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A B S T R A C T

L-[1-11C]leucine PET can be used to measure in vivo protein synthesis in the brain. However, the relationship

between regional protein synthesis and on-going neural dynamics is unclear. We use a graph theoretical

approach to examine the relationship between cerebral protein synthesis (rCPS) and both static and dynamical

measures of functional connectivity (measured using resting state functional MRI, R-fMRI). Our graph

theoretical analysis demonstrates a significant positive relationship between protein turnover and static

measures of functional connectivity. We compared these results to simple measures of metabolism in the

cortex using [18F]FDG PET). Whilst some relationships between [18F]FDG binding and graph theoretical

measures was present, there remained a significant relationship between protein turnover and graph theoretical

measures, which were more robustly explained by L-[1-11C]Leucine than [18F]FDG PET. This relationship was

stronger in dynamics at a faster temporal resolution relative to dynamics measured over a longer epoch. Using a

Dynamic connectivity approach, we also demonstrate that broad-band dynamic measures of Functional

Connectivity (FC), are inversely correlated with protein turnover, suggesting greater stability of FC in highly

interconnected hub regions is supported by protein synthesis. Overall, we demonstrate that cerebral protein

synthesis has a strong relationship independent of tissue metabolism to neural dynamics at the macroscopic

scale.

Introduction

To effectively interact with the external world, the brain must build

rich representations of environmental inputs received from sensory

systems and update these representations ensuing action plans to

effectively interact with a dynamic environment (Turkheimer et al.,

2015). Modern interpretation of brain function describes the brain as a

broad network of functionally interacting regions (the functional

connectome) which adapts in both space and time in response to both

to external (environmental) and internal (cognitive) demands

(Corbetta and Shulman, 2002; Fornito et al., 2012; Fox et al., 2005;

Hellyer et al., 2015; Vincent et al., 2008). One powerful framework for

exploring the functional connectome and how the disparate regions of

the brain interact is graph theory. Such approaches have provided

strong hypotheses about the structural organization of the cortex,

identifying sets of regions that are critically important for enabling

efficient neuronal signalling and communication (the so-called ‘hubs’

regions) (Hagmann et al., 2007; Sporns et al., 2004; Sporns and Honey,

2013; Sporns and Kotter, 2004; van den Heuvel et al., 2012; van den

Heuvel and Sporns, 2013; van den Heuvel et al., 2013), and describing

large scale connectivity networks which neatly mirror the functional

connectivity of slow neural dynamics (Beckmann et al., 2005; De Luca

et al., 2006; Fox et al., 2009). Fluorodeoxyglucose (18FDG) PET also

reveals that these highly connected ‘hub’ regions are amongst the most

metabolically active regions of the brain (Raichle, 2015; Raichle et al.,

2001; Raichle and Snyder, 2007) supporting the hypothesis that these

hubs are key, metabolic nodes responsible for large-scale ‘functional

integration’ of information.
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Complementary computational and experimental approaches have

also provided broad evidence that the brain is functionally organized as

a complex system possessing a critical attractor (Fagerholm et al.,

2015; Haimovici et al., 2013; Kitzbichler et al., 2009; Meisel et al.,

2013; Scott et al., 2014; Shew and Plenz, 2013; Tagliazucchi et al.,

2012). A system at a ‘critical state’ is finely balanced in a position

between robust ordered and chaotic dynamics. Such dynamics are

attractive as a model for neural function, as they provide a mechanistic

framework for storage and processing information in a fluid dynamic

system (Shew and Plenz, 2013; Shew et al., 2009; Shew et al., 2011).

Moreover, ‘critical’ dynamics in the brain may emerge not just by the

interaction of activity between highly connected cortical regions, but

also through the action of local plasticity. Homeostatic plasticity,

alongside a range of other adaptive or plastic approaches, have been

proposed as a potential tuning mechanism for maintaining ‘critical’

neural dynamics (Cowan et al., 2013a). In the brain, these plastic

mechanisms may not only induce ‘critical’ dynamics, but also enhance

the emergence of functional connectivity networks (Hellyer et al.,

2016). At the same time, computational approaches have demonstrated

that the removal of ‘peripheral’ and ‘hub’ nodes, defined using graph

theoretical approaches in computational simulations of the brain, have

differential effects on the overall dynamics of the brain (Vasa et al

2015). Thus, not only do computational accounts suggest that plasticity

is key to forming flexible brain dynamics, but the network topology

underlying those dynamics is important for selecting and maintaining a

flexible set point for activity.

Whilst a range of works in human explores the relationship between

de-novo metabolism, e.g. measured using [18F]FDG PET and measures

of functional integration (described using graph theoretical means) –

the relationship between functional integration and protein turnover

which is undoubtedly associated with local cortical plasticity (such as

the subtle re-organisations underlying a flexible dynamic state at rest

proposed by computational accounts), has not yet been explored.

In this work, we use a graph theoretical approach (Rubinov and

Sporns, 2010) to examine static and dynamic measures of functional

integration and network topology at rest using functional connectivity

(measured using fMRI) and measures of protein synthesis. The L-

[1-11C]leucine PET method allows the quantitative determination of

local rates of protein synthesis in the central nervous system in-vivo

(Smith et al., 1988). This assay uses L-[1-11C]leucine as a tracer to

measure the rate of incorporation of leucine, one of the nine essential

amino acids, into protein. Leucine is very attractive for this kind of

assay because its only pathway of degradation is transamination

followed by carboxylation; here the 11C label is quickly transferred

to labelled CO2 which is quantitatively minimal and negligibly re-

incorporated as heavily diluted by the large pool of unlabelled CO2

resulting from carbohydrate metabolism. Hence brain radioactivity is

mostly due to free L-[1-11C]leucine and labelled protein defining a

sympathetic measure of “de novo” cerebral protein synthesis (rCPS)

(Bishu et al., 2008; Schmidt et al., 2005; Smith et al., 2005). Applied to

the human-brain this approach allows the quantification of regional

plasticity in the cortex (Veronese et al., 2012).

We explore the possibility that large-scale dynamics of the brain are

in part constrained empirically by plasticity at a broad range of

temporal scales using both a multi-scale decomposition and dynamic

functional connectivity approach. Furthermore, we compare and con-

trast these results with a simpler description of functional processing

using 18FDG-PET as a measure of local metabolic demand. Whilst our

analysis is broadly exploratory in nature, we test the hypothesis that

functional network hubs are associated with high levels of protein

synthesis, independent of basal levels of metabolism. For network hubs

to maintain their stability and allow integration of flexible neural

dynamics over time (predicted by computational approaches) likely

requires dynamic reorganisation of the local neural architecture, thus

we predict that highly interconnected hubs will be stable over time –

associated with highly active protein turnover.

Methods

Positron emission tomography (PET)

[1-11C]Leucine

High-Resolution [1-11C]Leucine PET images were acquired from 9

healthy awake subjects (9 male, age 20–24). These data were kindly

provided by the authors of a previously published study. Detailed

acquisition parameters and inclusion criteria are described in detail in

the original work (Bishu et al., 2008). In brief, all studies were

performed on a High-Resolution Research Tomograph (HRRT) (CPS

Innovations, Knoxville, TN, USA). The dynamic 90-min scan was

initiated coincident with a 2-min intravenous infusion of 20–30 mCi

of L-[1-11C]leucine. Images were reconstructed using motion-compen-

sated three-dimensional ordinary Poisson ordered subset expectation

maximization as 42 frames (16×15, 4×30, 4×60, 4×150, 14×300 s);

voxel size was 1.21×1.21×1.23 mm. Concentrations of unlabelled and

labelled leucine in plasma and total 11C and 11CO2 in whole blood were

estimated using continuous arterial blood sampling. Voxel-level esti-

mates of rCPS [nmol/gr/min] were determined by spectral analysis

with an iterative filter (SAIF) (Veronese et al., 2010; Veronese et al.,

2012). The resulting rCPS maps were then spatially normalized to the

MNI-152 (2mm) co-ordinate system (Grabner et al., 2006) and a

population average rCPS template image was calculated for further

analysis. Finally, the rCPS PET template was segmented into 82 regions

of interest (ROIs) according to the Desikan-Kilaney+Aseg atlas (Fischl,

2012; Fischl et al., 2002) projected into the MNI-152 coordinate space.

An overview of this atlas is available in (Fig. S1), resulting in a single

82(n)x1 vector of average rCPS in each region across the cortex and

sub-cortex.

[18F]-FDG (Fludeoxyglucose)

High resolution [18F]FDG PET images were collected from 11

healthy volunteers (5 female, age 30.5 ± 7.1 years). [18F]FDG PET/CT

brain images were acquired in a GE Discovery 690 (GE Healthcare,

Milwaukee, Wisconsin, USA), at the Centro de Tecnologia em Medicina

Molecular, Faculdade de Medicina da UFMG, Belo Horizonte, Brazil.

Fifty minutes prior to scanning, each subject received an intravenous

bolus injection of 5.18 MBq/kg of [18F]FDG before resting in a quiet,

dark room with minimum stimuli. PET images were subsequently

acquired over 10 minutes, and reconstructed in a 192x192x47 matrix

using the OSEM (Ordered Subsets Expectation Maximization) algo-

rithm, with 2 iterations and 20 subsets. CT images were used to

perform attenuation correction. The resulting standardized uptake

value (SUV) maps normalised by body weight and injected dose were

then spatially normalized to the MNI-152 (2mm) co-ordinate system

(Grabner et al., 2006) and a population average SUV template image

was calculated for further analysis. Like the analysis described for the

rCPS data above, this atlas was subsequently divided into the same 82

cortical and subcortical ROIs resulting in a single 82(n)x1 vector of

average SUV in each region across the cortex and sub-cortex.

Magnetic resonance imaging

Resting state fMRI (R-fMRI)

High temporal and spatial resolution R-fMRI data was obtained

from 20 subjects (10 female, age 30.1 ± 3.3 years) released as part of

the Human Connectome Project (humanconnectome.org/). In order to

explore the effect of gender and specific subject selection bias on the

reported results, we randomly selected a cohort of a further 20 subjects

(10 female, age: 30.2+3.46 years), as well as 20 male (age: 29.1+3.79

years) and 20 female subjects (age: 29.76+3.07 years) In brief, all HCP

subjects were scanned on a customized Siemens 3T “Connectome

Skyra” housed at Washington University in St. Louis, using a standard

32-channel Siemens receive head coil and a “body” transmission coil

designed by Siemens specifically for the smaller space available using
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the special gradients of the WU-Minn and MGH-UCLA Connectome

scanners. R-fMRI data were acquired using a Gradient-echo EPI

sequence, TR=720 ms, TE=33.1 ms, flip angle 52°, multiband factor

8, slice thickness 2.0 mm for 72 slices (2.0 mm isotropic voxels) over

15 minutes – resulting in 1200 volumes. Subjects had eyes-open with

fixation on a bright cross-hair on a dark background.

Following acquisition R-fMRI data were re-constructed and cor-

rected for artefacts including motion according to the standard HCP

FIX pipeline (Glasser et al., 2013; Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014; Smith et al., 2013; Van Essen et al., 2012),

resulting in relatively artefact-free functional data co-registered into

the MNI-152(2mm) coordinate system. R-fMRI data were segmented

into the same 82 regions of interest (ROIs) described above for each

PET atlas. For R-fMRI, we extracted time-courses for each region,

relating the spatial average BOLD signal within each ROI at each time

point, resulting in an 82(n)x1200(t) matrix for each R-fMRI dataset

(Fig. 1A). To ensure consistency of the results across a range of

different parcellation schemes, all analysis was repeated with two

additional parcellation schemes (see Supplementary methods and

results).

Functional connectivity

Measures of functional connectivity, were derived using a used a

phase-synchronisation approach applied to the ROI data extracted

from each resting state run (Ponce-Alvarez et al., 2015). In order to

evaluate phase synchrony of the analytical signal derived from each of

the ROI time courses across a broad-band of temporal scales, we

derived the analytical signal across time in each ROI from the

coefficients of a wavelet filter bank using wavelets derived as approx-

imate Hilbert Wavelet Pairs (HWP) (Selesnick, 2001, 2002; Whitcher

et al., 2005), as described in (Kitzbichler and Bullmore, 2015;

Kitzbichler et al., 2009). HWP analysis was performed using a

maximum overlap, discreet wavelet packet transform (MODWT)

(Percival and Mofjeld, 1997; Percival and Walden, 2000), at 11

temporal scales (Fig. 1A). This resulted in phase representations within

discreet dyadic ranges of the frequency spectrum of the underlying

data: Scale (Hz); 1 (0.7–1.4), 2 (0.35–0.7), 3 (0.17–0.35), 4 (0.08–

0.17), 5 (0.04–0.08), 6 (0.02–0.04), 7 (0.01–0.02), 8 (0.005–0.01), 9

(0.0025–0.005), 10 (0.0013–0.0025), 11 (0–0.0013). Strictly speaking,

the frequency response at scale 1 is above the Nyquist frequency of our

dataset, and higher scales e.g. 9-11, represent very low frequency

signals given the short period of rest fMRI data considered. we include

these scales for completeness, and are included and presented in

supplement to the main results which in all figures are shown in heavy

print. Code for performing the Hilbert-wavelet packet transform is

available on GitHub: https://github.com/petehellyer/

Phase_Sync_Analysis. To reduce computational complexity, and due

to rapid noise fluctuations inherent in the estimation of the instanta-

neous analytical signal, a more tractable signal was derived, by

decimating the phase estimates derived from the HWP filtering regime

by a factor of 4 using an appropriate finite impulse response (FIR)

filter. To explore time dependent measures of phase synchronisation,

we employ a phase synchronisation methodology based on the widely

used Kuramoto order parameter (Cabral et al., 2011; Cabral et al.,

2014; Hellyer et al., 2015; Hellyer et al., 2014; Shanahan, 2010; Vasa

et al., 2015; Wildie and Shanahan, 2012). For each pair of ROIs, a time

dependent measure of phase synchrony between each analytical time

course (Θ) was estimated using the pairwise form of the Kuramoto

order parameter R(t) defined by:

R (t) =
1

2
(e +e )xy

iΘ (t) iΘ (t)x y

(1)

where Θxand Θx are the instantaneous phase of the analytical signal for

one pair of ROIs. This results for each wavelet scale in a time-

dependent matrix of pairwise synchrony between each of the ROIs

considered. Static measures of FC (time averaged FC) were derived by

Fig. 1. Workflow describing the generation of the population network

indexes. R-fMRI data were pre-processed by extracting ROI data for each time-course,

and transforming into 11 temporal ‘scales’ using the MODWT transform (See Materials

and Methods). Two representative signals are displayed in the figure at a single scale (A).

For each subject and at each wavelet scale we generated a time-dependent phase

synchronisation matrix (C). Network Metrics were then calculated either for a temporal

mean of the phase synchrony matrix (B), or for each time-point in the experimental data

(C). For dynamic data stability of each metric were calculated across time (Coefficient of

Variation – CV) for each subject and scale. For both static and dynamic measures, a

population mean was generated across all N subjects for further analysis.
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taking the temporal average of R (t)xy (Fig. 1B), dynamic measures of FC

were defined as the square matrix R at each time point (dynamic FC –

Fig. 1C).

Graph theoretical metrics

For both time-averaged FC and dynamic measures of FC, network-

based graph theoretical metrics were calculated using the Brain

Connectivity Toolbox. We included Clustering Coefficient, Local

Efficiency, Node Strength and Betweenness Centrality:

• Clustering Coefficient: as a measure of functional segregation, it

is based on the number of triangles in the network, with a high

number of triangles implying segregation. Locally, the number of

triangles around an individual node over the number of connected

triples is known as the clustering coefficient.

• Local Efficiency: is the ratio of the number of connections

between a node’s neighbours to the total number of possible links.

• Node Strength: is the average connectivity of a node. Strength is

the weighted variant of the degree, and is defined as the sum of all

neighbouring link weights.

• Betweenness Centrality: is an indicator of the centrality of a

node within the network and is calculated as the number of shortest

paths between all nodes that pass through a specific node.

It is to be noted however, that these four measures are not

necessarily orthogonal – This effectively separates these four measures

into two categories – one describing integration of nodes (Clustering

Coefficient, Local Efficiency and Betweenness Centrality) and one

describing overall connectivity of individual nodes (Node Strength).

Whilst comparisons between measures are therefore not entirely

independent, we present all analysis for completeness.

In order to select an appropriate threshold for graph theoretical

analysis, we sought to select an appropriate threshold for each graph

that maximised the Cost-Efficiency (C-E) of each resulting network

(Achard and Bullmore, 2007). This threshold was calculated for each

static graph (weighted) at each scale in an independent group of 20

controls drawn from the HCP. The mean threshold across each of these

subjects was then applied in the static and dynamic analysis in the

main study cohort; the thresholds used are reported in Supplementary

Fig. S7. We next computed the measures above for each individual

network, obtaining 20 sets of graph-theoretical measures for each atlas

and each filtering band. As last step, we averaged the network measures

across subjects, obtaining population averages of each graph theore-

tical index (Fig. 1A). For each time-point at each temporal scale, we

calculated graph theoretical measures as described above. Variability in

local node-metrics across the 15-min time interval was then evaluated

using the coefficient of variation (CV) between (i.e. standard deviation/

mean) of each metric for each node (Fig. 1C). Finally, these single

subject CV were then averaged between subjects to generate an overall

grand-mean variability of each metric across the brain. Graph theore-

tical measures estimated at each temporal scale of the Hilbert-wavelet

pairs transform were associated with measures of [18F]FDG SUV and

[1-11C]Leucine rCPS, using repeated measures general linear model-

ling. Significance of each factor within the repeated measures design

was assessed using F statistics. Assumptions of Sphericity were tested

using Mauchlys criteria and, where appropriate, significance and

degrees of freedom of within-subject effects are reported for the

conservative Greenhouse-Geisser correction.

Results

Metabolism measured using [18F]FDG SUV is enhanced in functional

‘hub’ nodes

Consistent with previous literature (Aiello et al., 2015; Riedl et al.,

2014), we began by exploring the extent to which functional ‘hubs’ in

the brain correlate with local measures of metabolism measured using

[18F]FDG SUV. We started by calculating average measures of Node

Strength, Clustering Coefficient, Local Efficiency and Betweenness

Centrality in the cortex from the R-fMRI data in each of the 11

temporal scales considered. Repeated measures linear modelling

demonstrated a significant relationship between [18F]FDG SUV and

Clustering Coefficient (F1,80=41.36, p < 0.001), Node Strength

(F1,80=12.66, p < 0.001),

Local efficiency (F1,80=32.48, p < 0.001) and Betweenness

Centrality (F1,80=5.41, p < 0.05).

There was a significant interaction between temporal scale and

Clustering Coefficient (F2150=23.48, p < 0.001), Node Strength

(F3216=2.51, p < 0.01) ,Local Efficiency (F2135=21.34, p < 0.001) and

Betweenness Centrality (F3250=2.52, p < 0.001).

A high-level overview of these results is shown in Table 1A, however

to explore these effects in more detail, we performed post-hoc correla-

tions (as Pearson’s correlation coefficient) between network indices of

centrality and [18F]FDG SUV (Fig. 2). Whilst there was a significant

relationship between [18F]FDG SUV and graph theoretical measures

across all frequency bands, there is also a clear modulation in terms of

temporal scale. To assess the specificity of these results to the specific

structural segmentation scheme, we repeated this analysis with two

other unique segmentations (Supplementary Fig. S2). In addition to

explore the effect of gender and sampling bias in the fMRI dataset, we

repeated the analysis for an additional 20 subjects from the HCP cohort

as well as two randomly selected male and female cohorts from the

HCP (Supplementary results 1); with qualitatively similar results.

Protein turnover measured using [1-11C]Leucine is correlated with

functional ‘hub’ nodes

Next, we directly explored the relationship between protein synth-

esis in the cortex and local measures of network connectivity.

Fig. 2. Correlation values between R-fMRI network measures and [18F]FDG SUV, as

function of BOLD scale. Filled nodes are significant (p < 0.05 – Bonferroni Corrected).
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Reconstructed statistical maps at each temporal scale for each of the

graph theory metrics discussed are attached as interactive 3D models.

Repeated measures linear modelling demonstrated a significant rela-

tionship between [1-11C]Leucine rCPS and Betweenness Centrality

(F1,80=18.34, p < 0.001), Node Strength (F1,80=13.68, p < 0.01),

Clustering Coefficient (F1,80=95.93, p < 0.001) and Local efficiency

(F1,80=91.70, p < 0.001). There was a significant interaction between

temporal scale and Betweenness Centrality (F3,265=6.19, p < 0.001),

Node Strength (F3,227=9.71, p < 0.001), Clustering Coefficient

(F2,179=52.38, p < 0.001) and Local Efficiency (F2,151=48.98, p <

0.001). These effects are explored in more detail using post-hoc

correlation between network indices and [1-11C]Leucine rCPS in

Supplementary Fig. 3.

One possible explanation for strong associations between both

[1-11C]Leucine rCPS, and [18F]FDG SUV and graph theoretical mea-

sures may be that protein synthesis is directly associated with high

metabolic rate or vice versa. Indeed, both binding measures are

significantly correlated (r=0.63, p < 0.001). We extended our analysis

to specifically control for this putative relationship. In a combined

model using [18F]FDG SUV and [1-11C]Leucine rCPS as predictors

simultaneously, we observed main effects associations of [1-11C]

Leucine rCPS with Betweenness Centrality (F1,79=12.04, p < 0.001),

Local Efficiency (F1,79=44.24, p < 0.001), Clustering Coefficient

(F1,79=41.79, p < 0.001), There was no main effect of Node Strength

(F1,79=3.54), though in the replication sets this main effect was present

(Supplementary results 1).

In this model, there was no association between [18F]FDG SUV and

Betweenness Centrality (F1,79=0.06), Local Efficiency (F1,79=1.74) and

Node Strength (F1,79=3.54). There was a significant association be-

tween [18F]FDG SUV and Clustering Coefficient (F1,79=4.32, p < 0.05).

Interactions between temporal scale and [11C]Leucine rCPS re-

mained significant for.

Local Efficiency (F2,146=23.85, p < 0.001), Clustering Coefficient

(F2,171=25.34, p < 0.001) and.

Betweenness Centrality (F3,260=3.97, p < 0.001) and Node Strength

(F3,224=10.39, p < 0.001).

A high-level overview of these results is shown in Table 1B, however

to explore these effects in more detail, we performed post-hoc partial

regressions between network indices of centrality and [1-11C]Leucine

rCPS (Fig. 3). Like our associations with [18F]FDG SUV, whilst a

significant association between [1-11C]Leucine rCPS and graph theo-

retical measures was observed all frequency bands, there is also a clear

modulation in terms of temporal scale for Node Strength, Local

Efficiency and Clustering Coefficient. These results were also qualita-

tively similar across a range of different segmentation schemes

(Supplementary fig. 4).

Stability of network hubs is inversely proportional to protein turnover

measured using [1-11C]Leucine

In the previous analysis, we considered only static measures of

network connectivity over time. Functional connectivity however likely

evolves dynamically over time (Calhoun et al., 2014; Monti et al., 2014;

Sakoglu et al., 2010). Reconstructed statistical maps at each temporal

scale for the CV over time of each graph theory metrics discussed are

attached as interactive 3D models. To explore such a dynamic measure

of connectivity over time, we adapted the phase synchronisation

approach described above to measure time-varying phase synchronisa-

tion for each wavelet scale. At each time point in each scale, we

estimated graph theoretical descriptions of functional connectivity

(Fig. 1C). We used these estimates to explore how temporal stability

of ‘hub’ measures, estimated using the temporal coefficient of variation

(CV), relate to [1-11C]Leucine rCPS. We found that general highly

connected regions of the brain show greater stability over time,

particularly at higher temporal resolutions (Supplementary Fig. S6).

This stability of network hub-ness was inversely related to [1-11C]

Leucine rCPS (Fig. 4). High-level repeated measures linear modelling

using [18F]FDG SUV and [1-11C]Leucine rCPS as predictors simulta-

neously demonstrated a significant relationship between [1-11C]

Leucine rCPS and CV of Clustering Coefficient (F1,79=4.17 p < 0.05)

and Local efficiency (F1,79=7.02 p < 0.01). There was no main effect

relationship between Node Strength (F1,79=1.23) or Betweenness

Centrality (F1,79=0.83). No main effect relationship in this combined

model was observed between [18F]FDG SUV and CV of Betweenness

Centrality (F1,79=1.34), Node Strength (F1,79=1.94), Clustering

Coefficient (F1,79=2.61) and Local efficiency (F1,79=2.49). Finally, there

was a significant interaction between temporal scale and [1-11C]

Leucine rCPS for Betweenness Centrality (F7,564=2.64, p < 0.05),

Node Strength (F4,284=7.00, p < 0.001), Clustering Coefficient

(F5,365=2.52, p < 0.01) but not Local Efficiency (F4,338=0.35). Similar,

results were also seen across a range of other parcellation schemes

(Supplementary Fig. 5). In addition to explore the effect of gender and

sampling bias in the fMRI dataset, we repeated the analysis for a subset

of male and female subjects, as well as an additional 20 subjects from

the HCP cohort (Supplementary results 2); with qualitatively similar

results (however see discussion).

Discussion

The traditional view of the brain as a collection of functionally

distinct regions operating in isolation has gradually given way in the

past decade to a more holistic description of the brain as a highly

connected network of functionally inter-connected modules which

adapt in both the temporal and spatial domain in response to changes

to both the external and internal environment (Corbetta and Shulman,

2002; Fornito et al., 2012; Fox et al., 2005; Hellyer et al., 2015; Vincent

et al., 2008). Plasticity within the central nervous system (CNS) is likely

Fig. 3. Partial Correlation values between R-fMRI network measures and

rCPS, as function of BOLD scale. The correlation values are calculated as partial

correlations, considering [18F]FDG SUV as a covariate of no interest. Filled nodes are

significant (p < 0.05 – Bonferroni Corrected).
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mediated by myriad different mechanisms which are the consequence

of both structural and functional reorganisations at the synaptic level.

Indeed, a wealth of work demonstrates the importance of protein

synthesis and reorganisation of local networks because of learning and

memory (Flexner et al., 1962; Flexner et al., 1965; Flexner et al., 1964;

Hernandez and Abel, 2008; Jarome and Helmstetter, 2014; Lopez

et al., 2015; Nader et al., 2000). The level to which plasticity within the

CNS relates to macroscopic level neural dynamics at faster timescales is

however unclear. Previous theoretical and experimental work suggests

that local plasticity is an important mechanism by which rich sponta-

neous dynamics are organised within the brain (Cowan et al., 2013b;

Fornito et al., 2012; Hellyer et al., 2016; Magnasco et al., 2009). This

suggests that rather than acting purely as a mechanism for long-term

reorganisation and consolidation of learnt information, plasticity must

effect change across a range of different spatial and temporal scales,

from very fast to very slow dynamics.

The brain uses myelination to set boundaries to network plasticity;

these boundaries appear to be looser for local networks, that are wired

through high frequency activity, and less so for long-distance hubs that

are characterized by transmission on low-frequency band. This phe-

nomenon has been described as “meta-plasticity”, studied in pre-

clinical and computational models but never demonstrated in human

brain networks (Abraham, 1999; Abraham and Bear, 1996; Abraham

and Tate, 1997; Zenke et al., 2013). From this association, we may

assume that long-distance connections that broadly operate at a low

temporal frequency (Beckmann et al., 2005; De Luca et al., 2006) are

likely constrained largely by myelination. Plasticity at this more local

level is therefore likely to be associated with higher-speed functional

dynamics. Hence, we have also hypothesized that rCPS would show

association to graph theoretical measures that would vary with the

frequency range of fMRI oscillations, with the association being

stronger at higher frequency bands. In this work, we explicitly

attempted to explore the interaction between neural plasticity within

the CNS (measured using an estimate of protein synthesis – L-[111C]-

Leucine PET) and macroscopic measures of network integration across

a broad-range of temporal scales. We explored the local clustering

coefficient – a measure which describes the affinity for any individual

region of the brain to embed within tight-knit clusters and strength –

where the overall connectivity is the sum of each links with the rest of

the network. Regions with low clustering and high strength are

therefore likely to be the ‘hub nodes’ of the brain, central to the

efficient and effective distribution of information across the brain. We

furthermore demonstrate a tendency for these relationships to be

somewhat enhanced at higher temporal scales associated with func-

tional dynamics in BOLD data (on the temporal order of 10–20 s, as

opposed to minutes). We go on to demonstrate that the stability of

graph theoretical metrics within each region of the brain is inversely

proportional to protein-turnover – suggesting that whilst strongly

interconnected regions at fast timescales are strongly associated with

enhanced protein synthesis. Our data suggest that these highly-

connected regions of the brain show enhanced stability over time.

That highly connected regions are more stable, may be unsurprising

given the statistical bounds inherent to functional connectivity mea-

sures (Betzel et al 2016; Thompson & Franson et al 2015). It may be

that the inverse relationship that we demonstrate between rCPS and

topological stability is influenced by this. However, whilst some degree

of statistical interdependence cannot be ruled out, examination of the

post-hoc modelling suggests that rather than being a simple inverse of

the static findings a different pattern of negative correlations emerges

between stability and rCPS to the static analysis, supporting a hypoth-

esis that those regions whose interconnectivity is relatively stable are

associated with less protein turnover overall.

To some extent we replicate the previous findings in the literature

that demonstrated that hub-regions of the brain are associated with

high metabolic demand – specifically, measures of local integration and

degree are strongly associated with [18F]FDG PET binding (Passow

et al., 2015; Riedl et al., 2014; Tomasi et al., 2013). This suggests that

informational hubs within the brain are highly metabolic, and some-

what mirrors the relationship that we describe rCPS. The causality

between these two observations is unclear. To explore the relationship

between protein turnover and metabolic rate we calculated the

Pearson’s correlation coefficient between rCPS and SUV measures in

the same regions of interest. We found that high levels of protein

synthesis are associated with high metabolism.

Free leucine has been suggested as a major donor of amino acids for

the synthesis of glutamate within the brain (Yudkoff et al 2005) – as

increased metabolic load would be associated with glutamate produc-

tion, it follows that increased metabolic load in local regions would

similarly be associated with measures of protein turnover – accounting

for a similarity in the relationship between rCPS and SUV across a

range of topological and connectivity measures. However, our results

suggest not that a strong association between rCPS and network

connectivity is clearly present even when the effect of [18F]FDG binding

is accounted for, but also that rCPS variability accounts for most of the

association between [18F]FDG and brain dynamics is largely accounted

for by the effect of rCPS. Hence rCPS is elevated in hub regions beyond

that what might be expected simply because of ‘enhanced’ metabolism

within these regions.

In many graph, theoretical explorations of the brain, one significant

factor in the associations generated is the specific parcellation scheme

used. To counter this problem, we repeated the clear majority of our

post-hoc correlations for two alternative parcellation schemes

(Craddock et al., 2012; Tzourio-Mazoyer et al., 2002) with qualitative

similarities across all three schemes (Supplementary figs. 2,4,5). The

segmentation employed to define the regions of interest (and therefore

the nodes of the network) however did have a subtle impact on the final

Fig. 4. Correlations between the CV of functional network measures and

rCPS values as function of scale. We compared the coefficient of variation over time

of the network metrics obtained from R-fMRI versus rCPS measured with L-[1-11C]

leucine considering [18F]FDG SUV as a covariate of no interest. Filled nodes are

significant (p < 0.05 – Bonferroni Corrected).
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correlation values. The AAL atlas showed marginally stronger correla-

tions (albeit still significant for most of the lower frequencies)

compared to Craddock and Freesurfer atlases. Since the metabolism

in the brain is most intense in the cortical areas, the looser cortical

parcellation of the AAL atlas may explain differences in correlations

between graph metrics and SUV values. Secondly, the choice of metric

to describe functional connectivity may have an impact on the overall

graph theoretical analysis. In this work, we chose to use a phase

synchronisation approach. This was made technically feasible by the

enhanced temporal resolution of the multi-band resting state acquisi-

tion in the Human Connectome Project dataset. However, approaches

such as pair-wise correlation or partial correlation using the general

linear model may permit alternative interpretations of the graph

theoretical analysis which may affect the relationships described here.

The association that we describe here is inherently cross-sectional.

This is in part due to an attempt to combine information from a broad-

range of multi-modal and unique datasets – indeed, the L-[111C]-

Leucine data that we use here is to our knowledge a unique dataset

which is not available elsewhere. Due to limitations in the data

available, we were not able to fully match the groups in the analysis

for both age and gender – for example, the L-[111C]-Leucine data were

collected only in male subjects, whilst the [18F]FDG PET data were

acquired in a slightly older group of subjects. Whilst the collection of

within subject data would improve the efficiency of our results, when

we were able to re-analyse the existing dataset – in the case of age and

gender matched groups for [18F]FDG PET, results remained stable.

Equally, when female participants were removed from the [1-11C]

Leucine PET analysis (and replaced by additional male subjects drawn

from the HCP, results remained stable) (Supplementary results 1/2).

An ideal situation would be to obtain functional, structural and PET

data within the same subjects, and perform a true within-subject

comparison between dynamics and measures of metabolism and

protein synthesis. This is the focus of ongoing work and would be an

ideal application for combined PET/MRI acquisition. Nevertheless, this

work provides a proof-of principle of a putative relationship between

protein synthesis, metabolism and broad-band neural dynamics.

Disclosure

The authors declare no relevant financial interests or conflicts of

interest.

Author contributions

PJH, MV, GR & FET designed the research. PJH, AP, EB, MV, GR,

MT AB & FET performed the research. MS, MB and MAR Provided

un-published data and analysis methods. All authors wrote and/or

edited the paper.

Acknowledgements

PJH is funded by a Sir Henry Wellcome Postdoctoral Fellowship

(WT106092/Z/14/Z). MV and FET are supported by the Wellcome

Trust “Strategic Award: Inflammation in AD and MDD”. Data were

provided in part by the Human Connectome Project, WU-Minn

Consortium (Principal Investigators: David Van Essen and Kamil

Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and

Centers that support the NIH Blueprint for Neuroscience Research;

and by the McDonnell Center for Systems Neuroscience at Washington

University. PET Data were kindly provided by Centro de Tecnologia em

Medicina Molecular, Faculdade de Medicina da UFMG, Belo Horizonte,

Brazil ([18F]FDG dataset), and by Dr. Carolyn Smith, The Section of

Neuroadaptation and Protein Metabolism, National Institute of Mental

Health, Bethesda, USA (L-[1-11C]Leucine dataset). All data described

in this study was obtained with informed consent and the approval of

respective local medical ethics committees in line with the Declaration

of Helsinki.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the

online version at doi:10.1016/j.neuroimage.2017.04.062.

References

Abraham, W.C., 1999. Metaplasticity: key element in memory and learning? News

Physiol. Sci. 14, 85.

Abraham, W.C., Bear, M.F., 1996. Metaplasticity: the plasticity of synaptic plasticity.

Trends Neurosci. 19, 126–130.

Abraham, W.C., Tate, W.P., 1997. Metaplasticity: a new vista across the field of synaptic

plasticity. Prog. Neurobiol. 52, 303–323.

Achard, S., Bullmore, E., 2007. Efficiency and cost of economical brain functional

networks. PLoS Comput. Biol. 3, e17.

Aiello, M., Salvatore, E., Cachia, A., Pappata, S., Cavaliere, C., Prinster, A., Nicolai, E.,

Salvatore, M., Baron, J.C., Quarantelli, M., 2015. Relationship between

simultaneously acquired resting-state regional cerebral glucose metabolism and

functional MRI: a PET/MR hybrid scanner study. Neuroimage 113, 111–121.

Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M., 2005. Investigations into resting-

state connectivity using independent component analysis. Philos. Trans. R. Soc.

Lond. B: Biol. Sci. 360, 1001–1013.

Betzel, R.F., Fukushima, M., He, Y., Zuo, X., Sporns, O., 2015. Dynamic fluctuations

coincide with periods of high and low modularity in resting-state functional brain

networks. Neuroimage. 127, 287–297.

Bishu, S., Schmidt, K.C., Burlin, T., Channing, M., Conant, S., Huang, T., Liu, Z.H., Qin,

M., Unterman, A., Xia, Z., Zametkin, A., Herscovitch, P., Smith, C.B., 2008. Regional

rates of cerebral protein synthesis measured with L-[1-11C]leucine and PET in

conscious, young adult men: normal values, variability, and reproducibility. J. Cereb.

Blood Flow Metab. 28, 1502–1513.

Cabral, J., Hugues, E., Sporns, O., Deco, G., 2011. Role of local network oscillations in

resting-state functional connectivity. Neuroimage 57, 130–139.

Cabral, J., Luckhoo, H., Woolrich, M., Joensson, M., Mohseni, H., Baker, A., Kringelbach,

M.L., Deco, G., 2014. Exploring mechanisms of spontaneous functional connectivity

in MEG: how delayed network interactions lead to structured amplitude envelopes of

band-pass filtered oscillations. Neuroimage 90, 423–435.

Calhoun, V.D., Miller, R., Pearlson, G., Adali, T., 2014. The chronnectome: time-varying

connectivity networks as the next frontier in fMRI data discovery. Neuron 84,

262–274.

Corbetta, M., Shulman, G.L., 2002. Control of goal-directed and stimulus-driven

attention in the brain. Nat. Rev. Neurosci. 3, 201–215.

Cowan, J.D., Neuman, J., Kiewiet, B., van Drongelen, W., 2013a. Self-organized

criticality in a network of interacting neurons. J. Stat. Mech.: Theory Exp. 2013,

P04030.

Cowan, J.D., Neuman, J., Kiewiet, B., van Drongelen, W., 2013b. Self-organized

criticality in a network of interacting neurons. J. Stat. Mech.: Theory Exp..

Craddock, R.C., James, G.A., Holtzheimer, P.E., 3rd, Hu, X.P., Mayberg, H.S., 2012. A

whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum.

Brain Mapp. 33, 1914–1928.

De Luca, M., Beckmann, C.F., De Stefano, N., Matthews, P.M., Smith, S.M., 2006. fMRI

resting state networks define distinct modes of long-distance interactions in the

human brain. Neuroimage 29, 1359–1367.

Fagerholm, E.D., Lorenz, R., Scott, G., Dinov, M., Hellyer, P.J., Mirzaei, N., Leeson, C.,

Carmichael, D.W., Sharp, D.J., Shew, W.L., Leech, R., 2015. Cascades and cognitive

state: focused attention incurs subcritical dynamics. J. Neurosci. 35, 4626–4634.

Fischl, B., 2012. FreeSurfer. Neuroimage 62, 774–781.

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe,

A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale,

A.M., 2002. Whole brain segmentation: automated labeling of neuroanatomical

structures in the human brain. Neuron 33, 341–355.

Flexner, J.B., Flexner, L.B., Stellar, E., De La Haba, G., Roberts, R.B., 1962. Inhibition of

protein synthesis in brain and learning and memory following puromycin. J.

Neurochem. 9, 595–605.

Flexner, L.B., Flexner, J.B., De La Haba, G., Roberts, R.B., 1965. Loss of memory as

related to inhibition of cerebral protein synthesis. J. Neurochem. 12, 535–541.

Flexner, L.B., Flexner, J.B., Roberts, R.B., Delahaba, G., 1964. Loss of recent memory in

mice as related to regional inhibition of cerebral protein synthesis. Proc. Natl. Acad.

Sci. USA 52, 1165–1169.

Fornito, A., Harrison, B.J., Zalesky, A., Simons, J.S., 2012. Competitive and cooperative

dynamics of large-scale brain functional networks supporting recollection. Proc.

Natl. Acad. Sci. USA 109, 12788–12793.

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.,

2005. The human brain is intrinsically organized into dynamic, anticorrelated

functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678.

Fox, M.D., Zhang, D., Snyder, A.Z., Raichle, M.E., 2009. The global signal and observed

anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–3283.

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L.,

Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.,

Consortium, W.U.-M.H., 2013. The minimal preprocessing pipelines for the Human

Connectome Project. Neuroimage 80, 105–124.

Grabner, G., Janke, A.L., Budge, M.M., Smith, D., Pruessner, J., Collins, D.L., 2006.

P.J. Hellyer et al. NeuroImage 155 (2017) 209–216

215



Symmetric atlasing and model based segmentation: an application to the

hippocampus in older adults. Med. Image Comput. Comput. Assist Interv. 9, 58–66.

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C.F., Auerbach, E.J., Douaud, G., Sexton,

C.E., Zsoldos, E., Ebmeier, K.P., Filippini, N., Mackay, C.E., Moeller, S., Xu, J.,

Yacoub, E., Baselli, G., Ugurbil, K., Miller, K.L., Smith, S.M., 2014. ICA-based

artefact removal and accelerated fMRI acquisition for improved resting state

network imaging. Neuroimage 95, 232–247.

Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.,

2007. Mapping human whole-brain structural networks with diffusion MRI. PLoS

One 2, e597.

Haimovici, A., Tagliazucchi, E., Balenzuela, P., Chialvo, D.R., 2013. Brain organization

into resting state networks emerges at criticality on a model of the human

connectome. Phys. Rev. Lett. 110, 178101.

Hellyer, P.J., Jachs, B., Clopath, C., Leech, R., 2016. Local inhibitory plasticity tunes

macroscopic brain dynamics and allows the emergence of functional brain networks.

Neuroimage 124, 85–95.

Hellyer, P.J., Scott, G., Shanahan, M., Sharp, D.J., Leech, R., 2015. Cognitive flexibility

through metastable neural dynamics is disrupted by damage to the structural

connectome. J. Neurosci. 35, 9050–9063.

Hellyer, P.J., Shanahan, M., Scott, G., Wise, R.J., Sharp, D.J., Leech, R., 2014. The

control of global brain dynamics: opposing actions of frontoparietal control and

default mode networks on attention. J. Neurosci. 34, 451–461.

Hernandez, P.J., Abel, T., 2008. The role of protein synthesis in memory consolidation:

progress amid decades of debate. Neurobiol. Learn Mem. 89, 293–311.

Jarome, T.J., Helmstetter, F.J., 2014. Protein degradation and protein synthesis in long-

term memory formation. Front. Mol. Neurosci. 7, 61.

Kitzbichler, M.G., Bullmore, E.T., 2015. Power law scaling in human and empty room

MEG recordings. PLoS Comput. Biol. 11, e1004175.

Kitzbichler, M.G., Smith, M.L., Christensen, S.R., Bullmore, E., 2009. Broadband

criticality of human brain network synchronization. PLoS Comput. Biol. 5, e1000314

.

Lopez, J., Gamache, K., Schneider, R., Nader, K., 2015. Memory retrieval requires

ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor

trafficking. J Neurosci. 35, 2465–2475.

Magnasco, M.O., Piro, O., Cecchi, G.A., 2009. Self-tuned critical anti-Hebbian networks.

Phys. Rev. Lett., 102.

Meisel, C., Olbrich, E., Shriki, O., Achermann, P., 2013. Fading signatures of critical

brain dynamics during sustained wakefulness in humans. J. Neurosci. 33,

17363–17372.

Monti, R.P., Hellyer, P., Sharp, D., Leech, R., Anagnostopoulos, C., Montana, G., 2014.

Estimating time-varying brain connectivity networks from functional MRI time

series. Neuroimage 103, 427–443.

Nader, K., Schafe, G.E., Le Doux, J.E., 2000. Fear memories require protein synthesis in

the amygdala for reconsolidation after retrieval. Nature 406, 722–726.

Passow, S., Specht, K., Adamsen, T.C., Biermann, M., Brekke, N., Craven, A.R., Ersland,

L., Gruner, R., Kleven-Madsen, N., Kvernenes, O.H., Schwarzlmuller, T., Olesen,

R.A., Hugdahl, K., 2015. Default-mode network functional connectivity is closely

related to metabolic activity. Hum. Brain Mapp. 36, 2027–2038.

Percival, D.B., Mofjeld, H.O., 1997. Analysis of subtidal coastal sea level fluctuations

using wavelets. J. Am. Stat. Assoc. 92, 868–880.

Percival, D.B., Walden, A.T., 2000. Wavelet Methods for Time Series Analysis.

Cambridge University Press.

Ponce-Alvarez, A., Deco, G., Hagmann, P., Romani, G.L., Mantini, D., Corbetta, M., 2015.

Resting-state temporal synchronization networks emerge from connectivity topology

and heterogeneity. PLoS Comput. Biol. 11, e1004100.

Thompson, W.H., Franson, P., 2015. The mean variance relationship reveals two possible

strategies for dynamic brain connectivity analysis in fMRI. Front. Human. Neurosci.,

14, (9:398).

Raichle, M.E., 2015. The brain's default mode network. Annu Rev. Neurosci. 38,

433–447.

Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.,

2001. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682.

Raichle, M.E., Snyder, A.Z., 2007. A default mode of brain function: a brief history of an

evolving idea. Neuroimage 37, 1083–1090, (discussion 1097-1089).

Riedl, V., Bienkowska, K., Strobel, C., Tahmasian, M., Grimmer, T., Forster, S., Friston,

K.J., Sorg, C., Drzezga, A., 2014. Local activity determines functional connectivity in

the resting human brain: a simultaneous FDG-PET/fMRI study. J. Neurosci. 34,

6260–6266.

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses

and interpretations. Neuroimage 52, 1059–1069.

Sakoglu, U., Pearlson, G.D., Kiehl, K.A., Wang, Y.M., Michael, A.M., Calhoun, V.D., 2010.

A method for evaluating dynamic functional network connectivity and task-

modulation: application to schizophrenia. MAGMA 23, 351–366.

Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith,

S.M., 2014. Automatic denoising of functional MRI data: combining independent

component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468.

Schmidt, K.C., Cook, M.P., Qin, M., Kang, J., Burlin, T.V., Smith, C.B., 2005.

Measurement of regional rates of cerebral protein synthesis with L-[1-11C]leucine

and PET with correction for recycling of tissue amino acids: i. Kinetic modeling

approach. J. Cereb. Blood Flow Metab. 25, 617–628.

Scott, G., Fagerholm, E.D., Mutoh, H., Leech, R., Sharp, D.J., Shew, W.L., Knopfel, T.,

2014. Voltage imaging of waking mouse cortex reveals emergence of critical neuronal

dynamics. J. Neurosci. 34, 16611–16620.

Selesnick, I.W., 2001. Hilbert transform pairs of wavelet bases. IEEE Signal Process. Lett.

8, 170–173.

Selesnick, I.W., 2002. The design of approximate Hilbert transform pairs of wavelet

bases. IEEE Trans. Signal Process. 50, 1144–1152.

Shanahan, M., 2010. Metastable chimera states in community-structured oscillator

networks. Chaos 20, (013108).

Shew, W.L., Plenz, D., 2013. The functional benefits of criticality in the cortex.

Neuroscientist 19, 88–100.

Shew, W.L., Yang, H., Petermann, T., Roy, R., Plenz, D., 2009. Neuronal avalanches

imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 29,

15595–15600.

Shew, W.L., Yang, H., Yu, S., Roy, R., Plenz, D., 2011. Information capacity and

transmission are maximized in balanced cortical networks with neuronal avalanches.

J. Neurosci. 31, 55–63.

Smith, C.B., Deibler, G.E., Eng, N., Schmidt, K., Sokoloff, L., 1988. Measurement of local

cerebral protein synthesis in vivo: influence of recycling of amino acids derived from

protein degradation. Proc. Natl. Acad. Sci. USA 85, 9341–9345.

Smith, C.B., Schmidt, K.C., Qin, M., Burlin, T.V., Cook, M.P., Kang, J., Saunders, R.C.,

Bacher, J.D., Carson, R.E., Channing, M.A., Eckelman, W.C., Herscovitch, P.,

Laverman, P., Vuong, B.K., 2005. Measurement of regional rates of cerebral protein

synthesis with L-[1-11C]leucine and PET with correction for recycling of tissue

amino acids: ii. Validation in rhesus monkeys. J. Cereb. Blood Flow Metab. 25,

629–640.

Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J., Bijsterbosch, J., Douaud, G.,

Duff, E., Feinberg, D.A., Griffanti, L., Harms, M.P., Kelly, M., Laumann, T., Miller,

K.L., Moeller, S., Petersen, S., Power, J., Salimi-Khorshidi, G., Snyder, A.Z., Vu, A.T.,

Woolrich, M.W., Xu, J., Yacoub, E., Ugurbil, K., Van Essen, D.C., Glasser, M.F.,

Consortium, W.U.-M.H., 2013. Resting-state fMRI in the Human Connectome

Project. Neuroimage 80, 144–168.

Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C., 2004. Organization, development

and function of complex brain networks. Trends Cogn. Sci. 8, 418–425.

Sporns, O., Honey, C.J., 2013. Topographic dynamics in the resting brain. Neuron 78,

955–956.

Sporns, O., Kotter, R., 2004. Motifs in brain networks. PLoS Biol. 2, e369.

Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R., 2012. Criticality in large-

scale brain FMRI dynamics unveiled by a novel point process analysis. Front.

Physiol. 3, 15.

Tomasi, D., Wang, G.J., Volkow, N.D., 2013. Energetic cost of brain functional

connectivity. Proc. Natl. Acad. Sci. USA 110, 13642–13647.

Turkheimer, F.E., Leech, R., Expert, P., Lord, L.D., Vernon, A.C., 2015. The brain's code

and its canonical computational motifs. From sensory cortex to the default mode

network: a multi-scale model of brain function in health and disease. Neurosci.

Biobehav. Rev. 55, 211–222.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix,

N., Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in

SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject

brain. Neuroimage 15, 273–289.

van den Heuvel, M.P., Kahn, R.S., Goni, J., Sporns, O., 2012. High-cost, high-capacity

backbone for global brain communication. Proc. Natl. Acad. Sci. USA 109,

11372–11377.

van den Heuvel, M.P., Sporns, O., 2013. Network hubs in the human brain. Trends Cogn.

Sci. 17, 683–696.

van den Heuvel, M.P., Sporns, O., Collin, G., Scheewe, T., Mandl, R.C., Cahn, W., Goni,

J., Hulshoff Pol, H.E., Kahn, R.S., 2013. Abnormal rich club organization and

functional brain dynamics in schizophrenia. JAMA Psychiatry 70, 783–792.

Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E., Bucholz, R., Chang,

A., Chen, L., Corbetta, M., Curtiss, S.W., Della Penna, S., Feinberg, D., Glasser, M.F.,

Harel, N., Heath, A.C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S.,

Oostenveld, R., Petersen, S.E., Prior, F., Schlaggar, B.L., Smith, S.M., Snyder, A.Z.,

Xu, J., Yacoub, E., Consortium, W.U.-M.H., 2012. The Human Connectome Project:

a data acquisition perspective. Neuroimage 62, 2222–2231.

Vasa, F., Shanahan, M., Hellyer, P.J., Scott, G., Cabral, J., Leech, R., 2015. Effects of

lesions on synchrony and metastability in cortical networks. Neuroimage 118,

456–467.

Veronese, M., Bertoldo, A., Bishu, S., Unterman, A., Tomasi, G., Smith, C.B., Schmidt,

K.C., 2010. A spectral analysis approach for determination of regional rates of

cerebral protein synthesis with the L-[1-(11)C]leucine PET method. J. Cereb. Blood

Flow Metab. 30, 1460–1476.

Veronese, M., Schmidt, K.C., Smith, C.B., Bertoldo, A., 2012. Use of spectral analysis with

iterative filter for voxelwise determination of regional rates of cerebral protein

synthesis with L-[1-11C]leucine PET. J Cereb. Blood Flow Metab. 32, 1073–1085.

Vincent, J.L., Kahn, I., Snyder, A.Z., Raichle, M.E., Buckner, R.L., 2008. Evidence for a

frontoparietal control system revealed by intrinsic functional connectivity. J

Neurophysiol. 100, 3328–3342.

Whitcher, B., Craigmile, P.F., Brown, P., 2005. Time-varying spectral analysis in

neurophysiological time series using Hilbert wavelet pairs. Signal Process. 85,

2065–2081.

Wildie, M., Shanahan, M., 2012. Metastability and chimera states in modular delay and

pulse-coupled oscillator networks. Chaos 22, 043131.

Yudkoff, M., Daikhin, Y., Nissim, I., Horyn, O., Luhoyvyy, B., Lazarow, A., Nissim, I.,

2005. Brain amino acid requirements and toxicity: the example of leucine. J Nutr.

135, 6.

Zenke, F., Hennequin, G., Gerstner, W., 2013. Synaptic plasticity in neural networks

needs homeostasis with a fast rate detector. PLoS Comput. Biol. 9, e1003330.

P.J. Hellyer et al. NeuroImage 155 (2017) 209–216

216


	Protein synthesis is associated with high-speed dynamics and broad-band stability of functional hubs in the brain
	Introduction
	Methods
	Positron emission tomography (PET)
	[1-11C]Leucine
	[18F]-FDG (Fludeoxyglucose)

	Magnetic resonance imaging
	Resting state fMRI (R-fMRI)
	Functional connectivity
	Graph theoretical metrics


	Results
	Metabolism measured using [18F]FDG SUV is enhanced in functional ‘hub’ nodes
	Protein turnover measured using [1-11C]Leucine is correlated with functional ‘hub’ nodes
	Stability of network hubs is inversely proportional to protein turnover measured using [1-11C]Leucine

	Discussion
	Disclosure
	Author contributions
	Acknowledgements
	Supplementary material
	References


