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1 Introduction

Our picture of the parameters that govern neutrinos physics at low energy are almost

complete after the measurement of nonzero reactor angle in 2012 [1–3]. In case neutrinos

are Dirac, only the absolute neutrino mass, the mass ordering and one Dirac CP phase is

unknown. The measurement of this CP phase is one of the goals of current experimental

efforts to advance our knowledge about neutrinos. In case neutrinos are Majorana, two

more Majorana CP phases should be added to the list of unknowns.

One of the simplest symmetries that can predict all the CP phases and yet allow CP

violation is the symmetry known as µτ -reflection symmetry or CPµτ symmetry where the

neutrino sector is invariant by exchange of the muon neutrino with the tau antineutrino [4,

5]; see also review in [6]. This symmetry predicts maximal Dirac CP phase (δ = ±90◦)
and trivial Majorana phases with discrete choices of the CP parities. Additionally, the

atmospheric angle θ23 is predicted to be maximal (45◦), well within 2σ in the latest global

fits [7–9] (1σ for normal ordering). The recent IceCube results on atmospheric neutrinos

also corroborate maximal θ23 [10]. Current data also hints at a value of the Dirac CP

phase in the broad vicinity of −90◦. As a consequence of the symmetry, the fixed values

for the CP phases lead to characteristic bands for the possible effective mass of neutrinoless
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double beta decay but still allows successful leptogenesis [11, 12] to occur if flavor effects

are taken into account [13]; see also ref. [14] for a review on leptogenesis in the presence of

flavor symmetries. If the conditions for maximal atmospheric angle and Dirac CP phase

are relaxed, correlations between θ23 and δ can be tested in the future DUNE and Hyper-K

experiments [15, 16]. Even the exact CP
µτ case can be tested in DUNE [17] but CP

µτ is

too simple to predict the other unknown parameter, i.e., the absolute neutrino mass scale.

In that respect, it was shown in ref. [18] that the imposition of an abelian discrete

symmetry in conjunction with CP
µτ symmetry could enforce a one-zero texture in addition

to the CP
µτ form. Such a setting reduced the number of free parameters in the neutrino

mass matrix from five to four to account for the four observables ∆m2
21,∆m2

32, θ12, θ13
— the rest are fixed from symmetry — and a highly predictive scenario emerged where

the absolute neutrino mass was fixed and further correlations of parameters appeared.

Texture-zeros in the lepton sector were first studied in ref. [19] and can be systematically

obtained with the imposition of abelian symmetries [20]. In the original proposal of the

µτ interchange symmetry [21], a similar approach of enforcing one texture-zero was also

adopted to increase predictivity; see also refs. [22–24]. Generically two texture-zeros are

still allowed by data [25–28] but our combined approach only allows for one because CP
µτ

relates some entries. In this approach, the abelian symmetry cannot be arbitrary as well

because it should satisfy certain consistency conditions [29–32] to be combined with CP
µτ .

It was shown in ref. [13] that the smallest Zn that can be combined nontrivially1 with

CP
µτ is Z8. Note that this setting of CPµτ and Z8 is much simpler than embedding CP

µτ

and an abelian symmetry in larger nonabelian discrete symmetries [33–40].2 The use of

nonabelian discrete symmetries to describe the lepton flavor structure has been extensively

analyzed [41–43].

Here, we propose a modified but equally predictive setting where the texture zero

appears instead at the high scale, in the mass matrix of the right-handed neutrino in the

context of the simple type I seesaw. This texture zero will be directly transmitted to the

inverse of the light neutrino mass matrix due to the seesaw form when the neutrino Dirac

mass matrix is diagonal [44].3 Therefore, the light neutrino mass matrix will still depend on

four parameters and the predictive power of the low energy theory is the same as in ref. [18].

However, since this setting comes directly from a high scale model, the structure of the

heavy neutrinos will be also highly constrained. One of the key byproducts of the seesaw

mechanism — the possibility to generate the baryon asymmetry of the Universe through

leptogenesis [11, 12] — can be studied and the few free parameters can be constrained

from the requirement of successful leptogenesis. This differs from other ways of increasing

predictivity in the context of leptogenesis such as imposing texture zeros in the different

mass matrices in the minimal case of two right-handed neutrinos [46–49] or considering

larger flavor symmetries [50–54].

The outline of the paper is as follows: in section 2 we present the model and show how

the texture-zero at high scale is generated. Section 3 analyzes the predictions for the pa-

1Excluding the most common g → g and g → g−1 automorphisms.
2Sometimes, one of them can be accidental. In any case, when not accidental, the flavor group should

be enlarged to include CP.
3A similar idea was explored in ref. [45] in the context of µτ interchange symmetry.
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rameter space for light neutrinos arising from the model. The heavy neutrino spectrum and

mixing pattern that only depend on two parameters are analyzed in section 4. Constraints

from successful leptogenesis on the parameter space are discussed in section 5. Finally, the

conclusions are presented in section 6 and the appendices contain some auxiliary material.

2 CPµτ with high scale texture-zero

In the context of the type I seesaw mechanism where the light neutrino mass matrix Mν is

related to the inverse of the heavy neutrino mass matrix MR by Mν = −MT

DM
−1
R MD, it is

not difficult to envisage that texture-zeros in MR can lead to texture-zeros in the inverse of

the light neutrino mass matrix when the neutrino Dirac mass matrix MD is diagonal [44].

Applying this idea, we will show here that it is possible to have a CP
µτ symmetric neutrino

mass matrix together with a texture-zero in the inverse matrix M−1
ν . The latter will have

the form

M−1
ν =







a d d∗

d c b

d∗ b c∗






, with real a, b and Im(d2c∗) 6= 0 , (2.1)

with phenomenologically viable texture-zeros in the (ee) or (µτ) entries, i.e., a = 0 or

b = 0, respectively. The high predictivity of this setting will be analogous to ref. [18] and

the absolute neutrino mass scale can be fixed to discrete values. Additionally, since this

setting comes from a high scale model, the structure of the heavy neutrinos will be also

highly constrained and leptogenesis can be studied. Only two free parameters will control

the heavy neutrino sector.

The defining property of a complex symmetric matrix A which is CPµτ symmetric is

XTAX = A∗ , with X =







1 0 0

0 0 1

0 1 0






. (2.2)

Clearly A = M−1
ν in (2.1) satisfies this property and once satisfied, it is also valid for its

inverse A−1 = Mν , i.e., the neutrino mass matrix will also have the form (2.1). A CP
µτ

symmetric Majorana neutrino mass matrix can be enforced by CP
µτ at the level of fields

acting as [5]

νeL → νcpeL , νµL → νcpτL , ντL → νcpµL , (2.3)

where cp denotes the usual CP conjugation.4 Additionally, we will use the same Z8 of the

previous paper [18] acting on charged leptons as

e ∼ −1 , µ ∼ ω8 , τ ∼ ω3
8 , ω8 = ei2π/8. (2.4)

It was shown in ref. [13] that Z8 was the minimal abelian symmetry where a nontrivial

combination with CP
µτ is possible.

4Note that a relative global phase is not relevant and e.g. a mass matrix antisymmetric by µτ -

reflection [55] leads effectively to the same consequences.
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We can think that these two symmetries — Z8 and CP
µτ — initially act on the left-

handed lepton doublets (Le, Lµ, Lτ ) before they are spontaneously broken. Then the two

symmetries act on the same space and CP
µτ induces the following automorphism on Z8 [13]:

T → XT ∗X−1 = T 5 , (2.5)

where T encodes the Z8 transformation in (2.4) and X denotes νµ–ντ interchange in (2.2).

We also note that the rephasing transformations that preserve Z8 in (2.4) and CP
µτ in (2.3)

are of the form

Le → ±Le, Lµ → eiαLµ, Lτ → e−iαLτ . (2.6)

It is clear that these transformations also preserve the form of the mass matrix in (2.1)

and can be used to make c or d real. Flavor independent rephasing by i also preserves the

form of the mass matrix (flips the sign of a, b) but changes CPµτ by a global sign. Hence,

only the relative sign of a and b is significant.

In the charged lepton sector, the µτ mass difference arises from a large source of CPµτ

breaking at high energy [13]; see appendix A for more details. After that stage, the Z8 will

remain as a residual symmetry so that we are simply left with

− L
l = heL̄eφleR + hµL̄µφlµR + hτ L̄τφlτR . (2.7)

We assume that the physics responsible for such a CP
µτ breaking is well above the scale of

the heavy neutrinos which come from Z8 breaking.

Light neutrino masses will come from the type I seesaw mechanism where we add three

singlet neutrinos NαR, α = e, µ, τ . The NαR and left-handed lepton doublets Lα transform

under Z8 and CP
µτ in the same way as in eqs. (2.4) and (2.3). So the neutrino Dirac mass

matrix will be diagonal.

To avoid bare terms, we also introduce a Z
B−L
4 symmetry under which the lepton

doublets Lα and the singlet neutrinos NαR carry charge −i. Heavy neutrino masses will be

generated by singlet scalars ηk with Z
B−L
4 charge −1. Each of ηk carries a charge ωk

8 of Z8

and then η0, η4 can be real. The fields η1 and η3 are necessarily present and are connected

by CP
µτ as

η1 → η∗3 . (2.8)

The rest of the fields, η2, η0, η4, transform trivially under CPµτ [18].

Then the neutrino Yukawa couplings will be

−LN = y
Ne

N̄eRφ̃Le + y
Nµ

N̄µRφ̃Lµ + y
Nτ

N̄τRφ̃Lτ

+
1

2
ceeη0N̄eRN

c
eR +

1

2
cµµη2N̄µRN

c
µR +

1

2
cττη

∗
2N̄τRN

c
τR

+ ceµη
∗
3N̄eRN

c
µR + ceτη

∗
1N̄eRN

c
τR + cµτη4N̄µRN

c
τR + h.c.,

(2.9)

where, due to CP
µτ , y

Ne
, cee and cµτ are real while y

Nτ
= y∗

Nµ
, cττ = c∗µµ and ceτ = c∗eµ.

The Dirac mass matrix will be diagonal as

MD = v diag(y
Ne

, y
Nµ

, y
Nτ

) = mD diag(1, κ, κ∗) , (2.10)
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where mD = v y
Ne

is real by symmetry and κ = |κ| can be made real and positive by

rephasing Lα. The heavy neutrino mass matrix will have the CP
µτ symmetric form

MR =







A D D∗

⋆ C B

⋆ ⋆ C∗






, (2.11)

where e.g. A = cee〈η0〉. We assume that CPµτ is preserved by ηk, i.e.,

〈η1〉 = 〈η3〉∗ . (2.12)

Light neutrino masses will be generated by the seesaw mechanism as Mν=−MT

DM
−1
R MD,

whose inverse is closely related to MR as

M−1
ν = −M−1

D MRM
T−1
D

= −m−2
D







A κ−1D (κ−1D)∗

⋆ κ−2C |κ|−2B

⋆ ⋆ (κ−2C)∗






=







a d d∗

⋆ c b

⋆ ⋆ c∗






.

(2.13)

We get the texture-zero a = 0 or b = 0 if either η0 or η4 is absent and that is inherited

from texture-zeros in MR in the same positions (A = 0 or B = 0). When solutions

exist to accommodate the oscillation data, the matrix M−1
ν is completely fixed, except for

experimental error. We show the possible solutions in section 3. And then, MR will depend

only on two free parameters, mD, κ, as

MR = −MDM
−1
ν MT

D = −m2
D







a κd (κd)∗

⋆ κ2c |κ|2b
⋆ ⋆ (κ2c)∗






. (2.14)

We will use mD or y
Ne

interchangeably as one of the free parameters.

Concerning mixing angles, it is guaranteed that any matrix in the form (2.1), which is

symmetric by CP
µτ , can be always diagonalized by a matrix of the form [4, 5]

U (0) =







u1 u2 u3
w1 w2 w3

w∗
1 w∗

2 w∗
3






, (2.15)

where ui are all real and positive. Moreover, the Majorana type diagonalization (also known

as Takagi factorization) will already lead to a real diagonal matrix and only discrete choices

of signs — the CP parities — will appear instead of Majorana phases. In this way, the

mass matrices for the light and heavy neutrinos can be diagonalized as

U (0)
ν

T

MνU
(0)
ν = diag(m′

i) , (2.16a)

U
(0)
R

†
MRU

(0)
R

∗
= diag(M ′

i) , (2.16b)

where U
(0)
ν and U

(0)
R are in the form (2.15), and the primed masses denote m′

i = ±mi

and M ′
i = ±Mi, with mi and Mi being the actual light and heavy masses. The complex
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conjugation in U
(0)
R appears because it is defined as the transformation matrix for NR

whereas MR is defined in the basis N c
RN

c
R. So eq. (2.16) implies that the full diagonalizing

matrices can be written as

Uν = U (0)
ν Kν , UR = U

(0)
R KR , (2.17)

where Kν ,KR are diagonal matrices of 1 or i depending on the signs on (2.16a) or (2.16b),

respectively. Since a sign flip of both Mν and MR is not physical, we can distinguish four

discrete cases of CP parities according to the sign of the diagonal entries of K2
ν [13] as

K2
ν : (+ + +), (−++), (+−+), (+ +−) . (2.18)

As we seek texture-zeros, some cancellation between m′
i will be necessary and the case

(+ + +) will not appear in our solutions. The generic possibilities for K2
R as well as

the detailed mass spectrum and mixing pattern will be discussed in section 4. Opposite

parities in K2
R will also give rise to cancellations in the CP asymmetries of heavy neutrinos

suppressing the resonant enhancement.

We limit ourselves here to discussing briefly the limit κ = 1, which is straightforward.

Considering (2.14) and since

U (0)
ν

†
M−1

ν U (0)
ν

∗
= diag(m′−1

i ) , (2.19)

we can identify

U
(0)
R = U (0)

ν . (2.20)

With this equation fixing the ordering for (M ′
1,M

′
2,M

′
3) in (2.16b), we have the direct

relation

M ′
i = −m2

D

m′
i

. (2.21)

This means that the spectrum for the heavy neutrinos is completely fixed in terms of the

light masses and the CP parities for the heavy neutrinos are opposite to those of the light

neutrinos. Therefore, K2
R = −K2

ν and

UR = iUν . (2.22)

As κ deviates from unity, U
(0)
R will deviate from U

(0)
ν depending only on the parameter

κ. The same will happen for the mass ratios between two heavy masses. Only the absolute

scale for Mi will be controlled by mD (or y
Ne

).

3 Light neutrinos

The inverse of the light neutrino mass matrix in the flavor basis is CPµτ symmetric and was

given in (2.1) with a or b possibly vanishing. Different texture-zeros are not phenomeno-

logically possible because it would lead to vanishing θ13 (or also θ12) [18]. Since Mν itself

is CP
µτ symmetric, the usual predictions of maximal θ23 = 45◦ and δ = ±90◦ follow as

θ13 6= 0 [4, 5].
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Case (M−1
ν )αβ=0 ordering CP parities m0 mββ

∑

mν

I (µτ) NO (−++) 2.48–4.36 1.25–1.93 60.7–66.3

II (µτ) NO (+−+) 4.28–27.31 1.84–14.42 63.3–114.6

III (ee) IO (−++) 1.86–4.27 13.48–24.77 99.7–107.1

IV (ee) IO (+ +−) 0.943–1.27 47.49–50.14 98.7–103.7

V (µτ) IO (+ +−) 154–183 154–182 476–563

Table 1. Possibilities for one-zero textures with predictions for the lightest neutrino mass (m0),

neutrinoless double beta decay effective mass (mββ) and sum of neutrino masses; all masses are

in meV.

Without texture-zeros, the five parameters in (2.1) — a, b, |c|, |d|, arg(d2c∗) — should

describe the remaining five observables not fixed by symmetry: θ12, θ13,m1,m2,m3. Among

these five observables, only four combinations are currently experimentally determined and

we cannot predict the only unknown quantity: the lightest neutrino mass (equivalently, the

absolute neutrino mass scale). With the additional one-zero texture, the number of free

parameters is reduced by one and all the observables can be fixed, including the lightest

neutrino mass. We show the possible solutions in table 1 when we allow for the experimental

uncertainties for observables not fixed by symmetry, in accordance to the global-fit in

ref. [56].5 The procedure to find these solutions are explained below. A relatively wide

range for m1 appears for case II because it is a merger of two discrete solutions that would

appear if there were no experimental error.

We can see that case V has too large masses and it is excluded by the Planck power

spectrum limit (95% C.L.) [57],

∑

i

mi < 230meV. (3.1)

We are left with two cases for the normal ordering (NO) and two cases for the inverted

ordering (IO). All these cases are also compatible with the latest KamLAND-Zen upper

limit for the neutrinoless double beta decay parameter at 90%C.L. [58],

mββ < (61–165)meV . (3.2)

The variation in the latter, comes from the uncertainty in the various evaluations of the

nuclear matrix elements. In the near future, experiments such as KamLAND-Zen 800 will

probe the IO region that includes our case IV. To see the discovery potential, we show in

figure 1 the solutions for cases I, II, III and IV with possible values of mββ as a function of

the lightest mass m0 overlapped with the strips of the generic case with CP
µτ but without

any texture-zero [13]. We also show the current bounds from KamLAND-Zen 400 in (3.2)

and the future projected sensitivity of the nEXO experiment at 90% C.L. [59]. If this

experiment reaches such a sensitivity, it will certainly probe our case III completely and

our case II partially.

5More up to date fits are available [7–9] but the variation is small within 3σ ranges.
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Figure 1. The colored strips indicate mββ as a function of the lightest neutrino mass m0 for generic

CP
µτ neutrino mass matrix for different cases of CP parities and mass orderings [13]. Small darker

(lighter for blue) regions inside the colored strips mark the solutions for our cases IV, III, II and I

(from top to bottom) shown in table 1.

The solutions in table 1 are obtained with the expressions for a, b in terms of physical

parameters, which we show below. To derive them, we first choose the parametrization for

the PMNS matrix, without Majorana phases, as

U (0)
ν =









1 0 0

0 1√
2

−i√
2

0 1√
2

+i√
2















c13 0 s13
0 1 0

−s13 0 c13













c12 s12 0

−s12 c12 0

0 0 1






, (3.3)

where, e.g., c13 = cos θ13, and we are choosing the Dirac CP phase to be eiδ = −i following

the current hints from global fits [56]; the opposite Dirac CP phase can be used by taking

the complex conjugate of (3.3). Note that the standard parametrization corresponds to

diag(1, 1,−1)U
(0)
ν diag(1, 1,+i). The parametrization in (3.3) obeys the CP

µτ symmetric

form (2.15) but with the additional rephasing freedom from the left fixed by the choice

Re(U
(0)
ν )µ3 = 0 and Re(U

(0)
ν )µ2 > 0 [18]. This phase convention implies a certain phase

relation between c and d in (2.1). With that phase convention in mind, (2.16a) is still

guaranteed [5].

If we invert the relation (2.19) by using (3.3), we can write the parameters a, b, c, d in

terms of the neutrino inverse masses and mixing angles:

a = c213(m
′−1
1 c212 +m′−1

2 s212) +m′−1
3 s213 ,

b =
1

2

[

m′−1
1 s212 +m′−1

2 c212 + s213(m
′−1
1 c212 +m′−1

2 s212) +m′−1
3 c213

]

,

d =
c12s12c13√

2
(m′−1

2 −m′−1
1 ) + i

s13c13√
2

[

−m′−1
3 +m′−1

1 c212 +m′−1
2 s212

]

,

c =
1

2

[

m′−1
1 (s212 − c212s

2
13) +m′−1

2 (c212 − s212s
2
13)−m′−1

3 c213
]

+ i c12s12s13(m
′−1
2 −m′−1

1 ) .

(3.4)

– 8 –
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Figure 2. Correlation between sin2 θ12 and mββ for CP
µτ symmetric neutrino mass matrix with

one-zero textures in M−1
ν . The oscillation observables are varied within 3-σ of ref. [56] and Aαβ

denote (M−1
ν )αβ .

Choosing eiδ = +i instead, would correspond to taking d → d∗ and c → c∗. Note that the

phases of c, d in (3.4) follow a specific phase relation characterized by the compatibility

between

tan θ13 =
Im c√
2Re d

> 0 and tan 2θ13 =
2
√
2 Im d

a− b+Re c
, (3.5)

necessary for the consistency of (2.19). The rephasing freedom in (2.6) changes the phases

of c and d accordingly. Other relations between the parameters in (2.1) and the physical

parameters can be extracted from ref. [18] by replacing m′
i → m′−1

i and U
(0)
ν → U

(0)
ν

∗
. For

example, a rephasing invariant measure of CP violation is given by

Im(c∗d2) =
1

2
s13c

2
13s12c12

(

1

m′
1

− 1

m′
2

)(

1

m′
2

− 1

m′
3

)(

1

m′
3

− 1

m′
1

)

, (3.6)

which is nonzero in all physical cases. We would obtain the same result with opposite sign

if we had eiδ = i.

Finally, with the expressions for a and b in hand, we can seek solutions for a = 0 or

b = 0 depending on the CP parities in (2.18).

As a further prediction of our scenario, various correlations between measured and

unmeasured observables are expected due to the reduced number of parameters. We show

in figure 2, for cases I, II and III in table 1, the correlation between sin2 θ12 and the yet to

be measured effective parameter

mββ = |(Mν)ee| =
∣

∣

∣

∣

∑

m′
iU

(0)
ei

2
∣

∣

∣

∣

, (3.7)

which controls the neutrinoless double beta decay (0νββ) rates induced by light neutrino

exchange. For case IV, such a correlation is weak and we show in figure 3 the correlation

between mββ and |∆m2
3−| =

∣

∣m2
3 − (m2

1 +m2
2)/2

∣

∣. It is clear that a better measurement of

sin2 θ12 (|∆m2
3−|) will lead to a sharper prediction of mββ for cases I, II and III (case IV).

In special, for case II, it is predicted that sin2 θ12 . 0.325 and for case IV, mββ is within

reach of the future experiments such as KamLAND-Zen.

– 9 –
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Figure 3. Correlation between |∆m2
3−| =

∣

∣m2
3 − (m2

1 + m2
2)/2

∣

∣ and mββ for CP
µτ symmetric

neutrino mass matrix with one-zero texture in Aee = (M−1
ν )ee (case IV). The oscillation observables

are varied within 3-σ of ref. [56].

4 Heavy neutrinos

Here we show the spectrum and the mixing pattern of heavy neutrinos. We denote the

states with definite masses by Ni, i = 1, 2, 3. All parameters of the mass matrix for light

neutrinos were determined in section 3 and the discrete possibilities were listed in table 1.

Then all the information on the heavy neutrino mass matrix follows from (2.14). There

are only two free parameters: mD (or y
Ne

) and κ. The first will set the overall scale for the

heavy neutrino masses Mi, i = 1, 2, 3, while κ will determine the mass ratios and mixing

pattern. Note that we will not follow the usual convention where (N1,N2,N3) are ordered

from lighter to heavier states and then it is useful to denote the lightest heavy neutrino as

N0 and its mass as M0.

We can continue the analysis of the case of κ = 1, which we started in section 2.

In this case, eq. (2.14) implies that the heavy neutrino mass matrix is proportional to

the inverse of the light neutrino mass matrix and the diagonalizing matrix is completely

fixed by the PMNS matrix; cf. (2.20). The values of the heavy masses are completely

determined by (2.21), except for an overall scale. From the solar mass splitting we always

have M2 < M1 and the ratio is fixed by

M2
1

M2
2

=
m2

2

m2
1

= 1 +
∆m2

21

m2
1

≈ 1 +

(

8.6meV

m1

)2

. (4.1)

For the NO solutions of table 1, at most a mild hierarchy of M1/M2 ∼ 3.6 is expected. In

contrast, for IO, m1 is not the lightest mass and it is more useful to rewrite

M2
1

M2
2

=
m2

2

m2
1

≈ 1 +
(8.6meV)2

m2
3 + (50meV)2

. (4.2)

For both cases III and IV, M1 is only about 1.5% larger than M2 and the pair N1–N2

is nearly degenerate. The ordering for M3, on the other hand, depends on whether the

– 10 –



J
H
E
P
0
9
(
2
0
1
8
)
0
4
2

ordering follows the NO or IO:

NO : M3 < M2 < M1 and
M2

1

M2
3

=
m2

3

m2
1

= 1 +
∆m2

31

m2
1

≈ 1 +

(

50meV

m1

)2

,

IO : M2 < M1 < M3 and
M2

3

M2
1

=
m2

1

m2
3

= 1 +
∆m2

13

m2
3

≈ 1 +

(

50meV

m3

)2

.

(4.3)

From these relations, a hierarchy of at most M1/M3 ∼ 20 or M3/M1 ∼ 50 is possible for

NO or IO, respectively. The least hierarchical case, M1/M3 ∼ 2, is possible for case II. We

see that the lightest mass is M0 = M3 for NO and M0 = M2 for IO.

The mixing matrix UR is also fixed by (2.20) for κ = 1. The first row of UR should

have values

|URe1| ∼ 0.83, |URe2| ∼ 0.54, |URe3| ∼ 0.15. (4.4)

The CP parities of the heavy neutrinos are also fixed by the relation (2.21): they are

opposite to the CP parities of light neutrinos, i.e.,

−K2
R = K2

ν . (4.5)

When κ deviates away from unity, the mass spectrum will cease to obey eqs. (4.1)

or (4.3) and UR will no longer obey (2.20). Nevertheless, we can still establish that −K2
R and

K2
ν should have the same signature, i.e., they are the same except for possible permutations.

The proof is shown in appendix B. The result is that a clever choice of ordering for Mi

allows us to maintain (4.5). A possibility is to order the heavy neutrinos in such a way

that (2.21) is valid when we continually take the limit6 to κ = 1. In the same limit,

U
(0)
R should approach U

(0)
ν . With this ordering convention, we can extend the possible CP

parities in eq. (2.18) to the heavy neutrinos:

−K2
R = K2

ν : {(+ + +)} or one of
{

(−++), (+−+), (+ +−)
}

. (4.6)

Obviously, only the second set is allowed for texture-zero solutions in table 1.

We show how the heavy neutrino spectrum depends on κ in figure 4 for NO (cases I

and II) and in figure 5 for IO (cases III and IV) by plotting the possible values for the

heavy masses Mi relative to the lightest mass M0|κ=1 at κ = 1. We clearly see that the

mass spectrum obeys (4.1) [or (4.2)] and (4.3) for κ = 1. To make the plots, we diagonalize

MR in (2.14) explicitly, keeping the convention in (4.6), and vary the observables not fixed

by symmetry within their 3-σ values reported in ref. [56] by random sampling. Then the

minimal and maximal values are extracted to draw the borders.7 We also indicate the CP

parities for each Ni and we see that the convention in (4.6) is enough to separate M1 from

M2 for both cases II and III. For case IV, it seems that M1 and M2 cross near κ = 1 but one

can check by varying only κ that they never cross. The minimal value of |Mi−M0| for this
case is checked to be 1.2% of M0 = M2. An alternative way to gain analytic information

of the heavy masses from the light neutrino masses are shown in appendix C.

6In practice (2.16b) isolates the eigenvalue M ′

i that have the unique CP parity [−(K2
R)ii < 0] because

the massless case never occurs. The remaining M ′

i of the same sign never cross and they can be tracked

unambiguously; see discussion around (4.8).
7For case II in figure 4, there are regions inside the wide bands with very low point density, exactly in

the region where the two distinct solutions intersect.
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Figure 4. Mass spectrum for NO solutions (cases I and II) relative to the lightest mass M0 for

κ = 1, for N1 (orange), N2 (green) and N3 (blue), as a function of κ. We use the 3-σ ranges in

ref. [56] for the observables not fixed by symmetry. M ′

i indicate the heavy neutrino masses with

their CP parity.

Figure 5. Mass spectrum for IO solutions (cases III and IV) relative to the lightest mass M0 for

κ = 1, for N1 (orange), N2 (green) and N3 (blue), as a function of κ. We use the 3-σ ranges in

ref. [56] for the observables not fixed by symmetry. M ′

i indicate the heavy neutrino masses with

their CP parity.

We can prove generically that when their CP parities are included no crossing of

eigenvalues M ′
i occurs when κ is continuously changed. The proof utilizes the rephasing

invariant in (3.6) adapted to MR when parametrized as (2.11):

Im(C∗D2) =
1

2
S13C

2
13S12C12(M

′
1 −M ′

2)(M
′
2 −M ′

3)(M
′
3 −M ′

1) . (4.7)

The diagonalizing matrix U
(0)
R

∗
is parametrized as (3.3) after appropriate rephasing of the

second and third rows, and the respective angles are replaced as θij → Θij with upper case
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Figure 6. Modulus of UR1i for our NO solutions (cases I and II) for i = 1, 2, 3 (orange, green, blue)

as a function of κ. We use the 3-σ ranges in ref. [56] for the observables not fixed by symmetry.

Cij , Sij denoting e.g. Cij = cosΘij .
8 Then the relation (2.14) allows us to conclude that

Im(C∗D2) = −m6
Dκ

4 Im(c∗d2) 6= 0 , (4.8)

i.e., it never vanishes due to (3.6). Hence M ′
i never cross.

We can now turn to the mixing matrix UR. To show how the mixing matrix UR

deviates from iUν for κ 6= 1, we need a parametrization for UR. We use the decomposition

in (2.17) and the parametrization in (2.15). Two among the three entries ui = |UR1i| in
the first row are enough to recover the entire matrix U

(0)
R [4]. The procedure is reviewed

in appendix D. Their behavior can be seen in figure 6 for the NO cases and in figure 7 for

the IO cases. The limit for κ = 1 is clearly in accordance with (4.4) except for case IV

where the rapid variation for κ near unity makes it hard to ascertain the value of |URe1|
and |URe2| at the exact point. We have checked that they agree with (4.4).

5 Leptogenesis

The SM cannot explain the present baryon asymmetry of the Universe expressed in the

present abundance [57]:

Y∆B ≡ nB − nB̄

s

∣

∣

∣

∣

0

= (8.65± 0.09)× 10−11 , (5.1)

where nB is the baryon number density and s is the entropy density. When the SM is

extended through some form of seesaw mechanism to account for naturally small neu-

trino masses, leptogenesis arises as a natural mechanism to explain the baryon asymme-

try [11, 12]. In the simplest type I seesaw mechanism, a lepton number asymmetry is

generated when the lightest heavy Majorana neutrino typically decays more to antileptons

8We use the convention that U
(0)
R diagonalizes M∗

R and not MR. The equality (2.20) implies that

Θij = θij for κ = 1.
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Figure 7. Modulus of UR1i for our IO solutions (cases III and IV) for i = 1, 2, 3 (orange, green,

blue) as a function of κ. We use the 3-σ ranges in ref. [56] for the observables not fixed by symmetry.

than leptons due to CP violating Yukawa couplings. This lepton number asymmetry is

then converted, within the SM, to a baryon asymmetry by spharelon processes that violate

B+ L but conserve B− L [60].

The CP asymmetries in the decays of Ni depend on the Yukawa couplings λiα that con-

trol the strength of the Yukwawa interactions N̄iφ̃
†Lα, in the basis where MR is diagonal.

In our model, we simply have

λ = y
Ne

U †
R diag(1, κ, κ) , (5.2)

where NR = URNR in our convention and y
Ne

can be used insted of mD. Due to the highly

constrained nature of our setting, only two free parameters govern the heavy neutrino

sector. We follow the ordering convention from the κ = 1 limit and recall that the lightest

heavy neutrino is denoted by N0 and its mass by M0.

The two free parameters, y
Ne

and κ, cannot vary completely without limit as pertur-

bativity of Yukawa couplings requires roughly that

y
Ne

, κ y
Ne

.
√
4π . (5.3)

This requirement typically furnishes lower and upper values for κ. For example, if the

lightest heavy neutrino mass is M0 = 1012GeV, we will be restricted to 10−2 . κ . 102.

For lower M0, the allowed range increases proportionally to M
−1/2
0 . See eq. (5.19) in the

following.

In the context of CPµτ symmetric models, it is known for some time that leptogenesis

induced by singlet heavy neutrinos cannot proceed in the one-flavor regime where T ∼
M0 & 1012GeV [5]; see also ref. [13]. The reason is that CP

µτ restricts the flavored CP

asymmetries ǫ
(0)
α in the decay N0 → Lα + φ to obey [13]

ǫ(0)e = 0 , ǫ(0)µ = −ǫ(0)τ . (5.4)
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Hence, the total CP asymmetry vanishes,

ǫ(0) = ǫ(0)e + ǫ(0)µ + ǫ(0)τ = 0 , (5.5)

and a net lepton number asymmetry cannot be generated. Only in the flavored regime [61–

64] where the τ flavor can be distinguished by fast Yukawa interactions, i.e., when 109GeV.

T ∼ M0 . 1012GeV, leptogenesis can be successful in generating enough lepton number

asymmetry [13]. See ref. [65] for a recent analysis of the temperature regimes where the

various SM interactions enter in equilibrium. Below 109GeV, where all lepton flavors can be

distinguished, ref. [13] concluded within analytical approximations that leptogenesis cannot

proceed because the washout in the µ and τ flavors are equal, so that the asymmetries (5.4)

in these flavors are summed to zero. So our case is a particular case of purely flavored

leptogenesis [66–68] with the distinction that the vanishing of ǫ(0) is protected by CP
µτ

and not by B− L. It is also a particular case, enforced by symmetry, of a case where the

baryon asymmetry is generated only by the low energy Dirac CP phase and no CP violation

is present in the heavy neutrino sector [69–72].

The equality of the washout effects for µ and τ flavors follows because, in the ap-

proximation where off-shell ∆L = 2 scatterings and off-diagonal correlations through the

A-matrix are neglected, these washout effects are controlled by the three washout param-

eters

m̃0α = |λ0α|2
v2

M0
, α = e, µ, τ, (5.6)

where v = 174GeV in the SM and the subscript 0 refers to N0. With CP
µτ symmetry,

m̃0µ = m̃0τ , (5.7)

and the strength of washout is the same in the latter flavors [13]. In our model, this

fact can be directly checked for (5.2). Current neutrino parameters implies that typically

m̃0 =
∑

α m̃0α ≫ m∗ ≈ 1.07meV and N0 reaches the equilibrium density rather quickly

and a strong washout of lepton flavors takes place depending on m̃0α ≫ m∗. The mass

m∗ ≡ 16π2v2u
3Mpl

√

g∗π
5 quantifies the expansion rate of the Universe.

So we focus on the intermediate regime where 109 . T ∼ M0 . 1012GeV and neglect

the possible asymmetries generated by the decay of heavier Ni. We comment on possible

effects in the end. In this regime, only the τ Yukawa interactions are in equilibrium and

then only the τ flavor and its orthogonal combination are resolved by interactions. In this

case, the final baryon asymmetry can be approximated by [73–75]

Y∆B ≃ −28

79
× Y eq

N0
×
[

ǫ
(0)
2 η

(

417

589
m̃02

)

+ ǫ(0)τ η

(

390

589
m̃0τ

)]

, (5.8)

where ǫ
(0)
2 = ǫ

(0)
e + ǫ

(0)
µ , m̃02 = m̃0e + m̃0µ, and the efficiency factor

η(m̃) ≃
(

(

m̃

2.1m∗

)−1

+

(

2m̃

m∗

)1.16
)−1

, (5.9)
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is valid for the strong washout regime but allows weak or mild washout in some flavor [64].

The factors 417/589 and 390/589 correspond to the diagonal entries of the A matrix and

quantifies the effects of flavor in the washout processes when changing from the asymmetry

in lepton doublets to asymmetries in ∆α = B/3 − Lα [64]; see also [73–75]. We ignore the

small effects of off-diagonal elements of the A matrix and consider the third family Yukawas

in equilibrium as well as hc. We can see that the properties (5.4) of CPµτ leads to a partial

cancellation of the baryon asymmetry in (5.8) but it is nonzero because the τ flavor and

its orthogonal combination are washed out differently. The quantity Y eq
N0

is the equilibrium

thermal density of N0 per total entropy density and is given by Y eq
N0

= 135ζ(3)
4π4g∗

≈ 3.9×10−3 ,

where the last numerical value is for the SM degrees of freedom below the N0 mass (g∗ =

106.75). The factor 28/79 corresponds to the reduction of the asymmetry in ∆α to B − L

in the SM due to spharelons when they go out of equilibrium before EWPT.

In the CP
µτ symmetric case, we can rewrite (5.8) in the form

Y∆B = −28

79
× Y eq

N0
× ǫ(0)τ

(

η0τ − η02) , (5.10)

where we denote

η0τ = η

(

390

589
m̃0τ

)

, η02 = η

(

417

589
m̃02

)

. (5.11)

One can note that the sign of the final baryon abundance is determined by the sign of

−ǫ
(0)
τ because the combination ητ − η2 > 0, as the washout function (5.9) is a decreasing

function in the strong washout regime where m̃0 > m∗.
The necessary CP asymmetry in the τ flavor, in the generic type I seesaw case, can be

written as

ǫ(0)τ = − 1

8π(λλ†)00

∑

j 6=0

{

Im
[

(λλ†)j0λjτλ
∗
0τ

]

g(xj) + Im
[

(λλ†)0jλjτλ
∗
0τ

] 1

1− xj

}

,

(5.12)

where xj ≡ M2
j /M

2
0 and

g(x) ≡ √
x

[

1

1− x
+ 1− (1 + x) ln

(

1 + x

x

)]

≡
√
x

1− x
+ f(x) . (5.13)

The part proportional to f(x), the vertex function, corresponds to the one-loop vertex

contribution while the rest corresponds to the self-energy contribution for NR. We are

assuming that Nj masses are hierarchical, i.e., |Mj −M0| ≫ Γ0 for Nj different from the

lightest one and the N0 decay width is

Γ0 =
M0

8π
(λλ†)00 . (5.14)

It is easy to see that for κ = 1, the flavored CP asymmetry (5.12) is vanishing as

(λλ†)ij ∝ δij due to our simple form (5.2). Therefore, at least a small departure from

κ = 1 is necessary to obtain a nonzero abundance. In fact, the expression in (5.12) can be

simplified to

ǫ(0)τ =
y2
Ne

κ2(1− κ2)

κ2 + (1− κ2)|U (0)
Re0|2

× (function of UR and xj) . (5.15)

The full expression is shown in appendix E.
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We can now analyze how the different quantities depend on our free parameters κ and

y
Ne

. It is clear from (2.14) and (5.2) that MR and λiα scale as y2
Ne

and y
Ne

, respectively.

Then mass ratios Mi/M0 and m̃0α in (5.6) are independent of y
Ne

and only depend on κ.

On the other hand, the CP asymmetry in (5.12) scales as y2
Ne

and that is also the scaling

behaviour of the baryon abundance in (5.10). Therefore, the only dependence of Y∆B on

y
Ne

can be factorized as y2
Ne

while the remaining expression only depends on κ.

It is much more convenient, however, to consider the lightest heavy mass M0 as the

free parameter instead of y
Ne

, for each κ. We can trade y
Ne

for M0 as follows. First, we

factor the dependence of the lightest eigenvalue of MR on κ with fixed y
Ne

by defining

f0(κ) ≡
mini{Mi}
M0|κ=1

. (5.16)

The masses Mi are calculated from the eigenvalues of (2.14) with fixed y
Ne

, say y
Ne

= 1.

Generically, f0(κ) is a monotonically increasing (hence one-to-one) function with f0(1) = 1

but not smooth when there is a crossing of Mi (differently for M ′
i which never cross). This

function can be seen in the blue band of figure 4 for NO where M0 = M3 for all κ. The band

is due to the variation within 3-σ of the low energy observables not fixed by symmetry.9

For IO, M0 = M2 or M0 = M3 depending on κ for case III and always M0 = M2 for case

IV. The function f0 is shown in the low-lying green-orange (green) band of figure 5 for case

III (IV). The transition from M0 = M2 to M0 = M3 for case III leads to discontinuities

in λ0α due to reordering of URα0; see figure 6. These in turn, lead to jumps in m̃0α for

this case.

As a second step, we define a reference value for M0:

M̄0 ≡ M0

∣

∣

κ=1,y
Ne

=1
=

v2

mmax
= 6.05× 1014GeV ×

(

50meV

mmax

)

, (5.17)

where mmax is the heaviest light neutrino mass: m3 for NO and m2 for IO. The dependence

of M0 on κ and y
Ne

can be made explicit as

M0 = y2
Ne

f0(κ)M̄0 . (5.18)

The inverse relation then gives y
Ne

as a function of M0 for each κ:

y2
Ne

=
M0

M̄0

1

f0(κ)

= 1.65× 10−3 ×
(

M0

1012GeV

)

( mmax

50meV

) 1

f0(κ)
.

(5.19)

Hence, y
Ne

is completely determined for each M0 (scaling as
√
M0) and κ. For example,

the perturbativity requirement in (5.3) can be easily extracted. The relation (5.19) and

the function (5.16) accomplish the purpose of expressing all the relevant quantities in the

9For numerical computations we use a fixed value for M0|κ=1 averaged over the oscillation observables

not fixed by symmetry. Hence the variation on the latter observables only appears in the numerator of f0.

This procedure explains the small finite thickness of the low lying curve even at κ = 1.
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baryon asymmetry (5.10) solely in terms of κ and M0. Moreover, the dependence on M0

is only multiplicative as

Y∆B = M0 × (function of κ). (5.20)

Using (5.16) we can write, for example, the explicit dependence on κ of

m̃0α =
|λ̃0α|2
f0(κ)

mmax , (5.21)

where λ̃ is the Yukawa matrix with y
Ne

factored out, i.e.,

λ̃ = y−1
Ne

λ = U †
R diag(1, κ, κ) . (5.22)

We have checked that typically m̃02, m̃τ > 20meV and strong washout in all flavors take

place. Only for case IV, m̃0τ ∼ 0.5–0.6meV for κ > 1 and the asymmetry in the τ flavor

is washed out only mildly.

The N0 decay width can be also rewritten as

Γ0

M0
=

1

8π

M0

M̄0

(λ̃λ̃†)00
f0(κ)

. (5.23)

This relation allows us to check that we will be typically away from the resonant regime

because

6× 10−5 ≤ Γ0

M0
≤ 2.4× 10−4 , (5.24)

for M0 = 1012GeV and our four solutions in table 1. Lower values of M0 will give propor-

tionally lower ratios.

We can now show in figure 8 the baryon asymmetry Y∆B we expect for our four

solutions, considering M0 = 1012GeV and δ = −90◦ for the low-energy Dirac CP phase.

Results for lower values of M0 can be reinterpreted by rescaling linearly as in (5.20) down

to M0 ≈ 109GeV which is the lowest (approximate) value for which the flavor regime

with τ resolved is still valid. We also show −Y∆B (dashed style and darker colors) which

corresponds to the baryon asymmetry for the disfavored case δ = 90◦, because flipping the

sign of δ flips the signs of both ǫ
(0)
τ and Y∆B. For the current preferred value of δ = −90◦,

only cases I, III and IV can give the right asymmetry in certain parameter regions, some

of them very narrow. The value δ = +90◦ is disfavored in more than 3σ in current global

fits [56] and case II is then the least favored. The possible parameter regions in the κ-

M0 plane that can lead to successful leptogenesis are shown in table 2 where only the

rectangular borders enclosing the real regions are listed. These regions can be read off

from figure 8. For example, for case I, only the region around κ ≈ 8 and M0 ≈ 1012GeV

survives because for a lower value of M0, the red region will be scaled down proportionally

and a sufficient asymmetry cannot be generated. In all cases for δ = −90◦, successful

leptogenesis requires that M0 be restricted to the narrow band of the intermediate region:

1.4× 1011GeV . M0 . 1012GeV.

Few comments are in order. Firstly, and most surprisingly, figure 8 shows no divergent

resonant peak for case III where the two lightest heavy masses approach the degenerate
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Figure 8. Expected baryon abundance over the experimental value for the NO solutions (left)

and IO solutions (right) for M0 = 1012 GeV and δ = −90◦ for the Dirac CP phase. The regions

with lighter colors and solid borders refer to positive Y∆B while the regions with darker colors and

dashed borders refer to positive −Y∆B . The oscillation observables are varied within 3-σ of ref. [56].

δ = −90◦ δ = +90◦

Case κ M0/10
12GeV κ M0/10

12GeV

I 5.2–12 0.92–1 × ×
II × × 1.5–100 0.09–1

III 0.01–0.66 0.14–1 × ×
1.55–2.57 0.93–1 × ×

IV 1.004–1.06 0.21–1 × ×

Table 2. Necessary parameter range of the model for successful leptogenesis.

limit near κ = 1, albeit our use of the CP asymmmetry (5.12) which do not include any

regulator [76, 77]. See also review in ref. [78]. The reason is that in our model the CP

asymmetry ǫ
(0)
τ do not diverge for heavy neutrino masses of opposite CP parity even in

the degenerate limit because the divergence in the vertex correction is cancelled by the

self-energy contribution. See appendix E for the explicit expression. This feature explains

the lack of divergenes in figure 8 and also applies to the CP asymmetry of the heavier

Ni. For case IV, there is indeed a peak near κ = 1 but there is no divergence because

M1 − M2 never really vanish. The minimal value of |Mi − M0|/M0 = 1.2% implies that

we do not reach the resonant regime and no regulator is needed since the width is much

smaller; cf. (5.24).

Secondly, we note that our results for successful leptogenesis listed in table 2 should

not be interpreted as precise values but rather as rough estimates. The approximate

formula (5.9) we used for the final efficiency factor has an estimated uncertainty of the order

of 30% [64]. Some neglected effects such as thermal corrections and spectator processes

may also lead to small corrections; see e.g. [73–75]. We also assumed that at a temperature

of 1012GeV the τ Yukawa interaction is already fast enough that the τ flavor can be
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distinguished from the rest but, in reality, there is a transition region where some correlation

among flavors may survive until 1011GeV [65]. In this transition region, correlations that

are off-diagonal in flavor may be important.

Another important aspect in our case is the possible effect of the heavier Ni in the

generation and washout of additional lepton asymmetry for temperatures T > M0. As can

be seen in figures 4 and 5, there are regions for the solutions for case I and case III in

which the hierarchical approximation is justified. But in other regions, the masses Mi are

not hierarchical and the effects of heavier Ni may not be negligible; see refs. [73–75, 79, 80]

and references therein. In fact, for all cases, there are large ranges for κ where the ratio

between the second lightest and the lightest mass is less than 10. The mass difference

may even vanish (almost vanish) for case III (IV) as discussed above. However, as the

window for successful N0 leptogenesis is already narrowly restricted between 1011GeV and

1012GeV, the decay of the heavier Ni will not generate a lepton asymmetry if the latter is

generated above 1012GeV where there is no flavor effect and the total asymmetry vanishes

due to (5.4), still valid in this case. Some lepton asymmetry may be generated below

1012GeV, but we have checked that the CP asymmetry generated by the decay of the

second lightest NSL into τ flavor is at most of the same order of ǫ
(0)
τ and the total washout

parameter is large, m̃SL ≫ m∗, although the parameter for τ flavor could be smaller than

unity. So, these effects are at most of the same order and a detailed account is beyond the

scope of this paper.

With the previous caveats in mind, it is worth discussing the case where the real

effenciency factor is actually 10% smaller than our approximation in (5.9). In this case,

the region for case I and the second region for case III disappear completely, leaving only two

regions of IO as viable solutions for δ = −90◦. Moreover, for case IV, only a narrow region

near κ = 1 is allowed and in this region the heavy neutrino parameters are approximately

determined. For example, the heavy masses Mi are approximately proportional to m−1
i ;

cf. (2.21). In contrast, no new regions appear if the efficiency factor were 10% larger.

6 Conclusions

We have shown a highly predictive model of leptons where the light neutrino sector is

completely determined up to discrete solutions and the heavy neutrino sector responsible

for the seesaw is controlled by only two free parameters.

The model implements the µτ -reflection symmetry in the neutrino sector and its pre-

dictions of maximal atmospheric angle, maximal Dirac CP phase, and trivial Majorana

phases follow. The model allows both the maximal values ±90◦ for the Dirac CP phase

but the negative value is currently preferred from global fits. The predictivity is increased

by additionally enforcing an abelian Z8 symmetry, combined nontrivially with the µτ -

reflection symmetry, that leads to one texture zero in the (ee) or (µτ) entry of the heavy

neutrino mass matrix and hence transmitted to the inverse of the light neutrino mass ma-

trix. No free parameters are left in the low energy theory after the neutrino observables are

accommodated and only four solutions for the lightest neutrino mass are possible depend-

ing on three possible CP parity combinations. The possible values are shown in table 1.
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There are two solutions for normal ordering and two solutions for inverted ordering. In all

cases, except one, the lightest neutrino mass lies in the few meV range. Only in one NO

solution, the lightest mass can vary up to 30meV. The effective parameter that controls

neutrinoless double decay through light neutrino exchange is completely fixed as well. One

of the solutions for IO is within reach of the KamLAND-Zen experiment in the 800 phase

which will probe the IO region [81]. Due to the reduced number of parameters, corre-

lations between the neutrinoless double beta decay parameter mββ and other oscillation

observables arise.

In parallel, the two free parameters of the heavy neutrino sector completely control

the mass spectrum and the mixing relative to the charged leptons. One parameter sets the

overall mass scale and the other controls the mass hierarchy and mixing angles. The heavy

neutrino sector is then further constrained from the requirement of successful leptogenesis.

Only small regions in the space of the two free parameters are allowed. These regions

can be seen in table 2. For the preferred value of δ = −90◦, only three out of the four

solutions, one NO and two IO, allow the production of enough baryon asymmetry. In all

cases, the lightest heavy neutrino mass needs to lie roughly in the small window of 1011

to 1012GeV where flavor effects are crucial. Since the window is narrow, the maximal

amount of generated baryon asymmetry is sensitive to the efficiency factor that quantifies

the washout effects and even a 10% reduction would eliminate the NO solution and only

two small regions for IO solutions would remain. Moreover, in our model, a resonant

enhancement of the CP asymmetry is not possible if the degenerate heavy neutrinos have

opposite CP parities and all our CP asymmetries are finite even without the inclusion of a

regulator.

In summary, a highly predictive model of leptons is presented where all parameters

of the theory, except two, are completely fixed. These two parameters in turn controls

the heavy neutrino sector and are further constrained to small regions from successful

leptogenesis.
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A µτ mass difference

The large mass difference between µ and τ should be generated by the breaking of CPµτ

at a high scale. As explained in [13], that can be achieved by the vev of a CP odd scalar

σ−. For simplicity we can assume that the CP breaking scale 〈σ−〉 is of the same order

of magnitude as the Z8 breaking scale which will roughly set the mass scale for the heavy

right-handed neutrinos. In our case, we need the latter to be around 1012GeV for flavored

leptogenesis to be effective. One concrete possibility was described in ref. [13] and involves

the introduction of both CP even and CP odd scalars σ± which are odd, together with the
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right-handed charged leptons, under a new Z2 as

Z2 : σ±, liR are odd; (A.1)

the rest of fields are even. As both σ± are invariant under Z8 we can write an effective

Lagrangian below a scale ΛCP ≫ 〈σ−〉 as

− L
l
eff =

σe
ΛCP

L̄eHle +
σµ
ΛCP

L̄µHlµ +
στ
ΛCP

L̄τHlτ + h.c. (A.2)

The quantities σα, α = e, µ, τ are certain linear combinations of σ± [13] and generate the

hierarchical Yukawa couplings in (2.7) after σ± acquire vevs. An explicit UV completion

can be constructed with the introduction of three vector-like charged leptons Ei [13].

We can see that the Z2 above protects the neutrino sector from CP breaking effects.

The fields σ± cannot couple directly to NαRNβR due to such a Z2 and also to Z
B−L
4 . The

CP
µτ preserving vevs in eq. (2.12) are also not disrupted in the scalar potential because

there is no direct coupling between σ− and some CP odd combination of η1,3 because such

a combination is only possible at the quartic level and no renormalizable term can be

written; see the potential for ηk in ref. [18].

B CP parities for heavy neutrinos

For generic κ, we can still establish that −K2
R and K2

ν are the same, except for possible

permutations. We can show this by changing basis

Lα → (Uµτ )αiLi , N c
αR → (Uµτ )

∗
αiN

c
iR , (B.1)

where

Uµτ ≡











1 0 0

0 1√
2
− i√

2

0 1√
2

i√
2











. (B.2)

Then the mass matrices are transformed to

Mν → M̄ν = UT

µτMνUµτ

MR → M̄R = U †
µτMRU

∗
µτ ,

(B.3)

where both barred matrices are real symmetric [13]. Hence they can be diagonalized by

real orthogonal matrices and the real eigenvalues will have signs determined by K2
ν and

K2
R, respectively. Since Uµτ commutes with the Dirac mass matrix MD ∼ diag(1, κ, κ), the

relation between M̄ν and M̄R will be still analogous to (2.14),

M̄R = −m2
D diag(1, κ, κ)M̄−1

ν diag(1, κ, κ) . (B.4)

Then Sylvester’s law tells us that M̄−1
ν and −M̄R should have the same signature, i.e.,

−K2
R and K2

ν should have the same number of positive and negative signs. This result

proves the possible CP parities in (4.6).
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C Heavy neutrino masses

The spectrum of heavy neutrinos can be determined from the relation (2.14) between light

and heavy neutrino mass matrices and the diagonalization relations (2.16). Everything

follows from the relation (B.4) in the basis (B.3). The equality between the determinants

leads to the simple relation

M ′
1M

′
2M

′
3 = − κ4m6

D

m′
1m

′
2m

′
3

. (C.1)

This relation assures us that heavy masses are always finite.

The trace, for our texture-zero cases of a = 0 or b = 0, leads respectively to

M ′
1 +M ′

2 +M ′
3 = −

(

m2
D

m′
1

+
m2

D

m′
2

+
m2

D

m′
3

)

×
{

k2, for a = 0 ,

1, for b = 0 .
(C.2)

The relation for masses squared depends on mixing angles as

M2
1 +M2

2 +M2
3 = m4

D

[

κ4s(m−2
i )+4|d|2κ2(1−κ2)

]

+

{

0, for a = 0 ,

m4
D(1− κ4)s2(m′−1

i ), for b = 0 ,

(C.3)

where we used the shorthand

s(ai) = a1 + a2 + a3, (C.4)

and s2(ai) =
(

s(ai)
)2
. The value of |d| also depends on light masses and mixing angles,

cf. (3.4),

|d|2 = 1

2
c213

[

(

1

m′
1

− 1

m′
2

)2

s212c
2
12 +

(

c212
m′

1

+
s212
m′

2

− 1

m′
3

)2

s213

]

. (C.5)

D Parametrization for U
(0)
R

Here we show how to recover U
(0)
R parametrized as (2.15) from the knowledge of only two

of the first entries of its first row [4].

The parametrization in (2.15) is

U
(0)
R =







u1 u2 u3
w1 w2 w3

w∗
1 w∗

2 w∗
3






, (D.1)

where we can decompose wk as

wk = |wk|eiγk . (D.2)

The modulus and relative phases of the second and third rows can be obtained from

orthogonality as

|wi| =
√

1− u2i
2

,

cos γij = − uiuj
√

1− u2i

√

1− u2j

,
(D.3)
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where γji ≡ γj − γi. The quadrant ambiguity of γij can be resolved by either one of the

unitary triangles

|u1w1|+ |u2w2|eiγ21 + |u3w3|eiγ31 = 0 ,

|w1|2 + |w2|2ei2γ21 + |w3|2ei2γ31 = 0 .
(D.4)

The individual γi are most easily calculated in the phase convention where D in (2.11) is

real and recall that U
(0)
R diagonalizes M∗

R in our convention. In this case, the eigenvector

equation leads to

cos γi =
M ′

i −A

D

ui
√

2(1− u2i )
, Dui sin γi = −|wi|(B sin 2γi + ImC) . (D.5)

Rephasing D → eiαD modifies wi → eiαwi, i.e., γi → γi + α.

E Simplified CP asymmetry

The full expression of the simplified CP asymmetry (5.15) in the τ flavor is

ǫ(0)τ = −y2
Ne

8π

κ2(1−κ2)

κ2+(1−κ2)|U (0)
Re0|2

∑

j 6=0

Im
[

U
(0)
Re0

∗
U

(0)
RejU

(0)
Rτ0U

(0)
Rτj

∗]
[

K2
R00K

2
Rjjg(xj)+

1

1−xj

]

.

(E.1)

We describe briefly in the following how to obtain it. We stress that there is no resonant

enhancement if K2
R00K

2
Rjj = −1, i.e., if N0 and Nj have opposite CP parity, because the

combination −g(x) + 1/(1− x) approaches −1/2 + ln(4) ≈ 0.88 in the limit x → 1.

We use the fact that the Yukawa coupling (5.2) is proportional to an unitary matrix

when κ = 1. Away from that point we can rewrite (5.2) as

λ = y
Ne

U †
R[κ1+ (1− κ)e11] , (E.2)

where e11 = diag(1, 0, 0) is the projector into e flavor. For definiteness we also assume the

lightest heavy neutrino is N1 as conventionally adopted. We also use the decomposition

for UR in (2.17). These properties allows us to rewrite the combinations

λjαλ
∗
1α = y2

Ne
(KR)11(KR)

∗
jj

[

κ2(U
(0)
R )α1(U

(0)
R )αj + (1− κ2)(U

(0)
R )e1(U

(0)
R )∗ej

]

,

(λλ†)j1 = y2
Ne

[

κ2δ1j + (1− κ2)(U
(0)
R )e1(U

(0)
R )∗ej(KR)11(KR)

∗
jj

]

,

(λλ†)1j = y2
Ne

[

κ2δ1j + (1− κ2)(U
(0)
R )ej(U

(0)
R )∗e1(KR)jj(KR)

∗
11

]

.

(E.3)

Certain combinations become real and we are only left, for α = τ , with

Im
[

(λλ†)j1λjτλ
∗
1τ

]

= y4
Ne

κ2(1− κ2)(KR)
2
11(KR)

2
jj Im

[

(U
(0)
R )e1(U

(0)
R )∗ej(U

(0)
R )τ1(U

(0)
R )∗τj

]

,

Im
[

(λλ†)1jλjτλ
∗
1τ

]

= y4
Ne

κ2(1− κ2) Im
[

U
(0)
Re1

∗
U

(0)
RejU

(0)
Rτ1U

(0)
Rτj

∗]
.

(E.4)
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