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Abstract By applying copositivity criterion to the scalar

potential of the economical 3 − 3 − 1 model, we derive nec-

essary and sufficient bounded-from-below conditions at tree

level. Although these are a large number of intricate inequal-

ities for the dimensionless parameters of the scalar potential,

we present general enlightening relations in this work. Addi-

tionally, we use constraints coming from the minimization

of the scalar potential by means of the orbit space method,

the positivity of the squared masses of the extra scalars, the

Higgs boson mass, the Z ′ gauge boson mass and its mixing

angle with the SM Z boson in order to further restrict the

parameter space of this model.

1 Introduction

Models addressing open questions concerning the standard

model of particle physics (SM) usually resort to the use of

new symmetries and/or the addition of extra particles. As a

first example, we can mention models implementing differ-

ent see-saw mechanisms (type I, II and III) which introduce

bosonic or fermionic degrees of freedom in order to explain

tiny neutrino masses and their mixings [1–4]. In combination

with that, new abelian and non-abelian symmetries are also

invoked in order to obtain highly predictive scenarios where

not only neutrino masses are fixed but also further correla-

tions between neutrino oscillation parameters appear [5–16].

A series of models with a matter content larger than the one

of the SM are those dealing with the impressive observation

that almost thirty percent of the energy content of the Uni-

verse is due to dark matter (DM) [17]. Arguably, the simplest

model providing a DM candidate is that which extends the

SM only by a real scalar transforming in a non trivial way
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under a stabilizing Z2 discrete symmetry [18,19]. However,

other well-motivated models based on supersymmetry [20–

23], extra dimensions [24], the B − L symmetry [25–28] and

those with an Axion/ALP [29–35] have been widely con-

sidered (see [36] for a review). All of them have additional

symmetries and extra particles in their physical spectrum.

In the same vein, the so-called 3 − 3 − 1 models are inter-

esting extensions of the SM. The fundamental idea behind

all these models is to extend the SU(2)L gauge group to the

SU(3)L one, in other words, the total gauge group of these

models is G331 ≡ SU(3)C ⊗ SU(3)L ⊗ U(1)N . Here, C
and L stand, as in the SM, for color and left chirality, respec-

tively. However, N stands for a new charge different from the

SM hypercharge, Y , and its values are assigned to obtain the

latter after the first spontaneous symmetry breaking. More

specifically, the values of N together with an embedding

parameter b determine the electric charges of the matter

content in these models since the electric charge operator

is Q = T3 − bT8 + N13×3 [37], where T3, 8 are the diagonal

Gell-Mann matrices, 13×3 is the 3 × 3 identity matrix and

the parameter b can take two values: 1/
√

3 or
√

3.

In this paper, we consider the 3 − 3 − 1 model with b =
1/

√
3 and the simplest scalar sector as proposed in Refs. [38,

39] after a systematic study of all possible 3 − 3 − 1 models

without exotic electric charges. This model is known in the

literature as the “economical 3−3−1 model” and has some

appealing features that turn it arguably the most interesting

3−3−1 model. Among these properties we can mention that

right-handed neutrinos, Na , are in the same SU(3)L multiplet

as the SM leptons, νa and ea . This is possible because the

fundamental representation of the SU(3)L gauge group is

larger than the SU(2)L one and the parameter b = 1/
√

3

allows the SU(3)L multiplet to have two electrically neutral

components: νa and N c
a . This property allows for massive

neutrinos at tree level. Yet, agreement with experiments is

reached only when one-loop contributions to neutrino masses

are considered [40]. Other no less important features of this
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model are the possibility of implementing the Peccei-Quinn

mechanism in order to solve the strong CP problem [41]

and the existence of axion dark matter [35]. Needless to say,

this model also shares some appealing features with other

versions [42–49] such as the capability to shed some light on

the family replication issue of the SM.

Although the economical 3 − 3 − 1 model has several

appealing features, it also introduces a considerable number

of degrees freedom that turn it less predictive. For instance,

its scalar potential has at least nineteen coupling constants.

It is a large number when compared with two couplings in

the SM scalar potential. Needless to say, a large number of

extra Yukawa couplings is allowed by the 3 − 3 − 1 gauge

group. Therefore, in this paper we search for constraints that

allow to reduce this, in some sense, undesirable freedom.

More specifically, we study vacuum stability at tree level,

i.e. the conditions guaranteeing that the scalar potential is

bounded from below in all directions in the field space as

the field norms approach to infinity. It is well-known that in

the SM, at tree level, it is enough to make the Higgs boson

quartic coupling positive [50–52]. Nevertheless, in the case

of the economical 3 − 3 − 1 model we face a more com-

plicated problem even at tree level since we have to deal

with nineteen coupling constants and the scalar fields belong

to the fundamental and anti-fundamental representations of

SU(3)L . However, the problem becomes simpler when a Z2

symmetry acting on some fields is considered. This symme-

try is already used in the 3−3−1 literature [37,38,41,53–57]

with different motivations. In the present context, this sym-

metry not only reduces the number of coupling constants to

fourteen, but also makes the quartic terms in the scalar poten-

tial to have a λi jφ
2
i φ2

j form. Therefore, demanding that the

scalar potential is bounded from below as the field norms

approach to infinity is equivalent to ensuring that the λi j

matrix is copositive (positive on nonnegative vectors) [58–

61]. In addition, to make the problem even more tractable,

we use the method of the orbit space in Refs. [62,63] which

greatly reduces the number of variables. At the end, the prob-

lem of vacuum stability is reduced to study the copositivity

of a 3 × 3 matrix. This provides seventeen inequalities, for

the ten quartic couplings, that at first sight seem too compli-

cated in order to provide useful analytical relations. However,

combining these inequalities with constraints coming from

the first and second derivative tests for a minimum of the

scalar potential, we manage to find enlightening analytical

constraints for these coupling constants.

Finally, with the aim of restricting the rest of the scalar

couplings we turn our attention to the scalar mass spectrum,

since all of the squared scalar masses must be positive in

general. However, these masses also depend on the vacuum

expectation values (VEVs) of the scalar fields. Thus, we use

the experimental limits on the mass of an extra neutral gauge

boson Z ′ [64–67], and the bound on the Z − Z ′ mixing angle

in this model [68] to estimate the VEVs. Doing so, we find

relations for three of the remaining four scalar potential cou-

plings. Also, the experimental limit on the Higgs mass [64–

67] is used to constrain even more some couplings.

The rest of the paper is organized as follows. In Sect. 2 we

introduce the generalities of the economical 3−3−1 model

with a Z2 symmetry that allows a scalar potential with quartic

terms in a biquadratic form of the field norms. In Sect. 3,

taking advantage of this property, we search for constraints on

the scalar potential couplings imposing the vacuum stability

conditions at tree level. Specifically, we use the method of the

orbit space to simplify the application of the first and second

derivative tests together with the copositivity criterion. After

finding clear and useful relations for the values of some scalar

potential parameters, in Sect. 4, we go further applying the

positivity of the scalar masses and the experimental Higgs

mass in order to constrain more scalar parameters. Finally,

we present our conclusions in Sect. 5.

2 The model

In order to cancel the quantum gauge anomalies, the left-

handed fermions of the economical 3 − 3 − 1 model have to

belong to the (1, 3, −1/3) representation for the three lepton

families and to the (3, 3, 1/3),
(

3, 3̄, 0
)

representations for

the quark families. More specifically,

Leptons: FaL =
(

νa, ea, N c
a

)T

L ∼ (1, 3, −1/3) , (1)

Quarks: QL = (u1, d1, u4)
T
L ∼ (3, 3, 1/3) ,

QbL = (db, ub, db+2)
T
L ∼

(

3, 3̄, 0
)

, (2)

where a = 1, 2, 3, b = 2, 3 and “∼” means the transforma-

tion properties under the local symmetry group. Furthermore,

in the right-handed field sector we have

Leptons: ea R ∼ (1, 1, −1) , (3)

Quarks: us R ∼ (3, 1, 2/3) , dt R ∼ (3, 1, −1/3) , (4)

where a takes the same values as in Eq. (1), s = 1, . . . , 4

and t = 1, . . . , 5.

It is also necessary to introduce, at least, three SU (3)L

triplets, ρ, η, χ , in order to generate the appropriate fermion

and boson masses. Note that the scalar sector can not be addi-

tionally reduced due to the appearance of accidental symme-

tries implying some massless “u” and “d” type quarks at

all orders in perturbation theory as shown in Ref. [69]. In

other words, the three SU (3)L scalar triplets are necessary

to totally break the G331 symmetry to the U (1)Q symmetry

and, at the same time, to give the phenomenologically appro-

priate masses for the quarks. These scalar triplets are given

by
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ρ =
(

ρ+
1 , ρ0

2 , ρ+
3

)T
∼ (1, 3, 2/3) ,

η =
(

η0
1, η−

2 , η0
3

)T
∼ (1, 3, −1/3) , (5)

χ =
(

χ0
1 , χ−

2 , χ0
3

)T
∼ (1, 3, −1/3) . (6)

Once these fermionic and bosonic fields are introduced in

the model, the most general Yukawa Lagrangian, renorma-

lizable and invariant under the local gauge group,

reads

LYuk = L
ρ

Yuk + L
η

Yuk + L
χ

Yuk, (7)

with

L
ρ

Yuk = αt Q̄Ldt Rρ + αbs Q̄bLus Rρ∗

+Yaa′εi jk
(

F̄aL
)

i (Fa′L)c
j

(

ρ∗)
k + Y′

aa′ F̄aLea′ Rρ

+H.c., (8)

L
η

Yuk = βs Q̄Lus Rη + βbt Q̄bLdt Rη∗ + H.c., (9)

L
χ

Yuk = γs Q̄Lus Rχ + γ bt Q̄bLdt Rχ∗ + H.c., (10)

where εi jk is the Levi-Civita symbol and a′, i, j, k = 1, 2, 3

and a, b, s, t are in the same range as in Eqs. (1–4). It is also

straightforward to write down the most general scalar poten-

tial consistent with gauge invariance and renormalizability

as

V (η, ρ, χ) = −μ2
1η

†η − μ2
2ρ

†ρ − μ2
3χ

†χ − μ2
4χ

†η

+λ1

(

η†η
)2 + λ2

(

ρ†ρ
)2 + λ3

(

χ†χ
)2

+λ4

(

χ†χ
) (

η†η
)

+ λ5

(

χ†χ
) (

ρ†ρ
)

+λ6

(

η†η
) (

ρ†ρ
)

+ λ7

(

χ†η
) (

η†χ
)

+λ8

(

χ†ρ
) (

ρ†χ
)

+ λ9

(

η†ρ
) (

ρ†η
)

+λ10

(

χ†η
)2 + λ11

(

χ†η
) (

η†η
)

+λ12

(

χ†η
) (

χ†χ
)

+ λ13

(

χ†η
) (

ρ†ρ
)

+λ14

(

χ†ρ
) (

ρ†η
)

− λ15√
2
εi jkηiρ jχk + H.c. .

(11)

From Eqs. (5) and (6), we can see that there are five electri-

cally neutral scalars, ρ0
2 , η0

1, η0
3, χ0

1 , χ0
3 and, in principle,

all of them can gain VEVs. However, it is well known that

the minimal vacuum structure needed to give masses for all

the particles in the model is

〈ρ〉 = 1√
2

(

0, vρ, 0
)T

, 〈η〉 = 1√
2

(

vη, 0, 0
)T

,

〈χ〉 = 1√
2

(

0, 0, vχ

)T
, (12)

which correctly reduces the G331 symmetry to the U (1)Q

one if v2
η + v2

ρ ≡ v2 = 2462 GeV2. There is at least another

reason for choosing the minimal vacuum structure given in

Eq. (12). If the remaining neutral scalars, η0
3 and χ0

1 , also gain

VEVs, dangerous Nambu-Goldstone bosons can arise in the

physical spectrum, as shown in Ref. [37]. Therefore, in order

to avoid this issue and looking for simplicity, in this paper

we are going to consider only the minimal vacuum structure

given in Eq. (12).

We also consider the model with an extra simplifying

assumption that is quite common in the 3 − 3 − 1 liter-

ature [37,38,41,53–57]. It consists on the imposition of a

discrete Z2 symmetry given by: χ → −χ , u4R → −u4R ,

d(4,5)R → −d(4,5)R and the other fields being even under

Z2. This symmetry not only brings simplicity to the model,

allowing, for instance, to interpret the χ scalar as the respon-

sible for the first step in the symmetry breaking pattern, but

also to mitigate the FCNC issues [70]. Moreover, with this Z2

symmetry the PQ mechanism can be easily implemented [41]

and in some cases dark matter candidates can be stabilized

[35,55]. In this scenario, the Yukawa Lagrangian interactions

given in Eqs. (8–10) are slightly modified to

L
ρ

Yuk, Z2
= αa Q̄Lda Rρ + αba Q̄bLua Rρ∗

+Yaa′εi jk
(

F̄aL
)

i (FbL)c
j

(

ρ∗)
k + Y′

aa′ F̄aLea′ Rρ

+H.c., (13)

L
η

Yuk, Z2
= βa Q̄Lua Rη + βba Q̄bLda Rη∗ + H.c., (14)

L
χ

Yuk, Z2
= γ4 Q̄Lu4Rχ + γ b(b+2) Q̄bLd(b+2)Rχ∗ + H.c. .

(15)

Note that in this case the χ triplet only couples to the u4R and

d(4,5)R quarks, and it is also the reason to interpret χ as the

scalar responsible for the first step in the symmetry breaking

pattern. Furthermore, after imposing the Z2 symmetry, the

scalar potential becomes

V (η, ρ, χ) = VZ2 (η, ρ, χ) + VSoft (η, ρ, χ) ,

= −μ2
1η

†η − μ2
2ρ

†ρ − μ2
3χ

†χ

+λ1

(

η†η

)2
+ λ2

(

ρ†ρ

)2
+ λ3

(

χ†χ

)2

+λ4

(

χ†χ

) (

η†η

)

+ λ5

(

χ†χ

) (

ρ†ρ

)

+λ6

(

η†η

) (

ρ†ρ

)

+ λ7

(

χ†η

) (

η†χ

)

+λ8

(

χ†ρ

) (

ρ†χ

)

+ λ9

(

η†ρ

) (

ρ†η

)

+λ10

(

χ†η

)2
− λ15√

2
εi jkηiρ jχk + H.c. . (16)

It is important to note that, even though the termλ15εi jkηiρ jχk

softly breaks the Z2 symmetry, it must be included because in

its absence appears a QCD axion with a small decay constant,
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11.5 keV ≤ fa ≤ 246 GeV, already ruled out by exper-

iments [34,71]. See Ref. [37] for a detailed study of this

case.

3 Minimization and vacuum stability

Now, we turn our attention to find constraints on the μi− and

λi−scalar parameters coming from minimization and vac-

uum stability. The general minimization of the scalar poten-

tial in Eq. (16) is a difficult task due to the large number

of free parameters in the scalar potential (14 free parame-

ters), the large number of components of the scalars triplets

in the model (18 components for the ρ, η, χ triplets) and the

degeneracies of the extremal points of the potential required

by the G331−invariance. Fortunately, there is a powerful tool

to simplify this problem which consists in working with the

norm of the fields and orbit parameters. This method to mini-

mize scalar potentials, also known as the method of the orbit

space, is detailed in Refs. [60–63] in the context of spon-

taneous symmetry breaking. It has been used, for instance,

in models with SU(5) and SO(10) gauge symmetries when

scalars belong to different representations [60,72–74]. The

crucial observation of the method is that working with the

norm of the fields, |φ| (|φ|2 ≡ φ∗
k φk - where a sum over

repeated indices is implied) and the invariant orbit parame-

ters θ ’s (generically defined by θ = fi jkl φ∗
i φ j φ

∗
k φl

|φ|4 ) contain

all the information needed to determine the minimum of the

potential and, in addition, greatly reduce the number of vari-

ables.

In order to apply the method of orbit space, let’s define the

invariant orbit parameters of the scalar potential in Eq. (16)

as

θ1(η̂, χ̂) = χ̂∗
j η̂ j η̂

∗
i χ̂i , θ2(ρ̂, χ̂) = χ̂∗

j ρ̂ j ρ̂
∗
i χ̂i ,

θ3(η̂, ρ̂) = η̂∗
i ρ̂i ρ̂

∗
j η̂ j , θ4(η̂, χ̂) = (χ̂∗

i η̂i )
2 + H.c.,

θ5(η̂, ρ̂, χ̂) = εi jk η̂i ρ̂ j χ̂k + H.c. , (17)

where φ̂k = φk/|φ| and a sum over the repeated indices is

implied. Note that all directional information is contained

within the θ parameters.

The scalar potential takes the following simple form when

written using the θ parameters:

V (η, ρ, χ) = −μ2
1|η|2 − μ2

2|ρ|2 − μ2
3|χ |2

+λ1|η|4 + λ2|ρ|4 + λ3|χ |4

+(λ4 + λ7θ1 + |λ10|θ4)|η|2|χ |2

+(λ5 + λ8θ2)|ρ|2|χ |2 + (λ6 + λ9θ3)|η|2|ρ|2

−|λ15|√
2

θ5 |η||ρ||χ |, (18)

where we have used the fact that making a redefinition of

the scalar fields, e.g. ηk → e−iδ10/4ηk, χk → eiδ10/4χk

and ρk → e−iδ15ρk , the phases of λ10 = |λ10| eiδ10 and

λ15 = |λ15| eiδ15 couplings can be absorbed. Therefore, all

couplings in the scalar potential can be considered as real

numbers, without loss of generality.

Treating the modules of η, ρ, χ , and the θ parameters

as independent variables, we could apply the first and sec-

ond derivative tests to provide general conditions to have a

minimum of the scalar potential in Eq. (16). However, we

will restrict ourselves to the phenomenologically interesting

vacuum given in Eq. (12). In other words, we consider the

directional minima in the particular direction given by

(θ1)0 = 0, (θ2)0 = 0, (θ3)0 = 0, (θ4)0 = 0, (θ5)0 = 2.

(19)

Thus, taking the directional derivative of the scalar potential

in Eq. (18) in relation to the norm of the scalar fields, we

obtain an expression for the μi parameters:

2μ2
1 = 2λ1v

2
η + λ6v

2
ρ + λ4v

2
χ − |λ15|vρvχ/vη,

2μ2
2 = 2λ2v

2
η + λ6v

2
ρ + λ5v

2
χ − |λ15|vηvχ/vρ,

2μ2
3 = 2λ4v

2
η + λ5v

2
ρ + λ3v

2
χ − |λ15|vηvρ/vχ , (20)

where we have used |η|0 = vη/
√

2, |ρ|0 = vρ/
√

2 and

|χ |0 = vχ/
√

2 which are the norm of the fields in the vacuum

direction in Eq. (12).

Additional conditions on the scalar potential parameters

come from second derivative test. Specifically, all principal

minors of the Hessian matrix H0 evaluated at the vacuum,

(H0)i j = ∂2V
∂φi ∂φ j

∣

∣

∣

∣

φ=φ0

, must be positive (see for example [75,

76]). A straightforward calculation gives the Hessian matrix

at the directional minimum as:

H0 =

⎛

⎜

⎜

⎝

4λ1v
2
η + |λ15|vρvχ/vη 2λ6vηvρ − |λ15|vχ 2λ4vηvχ − |λ15|vρ

⋆ 4λ2v
2
ρ + |λ15|vηvχ/vρ 2λ5vρvχ − |λ15|vη

⋆ ⋆ 4λ3v
2
χ + |λ15|vηvρ/vχ

⎞

⎟

⎟

⎠

, (21)
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where we have used the relations in Eq. (20) in order to sim-

plify the Hessian matrix. From the positivity of the principal

minors we get the conditions

λ1 > −|λ15|vρvχ/4v3
η, λ2 > −|λ15|vηvχ/4v3

ρ , λ3 > −|λ15|vηvρ/4v3
χ ,

|λ15|vρ −
√

(H0)11(H0)33

2vηvχ

< λ4 <
|λ15|vρ +

√
(H0)11(H0)33

2vηvχ

,

|λ15|vη −
√

(H0)22(H0)33

2vρvχ

< λ5 <
|λ15|vη +

√
(H0)22(H0)33

2vρvχ

,

|λ15|vχ −
√

(H0)11(H0)22

2vηvρ

< λ6 <
|λ15|vχ +

√
(H0)11(H0)22

2vηvρ

,

det H0 > 0, (22)

where we have not written explicitly an analytical expression

for the determinant of H0, which is not very enlightening. In

addition, det H0 > 0 will be automatically satisfied provided

we consider the positivity of the square masses of the CP-

even scalars as will be shown in the next section.

So far, we have studied the conditions for the vacuum con-

figuration in Eq. (12) to be a minimum of the scalar poten-

tial. Nevertheless, for the scalar potential in Eq. (18) to make

physical sense, it has to be bounded from below in the large

field limit for all possible directions in the field space. To

obtain these constraints it is enough to work with the quartic

terms, which can be written in a matrix form as

V4 = λ1|η|4 + λ2|ρ|4 + λ3|χ |4 + (λ4 + λ7θ1 + |λ10|θ4)|η|2|χ |2

+(λ5 + λ8θ2)|ρ|2|χ |2 + (λ6 + λ9θ3)|η|2|ρ|2,
≡ hTΛh, (23)

where hT = (|η|2, |ρ|2, |χ |2) ≥ 0 and the matrix Λ is

Λ =

⎛

⎝

λ1 (λ6 + λ9θ3)/2 (λ4 + λ7θ1 + |λ10|θ4)/2

⋆ λ2 (λ5 + λ8θ2)/2

⋆ ⋆ λ3

⎞

⎠ .

(24)

Note that V4 is a biquadratic form of the norm of the

fields. Therefore, the scalar potential is bounded from below,

hTΛh > 0, if the symmetric matrix Λ is strictly copositive,

i.e. positive on positive vectors h > 0. Note that we use the

requirement of strong stability (V4 > 0) because the stability

in the marginal sense (V4 ≥ 0) does not allow any cubic terms

in the scalar potential. However, the term λ15εi jkηiρ jχk must

be included because in its absence appears a visible QCD

axion (see Ref. [37]).

Mathematical conditions for a general symmetric matrix

being strictly copositive were found in [58,59] and applied

in some elementary particle physics models in Refs. [61,77].

For the case of a symmetric matrix A3×3 of special interest

for this paper, these conditions read [78,79]

a11 > 0, a22 > 0, a33 > 0,

ā12 ≡ a12 + √
a11a22 > 0,

ā13 ≡ a13 + √
a11a33 > 0, ā23 ≡ a23 + √

a22a33 > 0,

a12
√

a33 + a13
√

a22 + a23
√

a11

+√
a11a22a33 +

√

2ā12ā13ā23 > 0, (25)

where ai j stands for a generic element of the A3×3 matrix.

In order to apply these conditions in our particular case, it

is convenient to rewrite the orbit parameters involved in the

definition of Λ as

θ1 = χ̂∗
j η̂ j η̂

∗
i χ̂i = |θ1|, θ2 = χ̂∗

j ρ̂ j ρ̂
∗
i χ̂i = |θ2|,

θ3 = η̂∗
i ρ̂i ρ̂

∗
j η̂ j = |θ3|, θ4 = (χ̂∗

i η̂i )
2 + H.c. = 2|θ1| cos(ωθ1

),

(26)

where ωθ1
is defined through χ̂∗

j η̂ j =
√

|θ1| exp(ωθ1
/2) and

0 ≤ |θ1,2,3| ≤ 1. These orbit parameters can be determined

from the following observation. If V4 < 0 for a particular

direction with |h| = 1 determined by a set of orbit parame-

ters, then the scalar potential will not be bounded from below

in the limit |h| −→ ∞. Therefore, to determine whether

V4 is stable in the limit of large field values, it is sufficient

to find its minimum on a |h| = 1 hypersphere. Doing so,

we immediately notice that ωθ1
= π . The remaining orbit

parameters are calculated by noting that V4 is a monotonic

function of them. Thus, the minimum is in some |θ i | values

(with i = 1, 2, 3) on the frontier of their space.

At first glance, we could think the frontier for the |θ | is a

cube with edge length equals one. However, from the defini-

tion of |θ | given in Eq. (26), it can be found, without loss of

generality, that the frontier is given by

0 ≤ |θ1| ≤ 1, 0 ≤ |θ2| ≤ 1,

max
[

0,
√

|θ1||θ2| −
√

(1 − |θ1|) (1 − |θ2|)
]2

≤ |θ3|

≤
[

√

|θ1||θ2| +
√

(1 − |θ1|) (1 − |θ2|)
]2

. (27)

In Fig. 1 we can see that the space of |θ1,2,3| is actually

smaller than the cube. In general, note that |θ1,2,3| are inde-

pendent orbit parameters; however, their frontiers are fixed by

Eq. (27). Although we know the values of |θ1,2,3| which min-

imize V4 on the hypersphere with |h| = 1 are in the frontier

given in Fig. 1, their specific values depend on the λi coeffi-

cients in the quartic scalar potential. Among the eight general

cases, there are five cases where the minimizing |θ1,2,3| val-

ues can be easily found. These cases are:

(1) |θ1,2,3| = 0, if λ7 − 2|λ10| ≥ 0, λ8 ≥ 0 and λ9 ≥ 0;

(2) |θ1,2| = 0 and |θ3| = 1, if λ7 − 2|λ10| ≥ 0, λ8 ≥ 0

and λ9 < 0;

(3) |θ1,3| = 0 and |θ2| = 1, if λ7 − 2|λ10| ≥ 0, λ8 < 0

and λ9 ≥ 0;

(4) |θ2,3| = 0 and |θ1| = 1, if λ7 − 2|λ10| < 0, λ8 ≥ 0

and λ9 ≥ 0;

(5) |θ1,2,3| = 1, if λ7 − 2|λ10| < 0, λ8 < 0 and λ9 < 0.
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Fig. 1 Allowed space for the orbit parameters θ1,2,3 defined in Eq.

(26). Note that the allowed volume in this space is not a cube, but a

closed volume with boundaries given in Eq. (27). Here, it is important

to remark that a similar reduction of the orbit parameter space happens in

the context of the triplet seesaw model [80]. In that case, the relation on

the boundary between the two orbit parameters makes that the allowed

space is not longer a box. Thus, the stability conditions at tree level

in that model are modified to a set less restrictive, correcting what had

been done in the previous literature

Now, by applying the copositivity conditions in Eq. (25) to

the symmetric matrix Λ with the orbit parameters in the five

previous cases, we find the following constraints on the λ

parameters of the scalar potential:

λ1 > 0, λ2 > 0, λ3 > 0,

λ4 + 2
√

λ1λ3 > 0, λ4 + λ7 − 2|λ10| + 2
√

λ1λ3 > 0,

λ5 + 2
√

λ2λ3 > 0, λ5 + λ8 + 2
√

λ2λ3 > 0,

λ6 + 2
√

λ1λ2 > 0, λ6 + λ9 + 2
√

λ1λ2 > 0, (28)

and 23 = 8 additional inequalities with the following form:

C1

√

λ2 + C2

√

λ1 + C3

√

λ3+2
√

λ1λ2λ3+
√

C1C2C3 >0,

(29)

where C1 = {λ4, λ4 + λ7 − 2|λ10|}, C2 = {λ5, λ5 + λ8},
C3 = {λ6, λ6+λ9}, C1 = C1+2

√
λ1λ3, C2 = C2+2

√
λ2λ3

and C3 = C3 + 2
√

λ1λ2. Note that these 17 inequalities are

the same as those obtained if we had considered the cube

with side one as the orbit parameter space.

The remaining three cases: (6) λ7 − 2|λ10| ≥ 0, λ8 < 0

and λ9 < 0; (7) λ7 − 2|λ10| < 0, λ8 ≥ 0 and λ9 < 0; and

(8) λ7 − 2|λ10| < 0, λ8 < 0 and λ9 ≥ 0 are more compli-

cated because the minimizing |θ1,2,3| parameters, |θ1,2,3|⋆,

depend not only on the signal of λ7 − 2|λ10|, λ8 and λ9

but also on the values of the λi couplings . In other words,

the |θ1,2,3|⋆ are now functions of λi with values on the

frontier in Fig. 1. In general, these cases bring inequalities

that can be written as (see for example [80]): λ4 + (λ7 −
2|λ10|)|θ1|⋆ + 2

√
λ1λ3 > 0, λ5 + λ8 |θ2|⋆ + 2

√
λ2λ3 > 0

and λ6 + λ9 |θ3|⋆ + 2
√

λ1λ2 > 0. Although |θ1,2,3|⋆(λi )

depend on the specific values of λi couplings, these still sat-

isfy that 0 ≤ |θ1,2,3|⋆(λi ) ≤ 1. That is a key point, because

of that, we do not really need to calculate these intricate

functions. In order to clarify that point, let’s consider the

particular case of λ8 < 0. As 0 ≤ |θ2|⋆(λi ) ≤ 1 and λ8 < 0,

then 0 ≥ λ8|θ2|⋆(λi ) ≥ λ8. Applying general properties of

inequalities, we find 2
√

λ2λ3 ≥ λ8|θ2|⋆(λi ) + 2
√

λ2λ3 ≥
λ8 + 2

√
λ2λ3 or in an equivalent way,

− λ8 − 2
√

λ2λ3 ≥ −λ8|θ2|⋆(λi ) − 2
√

λ2λ3 ≥ −2
√

λ2λ3.

(30)

Now, from λ5 +λ8 +2
√

λ2λ3 > 0 inequality in Eq. (29), we

find λ5 > −λ8 − 2
√

λ2λ3 ≥ −λ8|θ2|⋆(λi )− 2
√

λ2λ3 where

we have used Eq. (30) in the last step. Now, we realize that

λ5 > λ8 + 2
√

λ2λ3 ≥ λ8|θ2|⋆(λi ) + 2
√

λ2λ3 implies that if

we satisfy the λ5+λ8+2
√

λ2λ3 > 0 inequality, the unknown

λ5 +λ8 |θ2|⋆ +2
√

λ2λ3 > 0 inequality is also satisfied when

λ8 < 0. We remark here that this result is independent on

the particular form of |θ2|⋆ provided 0 ≤ |θ2|⋆(λi ) ≤ 1 is

valid. For the case of λ8 > 0, we can follow an analogue

procedure to arrive to the conclusion that for this case when

the λ5 + 2
√

λ2λ3 > 0 inequality in Eq. (29) is satisfied,

then λ5 + λ8 |θ2|⋆ + 2
√

λ2λ3 > 0 is automatically satisfied.

Therefore, whatever the sign of λ8 is, the unknown λ5 +
λ8 |θ2|⋆ +2

√
λ2λ3 > 0 is not necessary. Similar conclusions

are obtained for the remaining two unknown inequalities:

λ4 + (λ7 −2|λ10|)|θ1|⋆ +2
√

λ1λ3 > 0 and λ6 +λ9 |θ3|⋆ +
2
√

λ1λ2 > 0. Therefore, we have only 17 necessary and

sufficient inequalities given by Eqs. (28) and (29) coming

from the strict copositivity of Λ, which additionally delimit

the scalar potential parameters.

At first glance, obtaining analytical results from (28) and

(29) seems a very complicated task. Nevertheless, there are

general relations between some λ’s that we can find. First, we

can answer, for instance, the question: which is the largest

excluded region in the λ4−λ7 plane provided the rest of the λ

couplings satisfy the copositivity conditions? That excluded

region depends on the value of λ7. On the one hand, if it is big-

ger than or equal to 2|λ10|, all λ4 values smaller than or equal

to 2
√

λ1λ3 are excluded. On the other hand, for values of λ7

smaller than 2|λ10|, the region λ4 ≤ 2
√

λ1λ3 + 2|λ10| − λ7

is rejected. In both cases of λ7, the largest excluded region

occur whenever λ5 = {−2
√

λ2λ3,−2
√

λ2λ3 − λ8} and

λ6 = {−2
√

λ1λ2,−2
√

λ1λ2 − λ9} where the first value of

λ5 (λ6) corresponds to λ8 ≥ 0 (λ9 ≥ 0) and the second one

corresponds to λ8 < 0(λ9 < 0), independently of the other

values of λ couplings. Once λ5 and λ6 take different values

from the aforementioned ones, the excluded region for λ4

decreases. However, that region does not decrease forever

since there is also a lower bound depending on λ7 coupling.

In more detail, ifλ7 is bigger than or equal to 2|λ10|, allλ4 val-

ues smaller than or equal to −2
√

λ1λ3 are always excluded.

For the case of λ7 values smaller than or equal to 2|λ10|,
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Fig. 2 The maximum excluded region for λ4 is defined by λ4 ≤
2
√

λ1λ3 for λ7 ≥ 2|λ10|, and λ4 ≤ 2
√

λ1λ3 + 2|λ10| − λ7 for

λ7 < 2|λ10|, whereas the minimum excluded region is defined by

λ4 ≤ −2
√

λ1λ3 for λ7 ≥ 2|λ10|, and λ4 ≤ −2
√

λ1λ3 + 2|λ10| − λ7

for λ7 < 2|λ10|

λ4 values smaller than or equal to −2
√

λ1λ3 + 2|λ10| − λ7

are always excluded. For both cases, points satisfying the

following conditions are on the bound:

(1) λ5

√
λ1 + λ6

√
λ3 > 0, if λ8 ≥ 0 and λ9 ≥ 0.

(2) λ5

√
λ1 + (λ6 + λ9)

√
λ3 > 0, if λ8 ≥ 0 and λ9 < 0.

(3) (λ5 + λ8)
√

λ1 + λ6

√
λ3 > 0, if λ8 < 0 and λ9 ≥ 0.

(4) (λ5 + λ8)
√

λ1 + (λ6 + λ9)
√

λ3 > 0, if λ8 < 0 and

λ9 < 0.

The maximum and minimum excluded regions for λ4 as

a function of λ7 are shown in Fig. 2. Similar conclusions

can be reached for the λ5 − λ8 and λ6 − λ9 planes and

are shown in Fig. 3. In the left panel of Fig. 3, the maxi-

mum and the minimum excluded regions for λ5 as a func-

tion of λ8 are shown. In general, the maximum excluded

region of λ5 depends on the sign of λ8, i.e. if it is neg-

ative, then λ5 values satisfying λ5 ≤ 2
√

λ2λ3 − λ8 are

excluded. Otherwise, λ5 values smaller than or equal to

2
√

λ2λ3 are excluded. The maximum excluded region of

λ5 is reached when λ4 + (λ7 − 2|λ10|) θH (2|λ10| − λ7) +
2
√

λ1λ3 = 0 and λ6 + λ9 θH (−λ9) + 2
√

λ1λ2 = 0,

where θH is the Heaviside theta function. The minimum

excluded region of λ5 has the same dependence on λ8 as

the maximum excluded one, however, its bounds are dif-

ferent. If λ8 is smaller than zero, then λ5 values satisfy-

ing λ5 ≤ −2
√

λ2λ3 − λ8 are excluded. Otherwise, λ5 ≤
−2

√
λ2λ3 are excluded. These bounds are attained when

(

λ4 + (λ7 − 2|λ10|) θH (2|λ10| − λ7) + 2
√

λ1λ3

) √
λ2

+
(

λ6 + λ9 θH (−λ9) + 2
√

λ1λ2

) √
λ3 > 4

√
λ1λ2λ3.

On the other hand, in the right panel of Fig. 3, the maxi-

mum and the minimum excluded regions for λ6 as a function

of λ9 are shown. The maximum excluded region of λ6 is char-

acterized by two different bounds. λ6 ≤ 2
√

λ1λ2 − λ9 are

excluded if λ9 < 0 and λ6 values satisfying λ6 ≤ 2
√

λ1λ2

are excluded if λ9 ≥ 0. That region is reached when

λ4 +(λ7 − 2|λ10|) θH (2|λ10| − λ7) +2
√

λ1λ3 = 0 and λ5 +
λ8 θH (−λ8)+ 2

√
λ2λ3 = 0. Finally, the minimum excluded

region also has two different bounds.λ6 ≤ −2
√

λ1λ2−λ9 are

excluded if λ9 < 0 and λ6 values satisfying λ6 ≤ −2
√

λ1λ2

are excluded if λ9 ≥ 0. That region is reached when
(

λ4 + (λ7 − 2|λ10|) θH (2|λ10| − λ7) + 2
√

λ1λ3

) √
λ2

+ (λ5 + λ8 θH (−λ8) +2
√

λ2λ3

)√
λ1 > 4

√
λ1λ2λ3.

It is also interesting to combine the copositivity con-

ditions in Eqs. (28) and (29) with those coming from

the positivity of the Hessian matrix in Eq. (22). Doing

that, it is straightforward to see that the three condi-

tions in the first line in Eq. (22) are always satisfied pro-

vided λ1 > 0, λ2 > 0, λ3 > 0 as required by copos-

itivity. In addition, the lower bounds on λ4,5,6 coming

from Eq. (22) are always smaller than the obtained from

copositivity. More specifically, the lower bound on λ4,

for instance, coming from the Hessian matrix can be written

asλ4 > −2
√

λ1λ3− |λ15|
4vρ

(

v2
ρ

vηvχ

) (

√

λ3
λ1

v2
χ

v2
η

+
√

λ1
λ3

v2
η

v2
χ

− 2

)

,

where we have assumed that |λ15| ≪ vη, vρ . As
(

√

λ3
λ1

v2
χ

v2
η

+
√

λ1
λ3

v2
η

v2
χ

− 2

)

is always positive, we conclude

that the lower bound obtained from copositivity is stronger

than the Hessian one. It is also important to note that the upper

limit on λ4,5,6 coming from the positivity of the Hessian

matrix becomes stronger when |λ15| ≪ vη, vρ . For instance,

in the limit |λ15| → 0, these limits go to λ4 < 2
√

λ1λ3,

λ5 < 2
√

λ2λ3 and λ6 < 2
√

λ1λ2 which are the bounds

on λ4,5,6 of the maximum excluded region discussed previ-

ously. For more details on the behaviour of the upper and

lower bounds of λ4 as a function of |λ15| see Fig. 4. Similar

conclusions are obtained for λ5 and λ6 couplings. It is impor-

tant to note that since the term λ15√
2
εi jkηiρ jχk softly breaks

the Z2 symmetry, it is technically natural that λ15 gets a small

value in comparison with other energy levels in the model,

v =
√

v2
η + v2

ρ and vχ , since making λ15 → 0 increases the

symmetry of the total Lagrangian.

On the other hand, copositivity does not impose upper

limits on λ4,5,6 and therefore, limits from Eq. (22) still apply,

i.e.

bounds from copositivity < λ4 <
|λ15|vρ +

√
(H0)11(H0)33

2vηvχ

,

bounds from copositivity < λ5 <
|λ15|vη +

√
(H0)22(H0)33

2vρvχ

,

bounds from copositivity < λ6 <
|λ15|vχ +

√
(H0)11(H0)22

2vηvρ

,

(31)
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Fig. 3 Maximum and minimum excluded regions in the λ5 −λ8 (left) and λ6 −λ9 (right) parameter space. In general, the maximum and minimum

excluded regions for λ5 (λ6) depend on the sign of λ8 (λ9) as explained in the text

Fig. 4 The excluded region for λ4 coming from Hessian matrix crite-

rion increases when |λ15| decreases, and it also approaches to excluded

region given by copositiviy. Similar conclusions can be reached for λ5

and λ6 couplings

where (H0)i i with i = 1, 2, 3 is the corresponding element

of the Hessian matrix. In order to conclude this section, we

can say that out of fourteen initial parameters in the scalar

potential in Eq. (16), we can clearly constrain ten of them by

applying the copositivity criterion in addition to the first and

second derivative tests. Specifically, the μ1,2,3 parameters

in Eq. (20), the 0 ≤ λ1,2,3,10 ≤ 4π and λ4,5,6 in Eq. (31)

are explicitly constrained. Finally, needless to say that apart

from the λ15 (which has dimension of mass), the rest of the λ

parameters are constrained by perturbativity to be |λ| ≤ 4π .

4 Scalar mass spectrum

A complementary set of constraints on the λ’s comes from the

positivity of the square masses of the scalars of this model.

To be more specific, the physical spectrum of scalars consists

of four charged scalars, H± and H±
V , one complex neutral

field, HU , one CP-odd scalar, H0, and three CP-even scalars,

h, H2 and H3, from which we define h as the SM Higgs

boson. Their square masses can be written as:

M2
H0

= |λ15|
2vηvρvχ

(

v2
ηv

2
ρ +

(

v2
η + v2

ρ

)

v2
χ

)

,

M2
HU

=
v2
η + v2

χ

2vηvχ

(

|λ15|vρ + λ7vηvχ

)

, (32)

M2

H±
V

=
v2
ρ + v2

χ

2vρvχ

(

|λ15|vη + λ8vρvχ

)

,

M2
H± = v2

2vηvρ

(

|λ15|vχ + λ9vηvρ

)

. (33)

At this point, it is important to recall that λ15 has dimension

of mass. We have not yet included the CP-even scalars in Eqs.

(32–33) because their masses are more intricate and require

a detailed analysis, as we show below.

From Eq. (32) we note that M2
H0

is always larger than or

equal to zero. However, the positivity of M2
HU

requires that

λ7 ≥ − vρ

vηvχ

|λ15|. (34)

For the case of charged scalars a stronger limit can be applied

because their square masses not only have to be positive but

also � 802 GeV2 (95% C.L.) [67]. Applying this constraint

to M2
H± and M2

H±
V

, we obtain
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λ8 ≥ 2 × 802

(vρ/GeV)2 + (vχ/GeV)2
− vη

vρvχ

|λ15|, and

λ9 ≥ 2 × 802

2462
− vχ

vηvρ

|λ15|. (35)

In order to estimate the lower limits for λ7, λ8 and λ9 we

bring in another piece of information. In general, in models

with an extra neutral gauge boson, Z2, the mixing angle, φ,

between this and the neutral gauge boson of the SM, Z1,

has to be very small. For this 3 − 3 − 1 model, lower and

upper bounds for this quantity have been found through the

analysis of the Z1 invisible- and charged lepton- partial decay

width plus theoretical consistency of the 3 − 3 − 1 models

regarding the number of lepton families to be exactly 3. As

a result, −3.98 × 10−3 � tan φ � 1.31 × 10−4 at 90% C.L.

[68], independently of MZ2 and the hadronic sector. Other

studies regarding FCNC suppression and parity violation in

the Cesium atom have shown similar results [81,82]. As tan φ

depends on vη and vχ , we can estimate their values in order

to satisfy this limit. To do so, let’s write tan2 φ as [83]

tan2 φ =
M2

Z − M2
Z1

M2
Z2

− M2
Z

, (36)

where the masses of the neutral gauge bosons Z1 and Z2 read

M2
Z1

, M2
Z2

= 1

2

[

M2
Z + M2

Z ′ ∓
√

(

M2
Z − M2

Z ′
)2 +

(

2M2
Z Z ′

)2
]

,

(37)

with

M2
Z = g2

4 cos2 θW
v2,

M2
Z ′ = g2

12
(

1 − 1
3

tan2 θW
)

[

(1 + tan2 θW )2v2 − 4 tan2 θW v2
η + 4v2

χ

]

,

M2
Z Z ′ = − g2

4 cos2 θW

v2 − 2 cos2 θW v2
η

√

3 − 4 sin2 θW

. (38)

where θW is the Weinberg’s angle and g is the coupling con-

stant of the SU(2)L group. Using v = 246 GeV, g = 0.65,

sin2 θW ≃ 0.22, MZ1 ≃ 91.19 GeV [67,84] and imposing

−3.98 × 10−3 � tan φ � 1.31 × 10−4 we find the allowed

region in the vχ −vη plane. As we can see in Fig. 5, vχ � 100

TeV is needed to obtain significant deviations from the zero-

mixing value, vη ≃ 197.34 GeV.

From the phenomenological point of view, vχ � 100 TeV

is not interesting due to the fact that all new particles in the

model have masses of the order of vχ and therefore would be

unattainable by the current particle colliders. Thus, we use

vη ≃ 197.34 GeV and vρ =
√

v2 − v2
η ≃ 146.88 GeV. Now,

it is also possible to estimate vχ from the fact that the mass

of an extra neutral gauge boson, Z2, has to be larger than 2.9

Fig. 5 The light green region contains the values forvη andvχ allowing

−3.98 × 10−3 � tan φ � 1.31 × 10−4. vη values at least 1% different

from 197.34 GeV require vχ � 100 TeV

TeV [67,85]. Applying this bound in Eq. (37) and using the

values for vη and vρ obtained above, we have that vχ � 7.31

TeV. Thus, we can use these VEVs to estimate lower limits

for λ7, λ8 and λ9 in terms of the value of |λ15|

λ7 � −1.02
|λ15|
GeV

, λ8 � 0.02 − 1.8 × 10−4 |λ15|
GeV

,

λ9 � 0.21 − 0.25
|λ15|
GeV

, (39)

where we have used vχ = 7.31 TeV. In the case that λ15 ≪ 1

GeV, for instance, we have λ7 � 0, λ8 � 0.02 and λ9 �

0.21.

Let’s return to the square masses of the CP-even scalars,

h, H2 and H3. Their square masses are obtained from the

eigenvalues of the matrix mi j = 1
2

∂2V
∂φi ∂φ j

∣

∣

∣

∣

φ=min

, where φi ,

i = 1, 2, 3, are the real parts of the fields η0
1, ρ0

2 and χ0
3 ,

respectively. In that basis, mi j coincides with 1
2

H0, where H0

is the Hessian matrix given in Eq. (21). A perturbative anal-

ysis in powers of v/vχ shows that m2
h ∝ v2 and m2

H2,3
∝ v2

χ .

For this reason, we have that m2
H2,3

≫ m2
h since v2

χ ≫ v2.

This observation allows us to calculate an analytical expres-

sion for m2
h . In order to do so, it is useful to write the char-

acteristic polynomial of 1
2

H0, P , as

P = det
[

m2 13×3 − H0/2
]

= · · · + C m2 + · · · ,

= m6 − Tr [H0/2] m4

+ det [H0/2]
(

1/m2
h + 1/m2

H2
+ 1/m2

H3

)

m2

− det [H0/2] , (40)

where 13×3 is the 3×3 identity matrix and C is the m2 coef-

ficient of P when calculated from det
[

m2 13×3 − H0/2
]

.

Now, since m2
H2,3

≫ m2
h , we can write

m2
h ≃ det [H0/2]

C
, (41)
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Fig. 6 Constraints for the parameter space coming from the mass of

the Higgs boson produces ellipses and hyperbolas in the λ5 − λ4 plane

according to Eq. (42). In this particular example, we took λ1 = 4 + λ2,

λ3 = 3, the usual values for the VEVs and mh = 125.18 GeV. Notice

how the conics rotate counter clockwise as λ6 increases, c.f. Eq. (43)

The formula for m2
h in Eq. (41) is at 2% accuracy. Because mh

is the Higgs boson mass, it must be mh = 125.18±0.16 GeV

[64–67]. This imposes strong constraints on λ1, · · · , λ6 and

|λ15|. For instance, the λ4 and λ5 values required to get the

Higgs boson mass lie on ellipses or hyperbolas. The particular

form of the conic appearing in the λ5 − λ4 plane depends on

the other λ values given by Eq. (41). To be more specific,

let’s write the eigenvalue equation for m2
h

(

λ2 −
m2

h

2v2
ρ

)

λ2
4 +

(

λ1 −
m2

h

2v2
η

)

λ2
5 − λ6 λ4 λ5

+λ3

(

λ2
6 − 4λ1λ2

)

+ m2
h

(

2λ3

(

λ2/v
2
η + λ1/v

2
ρ

)

+(4λ1λ2 − λ2
6)/2v2

χ

)

= 0, (42)

where we have used |λ15| ≪ vη, vρ for simplicity. Eq. (42)

represents an ellipse or a hyperbola centered at the origin and

rotated by an angle θ given by

tan 2θ = λ6

λ1 − λ2 + 1
2

m2
h

(

1
v2
ρ

− 1
v2
η

) . (43)

Other characteristics such as the size of the conic are dom-

inated by λ1,2,3,6 and the ratios m2
h/v2

ρ and m2
h/v2

η . Some

particular cases are shown in Fig. 6 and the region separating

ellipses and hyperbolas in the plane λ2 − λ1 is shown in Fig.

7.

Similar conclusions are obtained for the planes λ6 − λ4

and λ6 − λ5. Now, for the most general case, i.e. when |λ15|
is not negligible, Eq. (42) takes the most general form a λ2

4 +
2b λ4 λ5+c λ2

5+2d λ4+2 f λ5+g = 0 where the coefficients

d
e
creases

Fig. 7 The region separating ellipses and hyperbolas for a λ3 fixed and

λ6 varying

a, · · · , g depend on λ1,2,3,6,15. Thus, for the general case the

ellipse/hyperbola is not centered at the origin and the rotation

angle also acquires a dependence on |λ15|. We are not going

to consider that case in detail.

Finally, we can calculate m2
H2,3

as a function of m2
h as

follows

m2
H2,3

= 1

2
Tr [H0/2] − 1

2
m2

h

∓ 1

2

√

(

Tr [H0/2] − m2
h

) (

Tr [H0/2] + 3m2
h

)

+ 4C .

(44)
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Because we are working in the approximation of m H2,3 > mh

and mh = 125.18±0.16 GeV [64–67], the positivity of m2
H2,3

does not bring any additional constraint on the λ’s. Also, note

that the positivity of the masses of CP-even scalars implies

that det H0 > 0 as required by the last condition in Eq. (22).

5 Conclusions

In this work, we find tree level constraints on the scalar poten-

tial couplings of the economical 3 − 3 − 1 model when con-

siderations of vacuum stability and positivity of the squared

scalar masses are taken into account. In particular, we con-

sider the model with a discrete Z2 symmetry acting on χ , u4R ,

d(4,5)R fields in a non trivial way. Besides all the appealing

features discussed in Sect. 2, this discrete symmetry makes

the quartic terms in the scalar potential to have a biquadratic

form of the norm of the fields. This allows us to apply coposi-

tivity criterion in order to guarantee that the scalar potential is

bounded from below. When copositivity criterion is imposed

in combination with the first and second derivative tests for

the vacuum expectation values given in Eq. (12), ten of the

scalar couplings are constrained. In more detail, λ1,2,3 need

to be positive and the μ1,2,3 parameters are completely deter-

mined, c.f. Eq. (20). Besides that, λ4,5,6 couplings are con-

strained from below by the copositivity and from above by the

positivity of the principal minors of the Hessian matrix, Eq.

(31). More interestingly, there is always an excluded region

for λ4,5,6 which we called the minimum excluded region

in Figs. 2 and 3, respectively. This region comes from the

copositivity criterion and gives a lower bound for λ4,5,6. It is

remarkable that the excluded region for theseλ couplings also

has a maximum provided all copositivity conditions are satis-

fied. λ7,8,9,10 play an important role in determining the form

of both the minimum and the maximum excluded regions for

λ4,5,6. On the other hand, copositivity does not have anything

to say about the upper bound on λ4,5,6 and it is here that sec-

ond derivative test is important. We analyse the role that |λ15|
(where we have applied a phase shift in the fields to make

λ15 real and positive without loss of generality) has in deter-

mining that upper bound. As the |λ15| coupling is technically

small, we have studied the bound when |λ15| ≪ vη, vρ show-

ing that the smallest upper bound on λ4,5,6 is always larger

than 2
√

λ1λ3, 2
√

λ2λ3, 2
√

λ1λ2, respectively.

In order to constrain the rest of λ couplings, we turn our

attention on positivity of the squared scalar masses. After

finding general expressions for the masses of the charged and

CP-odd scalars, we find constraints on λ7,8,9 given in Eqs.

(34–35), respectively. Actually, we apply a stronger limit for

the case of the masses of charged scalars since these, roughly

speaking, must be heavier than 80 GeV. As the constraints

on λ7,8,9 strongly depend on the VEVs, even in the case of

|λ15| → 0, we estimate the lower bounds on λ7,8,9 using

the VEVs that satisfy the upper bound on the mixing angle

between the two neutral gauge bosons in the model and the

lower bound on the mass of Z ′ gauge boson. Doing that, we

obtain the lower bounds in Eq. (39).

Moreover, we find approximate formulas for the squared

masses of the CP-even scalars in the model. If the vρ, vη ≪
vχ hierarchy is satisfied (as assumed in this 3−3−1 model),

the squared masses of the CP-even scalars different from

the Higgs boson are proportional to v2
χ , which allows us

to find a 2% accurate formula for the Higgs squared mass,

c.f. Eq. (41). Using the fact that the Higgs mass must be

mh = 125.18 ± 0.16 GeV [64–67], we find that λ5 − λ4,

λ6 − λ4 and λ6 − λ5 satisfy the ellipse or the hyperbola

general equations with coefficients determined by λ1,2,3,6,15

couplings. We outline the behaviour of such conics for the

case |λ15| ≪ vη, vρ in Fig. 6. In that case, they are centered

at the origin and their rotation angle strongly depends on λ6.

Furthermore, we find equations for squared masses of the

other two CP-even scalars in terms of m2
h and the trace and

determinant of the Hessian matrix, see Eq. (44). Because

these squared masses are larger than m2
h in our approach,

their positivity do not bring new constraints on λ couplings.

Although the objective of this paper is to derive tree level

conditions for the quartic couplings of the scalar potential

coming from vacuum stability, the minimization of the scalar

potential, the positivity of the squared masses of the extra

scalars, the Higgs boson mass, the Z′ gauge boson mass and

its mixing angle with the SM Z boson in order to restrict

the parameter space, it is also interesting to comment some

modifications coming from the running of the coupling con-

stants. Roughly speaking, we expect that major differences

when compared with the SM are due to the presence of new

particles, such as heavy quarks and leptons. For example,

there are three additional quarks (an up-type quark and two

down-type quarks) which are assumed to have masses in the

scale of the SU(3)L symmetry breaking, i.e. 1 − 10 TeV.

For this reason, we expect that these quarks modify signifi-

cantly the beta functions of the quartic couplings that involve

the χ scalar triplet because the Z2 symmetry acting on χ ,

u4R and d4,5R fields makes these new quarks gain masses

mainly through theχ scalar triplet. Thus, the beta functions of

λ4,5 are expected to receive large contributions coming from

the diagrams where the new quarks are running. However,

other λ couplings can receive some contributions from these

quarks due to the mixings between scalar mass eigenstates.

Moreover, we expect that the beta function of the λ quar-

tic couplings receive several positive contributions from the

one-loop diagrams with scalars running in them. These posi-

tive contributions, roughly speaking, will reduce the allowed

regions of the λ couplings in a similar way as in the triplet and

inverse seesaw models [80,86]. Nevertheless, in order to give

a quantitative answer to this question all coupled one-loop
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renormalization group equations must be carefully studied

for this model.
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