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Slightly extending a right-handed neutrino version of the 3 − 3 − 1 model, we show that it is not only

possible to solve the strong CP problem but also to give the total dark matter abundance reported by the

Planck collaboration. Specifically, we consider the possibility of introducing a 3 − 3 − 1 scalar singlet to

implement a gravity stable Peccei-Quinn mechanism in this model. Remarkably, for allowed regions of the

parameter space, the arising axions with masses ma ≈meV can both make up the total dark matter relic

density through nonthermal production mechanisms and be very close to the region to be explored by the

IAXO helioscope.
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I. INTRODUCTION

The impressive observation that almost thirty percent of

the energy content of the Universe is due to dark matter

(DM) is challenging our understanding of particle physics

and cosmology. For a historical review see Ref. [1]. Much

effort have been done in order to unravel the nature of DM.

Experiments designed to detect weakly interacting massive

particles (WIMPs), the, so far, DM candidate paradigm,

have failed in providing positive results [2,3]. At the same

time, the Large Hadron Collider (LHC) has not been able to

produce any signal of a DM candidate, as is the case of the

lightest supersymmetric partners of the standard model

(SM) neutral particles (gauge or scalar), called neutralinos,

or gravitinos (partners of the graviton) [4].

As a consequence of these negative results, it is notice-

able the growing interest in studying axions and axionlike

particles (ALPs) because they are well motivated alter-

natives to WIMPs. Moreover, they can be linked to

solutions of still intriguing astrophysical phenomena [5]:

(i) ALPs may be the explanation to the TeV photon

cosmic transparency if there are gamma ray↔ ALP

oscillations. If so, gamma rays could be converted to

ALPs due to the magnetic fields near active galactic nuclei,

for instance, traveling “freely” for a long distance to

our galaxy and then reconverted into gamma rays in the

galactic magnetic fields; (ii) also, ALPs may explain the

anomalous energy loss of white dwarfs because from

the luminosity of this kind of stars it is inferred that a

new energy loss mechanism is needed. In the present

scenario, this mechanism could be related to axions or

ALPs bremsstrahlung if they directly couple to electrons.

All these astrophysical processes constrain the relevant

parameters describing axions and ALPs physics. In fact,

besides these theoretical arguments for considering axions

and/or ALPs, there is also much experimental effort

searching for this kind of particles [6]. A variety of

experiments have been designed and, in general, they

are classified as haloscopes, helioscopes and light-shining

through a wall, and most of them are based on the

conversion of axions or ALPs into gamma rays in the

presence of strong magnetic fields [7].

The axion field was initially introduced as a dynamical

solution for the so-called strong CP problem. This problem

comes from the extra term which has to be added to the

QCD Lagrangian due to the nontrivial structure of the QCD

vacuum:
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Lθ ¼ θ
g2s

32π2
GaμνG̃a

μν;

whereGaμν is the gluon field strength and G̃a
μν its dual. This

θ–term violates P, T and CP symmetries and, hence, it

induces a neutron electric dipole moment (NEDM). In

order to be in agreement with experimental NEDM data the

value of the θ parameter must be θ ≲ 0.7 × 10−11 [8]. The

strong CP problem is, then, to explain why this parameter

is so small. After including weak interactions, the coef-

ficient of the GG̃ term changes to θ̄ ¼ θ − arg detMq,

where Mq is the quark mass matrix. The Peccei–Quinn

(PQ) solution to this problem is implemented by introduc-

ing a global U(1) symmetry that must be spontaneously

broken and afflicted by a color anomaly. The axion is then

the Nambu–Goldstone boson associated to the breaking of

that U(1) symmetry, which is now known as the Uð1ÞPQ
symmetry. After including the axion field, aðxÞ, the

total Lagrangian has a term proportional to the color

anomaly NC:

LTotal ¼ LSM þ θ̄
g2s

32π2
GaμνG̃a

μν þ
aðxÞ
f̃a=NC

g2s

32π2
GaμνG̃a

μν

þ kineticþ interactions;

where f̃a=NC ≡ fa is the axion-decay constant and it is

related to the magnitude of the vacuum expectation

value (VEV) that breaks the Uð1ÞPQ symmetry. We also

have that the divergence of the PQ current, ∂μJ
μ
PQ, is

NC
g2s

32π2
GaμνG̃a

μν ≠ 0. Hence, the CP violating term GG̃ is

now proportional to (θ̄ þ NCaðxÞ=f̃aÞ and it is shown

that haðxÞi ¼ −f̃aθ̄=NC minimizes the axion effective

potential so that, when the axion field is redefined,

aðxÞ→ aðxÞ − haðxÞi, the CP violating term GG̃ is no

longer present in the Lagrangian, solving in this way the

strong CP problem. Although the axion is massless at tree

level, it is, in fact, a pseudo-Nambu-Goldstone boson since

it gains a mass due to nonperturbative QCD effects related

to the Uð1ÞPQ color anomaly. The axion mass and all its

couplings are governed by the value of fa. The original

conception of the axion was ruled out long ago because fa
was thought to be near the electroweak scale, implying in a

“visible” axion, in contradiction with laboratory and

astrophysical constraints. Few years after the PQ proposal

it was realized that for large enough values of fa the axion
could be a cold dark matter candidate [9–11]. In fact, for

high symmetry breaking scales, the axion is a nonbaryonic

extremely weakly-interacting massive particle, stable on

cosmological time scales, which makes it a candidate to

dark matter. Later in the text we discuss the constraints on

fa coming from NEDM, “invisibility” of the axion, and

astrophysical data.

In order to consider the axion a viable DM candidate we

must deal with its relic abundance which strongly depends

on the history of the Universe. In particular, the cosmo-

logical scenario for the axion production changes signifi-

cantly if the PQ symmetry is broken before or after the

inflationary expansion of the Universe. The main issue

related to the order of these events concerns the axion-

production mechanisms. There are production mechanisms

due to topological defects, like axionic strings and domain

walls, that are comparable to the vacuum misalignment

one. Hence, on one hand, if the PQ-symmetry breaking

occurs before inflation, inflation will erase these topologi-

cal defects. On the other hand, if the PQ-symmetry

breaking happens after inflation, it is expected an additional

number of axions to be produced due to the decay of the

topological defects, affecting directly the relic abundance

estimative. In this work we consider axions as DM

candidates in the so-called post-inflationary scenario, when

the reheating temperature, TR, is high enough to restore the

PQ symmetry, TR > TC ∼ fa, which will be broken at a

later time, when the temperature of the Universe falls below

the critical temperature TC.

As we can see, axions present some features with

relevant implications not only in particle physics but also

in cosmology and it is also a strong indication that physics

beyond the SM is in order. In this vein a large variety of

models, extensions of the SM, has been proposed. Most of

them claim for very appealing achievements relating the

DM solution to another yet unsolved issue in particle

physics [12–14], as it is the case of the lightness of the

active neutrino masses, the smallness of the strong CP
violation, or the hierarchy problem, for instance.

Among others, a way of introducing new physics is

to consider a model with a larger symmetry group. In

particular, there is a class of models based on the SUð3ÞC ⊗

SUð3ÞL ⊗ Uð1ÞX gauge group (the so called 3 − 3 − 1

models, for shortness), which are interesting extensions of

the SM. In general, these 3 − 3 − 1 models bring welcome

features which we review very shortly here. We can take

advantage of the larger group representation to choose the

matter content in order to introduce new degrees of freedom

which are appropriate to implement, for instance, a mecha-

nism to generate tiny active neutrino masses, in the lepton

sector. The quark sector will also have new degrees of

freedom and, depending on the particular representation,

the model can have quarks with exotic electric charges or

not. The issue of the chiral anomaly cancellation is solved

provided we have the same number of triplets and anti-

triplets, including color counting. Then, considering that

we have the same number of lepton and quark families, say

nf, we find that nf must be three or a multiple of three.

However, from the QCD asymptotic freedom we find that

the number of families must be just three in order to get the

correct, negative, sign of the renormalization group β

function. Note that, contrarily to the SM, the total number

J. C. MONTERO et al. PHYS. REV. D 97, 063015 (2018)

063015-2



of families must be considered altogether in order to get the

model anomaly free. Hence, the number of families and the

number of colors are related to each other by the anomaly

cancellation condition. This fact is a direct consequence of

the 3 − 3 − 1 gauge invariance and it can be seen as a hint

to the solution to the family replication issue. We can still

mention other interesting features: (i) the electric charge

quantization does not depend if neutrinos are Majorana

or Dirac fermions [15]; (ii) the model described in

Refs. [16–18] presents the relation t2 ¼ ðg0=gÞ2 ¼
sin2 θW=ð1 − 4 sin2 θWÞ, which relates the Uð1ÞX and the

SUð3ÞL coupling constants, g0 and g, respectively, to the

electroweak θW angle. This relations shows a Landau-

like pole at some OðTeVÞ, energy scale, μ, for which

sin2 θWðμÞ ¼ 1=4 [19], and it would be an explanation to

the observed value sin2 θWðMZÞ < 1=4. (iii) The Peccei-

Quinn symmetry, usually introduced to solve the strong CP
problem, can be introduced in a natural way [20]. In this

work we consider a version of a 3 − 3 − 1 model where a

gravity stable PQ mechanism can be implemented. We

analyze the conditions under which the axion, resulting

from the spontaneous breaking of the PQ symmetry in this

model, can be considered a dark matter candidate.

This work is organized as follows. In Sec. II, we present

the general features of the 3 − 3 − 1 model, including its

matter content, Yukawa interactions and scalar potential. In

Sec. III we show the main steps to make the axion invisible

and the PQ mechanism stable against gravitational effects.

We also show the axion effective potential from which its

mass is derived. In Sec. IV we consider the axion

production mechanisms in order to compute its abundance

in the Universe. Results for the vacuum misalignment and

decay of the string and string-wall system mechanisms are

given. In Sec. V we confront the predictions from the

previous section with the observational constraints, coming

mainly from the Planck-collaboration results for the DM

abundance, the NEDM data and direct axion searches, in

order to constrain the parameter space of the model.

Section VI is devoted to our final discussions and

conclusions.

II. BRIEFLY REVIEWING THE MODEL

We consider the 3 − 3 − 1 model with right-handed

neutrinos, Na, in the same multiplet as the SM leptons,

νa and ea. In other words, in this model all of the left-

handed leptons, FaL ¼ ðνa; ea; Nc
aÞTL with a ¼ 1, 2, 3,

belong to the same ð1; 3;−1=3Þ representation, where

the numbers inside the parenthesis denote the quantum

numbers of SUð3ÞC, SUð3ÞL and Uð1ÞX gauge groups,

respectively. This model was proposed in Refs. [21,22] and

it has been subsequently considered in Refs. [20,23–31]. It

shares appealing features with other versions of 3 − 3 − 1

models [16–18,32–36]. Furthermore, the existence of right-

handed neutrinos allows mass terms at tree level, but it is

necessary to go to the one-loop level to obtain neutrino

masses in agreement with experiments [26].

The remaining left-handed fermionic fields of the model

belong to the following representations

Quarks∶ QL ¼ ðu1; d1; u4ÞTL ∼ ð3; 3; 1=3Þ; ð1Þ

QbL ¼ ðdb; ub; dbþ2ÞTL ∼ ð3; 3̄; 0Þ; ð2Þ

where b ¼ 2, 3; and “∼” means the transformation proper-

ties under the local symmetry group. Additionally, in the

right-handed field sector we have

Leptons∶ eaR ∼ ð1; 1;−1Þ; ð3Þ

Quarks∶ usR ∼ ð3; 1; 2=3Þ; dtR ∼ ð3; 1;−1=3Þ; ð4Þ

where a ¼ 1, 2, 3; s ¼ 1;…; 4 and t ¼ 1;…; 5.
In order to generate the fermion and boson masses, the

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX symmetry must be spontane-

ously broken to the electromagnetic group, i.e., to the

Uð1ÞQ symmetry, whereQ is the electric charge. To do this,

it is necessary to introduce, at least, three SUð3ÞL triplets, η,

ρ, χ, as shown in Ref. [30], which are given by

η ¼ ðη01; η−2 ; η03ÞT ∼ ð1; 3;−1=3Þ;
ρ ¼ ðρþ1 ; ρ02; ρþ3 ÞT ∼ ð1; 3; 2=3Þ; ð5Þ

χ ¼ ðχ01; χ−2 ; χ03ÞT ∼ ð1; 3;−1=3Þ: ð6Þ

Once these fermionic and bosonic fields are introduced

in the model, we can write the most general Yukawa

Lagrangian, invariant under the local gauge group, as

follows

LYuk ¼ L
ρ
Yuk þ L

η
Yuk þ L

χ
Yuk; ð7Þ

with

L
ρ
Yuk ¼ αtQ̄LdtRρþ αbsQ̄bLusRρ

�

þ Yaa0ϵijkðF̄aLÞiðFa0LÞcjðρ�Þk þ Y0
aa0F̄aLea0Rρ

þ H:c:; ð8Þ

L
η
Yuk ¼ βsQ̄LusRηþ βbtQ̄bLdtRη

� þ H:c:; ð9Þ

L
χ
Yuk ¼ γsQ̄LusRχ þ γbtQ̄bLdtRχ

� þ H:c:; ð10Þ

where ϵijk is the Levi-Civita symbol and a0, i; j; k ¼ 1, 2,

3 and a, b, s, t are in the same range as in Eq. (3). It is

also straightforward to write down the most general

scalar potential consistent with gauge invariance and

renormalizability as
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Vðη; ρ; χÞ ¼ VZ2
ðη; ρ; χÞ þ VZ2

ðη; ρ; χÞ; ð11Þ

with

VZ2
ðη; ρ; χÞ

¼ −μ21η
†η − μ22ρ

†ρ − μ23χ
†χ

þ λ1ðη†ηÞ2 þ λ2ðρ†ρÞ2 þ λ3ðχ†χÞ2 þ λ4ðχ†χÞðη†ηÞ
þ λ5ðχ†χÞðρ†ρÞ þ λ6ðη†ηÞðρ†ρÞ þ λ7ðχ†ηÞðη†χÞ
þ λ8ðχ†ρÞðρ†χÞ þ λ9ðη†ρÞðρ†ηÞ þ ½λ10ðχ†ηÞ2 þ H:c:�;

ð12Þ

VZ2
ðη; ρ; χÞ ¼ −μ24χ

†ηþ λ11ðχ†ηÞðη†ηÞ þ λ12ðχ†ηÞðχ†χÞ
þ λ13ðχ†ηÞðρ†ρÞ þ λ14ðχ†ρÞðρ†ηÞ
þ λ15ϵijkηiρjχk þ H:c: ð13Þ

We have divided the total scalar potential Vðη; ρ; χÞ in two

pieces, VZ2
ðη; ρ; χÞ, invariant under the Z2 discrete sym-

metry (χ → −χ, u4R → −u4R, dð4;5ÞR → −dð4;5ÞR, and all the
other fields even by the symmetry), and VZ2

ðη; ρ; χÞ, which
breaks Z2. This discrete symmetry is motivated by the

implementation of the PQ mechanism as shown below.

It is well known that the minimal vacuum structure

needed to give masses to all the particles in the model is

hρi ¼ 1
ffiffiffi

2
p ð0; vρ0

2
; 0ÞT; hηi ¼ 1

ffiffiffi

2
p ðvη0

1
; 0; 0ÞT;

hχi ¼ 1
ffiffiffi

2
p ð0; 0; vχ0

3
ÞT; ð14Þ

which correctly reduces the SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX
symmetry to the Uð1ÞQ one. In principle, the remaining

neutral scalars, η03 and χ
0
1, can also gain VEVs. However, in

this case, dangerous Nambu-Goldstone bosons can arise in

the physical spectrum, as shown in Ref. [37]. In this paper,

we are going to consider only the minimal vacuum

structure given in Eq. (14).

III. IMPLEMENTING A GRAVITY

STABLE PQ MECHANISM

The key ingredient to implement the PQ mechanism

is the invariance of the entire Lagrangian under a global

Uð1Þ symmetry, called Uð1ÞPQ, which must be both

afflicted by a color anomaly and spontaneously broken

[38–41]. In general, the implementation of the PQ mecha-

nism in the 3 − 3 − 1 models is relatively straightforward

[20,28]. In particular, in Ref. [20] a gravitationally stable

PQ mechanism for the model considered here is success-

fully implemented. We are going to review its main results

for completeness.

First of all, we search for all Uð1Þ symmetries of the

Lagrangian given in Eqs. (7) and (11). Doing so, we find

only two symmetries, Uð1ÞX and Uð1ÞB, which clearly do

not satisfy the two minimal conditions required for the

Uð1ÞPQ symmetry. See Table I for the quantum number

assignments of the fields for these symmetries. In other

words, the Uð1ÞPQ is not naturally allowed by the gauge

symmetry. However, if the Lagrangian is slightly modified

by imposing a Z2 discrete symmetry such that χ → −χ,

u4R → −u4R, dð4;5ÞR → −dð4;5ÞR, all terms in VZ2
ðη; ρ; χÞ

are forbidden. In addition, the Yukawa Lagrangian inter-

actions given in Eqs. (8)–(10) are slightly modified to

L
ρ
Yuk ¼ αaQ̄LdaRρþ αbaQ̄bLuaRρ

�

þ Yaa0εijkðF̄aLÞiðFbLÞcjðρ�Þk þ Y0
aa0F̄aLea0Rρ

þ H:c:; ð15Þ

L
η
Yuk ¼ βaQ̄LuaRηþ βbaQ̄bLdaRη

� þ H:c:; ð16Þ

L
χ
Yuk ¼ γ4Q̄Lu4Rχ þ γbðbþ2ÞQ̄bLdðbþ2ÞRχ

� þ H:c: ð17Þ

Consequently, with the imposition of this Z2 symmetry a

Uð1ÞPQ symmetry is automatically introduced with the

charges given in Table II.

As η, ρ, χ get VEVs, an axion appears in the physical

spectrum. However, it is a visible axion because the Uð1ÞPQ
symmetry is actually broken by vρ0

2
, which is upper

bounded by the value of vSM ≃ 246 GeV, as shown in

Refs. [20,37]. Hence, this scenario is ruled out [42].

Nevertheless, a singlet scalar, ϕ ∼ ð1; 1; 0Þ, can be intro-

duced in order to make the axion invisible. Its role is to

break the PQ symmetry at an energy scale much larger than

the electroweak one. This field does not couple directly to

quarks and leptons, however it couples to the scalar triplets,

η, ρ and χ, through Hermitian terms and the non-Hermitian

term λPQϵ
ijkηiρjχkϕ, from which it gets a PQ charge equal

to 6, cf. Table II. Notice that this term is allowed as long as

the ϕ field is odd under theZ2 symmetry, i.e.,Z2ðϕÞ ¼ −ϕ.

TABLE I. The U(1) symmetries of the Lagrangian given by

Eqs. (7) and (11).

QL QiL (uaR, u4R) (daR, dð4;5ÞR) FaL eaR ρ (χ, η)

Uð1ÞX 1=3 0 2=3 −1=3 −1=3 −1 2=3 −1=3
Uð1ÞB 1=3 1=3 1=3 1=3 0 0 0 0

TABLE II. The Uð1ÞPQ charges in the model with a Z2 discrete

symmetry such that χ→−χ, u4R → −u4R, and dð4;5ÞR → −dð4;5ÞR.

QL QiL (uaR, u4R) (daR, dð4;5ÞR) FaL eaR ρ (χ, η)

Uð1ÞPQ −2 2 0 0 1 3 −2 −2
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Although the Z2 discrete symmetry apparently introdu-

ces the PQ mechanism in the model, there are two issues

with it. First, the Z2 and gauge symmetries allow some

renormalizable terms in the scalar potential, such as ϕ2, ϕ4,

ρ†ρϕ2, η†ηϕ2, χ†χϕ2, that explicitly violate the PQ sym-

metry in an order low enough to make the PQ mechanism

ineffective. Second, since the PQ symmetry is global, it is

expected to be broken by gravitational effects [43,44].

Thus, a mechanism to stabilize the axion solution has to be

introduced. As usual, the entire Lagrangian is considered to

be invariant under a ZD discrete gauge symmetry (anomaly

free) [20,28,45–48] and, in addition, this symmetry is

supposed to induce the Uð1ÞPQ symmetry. For ZD≥10 it

is found that all effective operators of the form ϕN=MN−4
Pl

(where N ≥ D is a positive integer and MPl is the reduced

Planck mass) that can jeopardize the PQ mechanism are

suppressed. In particular, in Ref. [20] two different sym-

metries, Z10 and Z11, were found to stabilize the PQ

mechanism for the Lagrangian given by Eqs. (11), (15)–

(17). The specific charge assignments for these symmetries

are shown in Table III. Note that the term λ15ϵijkηiρjχk in

the scalar potential is prohibited by both of these discrete

symmetries and it must be removed from the entire

Lagrangian.

We remark that both theZ10 andZ11 discrete symmetries

in Table III are anomaly free. This type of discrete

symmetry is known as gauge discrete ZN symmetry and

it is assumed to be a remnant of a gauge (local) symmetry

valid at very high energies, [45]. The anomaly-free con-

ditions are necessary in order to truly protect the PQ

mechanism against gravity effects [46,49–51], Specifically,

these discrete symmetries satisfy A3CðZNÞ ¼ A3LðZNÞ ¼ 0

Mod N=2, where A3C and A3L are the ½SUð3ÞC�2 × ZN ,

½SUð3ÞL�2 × ZN anomalies, respectively. Other anomalies,

such as Z3
N , do not give useful low energy constraints

because these depend on some arbitrary choices concerning

to the full theory. In particular, the Z3
N anomaly depends on

the fermions which get masses at very high energy and are

integrated out in the low-energy Lagrangian. All the details

of these anomaly conditions applied to the 3 − 3 − 1model

can be found in Ref. [20].

In both cases, the axion, aðxÞ, is the phase of the ϕ field,

i.e., ϕðxÞ ∝ exp ðiaðxÞ=f̃aÞ, which implies f̃a ≈ vϕ. As it is

well known, to make the axion compatible with astro-

physical and cosmological considerations, the axion-decay

constant fa (related to f̃a by fa ¼ f̃a=NC ¼ f̃a=NDW, with

NDW being the number of domain walls in the theory.

In this model we have NC ¼ NDW ¼ 3), must be in the

range 109 GeV≲ fa ≲ 1012 GeV (we are assuming a post-

inflationary PQ symmetry breaking scenario). Note that

this high value of fa ¼ f̃a=NC ≈ vϕ=NC ≫ vρ0
2
; vη0

1
; vχ0

3
,

justifies the approximation in the form of axion eigenstate.

It is also important to remember that in this model v2
ρ0
2

þ
v2
η0
1

¼ v2SM and vχ0
3
is expected to be at the TeVenergy scale.

Now, we can go further calculating the axion mass, ma.

In this model, the axion gains mass because the Uð1ÞPQ
symmetry is both anomalous under the SUð3ÞC group and

explicitly broken by gravity-induced operators, gϕN=MN−4
Pl

(with g ¼ jgj exp iδ). These operators have a high dimen-

sion (N ≥ 10) because of the protecting Z10 or Z11 discrete

symmetries, as shown in Table III. These two effects induce

an effective potential for the axion, Veff , from which it is

possible to determine the axion mass. In more detail, as the

Uð1ÞPQ symmetry is anomalous, we will have a VPQ term in

the effective potential, which can be written as

VPQ ¼ −m2
πf

2
π

�

1 −
4mumd

ðmu þmdÞ2
sin2

�

aðxÞ
2fa

��

1=2

; ð18Þ

where mπ ≃ 135 MeV and fπ ≃ 92 MeV are the mass and

decay constant of the neutral pion, respectively; mu and md

are the masses of the up and down quarks. Note that VPQ

has a minimum when haðxÞi=fa ¼ 0, which solves the

strong CP problem in the usual way.

However, because of the PQ symmetry is also explicitly

broken by gravity effects, the effective potential gets

another term, Vgravity, which reads

Vgravity ≃ −
jgjvNϕ

2N=2−1MN−4
Pl

cos

�

NaðxÞ
f̃a

þ δD

�

; ð19Þ

where N ¼ 10, 11 for Z10 and Z11, respectively. The phase

δD inside the trigonometric function can be written as

δD ¼ δ − Nθ̄; ð20Þ

where δ is the phase of the g coupling constant and θ̄ is the

parameter which couples to the gluonic field strength and

its dual. This extra term in the scalar potential, Eq. (19), has

two important consequences. First, it induces a shift in the

value of
haðxÞi
fa

where Veff has a minimum. Expanding Veff ¼
VPQ þ Vgravity in powers of

haðxÞi
fa

, we find that in the

minimum, the axion VEV satisfies

jhaðxÞij
fa

�

�

�

�

min

≃

NjgjNN−1
DW

2
N
2
−1

ð fa
MPl

ÞN−2M2
Pl sin δD

m2
πf

2
π

f2a

mumd

ðmuþmdÞ2 þ
N2jgjNN−2

DW

2
N
2
−1

ð fa
MPl

ÞN−2M2
Pl cos δD

;

ð21Þ

TABLE III. The charge assignment for ZD that stabilizes the

PQ mechanism in the considered 3 − 3 − 1 model.

QL QiL (uaR, u4R) (daR, dð4;5ÞR) FaL eaR ρ (χ, η) ϕ

Z10 þ7 þ5 þ1 þ1 þ7 þ1 þ6 þ6 þ2

Z11 þ7 þ6 þ1 þ1 þ8 þ2 þ6 þ6 þ4
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where we have used vϕ ≈ f̃a ¼ NDWfa. Note that for

jgj ¼ 0 (or for δD ¼ 0) we have that
haðxÞi
fa

¼ 0 in the

minimum, as it should be to solve the strong CP problem.

However, in the general case, the value of
haðxÞi
fa

does not

satisfy the NEDM constraint [8], which imposes

haðxÞi
fa

¼ θ̄ ≲ 0.7 × 10−11: ð22Þ

In addition, Vgravity brings a mass contribution for the axion,

ma;gravity. From Eq. (19) we obtain

m2
a;gravity ¼

N2jgjNN−2
DW

2
N
2
−1

�

fa

MPl

�

N−2

M2
Pl cos δD: ð23Þ

This contribution can, in general, be much larger than the

well-known axion-mass term coming from the QCD non-

perturbative terms, Eq. (18),

m2
a;QCD ¼ m2

πf
2
π

f2a

mumd

ðmu þmdÞ2
: ð24Þ

Thus, in order to maintain the axion mass stable, we are

going to look for values of the parameters jgj, fa and δD for

N ¼ 10, 11 that both satisfy the NEDM constraint and

leave the axion mass stable ðma;QCD ≳ma;gravityÞ.
Before closing this section, it is important to remark that

although the 3 − 3 − 1 model considered in this paper has

additional contributions to CP-violating processes that in

principle can contribute to the NEDM, these do not require

tuning the model parameters at the same order of the θ̄

parameter as it was correctly estimated in Ref. [20].

Roughly speaking, the dominant contribution to the

up-quark electric dipole moment, deu, coming from the

interchange of the χ scalar is of order deujmu≪mu4
;mχ

≈

ejγ4·γbðbþ2Þj sin α
48π2

mu4

m2
χ
KðrÞ, where sin α is the sine of the

CP-violating phase, α, and KðrÞ ¼ 1
2r
− 1

r2
þ 1

r3
ln ð1þ rÞ,

with r ¼ m2
u4

m2
χ
− 1, and where mu is the up-quark mass; mu4

andmχ are the exotic quark and scalar masses, respectively.

For reasonable Yukawa couplings (γ4, γbðbþ2Þ) and

CP-violating phases, and for mu4
and mχ masses of order

of TeV, the den ∼
4
3
ded −

1
3
deu ≈OðdeuÞ is in agreement with

experiments without requiring a strong fine-tuning of the

parameter of the model [20].

IV. REVIEWING THE NONTHERMAL

PRODUCTION OF AXION DARK MATTER

For the postinflationary fa values considered here, cold

dark matter in the form of axions can be produced by three

different processes: the misalignment mechanism [52],

where the axion field oscillates about the minimum of

its potential, trying to decrease the energy after the breaking

of the PQ symmetry; and the decay of one-dimensional

(global strings [53]) and two-dimensional (domain walls

[54]) topological defects, which appear after breaking this

symmetry. Now, we will briefly review the general expres-

sions for the axion relic density in these three mechanisms

following Ref. [55].

A. Misalignment mechanism

The equation of motion for the axion field a in a

homogeneous and isotropic Universe, is of the type of a

damped harmonic oscillator with a natural frequency equal

to the axion mass. In this case, taking into account

nonperturbative effects of QCD at finite temperature

and considering the interacting instanton liquid model

(IILM) [56], the axion mass depends on the temperature

as [57]

m2
aðTÞ ¼ cT

Λ
4
QCD

f2a

�

T

ΛQCD

�

−n

; ð25Þ

where the values of the parameters are cT ¼ 1.68 × 10−7,

n ¼ 6.68 and ΛQCD¼ 400 MeV [57]. This dependence, is

valid in the regimewhere the axion mass at temperature T is

less than its value at temperature zero, given by mað0Þ2 ¼
c0

Λ
4
QCD

f2a
, where c0 ¼ 1.46 × 10−3, which leads to a mini-

mum temperature ∼103 MeV for the validity of the fit. The

temperature Tosc at which the axion field begins to oscillate

is given by [55]

Tosc ¼ 2.29 GeV

�

g�ðToscÞ
80

�

− 1
4þn

�

fa

1010 GeV

�

− 2
4þn

×

�

ΛQCD

400 MeV

�

; ð26Þ

where g�ðToscÞ is the number of relativistic degrees of

freedom at temperature Tosc. Eq. (26) is valid for temper-

atures greater than 103MeV, where Eq. (25) holds, and it is

also assumed a not too strong dependence on the temper-

ature of g�, which, for the range 109 GeV < fa <

1012 GeV analyzed in this work, varies between 80 and

85 [58], what would change the abundance of axion dark

matter by a factor of ≈1.02. Once the adiabatic condition

is satisfied, both the entropy and the number of axions

with momentum zero per comoving volume are con-

served [9], and it is possible to obtain the dark matter

abundance [55]

Ωa;mish
2 ¼ 4.63 × 10−3

�

fa

1010 GeV

�6þn
4þn

; ð27Þ
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where g�ðToscÞ ¼ 80 and ΛQCD¼ 400 MeV have been

used.

B. Decay of global strings

Global strings are the first of the topological defects

that appear after the breaking of the Uð1ÞPQ symmetry at

T ≲ vϕ because the field ϕ (with PQ charge equal to 6 in the

3 − 3 − 1 model considered here) acquires a VEV jhϕij ¼
vϕ [55,59]. Actually, the breaking of the PQ symmetry

leads to the formation of a densely knotted network of

cosmic axion strings, which oscillate under their own

tension, losing their energy by radiating axions [60]. The

radiation process lasts from the PQ-symmetry breaking

time to the QCD phase transition time. Using results of

numerical studies which provide the time dependence

of ρstring (energy density of strings) and ρa;string (energy

density of axions produced by the string decays), it is

possible to obtain the nowadays abundance of radiated

axions [61,62],

Ωa;stringh
2 ¼ αN2

DW ×

�

fa

1010 GeV

�6þn
4þn

; ð28Þ

with α ¼ ð7.3� 3.9Þ × 10−3, g�ðToscÞ ¼ 80 and

ΛQCD¼ 400 MeV. NDW ¼ 3 is the number of domain

walls in this model, and n ¼ 6.68 is the same parameter

that appears in Eq. (25).

C. Decay of string-wall systems

In the 3 − 3 − 1 model considered, a Z3 subgroup

remains after the breaking of the Uð1ÞPQ symmetry, which

makes the vacuum manifold to be made of several

disconnected components. When the temperature of the

Universe lies between the electroweak and QCD phase

transition energy scales, domain walls appear as a conse-

quence of breaking this Z3 discrete symmetry. These

domain walls are attached by strings and occur at the

boundaries between regions of space-time where the value

of the field ϕ is different. These inhomogeneities of

space-time are in tension with the assumptions of standard

cosmology. So, it is necessary that these domain walls

decay at a certain time after being formed [63]. Actually,

the domain walls bounded by strings begin to oscillate

and eventually, when their tensions are greater than the

tensions of the strings, their annihilations lead to axion

production [64,65].

The energy density of domain walls can overclose the

Universe due to its dependence on the inverse of the square

of the scale factor, R, which decreases at a slower rate than

the corresponding to matter, ρ∼R−3, and radiation, ρ∼R−4.

In our case, this problem is solved by the introduction of a

Planck-suppressed operator in the effective potential for the

axion field a, parametrized as in Eq. (19). The current axion

abundance is given by the expression [55,66]:

Ωa;wallh
2 ¼ 1.23 × 10−6½7.22 × 103� 32pβ

�

2p − 1

3 − 2p

�

×

�

N4
DW

�

1 − cos
2πN

NDW

��

1− 3
2p

× jgj1− 3
2p

�

Ξ

10−52

�

1− 3
2p

�

fa

1010 GeV

�

4þ3ð4p−16−3nÞ
2pð4þnÞ

;

ð29Þ

where Ξ ¼ 1

2
N
2

ð vϕ
MPl

ÞN−4, and β ¼ 1.65� 0.47 is a parameter

obtained from numerical simulations. Finally, we will refer

to the case p ¼ 1 as the exact scaling, and p ≠ 1 as the

deviation from scaling. From here on, we use p ¼ 0.926 for

the deviation from scaling case, since it is the suggested

value by numerical simulations [55].

In order to conclude this section, we have seen that

axions can be produced by three different non-thermal

mechanisms, which leads to the result that the total abun-

dance of axions in the Universe can be written as the sum of

all these contributions, Eqs. (27), (28) and (29), i.e.,

Ωah
2 ¼ Ωa;mish

2 þΩa;stringh
2 þ Ωa;wallh

2: ð30Þ

The total dark matter abundance due to axions is upper

bounded by the observational constraint on the current relic

density Ω
Planck
DM h2 ¼ 0.1197� 0.0066 (at 3σ) as reported by

the Planck Collaboration [67]. In the next section, we will

analyze the behavior of each contribution to the total

abundance, in order to establish a suitable region of

parameters for the model analyzed in this work.

V. CONSTRAINING THE NONTHERMAL

PRODUCTION OF AXION DARK MATTER

In general, the total dark matter relic density due to

axions in this 3 − 3 − 1 model depends on fa, g; NDW

and ZN . The dependence on fa, g, and NDW is direct

because Ωa;mis;Ωa;string and Ωa;wall explicitly depend on

these parameters. Nevertheless, the dependence on ZN is

indirect. Roughly speaking, this discrete symmetry con-

strains the order of the dominant gravity-induced operator

gϕN=MN−4
Pl . In other words, the discrete symmetry sets the

exponent N which directly affects the total dark matter due

to axions. Actually, we have two discrete symmetries, Z10

and Z11 (see Table III), that stabilize the PQ mechanism,

which implies that there are two cases to be considered,

N ¼ 10 and N ¼ 11. On the other hand, the domain wall

parameter, NDW, is set to be equal to 3 by the PQ symmetry

and the matter content in the model. Thus, we are interested

in knowing if the model with Z10 or/and Z11 symmetry

provides the total dark matter reported by the Planck

collaboration [67] when fa, g, take their allowed values,

without conflicting with the constraints on the axion

phenomenology.
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In order to do that, it is convenient, first, to study

separately the behavior of the three axion production

mechanisms which results are shown in Fig. 1.

Specifically, the cyan and black lines show the axion

abundances produced by misalignment and global string

decay mechanisms, respectively. On the other hand, the

blue lines show the abundance of axion dark matter due to

the decay of domain wall systems for N ¼ 10 and N ¼ 11,

calculated for the coupling constant value jgj ¼ 1. Two

shaded regions are also shown: the light red one corre-

sponds to the exclusion region coming from the constraint

of the over closure of the Universe [67], and the yellow

region gives the possible interval for the axion decay

constant fa, for which no over abundance of axions from

decay of global strings or domain walls is produced.

Finally, the dark green line corresponds to the total

abundance of axions, Ωah
2, as given by Eq. (30), obtained

for the caseN ¼ 10 and jgj ¼ 1. The case forN ¼ 11 is not

shown because for all the considered values of fa the axion
relic density is overabundant.

From Fig. 1 some conclusions are straightforward.

First, Ωa;mis and Ωa;string grow when fa grows. Thus, in

principle, these are dominant for the greater values of fa
(5.3 × 109 GeV≲ fa ≲ 1.7 × 1010 GeV). However, the

misalignment mechanism is always subdominant because

Ωa;string has an extra N2
DW ¼ 9 global factor. Indeed, the

misalignment mechanism contributes at most by ≈7%

for the total dark matter density. In contrast, Ωa;wall is

decreasing with fa and thus it dominates Ωa for the smaller

values of fa (3.6 × 109 GeV≲ fa ≲ 5.3 × 109 GeV). That

can be understood realizing that the domain-wall time

decay is larger for smaller fa values, making the domain

wall more stable and, in this way, explaining why this

mechanism contributes more for the axion relic density

when fa is smaller. The opposite behavior of Ωa;string and

Ωa;wall allow to set an upper and lower bound on fa. For

jgj ¼ 1, fa is constrained to be 3.6×109 GeV<fa < 1.7×

1010 GeV in order to satisfy Ωa;wallh
2 and Ωa;stringh

2 ≲

Ω
Planck
DM h2 [67]. Actually, the interval of allowed fa values is

slightly thinner because all of the three axion production

mechanisms contribute simultaneously. Also, note that the

fa upper bound above is independent on the value of N and

on the value of jgj, as can be seen from Eq. (28). In contrast,

the lower bound is only valid for the case of N ¼ 10.

Actually, the case of Z11 is completely ruled out and, for

this reason, our analysis will be concerned exclusively with

the Z10 symmetry case. Once we have gained a general

knowledge about the behavior ofΩah
2 as function of fa for

jgj ¼ 1, we can go further studying the parameter space for

the Z10 case, allowed by the axion phenomenology. In

particular, in Fig. 2 we show the parameter space fa − jgj
for the cases of exact scaling (p ¼ 1, left frame) and

deviation from scaling (p ¼ 0.926, right frame). The range

of values of the coupling constant, g, has been chosen to

include values of jgj ≤
ffiffiffiffiffiffi

4π
p

. The blue curves correspond to

the regions where the total axion dark matter abundance is

equal to Ω
Planck
DM h2, taking into account the uncertainties in

the parameters α and β in Eqs. (28) and (29). Notice that

for a given value of fa, jgj is lower bounded by these lines.
Larger values of jgj imply Ωah

2 < Ω
Planck
DM h2. The light blue

shaded region is ruled out by the over closure of the

Universe for the case of the parameter β ¼ 2.12 in Eq. (29)

and for the α ¼ 7.3 − 3.9 ¼ 3.4 factor in Eq. (28). From

the remaining region, it is possible to exclude another large

part applying the axion mass stability condition, ma;QCD >

ma;gravity [see the discussion near Eq. (23)]. Becausema;gravity

is directly proportional to jgj and fN−2
a , cf. Eq. (23), and

m2
a;QCD is inversely proportional to f2a, cf. Eq. (24), the

forbidden region, denoted by the light red color, is in the top

right part of the fa − jgj plane. In addition, in Fig. 2 are

shown three dark red lines which correspond to the NEDM

constraint, given by Eq. (22), for different values of δD. It is

important to realize that δD values of order one (not shown)

do not give allowed regions in the parameter space. It is

necessary to allow δD ≲ 10−5 in order to have nonexcluded

regions which are below the lines. In particular, we calculate

the maximum values of δD that give allowed regions in

the parameter space. The corresponding results, in the cases

of exact scaling (p ¼ 1) and deviation from scaling

(p ¼ 0.926), are

δD ¼
� ð0.4–4.1Þ × 10−5 Exact scaling;

ð2.9–9.5Þ × 10−6 Deviation from scaling:
ð31Þ

FIG. 1. Relic density of nonthermal axion dark matter in the

3 − 3 − 1model, assuming exact scaling, p ¼ 1, and jgj ¼ 1. The

central values of the parameters in Eqs. (28) and (29) together

with NDW ¼ 3 have been used. The vertical dashed lines limit

regions with over production of axions by decay of domain walls

(left line) and strings (right line), while the horizontal red line is

the experimental constraint Ωah
2 ¼ Ω

Planck
DM h2.
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These values are obtained by taking jgj ¼
ffiffiffiffiffiffi

4π
p

, and con-

sidering the uncertainties in the parameters of the three axion

production mechanisms. Lower values of jgj would require

higher tuning on the δD parameter, with values of the order

10−8 as shown in Fig. 2. In general, for jgj fixed, the tuning
on δD depends on the decay constant fa and the mechanism

of axion darkmatter production: if the decay of domain walls

was dominant (left side of the curves), the tuning would be

less severe than if the production by string decay (right side

of the curves) was the dominant one.

Also, in Fig. 2 is shown that for a δD small enough in

order to satisfy the NEDM condition, and for a given jgj
value between 5 × 10−2 and

ffiffiffiffiffiffi

4π
p

, there are two separated

regions for fa where axions can make up the total DM relic

density. For instance, taking jgj ¼
ffiffiffiffiffiffi

4π
p

and considering the

uncertainties in the parameters, these regions and their

corresponding axion masses for the exact scaling case, are

fa ≈

� ð2.8–3.5Þ× 109 GeV→ma ≈ ð1.7–2.1Þ× 10−3 eV

ð1.1–1.2Þ× 1010 GeV→ma ≈ ð5–5.4Þ× 10−4 eV

ð32Þ

In the first range for fa the production of dark matter is

mainly through the decay of domain walls, while in the

second range it is due to the decay of strings. Taking

smaller values for jgj, will lead to more stringent intervals

for both fa and ma. For the case of deviation from scaling,

we find fa ≈ ð3.4–3.6Þ × 109 GeV, corresponding to

ma ≈ ð1.7–1.8Þ × 10−3 eV, when the domain walls decay

is the leading production mechanism, and fa ≈ ð1.1–1.2Þ×
1010 GeV, leading to ma ≈ ð5–5.4Þ × 10−4 eV, for the

string decay as the dominant contribution.

Finally, for values of jgj of order one, we can make

predictions regarding the observability of axion in current

and/or future experiments. Specifically, the axion coupling

to two photons, gaγγ , depends on the fa decay constant, the

electromagnetic and color anomaly coefficients, E and NC,

respectively. It is known that these anomaly coefficients are

completely determined by the fermion content and the

(a) (b)

FIG. 2. Observational constraints on the parameter space fa − jgj in the 3 − 3 − 1 model, assuming exact scaling (a) and deviation

from scaling (b). These plots correspond to the Z10 discrete symmetry, and NDW ¼ 3. The shaded regions in light red and light blue

correspond to regions of the parameter space where the constraints given by ma;QCD > ma;gravity and Ωah
2 ≤ Ω

Planck
DM h2 are violated,

respectively. Moreover, the regions above the straight red lines correspond to the exclusion regions set by the NEDM condition, as given

by Eqs. (21) and (22), for three different choices of the δD parameter.

FIG. 3. Projected sensitivities of different experiments in the

search for axion dark matter. The green regions show sensitivities

of light-shining-through-wall experiments like ALPS-II [70], of

the helioscope IAXO [69], of the haloscopes ADMX and

ADMX-HF [71,72]. The yellow band corresponds to the generic

prediction for axion models in QCD. In addition, the two (one)

thick red (blue) lines stand for the predicted mass ranges and

coupling to photons in this model, for jgj ¼ 0.1 (jgj ¼ 1), where

axions make up the total DM relic density.
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Uð1ÞPQ charges of the model, cf. Table (II). Standard

calculations for anomaly coefficients [41,68] furnish

E ¼ −4 and NC ¼ 3. With this information, we can go

further plotting, in Fig. 3, gaγγ as a function of ma for the

regions where axions make up the total dark matter relic

density and for two different values of jgj, specifically jgj ¼
0.1 and jgj ¼ 1. This figure clearly shows two allowed

regions for jgj ¼ 0.1: ma ≈ ð0.4–0.6Þ × 10−3 eV with

gaγγ ≈ ð4.5–5.9Þ × 10−13 GeV−1 and ma ≈ ð0.9–1.3Þ ×
10−3 eV with gaγγ ≈ ð1.1–1.6Þ × 10−12 GeV−1, and one

region for jgj ¼ 1: ma ≈ ð1.4–1.8Þ × 10−3 eV with gaγγ ≈

ð1.8–2.2Þ × 10−12 GeV−1. The reason why there is only

one region for larger jgj values is that the gravitational mass

grows with jgj and thus, it conflicts with the condition

ma;QCD ≫ ma;gravity for lower axion masses. Moreover, it is

notable that for the range with larger masses (blue line), the

axion parameters of this 3 − 3 − 1 model are very close to

the projected region which is going to be explored by the

IAXO experiment [66,69].

VI. CONCLUSIONS

In this work, we consider a version of an alternative

electroweak model based on the SUð3ÞL ⊗ Uð1ÞX gauge

symmetry, the so called 3 − 3 − 1 models, when the color

gauge group is added. For this version, which includes

right-handed neutrinos, it is shown in Ref. [20] that the PQ

mechanism for the solution of the strong CP problem can

be implemented. In this implementation, the axion, the

pseudo Nambu-Goldstone boson that emerges from the

PQ-symmetry breaking, is made invisible by the introduc-

tion of the scalar singlet ϕ ∼ ð1; 1; 0Þ whose VEV, vϕ ≈ f̃a,

is much larger than vSM, and any other VEV in the model.

Moreover, the axion is also protected against gravitational

effects, that could destabilize its mass, by a discrete ZN

symmetry, with N ¼ 10, 11.

Once we have set this consistent scenario, we investigate

the capabilities of this axion, produced in the framework of

this particular 3 − 3 − 1 model, to be a postinflationary

cold dark matter candidate. We started focusing in the

axion-production mechanisms. As it was explained in the

previous section, from Fig. 1 we see that the vacuum

misalignment mechanism does not dominate the DM relic

abundance, and, if it was the only production mechanism in

action, an upper bound for fa could be set by imposing that

it should account for all the DM abundance, i.e.,

Ωa;mish
2 ¼ Ω

Planck
DM h2, and we would find the corresponding

value fa ≈ 1.5 × 1011 GeV, for the parameters determined

by the model, in this caseNDW ¼ 3. However, there are two

other more efficient mechanisms due to the decay of

topological defects: cosmic strings and domain walls. As

the curves for Ωa;stringh
2 and Ωa;wallh

2 grow in opposite

directions, relatively to the fa values, we can determine an

upper bound and a lower bound for fa by imposing the total

Ωah
2 matches the observed Planck results. This is the case

when we add up all the contributions for N ¼ 10, and we

find 3.6 × 109 GeV < fa < 1.7 × 1010 GeV. However, we

would like to stress that this is not the case for N ¼ 11. For

N ¼ 11 there is no value of fa for which the addition of the
partial abundances lies below the observed result. It means

that theZ11, which possesses the good quality of stabilizing

the axion, is not appropriate for the axion-production issue

since it makes the domain wall mechanism too efficient and

overpopulates the Universe.
As it can be seen from Fig. 1, for any fixed allowed value

of jgj, there are two values of fa that are in agreement with

the value of ΩPlanck
DM h2. In fact they are regions, if we take

into account the uncertainties following the discussion in
the previous section for Fig. 2. Outside these regions, the

axion abundance will be a fraction of ΩPlanck
DM h2. See the

solid dark green curve in Fig. 1 for jgj ¼ 1. If this happens
to be the case, i.e., if these predicted regions are somehow
excluded, by future experimental data for the axion mass
value, for instance, then, another kind of DM will be
needed. We have also found special values for δD,

ð0.4–4.1Þ × 10−5, by requiring the minimal compatible
intersection region between the curves that obey the

NEDM and Ω
Planck
DM h2 constraints. This value was obtained

considering the maximum value of jgj, i.e., jgj ¼
ffiffiffiffiffiffi

4π
p

,
cf. Fig. 2(a). For lower values of jgj, higher tuning on δD is
required. However, it seems unnatural to require severe
levels of tuning on δD, since for this quantity a tiny value is
the result of the difference between two terms that have
completely different origins.

Regarding the capabilities of detecting the axion dark

matter, Fig. 3 shows the sensitivities of several experiments

in the ma − gaγγ plane. In this plot, the thick blue and red

lines are the regions where the axion abundance is

responsible for all the observed DM. These lines were

obtained by using jgj of order one. Moreover, the blue

region corresponding to masses of the order of meV and

gaγγ ≈ 10−12 GeV−1, lies very close to the projected IAXO

sensitivity, so that it will be reachable in the near future.

Looking back to our results we can conclude that this

version of the 3 − 3 − 1 model, concerning the axion DM

issue and the strong CP problem, is phenomenologically

consistent. This model, besides its good qualities presented

in the introduction, also possesses new degrees of freedom

that are not yet experimentally probed. For instance, the

model has charged and neutral scalars (besides the Higgs),

extra vector bosons and extra quarks, that are expected to be

heavy, and could, in principle, be searched at colliders. See

Refs. [73,74] for recent studies concerning the 3 − 3 − 1

model phenomenology, in general, at the LHC.
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