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Abstract

Background: Diabetic foot ulcer (DFU) is a severe complication of diabetes, preceding most diabetes-related
amputations. DFUs require over US$9 billion for yearly treatment and are now a global public health issue. DFU

occurs in the setting of ischemia, infection, neuropathy, and metabolic disorders that result in poor wound healing

and poor treatment options. Recently, stem cell therapy has emerged as a new interventional strategy to treat DFU
and appears to be safe and effective in both preclinical and clinical trials. However, variability in the stem cell type

and origin, route and protocol for administration, and concomitant use of angioplasty confound easy interpretation

and generalization of the results.

Methods: The PubMed, Google Scholar, and EMBASE databases were searched and 89 preclinical and clinical

studies were selected for analysis.

Results: There was divergence between preclinical and clinical studies regarding stem cell type, origin, and delivery

techniques. There was heterogeneous preclinical and clinical study design and few randomized clinical trials.

Granulocyte-colony stimulating factor was employed in some studies but with differing protocols. Concomitant
performance of angioplasty with stem cell therapy showed increased efficiency compared to either therapy alone.

Conclusions: Stem cell therapy is an effective treatment for diabetic foot ulcers and is currently used as an

alternative to amputation for some patients without other options for revascularization. Concordance between
preclinical and clinical studies may help design future randomized clinical trials.

Keywords: Stem cell therapy, Cell therapy, Diabetic foot ulcer, Diabetic wound, Critical limb ischemia,

Wound healing, Amputation

Background

The prevalence of diabetes mellitus has increased pre-

cipitously due to worldwide changes in nutrition and

lifestyle, and is currently estimated to affect 425 million

adults in 2017 and to increase to 629 million patients by

2045 [1]. Diabetic foot ulcer (DFU), a major complication

of diabetes, is defined by The International Working

Group on the Diabetic Foot as a full-thickness wound lo-

cated below the ankle in a diabetic patient, and is associ-

ated with diabetic neuropathy and peripheral arterial

disease [2]. More than 2% of the diabetic population de-

velops a new foot ulcer each year leading to US$9.1 billion

spent on care per year in the USA alone [3, 4]. In addition

to pain, infection, amputation, and impaired mobility,

DFUs are also associated with severe economic, social,

and psychological sequelae. One amputation occurs every

30 s as a consequence of diabetic complications, and 84%

of these amputations are preceded by a DFU [5, 6].

Current treatment guidelines for DFU recommend de-

bridement, management of infection, revascularization,

and off-loading pressure to promote healing [7]. However,

ischemia, infection, neuropathy, and metabolic disorders

frequently delay wound healing, a critical challenge for

both patients and clinicians [8]. Recent advances in under-

standing the cellular and molecular complexities of wound

healing have identified coagulation, inflammation, cell mi-

gration, and proliferation as critical steps required for tis-

sue remodeling and healing [9]. Stem cell-based therapy
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has emerged as a promising therapeutic strategy to treat

DFU. Stem cells synthesize and secrete cytokines that pro-

mote cell recruitment, immunomodulation, extracellular

matrix remodeling, angiogenesis, and neuroregeneration,

all of which promote wound healing [10–12]. Stem cells

are also capable of differentiating into various cell types,

such as myofibroblasts, keratinocytes, pericytes, and endo-

thelial cells that may participate in wound healing [13].

Although initial reports of stem cell therapy have shown

efficacy, the different parameters used within each of these

studies prevents easy interpretation and generalization of

these reports, and therefore recommendations for treat-

ment of DFU with stem cell therapy are difficult to

standardize [14]. This study reviews current literature

reporting stem cell therapy for DFU, with specific attention

to the type and origin of the stem cells used for treatment,

routes of cell administration, use of granulocyte-colony

stimulating factor (G-CSF), and adjunctive use and com-

parison to percutaneous transluminal angioplasty.

Methods

The PubMed, EMBASE, and Google Scholar databases

were searched on November 1, 2017. The search was per-

formed using MeSH terms for “diabetic foot” paired with

MeSH terms for “stem cell(s)” or “progenitor cells”, which

resulted in 256 articles available for screening (Fig. 1).

Abstracts for all these articles were screened, and review

and experimental research articles describing stem cell

therapy for diabetic foot ulcers were included. Articles were

excluded if they were duplicated articles, nontherapeutic

studies, nondiabetic wound trials, studies not employing

stem cells, studies that used unspecified cell populations,

and non-English articles with incomplete English abstracts.

Screening the initial 256 articles led to selection of 58

studies, consisting of 45 primary research studies and 13

reviews, which were reviewed in depth. A secondary

screening was performed on the 1351 references ob-

tained from the 13 reviews, yielding an additional 54 pri-

mary research studies, for a total of 99 primary research

studies. Full-text review of these studies excluded an

additional 10 articles, leading to the final inclusion of 89

primary research articles.

Each of the 89 research papers were examined in detail

to determine study design (preclinical or clinical), stem

cell type, stem cell origin, route of administration, use of

G-CSF mobilization, and adjunctive use of percutaneous

transluminal angioplasty.

Results

Study design

Of the 89 selected articles, there were 54 preclinical

studies (60.7%) [15–68] and 36 clinical studies (40.4%)

Fig. 1 Diagram of study selection method and analysis. G-CSF granulocyte-colony stimulating factor; SCT stem cell therapy; PTA percutaneous

transluminal angioplasty

Lopes et al. Stem Cell Research & Therapy  (2018) 9:188 Page 2 of 16



[38, 69–103]; one article reported data for both preclin-

ical and clinical studies [38].

Clinical studies

One clinical study was retrospective [75] and 35 studies were

prospective. Six studies were case reports [38, 85, 92–95]

and 18 were case series [38, 69, 74, 77, 78, 80, 82–84,

86–90, 96, 99, 100, 102, 103]. Three were cohort studies

[70, 76, 101], one was a case–control study [75], and eight

were randomized clinical trials [71–73, 79, 81, 91, 97, 98].

The results for the eight randomized clinical trials selected

among these studies are summarized in Table 1.

Preclinical studies

The murine DFU model (31 articles) was most fre-

quently used for preclinical research, with streptozotocin

injections (30 articles) being the most common method

to induce diabetes. Some of the most frequently ob-

served parameters were a single wound model (22 arti-

cles), back wound location (30 articles), and wound

diameter 5–6 mm (18 articles).

Stem cell type

Adult stem cells

A total of 53 preclinical studies (98%) and all of the 36

clinical studies (100%) used adult stem cells for treat-

ment (Table 2). Bone marrow-derived mesenchymal stem

cells (BM-MSC) were the most frequently used cell type

in both preclinical (n = 27; 50%) and clinical (n = 19; 53%)

studies. Whereas adipose-derived stem cells (ADSC) were

used in 11 preclinical studies (20%), only three clinical

studies (8%) used this cell type. Human umbilical

cord-derived mesenchymal stem cells (hUC-MSC) were

used in 12 preclinical (22%) and four clinical (11%)

studies. Two preclinical articles (4%) used peripheral

blood-derived mesenchymal stem cells (PB-MSC), which

was the second most frequent cell type in clinical studies

(n = 11; 31%).

Although BM-MSC, PB-MSC, hUC-MSC, and ADSC

were the most frequently used stem cell types, other

stem cell types were used in some preclinical studies

(Table 3). Kim et al. [60] reported enhanced wound heal-

ing with use of intradermal injections of human amni-

otic MSC in a murine DFU model, in comparison to

human ADSC or human dermal fibroblasts. Similarly,

Zheng et al. [18] related improved ulcer healing in dia-

betic mice with topical application of micronized amni-

otic membrane containing human amniotic epithelial

cells compared to decellularized membrane. Lv et al.

[16] demonstrated that human exfoliated deciduous

tooth stem cells have similar healing potential as human

BM-MSC in a rat diabetic model. Kong et al. [41]

reported wound healing with intradermal injection of

human placental MSC in diabetic Goto-Kakizaki rats.

Badillo et al. [58] reported enhanced wound healing after

injection of collagen gels containing embryonic fetal

liver MSC in diabetic Lep db/db mice compared to

CD45+ cell treatment. Barcelos et al. [29] used a collagen

hydrogel scaffold to deliver human fetal aortic MSC in a

murine DFU model.

Embryonic stem cells

One preclinical study (1.85%) and none of the clinical

studies used embryonic stem cells (ESC; Table 2). Lee et

al. [53] used topical mouse ESC in a rat DFU model;

despite ESC xenotransplantation in immunocompetent

rats, no rejection was observed and the use of pluripo-

tent stem cells did not lead to tumor formation.

Induced pluripotent stem cells

The use of induced pluripotent stem cells (iPSC) for

treatment of DFU has not been reported in any preclin-

ical or clinical studies (Table 2). However, Gerami-Naini

et al. [104] showed successful reprogramming of

DFU-derived fibroblast cell lines into iPSC and further

differentiation into fibroblasts. Okawa et al. [105]

showed improvement of neural and vascular function in

a polyneuropathy diabetic mouse model following trans-

plantation of neural crest-like cells that were differenti-

ated from murine iPSC. These findings suggest

therapeutic potential for iPSC in the treatment of DFU.

Granulocyte-colony stimulating factor

G-CSF is a cytokine that stimulates bone marrow to

mobilize endothelial progenitor cells (EPC), increasing

the number of available EPC for healing the DFU;

G-CSF is found in wound tissue after acute injury [106].

In steady-state conditions, EPC typically circulate in low

concentrations, and thus G-CSF is an important adjunct

to promote increased yields of PB-MSC obtained for

therapeutic purposes. G-CSF can also directly promote

wound healing and reduce the number of surgical inter-

ventions in patients with a DFU [107, 108]. G-CSF was

used in 10 clinical studies (Table 4); these studies used

different protocols, with a dose range of 150–650 μg and

a duration of G-CSF therapy varying from 3 to 6 days,

prior to harvesting of BM-MSC and PB-MSC. Xu and

Liang [72] found that injections of G-CSF 5 μg/kg/day

for 5 days or 10 μg/kg/day for 4 days were the optimal

G-SCF administration protocols to mobilize patients

with a DFU receiving PB-MSC.

Stem cell origin

Among the preclinical studies, only four (7%) examined

autologous stem cell delivery; allogeneic stem cells were

used in the majority of studies (n = 29; 54%).

Xenotransplantation was performed in 22 preclinical

studies (41%) and all of them involved application of
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Table 1 Randomized clinical trials reporting stem cell therapy for diabetic foot ulcers

Author Year N Study design Type of cell Administration
route

Results Follow-up
(months)

Debin et al. [91] 2008 50 Two groups:
- BM-MSC
- Local wound treatment

Autologous BM-MSC Intramuscular and
subcutaneous

BM-MSC showed improved:
- Rest pain (P < 0.01)
- Claudication distance
(P < 0.01)

- Ulcer healing (P = 0.012)
- Ankle-brachial index
(P < 0.01)

- Angiogenesis (P = 0.01)
- Amputation rate (0.040)

3

Chen et al. [81] 2009 40 Two groups:
- BM-MSC
- Conventional individualized
treatment

Autologous BM-MSC Intramuscular BM-MSC showed better:
- Blood flow (P = 0.01)

3

Dash et al. [97] 2009 6** Two groups:
- BM-MSC
- Local wound treatment

Autologous BM-MSC Intramuscular BM-MSC showed better:
- Ulcer healing (P < 0.001)

3

Lu et al. [79] 2011 41 Two groups:
- BM-MSC
- BM-MNC

Autologous BM-MSC
or BM-MNC

Intramuscular BM-MSC showed better:
- Ulcer healing (P = 0.022)
- Limb perfusion (P = 0.040)
- Ankle-brachial index
(P = 0.017)

- TcPO2 (P = 0.001)
- Magnetic resonance
angiography analysis
(P = 0.018)

No difference in pain relief
and amputation rate

6

Jain et al. [98] 2011 48 Two groups:
- BM-MSC
- Peripheral blood

Autologous BM-MSC Injection* and spray BM-MSC showed better ulcer
healing (P < 0.05)

3

Kirana et al. [73] 2012 24 Two groups:
- BM-MSC
- Tissue repair cells (TRC)

Autologous BM-MSC Injection* and
intraarterial

- BM-MSC 83% ulcer healing
vs TRC 80% ulcer healing

- BM-MSC and TRC had
better TcPO2 (P = 0.092)

- BMC-MSC improved
ankle-brachial index
(P < 0.10)

- Angiogenesis detected in
seven of the BM-MSC/
TRC groups

12

Xu et al. [72] 2016 127 Eight groups:
- Group A (G-CSF BID
5 μg/kg/day); four
subgroups: 4, 5, 6 or 7 days

- Group B (G-CSF BID
10 μg/kg/day); four
subgroups: 4, 5, 6 or
7 days

Autologous PB-MSC Injection* and
topical*

G-CSF BID 5 μg/kg/day
during 5 days is the optimal
dose to mobilize EPC in
DFU patients
All groups reported
improvement of life quality,
pain, cold sensation, clinical
symptoms and ulcer healing

1–15

Qin et al. [71] 2016 53 Two groups:
- Angioplasty
- Angioplasty and stem cell
therapy

Allogeneic hUC-MSC Intraarterial and
intramuscular

Combination group showed
better:
- Ankle-brachial index
(P < 0.05)

- Skin temperature (P < 0.05)
- Claudication distance
(P < 0.05)

- TcPO2 (P < 0.05)

1–3

*These studies did not specify the subtype of administration route. **In this study, the n was 24 but only six patients h ad DFU; 18 patients were diagnosed with

Buerger's disease. BID twice a day, BM-MSC bone marrow-derived mesenchymal stem cells, BM-MNC bone-marrow mononuclear cells, DFU diabetic foot ulcer, EPC

endothelial progenitor cells, G-CSF granulocyte-colony stimulating factor, hUC-MSC human umbilical cord mesenchymal stem cells, PB-MSC peripheral blood-

derived mesenchymal stem cells, TcPO2 transcutaneous oxygen pressure
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human stem cells in animal DFU models. In contrast,

32 (89%) of the clinical studies used autologous stem cells,

and only four (11%) used allogeneic cells. No clinical

studies used xenotransplantation to treat a DFU. These

studies are summarized in Table 5.

Administration route

Local administration

Nonvascular injections into tissue are currently the most

commonly used route of administration to directly treat

a DFU; injection was used in 28 preclinical studies (52%)

and 31 clinical studies (86%) (Table 6). Intradermal

(n = 11) and subcutaneous (n = 8) injections were more

frequently used in the preclinical studies while the

intramuscular (n = 24) route was more commonly used in

clinical studies. Kwon et al. [57] reported increased wound

strength in a rat DFU model treated with a single local

injection of allogeneic BM-MSC; multiple intravenous in-

jections did not significantly increase wound strength

(P = 0.06), suggesting effectiveness of local injection.

Topical administration was also frequently performed;

topical delivery was used in 23 preclinical studies (43%)

and five clinical studies (14%). Collagen hydrogels and

scaffolds were the most commonly used vehicles to

deliver cells [15, 17, 22, 29, 34, 58, 64]. Various other

delivery methods were also used, including a silicon

membrane with atelocollagen matrix to deliver murine

ADSC [52], and artificial dermis containing human

Table 2 Stem cell types advantages, disadvantages and use in clinical and preclinical studies

Stem cell type Advantages Disadvantages Clinical studies Preclinical studies

Adult stem cells BM-MSC • Donor-specific therapy
• Lower malignancy risk
• Cell-lineage committed
(targeting differentiation)

• No ethical conflict

• Cell lineage committed (limited
differentiation potential)

• Biopsy high surgical risk
• Nondisposable tissue
• Low stem cell concentration
• Cell concentration and
performance influenced by
comorbidities

19 (52.8%) 27 (50.0%)

PB-MSC • Donor-specific therapy
• Lower malignancy risk
• Cell-lineage committed
(targeting differentiation)

• No ethical conflict
• Relatively disposable tissue
• Vein puncture has low surgical
risk

• Simple cell harvesting protocol

• Cell lineage committed (limited
differentiation potential)

• Cell concentration and
performance influenced by
comorbidities

• G-CSF administration needed

11 (30.5%) 2 (3.7%)

hUC-MSC • Future donor-specific therapy
• Lower malignancy risk
• Cell-lineage committed
(targeting differentiation)

• Disposable tissue
• UC tissue harvesting has low
surgical risk

• Donor UCB banking storage

• Cell lineage committed
(limited differentiation
potential)

• Immunoincompatibility
• Ethical conflict
• Low stem cell concentration
• Need for UCB banking

4 (11.1%) 12 (22.2%)

ADSC • Donor-specific therapy
• Lower malignancy risk
• Cell-lineage committed
(targeting differentiation)

• No ethical conflict
• Disposable tissue
• Liposuction has low surgical risk

• Cell lineage committed (limited
differentiation potential)

• Cell concentration and
performance influenced by
comorbidities

3 (8.3%) 11 (20.4%)

Embryonic stem cells • High differentiation potential
(pluripotent)

• Increased malignancy risk
• Ethical conflicts

0 (0.0%) 1 (1.9%)

Induced pluripotent stem cells • High differentiation potential
(pluripotent)

• Somatic-cell memory (targeting
differentiation)

• Donor-specific therapy
• No ethical conflict
• Disposable tissue
• Low cell harvesting
procedure risk

• Increased malignancy risk
• Complex induction protocol
• Somatic-cell memory (biased
differentiation)

0 (0.0%) 0 (0.0%)

ADSC adipose tissue-derived mesenchymal stem cells, BM-MSC bone marrow-derived mesenchymal stem cells, G-CSF granulocyte-colony stimulating factor,

hUC-MSC human umbilical cord mesenchymal stem cells, PB-MSC peripheral blood-derived mesenchymal stem cells, UC umbilical cord, UCB umbilical cord blood
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BM-MSC to treat two DFU patients [103]. Artificial der-

mis was also used for topical application of rat BM-MSC

in a rat model [55], and to cover rat autologous ADSC

sheets placed on a wound [20]. Micronized amniotic

membranes have also been used [18]. Nanofibers con-

taining human BM-MSC [32], human UC-MSC [33], or

human ADSC [63] have also been used, as well as fibrin,

both in gel to deliver human UC-MSC [54] and as a

spray to deliver BM-MSC [38].

In preclinical studies, O’Loughlin et al. [34] and

Falanga et al. [38] reported correlation between wound

closure and the number of cells topically administered

with collagen scaffolds and fibrin spray, respectively. In

both studies, there was a significant difference in wound

closure when at least 1 × 106 cells were delivered.

Systemic administration

Endovascular stem cell delivery was performed in five pre-

clinical (9%) and six clinical (17%) studies. Intraarterial fem-

oral administration was performed in all six clinical studies

while four preclinical studies used the intravenous tail vein

route and only one study used the intraarterial femoral

route. Zonta et al. [109] reported intraarterial stem cell ther-

apy to be the most effective route for immunomodulatory

purposes in rat kidney transplantation when compared to

intravenous administration, reducing the incidence of tubu-

litis, arteritis, and glomerulitis (p < 0.01). Ho et al. [110]

showed that multiple intravenous MSC doses positively im-

pact glucose homeostasis in murine diabetic model, leading

to a gradual decrease in blood sugar after two doses and

total remission of diabetes within seven doses.

Table 3 Studies reporting use of uncommon stem cell types

Author Year Species Study design Type of cell Administration
route

Results

Badillo et al. [58] 2007 Mouse Three groups:
- MSC
- CD45+

- Control

Allogeneic, murine,
embryonic, fetal liver MSC

Intradermal MSC group showed smaller
epithelial gap than CD45+

group (P < 0.004)
MSC group showed
increased granulation tissue
area compared to control
group (P < 0.05)

Barcelos et al. [29] 2009 Mouse Three groups:
- CD133+ cells
- CD133– cells
- Control

Human fetal aorta-derived
CD133+ progenitor cells

Collagen hydrogel CD133+ group showed
accelerated wound healing
compared to control group
(P < 0.05)

Lee et al. [53] 2011 Rat Four groups:
- Nondiabetic control rats
- Diabetic rats treated with
saline

- Diabetic rats treated with
saline and insulin

- Diabetic rats treated with
ESC and insulin

Mouse embryonic stem cells Cell suspension
drops

ESC and insulin-treated group
wound healing accelerated
compared to saline and
insulin-treated group
(P < 0.05)

Kim et al. [60] 2012 Mouse Four groups:
- Amniotic MSC
- ADSC
- Human dermal fibroblasts
- Control

Human ADSC and human
amniotic mesenchymal
stem cells

Intradermal Amniotic MSC group showed
accelerated wound healing
compared with ADSC, dermal
fibroblasts or control groups
(P < 0.01)

Kong et al. [41] 2013 Rat Two groups:
- Human placenta MSC
- Control

Human placenta MSC Intradermal Placenta MSC group showed
better wound closure
compared to control group
(P < 0.01)

Zheng et al. [18] 2017 Mouse Three groups:
- Living micronized amniotic
membrane

- Decellularized micronized
amniotic membrane

- Control

Human amniotic epithelial
cells (HAECs)

Micronized amniotic
membrane

Living membrane group had
greater wound healing rate
than decellularized
membrane or control groups
(P < 0.001)

Lv et al. [16] 2017 Rat Three groups:
- Exfoliated deciduous teeth
stem cells

- BM-MSC
- Control

Human BM-MSC and human
exfoliated deciduous teeth
(SHED)

Local injection SHED group showed
accelerated wound healing
compared to both BM-MSC
and control groups (P < 0.05)

ADSC adipose tissue-derived mesenchymal stem cells, BM-MSC bone marrow-derived mesenchymal stem cells, ESC embryonic stem cells, MSC mesenchymal

stem cells
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However, as a note of caution, a clinical study of 33 dia-

betic patients treated with autologous ADSC delivered

endovascularly to treat critical limb ischemia reported for-

mation of peripheral microthrombosis in two patients

[111]; since diabetic ADSC released higher levels of plas-

minogen activator and lowered D-dimer formation, it was

recommended to follow the D-dimer test prior to delivery

of autologous ADSC to diabetic patients.

Stem cell therapy and angioplasty

Angioplasty is currently an acceptable first-line treat-

ment for selected patients with critical limb ischemia. In

patients with critical limb ischemia contributing to the

DFU, four clinical studies assessed the efficiency of per-

cutaneous transluminal angioplasty that was performed

in adjunctive fashion to the stem cell delivery, and one

study compared both treatment options individually

(Table 7). Tian [70] reported improved efficacy and re-

duced restenosis with combination treatment compared

to either angioplasty or cell therapy alone. Similarly,

intramuscular injection of human UC-MSC combined

with angioplasty led to improved ankle-brachial index,

claudication distance and transcutaneous oxygen pres-

sure (TcPO2) compared to angioplasty alone [71, 101].

In a comparison of angioplasty and cell therapy, cell

therapy was associated with superior wound healing des-

pite similar TcPO2 and amputation-free survival [75].

Huang [90] reported enhanced wound healing after

angioplasty in addition to intraarterial and intramuscular

delivery of autologous PB-MSC.

Discussion

We report a comprehensive review of 89 preclinical and

clinical investigations regarding the use of stem cells to

treat DFU. We show that in both preclinical and clinical

studies BM-MSC were the main cell type used, in over

half the studies (Table 2), and cells were most commonly

delivered by local injection (Table 6). As expected,

autologous cells were used in the majority of clinical

studies (89%) whereas preclinical studies frequently

studied allogeneic and xenogeneic cells (Table 5). Cell

number was rarely addressed; G-CSF was used in some

studies prior to cell harvest of PB-MSC or BM-MSC, but

without standardization of dose or protocol (Table 4).

Stem cell therapy performed concomitantly with angio-

plasty showed more clinical effect compared to either of

the therapies performed individually (Table 7).

Among all the studies of stem cell therapy for DFU,

only eight of these studies are randomized clinical trials

in human patients with DFU (Table 1). However, the

heterogeneity among these trials prevents establishing

strong conclusions, diminishing the power of any poten-

tial recommendations for clinical use of stem cell ther-

apy to treat DFU. Thus, it is logical that future clinical

trials should have comparable protocols, doses, cell

types, and administration routes to allow good compari-

son of these expected studies. Unfortunately, the hetero-

geneity of the clinical trials is predictable from the

heterogeneity of the preclinical studies, with differences

in most of the parameters including wound models,

types of stem cells, wound location, size, and control

groups (Table 2).

The “best” stem cell type to treat DFU remains contro-

versial. In both clinical and preclinical studies, predom-

inant use of autologous adult stem cells (Table 2) is

justified by simpler isolation protocols, safety, and

absence of ethical conflict. While the clinical and pre-

clinical studies commonly reported using bone marrow

as the chief source for stem cells, the use of PB-MSC

was much more frequent in clinical studies than preclin-

ical studies. However, stem cell therapy with ADSC was

far more prevalent in preclinical research, suggesting en-

thusiasm for using adipose tissue as a potential stem cell

source. The fewer number of clinical studies using

ADSC could be an artifact of the less convenient isola-

tion process, with need to perform liposuction, as well

as reports of an equivalent effectiveness of the stromal

vascular fraction to treat DFU [19, 112] and also it was

the most recent introduced adult stem cell type. Even

though there are currently no reports regarding the use

of iPSC to treat DFU, this novel cell source combines

advantages of both adult and embryonic stem cells;

Table 5 Stem cell origin advantages, disadvantages and use in clinical and preclinical studies

Stem cell origin Advantages Disadvantages Clinical studies Preclinical studies

Autologous • Immunoincompatibility
• No ethical conflict
• No infection transmission risk

• Lower stem cell concentration and
limited healing potential

• Cell harvesting procedural risk

32 (89%) 4 (7%)

Allogeneic • Healthy stem cell source
• No cell harvesting risk for DFU patient
• Donor banking creation

• Relative immunoincompatibility
• Need for disease screening
• Ethical conflict

4 (11%) 29 (54%)

Xenotransplantation • No ethical conflict
• Healthy stem cell source
• No cell harvesting risk for DFU patient
• Donor baking creation

• High immunoincompatibility
• Need for disease screening

0 (0%) 22 (41%)

DFU diabetic foot ulcer
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future improvements in somatic cell induction tech-

niques, as well as control of cell differentiation to pre-

vent malignancy, may allow use of iPSC in the future.

Clinical studies mainly reported use of autologous

cells, while allogeneic and xenogeneic cells were gener-

ally used for preclinical research. Autologous stem cell

therapy poses minimal risk of infection, is immunocom-

patible, and is typically free of ethical or legal issues

[113]. However, patients with DFU may have reduced

autologous cell function due to the metabolic changes of

diabetes as well as advanced age, thereby decreasing

stem cell therapy effectiveness and increasing the risk of

complications [111, 114–117]. The use of GCSF was ob-

served to be advantageous in wound healing. Even

though clinical studies differ regarding EPC mobilization

protocol for PB-MSC stem cell therapy, 5 μg/kg injec-

tions BID for 5 days were reported as the optimal dose

for DFU patients [72].

Alternatively, allogeneic therapy delivers stem cells

from younger and healthier donors to the recipient but

has the drawback of immunological incompatibility as

well as potential legal issues; additionally, strict donor

screening is needed to avoid disease transmission [113].

However, if these challenges are met, allogeneic stem cell

therapy could be a good source of stem cells, allowing

the formation of donation banks as well as potentially

the use of cadaveric cells [118]. Immunological incom-

patibility is the major barrier to using xenogeneic cells.

Interestingly, among preclinical studies reporting use of

human cells in immunocompetent animal models,

wound healing was observed without any immunological

adverse effects. These results suggest the potential to use

xenogeneic cells in the future.

Current evidence suggests that both local and systemic

routes of stem cell therapy delivery are effective to heal

DFU. Local injections of the cells were overall the most

common method of cell delivery, with the distinction of

intramuscular injections mostly being used for clinical

studies, while preclinical studies predominantly used

intradermal and subcutaneous injections (Table 6). Top-

ical methods were frequently used in preclinical studies

(43%), but less frequently in clinical studies (14%). Top-

ical delivery within extracellular matrix scaffolds is an-

other variable of interest. The extracellular matrix is a

key modulator of cell maintenance, differentiation, pro-

liferation, and self-renewal [119]; hydrogels and collagen

scaffolds mimic the native in-vivo environment of stem

cells, potentially increasing cell retention and engraft-

ment [120–123] and even cell function [17].

Some commercially available bioengineered products

and matrices are available. Graftjacket (Wright Medical

Technology, Arlington, TN, USA) is an allogeneic skin

graft obtained from donation banks that has demon-

strated efficiency in wound treatment [124]. Bovine

collagen scaffolds are available (Integra; Life Sciences

Corp, Plainsboro, NJ, USA) and have been approved for

burns and treatment of DFU [124]. Epifix (MiMedx,

Marietta, GA, USA) is a dehydrated anionic membrane

containing growth factors that is also a promising vehicle

for stem cell therapy [124]. However, large-scale compara-

tive effectiveness studies have not been performed.

Conclusion

Current evidence points toward stem cell therapy as an ef-

fective treatment for human patients with DFU. Clinical

and preclinical research studies do not offer a consensus

regarding the optimal type of stem cell that should be

used, and there is also no established optimal route or

protocol to deliver stem cells. Differences within preclin-

ical study designs suggest the need for a consensus regard-

ing an optimal animal model that offers translation to

human studies. Although autologous stem cells were the

most commonly used stem cell type, it is possible that fu-

ture studies will explore use of iPSC as well as allogeneic

or even xenogenic cells. Administration of G-CSF pro-

motes wound healing and its use is recommended as an

adjunct to PB-MSC therapy. Hydrogels and bioscaffolds

are promising topical delivery vehicles, but the impact of

matrix design and configuration on stem cell function is

still unknown. Angioplasty is a promising adjuvant to

stem cell therapy in patients needing revascularization,

and whether stem cell therapy will be used as an adjuvant

to angioplasty remains to be determined.
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