

≤ c−1e−
1
2 (logLǩ)

γ ≤ c−1e−c(logL)γ , (3.48)

where for the last inequality we used that Lǩ ≥ L
(2/3)3

ǩ+3
> ( 12L)

(2/3)3 .

We now claim that:

on Bǩ, for any L′ ∈ Jǩ and any (0, L′, h)-crossing σ, we have χg
σ ≥ v∞. (3.49)

Let us prove this for fixed k ≥ ǩ by writing L′ = lLk and fixing a (0, lLk, h)-crossing σ.

Notice that for every l′ < l, there exists m ∈ M ′
k such that (σ(l′Lk), l

′Lk) ∈ Im. Therefore,

σ restricted to times i = l′Lk, . . . , (l
′ + 1)Lk − 1 is an (m,H)-crossing. Hence, by using

the fact that we are on Bǩ we get,

lLk−1∑

i=0

g(σ(i),i) =

l−1∑

l′=0

(l′+1)Lk−1∑

i=l′Lk

g(σ(i),i) ≥ l(vkLk) ≥ v∞lLk = v∞L′,

completing the proof of (3.49).

We now prove (3.44). In fact, we show that

on Bǩ, χ
g
σ ≥ v∞ − ε for any (0, n)-crossing σ with n ≥ 2Lǩ+2. (3.50)

To this end, for n as in (3.50), define k̄ = k̄(n) to be the smallest integer such that

n ∈ [l̄Lk̄, (l̄+1)Lk̄) for some 1 ≤ l̄ ≤ Lk̄+2/Lk̄. Note that k̄ ≥ ǩ and that, by the minimality

of k̄, we have n ≥ Lk̄+1 and thus l̄ ≥ 2/ε. Then estimate

n−1∑

i=0

g(σ(i),i) =

l̄Lk̄−1∑

i=0

g(σ(i),i) +

n−1∑

i=l̄Lk̄

g(σ(i),i)

≥ v∞ l̄Lk̄ − Lk̄ = Lk̄((v∞ − ε)l̄ + εl̄ − 1)

≥ Lk̄(v∞ − ε)(l̄ + 1) ≥ n(v∞ − ε), (3.51)

where we used (3.49), |g| ≤ 1 and v∞ ≤ 1. This finishes the proof.

We may now state our target corollary, which conveniently summarizes ballisticity-

type results without explicit reference to most of the technical renormalisation setup.

Recall (3.42) and the definition above.

Corollary 3.11. Let (Lk)k∈Z+ be given by (3.1). For any γ ∈ (1, 3/2], there exists an

index ko = ko(γ, d) ∈ N satisfying the following. Fix two functions g : Ω → [−1, 1],

H : Ω×Zd → {0, 1} and two non-negative sequences v(L), ρ(L). Assume that, for some

L∗ ∈ N and all L ≥ L∗, v(L) ∧ ρ(L) ≥ L−1/16 and, for any v̂ > 0, the event

{
there exists a (0, L,H)-crossing σ such that χg

σ ≤ v̂
}

(3.52)

is measurable in σ(N(y), Uy : y ∈ B0,L) and non-increasing (respectively non-decreasing).

Assume additionally that, for some k̂ ≥ ko such that Lk̂ ≥ L∗,

Pρ(Lk̂)(∃ a (0, Lk̂, H)-crossing σ such that χg
σ ≤ v(Lk̂)) ≤ exp(−(logLk̂)

γ). (3.53)
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Then there exist (explicit) ρ∞, v∞ > 0 such that, for each ε > 0,

Pρ(∃ a (0, L,H)-crossing σ such that χg
σ ≤ v∞ − ε) ≤ c−1 exp(−c(logL)γ) (3.54)

for some c ∈ (0,∞), all L ∈ N and all ρ ≥ ρ∞ (respectively, all ρ ≤ ρ∞).

Before we proceed to the proof, a few words about Corollary 3.11. Assumption

(3.53) can be interpreted as a triggering condition, i.e., an a-priori estimate that must

be provided in order to start the renormalisation procedure. The measurability and

monotonicity assumptions must be checked in each case. Note that measurability follows

whenever g and H(·, x) (for all x ∈ Zd) are local (i.e., supported in a finite set in the

sense of Definition 2.9) and instantaneous, where we say that a function f : Ω → R is

instantaneous if f(ω,U) ∈ σ(N(z, 0), U(z,0) : z ∈ Zd), i.e., f depends only on one time

slice of the random environment.

Proof of Corollary 3.11. Let ko ∈ N be as in the statement of Theorem 3.3, and fix k̂ ≥ ko
satisfying Lk̂ ≥ L∗ and (3.53). Setting vk̂ := v(Lk̂), define vk, k > k̂ as in (3.32) and v∞
as in (3.33). For k ≥ k̂, let Am be defined as in (3.34) and pk(ρ) as in (3.9). Note that

the events Am, for m ∈ M≥k̂ as above are cascading, adapted and non-decreasing (resp.

non-increasing) according to Lemma 3.9 and our assumptions.

Set now ρ̂ := ρ(Lk̂) and note that, by (3.53),

pk̂(ρ̂) ≤ exp
(
− (logLk̂)

γ
)
. (3.55)

Therefore we can use Theorem 3.3 to conclude that, for some ρ∞ > 0 (more precisely,

ρ∞ := ρ∗ in the non-increasing case, or ρ∞ := ρ∗∗ in the non-decreasing case),

pk(ρ) ≤ exp
{
− (logLk)

γ
}
, for every k ≥ k̂ (3.56)

for any ρ ≥ ρ∞ in the non-increasing case, or any ρ ≤ ρ∞ in the non-decreasing case.

The conclusion then follows from Proposition 3.10.

4 Applications

This section is dedicated to applying the renormalization setup developed in Sec-

tion 3 to show ballistic behavior of two processes. Namely, for a random walker in the

environment of simple random walks and for the front of an infection process.

4.1 Random walker on random walks (large density)

In this subsection, we will prove a ballisticity result for the random walker in the

environment of simple random walks, generalizing Theorem 1.5 of [16]. Let

Hv,L :=
{
(x, n) ∈ Zd ×Z : x · e1 ≤ −L+ vn

}
. (4.1)

Theorem 4.1 (Ballisticity condition). For any v⋆ ∈ (0, v•), there exists ρ⋆ ∈ (0,∞) and

c > 0 such that, for all ρ ≥ ρ⋆,

Pρ (∃n ≥ 0: Yn ∈ Hv⋆,L) ≤ c−1e−c(logL)3/2 ∀ L ≥ 1. (4.2)

Theorem 4.1 will be proved by means of two propositions stated and proved below.

Both the theorem and these intermediate results will be crucial to control the tail of the

regeneration time constructed in Section 5.

The next proposition is very intuitive, stating that if the density is high enough then

all paths stay most of their time on points with a large number of particles.
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Proposition 4.2 (Uniform density control along paths). For all K ∈ N and ε ∈ (0, 1),

there exists c > 0 and ρ(K, ε) ∈ (0,∞) such that, for all ρ ≥ ρ(K, ε),

Pρ
(
∃ ℓ ≥ L/(2R), σ ∈ S :

ℓ−1∑

i=0

1{N(σ(i),i)≥K} < (1− ε)ℓ
)
≤ c−1e−c(logL)3/2 (4.3)

for all L ≥ 1.

Proof. Take ko as in the statement of Theorem 3.3 for γ = 3/2, and let k̂ ≥ ko be

large enough such that
∏

k≥k̂(1 − L
−1/16
k ) ≥ 1 − ε/2. Choose vk̂ := 1, g := 1{N(0,0)≥K},

H ≡ 1 (thus, we will say only m-crossing instead of (m,H)-crossing). Define the family

(Am)m∈M
≥k̂

as in (3.34) and note that it is adapted and that each Am is non-increasing.

For a fixed ρ̂ > 0, consider the crude bound

pk̂(ρ̂) ≤ Pρ̂
(
∃(y, n) ∈ BLk̂

such that N(y, n) < K
)

≤ (5RLk̂)
dLk̂P

ρ̂(N(0, 0) < K) ≤ (5RLk̂)
dLk̂K(ρ̂ ∨ 1)Ke−ρ̂. (4.4)

For fixed K, k̂, we can choose ρ̂ ≥ L
−1/16

k̂
such that the right-hand side of (4.4) is less

than exp(−(logLk̂)
3/2). Therefore, by Theorem 3.3 and Proposition 3.10, there exists

c > 0 such that, for all ρ ≥ ρ(K, ε) := ιk̂ρ̂ (with ιk̂ as in (3.10)) and all ℓ ≥ 1,

Pρ
(
there exists a (0, ℓ)-crossing σ with

ℓ−1∑

i=0

1{N(σ(i),i)≥K} < (1− ε)ℓ
)
≤ c−1e−c(log ℓ)3/2

The proposition follows by noticing that the first ℓ steps of any σ ∈ S form a (0, ℓ)-

crossing, and then applying a union bound.

Our second proposition is a quenched deviation estimate for the position of the

random walk. Intuitively speaking, it says that if all paths spend a large proportion

of their time in sites with many particles, then the random walker itself has to move

ballistically.

For technical reasons we first have to restrict our attention to the collection of paths

that behave well in a certain sense. For L ∈ N and v ∈ (0,R], let Sv,L be those paths of

S that never touch Hv,L. More precisely

S
v,L := {σ ∈ S : (σ(i), i) /∈ Hv,L ∀ i ∈ Z+} . (4.5)

For K ∈ N, ε > 0 and y ∈ Zd ×Z, let

AL,v,K,ε
y :=

{
∃ ℓ ≥ L/(2R), σ ∈ S

v,L :
ℓ−1∑

i=0

1{N(y+(σ(i),i))≥K} < (1− ε)ℓ

}
. (4.6)

Proposition 4.3 (Quenched deviation estimate). For all v⋆ ∈ (0, v•), there exist k⋆ ∈ N,

ε⋆ ∈ (0, 1) and c > 0 such that, for all ρ ∈ (0,∞), y ∈ Zd × Z, v ≤ v⋆ and K ≥ k⋆,

Pρ-almost surely, if the event AL,v,K,ε⋆
y does not occur then

Pρ
(
∃ ℓ ≥ 0: Y y

ℓ − y ∈ Hv,L

∣∣ω
)
≤ c−1e−cL. (4.7)

Proof. Let y = (x, n) ∈ Zd × Z be fixed. Fix δ⋆ ∈ (0, 1) satisfying v⋆ + 2δ⋆ < v•. By

Assumption (D), there exists a k⋆ ∈ N such that

inf
k≥k⋆

∑

z∈S
α(k, z)z · e1 > v⋆ + 2δ⋆. (4.8)
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Take ε⋆ ∈ (0, 1) small enough such that 2(R+ 1)ε⋆ < δ⋆, and fix K ≥ k⋆, v ≤ v⋆.

For (z, l) ∈ Zd ×Z, let

dω(z, l) := Eρ
[
(X

(z,l)
1 − z) · e1

∣∣∣ ω
]
=
∑

u∈S
u · e1 α(N(z, l), u) (4.9)

denote the quenched local drift in direction e1 at the point (z, l). For σ ∈ S, let

Dω
ℓ (σ) :=

ℓ−1∑

k=0

dω(y + (σ(k), k)) (4.10)

be the total drift accumulated along the path that starts at y and has increments given

by σ up to time ℓ ∈ N. When σ = Xy − x we omit it and write Dω
ℓ . On (AL,v,K,ε⋆

y )c, for all

ℓ ≥ L/(2R) and all σ ∈ S
v,L,

Dω
ℓ (σ) ≥ (v⋆ + 2δ⋆)

ℓ−1∑

k=0

1{N(y+(σ(k),k))≥K} −R

ℓ−1∑

k=0

1{N(y+(σ(k),k))<K}

≥ [v⋆ + 2δ⋆ − ε⋆(v⋆ +R+ 2δ⋆)] ℓ

> (v⋆ + δ⋆)ℓ ≥ (v + δ⋆)ℓ, (4.11)

by our choice of δ⋆, k⋆ and ε⋆.

Note that, under Pρ(· |ω), the process

Mℓ := (Xy
ℓ − x) · e1 −Dω

ℓ

=

ℓ−1∑

k=0

(Xy
k+1 −Xy

k ) · e1 − Eρ
[
(Xy

k+1 −Xy
k ) · e1

∣∣ Xy
0 , . . . , X

y
k , ω

] (4.12)

is a zero-mean martingale with respect to the filtration σ(Xy
0 , . . . , X

y
ℓ ), and has incre-

ments bounded by 2R. Therefore, by Azuma’s inequality and a union bound, there exists

a c > 0 such that

Pρ (∃ ℓ ≥ L/(2R) : |Mℓ| ≥ δ⋆ℓ | ω) ≤ c−1e−cL ∀ L ∈ N. (4.13)

Now we argue that, on (AL,v,K,ε⋆
y )c,

{∃ ℓ ≥ 0: Y y
ℓ − y ∈ Hv,L} ⊂ {∃ ℓ ≥ L/(2R) : |Mℓ| ≥ δ⋆ℓ} . (4.14)

Indeed, let ℓ0 ∈ N be the smallest time satisfying Y y
ℓ0
− y ∈ Hv,L. Then ℓ0 ≥ L/(R+ v) ≥

L/(2R). Setting σ = Xy − x up to time ℓ0 − 1 and equal to an arbitrary R-Lipschitz path

that does not touch Hv,L for times greater than ℓ0, then σ ∈ S
v,L and we obtain by (4.11)

that, on (AL,v,K,ε⋆
y )c, Dω

ℓ0
≥ (v + δ⋆)ℓ0. If additionally |Mℓ0 | < δ⋆ℓ0 would hold, then we

would have a contradiction since

(Xy
ℓ0
− x) · e1 ≥ Dω

ℓ0(σ)− |Mℓ0 | > vℓ0 ⇒ Y y
ℓ0
− y /∈ Hv,L. (4.15)

This shows (4.14), and the conclusion follows by (4.13).

Propositions 4.2–4.3 imply the ballisticity condition (4.2) as follows.

Proof of Theorem 4.1. For v⋆ ∈ (0, v•), fix k⋆ ∈ N, ε⋆ > 0 as in Proposition 4.3 and set

ρ⋆ := ρ(k⋆, ε⋆) as in Proposition 4.2. The theorem follows by noting that

AL,v,K,ε
y ⊂

{
∃ ℓ ≥ L/(2R), σ ∈ S :

ℓ−1∑

k=1

1{N(y+(σ(k),k))≥K} < (1− ε)ℓ

}
(4.16)

and that the probability of the right-hand side of (4.16) does not depend on y.
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4.2 Infection

In this subsection, we prove Proposition 1.2 regarding the front of the infection

process described in the introduction. We start with a precise construction of the model.

Fix ρ > 0, d = 1 and let N(z, 0) and Sz,i be as in Section 2, i.e., (N(z, 0))z∈Z are

i.i.d. Poisson(ρ) random variables and (Sz,i − z)z∈Z,i∈N are i.i.d., each distributed as a

double-sided simple symmetric random walk on Z started at 0.

We also introduce random variables η(z, i, n) ∈ {0, 1} to indicate whether the particle

corresponding to Sz,i is healthy (η(z, i, n) = 0) or infected (η(z, i, n) = 1) at time n. We

will define them recursively as follows. Set the initial configuration to be

η(z, i, 0) = 1 if z ≤ 0 and i ≤ N(z, 0), (4.17)

η(z, i, 0) = 0 otherwise. (4.18)

Supposing that, for some n ≥ 0, η(z, i, n) is defined for all z ∈ Z, i ∈ N, we set

η(z, i, n+ 1) =





1
if i ≤ N(z, 0) and there exists

z′ ∈ Z, i′ ∈ N with η(z′, i′, n) = 1, Sz′,i′

n = Sz,i
n ,

0 otherwise.

(4.19)

This definition means that, whenever a collection of particles share the same site at time

n, if one of them is infected then they will all become infected at time n+ 1.

We are interested in the process X̄ = (X̄n)n∈Z+ defined by

X̄n = max{Sz,i
n : η(z, i, n) = 1}, (4.20)

i.e., X̄n is the rightmost infected particle at time n. We call X̄ the front of the infection.

Note that the process η differs slightly from that described in the introduction,

where particles sharing a site with an infected one were required to become immediately

infected. However, it is easy to check that the process X̄ is not affected by this difference,

and we choose to work with η for simplicity.

Our first result towards Proposition 1.2 is a reduction step, stating that it suffices to

find, with high probability, enough times n when the front X̄n of the infection process is

close to another particle. For this we fix r ≥ 0 and define gr by

gr = 1{∑
x∈[−r,r]∩(2Z)N(x, 0) ≥ 2

}, (4.21)

that is, gr is the indicator function of the event that, at time zero, there are at least two

particles at even sites within distance r from the origin. Our lemma reads as follows.

Lemma 4.4. Fix ρ > 0 and r ≥ 0 and suppose that, for some h ∈ (0, 1), c > 0,

Pρ

(
χgr
σ ≥ h for every 1-Lipschitz path

σ : {0, . . . , L} → Z with |σ(0)| < L

)
≥ 1− c−1e−c(logL)3/2 ∀L ≥ 1, (4.22)

where gr is as in (4.21) and χgr
σ as in (3.31). Then (1.8) holds for some some v, c > 0.

Proof. One can check from the definition of the rightmost infected particle that the

increment X̄n+1 − X̄n always dominates that of a symmetric random walk on Z. At some

steps, however, this increment has a drift to the right, namely when there is more than

one particle at X̄n. The idea of the proof will be to bound the number of times at which

such positive drift is observed.

We first note that the front starts close to the origin. Indeed,

Pρ
(
X̄0 < −

√
L
)
= Pρ

(
N(z, 0) = 0 ∀ z ∈ [−

√
L, 0] ∩Z

)
≤ ce−ρ

√
L. (4.23)
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Now, at every time n′ at which there is another particle at distance at most r from

the front X̄n′ at a site with the same parity as X̄n′ , we can use the Markov property to

see that, with uniformly positive probability, this additional particle will reach the front

within the next r steps. This means that, if n′ is such a time, the increment X̄n′+r+1− X̄n′

stochastically dominates (under the conditional law given (N(·, ℓ))ℓ≤n′) a random variable

ζ with positive expectation satisfying |ζ| ≤ r + 1. We will show that v = hE[ζ]/(3(r + 1))

fulfills (1.8).

Consider the 1-Lipschitz path given by the front (X̄ℓ)
L
ℓ=0. Denote by D the intersection

of the event appearing in (4.22) with {X̄0 ≥ −
√
L}. On D, we see that, for at least ⌊hL⌋

steps between times zero and L, the front X̄ is r-close to another particle. Therefore,

the same happens for at least kL := ⌊⌊hL⌋/(r+1)⌋ steps that are at least r+1 time units

apart from each other, and we can estimate using the Markov property

Pρ[X̄L < vL] ≤ Pρ(Dc) + Pρ(ζ1 + · · ·+ ζkL
< 2vL+

√
L) + Pρ(S0,1

L−(r+1)kL
< −vL),

where the ζi’s are i.i.d. and distributed as ζ. Applying standard large deviation estimates

to the sum of the ζi’s and to S0,1, we see that

Pρ(X̄n < vL) ≤ Pρ(Dc) + c−1 exp{−cL} ≤ c−1 exp{−c(logL)3/2}, (4.24)

finishing the proof of the lemma.

We next present the proof of Proposition 1.2. In light of Lemma 4.4, all we need

to prove is (4.22), and for this we will use the renormalization procedure developed in

Section 3. One might try to obtain (4.22) by direct application of Theorem 3.3, defining

the events Am in a natural way and then taking r large enough. There is however a

serious problem with this approach: for large values of r, the family Am will no longer be

adapted in the sense of Definition 3.1. To circumvent this issue, we define intermediate

classes of events that will certainly be adapted, although not necessarily cascading. The

details are carried out next.

Proof of Proposition 1.2. Given ρ > 0, let ρ̂ := ι−1
0 ρ (cf. (3.10)). Fix h0 = 1/2 and define

inductively the sequence hk by hk+1 = hk(1 − L
−1/16
k ). Since h0 ≥ L

−1/16
0 , using (3.1)

it follows by induction that hk ≥ L
−1/16
k for every k ≥ 0. Moreover, hk decreases

monotonically to h∞ := (2ι0)
−1 > 0. For m ∈ Mk, let

A′
m =

{
there exists an m-crossing σ such that χ

gLk
σ < hk

}
. (4.25)

In the definition of A′
m we have used the local function gLk

, which means that we are

looking for particles on even sites at distance at most Lk from the origin. Intuitively

speaking, this task will become easier and easier to accomplish as k grows. This is made

precise in the following claim: there exists a c > 0 such that

Pρ̂(A′
m) ≤ c−1 exp{−cLk}, for every m ∈ Mk, k ≥ 0. (4.26)

Indeed, this follows from a union bound over the points of the box Bm together with a

simple large deviations estimate on the sum of independent Poisson(ρ̂) random variables.

By (4.26), there exists a k̂o ∈ N such that

Pρ̂(A′
m) ≤ exp{−(logLk)

3/2}, for every m ∈ Mk, k ≥ k̂o. (4.27)

As mentioned above, the family A′
m may not be cascading, however it is clearly adapted.

We now define another collection that will indeed be cascading. Let ko as in the statement

of Theorem 3.3 and take k̂ ≥ ko ∨ k̂o. Then define, for k ≥ k̂ and m ∈ Mk ⊂ M≥k̂,

Am =
{
there exists an m-crossing σ such that χ

gL
k̂

σ < hk

}
, (4.28)
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which satisfies that A′
m ⊂ Am. Note that the local function gLk̂

is fixed, i.e. it does not

depend on the scale k associated with m. This allows us to employ Lemma 3.9 and

conclude that

the family (Am)m∈M
≥k̂

is cascading. (4.29)

Moreover, this collection is adapted and composed of non-increasing events.

In view of (4.27) and (4.29), we have pk̂(ρ̂) := supm∈Mk̂
Pρ̂ (Am) ≤ exp{−(logLk̂)

3/2}
since A′

m = Am for m ∈ Mk̂. Applying Theorem 3.3 and Proposition 3.10, we obtain,

since ρ = ι0ρ̂ ≥ ιk̂ρ̂ and by translation invariance,

Pρ

(
there exists a 1-Lipschitz path σ : [0, L) ∩Z → Z that is either

a (0, L)-crossing or a ((−L, 0), L)-crossing with χ
gL

k̂
σ < h∞/2

)

≤ c−1e−c(logL)3/2 ,

(4.30)

implying (4.22). Proposition 1.2 then follows from Lemma 4.4.

5 Regeneration: proof of Theorem 1.1

In this section, we adapt Section 4 of [16] to our setting using Propositions 4.2 and

4.3. Theorem 1.1 will then follow as a consequence of the resulting renewal structure.

Hereafter, we fix v⋆ ∈ (0, v•) and take k⋆ ∈ N and ǫ⋆ ∈ (0, 1) as in Proposition 4.3. We

then define ρ⋆ := ρ(k⋆, ǫ⋆) as given by Proposition 4.2 and Theorem 4.1. We will also fix

ρ ≥ ρ⋆ and write P := Pρ from now on. By Assumption (R) and Proposition 4.3, we may

assume that

p⋆ := p•(k⋆) = inf
k≥k⋆

α(k, x•) > 0, (5.1)

see also (2.6).

Let

v̂⋆ := v⋆ ∧ 1
2 and v̄ := 1

3 v̂⋆. (5.2)

For y ∈ Rd ×R, we define the following space-time regions:

∠(y) = y + ∠(0, 0), ∠(0, 0) := {(x, n) ∈ Zd ×Z+ : x · e1 ≥ v̄n, |x| ≤ Rn}, (5.3)

∠

(y) = y +

∠

(0, 0),

∠

(0, 0) := {(x, n) ∈ Zd ×Z− : x · e1 < v̄n}, (5.4)

where R is as in Assumption (S). As in [16], we define the sets of trajectories

W∠

y = trajectories in W that intersect ∠(y) but not

∠

(y),

W

∠

y = trajectories in W that intersect

∠

(y) but not ∠(y),

W ]

y = trajectories in W that intersect both ∠(y) and

∠

(y).

(5.5)

Note that W∠

y , W

∠

y and W ]

y are disjoint, and therefore the sigma-algebras

GI
y := σ

(
ω(A) : A ⊂ W I

y , A ∈ W
)
, I = ∠,

∠

, ], (5.6)

are jointly independent under P. Define also the sigma-algebras

U∠

y = σ (Uz : z ∈ ∠(y)) ,

U

∠

y = σ (Uz : z ∈ ∠

(y)) ,
(5.7)

and set

Fy = σ
(
G

∠

y ,G ]y ,U

∠

y

)
. (5.8)

Note that, for two space-time points y, y′ ∈ Zd ×Z, if y ∈ ∠

(y′) then Fy ⊂ Fy′ .
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In order to define the regeneration time, we first need to introduce certain record

times (Rk)k∈N. The definition here will be different from the one in [16]. To this end, set

R0 := 0 and, recursively for k ∈ N0,

Rk+1 := inf {n ≥ Rk + 1: (Xn −XRk
) · e1 > v̄(n−Rk)} . (5.9)

Note that (XRk+1 −XRk
) · e1 > 0 if and only if Rk+1 = Rk + 1.

Define now a filtration (Fk)k≥0 by setting, for k ≥ 0,

Fk :=
{
B ∈ σ(ω,U) :

∀ y ∈ Zd ×Z, ∃By ∈ Fy with B ∩ {YRk
= y} = By ∩ {YRk

= y}
}
,

(5.10)

i.e., the sigma-algebra generated by YRk
, all Uz with z ∈ ∠

(YRk
) and all ω(A) such that

A ⊂ W

∠

YRk
∪W ]

YRk
. In particular, (Yi)0≤i≤Rk

∈ Fk.

Finally we define the event

Ay =
{
Y y
i ∈ ∠(y) ∀ i ∈ Z+

}
(5.11)

in which the walker started at y remains inside ∠(y), the probability measure

P∠(·) = P
(
·
∣∣ ω
(
W ]

0

)
= 0, A0

)
(5.12)

with corresponding expectation operator E∠, the regeneration record index

I = inf
{
k ∈ N : ω

(
W ]

YRk

)
= 0, AYRk occurs

}
(5.13)

and the regeneration time

τ = RI . (5.14)

The following two theorems are the analogous of Theorems 4.1–4.2 of [16] in our setting.

Theorem 5.1. Almost surely on the event {τ < ∞}, the process (Yτ+i − Yτ )i∈Z+ under

either the law P( · | τ, (Yi)0≤i≤τ ) or P
∠( · | τ, (Yi)0≤i≤τ ) has the same distribution as that

of (Yi)i∈Z+
under P∠(·).

Theorem 5.2. There exists a constant c > 0 such that

E
[
ec(log τ)3/2

]
< ∞ (5.15)

and the same holds with E∠ replacing E.

The proof of Theorem 5.1 follows exactly as that of Theorem 4.1 in [16] and thus we

omit it here. Theorem 5.2 will be proved in the next section. From them follows the:

Proof of Theorem 1.1. Using Theorems 5.1–5.2, one may follow almost word for word

the arguments given in Section 4.3 of [16], with the difference of having now random

vectors instead of real-valued random variables. In particular, we obtain the formulas

v =
E∠ [Xτ ]

E∠[τ ]
, (5.16)

Σi,j =
E∠ [(Xτ − vτ) · ei (Xτ − vτ) · ej ]

E∠ [τ ]
(5.17)

for the velocity v and the covariance matrix Σ, from which the comments made after

Theorem 1.1 may be deduced. The fact that v · e1 ≥ v⋆ follows from Theorem 4.1.
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5.1 Control of the regeneration time

In this section, we prove Theorem 5.2 by adapting Section 4.2 of [16] to our setting.

The two most important modifications are as follows. First, in order to bypass the

requirement of uniform ellipticity, we do not require the random walker to make jumps

in a fixed direction independently of the environment but instead only over points

containing enough particles. For this, we need to estimate the probability of certain joint

occupation events, cf. Lemma 5.3 below. Second, we need a substitute for Lemma 4.5 of

[16], which gave a quenched estimate on the backtrack probability of the random walker

and was obtained therein using a monotonicity property only available in one dimension.

This is the role of Lemma 5.4 below, obtained with the help of Propositions 4.2–4.3.

In our first lemma, we construct a path for the random walk to follow where all the

points have a large number of particles. This has a cost that is at most exponential.

Lemma 5.3. There exists c0 ∈ (0, 1) such that, for all L ∈ N,

P
(
ω
(
Wix•,i \ (W ]

Lx•,L
∪W ]

0 )
)
≥ k⋆ ∀ i = 0, . . . , L− 1

)
≥ cL

0
. (5.18)

Proof. We proceed by induction in L. Recall the definition of S0,1 in Section 2 and let

c0 := P (N(0) ≥ k⋆)P
(
S0,1
n /∈ ∠

(0) ∪ ∠(x•, 1) ∀ n ∈ Z
)k⋆

> 0. (5.19)

Since P
(
ω
(
W0 \ (W ]

x•,1
∪W ]

0 )
)
≥ k⋆

)
≥ c0, the claim holds for L = 1. Assume that it

holds for some L ≥ 1. Noting that ∠((i+ 1)x•, i+ 1) ⊂ ∠(ix•, i), write

P
( L⋂

i=0

{
ω
(
Wix•,i \ (W ]

(L+1)x•,L+1 ∪W ]

0 )
)
≥ k⋆

})

≥ P

(
L−1⋂

i=0

{
ω
(
Wix•,i \ (W ]

Lx•,L
∪W ]

0 )
)
≥ k⋆

}
∩

{
ω
(
WLx•,L \ (W ]

(L+1)x•,L+1 ∪W ]

Lx•,L
)
)
≥ k⋆

})
. (5.20)

Using now that, for any i = 0, . . . , L−1, the sets of trajectoriesWix•,i \(W ]

Lx•,L
∪W ]

0 ) and

WLx•,L \ (W ]

(L+1)x•,L+1 ∪W ]

Lx•,L
) are disjoint, and using also the translation invariance

of P, we see that the right-hand side of (5.20) equals

P

(
L−1⋂

i=0

{
ω
(
Wix•,i \ (W ]

Lx•,L
∪W ]

0 )
)
≥ k⋆

})
P
(
ω
(
W0 \ (W ]

x•,1
∪W ]

0 )
)
≥ k⋆

)
≥ cL+1

0

(5.21)

by the induction hypothesis, concluding the proof.

Our next result is an estimate on the conditional backtrack probability of the random

walker, which as already mentioned can be seen as a substitute for Lemma 4.5 of [16].

Recall the definition of v̂⋆ = v⋆ ∧ 1
2 .

Lemma 5.4. There exists a constant c1 > 0 such that

P (Y y
n − y /∈ Hv̂⋆,0 ∀ n ∈ N | Fy) ≥ c1 P-a.s. ∀ y ∈ Zd ×Z. (5.22)

Proof. For y ∈ Zd ×Z and L ∈ N, write y(L) := y + (Lx•, L) and let

BL
y :=

L−1⋂

i=0

{
ω
(
Wy+(ix•,i) \ (W ]

y(L)
∪W ]

y )
)
≥ k⋆

}
,

CL
y :=

L−1⋂

i=0

{
Uy+(ix•,i) ≤ p⋆

}
. (5.23)
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Recall (2.6) and the discussion below it. Put L⋆ := ⌊(1 − v̂⋆)L⌋ and abbreviate AL⋆
y :=

AL⋆,v̂⋆,k⋆,ε⋆
y (cf. (4.6)). Note that BL

y , CL
y are measurable in Fy(L)

to obtain, P-a.s.,

P
(
Y y
i − y /∈ Hv̂⋆,0 ∀ i ∈ N

∣∣∣ Fy

)

≥ P
(
CL
y ,BL

y , (AL⋆
y(L)

)c, Y
y(L)
n − y(L) /∈ Hv̂⋆,L⋆

∀n ∈ N

∣∣∣ Fy

)

= E
[
1CL

y
1BL

y
P
(
(AL⋆

y(L)
)c, Y

y(L)
n − y(L) /∈ Hv̂⋆,L⋆

∀n ∈ N

∣∣∣Fy(L)

) ∣∣∣ Fy

]
. (5.24)

Now, since AL⋆
y(L)

, Y y(L) are independent of U

∠

y(L)
,

P
(
(AL⋆

y(L)
)c, Y

y(L)
n − y(L) /∈ Hv̂⋆,L⋆

∀n ∈ N

∣∣∣Fy(L)

)

=P
(
(AL⋆

y(L)
)c, Y

y(L)
n − y(L) /∈ Hv̂⋆,L⋆

∀n ∈ N

∣∣∣G

∠

y(L)
∨ G ]y(L)

)

≥ (1− c−1e−cL⋆)P
(
(AL⋆

y(L)
)c
∣∣∣Fy(L)

)
a.s. (5.25)

by Proposition 4.3 (recall that v̂⋆ ≤ v⋆). Substituting this back into (5.24) and using that

BL
y , AL⋆

y(L)
∈ σ(ω), CL

y ∈ σ(U), we obtain that (5.24) is a.s. larger than

1
2p

L
⋆ P

(
BL
y , (AL⋆

y(L)
)c
∣∣∣G

∠

y ∨ G ]y
)

(5.26)

when L is large enough. Reasoning as for equation (4.16) in [16], we see that, P-a.s.,

1{ω(W ]

y )=0}P
(
BL
y , (AL⋆

y(L)
)c
∣∣∣ G

∠

y ∨ G ]y
)
= 1{ω(W ]

y )=0}P
(
BL
0 , (AL⋆

Lx•,L
)c
∣∣∣ ω(W ]

0 ) = 0
)
.

Moreover, since BL
y ∩ (AL⋆

y(L)
)c is non-decreasing (in the sense of Definition 2.1), its

conditional probability given G
∠

y ∨ G ]y only increases if ω(W ]

y ) 6= 0. Hence, P-a.s.,

P
(
BL
y , (AL⋆

y(L)
)c
∣∣∣ G

∠

y ∨ G ]y
)
≥ P

(
BL
0 , (AL⋆

Lx•,L
)c
∣∣∣ ω(W ]

0 ) = 0
)

= P
(
BL
0 , (ÂL⋆

Lx•,L
)c
)

(5.27)

where

ÂL⋆

Lx•,L
:=
{
∃ ℓ ≥ L⋆/(2R), σ ∈ S

v̂⋆,L⋆ :

ℓ−1∑

i=0

1{ω(Wσ(i)+Lx•,i+L\W ]

0 )≥k⋆} < (1− ε⋆)ℓ
}
.

(5.28)

Since BL
0 and (ÂL⋆

Lx•,L
)c are functions of ω only and are both non-decreasing, it follows

from Proposition 2.2 and Lemma 5.3 that (5.27) is at least

P
(
BL
0

)
P
(
(ÂL⋆

Lx•,L
)c
)
≥ cL

0
P
(
(AL⋆

Lx•,L
)c
∣∣∣ ω(W ]

0 ) = 0
)
. (5.29)

Now note that, by Proposition 4.2,

P
(
AL⋆

Lx•,L

∣∣∣ ω(W ]

0 ) = 0
)
≤

P
(
AL⋆

Lx•,L

)

P
(
ω(W ]

0 ) = 0
) ≤ c−1e−c(logL)3/2 (5.30)

for some constant c > 0. For fixed L large enough, (5.30) is smaller than 1/2, and thus

(5.22) follows from (5.24)–(5.30) with c1 :=
1
4 (c0p⋆)

L.

We proceed with the adaptation of Section 4.2 of [16]. As in equation (4.21) therein,

we define the influence field

h(y) := inf
{
l ∈ Z+ : ω(W ]

y ∩W ]

y+(lx•,l)
) = 0

}
, y ∈ Zd ×Z. (5.31)

Using x• · e1 ≥ 1 and similar arguments as for Lemma 4.3 in [16], we obtain:
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Lemma 5.5. There exist constants c2, c3 > 0 such that, for all y ∈ Zd ×Z,

P (h(y) > l) ≤ c2e
−c3l, l ∈ Z+. (5.32)

Let

p̂ := c0p⋆ > 0 (5.33)

where p⋆ is as in (5.1) and c0 as in (5.18). Analogously to equations (4.28)–(4.29) in [16],

we set, for T > 1,

δ := (−4 log(p̂))
−1

, ǫ :=
1

4(d+ 1)
(c3δ ∧ 1), T ′ = ⌊T ǫ⌋, T ′′ = ⌊δ log(T )⌋, (5.34)

and we define the local influence field at a space-time point y ∈ Zd ×Z to be:

hT (y) := inf
{
l ∈ Z+ : ω

(
W ]

y ∩W ]

y+(lx•,l)
∩W∠

y−(⌊(v̄/R)T ′⌋x•,⌊(v̄/R)T ′⌋)
)
= 0
}
. (5.35)

Note that our definition is slightly different from that of [16]. As in Lemma 4.4 therein,

we obtain:

Lemma 5.6. For all T > 1 and all y ∈ Zd ×Z,

P
(
hT (y) > l

∣∣ Fy−(⌊(v̄/R)T ′⌋x•,⌊(v̄/R)T ′⌋)
)
≤ c2e

−c3l ∀ l ∈ Z+ P-a.s., (5.36)

where c2, c3 are the same constants as in Lemma 5.5.

Proof. Note that hT (y) is independent of Fy−(⌊(v̄/R)T ′⌋x•,⌊(v̄/R)T ′⌋) and hT (y) ≤ h(y).

As in [16], an important definition is that of a good record time (g.r.t.): for k ∈ N, we

call Rk a g.r.t. if

hT (YRk
) ≤ T ′′, (5.37)

ω
(
WYRk

+(lx•,l) \ (W ]

YRk
∪W ]

YRk
+(T ′′x•,T ′′))

)
≥ k⋆

and UYRk
+(lx•,l) ≤ p⋆

∀ l = 0, . . . , T ′′ − 1, (5.38)

ω(W ]

YRk
+(T ′′x•,T ′′) ∩W∠

YRk
) = 0, (5.39)

Yn ∈ ∠(YRk+T ′′ ) for all n ∈ {Rk+T ′′ , . . . , Rk+T ′}. (5.40)

Note that, when (5.38) occurs, YRk
+ (T ′′x•, T ′′) = YRk+T ′′ .

With the above definitions and results in place, only minor modifications are required

to adapt the rest of Section 4.2 of [16] to our setting. For completeness, we provide

below all the details.

The following proposition is the main step in the proof of Theorem 5.2.

Proposition 5.7. There exists a constant c4 > 0 such that, for all T > 1 large enough,

P [Rk is not a g.r.t. for all 1 ≤ k ≤ T ] ≤ e−c4T
1/2

. (5.41)

Proof. First we claim that there exists a c > 0 such that, for any k > T ′,

P
[
Rk is a g.r.t.

∣∣Fk−T ′

]
≥ cT δ log(p̂) a.s. (5.42)

To prove (5.42), we will find c > 0 such that

P
[
(5.37)

∣∣ Fk−T ′

]
≥ c a.s., (5.43)

P
[
(5.38)

∣∣ Fk

]
≥ T δ log(p̂) a.s., (5.44)

P
[
(5.39)

∣∣ (5.38),Fk

]
≥ c a.s., (5.45)

P
[
(5.40)

∣∣ Fk+T ′′

]
≥ c a.s. (5.46)
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In fact, using the definition of a good record time and conditioning successively on

Fk+T ′′ , Fk and Fk−T ′ we have

P
[
Rk is a g.r.t.

∣∣Fk−T ′

]
= P

[
(5.37), (5.38), (5.39), (5.40)

∣∣Fk−T ′

]

=E
[
E
[
P
[
(5.37), (5.38), (5.39), (5.40)

∣∣Fk+T ′′

] ∣∣Fk

] ∣∣Fk−T ′

]

≥ cE
[
1(5.37)P

[
(5.39), (5.38)

∣∣Fk

] ∣∣Fk−T ′

]

≥ cE
[
1(5.37) cP

[
(5.38)

∣∣Fk

] ∣∣Fk−T ′

]

≥ c T δ log(p̂) P
[
(5.37)

∣∣Fk−T ′

]
≥ c T δ log(p̂).

(5.47)

Below we prove (5.43), (5.44), (5.45) and (5.46).

Proof of (5.43): For B ∈ Fk−T ′ , write

P
(
hT (YRk

) > T ′′, B
)
=

∑

y1,y2∈Zd×Z

P
(
hT (y2) > T ′′, YRk

= y2, YRk−T ′ = y1, By1

)
. (5.48)

Note that, if Y
YR

k−T ′

n − YRk−T ′ /∈ Hv̂⋆,0 for all n ∈ N, then Rk ≤ Rk−T ′ + CT ′ for some

constant C ≥ R ≥ 1, and moreover YRk−T ′ ∈

∠

(YRk
− (⌊(v̄/R)T ′⌋x•, ⌊(v̄/R)T ′⌋)). Thus

we may upper-bound (5.48) by

∑

y1∈Zd×Z

∑

y2∈Zd×Z : |y2−y1|∞≤CT ′,

y1∈

∠

(y2−(⌊(v̄/R)T ′⌋x•,⌊(v̄/R)T ′⌋))

P
(
hT (y2) > T ′′, YRk−T ′ = y1, By1

)

+
∑

y1∈Zd×Z

P
(
∃n ∈ N : Y y1

n − y1 ∈ Hv̂⋆,0, YRk−T ′ = y1, By1

)

≤
{
Ĉ(T ′)d+1c2e

−c3T
′′

+ 1− c1

}
P (B) ≤

{
Ĉc2e

c3T− 3
4 δc3 + 1− c1

}
P (B) (5.49)

for some constant Ĉ > 0, where for the first inequality we use Lemmas 5.4 and 5.6 (see

also the comment after (5.8)), and for the second we use the definition of ǫ. Thus, for T

large enough, (5.43) is satisfied with c = c1/2.

Proof of (5.44): Let BL
y as in (5.23) and note that BT ′′

y , (Uy+(lx•,l))l∈Z+ and Fy are

jointly independent. For B ∈ Fk, write

P
(
BT ′′

YRk
, UYRk

+(lx•,l) ≤ p⋆ ∀l ∈ {0, . . . , T ′′ − 1}, B
)

(5.50)

=
∑

y∈Zd×Z

P
(
BT ′′

y , Uy+(lx•,l) ≤ p⋆ ∀l ∈ {0, . . . , T ′′ − 1}, YRk
= y,By

)

= pT
′′

⋆ P
(
BT ′′

0

)
P (B) (5.51)

to conclude that (5.38) is independent of Fk. Then (5.44) follows by Lemma 5.3 and

(5.34).

Proof of (5.45): We may ignore the conditioning on (5.38) since this event is indepen-

dent of (5.39) and Fk. For B ∈ Fk, write

P
(
ω(W∠

YRk
∩W ]

YRk
+(T ′′,T ′′)) = 0, B

)
=
∑

y∈Z2

P
(
ω(W∠

y ∩W ]

y+(T ′′,T ′′)) = 0, YRk
= y,By

)

=
∑

y∈Z2

P
(
ω(W∠

y ∩W ]

y+(T ′′,T ′′)) = 0
)
P (YRk

= y,By) ≥ P
(
ω(W ]

0 ) = 0
)
P (B) , (5.52)

where the second equality uses the independence between G∠

y and Fy.
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Proof of (5.46): For B ∈ Fk+T ′′ , write

P
(
Yn ∈ ∠(YRk+T ′′ ) ∀ Rk+T ′′ ≤ n ≤ Rk+T ′ , B

)

≥
∑

y∈Z2

P
(
Y y
n /∈ Hv̂⋆,0 ∀ n ∈ N, YRk+T ′′ = y,By

)

≥ c1P (B) (5.53)

by Lemma 5.4.

Thus, (5.42) is verified. Since {Rk is a g.r.t.} ∈ Fk+T ′ , we obtain, for T large enough,

P (Rk is not a g.r.t. for any k ≤ T ) ≤ P
(
R(2k+1)T ′ is not a g.r.t. for any k ≤ T/3T ′)

≤ exp

{
− c

4

T 1+δ log(p̂)

T ′

}

≤ exp
{
− c

4
T

1
2

}
(5.54)

by our choice of ǫ and δ.

The proof of Theorem 5.2 can then be finished as in [16].

Proof of Theorem 5.2. Since P∠(·) = P(·|A0, ω(W ]

0 ) = 0) and P(A0, ω(W ]

0 ) = 0) > 0, it

is enough to prove the statement under P. To that end, let

E1 = {∃ y ∈ [−2RT, 2RT ]d × [−T, T ] ∩Zd ×Z : h(y) ≥ ⌊(v̄/R)T ′⌋},
E2 = {∃ y ∈ [−2RT, 2RT ]d × [−T, T ] ∩Zd ×Z : Y y touches y +Hv̂⋆,⌊v̄T ′⌋}.

(5.55)

Then, by Lemma 5.5, (4.2) and a union bound, there exists a c > 0 such that

P (E1 ∪ E2) ≤ c−1e−c(log T )3/2 ∀T > 1. (5.56)

Next we argue that, for all T large enough, if Rk is a good record time with k ≤ (v̄/R)T

and both E1 and E2 do not occur then τ ≤ Rk+T ′′ ≤ T . Indeed, if T ′′ ≤ v̄T/R, then on Ec
2

we have R⌊(v̄/R)T⌋+T ′′ ≤ T since otherwise Y touches Hv̂⋆,⌊v̄T ′⌋. Thus we only need to

verify that

ω(W ]

YR
k+T ′′

) = 0 (5.57)

and that

A
YR

k+T ′′ occurs (5.58)

under the conditions stated.

To verify (5.58), note that, on Ec
2, we have YRk+T ′′ ∈ [−2RT, 2RT ]d × [0, T ] ∩ Zd × Z

and, moreover, if T ′′ < 1
2T

′ then

YRk+T ′+l ∈ ∠(YRk+T ′′ ) ∀ l ∈ Z+, (5.59)

which together with (5.40) implies (5.58).

To see why (5.57) holds, it is convenient to introduce the points y0 = YRk
, y1 = YRk+T ′′

and y−1 = YRk
− (⌊(v̄/R)T ′⌋x•, ⌊(v̄/R)T ′⌋), since these points appear in (5.37), (5.39)

and (5.35), see Figure 3.
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y−1

y0

y1

Figure 3: The points y0 = YRk
, y1 = YRk+T ′′ and y−1 = YRk

− (⌊(v̄/R)T ′⌋x•, ⌊(v̄/R)T ′⌋).

We are trying to prove (5.57) and for this, pick any trajectory w in W ]

y1
and let us

show that it is not in our Poisson point process. Observe that w touches ∠(y1). From the

fact that we are in Ec
1, w does not touch

∠

(y−1). Using (5.37) we also conclude that w

does not touch

∠

(y0), otherwise it would have to touch

∠

(y−1). But by (5.39), w has to

touch

∠

(y0), contradicting the above.

In conclusion, for T large enough we have

P (τ > T ) ≤ P(E1 ∪ E2) + P (Rk is not a g.r.t. ∀ k ≤ v̄T )

≤ c−1e−c(log T )3/2 + e−c4(v̄T )1/2 (5.60)

from which (5.15) follows.

A Decoupling of space-time boxes

The aim of this section is to prove Theorem 3.4. The proof is very similar to the proof

of Theorem C.1 in [16]; only the most important changes are described here. In the

following subsections, we will concentrate on intermediate results required for item (b)

of Theorem 3.4, i.e., the case where f1, f2 are both non-decreasing. The non-increasing

case will be discussed in the proof of Theorem 3.4 itself at the end of this Appendix.

The constants in this section will be all independent of ρ; this is crucial for the

perturbative arguments of Section 3.

A.1 Soft local times

We start with a coupling result. For a Polish space Σ and a Radon measure µ on Σ,

let m denote the Poisson point process on Σ×R+ with intensity measure µ⊗ dv, where

dv is the Lebesgue measure on R+. We write m =
∑

i∈N δzi,vi with (zi, vi) ∈ Σ×R+.

Fix a sequence of independent Σ-valued random elements Zj , j ∈ N. Assume that the

law of Zj is absolutely continuous with respect to µ with density gj . As in Appendix A of

[16], we define the soft local times Gj : Σ → [0,∞), j ∈ N by setting

ξ1 = inf
{
t ≥ 0: tg1(zi) ≥ vi for at least one i ∈ N

}
,

G1(z) = ξ1 g1(z),

...

ξk = inf
{
t ≥ 0: tgj(zi) +Gk−1(zi) ≥ vi for at least k indices i ∈ N

}
,

Gk(z) = ξ1 g1(z) + · · ·+ ξk gk(z)

(A.1)

This construction can be used to prove the following.
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Lemma A.1. The random variables (ξj)j∈N in (A.1) are i.i.d. Exp(1). Furthermore, there

exists a coupling Q of (Zj)j∈N and m such that, for any J ∈ N, ρ > 0,

Q


1H′

∑

j≤J

δZj
≤ 1H′

∑

i : vi<ρ

δzi


 ≥ Q

[
sup
z∈H′

GJ(z) ≤ ρ
]

(A.2)

for all compact H ′ ⊂ Σ.

Proof. Follows from Proposition A.2 in [16] (compare to Corollary A.3 therein).

A.2 Simple random walks

As in [16], we will need some basic facts about the heat kernel of random walks on Zd.

Let pn(x, x
′) = Px(S

x,1 = x′), x, x′ ∈ Zd, with Pz, S
z,i as defined in Section 2. Hereafter

we will assume that S1,0 is lazy; non-lazy S1,0 are bipartite, and the argument below may

adapted as outlined in Remark C.4 of [16]. Lazy S1,0 are aperiodic in the sense of [25],

and thus there exist constants C, c > 0 such that the following hold for all n ∈ N:

sup
x∈Zd

pn(0, x) ≤
C

nd/2
, (A.3)

|pn(0, x)− pn(0, x
′)| ≤ C|x− x′|

n(d+1)/2
∀ x, x′ ∈ Zd, (A.4)

P0(|Sn| >
√
n log n) ≤ Ce−c log2 n. (A.5)

For (A.3), see e.g. Lawler and Limic [25, Theorem 2.4.4]. To get (A.4), use [25, The-

orem 2.3.5 and equation (2.2)], while (A.5) follows by an application of e.g. Azuma’s

inequality.

The above inequalities will be used to prove Lemma A.3 below, regarding the integra-

tion of the heat kernel over a sparse cloud of sample points. In order to state it, we need

the following definitions.

Definition A.2. (a) We say that a collection of intervals {Ci}i∈I is an L-paving if

|Ci| = Ld ∀ i ∈ I,
⋃

i∈I

Ci = Zd and Ci ∩ Cj = ∅ ∀ i 6= j ∈ I. (A.6)

(b) For ρ ∈ (0,∞), we say that a collection of points (xj)j∈J ⊂ Zd is ρ-sparse with respect

to the L-paving {Ci}i∈I when

#{j : xj ∈ Ci} ≤ ρLd ∀ i ∈ I. (A.7)

In the above definition, by interval, we mean a subset of Zd that is a Cartesian

products of intervals of Z.

The next lemma provides an estimate of the sum of the heat kernel over a sparse

collection (xj)j∈J .

Lemma A.3. There exists c > 0 such that the following holds. Let {Ci}i∈I be an L-paving

and (xj)j∈J be ρ-sparse collection with respect to {Ci}i∈I . Then, for all n ≥ L,

∑

j∈J

pn(0, xj) ≤ ρ

{
1 +

cL(log n)d√
n

}
. (A.8)

Proof. For each i ∈ I, choose zi ∈ Ci such that

pn(0, zi) = max
x∈Ci

pn(0, x). (A.9)
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Then we have

∑

j∈J

pn(0, xj) =
∑

i∈I

∑

j : xj∈Ci

pn(0, xj) ≤
∑

i∈I

ρLdpn(0, zi)

≤ ρ
∑

i∈I

∑

x∈Ci

|pn(0, x)− pn(0, zi)|+ ρ. (A.10)

On the other hand, by (A.4)–(A.5) we have (since pn(0, zi) ≤ P0(S
0,1 ∈ Ci))

∑

i∈I

∑

x∈Ci

|pn(0, x)− pn(0, zi)|
n≥L

≤ (1 + nd)P0(|Sn| >
√
n log n) +

∑

|x|≤√
n logn

cL

n(d+1)/2

≤ cL(log n)d/
√
n (A.11)

and the claim follows by combining (A.10) and (A.11).

A.3 Coupling of trajectories

Given a sequence of points (xj)j∈J in Zd, let (Zj
n)n∈Z+

, j ∈ J , be a sequence of

independent simple random walks on Zd starting at xj , and let
⊗

j∈J Pxj
denote their

joint law. The next lemma, analogous to Lemma B.3 in [16], provides a coupling of

(Zj
n)j∈J with a product Poisson measure on Zd.

Lemma A.4. There exists a constant c ≥ 1 such that the following holds. Let (xj)j∈J ⊂
Zd be ρ-sparse with respect to the L-paving {Ci}i∈I . Then for any ρ′ ≥ ρ there exists

a coupling Q of ⊗j∈JPxj and the law of a Poisson point process
∑

j′∈J ′ δYj′
on Zd with

intensity ρ′ such that

Q


1H′

∑

j∈J

δZj
n
≤ 1H′

∑

j′∈J′

δYj′


 ≥ 1− |H ′| exp

{
−(ρ′ − ρ)L+

(
cρL2(log n)d√

n

)}
(A.12)

for all finite H ′ ⊂ Zd and all n ≥ cL2.

Proof. By Lemma A.1, there exists a coupling Q such that

Q


1H′

∑

j∈J

δZj
n
≤ 1H′

∑

j′∈J′

δYj′


 ≥ Q

[
GJ(z) ≤ ρ′ ∀ z ∈ H ′], (A.13)

where GJ(z) =
∑

j∈J ξj pn(xj , z) with (ξj)j i.i.d. Exp(1) random variables. Write

Q
[
∃ z ∈ H ′ : GJ(z) > ρ′

]
≤ |H ′| sup

z∈H′

Q[GJ(z) > ρ′]

≤ |H ′| e−ρ′L sup
z∈H′

EQ
[
exp{LGJ(z)}

]
. (A.14)

If n ≥ cL2 with large enough c ≥ 1, then, by (A.3),

sup
x∈Zd

Lpn(0, x) ≤
1

2
. (A.15)

Thus we may write, for any z ∈ Zd,

EQ
[
exp{LGJ(z)}

]
=
∏

j∈J

EQ
[
exp{ξjLpn(xj , z)}

]
=
∏

j∈J

(
1− Lpn(xj , z)

)−1

. (A.16)
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Using (A.15) and − log(1− x) ≤ x+ x2 for all x ∈ [0, 1/2], we obtain

∏

j∈J

(1− Lpn(z, xj))
−1 ≤

∏

j∈J

exp
{
Lpn(z, xj)

(
1 + Lpn(z, xj)

)}

≤ exp
{∑

j∈J

Lpn(z, xj)
(
1 + sup

x∈Z

Lpn(0, x)
)}

≤ exp
{
ρL
(
1 + cL(logn)d√

n

)(
1 + cL√

n

)}

≤ exp
{
ρL
(
1 + c′L(logn)d√

n

)}
,

(A.17)

where the last two inequalities are justified using n ≥ cL2 ≥ L, Lemma A.3 and (A.3).

Inserting this estimate into (A.14), we get the claim.

A.4 Proof of Theorem 3.4

We can now finish the:

Proof of Theorem 3.4. The proof of item (a) can be obtained by adapting Appendixes

B–C of [16] to higher dimensions as follows. First of all, (B.1)–(B.3) therein should be

substituted by their d-dimensional counterparts (A.3)–(A.5) above. Definition B.1 therein

should be substituted by the ρ-dense analogue of Definition A.2 above, i.e., changing

“≤” to “≥” in (A.7). One may then follow the arguments given in [16] to re-obtain

Lemmas B.2–B.3 therein with the following differences: in both (B.6) and (B.10) therein,

log n should be substituted by (log n)d (analogously to Lemmas A.3–A.4 above). The proof

of Theorem 3.4(a) then follows from these results exactly as in the proof of Theorem C.1

in [16]. The proof of Theorem 3.4(b) is completely analogous, following from Lemma A.4

above as Theorem C.1 in [16] follows from Lemma B.3 therein.
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