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Abstract: We investigate the long-term behavior of a random walker evolving on top
of the simple symmetric exclusion process (SSEP) at equilibrium, in dimension one. At
each jump, the random walker is subject to a drift that depends on whether it is sitting on
top of a particle or a hole, so that its asymptotic behavior is expected to depend on the
density ρ ∈ [0, 1] of the underlying SSEP. Our first result is a law of large numbers (LLN)
for the random walker for all densities ρ except for at most two values ρ−, ρ+ ∈ [0, 1].
The asymptotic speed we obtain in our LLN is a monotone function of ρ. Also, ρ−
and ρ+ are characterized as the two points at which the speed may jump to (or from)
zero. Furthermore, for all the values of densities where the random walk experiences a
non-zero speed, we can prove that it satisfies a functional central limit theorem (CLT).
For the special case in which the density is 1/2 and the jump distribution on an empty
site and on an occupied site are symmetric to each other, we prove a LLN with zero
limiting speed. We also prove similar LLN and CLT results for a different environment,
given by a family of independent simple symmetric random walks in equilibrium.

1. Introduction

Over the last decades the study of the long-term behavior of the position of a particle
subject to the influence of a random environment has received great attention from the
physics and mathematics community. In this context, one is usually interested in proving
the existence of a well-defined limiting speed for the particle and, once the existence of
such a speed is known, to characterize its fluctuations around the average position.

The random environment can be either static or dynamic depending on whether it
is kept fixed or evolves stochastically after the initial configuration is sampled from a
given distribution.

For one-dimensional static random environments, since the pioneering work of
Solomon [Sol75], criteria for recurrence or transience, law of large numbers, central
limit theorems, anomalous fluctuation regimes and large deviations have been obtained,
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see for instance [Sol75,KKS75,Sin82]. For higher dimensional static environments,
important progress has also been achieved, however the knowledge is still modest when
compared to the one-dimensional setting (see for instance [Szn04,BDR14] among many
others). A number of important questions remain open and there is still much to be under-
stood. We refer the reader to [HMZ12,Szn04] and, more recently [DR14], for very good
reviews on the topic.

The research on random walks on dynamic random environments (RWDRE) was ini-
tiated more recently and a number of works have been dedicated to these models, proving
laws of large numbers (LLN), central limit theorems (CLT) and deviation bounds. We
provide a short historical background of these works in Sect. 1.1.

Several of the techniques developed for RWDRE focus on environments with either
fast or uniform mixing conditions, see for example [CZ04,RV13,BHT18]. From a phys-
ical perspective, whenever the environment mixes fast one expects the random walk to
present diffusive behavior.

Another important class of RWDRE that has received much attention are those that
evolve on top of conservative particle systems such as the simple symmetric exclusion
process, see [HS15,BR16,HHSST15] and Sect. 1.1 for a discussion. To the best of
our knowledge, all these works have focused on ballistic and perturbative regimes, as
we explain in Sect. 1.1. In this context, the random walker overtakes the particles of
the environment allowing for a renewal structure to be established. As a consequence
the behavior of the random walker in these regimes is also characterized by Gaussian
fluctuations and CLT.

However, it is not clear if this diffusive behavior is present for the whole range of
parameters of the model. In fact, in [AT12], simulations indicate that, when the random
walk has zero speed, it can display non-diffusive fluctuations, due to the environment’s
long term memory along the time direction. In [Huv18], diffusivity and trapping effects
are predicted both from theoretical physics arguments and from simulations. However,
giving a rigorous answer to the asymptotic behavior of this model remains a fascinating
open problem in mathematics.

The existence of long-range dependencies, not only brings a set of interesting chal-
lenges from the mathematical perspective but, more importantly, also raises the pos-
sibility to find non-diffusive behavior and other physically relevant phenomena at the
critical zero-speed regime. This is a major motivation for further investigations, both
at the critical value and around its neighborhood. Let us now describe the setting we
consider and present the advances we obtain in this problem.

In this work we consider one-dimensional random walks on top of conservative
particle systems starting at equilibrium with density ρ > 0. Although some of the
techniques we develop may, in principle, be adapted to other models, we will focus
on the case where the environment is either the simple symmetric exclusion process
(SSEP) whose law will be denoted P

ρ
E P or a system of independent random walks

(PCRW) starting from a Poisson product measure, whose law will be denoted P
ρ
RW . We

postpone the mathematical construction of the environments to Sect. 2.1 where we will
also precise the meaning of the density ρ in each of the cases.

Once one of these environments is fixed, we define the evolution of the random walk
as follows. Fix two parameters p◦ and p• in [0, 1] with p◦ ≤ p•. The random walk
starts at the origin and jumps in discrete time. At the moment of a jump, it inspects the
environment exactly in the site where it lies on. If the site is vacant, the random walk
decides to jump to the right with probability p◦ and to the left with probability 1 − p◦.
If the site is occupied, the random walk decides to jump to the right with probability
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p• and to the left with probability 1 − p•. Let us denote (Xn)n∈N the trajectory of the
random walk. We are going to revisit the definition of the random walk on Sect. 2.2
where a useful graphical construction is provided.

We will write P
ρ for the joint law of the environment and the random walker when

the density of the environment is ρ, often called the “annealed law”. The details on the
construction of this measure are given in Sect. 2.

The main contribution of this paper is to develop a technique that allows one to
prove LLN and CLT for random walks on a class of dynamical random environments
that includes the simple symmetric exclusion process (SSEP) and the Poisson cloud of
independent simple symmetric random walkers (PCRW).

For these two specific models, we use lateral space–time mixing bounds together
with a decoupling inequality involving small changes in the density (sprinkling) in order
to prove a LLN, i.e. the existence of an asymptotic speed, for all densities ρ ∈ (0, 1)

except at most two values denoted ρ− and ρ+. We will provide a characterization of
these two possible exceptional densities. Moreover, we are able to prove a CLT for all
densities for which the speed exists and is non-zero. This is the content of our main
result, Theorem 2.1. A simplified version of it is stated below.

Theorem 1.1. There exists a deterministic non-decreasing function v : [0, 1] → R and

two points 0 ≤ ρ− ≤ ρ+ ≤ 1 such that, for every ρ ∈ (0, 1) \ {ρ−, ρ+},

Xn

n
→ v(ρ), P

ρ − almostsurely. (1.1)

Moreover, for every ρ �∈ [ρ−, ρ+], we have that v(ρ) �= 0 and the process

(
X⌊nt⌋ − ntv(ρ)

√
n

)

t≥0

(1.2)

converges in law to a non-degenerate Brownian motion.

Theorem 1.1 gives partial answers to Conjectures 3.1 and 3.2 of [AT12], and to open
problems stated in [HKS14,San14]. Implicit formulas for ρ− and ρ+ can be found in
Theorem 2.1. It is natural to expect that ρ− and ρ+ coincide, but it is actually an interesting
open problem, as they could a priori be different, which would indicate a transient regime
with zero-speed, reminiscent of random walks in (static) random environment. Also, we
are currently unable to determine whether anomalous fluctuations take place for some
values of ρ inside the interval [ρ−, ρ+].

For the interesting case where the random walk evolves on the simple symmetric
exclusion process with density ρ = 1/2 and if p• = 1 − p◦, then the speed exists and
is equal to 0, as stated in Theorem 2.2. As far as we are aware, the existence of this
zero-speed regime was still an open question.

The choice to study the speed of the walk as a function of the density ρ of the
environment may seem arbitrary and one could instead be interested in studying it as a
function of another parameter, for instance the rate of the underlying particle system.
This was done in [HS15] where the authors proved the very interesting phenomenon
that, under some drift condition, when the rate is very low, the walk essentially sees a
frozen environment and roughly behaves like a random walk in random environment (at
the difference that no zero-speed regime seems to hold), whereas when the rate is very
high, the walker sees essentially a fresh environment at each step and thus behaves in a
Markovian way. We cannot translate our result to the speed seen as a function of the rate.
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The crucial step where we need to play with the density is the use of sprinkling in order
to obtain decoupling inequalities (see Proposition 7.1). It is not clear at all whether an
analogous property would hold for the speed as a function of the rate as, to start with,
there is not even a clear reason why the speed should be a monotone function of the rate.

1.1. Related work. The first works dedicated to the study of RWDRE focused on the
case were the underlying medium exhibit fast mixing conditions. A broad range of such
conditions have been considered such as: time independence [BMP97,BMP00], strong
mixing conditions [CZ04,AHR11,CZ05], exponential mixing rate [HS14,Bet18,MV15,
KO05,ABF17] and fast decay of covariances [BHT18]. In all the above circumstances,
one expects the random walk to exhibit Gaussian fluctuations and to satisfy a functional
central limit theorem.

There have been developments on random walks on top of conservative particle sys-
tems, such as SSEP [ASV13,HS15] or PCRW [BR16,HKS14,HHSST15,BHSST19,
BHSST17]. Most of the results therein hold in regimes that are perturbative in some
parameter: The density of the environment [HKS14,HHSST15,BHT18,BHSST19,
BHSST17], the rate of evolution of the environment [HS15] or the local drift exper-
imented by the random walk [ASV13]. By perturbative in some parameter, we mean
that this parameter has to be taken sufficiently close to extreme values. The main idea is,
knowing that the random walk would be ballistic in the limiting case, try to prove that
it is still ballistic as the parameters of the model approach the limiting values. From the
ballistic behavior, usually LLN and CLT are obtained with renewal techniques.

In [AT12], a (continuous-time) random walk on the SSEP was studied by means of
simulations. There the authors investigated the limiting behavior as a function of three
parameters: The density ρ of the SSEP, the rate γ of the SSEP and the local drift p• of
the random walk on occupied sites. They restrict themselves to the case where the local
drift on vacant sites satisfy p◦ = 1 − p•.

Based on their data, they conjecture that LLN should hold for every possible value
of ρ. They also conjecture that it is possible to tune the parameters in order to produce
regimes in which the fluctuations of the walker around its limiting speed scale super or
sub-diffusively. This phenomenon, should be regarded as a manifestation of the strong
space–time correlations of the environment which allows, for instance, the existence
of traps that survive enough time for being relevant in the long-term behavior. They
also leave as an interesting open question, to determine wether there are some regimes
where the walk can be transient with zero speed, which would be reminiscent of similar
phenomena that take place for random walks in static random environments.

To the best of our knowledge, the conjectures and open questions presented in [AT12]
concerning the behavior of the random walker at or near the zero-speed regime have
remained largely open and deserve to be further investigated. We also refer the reader
to [Huv18] for a non-rigorous investigation of the possible trapping mechanisms.

1.2. Overview of the proof. In Sect. 3, we provide a sequence of statements that build
the key steps towards the proofs of our main results, Theorems 2.1 and 2.2. Here, we
give a rougher description of the overall strategy and of the tools we use.

The first step is to give a graphical construction of the process, in Sect. 3.1, which
will be very useful to emphasize some monotonicity properties. From the graphical
construction, we obtain a two-dimensional space–time picture on which we define a
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collection of coupled random walks started from each point of space and time. We
observe events in boxes, which are simply finite regions in this space–time landscape.

Most of our proofs are based on renormalization schemes. The idea is to observe some
events on larger and larger boxes and prove that, if some bad event happens at some scale
then similar events happen in two different boxes at a smaller scale. If these two boxes
were independent, then one could obtain (given an initial estimate) that the probability
of the bad event decays exponentially fast in the size of the box. Nevertheless, in our
case, the boxes are not independent as the dynamical nature of the environment creates
time and space dependencies. The key observation is the following: As the particles of
the environment move diffusively, if the space separation between the boxes is at least
D and the time separation is not larger than D2, then we should be able to prove that
these boxes are essentially independent, see Proposition 4.1. This is what we call here
the lateral decoupling, referring to the relative positions of the boxes at the space–time
landscape.

There are two quantities that are important in our analysis: v+(ρ) and v−(ρ), defined
in (3.19) and (3.22). These upper and lower speeds are deterministic and well-defined
for every value of ρ. Roughly speaking the probability to move at speeds larger than
v+(ρ) should go to zero along a subsequence (and similarly for the probability to go
slower than v−(ρ)).

Then we need to prove a few facts in order to be able to conclude the existence of
the speed:

(1) the probability to go faster than v+(ρ) or slower than v−(ρ) over a time t actually
decreases fast enough;

(2) v+(ρ) = v−(ρ), which we define as being our candidate v(ρ) for the speed.

These two points would indeed imply (1.1) proving the existence of a limiting speed
for the walker. Nevertheless, due to the nature of the lateral decoupling, we are only
able to decouple nicely events on space–time boxes that are well-separated in space. For
instance, two boxes with the same space location but different time locations will not
decouple nicely. For this reason, in Lemma 3.2 and Theorem 3.4, we are only able to
prove the following:

(1) the probability to go faster than max(v+(ρ), 0) or slower than min(v−(ρ), 0) over a
time t actually decreases fast enough;

(2) v+(ρ) = v−(ρ), which we define as being our candidate v(ρ) for the speed.

These points are proved using renormalization and the lateral decoupling and are not
quite enough to obtain the existence of the speed. However, note that they already imply
the existence of the speed if v(ρ) := v+(ρ) = v−(ρ) = 0.

We still need to prove that if, for instance, v(ρ) := v+(ρ) = v−(ρ) > 0, then the
probability to go slower than v(ρ) decays sufficiently fast. Note that this is not guaranteed
by (1’) alone.

For this purpose, we first consider a density ρ+ for which we know that v(ρ+ +ε) > 0
and we prove that, for any environment with density ρ > ρ+ + ε, the probability to go
slower than 1

2
v(ρ+ + ε) decays fast, see Proposition 3.6. This provides a linear lower

bound for the displacement of the random walker, that is, we conclude that the random
walker moves ballistically. A similar argument can be employed in the case v(ρ) =
v+(ρ) = v−(ρ) < 0.

Once we have obtained ballisticity, we conclude in Sect. 8 the existence of the speed
(and the CLT) using regeneration structures developed in [HS15] for the SSEP and in
[HHSST15] for the PCRW.
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We want to emphasize that most of the techniques we develop here are not too sensi-
tive to the particularities of the underlying environment nor to the the fact that the random
walker evolves in discrete time rather then in continuous time. Indeed, regarding the the
environment, one of the properties that we require is that it has some monotonicity mean-
ing roughly that two copies with different densities ρ1 < ρ2 can be coupled together
so that the former always has less particles per site than the latter. Another important
requirement on the environment is that it satisfies the lateral decoupling inequality as
explained above. Both monotonicity and lateral decoupling should hold for other exam-
ples of environments. In addition, we make use of a decoupling technique called sprin-
kling (see Sect. 7). This holds for the specific environments that we work with, namely
independent random walks and the exclusion process. A similar decoupling inequality
has been proved for the zero-range process, see [BT18], but it has not been established
in greater generality. Nevertheless we believe that it should be possible to prove it for a
broad class of conservative monotonic environments.

The last block in our proof relies on a regeneration structure that is currently only
available for the particular environments considered in [HS15,HHSST15]. We believe
that, they could be adapted to the case of a continuous-time walk with no major issue.
The question on whether it is possible to obtain a regeneration structure only based on
non-microscopic properties of the environment (e.g. lateral decoupling) is more delicate.

Roughly speaking there are various processes that should be physically equivalent
to the one we study and should behave similarly. However, several of the steps we have
taken in our analysis are very specific to the models in question.

To summarize, we believe than one could adapt our strategy to other models as long as
the environment is monotonic (increasing the density is equivalent to adding particles),
fulfills the sprinkling and the lateral decoupling (or some slightly modified version of
it) and allows the construction of a regenerative structure.

Let us finally precise that this model or similar ones, have been studied in dimension 2
and above, see for instance [BHSST19,SS18]. A fair amount of our proof only applies in
dimension 1, in particular the proof of the item (2) above. This is due to the fact that our
arguments rely on the fact that the space–time trajectory of two random walks starting
at the same time, but at different space positions, cannot cross each other. If they ever
intersect, they will actually merge. Of course this does not hold in higher dimensions or
if we allow for long-range jumps of the walker.

2. Mathematical Setting and Main Results

2.1. Environments. In this section, we will give the mathematical construction of two
dynamic random environments that we consider: The simple symmetric exclusion pro-
cess (SSEP) and the Poisson cloud of simple random walks (PCRW). The starting con-
figuration will be distributed so that the environment is in equilibrium, that is, the envi-
ronmental process is stationary in time.

Our particle systems will start in equilibrium with a distribution parametrized by a
value ρ ∈ (0, 1). As it will become clear below, if λ denotes the expected number of
particles per site then we will have ρ = λ for the SSEP, while we will have ρ = 1 − e−λ

for the PCRW. For a fixed ρ, we will denote P
ρ
E P and P

ρ
RW the law of a SSEP and a PCRW

with density parameter ρ, respectively. We also write E
ρ
E P , E

ρ
RW for the corresponding

expectations. We may drop the superscript ρ and/or the subscripts E P and RW when
there is no risk of confusion.
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2.1.1. Definition of the SSEP The SSEP with density ρ ∈ (0, 1) is a stochastic process

ηρ = (η
ρ
t (x); x ∈ Z)t∈R+ (2.1)

whose graphical construction we outline below.
But let us first give an informal introduction to the process. At time t = 0 decide

whether a site has a particle independently by tossing a coin with success probability ρ.
Then, each particle tries to the jump at a rate γ > 0 with equal probability to the right
and to the left. The jump will only be performed in case the landing position does not
contain a particle.

Mathematically, we start by fixing
(
η

ρ
0 (x), x ∈ Z

)
, a collection of i.i.d. Bernoulli

random variables with mean ρ, that is, η
ρ
0 (x) is equal to 1 with probability ρ and to 0

with probability 1−ρ, independently over x ∈ Z. This represents the initial configuration
for the SSEP with density ρ.

In order to define the evolution of this process, to each unit edge {x, x + 1} of Z, we
associate a real-valued Poisson point process (T x

i )i≥0 with rate γ , independently over
x ∈ Z. The SSEP is defined as follows.

If, for some t > 0, x ∈ Z and i ≥ 0, we have T x
i = t , then

η
ρ
t (x + k) = lim

t ′→t,
t ′< t

η
ρ

t ′(x + 1 − k) for k ∈ {0, 1}. (2.2)

In words, at each arrival of the Poisson point process (T x
i )i≥0, the sites x and x + 1

exchange their occupation. The construction implies that η
ρ
t (x) ∈ {0, 1} for every x ∈ Z

and t ≥ 0. When η
ρ
t (x) = 1 we say that there is a particle on site x at time t . Differently,

when η
ρ
t (x) = 0 we say that there is a hole on site x at time t .

We will denote P
ρ
E P the law of ηρ as an element of D(R+, {0, 1}Z), the standard

space of càdlàg trajectories in {0, 1}Z. It is a classical fact that the Bernoulli distribution
with parameter ρ is an invariant measure for this process. Hence, under P

ρ
E P , and for

each fixed time t ≥ 0, (η
ρ
t (x))x∈Z is a collection of Bernoulli random variables with

parameter ρ. We also write E
ρ
E P for the corresponding expectations.

Note that the collections of i.i.d. random variables
(
η

ρ
0 (x), x ∈ Z

)
for different param-

eters ρ ∈ (0, 1) can be coupled in such a way that η
ρ
0 (x) ≥ η

ρ′

0 (x) whenever ρ′ < ρ.
The graphical construction presented above preserves this property for every t > 0.

Finally, note that ηρ depends also on γ , but as we fix this parameter throughout the
paper, we can safely make this dependency implicit.

2.1.2. Definition of PCRW The PCRW with density parameter ρ ∈ (0, 1) is a stochastic
process

ηρ = (η
ρ
t (x); x ∈ Z)t∈R+ (2.3)

defined in terms of a collection of independent random walks on Z as we show below.
Fix ρ ∈ (0, 1) and let λ = − ln(1 − ρ) ∈ R+. Now let

(
η

ρ
0 (x), x ∈ Z

)
be an

i.i.d. collection of Poisson random variables of parameter λ. Independently, for every

x ∈ Z, we let (Z
x,i
t , t ≥ 0)1≤i≤η

ρ
0 (x) be a collection of lazy, discrete-time, simple random

walks started at x that evolve independently by jumping at each time unit by −1, 0, 1
with probabilities (1 − q)/2, q, (1 − q)/2, respectively, for some q ∈ (0, 1). Note that,
for a given x , the collection is empty on the event that η

ρ
0 (x) = 0. Moreover, note that the

random walks are indexed by a continuous time parameter t ≥ 0, so that their trajectories
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are in D(R+, Z), despite the fact that the jumps can only occur in integer-valued instants
of time.

We define the number of walkers at a given time t ≥ 0 and position y ∈ Z as:

η
ρ
t (y) =

∣∣{(x, i) : x ∈ Z, 1 ≤ i ≤ η
ρ
0 (x), Z

x,i
t = y

}∣∣. (2.4)

Notice that η
ρ
t (x) ∈ N. When η

ρ
t (x) = j for some integer j ≥ 1 we say that there are j

particles on site x at time t . Differently, when η
ρ
t (x) = 0 we say that there is no particle

on site x at time t .
We will denote P

ρ
RW the law of ηρ defined on an appropriate probability space. We

also write E
ρ
RW for the corresponding expectations. It is well-known that, for any λ > 0,

the Poisson product distribution with parameter λ is an invariant measure for this process.
Hence, under P

ρ
RW , and for each fixed t ≥ 0, (η

ρ
t (x))x∈Z is a collection of independent

Poisson random variables with parameter λ.
Notice that it is possible to couple the collections of i.i.d. Poisson random variables(

η
ρ
0 (x), x ∈ Z

)
for different parameters ρ ∈ (0, 1) in such a way that η

ρ
0 (x) ≥ η

ρ′

0 (x)

for every x ∈ Z whenever ρ′ < ρ. The dynamics defined above preserves this property
for every t > 0.

Remark 1. One should note that the environment we define here may not be the most
natural. Indeed, it would be a priori simpler to consider that particles perform independent
continuous-time simple random walks, instead of considering discrete-time lazy random
walks. This choice was done in order to use previously proved results that have been
established for the discrete-time case only. In fact, all the proofs we present here would
work almost verbatim in the continuous case, at the exception of the final step of the paper
where we use the regeneration structure and the results of [HHSST15]. Nevertheless,
as mentioned in [HHSST15], we believe that it is possible to adapt these results to the
continuous case (see [BR16] for similar statements in different context). Indeed, to do
so, it seems that one should just replace the fact that one step is taken every unit of time
by some large deviation estimates for the number of steps per unit of time taken by a
continuous time random walk. For instance, this was made in [BHT18].

2.2. The random walker. In this section, we define a discrete-time random walker X

evolving on the SSEP or on the PCRW.
We fix two transition probabilities p•, p◦ ∈ (0, 1). Let ηρ be distributed under either

P
ρ
E P or P

ρ
RW . Conditioned on ηρ = η, we define (Xn)n≥0 such that X0 = 0 a.s. and, for

n ≥ 0,

• if Xn = x and ηn(x) > 0, then Xn+1 = x + 1 with probability p• and Xn+1 = x − 1
with probability 1 − p•;

• if Xn = x and ηn(x) = 0, then Xn+1 = x + 1 with probability p◦ and Xn+1 = x − 1
with probability 1 − p◦.

We will denote P
η
p•,p◦ , or simply Pη, the quenched law of X , i.e. the law of X on a

fixed environment ηρ = η. We will denote P
ρ
p•,p◦ , or simply P

ρ , the annealed law of

the walk, in other words, the semi-product P
ρ
E P × Pη or P

ρ
RW × Pη.

Remark 2. In Sect. 3.1, we will give an alternative definition of X through a graphical
construction which will couple realizations with different starting positions and will be
very useful in the course of the proofs.
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Note that either p• ≥ p◦ or 1− p• ≥ 1− p◦ must hold, hence (by flipping the integer
line if necessary), we may assume without loss of generality throughout the paper

p• ≥ p◦. (2.5)

Although there is no loss of generality in imposing this assumption, we will make some
statements that rely on it. In case (2.5) does not hold, then the symmetric statements
would hold.

2.3. Main theorems. In this section we provide the precise statements of our main results.

Theorem 2.1. Consider the environment ηρ with density ρ ∈ (0, 1) distributed under

either the measure P
ρ
E P or P

ρ
RW and assume that (2.5) holds. There exists a deterministic

non-decreasing function v : (0, 1) → R such that

Xn

n
→ v(ρ), P

ρ − almostsurely, (2.6)

for every ρ ∈ (0, 1) \ {ρ−, ρ+}, where

ρ− := sup{ρ ∈ (0, 1) : v(ρ) < 0},
ρ+ := inf{ρ ∈ (0, 1) : v(ρ) > 0}. (2.7)

If v(ρ−) = 0, resp. v(ρ+) = 0, then (2.6) holds for ρ = ρ−, resp. for ρ = ρ+.

Moreover, for every ρ �∈ [ρ−, ρ+], we have a functional central limit theorem for Xn

under P
ρ , that is (

X⌊nt⌋ − ntv(ρ)
√

n

)

t≥0

(d)→ (Bt )t≥0 , (2.8)

where (Bt )t≥0 is a non-degenerate Brownian motion and where the convergence in law

holds in the Skorohod topology.

In (2.7) we use the convention that inf ∅ = 1 and sup ∅ = 0.

Remark 3. We believe that the speed v(·) is continuous on (0, ρ−) ∪ (ρ+, 1). Neverthe-
less, to prove so, one should adapt the definitions of regeneration times introduced in
[HHSST15] and in [HS15]. Instead, in Sect. 8, we choose to use the renewal structure
from these references as they appear there. Although we believe that the required modi-
fications do not constitute a big conceptual step, they seem quite technical to implement.
Indeed, one would actually need to control how the first regeneration time changes when
the density is slightly increased, and prove that the difference is integrable. To do so,
one should couple two processes at slightly different densities and compare their first
regeneration times. We do not know how to do it with the current definitions of the first
regeneration time, however it seems clear that these definitions may be modified so that,
when the two densities are close enough, then the coupled processes share the same
regeneration time. This would easily imply continuity. We choose not to do it here, since
it would require long and technical adaptations.
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Note that, in the previous theorem, we do not claim that ρ− �= ρ+ and neither that ρ−
and ρ+ are necessarily discontinuity points of v. In case v happens to be continuous at
these points (which we strongly expect to be true), then we have a law of large numbers
for every density ρ. It is indeed an interesting question whether there are examples of
environments for which v is discontinuous. Indeed, the Mott variable-range hopping is
studied in [FGS18], where Example 2, p. 7, provides an environment and a walk such
that the speed, as a function of a certain parameter, has a jump from 0 to some positive
value. Let us roughly describe it: The environment is a point process on the real line
where points are randomly spaced, according to some density 1/γ . On this environment,
one can define a random walk which, on the one hand, is more likely to jump on points
that are closer to it and, on the other hand, has a bias (denoted λ in [FGS18]) to the right.
In [FGS18], it is proved that this walk is transient to the right with a speed that jumps
from 0 to a positive value at density 1/γ = 1/(2 − λ). Discontinuities of the speed of
the walk with respect to the density have also been observed in [BHSST17,FS18].

We are currently unable to study the fluctuations of the random walker for densities
in [ρ−, ρ+], and the order of fluctuations is still a controversial issue in the literature, see
[AT12,Huv18]. It is a very interesting open problem to determine whether the random
walk is diffusive or not in this regime. Besides, one may ask whether we can have
ρ− < ρ+. This question seems to be related to another open problem: The existence
of a transient regime with zero speed. This phenomenon is known to occur for random
walks in one-dimensional static random environment due to the presence of traps in the
environment that delay the evolution of the walk. For dynamic environments it is not
really clear whether such traps can actually play a relevant role as they may vanish too
quickly. But, if ρ− < ρ+, then we would have a suggestion that such a regime indeed
exist as there would possibly be one value ρ0 ∈ (ρ−, ρ+) of the density for which the
walk would be recurrent while if we increase the density to ρ ∈ (ρ0, ρ+) then the walk
would become transient still keeping a zero speed.

We now move to the symmetric case on the SSEP.

Theorem 2.2. Consider the random walk (Xn)n on the simple symmetric exclusion pro-

cess. If p• = 1 − p◦ and ρ = 1/2, then Xn/n → 0, P
ρ-almost surely.

Note that by symmetry arguments, if the speed exists then it must be zero. However,
proving Theorem 2.2 is not a trivial task. Intuitively, one may think that, in order to
prove it, it is necessary to control the trajectory of a walk which comes back very often
to its starting position and thus interact with the same particles of the environment a
large number of times. These interactions would create long-range time-dependencies
in the trajectory and complicate the analysis. Our proof nicely gets around this issue and
we rather show that trajectories that go far away at positive speed are very unlikely.

Remark 4. In [San14], the author proves a linear lower bound for the random walk on the
exclusion process which is strictly larger than 2p◦ −1 provided that p• > p◦. Thus, one
could almost conclude that, for the random walk on the exclusion process with p• > 1/2
and p◦ = 1/2, the law of large numbers (and the CLT) holds with a positive speed for
any density ρ > 0. The reason why we cannot easily state this, is that [San14] deals with
a continuous-time random walk whereas we work with a discrete-time random walk.
Nevertheless, the proof of [San14] may be adapted to our case. Even though this seems
to be a natural result, there is, to the best of our knowledge, no simple proof of this fact
(or even of transience), and the current proof relies on an elaborate multiscale analysis
developed by Kesten and Sidoravicius [KS14].
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3. Graphical Construction and Backbone of the Proof

The first goal of this section is to give a graphical construction of a family of coupled
random walks, which we will use extensively throughout the paper. The second goal of
the section is to state the main intermediate results that lead to the proof of our main
results, Theorems 2.1 and 2.2. The graphical construction that we define in Sect. 3.1 and
some of the events that we define in Sect. 3.2 may seem over-complicated. The reason
is that we want to be able to have the following perspective on the process: Instead
of studying just the trajectory of one random walk, we see the process as a family of
coupled trajectories, where a trajectory can be started from any point in the continuous
space–time R × R+. This will emphasize some monotonicity properties, particularly
useful to carry on with the renormalization procedure in Sect. 5 and for the proof of
Theorem 3.4 in Sect. 6.

We will denote c0, c1, . . . and k0, k1, . . . positive numbers whose values are fixed
at their first appearance in the text. These constants may depend on the law of the
environment and of the walk. When a constant depends on other parameters, we shall
indicate this at its first appearance, for instance, ci (v, ρ), is a constant whose value
depends on v and ρ. For later appearances, we may omit some of the dependencies
and simply write ci or ci (v), for example. Let us define the following notation: For any
w = (x, t) ∈ R

2, we let

π1(w) = x and π2(w) = t. (3.1)

For two real numbers s, t ∈ R, we denote s ∧ t and s ∨ t respectively the minimum and
the maximum of s and t . For the rest of the paper, unless otherwise stated, we assume
that the law of the environment is either P

ρ
E P or P

ρ
RW , with ρ ∈ (0, 1), and we fix

0 < p◦ ≤ p• < 1 (thus (2.5) holds), without loss of generality.

Remark 5. In our proofs, we could allow for p◦ = 0 or p• = 1, but we need to rule
this out in order to use the renewal structure from [HHSST15] and [HS15], where the
authors need this assumption.

3.1. Coupled continuous space–time random walks. Here we use a graphical con-
struction in order to define a family of coupled continuous space–time random walks
(Xw

t , w ∈ R
2, t ≥ 0). We now informally state the properties of this coupling that will

be useful later on.

Each random walk Xw := (Xw
t )t≥0 will be such that, Xw

0 = π1(w) almost surely.

Furthermore, Xw′
and Xw coalesce if they ever intersect, that is if Xw′

t ′ = Xw
t for some

w,w′ ∈ R
2 and t, t ′ ≥ 0, then Xw′

t ′+s
= Xw

t+s for all s ≥ 0. Moreover, (X
(0,0)
n )n∈N has

the same law as our random walker (Xn)n∈N.

Fix a value ρ ∈ (0, 1) and a realization of the environment ηρ . Note that, as (Xn)n∈N

is assumed to be a nearest-neighbor random walk, X2n ∈ 2Z and X2n+1 ∈ (1 + 2Z), for
every n ≥ 0. Define the discrete lattice

Ld := (2Z)2 ∪
(
(1, 1) +

(
2Z

)2 )
, (3.2)

where the sum in the RHS stands for the the shift of the 2Z lattice by the vector (1, 1).
We will define the random walks Xw first on this lattice before interpolating them to the
whole plane. For that, we let (Uw)w∈Ld

be a collection of i.i.d. uniform random variables
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(0, 0)

Fig. 1. Colliding trajectories on the whole plane and on the lattice Ld (in blue)

on [0, 1]. For any w = (x, n) ∈ Ld , we set Xw
0 = x and define Xw

1 in the following
manner:

Xw
1 =

{
x + 2 1{Uw≤p•} − 1, if η

ρ
n (x) > 0;

x + 2 1{Uw≤p◦} − 1, if η
ρ
n (x) = 0.

(3.3)

For any integer m ≥ 1 and we define by induction

Xw
m = Xw

m−1 + X
(Xw

m−1,π2(w)+m−1)

1 . (3.4)

This defines the coupled family (Xw
n , w ∈ Ld , n ∈ N). Note that (Xw

n , π2(w) + n)n∈N

evolves on Ld .
Having defined the random walker on Ld , we extend its definition to all possible

starting points in R
2. But first we extend it to a continuous version of Ld , defined as

follows

L = {w + t (1, 1), w ∈ Ld , 0 ≤ t < 1} ∪ {w + t (−1, 1), w ∈ Ld , 0 ≤ t < 1}, (3.5)

see Fig. 1.
For t ∈ R

+ and w ∈ Ld , we define

Xw
t = Xw

⌊t⌋ + (t − ⌊t⌋)
(
Xw

⌊t⌋+1 − Xw
⌊t⌋
)
. (3.6)

This defines the coupled family (Xw
t , w ∈ Ld , t ∈ R+). Note that (Xw

t , π2(w) + t)t∈R+ ,
evolves on L.

From a starting point w ∈ L \ Ld , intuitively speaking, we let Xw
t follow the only

path such that (Xw
t , π2(w) + t) remains on L until it hits Ld , after which it follows

the rule given by (3.6). More precisely, given w ∈ L \ Ld , for any s > 0, note that
w + s

(
(−1)k, 1

)
∈ L where k = k(w) = ⌊π1(w)⌋ + ⌊π2(w)⌋ and define

t0 = min
{
s ≥ 0 : w + s((−1)k, 1) ∈ Ld

}
. (3.7)
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Then we define

Xw
t =

{
π1(w) + (−1)k t if 0 ≤ t < t0;
X

(Xw
t0

,π2(w)+t0)

t−t0
if t ≥ t0.

(3.8)

It remains to construct the random walks starting from points w = (x, t) ∈ R
2 \ L.

The idea is very simple: it is going to be the trajectory such that (Xw
t , π2(w) + t) move

up along direction (0, 1) until hitting L and, from this point on, follow the corresponding
trajectory in L as defined in (3.8).

More precisely, consider w = (x, t) ∈ R
2 and let

s0 = min{s ≥ 0 : (x, t + s) ∈ L}. (3.9)

Then we define

Xw
s =

{
x for all 0 ≤ s < s0;
X

(x,π2(w)+s0)
s−s0

for all s ≥ s0.
(3.10)

Equations (3.6), (3.8) and (3.10) define the coupled family (Xw
t , w ∈ R

2, t ∈ R+),
such that the points (Xw

t , π2(w) + t) always remain on L, after the first time they hit L.

It is important for us that, for any w ∈ R
2 and for any t ≥ s ≥ 0, we have

∣∣Xw
t − Xw

s

∣∣ ≤ t − s. (3.11)

Remark 6. It should be noted that the law of (Xw
t )t≥0, for w ∈ R

2 is not invariant under

shifts of w. Nevertheless, the processes (Xw
t )t≥0, (X

w+(1,1)
t )t≥0 and (X

w+(−1,1)
t )t≥0 have

the same distribution. Therefore, the law of the collection {(Xw
t )t≥0 : w ∈ R

2}, is fully
determined by the law of {(Xw

t )t≥0 : w ∈ L1}, where

L1 := {w ∈ R
2 : |π1(w)| + |π2(w)| ≤ 1}. (3.12)

Finally, we will keep the notation P
η
p•,p◦ and P

ρ
p•,p◦ or simply Pη and P

ρ , for the

quenched and annealed joint laws of the family of random walks (Xw
t , t ≥ 0, w ∈ R

2),
respectively.

The result below states a useful monotonicity property for the collection of random
walks defined above, for which we also give an illustration in Fig. 2. In the following,
for s, t ∈ R, we denote s ∨ t = max(s, t).

Proposition 3.1. For every ρ ∈ (0, 1), every z, z′ ∈ R
2 with π1(z

′) ≤ π1(z) and

π2(z) = π2(z
′), we have that, almost surely,

X z′
t ≤ X z

t for all t ≥ 0. (3.13)

In fact, for every z, z′ ∈ R
2 such that π1(z

′) ≤ π1(z) −
∣∣π2(z

′) − π2(z)
∣∣,

X z′

t+[(π2(z)−π2(z′))∨0] ≤ X z
t+[(π2(z′)−π2(z))∨0] for all t ≥ 0. (3.14)
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z

z
′

z
′′

Fig. 2. Proposition 3.1 states that any trajectory started in the turquoise quadrant, e.g. from z′ or z′′, stays on
the left of the trajectory started at z

Proof. First, we prove (3.13). This is a simple consequence of the fact that the two walks

X z and X z′
evolve in continuous time and space, and, as they start at points z and z′ with

same time coordinates (π2(z) = π2(z
′)), they cannot cross each other without being at

the same position, i.e. either X z′
t < X z

t for all t ≥ 0, or there exists t0 such that X z′
t0

= X z
t0

and then, by construction, X z′
t0+s = X z

t0+s for all s ≥ 0.

Second, we prove (3.14). Assume first that π2(z
′) ≥ π2(z) and π1(z

′) ≤ π1(z) −(
π2(z

′) − π2(z)
)
. By (3.11), we have that

X z
π2(z′)−π2(z)

≥ π1(z) −
(
π2(z

′) − π2(z)
)

≥ π1(z
′) = X z′

0 . (3.15)

The conclusion then follows from (3.13).

Similarly, if π2(z
′) ≤ π2(z) and π1(z

′) ≤ π1(z) −
(
π2(z) − π2(z

′)
)
. By (3.11), we

have that

X z′

π2(z)−π2(z′) ≤ π1(z
′) +

(
π2(z) − π2(z

′)
)

≤ π1(z) = X z
0. (3.16)

The conclusion again follows from (3.13). ⊓⊔
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3.2. Structure of the proof. In this section, we state the main propositions that lead to
the proof of Theorems 2.1 and 2.2.

Before presenting some technical definitions that we will need, let us explain in simple
words the main ingredients in the proof. The exposition may seem a bit convoluted, but
it actually follows a few simple steps:

1. We define two good candidates for the value of the speed v(ρ) appearing in Theorem
2.1. These are the quantities v+(ρ) and v−(ρ) defined in (3.19) and (3.22) that are,
in some sense, the extreme speeds that the walk can attain. They are useful because
they are well-defined for every ρ and although their definitions are very implicit and
do not provide quantitative values, they will become central objects in our proofs as
we elaborate our renormalization procedure.

2. In Lemma 3.2, we prove that the probability that the random walk moves faster than
v+(ρ) ∨ 0, or slower than v−(ρ) ∧ 0, for a given interval of time decays fast on the
length of this interval. This is a quantitative result involving the values v+(ρ) and
v−(ρ). The appearance of the maximum and minimum with 0 is due to the use of
renormalization and the lateral decoupling techniques as mentioned in Sect. 1.2.

3. In Theorem 3.4, we prove that v+(ρ) = v−(ρ). Their common value is what we define
to be v(ρ). At this point we have proved the following facts. First, if v(ρ) = 0 then
we already have a law of large numbers with zero speed (see Theorem 3.5). Second,
if v(ρ) > 0 then the normalized position Xn/n of the random walk asymptotically
stays between 0 and v(ρ). The case v(ρ) < 0 is similar.

4. The last step is Proposition 3.6. It states that, assuming v(ρ) > 0, there exists δ > 0
such that the normalized position Xn/n is greater than δ with high probability. This
does not imply directly the existence of a speed (i.e. the fact that Xn/n converges),
but it implies that the random walk moves away from the root at a linear pace. As
the particles in the environment moves diffusively (much slower than at linear pace),
one can conclude that the environment around the random walk refreshes quite often,
which hints the existence of a renewal structure around the position of the walker.
We indeed use available results [HS15,HHSST15] on the existence of regeneration
times which implies the law of large numbers and the central limit theorem.

Let us now move to the technical definitions. We start by defining the important event
AH,w(v) that, intuitively speaking indicates that a random walk starting at w after time
H had an average speed higher than v, as depicted in Fig. 3. More precisely, for any
w ∈ R

2, any H ∈ R+ and v ∈ R let

AH,w(v) :=
[
there exists y ∈ (w + [0, H) × {0}) s.t. X

y
H − π1(y) ≥ vH

]
. (3.17)

In several places in the paper, we will bound the probability of AH,w(v). It should be
noted that the probability of this event depends on w ∈ R

2, because both AH,w(v) and
the law of Xw are not invariant when we shift w by an arbitrary value in R

2 (although
they are invariant with respect to shifts in the lattice Ld ). Nevertheless, by Remark 6, it
is enough to consider w ∈ L1 (defined in 3.12).

We can now safely define

pH (v, ρ, p•, p◦) := sup
w∈R2

P
ρ
p•,p◦

(
AH,w(v)

)
= sup

w∈L1

P
ρ
p•,p◦

(
AH,w(v)

)
. (3.18)

When there is no risk of confusion, we will write pH (v) = pH (v, ρ) = pH (v, ρ, p•, p◦).
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y = Y
y
0

Y
y
Hy + H(v, 1)

H

3H

Fig. 3. An illustration of the event AH,0(v). Starting from the point y ∈
(
[0, H)×{0}

)
∩L the walker attains

an average speed larger than v during the time interval [0, H ]. Picture taken from [BHT18]

The following quantity is always well-defined and is key to our proofs of the main
results.

v+(ρ, p•, p◦) := inf

{
v ∈ R : lim inf

H→∞
pH (v, ρ, p•, p◦) = 0

}
. (3.19)

Again, when there is no risk of confusion, we will write v+ = v+(ρ) = v+(ρ, p•, p◦).
This quantity could be called the upper speed of X . Indeed, for any v > v+, it is unlikely
that X t ≥ vt for a growing sequence of t’s. On the other hand, if v < v+, then X t ≥ vt ,
with probability bounded away from 0.

Similarly, we define, for w ∈ R
2, v ∈ R and H ∈ R+,

ÃH,w(v) :=
[
there exists y ∈ (w + [0, H) × {0}) withX

y
H − π1(y) ≤ vH

]
. (3.20)

as well as

p̃H (v, ρ, p•, p◦) := sup
w∈R2

P
ρ
p•,p◦

(
ÃH,w(v)

)
= sup

w∈L1

P
ρ
p•,p◦

(
ÃH,w(v)

)
. (3.21)

We also define the lower speed of X as

v−(ρ, p•, p◦) := sup

{
v ∈ R : lim inf

H→∞
p̃H (v, ρ, p•, p◦) = 0

}
, (3.22)

When there is no risk of confusion, we will write p̃H (v) = p̃H (v, ρ) = p̃H (v, ρ, p•, p◦)
and v− = v−(ρ) = v−(ρ, p•, p◦).

Note that, as (2.5) is assumed, we have that, for 0 ≤ p◦ ≤ p• ≤ 1, the functions
ρ �→ v+(ρ, p•, p◦) and ρ �→ v−(ρ, p•, p◦) are non-decreasing.

Let us emphasize that

v−, v+ ∈ [−1, 1], (3.23)

by (3.11), but it is a priori not guaranteed that v− ≤ v+. As we will see, this is in fact
one consequence of the next lemma, see Corollary 3.3.

Roughly speaking, the next lemma states that, the probability of the random walk to
deviate above v+(ρ) ∨ 0 or below v−(ρ) ∧ 0 over large time scales decays very fast.
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Lemma 3.2. For every ǫ > 0, there exists a constant c0 = c0(ǫ, ρ) such that

pH ((v+(ρ) ∨ 0) + ǫ, ρ) ≤ c0 exp
(
−2 ln3/2 H

)

p̃H ((v−(ρ) ∧ 0) − ǫ, ρ) ≤ c0 exp
(
−2 ln3/2 H

)
,

(3.24)

for every H ≥ 1.

Remark 7. We will present only the proof of the first inequality of (3.24), involving v+.
Nevertheless, a symmetric argument can be used to prove the second inequality.

The next result, whose proof is exposed in Sect. 5 is a simple consequence of Lemma
3.2 and will be important in the rest of the paper.

Corollary 3.3. We have that v−(ρ) ≤ v+(ρ), for every ρ ∈ (0, 1).

The next result show that the two quantities v+ and v− coincide, and thus identifies
the candidate for the speed appearing in the LLN.

Theorem 3.4. We have that, for any ρ ∈ (0, 1),

v+(ρ) = v−(ρ). (3.25)

Having Theorem 3.4 in hands we can define

v(ρ) := v+(ρ) = v−(ρ). (3.26)

Combining Lemma 3.2 with Theorem 3.4 we can derive some immediate conclusions:

Theorem 3.5. Assume that for some ρ, we have v(ρ) = 0. Then

Xn

n
→ 0, P

ρ − a.s.

Proof of Theorem 3.5. This is a direct consequence of Lemma 3.2, Theorem 3.4 and
Borel–Cantelli Lemma. ⊓⊔

Furthermore, by Theorem 3.4 and by definition of v+(ρ) and v−(ρ), if the speed exists,
then it has to be equal to v(ρ). Hence, v(ρ) is going to be the limiting speed appearing in
Theorem 2.1. But, as one can see, Lemma 3.2 does not allow us to conclude the existence
of the speed, or the CLT, for v(ρ) > 0 (or for v(ρ) < 0). For example, when v(ρ) > 0,
we know that it is very unlikely that the random walker will exceed speed v(ρ). But it
is not yet clear whether it can move slower than v(ρ).

In order to prove Theorem 2.1, we will first use sprinkling in order to prove the
following ballisticity result, which requires using results from [HHSST15] and [HS15].
Recall the definition of ρ+ and ρ− in (2.7).

Proposition 3.6. For any ǫ > 0, we have that v(ρ+ + ǫ) > 0 and v(ρ− − ǫ) < 0 and,

for any ρ > ρ+ + 2ǫ and ρ̃ < ρ− − 2ǫ there exist constants c1(ǫ) and c2(ǫ) such that

p̃H (v(ρ+ + ǫ)/2, ρ) ≤ c1 exp
(
−2 ln3/2 H

)

pH (v(ρ− − ǫ)/2, ρ̃) ≤ c2 exp
(
−2 ln3/2 H

)
,

(3.27)

for all H ≥ 1.

Proposition 3.6 is weaker than what one should expect, but it is actually enough to
conclude the LLN and CLT of Theorem 2.1 by using results from [HS15] and [HHSST15]
who construct a renewal structure respectively for the random walk on SSEP and on
PCRW.
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t

x

H

≥ H3/4

y1 y2

B1 B2

π1(y1) π1(y2)

π2(y1)

Fig. 4. Lateral decoupling

4. Lateral Decoupling

In this section, we provide a very important property of the annealed law of the walk: If
one observes the family of continuous space–time random walk defined in Sect. 3.1 in
two disjoint 2-dimensional boxes at a space distance that is large compared to the square
root of the time distance, then events in these two boxes are essentially independent. Let
us state this fact precisely.

As in Fig. 4, fix y1, y2 ∈ R
2 such that π1(y1) ≤ π1(y2), π2(y1) = π2(y2), for H ≥ 1,

let B1 = y1 + [−H, 0] × [0, H ] and B2 = y2 + [0, H ] × [0, H ] we define the distance
d(B1, B2) := |π1(y1) − π1(y2)|. Our objective in the next proposition is to bound the
dependence of what happens inside B1 and B2.

We say that a function f : D(R+, SZ) → R is supported on a box B H
y if it is

measurable with respect to σ
(
{ηρ

t (x) : (x, t) ∈ B H
y ∩ (Z × R+)}

)
.

Proposition 4.1. Consider the environment with law P
ρ
E P or P

ρ
RW , with some density

ρ ∈ (0, 1). Let H ≥ 1 and y1, y2 ∈ R
2 be such that π2(y1) = π2(y2), and such that

π1(y2) − π1(y1) ≥ H
3
4 . (4.1)

Let B1 = y1 + [−H, 0] × [0, H ] and B2 = y2 + [0, H ] × [0, H ]. For any non-negative

functions f1 and f2, with ‖ f1‖∞, ‖ f2‖∞ ≤ 1, supported respectively on B1 and B2, we

have that

Covρ( f1, f2) ≤ c3e−H
1
4
, (4.2)

for some constant c3 = c3(ρ).

Proof. The idea of the proof is that there exists an event A such that Ac has very small
probability and E[ f1 f21A] ≤ E[ f1]E[ f2] + 2P(Ac). In this case, as f1, f2 ≥ 0 and
‖ f1‖∞, ‖ f2‖∞ ≤ 1, one has that Covρ( f1, f2) ≤ 3P(Ac). Roughly speaking, the event
A will be the event that some particle visits both boxes B1 and B2. The proof is slightly
different for SSEP and for PCRW, thus we separate it in two cases.
Case I: The PCRW.
As the particles move independently for PCRW, it is clear that on the event that no
particle started at time π2(y1) on the right of π1(y1) + H3/4/4 enters B1 and no particle
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started at time π2(y2) = π2(y1) on the left of π1(y2) − H3/4/4 enters B2, the variables
f1 and f2 behave independently, as can be shown by a simple coupling argument. Let us
briefly outline a possible coupling, denoting A the event described above. Let ηρ be the
environment associated with the PCRW, as described in Sect. 2.1.2. Then, we have that
f1 = f1(η

ρ) and f2 = f2(η
ρ). Let us define η1 (resp. η2) the environment consisting

of a collection of independent random walks, as in PCRW, started at time π2(y1) with
η1

π2(y1)
(x) = η

ρ

π2(y1)
(x) (resp.η2

π2(y1)
(x) = η

ρ

π2(y1)
(x)) if x ≤ π1(y1)+H3/4/4 (resp. x ≥

π1(y2)− H3/4/4) and η1
π2(y1)

(x) = 0 otherwise (resp. η2
π2(y1)

(x) = 0 otherwise). Let us

then define f̃1 = f (η1) and f̃2 = f (η2). In words, f̃1 (resp. f̃2) is defined as f1 (resp. f2)
on an environment matching ηρ except that particles on the right of π1(y1) + H3/4/4

(resp. left of π1(y2) − H3/4/4) at time π2(y1) are erased. The functions f̃1 and f̃2 are
clearly independent and are respectively equal to f1 and f2 on the event A. Hence, using
that ‖ f1‖∞, ‖ f2‖∞ ≤ 1 and f1, f2 ≥ 0, one has that

E[ f1 f21A] = E[ f̃1 f̃21A] ≤ E[ f̃1]E[ f̃2] ≤ E[ f1]E[ f2] + 2P(Ac).

Moreover, under P
ρ
RW , η

ρ
0 (x) = k with probability e−λλk/(k!), where we recall that

λ = − ln(1 − ρ). Hence (by Azuma’s inequality for instance), we obtain, for H ≥ 1,

Covρ( f1, f2)

≤ 6 P
ρ
RW

[
∃x ∈ Z : x >

H3/4

4
, 1 ≤ i ≤ η

ρ
0 (x), inf

t≤H

(
Y

x,i
t − x

)
≤ −x

]

≤ 6

∞∑

x=⌈H3/4/4⌉

∑

k≥0

k exp
(

−
x2

2H

)
e−λ λk

k!
≤ 2λe− H1/2

32

∑

x≥0

e− x2

2H

≤ 6λ
(
1 +

√
2π H

)
e− H1/2

32 .

(4.3)

This proves the result, choosing c3 properly.

Case II: The SSEP.

In this case, the decoupling is slightly more complicated to justify, but one can do so
by a coupling argument that we outline here. Consider the following construction of the
environment from time π2(y1) = π2(y2). We will use two independent environment
that we will couple with the actual environment at a relevant stopping time.

Recall the construction from Sect. 2.1.1. For simplicity, let us assume π2(y1) =
π2(y2) = 0 and π1(y1) = 0. Let η(ℓ) (resp. η(r)) be the following environment: for

x < H3/4/4 (resp. x > π1(y2) − H3/4/4), let η
(ℓ)
0 (x) (resp. η

(r)
0 (x)) be i.i.d. Bernoulli

random variables with mean ρ. For x ≥ H3/4/4 (resp. x ≤ π1(y2) − H3/4/4), let

η
(ℓ)
0 (x) = g (resp. η

(r)
0 (x) = g), where g represents an undetermined state ( if 0 means

a white particle and 1 a black particle, then g could mean a green particle).

Now, for every x < H3/4/2 (resp. x ≥ H3/4/2), let (T
ℓ,x

i ) (resp. (T
r,x
i )) be inde-

pendent Poisson point processes with rate γ . As in Sect. 2.1.1, at times (T
ℓ,x

i ) or (T
r,x
i ),

the occupation of site x and x + 1 are exchanged. Let us denote P(ℓ) and P(r) the laws
of η(ℓ) and η(r). Besides, we define η(ℓ) and η(r) on a common probability space with
measure P̃, under which we let them to be independent.
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Let us now define two stopping times. Let S1 be the first time a green particle of η(ℓ)

enters B1 or a particle started on the left of H3/4/4 goes on the right of H3/4/2, that is,

S1 = inf
{

t > 0 : ∃x ≤ 0 s.t. η
(ℓ)
t (x) = g, or ∃x ≥ H3/4/2 s.t. η

(ℓ)
t (x) ∈ {0, 1}

}
.

(4.4)
Similarly, define

S2 = inf
{

t > 0 : ∃x ≥ π1(y2) s.t. η
(ℓ)
t (x) = g, or ∃x ≤ H3/4/2 s.t. η

(ℓ)
t (x) ∈ {0, 1}

}
.

(4.5)
Also, define S = S1 ∧ S2. Let us now define ηρ under P̃, so that its marginal on B1 ∪ B2

corresponds to its law under Pρ . For any t < S, we let, for any x ≤ 0, ηρ(x) = η(ℓ)(x)

and, for x ≥ π1(y2), we let ηρ(x) = η(r)(x). At time S, each green particle takes the
value of independent Bernoulli random variable with parameter ρ and, after this time,
the process continues as a usual SSEP as described in Sect. 2.1.1.

It is not difficult to see that, under P̃, the environment ηρ on B1 ∪ B2 has the same
law as ηρ under Pρ , on B1 ∪ B2. Hence, f1 and f2 have the same law under P̃ and Pρ .
Finally, one should note that, on the event {S > H}, f1 only depends on η(ℓ) and f2

only depends on η(r), and thus they are conditionally independent.

Using the previous argument, the definition of S and denoting Y a continuous simple
random walk with rate γ , we have that, since ‖ f1‖∞ ≤ 1 and ‖ f2‖∞ ≤ 1,

Covρ( f1, f2) ≤ 3P̃ (S ≤ H) ≤ 12
∑

x≥⌈H3/4/4⌉

P
[

sup
t≤H

Yt ≥ x
]

≤ 12
∑

x≥⌈H3/4/4⌉

exp
(

−
x2

2γ H

)
≤ 12(1 +

√
2π H) exp

(
−

H1/2

32γ

)
,

(4.6)
where we used similar estimates as above. This proves the result, choosing c3 properly.

⊓⊔

5. Upper and Lower Deviations of the Speed

This section is devoted to the proof of Lemma 3.2 and Corollary 3.3. We will prove
Lemma 3.2 for v+ only but exactly the same proof, with symmetric arguments, holds for
v−.

5.1. Proof of corollaries. We start by showing how Lemma 3.2 implies Corollary 3.3.

Proof of Corollary 3.3. First note that, by the definition of v+(ρ) and v−(ρ), we have
that, for any ǫ > 0,

there exist two increasing sequences(H+
i )i and(H−

i )i such that

pH+
i
(v+(ρ) + ǫ, ρ) < 1/2and p̃H−

i
(v−(ρ) − ǫ, ρ) < 1/2. (5.1)

Note also that, for any v1, v2 ∈ R such that v1 < v2 and any H > 0,

pH (v1, ρ) + p̃H (v2, ρ) ≥ 1. (5.2)
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We start by showing that either v+(ρ) ≥ 0 or v−(ρ) ≤ 0. Indeed, assume that
v+(ρ) < 0 and v−(ρ) > 0 and fix any ǫ ∈ (0, v−(ρ)/4). Lemma 3.2 implies that, for
H ∈ N large enough,

pH (ǫ, ρ) < 1/2. (5.3)

Since ǫ < v−(ρ) − ǫ, we obtain from (5.1) and (5.3) that pH−
i

(ǫ, ρ) + p̃H−
i

(v−(ρ) −
ǫ, ρ) < 1, as soon as i is large enough. This contradicts (5.2).

Now consider the case v+(ρ) ≥ 0. Assume, by contradiction, v−(ρ) > v+(ρ). Fix
ǫ ∈ (0, (v−(ρ) − v+(ρ))/4) so that v+(ρ) + ǫ < v−(ρ) − ǫ. By Lemma 3.2, for any
H ∈ N large enough, pH (v+(ρ) + ǫ, ρ) < 1/2. Thus, as soon as i is large enough, we
obtain from (5.2) that pH−

i
(v+(ρ) + ǫ, ρ) + p̃H−

i
(v−(ρ) − ǫ, ρ) < 1, which contradicts

(5.2) once more. Thus, v+(ρ) ≥ 0 implies v−(ρ) ≤ v+(ρ).

By a symmetric argument, v−(ρ) ≤ 0 implies v−(ρ) ≤ v+(ρ). This completes the
proof that v−(ρ) ≤ v+(ρ). ⊓⊔

Now, we prove that Theorems 3.4 and 3.5 imply Theorem 2.2, stating that the random
walk on the Exclusion process with density 1/2 has zero speed when p◦ = 1 − p•.

Proof of Theorem 2.2. Note that the law of the exclusion process with ρ = 1/2 is

invariant under flipping colors • ↔ ◦. Thus, for any p, q ∈ [0, 1] we have P
1/2
p,q = P

1/2
q,p

which implies

v+(1/2, p, q) = v+(1/2, q, p). (5.4)

Furthermore, in the particular case q = 1 − p we have, for any ρ ≥ 0, any y ∈ L

and any Borel set A ∈ R,

P
ρ
p,q

[
X

y
H − π1(y) ∈ A

]
= P

ρ
q,p

[
−
(
X

y
H − π1(y)

)
∈ A

]
. (5.5)

In particular,

P
ρ
p,q [AH,w(−v)] = P

ρ
q,p[ ÃH,w(v)]. (5.6)

Therefore, still assuming that q = 1 − p we get

v+(ρ, p, q) = inf{v ∈ R : lim inf
H→∞

sup
w∈[0,1)×{0}

P
ρ
p,q(AH,w(v)) = 0}

= − sup{v ∈ R : lim inf
H→∞

sup
w∈[0,1)×{0}

P
ρ
p,q(AH,w(−v)) = 0}

= − sup{v ∈ R : lim inf
H→∞

sup
w∈[0,1)×{0}

P
ρ
q,p( ÃH,w(v)) = 0}

= −v−(ρ, q, p).

(5.7)

Combining (5.7) and (5.4) we get that whenever p◦ = 1 − p•,

v+(1/2, p•, p◦) = −v−(1/2, p•, p◦), (5.8)

and thus, by Theorem 3.4, we have that v+(1/2, p•, p◦) = v−(1/2, p•, p◦) = 0. We
can then conclude using Theorem 3.5. ⊓⊔
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w ImBm′ , m′ ∈ Cm

hLk+1

hLk+1 hLk+1 hLk+1

Fig. 5. A box Bm with m ∈ Mh
k+1

, paved using Cm

5.2. Scales and boxes. In this section, we define some scales and boxes on R
2 that we

will use in several renormalization procedures throughout the paper. In the following,

we define sequences of scales that grow like Lk+1 ∼ L
5/4
k ; it should be noted that the

exponent 5/4 is arbitrary and any exponent between 1 and 2 seems to work similarly
(this one simply seems more convenient to us).
Define recursively

L0 := 1010 and Lk+1 := ℓk Lk for k ≥ 0, whereℓk := ⌊L
1/4
k ⌋. (5.9)

There exists c4 > 0 such that

c4L
5/4
k ≤ Lk+1 ≤ L

5/4
k , for every k ≥ 0. (5.10)

For L ≥ 1 and h ≥ 1, define

Bh
L := [−hL , 2hL) × [0, hL) ⊆ R

2, (5.11)

I h
L := [0, hL) × {0} ⊆ R

2, (5.12)

and, for w ∈ R
2,

Bh
L(w) := w + Bh

L and I h
L (w) := w + I h

L . (5.13)

It will be convenient to define the following set of indices:

Mh
k := {h} × {k} × R

2. (5.14)

For each m ∈ Mh
k of the form m = (h, k, w) and v ∈ R we write

Bm := Bh
Lk

(w) , Im := I h
Lk

(w) and Am(v) := AhLk ,w(v). (5.15)

Note that, for each m = (h, k, w) ∈ Mh
k , a random walk starting at Im stays inside

Bm , using (3.11). We also define the horizontal distance between m = (h, k, (x, t)) and
m′ = (h, k, (x ′, t ′)) in Mh

k as

ds(m, m′) = |x − x ′|. (5.16)

Later on, for m ∈ Mh
k+1, we will want to tile the box Bm with boxes Bm′ with m′ ∈ Mh

k .

For this purpose, we define, for m ∈ Mh
k+1 with m = (h, k + 1, (z, t)),
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Cm =
{(

h, k, (z + xhLk, t + yhLk)
)

∈ Mh
k : (x, y) ∈ [−ℓk, 2lk − 1]

×[0, ℓk − 1] ∩ Z
2
}
.

Note that
|Cm | ≤ 3ℓ2

k . (5.17)

5.3. A recursive inequality. The following proposition will be used several times in the
paper and is a basis for our renormalization argument.

It is important to notice that vmin and vmax in the next proposition are free parameters
that we choose in different ways throughout the text. In particular they are not related to
v− and v+ introduced earlier.

Proposition 5.1. Fix 0 < vmin < vmax ≤ 2. Let k1 = k1(vmin) be such that ℓk1 ≥
(6/vmin)

2. For any k ≥ k1 and for all h ≥ 1, we have that

phLk+1

(
vmin +

vmax − vmin√
ℓk

)
≤ 9ℓ4

k

(
phLk

(vmax)+
(

phLk
(vmin)

)2
+c3e−(hLk )

1/4)
. (5.18)

The above proposition relates the probability of a speed-up event at scale k + 1 to the
probability of similar events at scale k. But before proving Proposition 5.1, prove the
following deterministic lemma.

Lemma 5.2. Fix 0 < vmin < vmax ≤ 2. Let k1 = k1(vmin) be such that ℓk1 ≥ (6/vmin)
2.

For any k ≥ k1, for all h ≥ 1 and for all m ∈ Mh
k+1, we have that at least one of the

following events happens:

a) There exists m′ ∈ Cm such that Am′(vmax) occurs;

b) There exist m′, m′′ ∈ Cm such that ds(m
′, m′′) ≥ 4hLk and such that the event

Am′(vmin) ∩ Am′′(vmin) occurs;

c) Am

(
vmin + vmax−vmin√

ℓk

)c
occurs.

Proof. Assume that items a) and b) do not hold. Define

B :=
{
m′ ∈ Cm : Am′(vmin) holds

}
. (5.19)

For y ∈ Im , let m0, m1 ∈ B be the first and last indexes of B, such that Bm0 and Bm1 are

visited by
(
X

y
t , 0 ≤ t ≤ hLk+1

)
, respectively. More precisely, 0 ≤ i0 ≤ i1 ≤ ℓk −1 such

that X
y

j0hLk
∈ Im0 , X

y

j1hLk
∈ Im1 with m0 = (h, k, (i0, j0)Lk), m1 = (h, k, (i1, j1)Lk),

but
{
m′ ∈ B : ∃t ′ ∈ [0, j0hLk) ∪ ( j1hLk, hLk+1] such that X

y

t ′ ∈ Im′
}

= ∅. (5.20)

We need to consider two cases.

Case 1: assume j1 + 1 − j0 <
√

ℓk .
As the event a) does not occur, X

y
· moves at speed at most vmax between times j0hLk

and ( j1 + 1)hLk . Moreover, by definition of B, j0 and j1, X
y
· moves at speed at most

vmin before time j0hLk and after time ( j1 + 1)hLk . Therefore, we have that

X
y

hLk+1
− π1(y) ≤ vmax

√
ℓkhLk + vmin(ℓk −

√
ℓk)hLk

≤ hLk+1

(
vmin +

vmax − vmin√
ℓk

)
.

(5.21)
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y

hLk+1

j0hLk

(j1 + 1 − j0)hLk

i0hLk (i1 + 1 − i0)hLk

Bm0
Bm1

Fig. 6. The points (i0, j0) and (i1, j1)

This implies that, in this case, Ac
m

(
vmin + vmax−vmin√

ℓk

)
occurs, i.e. item c).

Case 2: assume j1 + 1 − j0 ≥
√

ℓk .

Again, we will use that X
y
· moves at speed at most vmin before time j0hLk and after

time ( j1 + 1)hLk . Moreover, recall that X
y
j0hLk

≥ i0hLk and X
y

( j1+1)hLk
≤ (i1 + 2)hLk

and note that, as the event described in b) does not occur, we have that |i0 − i1| ≤ 4.
This yields, as a) does not occur and 6/

√
ℓk < vmin,

X
y
hLk+1

− π1(y) ≤
(
X

y
j0hLk

− π1(y)
)

+
(
X

y
hLk+1

− X
y

( j1+1)hLk

)
+
(
X

y

( j1+1)hLk
− X

y
j0hLk

)

≤ vminhLk

(
ℓk − ( j1 + 1 − j0)

)
+ 6hLk

≤ hLk+1

(
vmin −

vmin√
ℓk

+
6

ℓk

)
.

(5.22)

This implies again that Ac
m

(
vmin + vmax−vmin√

ℓk

)
occurs, concluding the proof. ⊓⊔

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. Given m ∈ Mh
k+1, we use Lemma 5.2 to obtain the following

inclusion,

Am

(
vmin +

vmax − vmin√
ℓk

)
⊆

⋃

m′∈Cm

Am′(vmax)∪
⋃

(m′,m′′)

Am′(vmin)∩ Am′′(vmin), (5.23)

where the last union runs only over the set of pairs (m′, m′′) in Cm such that ds(m
′, m′′) ≥

4hLk .

We now have to bound the probability of the left-hand side event. Let m′ = (h, k,

(i ′hLk, t ′)), m′′ = (h, k, (i ′′hLk, t ′′)) ∈ Cm , with i ′ ≤ i ′′, such that ds(m
′, m′′) ≥

4hLk , i.e. i ′′−i ′ ≥ 4. The events Am′(vmin) and Am′′(vmin) are respectively supported by
the boxes ((i ′ +2)hLk, 0)+[−hLk+1, 0]×[0, hLk+1] and ((i ′′−1)hLk, 0)+[0, hLk+1]×
[0, hLk+1].
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v+ vvk3
v∞vk3+1 vk3+2

Fig. 7. The sequence of velocities vk as defined in (5.27)

As (i ′′ − i ′ − 3)hLk ≥ hLk ≥ (hLk+1)
3/4, we can apply Proposition 4.1. Recalling

that |Cm | = 3ℓ2
k , we have that

ph Lk+1

(
vmin +

vmax − vmin√
ℓk

)
≤ 3ℓ2

k phLk
(vmax)

+ 9ℓ4
k sup

m′,m′′∈Cm ;ds (m′,m′′)≥4hLk

P [Am′(vmin) ∩ Am′′(vmin)]

Proposi tion 4.1
≤ 9ℓ4

k

(
phLk

(vmax) + phLk
(vmin)

2 + c3e−(hLk )
1/4
)

(5.24)

Concluding the proof of the proposition. ⊓⊔

5.4. Bound on pH (v). We will first prove the following result, which states a strong
decay for the probability that the walk go faster than (v+ ∨ 0), along a particular subse-
quence of times. Once we establish this result, we will simply need to interpolate it to
any value H ≥ 1.

Lemma 5.3. For all v > (v+ ∨ 0) there exists c5 = c5(v) ≥ 1 and k2 = k2(v) ≥ 1 such

that for every k ≥ k2

pc5 Lk
(v) ≤ exp

(
−4 (ln(Lk))

3/2
)
. (5.25)

From now on, we fix v > (v+ ∨ 0). Recall the definition of ℓk below (5.9) and let
k3 = k3(v) be such that, for all k ≥ k3,

ℓk ≥
(( 2k+3

v − (v+ ∨ 0)

)
∨ (6/v+)

)2
(5.26)

This exact choice for the constant k3 will become clear during the proof of Lemma 5.3, but
for now it suffices to observe that it is well-defined because ℓk grows super-exponentially
fast. Let us define the following sequence of speeds:

vk3 :=
v + (v+ ∨ 0)

2
and vk+1 := vk +

v − (v+ ∨ 0)

2k+1
for every k ≥ k3. (5.27)

We have that

v∞ := lim
k→∞

vk ≤ vk3 + (v − (v+ ∨ 0))/2 = v. (5.28)

Recall the definition of Cm below (5.16). We are now ready to conclude the proof of
Lemma 5.3.

Proof of Lemma 5.3. Observe first that 2 > (5/4)3/2 ∼ 1.4, so that we can choose
k2 ≥ k3 such that, for any k ≥ k2,

9ℓ4
k

(
e−4(2−(5/4)3/2)(ln(Lk ))

3/2

+ c3e−(Lk )
1/4+8 ln(Lk )

)
≤ 1, (5.29)
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where c3 = c3(ρ) is defined in Proposition (4.1). Since vk2 > v+, we have

lim inf
h→∞

phLk2
(vk2) = 0. (5.30)

Therefore, we fix c5(v) ≥ 1 for which

pc5 Lk2
(vk2) ≤ e−4

(
ln(Lk2

)
)3/2

. (5.31)

Now we can iteratively use Proposition 5.1, for every k ≥ k2, by choosing vmin = vk

and vmax = 2. In particular, pc5 Lk
(vmax) = 0 and, by (5.26),

vk+1 ≥ vk +
2

√
ℓk

≥ vk +
vmax − vmin√

ℓk

. (5.32)

Therefore, we can obtain the statement of the lemma through induction, by simply
observing that for all k ≥ k2,

pc5 Lk+1
(vk+1)

e−4(ln(Lk+1))
3/2

≤ 9ℓ4
k

(
e−8(ln(Lk ))

3/2

+ c3e−(c5 Lk )
1/4
)

e4(ln(Lk+1))
3/2

≤ 9ℓ4
k

(
e−4(2−(5/4)3/2)(ln(Lk ))

3/2

+ c3e−(Lk )
1/4+8 ln(Lk )

)
≤ 1.

(5.33)

where we used (5.29), the fact that c5 ≥ 1 and L
3/4
k ≥ L

1/2
k for k ≥ 0. ⊓⊔

5.5. Proof of Lemma 3.2. With Lemma 5.3 at hand, we just need an interpolation argu-
ment to establish Lemma 3.2. Let v = (v+ ∨ 0) + ǫ, v′ = ((v+ ∨ 0) + v)/2 and let c5(v

′)
and k2(v

′) be as in Lemma 5.3. For H ≥ 1 let us define k̄ as being the integer that
satisfies:

c5L k̄+1 ≤ H < c5L k̄+2. (5.34)

Let us first assume that H is sufficiently large so that k̄ ≥ k2, that

c5

ℓk̄

H ≤
v − v′

2
H, and 8L

9/8

k̄
e−2(ln(L k̄ ))

3/2

≤ 1. (5.35)

Therefore, we can apply Lemma 5.3 to conclude that

pc5 L k̄
(v′) ≤ exp(−4

(
ln(L k̄)

)3/2
). (5.36)

Now, in order to bound pH (v), we are going to start by fixing some w ∈ R
2 and pave

the box B1
H (w) with boxes Bm with m ∈ M

c5

k̄
such that m = (c5, k̄, w+(xc5L k̄, yc5L k̄),

where −⌈H/c5L k̄⌉ ≤ x ≤ ⌈2H/c5L k̄⌉ and 0 ≤ y ≤ ⌈H/c5L k̄⌉ are integers. Let us
denote M the set of such indices. Note that

|M | ≤ 8

(
H

c5L k̄

)2

≤ 8

(
L k̄+2

L k̄

)2

≤ 8

⎛
⎝ L

25/16

k̄

L k̄

⎞
⎠

2

≤ 8L
9/8

k̄
. (5.37)
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An important observation at this point is that, on the event ∩m∈M (Am(v′))c, for any
y ∈ I 1

H (w) the displacement of X y up to time ⌊H/c5L k̄⌋c5L k̄ can be bounded by

X
y
⌊H/c5 L k̄⌋c5 L k̄

− π1(y) =
⌊H/c5 L k̄⌋−1∑

j=0

X
X

y
jc5 L

k̄

c5 L k̄
− X

y
jc5 L k̄

≤ v′⌊H/c5L k̄⌋c5L k̄ ≤ v′ H.

(5.38)

where we used that Am(v′) does not occur for any m ∈ M and that each point X
y
jc5 L k̄

belongs to Im for some m′ ∈ Cm . Besides, we have that

H −
⌊

H

c5L k̄

⌋
c5L k̄ ≤ c5L k̄ ≤

c5

ℓk̄

H
(5.35)
≤

v − v′

2
H. (5.39)

Therefore, by the Lipschitz condition (3.11) and (5.38), on the event ∩m∈M (Am(v′))c,
for any y ∈ I 1

H (w),

X
y
H − π1(y) < vH. (5.40)

Thus, using (5.35) and (5.37), this yields that

P
(

AH,w(v)
)

≤ 8L
9/8

k̄
exp(−4

(
ln(L k̄)

)3/2
) ≤ e−2 ln3/2(H). (5.41)

The conclusion of Lemma 3.2 now follows by taking the supremum over all w ∈ [0, 1)×
{0} and then properly choosing the constant c0 in order to accommodate small values of
H .

This finishes the proof of Lemma 3.2.

6. Proof of Theorem 3.4

As we discussed above, we want to show that v+ = v−. We will assume by contradiction
that v+ > v−. Then either v+ > 0 or v− < 0. We pick v+ > 0. The other case can be
handled analogously by symmetry.

Let us define

δ :=
v+ − v−

4
. (6.1)

Note δ ∈ (0, 1/2], since we argue by contradiction and assume that v+ > v−.

The goal of this section is to prove the following proposition which, as we show
below, immediately implies Theorem 3.4.

Proposition 6.1. Assume that δ, defined in (6.1), is positive. There exist k4(c3), c7

(v+, v−, k) = c7(k) ≥ 1 and c6(δ, k4) such that, for all k ≥ k4, for all h ≥ c6, for

all m ∈ Mh
k ,

P

(
Am

(
v+ −

δ

2c7(k4)

))
≤ e−(ln Lk )

3/2

. (6.2)

Proof of Theorem 3.4. This proposition implies that there exists ǫ > 0 independent
of H such that lim inf H→∞ pH (v+ − ǫ) = 0, which contradicts the definition of v+.
Therefore, this proves by contradiction that v+ = v− and thus Theorem 3.4. ⊓⊔
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6.1. Trapped points. The first step of the proof is to introduce the notion of traps.
Intuitively speaking, by the definitions of v− and v+, we know that the random walker
has a reasonable probability of attaining speeds close to both of these values. However,
every time the random walker reaches an average speed close to v− makes it harder for
it to attain an average speed get close to v+. Specially since it is very unlikely that it will
run much faster than v+ at any moment. This motivates the definition below.

Definition 6.2. Given K ≥ 1 and δ as in (6.1), we say that a point w ∈ R
2 is K -trapped

if there exists some y ∈
(
w + [δK , 2δK ] × {0}

)
∩ L such that

X
y

K − π1(y) ≤ (v− + δ)K . (6.3)

Note that this definition applies to points w ∈ R
2 that do not necessarily belong to L. ⊓⊔

As we mentioned above, the existence of a trap will introduce a delay for the random
walker. In fact, by monotonicity, if w is K -trapped, then for every w′ ∈

(
w + [0, δK ] ×

{0}
)
, we have

Xw′
K − π1(w

′) ≤ X
y
K − π1(y) + 2δK ≤ (v− + 3δ)K = (v+ − δ)K , (6.4)

where y is any point in
(
w + [δK , 2δK ] × {0}

)
satisfying (6.3).

Our next step is to show that the probability to find a trap is uniformly bounded away
from zero.

Lemma 6.3. There exist constants c8(v+, v−) > 0 and c9(v+, v−) > 4/δ, such that

inf
K≥c9

inf
w∈R2

P
[
wisK -trapped

]
≥ c8. (6.5)

Proof. Since v− + δ > v−, the definition of v− implies the positivity of the following
constant:

c8 :=
1

2

⌈2

δ

⌉−1
lim inf
K→∞

p̃K (v− + δ) > 0. (6.6)

In particular, there exists c9 > 8/δ such that

⌈2

δ

⌉−1
inf

K≥c9−8/δ
p̃K (v− + δ) ≥ c8. (6.7)

If we had a supremum over w ∈ R
2 in (6.5), we would be done. However, we have an

infimum in (6.5), so that the proof requires a few more steps.
Recall the definition of L1 in (3.12). Let us prove that if

there is z ∈ L1 and z′ ∈ (z + [δK + 4, 2δK − 4] × {0})

such that X z′
K − π1(z

′) ≤ (v− + δ)K − 4,
(6.8)

then
for any y ∈ L1 there exists y′ ∈ (y + [δK , 2δK ])

such that X
y′

K − π1(y′) ≤ (v− + δ)K .
(6.9)

Assume that (6.8) holds and fix y ∈ L1. Assume first that π2(y) ≤ π2(z). Define
y′ = (π1(z

′) − (π2(z) − π2(y)), π2(y)). Thus π2(y′) ≤ π2(z) and π1(y′) ≤ π1(z
′) −

(π2(z
′) − π2(y′)). Hence, by Proposition 3.1, we have that, for K ≥ 2,

X
y′

K ≤ X z′

K−(π2(z′)−π2(y′)). (6.10)
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By (3.11) and using that |π2(z
′) − π2(y′)| ≤ 2, we have that

X
y′

K ≤ π1(z
′) + (π2(z

′) − π2(y′)) + (v− + δ)K − 4

≤ π1(y′) + 2(π2(z) − π2(y)) + (v− + δ)K − 4

≤ π1(y′) + (v− + δ)K .

(6.11)

Moreover, as z, y ∈ L1 and π1(y′) = π1(z
′) − (π2(z) − π2(y)), we have that δK ≤

π1(y′) ≤ 2δK .

If π2(y) ≥ π2(z), similar arguments hold by defining y′ = (π1(z
′) − (π2(y) −

π2(z)), π2(y).

Then, for K > c9, let K̃ = K − 8/δ, so that we have, using translation invariance,

c8 ≤ sup
z∈L1

P

[
there exists z′ ∈ (z + [0, K̃ ) × {0})

such that X z′
K − π1(z

′) ≤ (v− + δ)K̃

]

≤ sup
z∈L1

P

[
there exists z′ ∈ (z + [δ K̃ , 2δ K̃ ) × {0})

such that X
y
K − π1(z

′) ≤ (v− + δ)K̃

]

≤ inf
y∈L1

P

[ there exists y′ ∈ (y + [δK , 2δK ) × {0})
such that X

y′

K − π1(y′) ≤ (v− + δ)K

]
.

By Remark 6, the infimum over L1 is equal to the infimum over R
2, and we can thus

conclude. ⊓⊔

Let us describe how we intend to employ the previous lemma, which is widely inspired
by Lemma 5.2 in [BHT18]. The basic idea is that if a point is trapped, then a walk started
from there will be delayed. Then, the probability that a point to be trapped was very high,
the set of delayed points would resemble a (dependent) supercritical percolation cluster.
In such a scenario, any random walker would have to be delayed on large distances and
it would not be able to attain an average speed close to v+ in any time scale. This would
ultimately contradict the definition of v+.

Nevertheless, Lemma 6.3 does not guarantee that the probability that a point is trapped
is high. For this reason, we will use here the notion of threatened points introduced in
[BHT18]. Intuitively speaking, we will say that a point is threatened if there exists at
least one trapped point lying along a line segment with slope v+ starting from this point,
see Definition 6.4 and Fig. 8.

We will then prove two key results: a point is threatened with very high probability (see
Lemma 6.6) and a random walk starting at a threatened point is delayed with very high
probability (see Lemmas 6.5 and 6.8).

6.2. Threatened points.

Definition 6.4. Given δ as in (6.1), K ≥ 1 and some integer r ≥ 1, we say that a point
w ∈ L is (K , r)-threatened if w + j K (v+, 1) is K -trapped for some j = 0, . . . , r − 1.

As we are going to show below, a random walker starting on a threatened point will
most likely suffer a delay, similarly to what we saw for trapped points. See Fig. 8 for an
illustration. We first state and prove Lemma 6.5 below is purely deterministic.
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w + joK(v+, 1)

y = Y
y
0

w

w + rK(v+, 1)
Y

y
rK

y′

Fig. 8. The point w in y + [−δK/4, 0]× {0} is (K , r)-threatened, since w + jo K (v+, 1) is K -trapped. Picture
taken from [BHT18]

Lemma 6.5. For any positive integer r and any real number K ≥ c9, if we start the

walker at some y ∈ L and there exists w ∈ (y + [−δK/4, 0] × {0}) such that

wis(K , r)-threatened, (6.12)

then either

1. “the walker runs faster than v+ for some time interval of length K ”, that is,

X
y

( j+1)K − X
y
j K ≥

(
v+ +

δ

2r

)
K for some j = 0, . . . , r − 1, (6.13)

2. or else, “it will be delayed”, that is,

X
y
r K − π1(y) ≤

(
v+ −

δ

2r

)
r K . (6.14)

Proof. Fix r ≥ 1 and K ≥ 1. Assume that the point w ∈ (y + [−δK/4, 0] × {0}) is
(K , r)-threatened. Thus, for some jo ∈ {0, . . . , r − 1},

w + jo K (v+, 1) is K -trapped (6.15)

or, in other words, there exists a point

y′ ∈
((

y + jo K (v+, 1)
)

+ [3δK/4, 2δK ] × {0}
)

(6.16)

such that
X

y′

K − π1(y′) ≤ (v− + δ)K = (v+ − 3δ)K . (6.17)

Fix such a point y′ and notice from (6.16) that,

3

4
δK ≤ π1(y′) −

(
π1(y) + jo Kv+

)
≤ 2δK . (6.18)

We now assume that (6.13) does not hold and bound the horizontal displacement of
the random walk in three steps: before time jo K , between times jo K and ( jo + 1)K and
from time ( jo + 1)K to time r K .

X
y
jo K − π1(y) ≤

jo−1∑

j=0

X
y

( j+1)K − X
y
j K

¬(6.13)
≤ jo

(
v+ +

δ

2r

)
K ≤ jov+ K +

δ

2
K

≤ π1(y′).
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So, by (6.18), Y
y

jo K lies to the left of y′ and, by monotonicity, (6.17) and (6.18) we have

that

X
y

( jo+1)K ≤ X
y′

K ≤ π1(y′) + (v+ − 3δ)K

≤ π1(y) + jov+ K + 2δK + (v+ − 3δ)K

≤ π1(y) + ( jo + 1)v+ K − δK .

(6.19)

Now applying once more the assumption that (6.13) does not hold, for j = jo, . . . , r −1,
we can bound the overall displacement of the random walk up to time r K :

X
y
r K − π1(y) ≤

(
X

y
r K − X

y

( jo+1)K

)
+
(
X

y

( jo+1)K − π1(y)
)

≤ (r − jo − 1)

(
v+ +

δ

2r

)
K + ( jo + 1)v+ K − δK

≤ rv+ K −
δ

2
K =

(
v+ −

δ

2r

)
r K ,

(6.20)

showing that (6.14) holds and thus proving the result. ⊓⊔

We have seen that threatened points most likely cause a delay to the walk, just like
traps do. However, the advantage of introducing the concept of threats is that they are
much more likely to occur than traps as the next lemma shows.

Lemma 6.6. (Threatened points). There exist c11 = c11(v+, v−, c3) and c10(v+, v−)

such that, for any r ≥ 1 and for any K ≥ c10(v+, v−),

sup
y∈R2

P
[
y is not (K , r)-threatened

]
≤ c11r−1000. (6.21)

Proof. First, we prove a statement for r = 3 j for all integers j ≥ 3. Let us define

q K
j = sup

y∈R2

P

[
y is not (K , 3 j )-threatened

]
. (6.22)

Note that if the event {y is not (K , 3 j+1)-threatened} occurs for some j ≥ 3, then the
two following events both occur:

A1 =
{

y is not (K , 3 j )-threatened
}

,

A2 =
{

y + 2 × 3 j (v+, 1)) is not (K , 3 j )-threatened
}

.
(6.23)

These events are respectively supported on

B1 = y +
[
−K , (3 jv+ + 1 + 2δ)K

]
×
[
0, 3 j K

]

B2 = y +
[
(2 × 3 jv+ − 1)K , (3 j+1v+ + 1 + 2δ)K

]
×
[
2 × 3 j K , 3 j+1 K

]
.

(6.24)

We want to apply Proposition 4.1. For this purpose, we require that (3 jv+ −2−2δ)K ≥
(3 j+1 K )3/4 by choosing k5(v+) ≥ 3 such that 3 jv+ − 2 − 2δ > 3 jv+/2 for all j ≥ k5,
and by choosing c10(v+, v−) ≥ c9 (defined in Lemma 6.3) such that v+ K 1/4 ≥ 2 for all
K ≥ c10.
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Define the constant c̃8 = 1 − (1 − c8)
1/9, where c8 is defined in Lemma 6.3 and let

c13(v+, v−, c3) be such that

c3 exp
{

−
(
(3c13+ j+1)1/4 − ( j + 1)2 ln(1 − c̃8)

) }
≤ c̃8/2, for all j ≥ 3. (6.25)

Now, note that, for all K ≥ c10, by Lemma 6.3 we have q K
c13+3 ≤ 1 − c8 ≤ (1 − c̃8)

32
.

Assume that, for some j ≥ k5, q K
c13+ j ≤ (1 − c̃8)

j2
. Then, one has

q K
c13+ j+1

(1 − c̃8)( j+1)2
≤

(
q K

c13+ j

)2

(1 − c̃8)( j+1)2
+

c3e−
(
3c13+ j+1 K

)1/4

(1 − c̃8)( j+1)2

≤ (1 − c̃8)
2 j2−( j+1)2

+
c̃8

2
≤ 1,

(6.26)

where we have used the fact that 2 j2 − ( j + 1)2 ≥ 1 whenever j ≥ 3. This proves

that, for any j ≥ k5, q K
c13+ j ≤ (1 − c̃8)

j2
, for all K ≥ c10. There exists c14 such that

(1 − c̃8)
c14 ≤ 3−1000. Consequently, for any j ≥ c14, q K

c13+ j ≤ 3−1000 j . Finally, let

r ≥ 3c13+c14 and let j̄ be such that 3 j̄ ≤ r < 3 j̄+1. Therefore, we have, for all K ≥ c10,

sup
y∈R2

P [y is not (K , r)-threatened] ≤ sup
y∈R2

P

[
y is not (K , 3 j̄ )-threatened

]

≤ (3 j̄ )−1000 ≤ 31000r−1000,

(6.27)

for every r ≥ 3c13+c14 . By choosing

c11(v+, v−, c3) = 31000(c13+c14) (6.28)

the result follows for every r ≥ 1. ⊓⊔

6.3. Proof of Proposition 6.1. In this section we first prove the Lemma 6.7 which pro-
vides some delay in comparison to v+. As a consequence, in Corollary 6.8, we obtain a
delay along the scales Lk which are vanishing with k. The we will bootstrap this result
in the proof of Proposition 6.1, which will give a contradiction with the definition of
v+. This shows that the assumption v− < v+ has to be false. Recall the definition of
AH,w(v) in (3.17).

Lemma 6.7. For any ǫ > 0, there exist r = r(ǫ, v+, v−, c3) ∈ R
+ and H0 = H0(ǫ, r,

v+, v−) ∈ R
+ such that, for any H ≥ H0 and for any w ∈ R

2,

P

[
AH,w

(
v+ −

δ

2r

)]
≤ ǫ. (6.29)

Proof. For r ≥ 1, H ≥ r × c10 and w ∈ R
2, let us define yi = w + i(δH/4r, 0) and the

events

E1(H, r, w) :=
{
∃i ∈

{
0, . . . ,

⌈4r

δ

⌉
− 1

}
: yi is not

(
H

r
, r

)
-threatened

}
(6.30)

E2(H, r, w) :=
{
∃i ∈ {0, . . . ,

⌈4r

δ

⌉
− 1}, j ∈ {0, . . . , r − 1} :
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X
yi

( j+1) H
r

− X
yi

j H
r

≥
(
v+ +

δ

2r

)H

r

}
. (6.31)

Note that for any y ∈ [w,w + H ], there exists i ∈ {0, . . . ,
⌈

4r
δ

⌉
− 1} such that yi ∈

(y + [−δH/4r, 0] ×{0}). Thus, by Lemma 6.5, we have that if (E1(H, r, y)∪E2(H, r, y))c

holds then, for any y ∈ [w,w + H ], we have that

X
y

H − π1(y) ≤
(

v+ −
δ

2r

)
H. (6.32)

Therefore, we have that AH,w

(
v+ − δ

2r

)
⊂ E1(H, r, y) ∪ E2(H, r, y), and thus

P

[
AH,w

(
v+ −

δ

2r

)]
≤ P [E1(H, r, w)] + P [E2(H, r, w)] (6.33)

Let us now apply Lemma 6.6 with K = H
r

. This yields that, for any r ≥ 1 and
H ≥ r × c10,

P [E1(H, r, w)] ≤
6r

δ
sup
y∈R2

P
[
yis not

(
H

r
, r

)
-threatened

]

≤
6

δ
c11(v+, v−, c3)r

−999.

(6.34)

Besides, by Lemma 3.2, we have that

P [E2(H, r, w)] ≤
6r2

δ
p H

r

(
v+ +

δ

2r

)

≤
6r2

δ
c0(v+, v−, r)e

−2
(

ln H
r

)3/2

.

(6.35)

Finally, notice that, for any ǫ > 0, we can choose r = r(ǫ, v+, v−, c3) large enough
so that the right-hand side of (6.34) is smaller than ǫ/2 for any H ≥ r × c10, and then
choose H0 = H0(ǫ, r, v+, v−) ≥ r × c10 large enough so that the right-hand side of
(6.35) is smaller than ǫ/2 for any H ≥ H0. This concludes the proof using (6.33). ⊓⊔

Corollary 6.8. For all k ≥ 0, there exists c7(v+, v−, k) = c7(k) ≥ 1 such that, for any

h ≥ c7(k) and for any w ∈ R
2

P

[
AhLk ,w

(
v+ −

δ

c7(k)

)]
≤ e−(ln Lk )

3/2

. (6.36)

Proof. Let us fix k ≥ 0 and apply Lemma 6.7 with ǫ = e−(ln Lk )
3/2

.

We obtain that there exist r(k) = r(k, v+, v−, c3) ≥ 1 and H0(k, r) = H0(k, r, v+, v−)

such that, for any h ≥ H0(k, r)/Lk , for any w ∈ R
2,

P

[
AhLk ,w

(
v+ −

δ

2r(k)

)]
≤ e−(ln Lk )

3/2

. (6.37)

Finally, define c7(k) = (H0(k, r)/Lk) ∨ (2(r(k)), so that (6.36) follows by noting

that AhLk ,w

(
v+ − δ

c7(k)

)
⊂ AhLk ,w

(
v+ − δ

2r(k)

)
⊓⊔
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We can now prove Proposition 6.1, which completes the proof of Theorem 3.4.

Proof of Proposition 6.1. We fix k4 such that

∑

k≥k4

1
√

ℓk

≤
1

4
, (6.38)

9ℓ4
k

[
2e−

(
2−(5/4)3/2

)
(ln Lk )

3/2

+ c3e−L
1/4
k +(5/4)3/2 ln Lk

]
≤ 1, ∀k ≥ k4. (6.39)

Let us fix c6(v+, v−, k4) ≥ c7(k4) such that

c0

(
δ

c7(k4)
, ρ

)
e−2(ln c6)

3/2 ≤ 1, (6.40)

where c0 is defined in Lemma 3.2.
Now, we want to apply Proposition 5.1, iteratively. For this purpose, let us define

vmax = v+ +
δ

c7(k4)
, vk4 = v+ −

δ

c7(k4)
,

and for all k ≥ k4,

vk+1 = vk +
2δ

c7(k4)
√

ℓk

≥ vk +
vmax − vk√

ℓk

. (6.41)

Note that, by (6.38),

v∞ ≤ v+ −
δ

2c7(k4)
. (6.42)

By Corollary 6.8, we already have that, for any h ≥ c6,

ph
k4

(
vk4

)
≤ e−

(
ln Lk4

)3/2

. (6.43)

Now, assume that, some k ≥ k4, we have that for any h ≥ c6 and any m ∈ Mh
k

ph
k (vk) ≤ e−(ln Lk )

3/2

, (6.44)

then, applying Proposition 5.1 with vmin = vk and using (6.41), we obtain

phLk+1 (vk+1)

e−(ln Lk+1)
3/2

≤9ℓ4
ke(ln Lk+1)

3/2
(

phLk
(vmax) +

(
phLk

(vmin)
)2

+ c3e−(hLk )
1/4
)

≤9ℓ4
k

[
c0

( δ

c7(k4)
, ρ

)
e(5/4)3/2(ln Lk )

3/2−2(ln hLk )
3/2

+ e−
(
2−(5/4)3/2

)
(ln Lk )

3/2

+ c3e−L
1/4
k +(5/4)3/2 ln Lk

]
,

(6.45)

where we used Lemma 3.2 for the second inequality. Using that (ln hLk)
3/2 ≥ (ln h)3/2+

(ln Lk)
3/2 and (6.40), we have

phLk+1 (vk+1)

e−(ln Lk+1)
3/2

≤9ℓ4
k

[
2e−

(
2−(5/4)3/2

)
(ln Lk )

3/2

+ c3e−L
1/4
k +(5/4)3/2 ln Lk

]

≤1,

(6.46)

where we used (6.39). Thus (6.2) holds for any k ≥ k4, which concludes the proof of
Proposition 6.1. ⊓⊔
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7. Strong Decay Below v(ρ) > 0 or Above v(ρ) < 0

7.1. Sprinkling decoupling. In this section, we state another decoupling result which
differs in some aspects from the lateral decoupling in Proposition 4.1 as we explain
below.

In Proposition 4.1, we take advantage of the fact that, for the events we are interested
in, we can always look at space–time boxes which are well-separated in space, compared
to their time distance. This is because we are willing to control events of the form “the

walker goes faster than v > 0”. If such events occur in sufficiently many consecutive
boxes (called bad boxes), the first and last of these bad boxes will be separated by a large
distance in space. Hence the corresponding events will be essentially independent.

In the following, we want to control events supported in bad space–time boxes that
could be “on the top of each other”, which means that they are located almost at the
same space position (but at different times). Hence, Proposition 4.1 cannot be applied.

Using a sprinkling decoupling technique, we are able to deal with this case; never-
theless, the cost for this is that we need to increase the density ρ when we pass from one
scale to the next. In particular, on the contrary of Proposition 4.1, this technique cannot
be used to prove precise statements about a fixed density ρ (but rather about any density
arbitrarily close to ρ).

Before stating the sprinkling decoupling, we need to introduce some further notation.
We use the same scales and boxes defined in Sect. 5.2. Recall that we have now proved
Theorem 3.4 and that we have defined the quantity v(ρ) = v+(ρ) = v−(ρ) in (3.26)
and ρ+ in (2.7).

From now on, we fix ǫ > 0. Note that, by definition of ρ+,

v(ρ+ + ǫ) > 0. (7.1)

Let us fix k6(ǫ) such that ∑

k≥k6

1

L
1/16
k

≤
ǫ

4
, (7.2)

and define the sequence of densities

ρk6 = ρ +
5

4
ǫ, and ρk+1 = ρk +

1

L
1/16
k

for all k ≥ k6. (7.3)

In particular, one can verify that ρ∞ = limk→∞ ρk ≤ ρ + 7ǫ/4 < ρ + 2ǫ.
In the following, we say that a function f of the environment is non-increasing if

f (ηρ) stochastically dominates f (ηρ+ǫ). When we will apply the following result, the
assumption p• ≥ p◦ will matter (but, if this condition was violated, we would simply
run the same argument by flipping the integer line).

Proposition 7.1. Consider the environment with law P
ρ
E P or P

ρ
RW , with densities ρ ∈

(0, 1). Let h ≥ 1, k ≥ k6, w1, w2 ∈ R
2 and recall the definition of Bh

Lk
(·) in (5.13) and

(5.9). There exist constants c15 and c16 = c16(ρ+, ǫ) such that, if

π2(w2) − π2(w1) ≥ c15hLk, (7.4)

then, for any non-increasing functions f1 and f2 taking values in [0, 1], supported

respectively on Bh
Lk

(w1) and Bh
Lk

(w2), we have that

E
ρk+1 [ f1 f2] ≤ E

ρk [ f1] E
ρk [ f2] + c16e−c16

−1(hLk )
1/8

. (7.5)
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Proof. When the law of the environment is P
ρ
E P , this statement is a straightforward

application of Theorem 2.1.1 in [Bal17] for the case of non-increasing functions. When
the law of the environment is P

ρ
RW , we need to provide some details in order to apply

Corollary 3.1 of [HHSST15]. Note that here we parametrized the Poisson cloud of
random walks with a density parameter ρ ∈ (0, 1). Nevertheless, at the initial time, each
site contains a random number of particles which is distributed as a Poisson random
variable of parameter λ = − ln(1 − ρ) ∈ (0,∞). In [HHSST15] they use densities on
(0,∞), thus similar to what we denote here λ (but denoted ρ in [HHSST15]). Therefore,
we should apply Corollary 3.1 of [HHSST15] with ρ = λk := − ln(1 − ρk).

If we let λk+1 = − ln(1 −ρk+1), then by (7.3), there exists a constant c17(ρ+, ǫ) such
that

λk+1 ≥ λk

(
1 + (hLk/c17)

−1/16
)

. (7.6)

As f1 and f2 are non-increasing, we have that

E
ρk+1 [ f1 f2] ≤ E

λk

(
1+(hLk/c17)

−1/16
)

[ f1 f2] (7.7)

and
E

λk

(
1+(hLk/c17)

−1/16
)

[ f1] ≤ E
ρk [ f1] . (7.8)

Now, a straightforward application of Theorem 3.4 of [BHSST19] provides the conclu-
sion. ⊓⊔

7.2. Ballisticity: proof of Proposition 3.6. We will prove the first inequality in (3.27),
but symmetric arguments holds for the second line. As in Sect. 5.4, we need to define a
sequence of velocities. First, fix k7(c15, ρ+, ǫ) ≥ k6 such that

∑

k≥k7

2(c15 + 1)

ℓk

≤
v(ρ+ + ǫ)

4
. (7.9)

Define

ṽk7 =
7

8
v(ρ+ + ǫ) and ṽk+1 = ṽk −

2c15

ℓk

for all k ≥ k7. (7.10)

In particular, note that ṽk7 < 1 and ṽ∞ ≥ 5
8
v(ρ+ + ǫ).

In order to understand the following result and its proof, it may be useful to recall
Fig. 5. Also, note that the lemma below is deterministic.

Lemma 7.2. Let h ≥ 1, k ≥ k7 and m ∈ Mh
k+1. If Ãm(ṽk+1) holds, then there exists

m1 = (h, k, w1), m2 = (h, k, w2) ∈ Cm such that π2(w2) − π2(w1) ≥ c15hLk and

both events Ãm1(ṽk) and Ãm2(ṽk) hold.

Proof. Let m = (h, k + 1, w) ∈ Mh
k+1 and assume Ãm(vk+1) holds. Then there exists

y ∈ [0, hLk+1) × {0} such that X
y
hLk+1

− π1(y) ≤ ṽk+1hLk .

Recall that the set Cm is such that, for any i ∈ {0, . . . , ℓk − 1} there exists a unique
m′ ∈ Cm such that X

y

ihLk
∈ Im′ . Denote M(X y) these (random) indices. In order to

conclude, it is enough to prove that there exists at least c15 + 1 indices m′ ∈ M(X y) such

that Ãm′(ṽk) happens.

Assume that there is at most c15 indices m′ ∈ M(X y) such that Ãm′(ṽk) happens
and let us find a contradiction. Note that, if m′ ∈ M(X y), then X

y
ihLk

∈ Im′ for some

i ∈ {0, . . . , ℓk − 1} and
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• if m′ ∈ Ãm′(ṽk), then X
y

(i+1)hLk
− X

y

ihLk
≥ −hLk by (3.11);

• if m′ ∈ Ãc
m′(ṽk), then X

y

(i+1)hLk
− X

y
ihLk

≥ −ṽkhLk .

Therefore, we have that

X
y

hLk+1
− π1(y) ≥ −c15hLk + (ℓk − c15) ṽkhLk

≥ hLk+1

(
ṽk −

c15(1 + ṽk)

ℓk

)

> ṽk+1hLk+1,

(7.11)

which contradicts that X
y
hLk+1

− π1(y) ≤ ṽk+1hLk . ⊓⊔

Let k8(c15, ρ+, ǫ) ≥ k7 be such that, for any k ≥ k8, we have

9ℓ4
k

(
e−4(2−(5/4)3/2)(ln Lk )

3/2

+ c16e
− 1

c16
(hLk )

1/8+8(ln Lk )
3/2)

≤ 1. (7.12)

Lemma 7.3. If, for some k ≥ k8 and h ≥ 1, we have that

p̃hLk
(ṽk, ρk) ≤ e−4(ln Lk )

3/2

, (7.13)

then we have that

p̃hLk+1
(ṽk+1, ρk+1) ≤ e−4(ln Lk+1)

3/2

. (7.14)

Proof. Similarly as what we did in the proof of Proposition 5.1, but using Lemma 7.2
and Proposition 7.1 for the decoupling, we have that

p̃hLk+1,ρk+1
(ṽk+1)

e−4(ln Lk+1)
3/2

≤ 9ℓ4
ke4(ln Lk+1)

3/2

[
( p̃hLk

(ṽk, ρk))
2 + c16e

− 1
c16

(hLk )
1/8
]

≤ 9ℓ4
k

[
e−4(2−(5/4)3/2)(ln Lk )

3/2

+ c16e
− 1

c16
(hLk )

1/8+8(ln Lk )
3/2
]

≤ 1,

(7.15)

where we used (7.12). In order to apply Proposition 7.1, we used that the event Ãm(v)

are non-increasing events (recall that we assume p• ≥ p◦). This concludes the proof. ⊓⊔
Proposition 7.4. There exists a constant c18 ≥ 1 such that, for all k ≥ k8, we have that,

for any ρ ≥ ρ+ + 2ǫ,

p̃c18 Lk

(5

8
v(ρ+ + ǫ), ρ

)
≤ e−4(ln Lk )

3/2

. (7.16)

Proof. Note that ṽk8 < v(ρ+ + ǫ) = v−(ρ+ + ǫ), thus there exists c18 ≥ 1 such that

p̃c18 Lk8
(ṽk8 , ρk8) ≤ e−4

(
ln Lk8

)3/2

. (7.17)

Thus, by Lemma 7.3, we have that, for all k ≥ k8,

p̃c18 Lk
(ṽk, ρk) ≤ e−4(ln Lk )

3/2

. (7.18)

Finally, noting that the events Ãm(v) are non-decreasing in v and non-increasing in ρ,

we can conclude by noting that, for k ≥ k8, ṽk ≥ 5
8
v(ρ+ + ǫ) and ρk ≤ ρ+ + 2ǫ. ⊓⊔
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Proof of Proposition 3.6. From Proposition 7.4, we simply need an interpolation argu-
ment, very similar to the one exposed in Sect. 5.5. Therefore, we will not entirely re-do
it but simply point out the differences.

First, one should define v = v(ρ+ + ǫ)/2 and v′ = 5
8
v(ρ+ + ǫ) > v. Second, one should

consider events of the form Ãm′(v′) (instead of Am′(v′)). In particular, this would yield
the opposite inequality in (5.38). The inequality (5.39) becomes

H −
⌊

H

c5L k̄

⌋
c5L k̄ ≥ −

v′ − v

2
H, (7.19)

and thus we obtain the opposite inequality in (5.40). The rest of the proof is identical. ⊓⊔

8. Proof of Theorem 2.1

In order to conclude the proof of Theorem 2.1, we simply need to use, as inputs, results
from [HHSST15] for PCRW and from [HS15] for SSEP that are based on regeneration
structures. Theorem 2.1 is given by the following result.

Proposition 8.1. Consider the environment ηρ with density ρ ∈ (0, 1) under either the

measure P
ρ
E P or P

ρ
RW . Recall the definition (3.26) of v(·) and the definition (2.7) of ρ−

and ρ+.

For any ρ ∈ (0, 1) \ {ρ−, ρ+},
Xn

n
→ v(ρ), P

ρ − almostsurely. (8.1)

Moreover, we have for any ρ ∈ (0, ρ−) ∪ (ρ+, 1), a functional central limit theorem for

Xn under P
ρ , that is (

X⌊nt⌋ − ntv(ρ)
√

n

)

t≥0

(d)→ (Bt )t≥0 , (8.2)

where (Bt )t≥0 is a non-degenerate Brownian motion and where the convergence in law

holds in the Skorohod topology.

Proof. First, if ρ ∈ (ρ−, ρ+), then (8.1) follows from Theorem 3.5. Second, we prove
(8.1) and (8.2) for ρ ∈ (ρ+, 1) and the conclusion will follow by symmetry.

From now on, we suppose that ρ+ < 1 and fix ρ ∈ (ρ+, 1). Note that, as ρ+ < 1, we
have that p• > 1/2. Indeed, as p◦ ≤ p•, if p• ≤ 1/2, then the random walker would
always be on the left of a simple random walk (regardless of the value of ρ), therefore
we could not have that ρ+ < 1.

In the following, we apply existing results in order to prove that the speed of the walk
exists. The fact that the speed coincides with v(ρ) is a direct consequence of Theorem
3.4 and of the definition of v+ and v−.
Case I: under P

ρ
RW .

Here, we want to apply Theorem 1.4 from [HHSST15] and we thus simply need to
check that the conditions of the statement are satisfied. Recall that we assumed ρ+ < 1,
ρ ∈ (ρ+, 1) as well as p• > 1/2 and p◦ > 0. Using the notation of Theorem 1.4 from
[HHSST15], p• > 1/2 corresponds to v• > 0 and p◦ > 0 corresponds to v◦ > −1.
Let us define ǫ = ρ − ρ+ > 0. Let us define v⋆ = v(ρ+ + ǫ)/2. By Proposition 3.6, we
have that v⋆ > 0 and there exists a constant c1(ǫ) such that

p̃H (v(ρ+ + ǫ)/2, ρ) ≤ c1 exp
(
− 2 ln3/2 H

)
. (8.3)
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This implies that, for any L ∈ N, there exists a constant c19 ∈ (0,∞) such that

P
ρ [∃n ∈ N : Xn ≤ nv⋆ − L] ≤

∞∑

k=⌊L/2⌋
c1 exp

(
− 2 ln3/2 k

)

≤
1

c19
exp

(
− c19 ln3/2 L

)
.

(8.4)

By Theorem 1.4 from [HHSST15], the conclusions (a) and (b) of Theorem 1.2 of
[HHSST15] hold, and these are precisely (8.1) and (8.2).

Case II: under P
ρ
E P .

In order to prove this case, we can follow line by line the proof of Theorem 1.1 in [HS15],
Section 5. Note that we will not need to suppose the same assumptions as in Theorem
1.1 in [HS15] (in particular we do not need to take the rate γ to be large). Indeed, these
assumptions are used in the proof of Proposition 3 in [HS15]. But, once we assume the
conclusions of Proposition 3 in [HS15], then we can follow line by line the proof of
Theorem 1.1 in Section 5 of [HS15], without imposing any further assumption.

The conclusion of Proposition 3.3 in [HS15] is almost implied by Proposition 3.6 as
(3.27) yields

p̃H (v(ρ+ + ǫ)/2, ρ) ≤ c1 exp
(
− 2 ln3/2 H

)
. (8.5)

The difference with the conclusion of Proposition 3.3 in [HS15] is that we obtain a
super-polynomial decay instead of a stretched exponential decay. Nevertheless, a close
inspection of the proof in [HS15] shows that, throughout this proof, p̃H (v(ρ+ + ǫ)/2, ρ)

is always simply bounded by some polynomial decay. To ease the work of the reader, we
list here the places in Section 5 of [HS15] where Proposition 3.3 of [HS15] is applied:

– page 31: Proposition 3.3 is used to prove Proposition 5.1 of [HS15], in the paragraph
just before the last paragraph on p. 31. Even though the first inequality is not true
anymore, we still have (keeping the notation therein) that P0(Xn ≤ v

2
n) ≤ 1/nq+2.

– page 35: in the proof of (5.24) of [HS15], it is used that lim inf Xn/n > v almost
surely, which is an easy consequence of (8.5) and Borel–Cantelli Lemma.

– page 39: Proposition 3.3 is used to prove Proposition 5.6 of [HS15] and, even if the
second inequality is not true anymore, we can directly write the third inequality by
(8.5).

Once these minor modifications are made, we can apply the whole proof from Section
5 of [HS15] and prove (8.1) and (8.2). ⊓⊔
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